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The Viterbo transfer as a map of spectra

Thomas Kragh

Let L and N be two smooth manifolds of the same dimension.
Let j : L→ T ∗N be an exact Lagrange embedding. We denote the
free loop space of X by ΛX. In [28], C. Viterbo constructed a
transfer map (Λj)! : H∗(ΛL)→ H∗(ΛN). This transfer was con-
structed using finite dimensional approximation of Floer homol-
ogy. In this paper we define a family of finite dimensional ap-
proximations and realize this transfer as a map of Thom spectra:
(Λj)! : (ΛN)−TN → (ΛL)−TL+η, where η is a virtual vector bundle
classified by the tangential information of j.
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1. Introduction and statement of results

Let N be a closed d-dimensional smooth manifold, and let π : T ∗N → N be
the projection from the cotangent bundle of N to N . The Liouville form (or
canonical 1-form) λ is defined by

λq,p(v) = p(π∗(v)), q ∈ N, p ∈ T ∗qN, v ∈ Tq,p(T ∗N).

The 2-form ω = −dλ is non-degenerate and thus defines a canonical symplec-
tic structure on T ∗N . Let L be another closed d-dimensional smooth man-
ifold. An embedding j : L→ T ∗N is called Lagrangian if j∗ω = −dj∗λ = 0
and called exact Lagrangian if j∗λ is exact. We assume from now on that
j is an exact Lagrangian embedding. The trivial examples of such embed-
dings are those which are Hamiltonian isotopic to the zero section. To this
day no non-trivial examples have been found, and the nearby Lagrangian
conjecture states that there are no others. This is trivially true for N = S1.

Recently there has been much progress in this area. Specifically in Nadler
[24] and Fukaya, Seidel and Smith [15] it is proven, independently, that un-
der certain conditions j is a homology equivalence. This has been extended
by Abouzaid in [5] to prove that when the Maslov index vanishes then j is
a homotopy equivalence. Finally in [20] we use results from this paper and
some new methods to prove homology equivalence without any assumptions,
and with Abouzaid we prove in general that j is a homotopy equivalence.
Furthermore, restrictions on the smooth structures and immersions classes
has been found in certain cases (mostly spheres) in [4], [13], [12] and [6].
The two latter uses results from this paper. Finally combining the homo-
topy equivalence result with the dimension dependent argument by Hind in
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The Viterbo transfer as a map of spectra 87

[18] proves that for N = S2 or N = RP 2 the exact Lagrangian L is in fact
Hamiltonian isotopic to the zero-section, thereby confirming the conjecture
for these N .

We denote the free loop space of a space X by ΛX. In [28], Viterbo
constructs a transfer map (Λj)! on cohomology, such that

H∗(ΛL)
(Λj)!

//

i∗

��

H∗(ΛN)

i∗

��

H∗(L)

ev∗0

OO

(π◦j)!

// H∗(M)

ev∗0

OO

commutes. Here (π ◦ j)! is the standard transfer map on cohomology, ev0 is
the evaluation at base point, and i is the inclusion of constant loops. In this
paper we call this map the Viterbo transfer. Viterbo used this transfer as
obstruction to the existence of exact Lagrangian embeddings.

Because j : L→ T ∗N is Lagrangian we get a Maslov class in H1(L).
This defines a map ΛL→ Z called the Maslov index, and it turns out that
the Viterbo transfer is shifted in grading on each component by this Maslov
index. In this paper we prove the following theorem, which explains this
grading shift (when using Thom isomorphism).

Theorem 1.1. The Viterbo transfer can be realized as a map of Thom-
spectra such that the diagram

(ΛN)−TN
Λj!
// (ΛL)−TL+η

N−TN

OO

j!
// L−TL

OO

commutes. Here j! : N
−TN → L−TL is the usual transfer for manifolds (de-

fined on Thom-spectra) and η is a virtual vector bundle classified by the
tangential information of the embedding j : L→ T ∗N , and the local dimen-
sion of η is the Maslov index.

Furthermore, the definition of the spectra and the map is a contractible
choice, and the identification of the homotopy type of all except the top right
is also a contractible choice.

The reason for the non-canonicality of the last spectrum is due to a
stable choice of homotopy of Lagrangians along L. This choice is made and
called Γv in the proof of Proposition 14.1. If the strong version of the nearby
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Lagrangian is true (the space of exact Lagrangians are contractible) then
this choice will in fact also be canonical.

Remark 1.2. When defining the standard transfer for manifolds one can
alternatively describe this as a map j′! : Σ∞N+ → LTN−TL, which in the case
of non-orientable manifolds is different on homology. Similarly one can make
some alternative choices in the construction of this transfer map, and the
content of Corollary 8.3 and Corollary 14.4 is that the alternative diagram
becomes:

Σ∞(ΛN)+
Λj′! // (ΛL)TN−TL+η

Σ∞N+

OO

j′! // LTN−TL

OO

We have included a short discussion about spectra and CW spectra in
Appendix A, and since every spectrum appearing in this paper is homotopy
equivalent to a CW spectrum as defined in [7] we refer to this book for a
more thorough introduction to the concept of spectra. However, note that
the categories of spectra that are usually used today are much more struc-
tured and thus handy for a lot of things. In particular they are symmetric
monoidal categories with respect to smash product before passing to the ho-
motopy category. This is convenient when considering things like products
(ring spectra), but we will not do that here. Although it should be men-
tioned that using [10] and the theory of fibered spectra from [21] one can
construct natural ring-structures on all the spectra above, and one could
then conjecture Λj! to be a ring-spectrum map.

In the original construction by Viterbo, the Thom isomorphism is used
on what turns out to be the virtual vector bundle −TL+ η (a topological
K-theory class). However, η is not necessarily oriented, but if we assume
(π ◦ j) : L→ N to be relatively oriented and relative spin, it will be. This
has recently yielded a new insight into coherent orientations. Se [20], [2],
and [3] for more details on this.

The rest of the introduction is an overview of the construction of (Λj)!

using finite dimensional approximations of Floer homology.

Outline of proof of Theorem 1: The actual construction does not use
Floer homology. However it is very illuminating to sketch the relation. This
relation also justifies considering the spectra constructed as representations
of the stable homotopy type of Floer homology in cotangent bundles — at
least in the oriented and spin case.
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For any Hamiltonian H : T ∗N → R we define the action integral

AH : ΛT ∗N → R

by the formula

AH(γ) =

∫
γ
λ−Hdt.

We give N a Riemannian structure (and wait till the very end of the paper
to argue that the Viterbo transfer do not depend on this choice), and we
will always assume that H(q, p) = µ‖p‖+ c for large ‖p‖, where µ ∈ R is not
the length of any closed geodesic. We say that H is linear at infinity. Floer
homology FH∗(T

∗N,H) is essentially Morse homology of AH perturbed on
the infinite dimensional manifold ΛT ∗N (see e.g. [1]). When N is orientable
and spin the linear at infinity case can be calculated to satisfy (see [27] and
[28] — where the need for the spin assumption was overlooked)

FH∗(T
∗N,H) ≈ H∗(ΛµN).(1)

Here ΛµN denotes the space of loops with length less than µ. Define T ∗ΛrN
as the cotangent space of the manifold of r-pieced geodesics each of length
less than some fixed δ0 > 0. The finite dimensional approximations we define
in Section 5 can be described in the following way: for large r we define
embeddings:

ir : T ∗ΛrN → ΛT ∗N,

where T ∗ΛrN is a finite dimensional manifold, and these satisfy

• The image of ir contains all critical points of AH

• The composition Sr = AH ◦ ir has no other critical points than those
from AH

• There is a “consistent” way of applying Morse theory for Sr on T ∗ΛrN
and creating a space Z ′ such that the homotopy type of this space does
not change under small compact perturbations of H.

• In fact, the Morse theory of AH ◦ ir captures all of the Morse homology
of AH .

We will not prove the last point. In the actual construction, we use the
theory of Conley indices described in Section 2, but for the purpose of this
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overview, one may think of Sr as a Morse function, and thus think of Z ′ as
a cell complex with; one cell per critical point, and an extra base-point cell
because flow lines can go to −∞.

In Section 5 we explicitly define a function Sr as above (but skipping
the ir and simply writing down an formula for Sr) and in Section 9 prove
that Z ′ (in the case described above) is homotopy equivalent to the Thom
space

Th(TΛµrN) ' (ΛµrN)TΛµrN = D(TΛµrN)/U(TΛµrN),

where ΛµrN is the manifold of piecewise geodesics, with r pieces each having
length less than µ/r, D(·) denotes the unit disc bundle, and U(·) denotes
the unit sphere bundle. This was already proven by Viterbo in [28], but
because we have an explicitly defined Sr, we can prove it more directly; and
we will need this more direct approach to identify the homotopy types later.
Using the Thom isomorphism, this is consistent with Equation (1), but be
warned: As interpreted by the new insight into coherent orientations the
homology of this is not always the Floer homology unless N is oriented and
spin. However all of these differences are mostly due to coherent orientations
issues and not really important for the heuristical idea.

This formula suggests that when increasing r the space changes by a
(relative) Thom construction using the tangent bundle TN , and this is pre-
cisely what we prove in Section 6. Since spectra are defined by sequences of
spaces up to standard reduced suspensions this does not precisely define a
spectrum. So, in Section 7 we describe how to untwist these copies of TN by
adding copies of the normal bundle. Subsequently, defining a spectrum out
of the collection of Conley indices for all large r. We denote this spectrum by
Zµ, but the reader not to comfortable with spectra can continue to consider
this as a CW complex with 1 cell per critical point (and a base-point cor-
responding to −∞). We will be taking the limit µ→∞ and we will denote
the limit of these spectra Z = limµ→∞ Z

µ.
This construction of a spectrum out of the Morse theory of Sr (or heuris-

tically AH) is completely canonical and natural. Indeed, we argue that all
relevant choices leads to spectra with contractible choice of homotopy equiv-
alences between them, and we will see that the natural quotients and inclu-
sions on Conley indices induce natural maps of spectra. This and the usual
construction of the Viterbo transfer map (Viterbo functoriality) gives the
map (Λj)! of spectra in Theorem 1.1. However, for the reader unfamiliar
with this construction we quickly outline the idea. The full construction is
done in Section 8.
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Because j : L→ T ∗N is a Lagrangian embedding, we can use the
Darboux-Weinstein theorem to extend j to a symplectic embedding of a
small neighborhood of the zero section in T ∗L (which we can assume is
DT ∗L by choosing the Riemannian structure on L appropriately). Using
this neighborhood and the fact that j is exact, we can adjust H such that
all the critical points of Sr with critical values above c, for some c, are loops
inside the neighborhood of L.

In fact, close to L the Hamiltonian H is defined to be a smooth approx-
imation of the norm function ‖pL‖ (using some Riemannian structure on L)
times some constant µL. We now define W to be the spectrum (for each µ
and µL and then taking the limit as both goes to ∞) defined by the usual
quotients on Conley indices, which in CW language means that we collapse
the sub-complex Y defined by those cells associated to critical points with
critical value less than c. Because H are close to µL‖pL‖ in a neighborhood
of L we see that the space W is highly related to the linear at infinity case
on L.

In Section 11 we identify the homotopy type of the source spectrum
(canonically) as (ΛN)−TN .

Section 9 and Section 10 proves a localization result that makes it pos-
sible to also identify the homotopy type of the target (this is also used in
Section 11, but a much less general statement is needed for that part). This
requires some work. Indeed, when constructing the finite dimensional ap-
proximations in T ∗N we use the cotangent bundle structure, and it stands
to reason that even though we are using a Hamiltonian, which close to L
describes a well-known (and similar to the case of N) Hamiltonian system,
the resulting homotopy type of W could depend on the structure on T ∗N .
This is, indeed, the case.

Let W ′ ' (ΛL)−TL denote the spectrum we get from using the usual
structures on T ∗L to define a spectrum out of this Hamiltonian system. This
has this homotopy type because it is the case we computed in Section 11,
but with L replacing N .

The most important structure (implicitly) used in the definition of W is
the fact that at each point in T ∗N we have a Lagrangian subspace defined
by vertical vectors. When restricting this to the neighborhood of L this
may differ from the Lagrangian subspaces given by vertical vectors in T ∗L.
At this point Viterbo uses a classification result on generating functions to
describe the difference of the two spaces (spectra in our case) W and W ′ as
a relative Thom space construction. This is very subtle, and in this paper we
instead use the very explicit constructions to actually calculate the stable
homotopy type of W . This very explicit construction is what led to the new
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insight into coherent orientations of Floer homology in cotangent bundles
mentioned above.

The calculation involves defining a family of finite dimensional approxi-
mations SΓ

r depending on Γ which is a section in the bundle.

L(T (DT ∗L))→ DT ∗L.

Here T (DT ∗L)→ DT ∗L is viewed as a symplectic vector bundle and
L(T (T ∗L))→ T ∗L is the associated fibration of Lagrangian Grassmanni-
ans, i.e. the fiber of the above fibration is L(n) ' U(n)/O(n), which is the
Grassmannian of linear Lagrangians subspaces in Cn.

In the neighborhood DT ∗L ⊂ T ∗N of the zero section of L, we have the
two canonical sections of this bundle: ΓL given by the section in L(T (T ∗L))
which to a point associates the vertical directions w.r. to L, and similarly ΓN

(restricted to the neighborhood DT ∗L). The construction of SΓ
r implies by

homotopy invariance that the spectrum W does not change when perturbing
Γ. This implies that if ΓL and ΓN were homotopic, we would in fact get that
W and W ′ are homotopy equivalent. However as mentioned before this is not
the case in general1. If they are not homotopic we may stabilize by adding
trivial factors and get “stabilized” finite dimensional approximations

SΓN⊕Rk
r : T ∗Λr(N × Rk) ∼= T ∗ΛrN × (R2kr, ω0)→ R.

We have set up the grading such that the spectrum we get if we apply Morse
theory (restricting to values above the constant c from above) in this stabi-
lized case is again W . Indeed, we will argue that the Conley indices for each
r is simply a reduced suspension of the old, and by definition the grading of
each is shifted in the natural way to compensate. The fact that the Conley
indices are reduced suspensions is due to the fact that this function is just
a constant quadratic term in the second variable R2kr. It is now a homo-
topy theoretical fact that: although ΓL and ΓN are not homotopic we can
find a homotopy from ΓN ⊕ Rk to ΓL ⊕ F , where F : DT ∗L→ L(k) is some

smooth map. It is still true that SΓL⊕F
r is quadratic in the second variable,

but this quadratic form is no longer the same for different values of the first
variable. Indeed, F is a now a Lagrangian in the second factor depending
on the point in the first factor. In Section 13 we calculate that for r odd the
negative eigenbundle of the quadratic form is given by a specific classifying

1unless the nearby Lagrangian conjecture is true, but we can of course not assume
that.
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map from ΛL→ Z×BO, which in Section 14 leads to the definition of the
Maslov bundle η, which is classified by the map

ΛL
F−→ ΛL(k)→ ΛL → ΩL ' Z×BO.

This map is described in more detail in Section 13 and Section 14.
In the end this shows that the spectrum W ′ is a relative Thom space

constructions on the pairs defining W , which implies Theorem 1.1.

Acknowledgments. I would like to thank Marcel Bökstedt, John Rognes
and Mohammed Abouzaid for many enlightening conversations about ma-
terial related to this paper.

2. Conley indices and canonicality

In this section we introduce the notion of Conley indices (from [11]). To be
able to discus how canonical the spectra we define are we recall some proofs.
To make things easier we define the notion of a good index pair, for which
we prove that the Conley indices are preserved under perturbation.

2.1. Definitions

Let M be a smooth open manifold, and let f : M → R be a smooth function.
A pseudo-gradient X for f is a smooth vector field on M such that the
directional derivative X(f) is positive at non-critical points and X = 0 at
critical points. The choice of a pseudo-gradient is a contractible choice since
a convex combination of pseudo-gradients is a pseudo-gradient, and they
exist since a gradient is a pseudo-gradient.

We will denote the flow of −X by ψt. Let a < b be regular values of f
which are isolated from the critical values of f . We wish to define the Conley
index Iba(f,X) (when possible).

An index pair (A,B) for (f,X) with respect a < b is a pair of subspaces
of M satisfying the following properties

I1: B ⊂ A ⊂ f−1([a, b]).

I2: A and B are compact.

I3: int(A−B) contains all critical points of f with critical values in ]a, b[.
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I4: For each x ∈ A the pair of spaces

({t ≥ 0 | ψt(x) ∈ A}, {t ≥ 0 | ψt(x) ∈ B})

is either ({t ≥ 0}, ∅) or a pair of closed intervals with the same maxi-
mum.

Notice that I4 means that either; a flow line stays in A−B converging to a
critical point or it exits A through B. The set B is called the exit set. When
such index pairs exist we define the Conley index

Iba(f,X) = A
/
B.(2)

If X = ∇f we write Iba(f). If all critical values of f is contained in an interval
]a, b[ we simply write I(f,X) instead of Iba(f,X) and call this the total index.

Since the choice of a pseudo-gradient which admits such index pairs is
not a contractible choice we fix a given pseudo-gradient X in the rest of
this section. The following lemma was due to Conley, however, we recall the
proof from [25].

Lemma 2.1. When index pairs exist the based homotopy type of Iba(f,X)
is well-defined, and the homotopy equivalences is induced by the flow ψt and
hence a contractible choice.

Proof. Assume we are given two index pairs (Ai, Bi), i = 1, 2. By definition
int(A2 −B2) contains the closed (hence compact) image set of flow lines
of ψt which converges to critical points at both ends with value in ]a, b[.
This implies that for any x ∈ (A1 −B1)− int(A2 −B2) there must be a
neighborhood U of x and a t ≥ 0 such that; for any y ∈ U we have that
one of the two points ψ±t(y) are not in A1 −B1 (or not defined). Mutatis
mutantis for x ∈ (A2 −B2)− int(A1 −B1).

By compactness of these sets there is a minimal

t0 = t0(A1 −B1, A2 −B2) ≥ 0

such that when t > t0 we get that; if ψ[−t,t](x) ⊂ A1 −B1 then x ∈ A2 −B2,
and if ψ[−t,t](x) ⊂ A2 −B2 then x ∈ A1 −B1.

For t > 3t0 we now define

h12
t : A1/B1 → A2/B2
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by the map induced by ψt when

ψ[0,2t/3](x) ⊂ A1 −B1 and ψ[t/3,t](x) ⊂ A2 −B2(3)

and sending everything else to the base point [B2].
We claim that h12

t ([x]) is continuous in ([x], t) ∈ A1/B1 × (3t0,∞). To
see this we first prove that Equation (3) is an open condition on the set
(x, t) ∈ A1 × (t0,∞). Indeed, Since the flow must exit A1 through B1 the
first half is by compactness of B1 an open condition, and given this condition
we get from the assumptions on t that

ψ[0,2t/3](x) ⊂ A1 −B1 ⇒ ψt/3(x) ∈ A2 −B2.

It again follows that since the flow must exit A2 through B2 that the lat-
ter condition is again an open condition inside the set of x ∈ A1 satisfy-
ing the first condition. So, to prove continuity we need only consider an
arbitrary sequence (xn, tn) ∈ (A1 −B1)× (3t0,∞) which all satisfies Equa-
tion (3), but the limit (x, t) = limn→∞(xn, tn) ∈ A1 × (3t0,∞) does not. It
follows by compactness of the sets and continuity of the flow that either
ψt(x) ∈ B2 or ψ2t/3(x) ∈ B1. We are finished if ψt(x) ∈ B2 so assume for
contradiction that ψt(x) /∈ B2. This, by the above assumptions on t > 3t0,
means that

ψ[t/3,t](x) ⊂ A2 −B2 ⇒ ψ2t/3(x) ∈ A1 −B1 ⇒ ψ2t/3(x) /∈ B1

which provides the contradiction.
Since the t0’s satisfy

t0(A1 −B1, A2 −B2) + t0(A2 −B2, A3 −B3) ≥ t0(A1 −B1, A3 −B3),

we see that these maps behave well under composition, and we also notice
that for (A1, B1) = (A2, B2) the maps are defined for all t ≥ 0 and h12

0 is the
identity. �

2.2. Quotients and inclusions

Some very important aspects of Conley indices are the natural inclusion and
quotient maps

i : Iba(f,X)→ Ica(f,X)

q : Ica(f,X)→ Icb (f,X),(4)
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where a < b < c are all regular for f . These maps are constructed as follows.
Let (A,B) be an index pair for Ica(f,X).

• The pair (A ∩ f−1([a, b]), B ∩ f−1([a, b])) is an index pair for Iba(f,X),
and the map i is induced by the inclusion of this pair into (A,B).

• The pair (A ∩ f−1([b, c]), [A ∩ f−1({b})] ∪ [B ∩ f−1([b, c])]) is an index
pair for Icb (f,X), and the map q is the map from A/B collapsing the
subset (A ∩ f−1([a, b]))/B.

These maps commute on the nose with the homotopy equivalences in
Lemma 2.1.

2.3. Good index paris and homotopy invariance

It is very convenient to introduce the concept of a good index pair (A,B).

Definition 2.2. An index pair (A,B) (for (f,X) with respect to a < b) is
called good if B ⊂ f−1(a) and for any vector field X ′ on M sufficiently close
to X on A we have; any point x ∈ A−B will under the flow of −X ′ for a
short positive time stay in A.

Note that this implies that the flow still exits through B and is thus
similar to I4. However, we say nothing about the flow not reentering A.
Indeed, this would be unreasonable since we only ask that X ′ is close to
X on A. In the language of isolated invariant sets (cf [25]) this definition
assures that the isolated invariant set of (f,X) associated to the index pair
(A,B) stays within A under small perturbations of (f,X).

There is another (more global) reason why good index pairs are conve-
nient. Indeed, the following lemma is not true if the word “good” is removed.

Lemma 2.3. Let M ′ ⊂M be an open submanifold. If all critical points of
f lie in M ′ and (f ′, X ′) = (f|M ′ , X|M ′) has a good index pair then this is also
a good index pair for (f,X). It thus follows that we can canonically identify

Iba(f,X) = Iba(f
′, X ′).

Proof. I1 through I3 above is trivial. I4 follows since B ⊂ f−1(a) and hence
any flow line exiting A cannot return since the value of f has gotten to
low. �

A small detail, which could be avoided in a different way is also good
about good index pairs.
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Lemma 2.4. A good index pair is a cofibrant pair.

Proof. By using the flow of the negative pseudo-gradient, but stopping it
when f = a we get a deformation retraction of A ∩ f−1([a, a+ ε[) (which is
a neighborhood of B) onto B. �

This has the immediate consequence.

Corollary 2.5. The Conley index Iba(f,X) is well-based, and has the ho-
motopy type of a CW complex.

Now let M
π−→ I be a submersion with each fiber M s = π−1(s) a smooth

manifold without boundary (e.g. M = N × I). Let f : M → R be a smooth
map, and denote the restriction to M s by f s. Let X be a vertical vector
field on M , i.e. it restricts to vector fields Xs on M s for each s ∈ I. Assume
that for each s ∈ I the vector field Xs is a pseudo-gradient for f s, and that
a < b are regular for all fs. Also assume that

• the union over s ∈ I of the critical points of f s (in M) is compact and

• for each s ∈ I there exist a good index pair (As, Bs) defining Iba(f
s, Xs).

Lemma 2.6. Under the above assumptions we have

Iba(f
0, X0) ' Iba(f1, X1).

Furthermore, this homotopy equivalence is a contractible choice and natu-
rally commutes with the homotopy equivalences from Lemma 2.1 and the
quotients and inclusions above.

Proof. Given s0, we would like to prove that a good index pair (A,B) =
(As0 , Bs0) is an index pair defining Iba(f

s, Xs) when s is sufficiently close to
s0. However this is not exactly possible because we cannot be certain that
I1 is satisfied, but because a and b are regular values and we know that
the critical points form a compact set, we can replace a and b by a− δ and
b+ δ for some small δ without changing the Conley indices. Now I1 is not a
problem for s close to s0.

I2 is obvious and I3 follows by compactness of the union of the critical
sets. Since the good pair assumption makes sure that we only exit A through
B (and transversely so), we are only left with proving that for any point x in
B we have {t ≥ 0 | ψst (x) ∈ A} = {0} and I4 will follow. This is equivalent
to proving that the flow does not return to A after exiting through B.
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Let (ψt)
s be the flow of −Xs for time t. Since −Xs0(fs0) restricted to

B is negative, the same is true for −Xs(fs0) for s close to s0. So fix a τ > 0
such that −Xs

x(fs0) is negative for s ∈ [s0 − τ, s0 + τ ] and x ∈ B. Then (by
compactness of B) we may choose a δ > 0 such that fs0((ψt)

s(x)) is strictly
decreasing for t ∈ [0, δ], x ∈ B, and s ∈ [s0 − τ, s0 + τ ]. Because f s0(B) =
{a} and fs0(A) ⊂ [a, b] we see that: for x ∈ B, t ∈ (0, δ] and s ∈ [s0 − τ, s0 +
τ ] we have that (ψt)

s(x) is not in A. Furthermore, by compactness of B
there is an ε > 0 such that fs0((ψδ)

s(B)) < a− ε when s ∈ [s0 − τ, s0 + τ ].
By continuity of the family fs we may now pick a τ ′ > 0 smaller than τ
such that for s ∈ [s0 − τ ′, s0 + τ ′] we have that fs((ψδ)

s(B)) < a− ε/2. We
can similarly assume (by compactness of A) that for small τ ′ we have that
fs(A) > a− ε/3. So, we conclude that the flow of any x ∈ B using −Xs for
s ∈ [s0 − τ ′, s0 + τ ′] immediately exits A and stays out for time t ∈ (0, δ],
and at time δ the value of f s is less than f s is on all of A. So, since Xs is a
pseudo-gradient for f s the flow of −Xs will never reenter A.

To see how this defines a contractible choice of homotopy equivalences
from Iba(f

0, X0) to Iba(f
1, X1) we consider finite coverings of I by open in-

tervals Jα over which we have chosen a common index pair (Aα, Bα) for
(fs, Xs) with s ∈ Jα. Such exists because of the above and compactness of
I. Now choose a subdivision

0 = s0 < s1 < · · · < sk = sk+1 = 1

such that each closed interval [si, si+1], i = 0, . . . , k is contained in a sin-
gle Jαi . Choose such an αi for each i = 0, . . . , k. Now choose ti ≥ 0 for
i = 0, . . . , k large enough to use the flow of −Xsi as in Lemma 2.1 to get
homotopy equivalences

Aαi−1
/Bαi−1

→ Aαi/Bαi .

Now the composition of these defines a homotopy equivalence as wanted.
This is a contractible choice since we may always introduce new division
points and increase flow times. Doing this we can cut up any interval Jαi
and replace the index pair we have on that with any refinement of index
pairs on a cover of Jαi .

This by construction (the reason for having sk = sk+1) has the flows
from Lemma 2.1 build in at the very beginning and end of the interval,
hence naturally commutes with these, by appropriately changing the flow
times at each end. �
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Remark 2.7. More generally it is proven in [20] that for a different base
manifold B of a projection M → B the Conley indices defined as a param-
eterized based space over B behaves very much like a (based) Serre fibra-
tion, and hence the homotopy equivalences from one fiber to another can be
thought of as a homotopy lifting property (parallel transport of the fiber).
This means that in the above argument it is important that I is contractible
— indeed, in the general case the homotopy equivalence would depend on
choices of paths in the base B.

2.4. Completely bounded pseudo-gradients

The homotopy type of a Conley index is particular nice to work with in the
following case.

Definition 2.8. A Pseudo-gradient X for a function f : M → R is said to
be completely bounded (CB) if;

• the flow of −X is defined for all times (positive and negative) and

• there exists a compact set K ⊂M and k > 0 such that X(f) > k on
the complement of K.

This implies that (f,X) satisfies the Palais-Smale condition.

Lemma 2.9. If (f,X) is CB then there exists a good index pair and

Iba(f,X) ' f−1([a, b])/f−1(a)

this homotopy equivalence is a contractible choice (in both directions) com-
patible with all the above homotopy equivalences.

Proof. Using the fact that the flow ψt is defined everywhere we get canonical
deformation retractions of f−1([a, b])/f−1(a) onto the quotients of the sets

At = f−1([a,∞[) ∩ (f ◦ ψ−t)(]−∞, b])
Bt = At ∩ f−1(a).

Indeed we produce the map by taking the flow on f−1([a, b]) and then col-
lapsing everything with f ≤ a.
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Claim At is compact for t >> 0. To see this let K ⊂M and k > 0 be as
in Definition 2.8. Define

K ′ = ψ[0,T ](K),

with T > (b− a)k−1. Then we claim that AT ⊂ K ′ and hence At is compact
for t ≥ T . Indeed, let x ∈ AT −K ′ be given. Then by definition of K ′ the
points ψt(x) for t ∈ [−T, 0] are not in K hence X(f) > k. It follows that
the value of f when flowing on ψ−T (x) for time t ∈ [0, T ] decreases faster
than k (that is ∂

∂t of this is less than −k), but since we are flowing for more
time than (b− a)k−1 it must decrease totally more than (b− a) — hence
f(ψ−t(x)) > b which is a contradiction.

Claim: (At, Bt) is a good index pair for (f,X) when t ≥ T . Indeed, At
is cut out by two equations which are transversal to the flow, so the fact
that the flow of −X points out at the set f−1(a) is preserved under small
perturbations of X, and the fact that it points in when f ◦ ψt(x) = b (but
not f(x) = a) is similarly preserved.

These homotopy equivalences are compatible (up to contractible choices)
with all the above since they are also given by the flow. The homotopy
equivalence in the other direction is induced by the inclusion (At, Bt) ⊂
(f−1([a, b]), f−1(b)). �

This lemma also suggest that the index when X is CB does not in fact
depend on X. We formalize this in the next lemma.

Lemma 2.10. If two pseudo-gradients X and X ′ for f are CB, then
Iba(f,X) ' Iba(f,X ′). Again, this choice is contractible compatible with all
of the above.

Proof. We simply notice that if (A,B) is an index pair for (f,X) and (A′, B′)
for (f,X ′) then the two inclusions

(A,B) ⊂ (f−1[a, b], f−1(b)) ⊃ (A′, B′)

induce the homotopy equivalences, and to get a contractible choice of these
we simply compose with the flow as above. �

Remark 2.11. One can view this result in a different way. Indeed, the
set of CB pseudo-gradients is in fact contractible so there is a homotopy
between X and X ′ within CB pseudo-gradients. Then Lemma 2.6 proves
the independence.
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2.5. Alternative construction of good index pairs

Inspired by the above construction we now describe a slightly more general
way of producing good index pairs (which is handy when X is not CB) by
using what we will call cut-off functions.

Lemma 2.12. Assume that g1, g2, . . . , gn : M → R are continuous func-
tions such that

A = f−1([a, b]) ∩ {x ∈M | gj(x) ≤ 0}
B = f−1(a) ∩A

are compact and the interior of A contains all the critical points of f with
critical value in ]a, b[. If; for each x ∈ ∂A with gj(x) = 0 we have that gj is
smooth in a neighborhood of x and

−Xx(gj) < 0;(5)

then (A,B) is a good index pair.

The meaning of (5) is the following: Because of the definition of A we
see that −X must flow into A at all parts of the boundary except of course
when f crosses the value a.

Proof. At any point x ∈ ∂A we must have f(x)− b ≤ 0 and

gj(x) ≤ 0

satisfied. Since b is a regular value we have that−Xx(f − b) < 0 if f(x)− b =
0 and, by assumption,−Xx(gj) < 0 if gj(x) = 0. So we see that for any vector
v close to Xx we have that: if f(x) = b then −v(f) < 0 and if gj(x) = 0 then
−v(gj) < 0. So −v points into A, except if the equality f(x) = a holds, in
which case −v must point out of the set for the same reason. The boundary
is compact so there is an ε > 0 such that this holds for all v and all x if
‖v −Xx‖ < ε �

3. The action integral in cotangent bundles

We will once and for all fix a Riemannian metric on N (and at the end of the
paper argue that the entire construction does not depend on this choice).
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This section recalls some notions and introduces some notation concerning
the action integral

AH(γ) =

∫
γ
(λ−Hdt),

where γ is a closed curve (of sufficient regularity) in T ∗N . All parts of this
section are well-known, but the methods are vital to the construction.

We denote points in the cotangent bundle T ∗N by (q, p), where q is in N
and p is a cotangent vector at q. Let π : T ∗N → N be the projection onto the
base and define the canonical 1-form λ ∈ Ω1(T ∗N) and 2-form ω ∈ Ω2(T ∗N)
by

λq,p(v) = p(π∗(v))

ω = d(−λ).

The form ω is non-degenerate and thus defines a canonical symplectic struc-
ture on T ∗N .

Given any smooth Hamiltonian H : T ∗N → R, we may define the asso-
ciated Hamiltonian vector field XH by the formula dH = ω(XH ,−). This is
well-defined because ω is non-degenerate. The flow of XH will be denoted
ϕHt and is called the Hamiltonian flow.

Using the Riemannian structure on N we may induce a Riemannian
structure on T ∗N in the following way: at each point (q, p) we split the tan-
gent space T(q,p)(T

∗N) in two components, the vertical, which is canonically
defined without the metric as the kernel of π∗, and the horizontal defined
by the connection given by the metric on N . This identifies T(q,p)T

∗N with
TqN ⊕ T ∗qN , on which we use the structure from N to define the inner
product on each factor — making this splitting orthogonal. We may also
define an almost complex structure J in this splitting by using the isometry
φq : TqN → T ∗qN induced by the metric on N

J(δq, δp) = (−φ−1(δp), φ(δq)).

This is compatible with the symplectic structure and the induced Rieman-
nian structure. The formula for XH can be rewritten using these as

XH = −J∇H.(6)

For any smooth manifold M let ΛM be the space of piecewise smooth and
continuous maps from S1 = I/{0, 1} to M . The action AH : ΛT ∗N → R is
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defined by

AH(γ) =

∫
γ
λ−

∫
S1

H(γ(t))dt =

∫
γ
(λ−Hdt).

It is known that the critical points of this integral are precisely the 1-periodic
orbits of the Hamiltonian flow (the calculation in Equation (12) in Section 4
proves this).

We will often need the special case in which H only depends on the
length of the cotangent vector — that is

H(q, p) = h(‖p‖),

where h : R→ R. For H to be smooth the germ at 0 of h needs to be even.
In this case we calculate the gradient of H in the orthogonal splitting:

∇H =

(
0, h′(‖p‖) p

‖p‖

)
We get 0 in the first factor because parallel transport does not change the
norm of p. Using Equation (6) we see that

XH = −J
(

0, h′(‖p‖) p

‖p‖

)
=

(
h′(‖p‖)φ−1

(
p

‖p‖

)
, 0

)
=

(
h′(‖p‖) p

‖p‖
, 0

)
.

As the last equation indicates we will from now on suppress φ from the
notation.

Remark 3.1. Because this vector field is 0 on the vertical factor, it will
parallel transport p and hence this becomes a reparameterization of the
geodesic flow on N . This describes the 1-periodic orbits as closed geodesics
on N with lengths corresponding to h′(‖p‖). The action of these orbits is eas-
ily calculated to be ‖p‖h′(‖p‖)− h(‖p‖). This corresponds to taking minus
the intersection of the y-axis with the tangent of h at the point (x, h(x)) as
in Figure 1. This geometric formula for calculating the action is very useful
for this type of Hamiltonian, and will be used repeatedly.

4. The gradient of a flow-line segment in cotangent bundles

We will in this section define what we call a segment function which we will
use as building blocks in the finite dimensional approximations in Section 5.
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h
−(xh′(x)− h(x))

x

Figure 1: Geometric calculation of critical values.

We will only define these for Hamiltonians H : T ∗N → R with small C2-
norm. The construction may seem technical, but it has the advantage of
being very explicit. This section and Section 5 are inspired by work in [28]
and [8].

We assume that the injective radius of N is 2δ1. Define

DRT
∗N = {(q, p) ∈ T ∗N | ‖p‖ ≤ R}

and DT ∗N = D1T
∗N . Similarly, define

URT
∗N = {(q, p) ∈ T ∗N | ‖p‖ = R}

and UT ∗N = U1T
∗N . We will define the segment functions on the space

W = {(q′, p′, q) ∈ T ∗N ×N | dist(q′, q) ≤ δ1}

where dist(−,−) is the distance in N using the Riemannian structure. We
also defined the compact sub-space

DW = {(q′, p′, q) ∈ DT ∗N ×N | dist(q′, q) ≤ δ1}

We will in the entire paper only consider smooth Hamiltonians H :
T ∗N → R with the property: there exist µ > 0 and c ∈ R such that

H(q, p) = µ‖p‖+ c for (q, p) /∈ DT ∗N.

For such Hamiltonians we define

‖H‖C2 = sup
z∈DT ∗N

(‖∇H‖, ‖∇∇H‖)(7)
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where ‖−‖, ∇, and ∇∇ are defined using the Riemannian structure on T ∗N
(induced by the Riemannian structure on N — defined in Section 3). Notice
that we did not include any value of H, so a constant function has norm
0 — making this a seminorm. Indeed, all we care about are bounds on the
gradient and the second order behavior of H.

In this section we impose the condition ‖H‖C2 < δ1/10 on H. This im-
plies in particular that µ < δ1/10 and thus the slope at infinity is less than
the length of any non-constant geodesic starting and ending at the same
point. For such H we define the segment function SH : W → R by

SH(q′, p′, q) =

(∫
γ
λ−Hdt

)
+ p−εq,(8)

where γ : [0, 1]→ T ∗N is the Hamiltonian flow curve γ(t) = ϕHt (q′, p′),

(q−, p−) = γ(1) and εq = exp−1
q− (q) ∈ Tq−N,

with exp: TN → N the exponential map. These are illustrated in Figure 2.

T ∗N

N

T ∗q−N

γ

εqε̃q

q′

p′

q−

p−

q

p̃−

Figure 2: Flow-line segment and related quantities.

The term p−εq is the pairing of cotangent vectors with tangent vectors
and thus the symplectic area of the rectangle formed by p−, p̃−, q, q− (p̃− is
defined properly below). The function SH is well-defined because ‖∇H‖ <
δ1/10 implies that the distance between q− and q is less than dist(q, q′) +
dist(q′, q−) < 11δ1/10 which is less than the injective radius 2δ1. Notice that
if ‖p‖ > 1, then p− is the parallel transport of p′ by a geodesic in the direction
of p′ (see Section 3), and thus ‖p−‖ = ‖p′‖.
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Consider the commutative diagram of isometries

Tq1N
Pq1,q2 //

φ

��

Tq2N

φ

��

T ∗q1N
P ∗q1,q2 // T ∗q2N,

where P
(∗)
q1,q2 is given by parallel transport along the unique geodesic when

q1, q2 ∈ N satisfy dist(q1, q2) < 2δ1. The isomorphism φ is the one induced by
the metric, which we suppressed from the notation in the previous section.
We will do so again and thus P ∗q1,q2 = Pq1,q2 . We use this to define

p̃− = Pq−,q(p
−) ∈ T ∗qN,

and a parallel transported version of εqj by

ε̃q = Pq−,q′(εq) ∈ T ∗q′N.

These are also illustrated in Figure 2. To control our finite dimensional ap-
proximations defined later we will need the following facts about the gradient
of these segment functions.

We will be using the notation

∇SH = ∇(q′,p′)S
H ⊕∇qSH = ∇q′SH ⊕∇p′SH ⊕∇qSH .

Here the splitting of ∇(q′,p′)S
H into two factors is horizontal and vertical

directions as described in Section 3.

Lemma 4.1. There exists constants C, δ > 0 such that for any Hamiltonian
H with ‖H‖C2 < δ we have

‖∇q′SH + p′‖ ≤C‖εq‖(9)

‖∇p′SH − ε̃q‖ ≤1
4‖εq‖ (= 1

4‖ε̃q‖)(10)

‖∇qSH − p̃−‖ ≤C‖εq‖,(11)

on the compact set DW .

Notice in particular the very important fact that Equation (10) implies
that a critical point has εqj = 0, which then have serious implications for the
two others at critical points. Indeed, critical points are thus small flow lines
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starting and ending on the zero-section. Pasting these cyclically together in
the next section we get periodic orbits as critical points.

Proof. First we consider the integration term of SH . We start by seeing
how it depends tangentially on the curve γ = (γq, γp) — thinking of γ as
an independent variable. So in the following ∂γ = (∂γq, ∂γp) is a smooth
tangent field along γ.

Dγ

(∫
−
λ−Hdt

)
(∂γ)

=

∫ 1

0
γp(∇t∂γq) + (∂γp)γ

′
q − (∇γH)(∂γ)dt

= [γp(t)∂γq(t)]
1
0 +

∫ 1

0
−γ′p(∂γq) + (∂γp)γ

′
q − (∇γH)(∂γ)dt

= −p′∂q′ + p−∂q− −
∫ 1

0
(Jγ′ +∇γH)(∂γ)dt(12)

= −p′∂q′ + p−∂q−

The integral vanishes because γ is a Hamiltonian flow curve, and thus γ′(t) =
−J∇γ(t)H. This is a standard calculation, and it is also a proof that the 1-
periodic orbits of the flow XH are the critical points of the action integral.

Motivated by this fact that the linearization of the action only de-
pends on the start and end point of γ it is classical to extend SH to a
larger manifold where these are considered independent variables. Formally
we do this by picking for all (q′, p′) ∈ DT ∗N and (q−, p−) ∈ DT ∗N with
dist(q′, q−) < δ1/2 a smooth path starting at (q′, p′) and ending at (q−, p−)
such that when (q−, p−) = ϕH1 (q′, p′) this curve is the Hamiltonian flow curve
of H (it is convenient that the flow of XH preserves DT ∗N since otherwise
this would clutter the notation a bit). We may assume that this choice is
smooth in all variables meaning that the adjoint map is smooth. By abuse
of notation we denote this choice of curves γ. Now define an extension G of
SH by using the “same” formula

G(q′, p′, q−, p−, q) =

(∫
γ
λ−Hdt

)
+ p−εq,

where εq is extended simply by εq = exp−1
q− (q′). So instead of imposing

(q−, p−) = ϕH1 (q′, p′), as we did in the definitions of SH , we use the cho-
sen smooth family of γ’s to define G depending on independent variables
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(q′, p′, q−, p−, q). With this definition we see that

SH(q′, p′, q) = G(q′, p′, ϕH1 (q′, p′), q),

meaning that if we define an embedding of manifolds

i : DW → DT ∗N ×DT ∗N ×N

by the formula

i(q′, p′, q) = (q′, p′, ϕH1 (q′, p′), q)

then G is defined in a neighborhood of the image and SH = G ◦ i, which
justifies calling this an extension.

We may use the gradient of G on the image if i to calculate the gradient
of SH using the chain rule DSH = DG ◦Di and the fact that the gradient
∇f is the image of 1 under the adjoint (Df)† of Df for any f : W → R.
More concisely, we have

∇SH = (Di)†∇G,

which more concretely in our case turns into

∇(q′,p′)S
H = ∇(q′,p′)G+ (D(q′,p′)ϕ

H
1 )†(∇(q−,p−)G)(13)

and

∇qSH = ∇qG.(14)

So we will calculate ∇G on the image of i. Comparing the calculation in
Equation (12) with the way we defined the Riemannian structure we already
calculated this gradient of the extended integration term:

∇(q′,p′,q−,p−,q)

∫
γ
λ−Hdt = (−p′, 0, p−, 0, 0).

The last zero is because nothing in this term depends on q. Notice that this
only works on the image of i, and the fact that it does not depend on the
choice of extension γ is because Equation (12) shows that it only depends
on the end points on the image of i.
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The gradient of the second term g(q−, p−, q) := p−εq is a little more
tricky, but at least it does not depend on (q′, p′) nor H. The gradient with
respect to p− is easy:

∇p−g = εq.

For the remaining two factors we first assume that εq = 0, i.e. q− = q then
by looking in a normal coordinate chart we see that

∇(q−,q)g = (−p−, p−) = (−p−, p̃−) when εq = 0.

We rewrite the latter p− as p̃− because when looking at εq 6= 0 this vector
lives in the correct tangent space TqN . We now claim that this implies the
bounds

‖∇q−g + p−‖ ≤ C ′‖εq‖ and ‖∇q′g − p̃−‖ ≤ C ′‖εq‖

for some C ′ > 0 for (q−, p−, q) ∈ DT ∗N ×N . Indeed, we are in the following
abstract situation: we have a smooth section ∇q−g + p− (similar for ∇q′g −
p̃−) in a vector bundle with a smooth metric on a compact manifold, and
this section is 0 when another smooth section εq is 0 (in the second case this
other smooth section is exp−1

q (q−) = Pq−,q(−εq) which has the same norm),
and this other smooth section is transverse to the zero section. In this case
we can always locally find C ′ such that the bounds are true — and we are
on a compact set so there is a global C ′ as well. In particular notice that
this C ′ does not depend on H. Indeed, g does not depend on H.

By adding the gradients of the two terms we obtain the gradient of G
(on the image of i) as

∇(q′,p′,q−,p−,q)G = (−p′, 0, b1, εq, p̃− + b2),

where b1 and b2 are smooth sections (vector fields) whose norms are bounded
by the function C ′‖εq‖.

Now we use Lemma 4.3 below with

F(q′,p′),(q−,p−) = Pq′,q− ⊕ Pq′,q−

defined using the parallel transport on the usual splitting of the tangent
spaces

Pq′,q− ⊕ Pq′,q− : Tq′N ⊕ Tq′N → Tq−N ⊕ Tq−N ≈ T(q−,p−)(T
∗N),
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and with M = DT ∗N . From that lemma we get that if ‖H‖C2 < δ = δ(ε)
then

‖DϕH1 − F‖ ≤ ε,

which implies

‖(DϕH1 )† − F−1‖ ≤ ε(15)

because F † = F−1 since F is an isometry. This means that (DϕH1 )† is ε close
in operator norm to the isometry F−1 which sends (b1, εq) to (Pq−,q′(b1), ε̃q).
If we had equality F−1 = DϕH1 then we would get from equations (13) and
(14) that the gradient of SH were given by

∇q′,p′,qSH = (−p′ + Pq−,q′(b1), ε̃q, p̃
− + b2),

which would easily imply the bounds

‖∇q′SH + p′‖ ≤ C ′‖εq‖
‖∇pSH − ε̃q‖ ≤ 0

‖∇qSH − p̃−‖ ≤ C ′‖εq‖.

However the difference of using F−1 and (DϕH1 )† in (13) is bounded by the
operator norm in (15) times the norm of the vector on which we use them:

‖(DϕH1 )† − F−1‖‖b1, εq‖ ≤ ε(C ′ + 1)‖εq‖ ≤ 1
4‖εq‖.

The latter if ε was such that 4ε(C ′ + 1) ≤ 1, which is true for appropriate
δ = δ(ε). So we get the wanted bounds if we pick C = (C ′ + 1/4) and such
a δ. �

The following lemma gives approximations of the same gradients but on
the complement of the compact set DW .

Lemma 4.2. For the same C, δ > 0 as in Lemma 4.1 we have for any
Hamiltonian H with ‖H‖C2 < δ that

‖∇q′SH + p′‖ ≤C‖p′‖‖εq‖(16)

‖∇p′SH − ε̃q‖ ≤1
4‖εq‖ (= 1

4‖ε̃q‖)(17)

‖∇qSH − p̃−‖ ≤C‖p′‖‖εq‖,(18)

on W −DW .
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Proof. We will prove this on the entire set U = {‖p′‖ ≥ 1} ∩W ⊃ (W −
DW ). Lemma 4.2 proves this on the subset {‖p′‖ = 1} ∩ U .

On the set U we have H(q′, p′) = µ‖p′‖+ c. The description of the flow
curves and their actions in Section 3 implies that the integration part of SH

is constantly equal to −c on U and that p− is the parallel transport of p′

along the geodesic in direction p′ with length µ. This geodesic is also the
projection of the flow curve γ to N . Let t ≥ 1 be given. We wish to analyze
how the term p−εq behaves if we multiply the p′ coordinate with this t. Since
the projected geodesic is the same for p′ and tp′ (both have length µ and
points in the direction given by p′) and since the parallel transport is linear
we see that the term p−εq simply gets multiplied with t because p− does so.
We have argued that

t(SH(q′, p′, q) + c) = SH(q′, tp′, q) + c for ‖p′‖ ≥ 1, t ≥ 1.

It is now easy to verify that the gradient of SH with respect to q′ and q scales
with t and that the gradient with respect to p′ is independent of t. �

In the above we used the following lemma, and we will need it in the
following generality later. So let M be any compact almost kähler manifold
(possibly with boundary, corners, etc.). For any Hamiltonian H : M → R we
define

‖H‖C2 = sup
z∈M

(‖∇H‖, ‖∇∇H‖)(19)

We also assume that the Hamiltonian flow preserves M (although this is not
really necessary if we put M ⊂M ′ where M ′ is open).

Let F(z1,z2) : Tz1
M → Tz2

M be any smooth identification of close-by tan-
gent spaces, i.e. F(z1,z2) is a linear isomorphism defined for dist(z1, z2) ≤ ε1

and smooth in z1 ∈M and z2 ∈M . Furthermore, we assume that F(z,z) is
the identity on TzM .

Lemma 4.3. For any ε > 0 we may find δ > 0 such that if ‖H‖C2 < δ then
the Hamiltonian flow ϕHt satisfies

‖(Dzϕ
H
1 )− Fz,ϕH1 (z)‖ ≤ ε(20)

for all z ∈M . Here the norm is the operator norm.

Remark 4.4. This is equivalent to the well-known lemma that if H is
C2-close to a constant map then the time 1-flow is C1-close to the identity.
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Proof. Since ‖∇H‖ < δ implies dist(z, ϕH1 (z)) < δ we see that the left hand
side of (20) is well-defined for small δ. By compactness we may find a finite
set of symplectic charts hi : Ui →M with Ui ⊂ R2n such that; for small δ > 0
each flow curve ϕt(z), t ∈ [0, 1] is fully contained in one of these charts for all
z ∈ K and all first and second order derivatives of all the hi’s are bounded.

Define Hi = H ◦ hi for any H, then the bounds on hi implies that we
can assume that there is a constant K > 0 such that ‖Hi‖C2 ≤ K‖H‖C2 . So
by making δ small we can make all these norms small.

Since we may also assume that the charts have diameter less than ε1 we
get that F pulled back to any of the charts (in the obvious sense), call this F i,
defines linear functions F iz1,z2

: R2n → R2n smoothly dependent on z1, z2 ∈ Ui
such that Fz,z = Id. This implies that if dist(z, ϕH1 (z)) < ‖∇Hi‖ ≤ ‖Hi‖C2

is small enough we get

‖F iz,ϕH1 (z) − Id‖ ≤ ε/2,

for all i and all z ∈ Ui simultaneously by compactness (maybe we shrink all
Ui’s a little).

We may now work entirely in one of these charts, and by abuse of nota-
tion use H = Hi, F = F i, U = Ui, ‖H‖C2 = ‖Hi‖C2 .

Since we are now in the case of the standard flat metric in R2n we see
that

‖∇XH‖ = ‖∇2H‖ < ‖H‖C2

implies that ‖Dzϕ
H
1 − Id‖ < ‖H‖C2 by a standard integration argument. So

for ‖H‖C2 < ε/2 we have

‖Dzϕ
H
1 − Fz,ϕH1 (z)‖ ≤ ‖Dzϕ

H
1 − Id‖+ ‖Fz,ϕH1 (z) − Id‖ ≤ ε,

which is what we set out to prove. �

5. Finite dimensional approximation of the action integral in
cotangent bundles

In this section we define finite dimensional approximations Sr to the action
AH by putting several segment functions together. This means we no longer
need the Hamiltonian H to be C2 small, but the number r of segment func-
tions needed then depends on the C2-norm. We will then define a pseudo-
gradient Xr for this finite dimensional approximation such that there exists
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good index pairs for large r >> 0 and hence we have well-defined Conley
indices.

As in Section 4 we assume that all Hamiltonians H : T ∗N → R are
smooth and linear outside DT ∗N with some slope µ. Again we define ‖H‖C2

as in Equation (7). We additionally assume that the slope µ is not the length
of a closed geodesic on N .

Let δ1 be as in Section 4. Now define

δ0 = min(δ1, δ, (8C)−1),(21)

where δ and C are the constants from Lemma 4.1 and Lemma 4.2. We also
assume that any ball in N with radius less than δ0 is geodesically convex.
Use this to define the manifold of r-piecewise geodesics in N by

ΛrN = {(qj)j∈Z/r ∈ N r | dist(qj , qj+1) < δ0}.(22)

We use j ∈ Z/r to emphasize that qr = q0 and we have a cyclic structure.
We see that the cotangent space of this is easily identified by

T ∗ΛrN ∼= {(qj , pj)j∈Z/r ∈ (T ∗N)r | dist(qj , qj+1) < δ0}.(23)

We will denote a point in this space by ~z = (~q, ~p), and a single coordinate
by zj = (qj , pj) ∈ T ∗N . These two spaces are given the restriction of the
product Riemannian structures from N r and T ∗N r.

We will use the segment functions defined in Section 4 to define func-
tions resembling the action AH on T ∗ΛrN having the same critical points
(the 1-periodic orbits) with the same critical values. In Section 10 we will
define generalizations of these, and in Remark 9.9 we explain how they can
be constructed using embeddings ir : T ∗ΛrN → ΛT ∗N as explained in the
overview in the introduction.

Since parameterization of flow curves will be important to handle in the
construction later we define such “approximations” for certain subdivision
of the unit interval I = [0, 1]. So, let α = (αj)j∈Z/r ∈ Ir with

∑
j αj = 1 be

given. However, since we will never need to consider subdivisions which does
not satisfy

αj ≤ 2
r(24)

we will for the sake of simplicity always assume this. Note, that the most
important example of these is of course αj = 1/r. We will also assume that
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r is large enough for

2
r‖H‖C2 < δ0/10.(25)

Under these two assumptions (and only under these two assumptions) we
define

Sr(~z) = SHr,α(~z) =
∑
j∈Z/r

S(αjH)(qj , pj , qj+1),(26)

where S(αjH) is the segment function defined in Equation (8) for the Hamil-
tonian αjH. Also define γj : [0, αj ]→ T ∗N as the Hamiltonian flow curve
given by γj(t) = ϕHt (qj , pj), and further define

(q−j , p
−
j ) = γj−1(αj−1),

εqj = exp−1
q−j

(qj) ∈ Tq−j N,

ε̃qj = Pq−j ,qj−1
(εqj ) ∈ Tqj−1

N,

p̃−j = Pq−j ,qj (p
−) ∈ T ∗qjN, and

εpj = pj − p̃−j

for all j ∈ Z/r. Most of these are visualized in Figure 3 and Pq,q′ is the
parallel transport used in Section 4. Finally we define

P = max
j
‖pj‖.(27)

T ∗N

N

T ∗
qjN

γj−1

γj

εqj

εpj

εqj+1

εpj+1

qj−1

pj−1

q−j

p−j

qj

p̃−j

pj

p−j+1

q−j+1
qj+1

p̃−j+1

pj+1

Figure 3: The piece-wise flow and relevant tangent vectors.

Since γj : [0, αj ]→ T ∗N is a time αj Hamiltonian flow curve for H it is
the obvious reparametrization of a time 1 flow curve for the Hamiltonian
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αjH. This reparametrization combined with similarly rescaling the Hamil-
tonian preserves action so it follows that

Sr(~z) =
∑
j∈Z/r

(∫
γj

λ−Hdt

)
+
∑
j∈Z/r

p−j εqj .(28)

Remark 5.1. This approximates the action in the following sense: we in-
tegrate the action integral over the small piece-wise flow curves, and then
we add the symplectic area of the rectangles with corners q−j , p

−
j , p̃

−
j , qj in

Figure 3 to compensate for the fact that the pieces do not form a closed
curve. Indeed, integrating the 1-form over a closed curve seems reasonable.

We also see that γj−1 ends where γj begins if and only if both εqj and εpj
are 0. We have almost proved the following lemma. Note that we assumed
Equation (25) in order to define Sr.

Lemma 5.2. For any Hamiltonian H and sub-division α (where Sr is de-
fined) we have

‖∇qjSr + εpj‖ ≤C max(1, P )(‖εqj‖+ ‖εqj+1
‖)

‖∇pjSr − ε̃qj+1
‖ ≤1

4‖εqj+1
‖ (= 1

4‖ε̃qj+1
‖)

where ∇qjSr ⊕∇pjSr = ∇zjSr is the gradient with respect to the jth compo-
nent in T ∗ΛrN . Here C is the constant from Lemma 4.1.

Furthermore, this implies that the critical points of Sr are precisely those
where all εqj and εpj are 0 such that the γj’s fit together to form a 1-periodic
orbit of the Hamiltonian flow of H, and the critical value is the action of
this orbit.

Proof. Adding the calculations of the gradients in Lemma 4.1 and Lemma 4.2
(which holds on each segment because we did not define Sr otherwise) and
using max(1, ‖pj‖) ≤ max(1, P ) proves the first part.

For the second part we use

• the second inequality from the first part,

• ‖εqj+1
‖ = ‖ε̃qj+1

‖ and

• ∇pjSr = 0

to conclude that any critical point must have εqj = 0.
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Having this for all j ∈ Z/r we then use the first inequality together with
∇qjSr = 0 to conclude εpj = 0. The fact that Sr equals the action on these
points follows from Equation (28). �

We will need the following addition at a technical point later.

Corollary 5.3. We have

‖∇qjSr + εpj‖ ≤1
2 max(1, P )

Proof. This follows easily from the first approximations in the lemma above
and because we made δ0 less than (8C)−1. Indeed, by construction we have
‖εqj‖ < 2δ0 < (4C)−1 for all j ∈ Z/r. �

Lemma 5.2 and the description of the 1-periodic orbits (in Section 3)
now imply that the set of critical points of Sr is a compact set. The function
Sr with its gradient does not necessarily have index pairs, but following
the idea of Viterbo we define a pseudo-gradient Xr for which it does. On
the set where maxj‖εqj‖ < δ0/10 we use the gradient of Sr, and on the set
maxj‖εqj‖ > δ0/5 we keep the non-zero ~p-component of the gradient of Sr,
but use 0 as the ~q-component, i.e. on this set we have

Xr =
⊕
j

(0,∇pjSr).

In between we use some smooth convex combination of them. So by con-
struction we have

Xr · ∇Sr ≥ ‖Xr‖2 ≥
∑
j

‖∇pjSr‖2 ≥
∑
j

9
16‖εqj‖

2,(29)

and as we only made Xr different from the gradient on a set where the latter
is non-zero (last inequality uses Lemma 5.2) it is indeed a pseudo-gradient.
To prove that Conley indices are well-defined we need the following lemma.

Lemma 5.4. When defined (Sr, Xr) is CB.

See Section 2 for definition of CB.

Proof. We start by proving that the flow of Xr is defined for all times (posi-
tive and negative). By construction the flow preserves all the qj coordinates
when εqj > δ0/5, which implies that it preserves the sets dist(qj , qj+1) = k if
k > 3δ0/10. Indeed, ‖εqj‖ > dist(qj , qj+1)− δ0/10 because the length of any
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of the flow curves γj is less than δ0/10 by Equation (25). So we need only
prove that none of the pj run of to ∞ in finite time. However, this follows
because Lemma 5.2 implies

‖∇pjSr‖ ≤ 5‖εqj‖/4 < 2δ0.

Then we prove that X(Sr) has a global lower bound on the complement
of a compact set. First, we notice that we can extend the definition of Sr to
the set where dist(qj , qj+1) are all allowed to be equal to δ0. This means we
are done (using compactness of the complement) if we can prove a global
lower bound on the set where P > 2. Using Lemma 5.2 we see that

X(Sr) = X · ∇Sr ≥ ‖∇pjSr‖2 ≥ 9‖εqj‖2/16.

This means that we can restrict to considering the points where maxj‖εqj‖ <
δ0/10 (any given constant), which means that we only need to consider the
case where Xr = ∇Sr.

We will therefore need a lower bound on the norm squared of the gra-
dient, but this is the same as having a lower bound on the norm. In fact, if
we can find a lower bound on Gq +Gp where

Gp =
∑
j

‖∇pjSr‖ and Gq =
∑
j

‖∇qjSr‖

then we are done. Define

Lq =
∑
j

‖εqj‖ and Lp =
∑
j

‖εpj‖.

Because of the approximation of ∇pjSr in Lemma 5.2 we see that Gp ≥ Lq/2
and hence

Gq +Gp ≥ Gq + Lq/2,

and we will prove the lemma by finding a lower bound on the latter. We will
do this by finding k1, k2 > 0 and prove that if

Lq < k1 then Gq > k2.(30)

Define P = minj‖pj‖. There are no 1-periodic flow curves on the compact
set 1 ≤ ‖p‖ ≤ 2 (this defines a compact set when combined with
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dist(qj , qj+1) ≤ δ0), so there must exist 0 < c < 1 such that Lq + Lp > c for
curves with all zj ’s contained in this set. Now we prove that if we define

k1 = min

(
c/2,

1

4C
,
c

8C

)
we can find k2 such that the statement in Equation (30) is true. Here C is
the constant from Lemma 5.2.

So, assume that Lq is less than this k1 then we divide the proof that Gq
is bounded from below by some k2 into two cases.

First case: P < P/2. By assumption we have some j such that ‖pj‖ =
P ≥ 2 and for another j′ we have ‖pj′‖ < P/2. The “curve” ~z has to move
this distance in p-direction and back again. More precisely, the Hamiltonian
flow of H when ‖p‖ ≥ 1 is well-understood and we have

|‖pi‖ − ‖pi−1‖| =
∣∣‖pi‖ − ‖p−i ‖∣∣ < ‖εpi‖

when ‖pi‖ and ‖pi−1‖ are greater than 1. If precisely one of them is less than
1 then

‖pi‖ − 1 < ‖pi‖ − ‖p−i ‖ < ‖εpi‖ when ‖pi−1‖ < 1

‖pi−1‖ − 1 < ‖p−i ‖ − ‖pi‖ < ‖εpi‖ when ‖pi‖ < 1.

We see that for ‖pj‖ ≥ P to “move” all the way down to ‖pj′‖ < P/2 we
must have ∑

j<i≤j′
‖εpi‖ ≥ P/2 and

∑
j′<i≤j

‖εpi‖ ≥ P/2

and thus Lp ≥ P . Note that with the cyclic ordering j, j′ ∈ Z/r both sums
makes sense. The approximation in Lemma 5.2 and the bound Lq < k1 ≤
1/(4C) now gives

Gq =
∑
j

‖∇qjSr‖

>
∑
j

(
‖εpj‖ − CP (‖εqj‖+ ‖εqj+1

‖)
)
>

(
P − P

2

)
≥ 1,

which is a positive constant.
The second case: P ≥ P/2. In this case we can, because the flow is equiv-

ariant with respect to the R+ action on the set ‖p‖ ≥ 1, multiply our “piece-
wise flow curve” with 2/P to obtain a piecewise flow curve on the compact
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set 1 ≤ ‖p‖ ≤ 2. This does not change any of the εqj ’s, but it scales the εpj ’s
so we can conclude that the original curve satisfies

2

P
Lp + Lq > c.

Because Lq < c/2 this implies that Lp >
cP
4 , which implies by using the

bound Lq < k1 ≤ c
8C that

Gq >
∑
j

‖εpj‖ − CP (‖εqj‖+ ‖εqj+1
‖) > cP

4
− cP

8
>
cP

4
.

This is again a positive constant. �

6. The suspension maps

In this section we prove that when increasing r by 1 we get a relative Thom
space construction (defined in this section) of the Conley indices, whose ex-
istence was guaranteed in the previous section. The first part is producing
an explicit (and hence canonical) map realizing this homotopy equivalence,
this will respects quotients and inclusions of index pairs. The second part
is a concrete construction of index pairs which proves that the maps induce
a homotopy equivalence. We will need this map for any H (linear at in-
finity with slope not a geodesic length) and the Conley index with respect
to any fixed interval [a, b] where a and b are regular values for the finite
dimensional approximation Sr. The result of this section is summarized in
Proposition 6.3, and an even shorter summary is given by Equation (31).

6.1. Definitions and preliminaries

Define the relative Thom construction of a metric vector bundle E →M on
a pair (A,B) in M by

(A,B)E− = (DE|A, UE|A ∪DE|B).

Here UE denotes the unit sphere bundle of the vector bundle E. We also
define a shorthand for the quotient of the pair by

(A,B)E/ = DE|A/
(
UE|A ∪DE|B

)
.

We use these notations with − and / because we are dealing with pairs.
However, as is standard we will use the notation AE = (A,∅)E/ for the
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Thom-space (and sometimes even Thom-spectra, but we will make this clear
from the context) when we are dealing with a single unbased space A. If the
space is based at ∗ ∈ A we use AE = (A, {∗})E/. This generalizes that ΣA
usually means two different things when A is based and unbased — i.e. the
usual suspension and the reduced suspension.

The short version of what we prove in this section is

Iba(Sr+1, Xr+1) ' (A,B)TN/(31)

when (A,B) is a good index pair for (Sr, Xr). To make sense of TN as a
vector bundle on T ∗ΛrN we define

evj : T ∗ΛrN → N

to be the map given by evj(~z) = qj . Then by abuse we could (and will in
later sections) define TN = ev∗0 TN as a metric vector bundle over T ∗ΛrN .
However, for convenience we will alter the notation a bit in this section.

Indeed, we have thus far indexed the coordinates of a point in T ∗ΛrN by
j ∈ Z/r. However since we are comparing this construction for different r’s
this is inconvenient in this section. The main idea in this section is to insert
an extra point somewhere in the “cycle” of points. This becomes notationally
messy if we insert the point at j = 0 or j = r due to the reindexing combined
with the change of relations in the groups (r = 0 is changed to r + 1 = 0). So,
to make the argument more transparent we identify Z/(r + 1) with {0, . . . , r}
and we identify Z/r with the subset not containing j for 0 < j < r. So the
jth point in T ∗Λr+1N is the “new” point, and we fix this j throughout the
section. Since we have cyclic symmetry this covers all cases even j = 0 and
j = r. For j = 0 this is like inserting an extra z0, and is why we would define
TN → T ∗ΛrN as above, but in this section (to ease notation) we thus use
TN = ev∗j+1 TN .

Fix the Hamiltonian H (linear at infinity with slope not a geodesic
length). Then notice that: for any sub-divisions such that both Sr and Sr+1

are defined their critical values coincide. Indeed, Lemma 5.2 identifies the
critical points as dissections of the 1-periodic Hamiltonian orbits, and the
critical value is the action. However; if we use αi = 1/r and α′i = 1/(r + 1)
as sub-divisions when defining Sr and Sr+1 respectively, then in the two
cases this orbit is dissected in very different ways. This makes them difficult
to compare. It is therefore convenient to not use these standard choices. The
more convenient choice is any choice of α = (α0, . . . , αr) where αj = 0 then
this works simultaneously for defining Sr and Sr+1 (provided αi ≤ 3

(r+1) as

assumed in Equation (24)) using the indexing described above. This makes
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the Conley indices comparable. Indeed, the piece γj is not used in the defi-
nition of Sr and this fits well with the fact that γj is constant and integrates
the 0 Hamiltonian in the definition of Sr+1.

Since we want the homotopy equivalence in Equation (31) to be a con-
tractible choice (compatible with other structure) we will define it rather
explicitly. Indeed, define the proper embedding

h0 : TN → T ∗Λr+1N(32)

by the simple formula

h0(~z, v) = (z0, . . . , zj−1, (qj+1, v), zj+1, . . . , zr)(33)

for ~z ∈ T ∗ΛrN and v ∈ TN~z. That is, h0 inserts the new point zj = (qj+1, v),
which makes sense since by definition of TN we have v ∈ Tqj+1

N = T ∗qj+1
N .

In the old Z/r and Z/(r + 1) notation and with j = 0 (which is what we use
outside of this section) this map is defined by

h0(z0, . . . , zr−1, v) = ((q0, v), z0, . . . , zr−1),(34)

where v ∈ Tq0N . The reason why this is notational messy is that we move
the index on all the points up, which we avoid having to do in the notation
in this section.

Lemma 6.1. The diagram

TN
h0 //

��

T ∗Λr+1N

Sr+1

��

T ∗ΛrN
Sr // R

(35)

commutes.

Proof. In the definition of Sr+1 we have γj is constant (in fact — it is
parametrized by a point {0}). This implies that (q−j+1, p

−
j+1) = (qj , pj). On

the image of h0 we also have qj = qj+1 implying that εqj+1
= 0 and hence

both of the two new terms∫
γj

λ−Hdt and p−j+1εqj+1

in Sr+1 (Equation (28)) are 0 — independent of p−j+1 = pj = v. �
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If (Ar, Br) is a good index pair for Sr then this lemma implies that

Sr+1(h0(DRTN|Br)) ⊂ {a} using Sr(Br) ⊂ {a} and(36)

Sr+1(h0(URTN|Ar)) ⊂ [a, b] using Sr(Ar) ⊂ [a, b].(37)

The goal is to get an induced map from the relative Thom construction pair.
However, for this we will need to the sphere bundle to be mapped to points
where Sr+1 takes values less than or equal to a, which by the above formula
it is not, and for this we need the R factor to choose the discs big enough.
We therefore pre-compose with the canonical homeomorphism of the pair

(DTN,UTN) ∼= (DRTN,URTN)(38)

given by scaling with R > 0. This does not change the fact that the unit
sphere is not mapped to values less than a, but to get this and induce maps
on index pairs we also modify h0 by using the negative pseudo-gradient flow.
So, define

ht : TN → T ∗Λr+1N

by h0 composed with the flow of −Xr+1 for time t.

Lemma 6.2. There exist t0 > 0 and R0 > 0 such that for t ≥ t0 and R ≥
R0 we have

ht(URTN|Ar) ⊂ S
−1
r+1(]−∞, a]).

Proof. Let k > 0 be such that Lemma 5.4 gives that

Xr+1(Sr+1) ≥ k−1

on the complement of a compact set. Now as in the proof of Lemma 2.9
we see that for t0 > (b− a)k only a compact subset of (Sr+1)−1([a, b]) is not
flowed to having the value of Sr+1 less than a. Since h0 is proper this implies
that we may find R0 > 0 large enough such that h−1

0 of this compact set is
in the interior of DR0

TN . �

These lemmas now imply that we get an induced map of pairs

ht : (DRTN|Ar , URTN|Br ∪DRTN|Ar)→ (S−1
r+1(]−∞, b]), S−1

r+1(]−∞, a]))

for t > t0 and R > R0. Furthermore, if (Ar+1, Br+1) is any good index
pair for (Sr+1, Xr+1) then by flowing further (see Section 2 in particular
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Lemma 2.9) we can get that

ht(DRTN) ⊂ Ar+1 ∪ S−1
r+1(]−∞, a]).

This is enough to get maps induced on the quotients to Ar+1/Br+1. Indeed,
since the pair is good we have(

Ar+1 ∪ S−1
r+1(]−∞, a])

)
/S−1

r+1(]−∞, a]) ∼= Ar+1/Br+1.(39)

We thus define the induced composition

h̃t : (A,B)TN/ → Ar+1/Br+1

for t and R large. Here we are pre-composing ht with the homeomorphism in
Equation (38) and post-composing with the identification in Equation (39).

The rest of this section is devoted to proving the following Proposition.

Proposition 6.3. Let (Ar, Br) be a good index pair for (Sr, Xr), and (Ar+1,
Br+1) be a good index pair for (Sr+1, Xr+1) (both defined using the same H
and a compatible subdivision α as above). Then for large t and R we have
that the induced map

h̃t : (A,B)TN/ → Ar+1/Br+1

is a homotopy equivalence.

We will not explicitly use the following, but when N is oriented we have
a Thom isomorphism

H∗(A,B) ∼= H∗+d((A,B)TN−)

However, this means that the result in this section implies that: the Morse
homology (shifted in degree by rd) of Sr does not depend on the choice of r
(see [25] and Appendix A for more on the relation between Morse homology
and the homology of index pairs).

6.2. The homotopy type of Ar+1/Br+1

In this subsection we construct another CB pseudo-gradient Zr+1 for Sr+1

and an index pairs (A′, B′) for (Sr+1, Zr+1). These will help in proving
Proposition 6.3.
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Consider the subspace

O ⊂ T ∗Λr+1N

given by the equation dist(qj−1, qj+1) < δ0. There is a canonical projection

π : O → T ∗ΛrN

given by forgetting zj . This makes O a fiber-bundle with contractible fibers.
Indeed, the fiber O~z = π−1(~z) is symplectomorphic to T ∗U where

U = {qj ∈ N | dist(qj , qj−1) < δ0 and dist(qj , qj+1) < δ0},

which is convex and non-empty for all ~z = (z0, . . . , zj−1, zj+1, . . . , zr) ∈
T ∗ΛrN .

Now consider the function S′r+1 = Sr+1|O and its restricted pseudo-
gradient X ′r+1 = Xr+1|O.

Lemma 6.4. The restricted function and pseudo-gradient (S′r+1, X
′
r+1) is

CB

Note that this lemma together with Lemma 2.6 and Lemma 2.3 shows
that we may as well replace Iba(Sr+1, Xr+1) with Iba(S

′
r+1, X

′
r+1). Indeed, we

have a canonical homotopy equivalence from the latter to the former.

Proof. We already know that (Sr+1, Xr+1) is CB. So all we need to prove
is that the flow is defined for all time on the restriction. This is the case
because the boundary is given by

dist(qj−1, qj+1) = δ0

and the flow of Xr+1 preserves this equation. Indeed, by definition Xr+1

preserves all qi when maxi εqi ≥ δ0/5 and the above equation implies this
since

dist(qj−1, qj+1) ≤ dist(qj−1, q
−
j ) + dist(q−j , qj)

+ dist(qj , q
−
j+1) + dist(q−j+1, qj+1),

and by construction we have

• dist(qj−1, q
−
j ) ≤ δ0/10 by Equation (25),

• dist(q−j , qj) = ‖εqj‖,
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• q−j+1 = qj (the curve γj is constant) and

• dist(q−j+1, qj+1) = ‖εqj+1
‖.

These imply that ‖εqj+1
‖+ ‖εqj‖ ≥ 9δ0/10. �

We now consider how S′r+1 looks fiber-wise over a point ~z ∈ ΛrN . Indeed,
we define

S~z = Sr+1|O~z : O~z → R

as a function depending on coordinates zj = (qj , pj) such that dist(qj−1, qj) <
δ0 and dist(qj , qj+1) < δ0.

Lemma 6.5. There exists a smooth section s : T ∗ΛrN → O such that s(~z)
is the unique critical point for S~z. Furthermore, this unique critical point
is non-degenerate and has qj = qj+1 (i.e. lies in the image of h0), and the
Hessian of S~z at this point is given by[

Q −I
−I 0

]
in the (qj , pj) splitting. Hence the vector bundle of positive (resp. negative)
eigenspaces of this Hessian over T ∗ΛrN are both canonically isomorphic to
TN = ev∗j+1 TN .

Note that, here Q is an arbitrary symmetric bilinear form on TqjN , and
the definition of −I formally uses the canonical pairing of tangent with
cotangent vectors.

Proof. Firstly we note that by the inequality in Lemma 5.2 and because

∇pjS~z = ∇pjSr+1

we have this component of the gradient is equal to zero if and only if qj =
qj+1.

Since the only term in Equation (28) for Sr+1 which involves pj is

p−j+1εqj+1
= pj exp−1

qj (qj+1)(40)

it follows that

∇qjS~z = p− pj on the set where qj = qj+1(41)
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for some fixed p (independent on pj) equal to the gradient of the remaining
terms in Sr+1 with respect to qj . It follows that (qj , pj) is a critical point for
S~z if and only if (qj , pj) = (qj+1, p), which defines the smooth section s.

The fact that the Hessian has a zero matrix in its bottom right follows
from S~z not depending on pj (when qj = qj+1). The two copies of −I in the
Hessian follows from Equation (41).

The last statement follows from the fact that for v ∈ Tqj+1
N this Hessian

is positive on vectors of the type (v,−kv) for large k >> 0 and negative on
(v, kv) for large k >> 0. �

We wish to combine a construction of index pairs for S~z for each ~z and
an index pair for (Sr, Xr) to get an index pair for (S′r+1, X

′
r+1). That is, we

will combine index pair for the base of π with fiber-wise index pairs to get a
global index pair. So, we now explicitly construct CB pseudo-gradients for
S~z. We do this in a way smoothly dependent on ~z.

For ~z ∈ ΛrN define δ(~z) = δ0 − dist(qj−1, qj+1) > 0. Define the pseudo-
gradient X~z by

X~z = (g(~z, qj , pj)∇qjS~z,∇pjS~z)

where g : O → [0, 1] is smooth such that g = 1 when

dist(qj , qj+1) <
δ(~z)

2
(42)

and g = 0 when

dist(qj , qj+1) > 2
3δ(~z) < δ0.

Lemma 6.6. For any ~z ∈ ΛrN we have that the function and pseudo-
gradient (S~z, X~z) is CB.

Proof. Firstly X~z is a pseudo-gradient since we only changed the qj-
component when qj 6= qj+1 which implies by Lemma 5.2 that ∇pjS~z 6= 0.

Furthermore, we made sure to define X~z such that its flow preserves
the set where dist(qj , qj+1) = δ0, but also the set where dist(qj−1, qj) = δ0.
Indeed, if dist(qj−1, qj) = δ0 then we see that

dist(qj , qj+1) ≥ dist(qj−1, qj)− dist(qj−1, qj+1)

= δ0 − dist(qj−1, qj+1) ≥ δ(~z)

and hence g = 0. Since Lemma 5.2 shows that the norm of ∇pjS~z is bounded
we get that the flow of X~z is defined for all times (positive and negative).
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Lemma 5.2 also shows that when dist(qj , qj+1) ≥ 1
2δ(~z) then we have

X~z(S~z) ≥ ‖∇pjS~z‖2 ≥ 9
16‖εqj+1

‖ = 9
16 dist(qj , qj+1) ≥ 9

32δ(~z).

Hence we can assume, when proving a lower bound on the compliment of
a compact set, that g = 1. This implies that X~z = ∇S~z, and that we may
assume that ‖pj‖ > R for some R, which we may pick much larger than all
the fixed numbers 3‖pi‖, i 6= j. Now, Corollary 5.3 provides the lower bound:

‖∇qjS~z‖ ≥ ‖εpj‖ − 1
2‖pj‖ ≥

1
2‖pj‖ − ‖pj+1‖ ≥ 1

2R−
1
3R ≥

1
6R.

Indeed, ‖εpj‖ ≥ ‖p̃j+1‖ − ‖pj+1‖ = ‖p−j+1‖ − ‖pj+1‖ = ‖pj‖ − ‖pj+1‖, the
latter since γj is constant. �

We now define some explicit index pairs for (S~z, X~z). Indeed, for each
ε > 0 and c > 0 and with s the section in Lemma 6.5 we define

A~zε = exps(~z)(DcεF− ×DεF+) ⊂ O~z
B~z
ε = exps(~z)(UcεF− ×DεF+) ⊂ A~zε.

Here F− ⊕ F+ is the canonical orthogonal decomposition of the Hessian of
S~z at s(~z) into negative and positive eigenspaces (using the Riemannian
structure). Note that this is well-defined due to Lemma 6.5. The c will not
be useful nor relevant until the next subsection — so we fix this c as a
positive constant in the rest of this section.

Lemma 6.7. The pair (A~zε, B
~z
ε ) is for small ε an index pair for (S~z, X~z).

Proof. By Lemma 6.5 we see that dim(F−) = dim(F+) = d. So pick a lin-
ear isometry ψ : R2d → Ts(~z)O~z such that the usual inclusion Rd ⊂ R2d is

identified with F− — hence the orthogonal complement of Rd ⊂ R2d is iden-
tified with F+. We may even assume that the standard coordinate axes are
mapped to eigenvectors. For some small e > 0 we use this to define a normal
coordinate chart

exps(~z) ◦ψ : D2d
e → O~z.

For small ε > 0 the pair (A~zε, B
~z
ε ) is identified in this chart with

(Aε, Bε) = (Dd
cε ×Dd

ε , U
d
cε ×Dd

ε)(43)

Since it is a normal chart the pull back of the Hessian of S~z at s(~z) equals
the Hessian of the pull back function at 0. This implies that the pull back
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of X~z (which is the gradient of S~z) is equal to the usual gradient (in R2d)
of the pull back function to the first order at 0. We may thus reduce the
lemma to proving that the pair in Equation (43) is for small ε > 0 an index
pair for any function

f(x) = f(0) +

2d∑
i=1

λix
2
i +O(‖x‖3)

(Restricted to a small enough neighborhood around 0) with a pseudo-gradient

Xx = (2λixi, . . . , 2λ2dx2d) +O(‖x‖2),

where λi < 0 for i = 1, . . . , n and λi > 0 for i = n+ 1, . . . , 2d. We may as-
sume that λ1 is the negative eigenvalue closest to 0 and that λ2d is the
positive eigenvalue closest to 0.

To prove this consider the two functions

f1(x) =

d∑
i=1

x2
i and f2(x) =

2d∑
i=d+1

x2
i .

The change of these when flowing with −X is given close to 0 by

−X(f1)(x) = −Xx · ∇f1 = −
d∑
i=1

4λix
2
i +O(‖x‖3)

≥ −4λ1f1(x) +O(‖x‖3)

and

−X(f2)(x) = −Xx · ∇f2 = −
2d∑

i=d+1

4λix
2
i +O(‖x‖3)

≤ −4λ2df2(x) +O(‖x‖3).

The boundary of Aε has two parts (not disjoint) given by:

Bε = {f1 = c2ε2, f2 ≤ ε2} and Wε = {f1 ≤ c2ε2, f2 = ε2}

For ε small enough −X(f1) is positive on Bε and −X(f2) is negative on Wε.
It follows that for such ε the flow does, indeed, exit through Bε, and by

making ε even smaller the flow will not reenter before the value of f becomes
to low for it to ever reenter. �



i
i

“3-323” — 2018/4/8 — 21:30 — page 129 — #45 i
i

i
i

i
i

The Viterbo transfer as a map of spectra 129

Lemma 6.8. Let (A,B) be a good index pair for (Sr, Xr) then there
exists an ε > 0 small enough and a CB pseudo-gradient Zr+1 for Sr+1 such
that

(A′, B′) =

(⋃
~z∈A

A~zε,
⋃
~z∈A

B~z
ε ∪

⋃
~z∈B

A~zε

)

is an index pair for (Sr+1, Zr+1).

Proof. We still only focus on the set O. Define for any set C ⊂ T ∗ΛrN and
ε > 0 the sets

A′C = ∪~z∈CA~zε and B′C = ∪~z∈CB~z
ε .

Then (A′, B′) = (A′A, B
′
A ∪A′B).

Pick a neighborhood W with compact closure around A (not containing
any additional critical points). Let δ > 0 be such that Sr evaluated on the
flow of −Xr on B goes below a− δ before the flow exits W . Since the section
in Lemma 6.5 is in the image of h0 Lemma 6.1 tells us that Sr+1(s(~z)) =
Sr(~z) and thus for small enough ε the diagram in Lemma 6.5 implies that
we can assume that:

Sr+1(A~zε) ⊂ [Sr(~z)− δ
3 , Sr(~z) + δ

3 ] for all ~z ∈W,(44)

which we will use at the very end of the proof. Notice that A′
W

is compact.

Now, pick a neighborhood U around W also with compact closure (and
with no new critical points). Let g : T ∗ΛrN → I be smooth and such that
{g = 1} = W and {g > 0} = U . Now define the vector field Y by

Yx = (1− g(π(x))) · (Xr+1)x + g(π(x)) · (Xπ(x))x.

Here Xπ(x) is the fiber-wise pseudo-gradient for Sπ(x) from above — viewed
as a vector field on all of O parallel to the fibers of π. So this is the fiber-wise
pseudo-gradient precisely on π−1(W ), and on the “buffer” π−1(W − U) it
convexly interpolates to Xr+1 so that outside it is Xr+1. This vector field
Y is not a pseudo-gradient because by construction Y = 0 at all points
x ∈ Im(s) ∩AW . However, it does satisfy

Y (Sr+1) = (1− g)Xr+1(Sr+1) + gXπ(−)(Sr+1)

= (1− g)Xr+1(Sr+1) + gXπ(−)(Sπ(−)) ≥ 0.
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A more serious, but related, problem is that the exit set of A′ for Y is not
B′. Indeed, the exit set is precisely B′A since we are flowing fiber-wise over
A, and these are the exit sets for X~z. So, we need to modify Y a bit.

Let Y ′ be a vector field on O which is a lift of Xr. I.e. π∗(Y
′) = Xr at all

points in O. By Lemma 6.5 and Lemma 6.1 we have that Y ′(Sr+1) = Xr(Sr)
on the image of the section s. Indeed, this uses that in the fibers s(~z) is a
critical point for S~z. This means that the open set {Y ′(Sr+1) > 0} contains
all the non-critical points where Y = 0. Since Xr(Sr) > 0 on the compact
set ∂A we have for small ε > 0 the inclusion

A′∂A ⊂ {Y ′(Sr+1) > 0}.(45)

Since we only wish to change Y on a compact set we pick a smooth function
f : O → I such that

{f > 0} = {Y ′(Sr+1) > 0} ∩ int(A′U )

Here int(−) means interior. Note that this depends on ε > 0 and that this
set still contains all the non-critical points of Sr+1 where Y = 0. We now
define

Zr+1 = Y + f · Y ′ = (1− g)Xr+1 + gXπ(−) + fY ′,

which is now a pseudo-gradient for Sr+1.
Note that, for x ∈ π−1(W ) we have (since g = 0) that

π∗((Zr+1)x) = π∗(X
π(x)
x + f(x)Zx) = f(x)(Xr)π(x),

which implies that the projection under π of flow lines (over W ) of −Zr+1

are reparameterizations (may even stand still if f(x) = 0) of the flow of −Xr.
We now argue that this implies that (A′, B′) is an index pair.

Indeed, any x ∈ A′ where the flow of −Zr+1 exits A′ must be in the
boundary of A′ which is given by

∂A′ =

( ⋃
~z∈∂A

A~zε

)
∪

(⋃
~z∈A

∂A~zε

)
.

Now if x is in the latter of these two unions then by construction Zr+1 =
Xπ(−) (indeed, f = 0 and g = 1), and we see that x is an exit point if and

only if x ∈ Bπ(x)
ε . Indeed, at this point (and outside of A~zε) we have Y =

Xπ(x) the fiber-wise CB pseudo-gradient (Lemma 6.6) and (A
π(x)
ε , B

π(x)
ε ) an
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index pair in this fiber. This implies that the flow of x stays in this fiber
and outside of A~zε where Zr+1 = Xπ(x), so we conclude that the flow never
returns.

If on the other hand x is an exit point in the first union but not in the
second then we see that x ∈ A′∂A ∩ int(A′U ) and hence f > 0 (this was why
we wanted Equation (45)). Thus the flow of −Zr+1 applied to x projects
under π to a non-zero reparameterized flow line for −Xr. So it immediately
exits A′ if and only if x ∈ π−1(B). When this is the case, the flow of x never
reenters. Indeed, the flow exists A′

W
either through a point in B′

W
in which

case it never returns for the same reason as the first case — or the projected
flow exits W , which by Equation (44) means that the value of Sr+1 is to low
for it to ever reenter A′.

Proof that Zr+1 is CB (on O). This follows precisely as the proof of the
fact that Xr+1 and X~z are CB. Indeed, both preserve the sets where εqi = k
when this is close to the “boundary” of O and both have pi components
bounded — so the same is true for the convex combination defining Y (and
hence Zr+1 outside a compact set). Also, a lower bound on Zr+1(Sr+1)
outside a compact set follows from the fact that we have this for X~z (over
the compact set U by Lemma 6.6) and Xr+1 by Lemma 5.4.

Formally we have only defined Zr+1 on O, but we extend it using the
following idea. By the fact that Zr+1 is CB we see that the union of the
flow of −Zr+1 over all non-negative time of B′ intersected with S−1

r+1([a, b])
is compact in O. Hence we can change Zr+1 outside a compact set without
changing that (A′, B′) is an index pair. Now outside this compact set we
interpolate between Zr+1 and Xr+1 and extend by putting Zr+1 = Xr+1

outside of a slightly larger compact set and outside of O. This is CB because
it equals Xr+1 outside a compact set. �

Proof of Proposition 6.3. Firstly, we analyze the index pair (A~zε, B
~z
ε ) for

small c > 0 (recall that it in fact was made to depend on a constant c).
Let H~z be the Hessian from Lemma 6.5 (at s(~z)). Since (0, v)H~z(0, v)T = 0
we see that the vertical vectors (fiber directions of T ∗N) forms a complement
to the positive eigenspace of H~z. For c > 0 small the pair is a thin “tube”
around F+ (the positive eigenspace of H~z), and as Figure 4 illustrates we
see that this means that the image of h0 intersected with the pair is in
fact a small disc and its sphere. Call these (DTN~z, UTN~z). Now the pair
(A~zε, B

~z
ε ) deformation retracts onto this pair. Indeed, in the normal neigh-

borhood in the proof of Lemma 6.7 all these sets are convex in R2d and the
convex deformation retraction parallel to the positive eigenspace F+ is such
a deformation retraction.
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pj

qj

s(~z)

F−F+

A~zε

B~z
ε

Figure 4: The index pair (A~zε, B
~z
ε ) and the intersection with the fiber.

Let (A,B) be a good index pair for (Sr, Xr), and pick c > 0 so small
that this works for all ~z ∈ A, and then let ε > 0, (A′, B′), and Zr+1 be as
in Lemma 6.8 above. The deformation retraction above is smoothly depen-
dent on ~z and thus defines a deformation retraction of (A′, B′) onto a pair
homeomorphic to (A,B)TN−. We thus see that the map

(A,B)TN/ → A′/B′

given by using Equation (38) for large R and by collapsing everything outside
the interior of the small discs DTN~z ⊂ DRTN~z to the base-point [B′] is a
homotopy equivalence.

Since Zr+1 is CB there is a T >> 0 such that when we flow on B′ using
−Zr+1 for time T we get the value of Sr+1 below a. It follows that we get
an induced homotopy equivalence:

(A,B)TN/ → S−1
r+1((−∞, b])/S−1

r+1((−∞, a]).

We can interpolate between the flow of −Zr+1 and −Xr+1 in the fol-
lowing way. For all s ∈ I the pseudo-gradient Xs = sXr+1 + (1− s)Xr+1 is
CB (CB pseudo-gradients form a convex set) and there is a compact set
K ⊂ T ∗Λr+1N and a k > 0 such that Xs(Sr+1) > k for all s. Hence by
properness of h0 there is a large R > 0 and a T >> 0 such that the flow
of −Xs for time T induces a homotopy of maps

gS : (A,B)TN/ → S−1
r+1((−∞, b])/S−1

r+1((−∞, a]).

For s = 0 this is the map argued to be a homotopy equivalence above, and
for s = 1 this is the map hT in Proposition 6.3. �
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7. The generating function spectrum

In this section we construct a spectrum “representing” Floer homology. Con-
cisely, we let H : T ∗N → R be a Hamiltonian linear outside of DT ∗N (with
slope not a geodesic length), and we let a < b be regular values for the ac-
tion associated to H. With this data we construct a spectrum Zba(H) out of
the sequence (r →∞) of associated Conley indices of the finite dimensional
approximations from the previous sections. The homology of this spectrum
is not always isomorphic to Floer homology (it is in the oriented and spin
case), however, the definition of this spectrum is a contractible choice. This
is due to the canonical structures we have on the cotangent bundle T ∗N .
This construction will be natural with respect to the inclusion and quotient
maps defined when changing the action intervals. When [a, b] contains all
critical points we simply write Z(H) for this spectrum. Note that this spec-
trum depends on the Riemannian structure, because the slope condition at
infinity depends on this. However, the transfer map constructed in the next
section will not depend on this (up to contractible choices).

In this paper we will use the following rather simple definition of spectra.
A spectrum Z = (Zn, σn)n∈N is a sequence of based spaces Zn (well based —
i.e. having cofibrant inclusion of base-point) and cofibrant structure maps

σn : ΣZn → Zn+1,

Here Σ(−) is the reduced suspension of a based space. We will use the
notation:

σmn : Σm−nZn
Σm−n−1σn−−−−−−−→ Σm−n−1Zn+1 → · · · → Σ1Zm−1

σm−1−−−→ Zm.(46)

for the composition of the (suspended) structure maps. The homology of a
spectrum is defined as

H∗(Z) = Colim
n→∞

H̃∗+n(Zn)(47)

using the maps

H̃∗+n(Zn) ∼= H̃∗+n+1(ΣZn)
σn∗−−→ H̃∗+n+1(Zn+1),

where the first map is the suspension isomorphism (uses well-based). The
reader unfamiliar with spectra can consult Appendix A for some properties.
This also contains a description of spectra using CW complexes which de-
scribes the relation with Morse homology, and hence heuristically explains
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why the homology of the spectrum Zba(H) is Floer homology (up to orien-
tations).

It will not in the given context be natural to construct a space Zba(H)n for
all n ∈ N. So, in the following we construct every kth space in the spectrum
Zba(H) and fill in the gaps afterwards.

Let r0 ≥ 1 be so large that for any r ≥ r0 we have that the finite dimen-
sional approximation Sr and its pseudo-gradient Xr are defined using H and
the sub-division αj = 1/r. By Lemma 5.4 (and Lemma 2.9) their exist good
index pairs (Ar, Br) for each r ≥ r0. To be able to define spectra we need
to compensate for the fact that in Section 6 we got a relative Thom con-
struction using the vector bundle of TN and not a standard d-fold reduced
suspension. Note, that the standard k-fold suspension Σk(A/B) of A/B is
canonically homeomorphic to (A,B)ζ

k/, where ζk denotes the trivial metric
bundle (we will use this notation over any base).

Let F,E →M be two metric vector bundles over M . Let (A,B) be a
pair in M . We can iterate the relative Thom space construction as follows.
Let π : E →M be the projection to the base. Then we may define the pair

((A,B)E−)π
∗(F )−

The total space of π∗(F ) is canonically identified with E ⊕ F , and we have
a canonical homeomorphism

DE ⊕DF ∼= D(E ⊕ F )

by scaling each line in E ⊕ F . This takes (SE ⊕DF ) ∪ (DE ⊕ SF ) to S(E ⊕
F ), and by putting these together we get a canonical identification

((A,B)E−)π
∗(F )− ∼= (A,B)E⊕F−.(48)

This is what we will use to “untwist” the tangent bundles TN .
Pick an isometric embedding TN ⊂ ζk of the tangent bundle into the

trivial metric bundle, and let ν denote the normal bundle, and assume it has
dimension at least 2. By abuse of notation we define TN = ev∗0 TN which is
a special case in Section 6. We also define

ν = ev∗0 ν

as a vector bundle over T ∗ΛrN . We have (by the choices made above) a
canonical isomorphism of metric vector bundles:

ν ⊕ TN ∼= ζk (as metric vector bundles over T ∗ΛrN).(49)
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We will get back to canonicality of this choice, but for now we consider these
choices fixed.

We will almost define the (r + 1)kth space in the spectrum Zba(H) for r
by

Zba(H)p(r+1)k = (Ar, Br)
ν(r+1)/.(50)

Here the p refers to preliminary, and we will change this slightly in the
beginning of the proof of Proposition 7.3 (it will not change up to homotopy).
Here νr+1 = ν⊕(r+1), and (Ar, Br) is a good index pair for (Sr, Xr).

The map h0 from Equation (34) (inducing the homotopy equivalence in
Proposition 6.3 after applying the flow) can be extended to include these
normal bundles in the following way. Define a lift f0 fitting into the diagram

νr+1 ⊕ ν ⊕ TN

��

f0
// νr+2

��

TN
h0 // T ∗Λr+1N

by the formula

f0(~z, w, v) = (h0(~z, v), w).

Here w ∈ (νr+2)~z and v ∈ (TN)~z = Tq0N and since h0 commutes with ev0 —
we may naturally consider w as a vector in (νr+2)h0(~z,v). Note that viewing
this as a vector bundle map over the bases in the bottom of the diagram
this is a linear isometry in each fiber. Hence it is a pull back of metric vector
bundles.

It is easy to incorporate the flow of −Xr+1 into this lift. Indeed, we lift
the flow of −Xr+1 to the bundle νr+2 by choosing a compatible connection
(a contractible choice). So by composing with such a flow we construct a lift
ft of ht such that the diagram

νr+1 ⊕ ν ⊕ TN

��

ft
// νr+2

��

TN
ht // T ∗Λr+1N

commutes. Again this is a fiber-wise linear isometry so it is a metric vec-
tor bundle pullback diagram. In Proposition 6.3 we saw that ht induces a
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homotopy equivalence

h̃t : (Ar, Br)
TN/ → Ar+1/Br+1.

Putting the isometry ft of vector bundles over a map like this induces a new
map on the “untwisted” indices:

f̃t : (Ar, Br)
νr+1⊕ν⊕TN/ → (Ar+1, Br+1)ν

r+2/.

Lemma 7.1. The map f̃t is a homotopy equivalence (in the oriented case
— in the unoriented case we will consider odd r and increasing it 2 at a
time).

Proof. Start by assuming that N and hence TN and ν are orientable. Since
good index pairs are cofibrant (Lemma 2.4) we get the commuting diagram:

H̃∗((Ar, Br)
TN/)

ht∗ //

∼=
��

H̃∗(Ar+1/Br+1)

∼=
��

H∗((Ar, Br)
TN−)

ht∗ //

∼=
��

H∗((Ar+1, Br+1))

∼=
��

H∗+(r+2)(k−d)((Ar, Br)
νr+2⊕TN−)

∼=
��

ft∗
// H∗+(r+2)(k−d)((Ar+1, Br+1)ν

r+2−)

∼=
��

H̃∗+(r+2)(k−d)((Ar, Br)
νr+2⊕TN/)

ft∗
// H̃∗+(r+2)(k−d)((Ar+1, Br+1)ν

r+2/)

Indeed, this uses (in vertical order); excision, then the Thom-isomorphism
for the orientable bundle νr+2 (plus naturality of the Thom-isomorphism),
and then excision again.

Since the top map is an isomorphism by Proposition 6.3 it follows that
the lower horizontal map is an isomorphism, and since Thom-spaces of vector
bundles with dimension at least 2 are simply connected the lemma follows.
Indeed, the space are simply connected since any representative of an ele-
ment in π1 of the Thom space can be made transversal to the zero section
— and hence not intersect the zero section for dimension reason, and then
pulled off to the sphere (which is part of the base-point in the quotient) by
radial projection homotopy.

The case where N is not orientable is not completely straightforward.
Indeed, it is not generally true that a map of pairs g : (A,B)→ (A′, B′)
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which induces a homotopy equivalence on the quotients induces a relative
homology equivalence on the pair with any choice of coefficients. This means
that one can find an example of this with a bundle E → A′, where the
induced map (A,B)g

∗E/ → (A′, B′)E/ is not even a homology equivalence.
So, in the case where N is not orientable it is convenient to jump two r’s

at a time. Indeed, the proof of Proposition 6.3 generalizes to proving that
the “composed maps”

(Ar, Br)
TN⊕TN → (Ar+2, Br+2)

is a homotopy equivalence. Note, however, that this requires doing every-
thing in the previous section again, but with the slightly more complicated
projection T ∗Λr+2N → T ∗ΛrN . However, one can still identify a section of
this as the fiber-wise unique critical points, and the Hessian of the normal
bundle is now two copies of the Hessian in Lemma 6.5 (both these statements
follows by using that lemma twice). This homotopy equivalence now implies
using Thom-isomorphism (as above) on the oriented bundle ν⊕2 (oriented
because of the factor 2) that

(Ar, Br)
TN⊕TN⊕ν⊕ν → (Ar+2, Br+2)ν⊕ν

is a homology equivalence — hence as above a homotopy equivalence. �

Remark 7.2. We could have chosen to add νr instead of νr+1. In fact, for
any vector bundle V and any l ∈ Z we could have added νr+l ⊕ V and get
a lot of different spectra. However, the choice we have is the most natural
choice; indeed, it fits with the standard spectrum transfer map N−TN →
L−TL, and we even conjecture Λj! to be a ring-spectrum homomorphism
(using twisted Chas-Sullivan products) — and a sketch of a proof of this
is contained in [19]. However, the specific alternative of adding νr is what
gives rise to the alternative discussed in Remark 1.2. We will explain this
and the relation in a series of remarks and corollaries by considering what
happens if we add νr instead of νr+1. The spectra constructed this way will
be decorated with primes. I.e. denoted Z ′ba(H).

The source of f̃t is canonically identified as

(Ar, Br)
νr+1⊕ν⊕TN/ ∼= (Ar, Br)

νr+1⊕ζk/ ∼= Σk(Ar, Br)
νr+1/ = ΣkZba(H)p(r+1)k.

The target needs a little adjustment to be similarly recognized. Indeed,
recall that (Ar+1, Br+1) was in Proposition 6.3 an index pair defined for the
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finite dimensional approximation using the subdivision α = (0, 1/r, . . . , 1/r)
(which satisfies Equation (24) for all r ≥ 1). However, using the obvious
convex homotopy from this sub-division to

α = (1/(r + 1), . . . , 1/(r + 1))

we may use Lemma 2.6 to (with a contractible choice) identify the target
with Zba(H)(r+2)k and f̃t thus induces a map

τr : ΣkZba(H)p(r+1)k → Zba(H)p(r+2)k,(51)

which in the oriented case is a homotopy equivalence by the above lemma
(and composing two with the right suspensions added is in the unoriented
case a homotopy equivalence). The choices to construct this is contractible
(still considering the embedding N ⊂ ζk of vector bundles fixed and not part
of the choices made). We now define the spectrum and fill in the “gaps”.

Proposition 7.3. The sequence of maps τr, r ≥ r0 defines a spectrum
Zba(H), and another definition of this (using other choices) is related by
a contractible choice of homotopy equivalences. Furthermore, it is naturally
compatible with inclusions and quotients of Conley indices.

Proof. Let the normal bundle ν and the isomorphism ν ⊕ TN ∼= ζk be fixed
as above. The only reason why we won’t use the preliminary spaces defined
above is that technically it is easier to work with spectra where the structure
maps are cofibrations (which we do). So since the maps defined above are
not cofibrations, we replace the spaces with the iterated mapping cylinders.
That is, we define Zba(H)(r+1)k as the iterated mapping cylinder of the maps

Σ(r−r0−1)kτr0 ,Σ
(r−r0−2)kτr0+1, . . . ,Σ

kτr−2, τr−1(52)

See Appendix A for a description of this and a discussion about contractible
choices. The gaps in between every kth space are filled by making the spec-
trum “constant”. Indeed,

Zba(H)n =

{
{∗} n < (r0 + 1)k

Σn1Zba(H)n22k n ≥ (r0 + 1)k

Here n1 is the remainder in {0, . . . , k − 1} of n when diving by k and n2 is
the integral division so that n = n1 + n2k.
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The structure maps σn : ΣZba(H)n → Zba(H)n+1 of the spectrum are de-
fined using the inclusion of the mapping cylinders, which defines the struc-

ture maps σ
(r+2)k
(r+1)k . The gaps are again filled with constants (identities):

σn =

{
Id k - n+ 1

σn+1
n+1−k k | n+ 1

for n ≥ (r0 + 1)k + 1 (since Σ{∗} ∼= {∗} is an initial object in the category
of based spaces — the structure maps for n ≤ (r0 + 1)k are canonically
defined).

We get a canonically homotopy equivalent spectrum if we increase r0 and
forget a finite number of Conley indices. Indeed, since we are leaving out
the first part of the sequence of the maps in Equation (52) on the remaining
non-trivial levels, we see that the mapping cylinders gets shorter. However,
since the last space is still there the inclusion is a homotopy equivalence.
So we have a canonical level-wise cofibrant inclusion of one into the other,
which from a certain level (the new r0) is a level-wise homotopy equivalence
— hence a homotopy equivalence of spectra.

So the only part of the construction of Zba(H) that is not at this point a
contractible choice is the choice of k and the embedding N ⊂ ζk. However,
if we increase k to k′ the following two things happen:

• the space of embeddings TN ⊂ ζk′ is more connected than the old
(connectivity goes to ∞),

• we add a trivial factor ζk
′−k to ν and this corresponds to adding triv-

ial suspensions (a total of (r + 1)(k′ − k) ) to each of the spaces and
consequently mapping cylinders above.

It follows that modulo the usual reordering of suspension factors in the
definition of spectra this is a (weakly) contractible choice. This reordering
of suspension factors can be handled by introducing e.g. symmetric spectra
(see [26]) or EKMM spectra (see [14]). �

Corollary 7.4. The spectrum Zba(H) is homotopy equivalent to the shifted
suspensions sub-spectrum

Σ∞−(r+1)kZba(H)p(r+1)k ⊂ Z
b
a(H)

for all r ≥ r0.
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Note that we could have defined Zba(H) as this shifted suspension spec-
trum, but then one needs to go trough arguments similar to the content
of the above to argue that canonically this does not really depend on r0.
Also, our choice makes the spectra easier to handle — since they are more
functorially defined; and later, when we will be taking a limit of these we
will loose this property anyway.

Proof. In the oriented case this follows from Lemma 7.1. Indeed, by defini-
tion the inclusion is a homotopy equivalence at level (r + 1)k (the mapping
cylinder deformation retracts onto this part), and by the lemma all higher
structure maps are homotopy equivalences. In the non-oriented case it fol-
lows from the fact that the sequence of suspended structure maps

Zba(H)(r+1)k
Σ2kτr−−−→ Zba(H)(r+2)k

Σkτr+1−−−−→ Zba(H)(r+3)k
τr+2−−→ Zba(H)(r+4)k

satisfies that the composition of the first two and the last two are both
homotopy equivalences — hence they are all homotopy equivalences. So in
fact Lemma 7.1 is true also for odd r. �

Corollary 7.5. Any smooth homotopy of the Hamiltonian Hs, s ∈ I and
smooth homotopy as < bs of regular values for the action associated to Hs

induces a (contractible choice) homotopy equivalence

Zb0a0
(H0)→ Zb1a1

(H1).

Furthermore, for cs another regular value such that as < cs < bs this
is compatible with the natural quotients and inclusion from Conley indices
induced on the spectra.

Proof. This is almost Lemma 2.6. However, in that lemma a, b and c were
fixed values. However, the lemma is easily generalized to values depending
on s by applying a diffeomorphism φs : R→ R depending on s such that
a = φs(as), b = φs(bs) and c = φs(cs) are constants.

The first part of the corollary now follows from this generalized Lemma
2.6. Indeed, we have the diagram

ΣkZb0a0
(H0)(r+1)k

τr //

'
��

Zb0a0
(H0)(r+2)k

'
��

ΣkZb1a1
(H1)(r+1)k

τr // Zb0a0
(H1)(r+2)k
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which is a homotopy commutative (with a contractible choice of homotopy).
So this induces a contractible choice of homotopy equivalence from one to
the other.

The second part follows since the homotopy equivalences from Lemma
2.6 and the maps τr are compatible with inclusions and quotients. �

8. The construction of the transfer as a map of spectra

In this section we construct the map (Λj)! of spectra in Theorem 1.1. How-
ever, we will not yet identify the stable homotopy types of the source and
target as the Thom-spectra:

ΛN−TN and ΛL−TL+η.

In fact the second identification will not be canonical, and we postpone
defining the virtual vector bundle η (given a virtual vector bundle as −TL+
η or −TN we describe in Appendix A how to define these Thom-spectra).
The method of construction is similar to that of Viterbos, and we will use a
limit of certain Hamiltonians to define a map of spectra

Λj! : Z →W,

where Z and W later will be proven to be homotopy equivalent to the above.
However, it will follow rather directly from the construction that there is a
commutative diagram

Z
Λj!

//W

N−TN

OO

j!
// L−TL

OO

where j! is the usual transfer map of manifolds.
By the Darboux-Weinstein Theorem (see e.g. [22]) we can by choice of

Riemannian structures on L and scaling in T ∗N assume that

j : D1/2T
∗L ⊂ D1/2T

∗N

is a symplectic embedding. To distinguish between coordinates in T ∗N and
T ∗L, we denote them by (qN , pN ) and (qL, pL) respectively. So when we
write ‖pL‖ we mean the L-norm and similar for ‖pN‖, which thus defines
two different functions on D1/2T

∗L. It is very important for the construction
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that exactness of the embedding implies that pNdqN − pLdqL = λN − λL
defined on D1/2T

∗L is exact (we will often omit the j from the notation).
This implies that the two action integrals

∫
γ λN −Hdt and

∫
γ λL −Hdt are

equal on closed curves in D1/2T
∗L. This means that if we have a Hamiltonian

on T ∗N , which restricted to D1/2T
∗L depends only on ‖pL‖, then we can

use the method in Remark 3.1 to calculate the action integral on closed
1-periodic orbits. In the following this is important to keep in mind.

1
4
5

1
4

11
2

1
4

3
4

slope µN
slope µL

Figure 5: The function f

First we choose a function as in Figure 5. That is, construct f : R→ R
smooth such that

• f(x) = 0 when x ≤ 0,

• f(x) = 1 when x ≥ 1− ε,

• f(x) = 3
4 in a neighborhood of x = 1

2 ,

• f is convex on the intervals ]0, 1
4 [ and ]1

2 ,
3
4 [,

• f is concave on the intervals ]1
4 ,

1
2 [ and ]3

4 , 1[, and

• the inflection point at x= 3
4 has tangent intersecting the 2. axis above 1

4 .

By construction there are unique tangents to f which intersects the 2. axis
at 1

4 and 4
5 . These are the dotes lines in the figure, and we denote the slopes

of these by µL and µN respectively.

Remark 8.1. We may and will assume that the two tangents to f with
slope µN and µL are in fact tangents to all orders. We do this because it
will make a technical point (in later sections) much easier.
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Now we use f to define a smooth family of smooth Hamiltonians Hs :
T ∗N → R depending smoothly on s > 0. Indeed, define

Hs(z) =


sf(‖pL‖) z ∈ Im(j)

s3
4 z ∈ D1/2T

∗N − j(D1/2T
∗L)

sf(‖pN‖) + h∞(‖pN‖) z /∈ D1/2T
∗N

Here h∞ : R→ R is such that

• h∞(x) = 0 when x < 1− ε,

• h∞ is convex and

• h∞(x) = µ∞t− c∞ for x ≥ 1.

Here the constants µ∞, c∞ > 0 are so small that for

s1 = 6c∞(53)

the finite dimensional approximations S1 (r = 1) in Section 5 is well-defined
for Hs1 . This is, indeed, possible since we can make ‖H6c∞‖C2 small by
making both c∞ and µ∞ small. We may also assume that there are no 1-
periodic orbits of the flow — hence the critical points of S1 are the same as
the critical points of Hs1 .

Note that we are only adding this small h∞ so that we get a slightly pos-
itive slope at infinity, which is not a geodesic length, for any s > 0. Heuristi-
cally one may ignore this detail, but to be absolutely precise we have added
it, and note that the proof of Lemma 5.4 was made significantly easier by
adding this (although a similar yet slightly more general statement is true
without adding this slope at infinity).

By the assumptions on f and since the tangents of t 7→ s+ h∞(t) inter-
sects the 2. axis in the interval [s, s− c∞] we get by the calculation of the
action of orbits for Hs using tangents (described in Section 3) that as long
as s ≥ s1 = 6c∞ we have

• All critical values of the action (and hence the finite dimensional ap-
proximations) from orbits outside D1−εT

∗N lies in [−s,−s+ c∞] ⊂
[−s,−5

6s].

• All critical values of the action with action in ]−∞,−s4
5 ] comes from

orbits outside of D3/4T
∗N .

• −s4
5 is a critical value if and only if sµN is not the length of a closed

geodesic on N .
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• All critical values of the action with action in [−s1
5 ,∞[ comes from

orbits inside of D1/2T
∗L.

• −s1
4 is a critical value if and only if sµL is not the length of a closed

geodesic on L.

Since the set of lengths of closed geodesics (both for N and L) is closed
and has measure 0 we see that for almost all s ≥ s1 the values −s4

5 and
−s1

5 are regular for the action. We thus pick a strictly increasing sequence
sl tending to ∞ (with s1 as above) such that

• −sl 45 < −sl
1
5 are regular values for the action associated to Hsr .

Now let aLs = −1
5s, a

N
s = −4

5s and let bs denote a strict upper bound on
the critical values of AHs smoothly depending on s. Now define the spectra
(depending on l ∈ N):

Z(l) = Z
bsl
aNsl

(Hsl) and(54)

W (l) = Z
bsl
aLsl

(Hsl).(55)

By construction there is the canonical map of spectra Z(l)→W (l) given by
quotients of Conley indices. We now define a spectrum version of symplectic
homology of T ∗N by constructing a homotopy colimit of spectra (this again
means a mapping cylinder construction — see Appendix A for a concrete
description)

Z = Hocolim
l→∞

Z(l).(56)

This will have an essentially canonical map using the quotients above to
a spectrum version of symplectic homology of T ∗L, which we define as a
similar limit

W = Hocolim
l→∞

W (l).(57)

We therefore need to define maps of spectra

κl : Z(l)→ Z(l + 1)

compatible with the quotient maps induced by the natural quotient maps
on Conley indices.

For this we consider the homotopy Hs for s ∈ [sl, sl+1] (we will consider
this interval instead of I as to not clutter notation). The concavity of f



i
i

“3-323” — 2018/4/8 — 21:30 — page 145 — #61 i
i

i
i

i
i

The Viterbo transfer as a map of spectra 145

on the intervals [1
4 ,

1
2 ] implies that for such an s there is a unique tangent

of sf in the interval [3
4s, s] with slope slµN . Minus the intersection of this

tangent with the 2. axis thus defines a regular value, say dNs for the action
AHs . Similarly, there is a unique tangent in [1

4s,
1
2s] with slope slµL whose

negative intersection with the 2. axis defines a regular value dLs . Note that
by definition we have

• dNsl = −sl 45 = aNsl and dLsl = −sl 14 = aLsl .

However, since we are moving the tangents (defining these values) up (see
Figure 5) as we increase the multiplication factor s we have, by the concavity
on the intervals that

• dNs < −s4
5 = aNs and dLs < −s1

4 = aLs both for all s ∈]sr, sr+1].

In particular we have

• dNsl+1
< aNsl+1

and dLsl+1
< aLsl+1

.

We thus define the map of spectra

κl : Z(l)→ Z(l + 1)

by using Corollary 7.5 on this homotopy s ∈ [sl, sl+1] with regular values
dNs < bs, and then compose with the natural quotient

Z
bsl+1

dNsl+1

(Hsl+1)→ Z
bsl+1

aNsl+1

(Hsl+1) = Z(l + 1).

Since the map from Corollary 7.5 is compatible with quotients we see that
we can construct these (and it is a contractible choice) such that we get
commutative diagrams

Z(l)
κl //

��

Z(l + 1)

��

W (l)
κ′l //W (l + 1).

(58)

Here κ′l is induced by restricting κl on each Conley index, which means that
the diagram commutes on the nose. Making it easy to verify that we get a
map on the homotopy colimits

Λj! : Z →W.(59)
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Proposition 8.2. The map of spectra defined above fits into a commutative
diagram

Z
Λj!

//W

N−TN

OO

(π◦j)!
// L−TL

OO

Here (π ◦ j)! is the usual transfer map for a map of manifolds (π ◦ j) :
L→ N .

Proof. By construction above we picked s1 such that Z(1) (the first spec-
trum in the homotopy colimit in Equation (54)) is defined by Conley indices
already at the level r = 1 (r as in Section 5). Also, the only other critical
values (periodic orbits) are; the constants in D1/2T

∗N −D1/2T
∗L which has

critical value −3
4s1, and the constants on L ⊂ DT ∗N which has critical value

0. One way to think of this is that the action approximation

S1 : T ∗Λ1N = T ∗N → R

is approximately minus the Hamiltonian −Hs1 . In fact we claim the follow-
ing: The pair (DT ∗N,UT ∗N) ⊂ T ∗N is an index pair for (S1, X1) containing
all critical points, and (D1/4T

∗L,U1/4T
∗L) ⊂ D1/2T

∗L ⊂ T ∗N is an index
pair containing the critical point set L. To see this claim we prove that the
negative pseudo-gradient −X1 of S1 points out of these sets. Indeed, in the
case r = 1 we have no length conditions so X1 = ∇S1, and we have

S1(z0) =

∫
γ0

λ0 + p−0 εq0 −H(z0)(60)

Here since r = 1 the notation implies (q−1 , p
−
1 ) = (q−0 , p

−
0 ). Now for Z0 =

(q0, p0) with ‖p0‖ = 1 the Hamiltonian flow is geodesic flow with speed
µ∞. This implies εq0 = exp−1

q0 (q0) = −µ∞p0 (parallel transported to q−0 ) and
therefore ε̃q0 = −µp0. The approximation of the gradients in Lemma 5.2 then
shows that

‖∇pjS1 + µ∞p0‖ ≤ µ∞
4 ⇒ 〈∇pjS1, p0〉 > 0.

This shows that the gradient of S1 is inward pointing at the boundary of
DT ∗N hence the first pair is an index pair (the negative gradient points
out). Inside D1/2T

∗L we have a slightly different setup. Indeed, the gradi-
ent ∇Hs1 is orthogonal to the codimension 1 manifold U1/4T

∗L (pointing
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out of D1/4T
∗L), and we will prove that for small s1 (which we may as-

sume with out loss of generality) the dominating term in the gradient of S1

Equation (60) is −∇H, which means that for small enough s1 the gradient
of S1 will point into the index set — hence the negative gradient points
out. To see this we realize that the term p−0 εq0 is the integration of λ0 over
the horizontal geodesic going from (q−0 , p

−
0 ) to the fiber over q0. Hence we

can write the two first terms in Equation (60) as the sum of integrating λ0

over 2 curves. In fact we can write this sum as the integration of the closed
piece-wise smooth curve given by:

• First part is simply γj which is a curve from z0 to z−0 (contributing∫
γ0
λ0),

• the second part is the horizontal geodesic from z−0 to the fiber over q0

(contributing p−0 εq0),

• and the last part (which contributes 0) is the line (geodesic) in the
fiber T ∗q0N from the point the second part arrived at (which is p̃−0 )
back to (q0, p0).

This closed curve is a geodesic triangle with side lengths bounded by
‖∇Hs‖∞ ≤ ‖f‖∞s. So, the enclosed symplectic area is of order this squared
(or smaller). Also, moving the point (q0, p0) does not violently change these
curves (the endpoints are smooth functions in z0 and s — even for 0 and
negative s) and hence we conclude that the gradient of the two first term in
Equation (60) is bounded by some constant times s2

1. This is dominated by
−∇Hs1 which is non-zero on the boundary of the proposed index pair, and
scales with s1.

It follows that the map at level r = 1 on Conley indices (without the
added normal bundles) is given by:

NTN → LTL.

This realizes the Pontryagin-Thom collapse map, which realizes the transfer
map (see e.g. [9]). Warning: it is not standard that the bundles showing up
here are TN and TL. However, since we are adding two copies of the normal
bundle and desuspending (shifting by 2k) we get a map of spectra of the
type:

Z(1) ' Σ−2kNTN+2ν = N−TN → Σ−2kLTL+2j∗ν 'W (1)
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Now since L is Lagrangian in T ∗N we see why the above looked slightly
confusing compared to the standard transfer map N−TN → L−TL. Indeed,
as virtual bundles we have:

TL+ 2j∗ν ∼= −TL+ 2TL+ 2j∗ν ∼= −TL+ TL⊗ C + 2j∗ν ∼=
∼= −TL+ 2j∗TN + j∗ν ∼= −TL+ ζ2k.

Hence W (1) ' L−TL. �

Note that the bundle isomorphisms used in the later part are canonical so
we can in fact identify this part canonically, but for the spectrum W we will
run into trouble. In Remark 7.2 we discussed an alternate possible definition
of the spectra. Indeed, let Z ′ →W ′ be the map of spectra constructed as
above, but adding only νr copies of the normal bundle (as opposed to νr+1).

Corollary 8.3. The alternate transfer map fits into a diagram:

Z ′
Λj!

//W ′

Σ∞N+

OO

(π◦j)′!// LTN−TL

OO

Here (π ◦ j)′! is the usual transfer map for a map of manifolds (π ◦ j) :
L→ N .

Proof. Same proof, but the virtual bundle classes turns out different (and
precisely like this) because we are adding one less copy of ν. �

9. Generalized finite dimensional approximations

In this section we introduce a “generalization” of the finite dimensional ap-
proximations considered in Section 5, and we prove an “energy bound” on
these; which will make us able to bound gradient trajectories and prove the
localization results we need to be able to identify the homotopy types of
Z and W from Section 8. The general situation we will consider is; given
a compact exact symplectic manifold M (satisfying some topological con-
dition, which we address in Remark 9.5), with a compatible Riemannian
structure g and a Hamiltonian H, we will define functions Sr on finite di-
mensional approximations of the loop space of M . The finite dimensional
approximations of the loop space will be denote Λe<βr M and is essentially
the space of r-pieced geodesics with energy less than β. The reason we put
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the word “generalization” in quotes above is that the functions defined in
Section 5 where defined on bigger approximations of the loop space. More
concisely, we have Λe<βr DT ∗N ⊂ T ∗ΛrN . However, other than this restric-
tion the approximations here are more general. Indeed, they will depend on a
time-dependent choice of Lagrangian Γ at every point on M , and the case of
this being the fiber directions in T ∗N we recover the old Sr from Section 5.
We will introduce the important energy type function E, which measures
how far a piecewise path is from being a periodic orbit of the Hamiltonian
flow, and prove the following important proposition (the constants are var-
ious bounds on the structure discussed so far, and will be defined below).

Proposition 9.1. There exists a K > 1 (only dependent on g) large enough
such that for

r > K
(
‖H‖C2 + C2

Γ(β + ‖H‖2C1)
)

(61)

we have

‖∇E‖2 ≤ 20E ≤ 40‖∇Sr‖2 ≤ 80E

on Λe<βr M . Equality holds if and only if E = 0.

This proposition has a very important implication: the critical points of
Sr are the 1-periodic orbits regardless of the Riemannian structure and Γ
(for large r). However, we will later see that in the case of a non-degenerate
critical point, the Morse index will depend on Γ (its Maslov index is impor-
tant).

During this section we will slowly put more and more lower bounds on
K, but we will make sure that these “adjustments” does not depend on β,Γ
nor H when we do. However, to make the formulation of the lemmas and
corollaries in this section more palpable we will not mention any adjustment
needed in the formulation of the lemma/corollary, but simply adjust it in
the proof.

Remark 9.2. The constants K, CΓ, ‖H‖C1 and β will all be assumed to
be greater than 1. Indeed, this is not going to influence our ability to use
the result, and the equation that r should satisfy without this assumption
is much more complicated than Equation (61).

Furthermore, in Section 5 we defined finite dimensional approximations
and index pairs only for r > C‖H‖C2 (for C from Section 4), and since the
goal is to compare this to a more general construction we will assume K to
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be bigger than this C. In fact there is a C coming from T ∗N with its induced
Riemannian structure, but we will also assume this from the one associated
with T ∗L using the Riemannian structure we picked in Section 8).

9.1. Preliminaries

Let (M2d, ∂M) be a smooth compact manifold with boundary. Let (M ′, λ) be
an open exact (ω = d(−λ) is non-degenerate) symplectic manifold without
boundary containing M ⊂M ′. So M is an exact symplectic manifold inside a
slightly larger M ′ acting as a “buffer” around the boundary of M . Let g be a
Riemannian structure on M ′ compatible with ω, and let J be the associated
almost complex structure. Notice that any compact exact symplectic M has
such a buffer. Associated to this structure we have a constant

δM > 0(62)

which should be smaller than the injective radius of the exponential function
on M (mapping into M ′), but we will need to make it even smaller later.
However, when doing so we make sure that it only depends on M ⊂M ′ and
their structures.

We assume we are given a HamiltonianH : M ′ → R such that the Hamil-
tonian flow preserves M . As before we denote the (semi) C2-norm of H by
‖H‖C2 (Equation (7)). We will, however, also have to involved the (semi)
C1-norm:

‖H‖C1 = max(max
z∈M
‖∇H‖, 1).

Again we made it bigger than 1 to not make Equation (61) more complicated.

Example 9.3. Two important examples to keep in mind areM = DT ∗N ⊂
T ∗N = M ′ and M = D1/2T

∗L ⊂ T ∗N = M ′ (as in Section 8), with any com-
patible Riemannian structure. The Hamiltonians that this will be used on
are not precisely those from that section, but some related Hamiltonians
(and we will relate them later). Indeed, for Proposition 9.1 to be useful we
will need to narrow the Hamiltonians such that the action we consider is a
small interval proportional to 1/r. However, we will not consider this until
the next section, which uses a family of narrowing Hamiltonians to construct
good index pairs and later spectra as in Section 7.

As mentioned above Sr will depend on a choice of Lagrangian at each
point z ∈M . To formalize this we introduce the following notions.
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Definition 9.4. For any d ∈ N we let L(d) denote the Grassmannian of
Lagrangian sub-spaces in R2d = Cd. Using the standard inner product on
R2d we may induce a canonical Riemannian structure on the manifold L(d).

For any symplectic vector bundle ξ →M denote by L(ξ)→M the fiber
bundle with fiber L(ξ)q ∼= L(dimC(ξ)) the Grassmannian of Lagrangian sub-
spaces in ξq for q ∈M . If ξ has a fiber-wise compatible inner product and
the manifold has a Riemannian structure, we may choose a Riemannian
structure on L(ξ) as follows: each fiber is a Grassmannian of Lagrangian
subspaces of a vector space with a compatible inner product, which means
it has an induced Riemannian structure. We then choose an arbitrary or-
thogonal complement to the fiber, and use the Riemannian structure on M
to define the inner product on this complement. We denote these the hori-
zontal directions in L(ξ) and we may choose these smoothly. Note that there
might be a canonical choice of horizontal directions when ξ = TM , but in
the following that will not matter, and we will simply fix any such choice.

We now consider as part of the given data (needed to define a generalized
approximation of the action) a time-dependent smooth section

Γ: M × S1 → L(TM).

The reason that we need this to be time-dependent (the S1 factor) will not
be clear until Section 12, and may seem weird since we did not consider
time dependent Hamiltonians (although we easily could). We will identify
S1 = I/{0, 1} and thus consider for each t ∈ I a section

Γt = Γ(−, t) : M → L(TM).

Remark 9.5. Not all symplectic manifolds has such a section. Indeed, if
any of the odd Chern classes are non-torsion this cannot exist. Indeed, the
map BO→ BU given by ⊗C (which is the structure we need to lift to define
a single Γt) has torsion odd Chern classes. However, in cotangent bundles
such a structure always exists — in fact canonically so.

Since we, at a technical point later, will be working with a non-compact
family of such sections we will need to assume a specific bound. Indeed,
assume that

Γ(z,−) : S1 → L(TM)
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has energy bounded by some fixed constant CΓ > 1. That is,

e(Γ(z,−) =

∫ 1

0
‖ ∂∂tΓ(z,−)‖2dt ≤ CΓ(63)

for all z ∈M , and assume that for fixed t ∈ S1 we have the first and second
derivatives bounded by

‖DΓt‖ ≤ CΓ ‖D2Γt‖ ≤ CΓ.(64)

Of course, for a single Γ the existence of such a constant follows by com-
pactness and smoothness, but to make the results in this section work (for
the non-compact family we will consider later) we will in the following use
these concrete bounds on Γ, and we will in fact not be assuming that this
is smooth in t only in z. Note that these bounds imply

dist(Γt(z),Γt′(z
′)) ≤ CΓ dist(z, z′) +

√
CΓ|t− t′|(65)

so continuity is automatic from the bounds.

Example 9.6. With M = DT ∗N as in the above examples we define the
time independent ΓN as the canonical section in

L(T (DT ∗N))→ DT ∗N,

given by the vertical directions (the p-directions). Indeed, this is a canonical
Lagrangian in the tangent space at each point in (q, p) ∈ T ∗N . We may
restrict this to D1/2T

∗L ⊂ DT ∗N , but there we also have the section ΓL

by using vertical directions in T ∗L. It is in fact the difference in these two
choices we are going to explain explicitly.

Our approximations will again depend on a subdivision

α = (α0, . . . , αr−1) with
∑
j

αj = 1.

Precisely as in Section 5, and again we assume for simplicity Equation (24).
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The finite dimensional approximation of loops we will use for the finite
dimensional approximations of the action is

Λe<βr M = {~z ∈ (intM)r | e(~z) < β}.

where ~z = (zj)j∈Z/r and e is the energy given by

e(~z) = r
∑
j

dist(zj , zj+1)2.(66)

Here intM denotes the interior of M . Note that this is in fact the usual en-
ergy of loops if one interprets ~z as a piece-wise geodesic (each parameterized
by an interval of length 1/r). Notice that each zj and zj+1 will be closer
than δM (from Equation (62)) if we assume√

β/r ≤ δM .

In this case Λe<βr M is a well-defined open and finite dimensional manifold.
By Equation (61) we can assume this if K > δ−2

M . Note that we are not using

the sub-division α in the definition of Λe<βr M . We could have done this, and
in some ways this might have been more natural, but the formulas turn out
easier this way.

Example 9.7. With M and M ′ as in Example 10.3 we can if we also
assume that K > δ−2

0 (from Equation (21)) see that

Λe<βr M = Λe<βr DT ∗N ⊂ T ∗ΛrN

is an open submanifold. Here the latter was defined in Section 5 using δ0.
Moreover, if we assume that K > 9δ−2

0 we get that this inclusion is inside
the set where the pseudo-gradient Xr in that section where defined to be
equal to the gradient (defined right before Equation (29)).

To define the finite dimensional approximations depending on Γ we will
also need the following geometric construction. Given a Lagrangian subspace
L ⊂ TzM we define for any close by point z− ∈M with dist(z−, z) small
enough the L-curve

γx(z−, z, L) : I →M

as the continuous path from z− to z defined by:
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• parameterized by constant arc length on [0, 1
2 ] we go from z− along a

geodesics to the closest point in D = expz(D2δML) (the path meets D
orthogonally at a point closer than 2δM to z),

• parameterized by constant arc length on [1
2 , 1] we follow a geodesic

from that closest point to z (this is inside expz(D2δML)).

Notice that we may assume (by possibly making δM smaller) that this is
well-defined for all dist(z−, z) ≤ δM and all L. We will use these to close
up piecewise flow curves. The actual parameterizations of the L-curves are
unimportant since we will use them only for integrating 1-forms. Notice
that although z and z− are both in M ⊂M ′ we allow this L-curve to exit
and reenter M . Figure 6 illustrates many aspects of how we will use these
L-curves to define Sr.

1
rXH,zj−1 1

rXH,zj

γxj−1

zj−1 z−j
γj−1

γxj

zj γj z−j+1

zj+1

Figure 6: Curves involved in definition of finite dimensional approximation.

Observe that if r > 4‖H‖C1δ−1
M and we define for each ~z ∈ Λe<βr M

γj(t) = ϕt(zj), t ∈ [0, αj ],(67)

then each γj is shorter than ‖H‖C1αj < 2‖H‖C1/r < δM/2 (follows from
H2a) above). So, we adjust K to satisfy

K > max(4δ−2
M , 4δ−1

M )

so that this is true (uses Equation (61) and ‖H‖C1 > 1), and so that
√
β/r <

δM/2. This implies that the distance from

z−j = γj−1(αj)(68)

to zj is less than δM and we may thus define

γxj = γx(z−j , zj ,Γj/r(zj)).(69)
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With these we may finally define the finite dimensional approximation of
the action as

Sr(~z) = S(r,g,Γ,H)(~z) =
∑
j∈Z/r

(∫
γj

(λ−Hdt) +

∫
γx
j+1

λ

)
.(70)

Note how the curves all fit together (as pictured in Figure 6) to integrate λ
over a closed curved. This is a very important point; indeed, the gradient of
Sr now only depends on ω and not λ, which is an important point for the
usual action AH .

To analyze the gradient of Sr we also define

εj = − exp−1
zj (z−j )(71)

This is basically the vector pointing from z−j to zj , but moved to the tangent
space at zj .

Example 9.8. As in the above examples where M = DT ∗N , Γ = ΓN is
the vertical directions and the metric g is induced from a metric on N , we
may compare this to the previous definition of Sr in Equation (26). Indeed,
the curve γxj will because exp(Γ(q, p)) = T ∗qN be the curve first going in

horizontal direction from the fiber over q−j to the fiber over qj (this is the

geodesic εqj lifted horizontally to start at (q−j , p
−
j ), which ends at (qj , p̃

−
j ) by

definition of p̃−j ) then it goes in the fiber from p̃−j to pj . Integrating this over

λ we precisely get the term p−j εqj (the movement in the fiber direction does
not contribute to the integral). So Equation (70) generalizes the definition
from Equation (26) — albeit only on the subset Λe<βr DT ∗N ⊂ T ∗ΛrN .

In this example εj ≈ (εqj , εpj ) and these two components are basically
the tangents to the two pieces of the L-curve.

Remark 9.9. The function Sr can be approximated by Sr ≈ AH ◦ ir where
ir is an embedding

ir : Λe<βr M → ΛM.

We may define ir as the curve depicted in Figure 6 with parameterization on
the flow curves γj “almost” as defined, but leaving a little parameterization
room for the L-curves to be parameterized by a very short interval. Because
this is short we get almost no contribution from the integration of the Hdt
term over the L-curve part and we approximately get the expression for Sr.
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This can be made more rigorous such that the Conley indices defined by such
embeddings is the same as the one defined by Sr. We will not need this, but
it is a good justification for the name finite dimensional approximation, and
describes the relation with Floer homology discussed in the introduction.

We now introduce the important energy type functional appearing in
Proposition 9.1:

E(~z) =
∑
j

‖εj‖2.(72)

We have defined E such that it is zero if and only if the curves γj fit together
to a 1-periodic orbit for the Hamiltonian flow of H. Indeed, E can be thought
of as a finite version of the energy relative to the Hamiltonian flow∫

s1

‖γ′(t)−XH(γ(t))‖2dt.

However when considering this and comparing with e in Equation (66) we
note that a factor r has been omitted in the expression for E. This is evident
in the follow lemma which tells us that rE is in a sense equivalent to e, i.e.
bounding one bounds the other.

Lemma 9.10. We have

rE(~z) ≤ 2e(~z) + 8‖H‖2C1 and e(~z) ≤ 2rE(~z) + 8‖H‖2C1 .

Proof. The length of the Hamiltonian flow is bounded by ‖H‖C1 , and each
small flow curve γj is bounded in length by αj‖H‖C1 ≤ 2‖H‖C1/r. This
implies

E(~z) =
∑
j

dist(z−j , zj)
2 ≤

∑
j

(dist(zj , zj+1) + 2‖H‖C1/r)2

≤
∑
j

2(dist(zj , zj+1)2 + 4‖H‖2C1/r2) ≤ 2e(~z)/r + 8‖H‖2C1/r.

Similarly dist(zj , zj+1) ≤ dist(z−j , zj) + 2‖H‖C1/r proves the other inequal-
ity. �

9.2. Approximations in local coordinates

We will essentially have to reduce the proof of Proposition 9.1 to the flat case
in local coordinates. However, to get all the bounds we need it is convenient
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to make sure that we can for any z ∈M find “good” coordinates with certain
bounds. The following lemma takes care of this.

Lemma 9.11. By making δM smaller we can assume that: for any z ∈
M and any Lagrangian subspace L ⊂ TzM there exists a symplectic chart
h : D2d

ε (0)→M ′ with h(0) = z and h∗g equal to the standard structure at
0 and h∗(L) = iRd also at 0. Furthermore, we may assume that BδM (z) ⊂
Im(h) and that there are bounds independent of z and L (using the Rieman-
nian structure on M and the standard on D2d

ε (0)) on the first and second
derivatives of h and h−1.

Proof. Cover M by finitely many open Darboux charts hi : Dε′(0) ⊂ R2d →
M ′ which extends smoothly to the boundary so that we have bounds on
all derivatives. Then pick a smooth isometric and symplectic (Hermitian)
trivialization

φi : h
∗
iTM

′ ∼= Ui × Cn

of the tangent bundle TM ′ pulled back to each of these charts (and their
closures — so as to have global bounds on derivatives). Using this we can
for each z ∈ hi(Ui) define a new chart hzi : U zi →M ′ by

hzi (w) = hi((φi|z)
−1(w) + h−1

i (z)).

This sends 0 to z and the pull back of g is the standard Riemannian structure
at 0 and this choice depends smoothly on z for fixed i. It follows that for
small enough δM small balls around 0 of these coverM (in the way the lemma
specifies — ignoring the V ) and we get the global bound with property that
h∗g is standard at 0.

We may make sure that the pull back of L at 0 is iRd by multiplying
the entire chart with an element in U(d). This does not change bounds on
the derivatives. �

When working in local charts in this subsection we will be assuming
the local chart comes from Lemma 9.11. That is, we assume that g is a
Riemannian structure on D2d

ε (0) standard at 0, and that the first and second
derivatives of g is bounded. We will need to understand what happens if we
locally vary the Lagrangians Γ so we will not generally assume compatibility
with Γ (as in the lemma). Because of the bounds we have on the charts and
their first and second derivatives the constants in this subsection can be
chosen as global constants working on all charts in M from Lemma 9.11.
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Define for small ε > 0 the functions (with compact domain)

F, Fg : D2n
ε ×D2n

ε × L(d)→ R

by

Fg(z
−, z, L) =

∫
γx(z−,z,L)

λ0

using g to define the L-curve, and define F by the same formula but we
use the standard Riemannian structure to define the L-curve. Notice that
this “standard” L-curve has its two geodesic parts parallel to Rn and iRn
respectively.

Lemma 9.12. There is a constant c > 0 (depending on the bounds on g)
such that

‖F (z−, z, L)− Fg(z−, z, L)‖ ≤ c‖(z−, z)‖3.

Proof. Since L(d) is compact we fix an L and the lemma is equivalent to
showing that

v−2(F (vz−, vz, L)− Fg(vz−, vz, L))→ 0

for v → 0 ∈ R, which is what we will show.
Note that

v−2Fg(vz
−, vz, L) = Fgv(z

−, z, L),(73)

where gv is the Riemannian structure given at the point z by taking g at
the point vz. Indeed, this is because:

• Scaling a geodesic for gv by v−1 gives a geodesic for g so the L-curves
for gv scale with v−1 to the L-curves of g.

• Integrating v−2λ0 over a path γ in R2d gives the same as integrating
λ0 over the path v−1γ.

Equation (73) implies for F that

v−2F (vz−, vz, L) = F (z−, z, L).

So F (−,−, L) is a quadratic form. Since gv → g0 (C∞ on compact sets
since g at 0 is standard) for v → 0 we see that this is in fact the limit of
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Equation (73) for v → 0, and is therefore the Hessian of Fg(·, ·, L) at (0, 0)
(independent of g), and hence the lemma follows. �

We will need the following corollary of this.

Corollary 9.13. There is a constant C > 0 (depending on the bounds on
g) such that

‖∇(F − Fg)‖ ≤ C(‖z−, z‖2) = C(‖z−‖2 + ‖z‖2).

Notice here that ∇ is taken with respect to z−, z and L.

Proof. By the above lemma we have a constant c > 0 such that |F − Fg| ≤
c‖z−, z‖3. That is: the function is bounded by a constant times the distance
cubed to the compact submanifold {(0, 0)} × L(d). Hence the gradient (with
respect to all directions) will be bounded by a constant times the distance
squared. �

Corollary 9.14. There is a constant C ′ > 0 (depending on the bounds on
g) such that

‖∇LFg‖ ≤ C ′(‖z−‖2 + ‖z‖2).

Proof. The above corollary shows that this is true for Fg if it is true for F . It
is true for F since ‖F (z−, z, L)− F (z−, z, L′)‖ ≤ C ′′ dist(L,L′)‖z−, z‖2 for
some C ′′ as illustrated in Figure 7. �

L

z−

z
L′
θ

Figure 7: Difference of the symplectic area for L and L′ with fixed endpoints.
The area of each triangle is bounded by 2θ‖z− − z‖2 for small θ.

We will also need the actual gradient of F for L = iRd (the flat case with
standard Lagrangian).
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Lemma 9.15. The gradient of F s = F (−,−, iRd) is given by

∇F s = (−y−, x− x−, y−, 0)

at the point (z−, z) = (x−, y−, x, y).

Proof. By the very explicit way L-curves look in the flat structure and the
definition of λ0 we see directly that

F (z−, z) = 〈y−, (x− x−)〉.

Note that this is the linear version of the term p−j εqj . �

The following corollary specializing this is in fact all we will need for
this gradient.

Corollary 9.16. At z = 0 the gradient of F s with respect to z is given by

∇zF s = (y−, 0).

At z− = 0 the gradient of F s with respect to z− is given by

∇z−F s = (0, x).

This corollary is what inspires the next subsection. Indeed, in the flat
case in charts around zj = 0 this corollary says that the gradient w.r. to zj
of the L-curve integration part of Sr is equal to minus the imaginary part
of εj = zj − z−j . Similarly it says that in charts around z−j = 0 the gradient

w.r. to z−j (if this could move freely) of the L-curve integration part of Sr is

the real part of εj = zj − z−j .

9.3. Local approximations of the energy

Because of the above observation it is convenient to approximate E by some
slightly different functions E′ (depending on some local choices). So let ~z ∈
Λe<βr M be given. Pick charts as in Lemma 9.11 hj : D2d

ε (0)→M around
zj (pulling back Γj/r(zj) to iRd) and h−j : D2d

ε (0)→M around z−j (pulling
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back Γj/r(z
−
j ) to iRd) for each j ∈ Z/r. Now define

ε
h−j
xj = Re((h−j )−1(zj)) ∈ Γj/r(z

−
j )⊥ ⊂ Tz−j M

εhjyj = −i Im((hj)
−1(z−j ) ∈ Γj/r(zj) ⊂ TzjM.

Here we consider Re: Cd → Rd ⊂ Cd and i Im: Cd → iRd ⊂ Cd as orthog-
onal real projections to real part and imaginary part, and since the chart
identified Γj/r (at different points) with iRd we can interpret these (as in-
dicated) as tangent vectors inside the Lagrangians. These are important
because Corollary 9.16 tells us that in the flat case the real parts and imagi-
nary parts of εj are important for the gradient of Sr. These are approximate
orthogonal projections to Γj/r(zj)

⊥ and Γj/r(z
−
j ) of εj and we thus have the

following heuristical description of these:

• The vector ε
h−j
xj approximates the tangent to the first part of the L-

curve from z−j to zj (with length the length of this geodesic).

• The vector ε
hj
yj approximates the tangent to the second part of the

L-curve from z−j to zj (with length the length of this geodesic).

In fact we will later see that εj ≈ ε
h−j
xj + ε

hj
yj almost as an orthogonal decom-

position — so these are to be thought of as linear versions of the L-curve.
So, in Examples 9.8 these approximates the components of εj given by εqj
and εpj . However, we change the notation to x and y because in the general
case it may not be compatible with the cotangent bundle structure, and
even when it is the usual structure it is not clear that these are exactly
equal to εqj and εpj — only approximately. We will make several of these
statements more explicit in the following proof. However, the only result we
will explicitly need for these involves comparing E to the function

E′(~z) =
∑
j

‖εh
−
j
xj ‖2 + ‖εhjyj ‖

2.(74)

Lemma 9.17. For r as in Equation (61) we have

|E − E′| ≤ 1
100E

independent on the choice of charts hj and h−j (as long as they satisfy the
derivative bounds that we assume by Lemma 9.11).
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Proof. Consider any point z−∈M and a fixed t∈S1. Define εz=− exp−1
z (z−)

(similar to εj) for any close by z ∈M . Assume h− : D2d
ε (0)→M is local

coordinates around h−(0) = z− from Lemma 9.11 pulling back Γt to iRd.
Now define

εx = Re((h−)−1(z))

(similar to above but suppressing the dependency on the charts). As above
this approximates the tangent of the first part of the L-curve γx(z−, z,Γt(z)).

To make this statement explicit consider everything in the local coordi-
nates h− (which we now suppress from the notation). Consider, as in the
proof of Lemma 9.12, the “zoom” in the sense that we may change these
two structures depending on v ∈ I as follows:

(gv)w = gvw and (Γvt )(w) = Γt(vw).

So g1 = g, Γ1
t = Γt, but g0 and Γ0

t = iRd are the standard structures. Now
as v tends to zero all structures converge uniformly on any compact set. So
it follows that we get the following limit behavior:

πΓt(z)⊥(εz)− εx
‖z‖

= πΓt(z)⊥( εz
‖z‖)−

εx
‖z‖ → 0

for z → 0. Indeed, for small z this happens in a very small ball, and for the
standard structures this formula is equal to 0. Here πΓt(z)⊥ is the orthogonal
projection using g of the tangent vectors of TzM onto the subspace Γ(z). It
follows by smoothness of the numerator that we get a bound

‖πΓt(z)⊥(εz)− εx‖ ≤ CMCΓ‖z‖2.

Here CM > 1 is a bound only depending on M ⊂M ′ and their structures
(not the section Γ). We can assume this specific bound since the constant
here only depends on the second order behavior of the numerator at z = 0,
and this only depends on the second order behavior of g and Γt. Hence by
Equation (64) and the bounds assumed by Lemma 9.11 we get such a bound.
In fact, we can replace ‖z‖ with dist(z−, z) by again making CM larger. That
is, we have a global bound (for close by z− and z):∣∣‖πΓt(z)⊥(εz)‖ − ‖εx‖

∣∣ ≤ CMCΓ dist(z−, z)2.

For this arbitrary t, and for any chart h− around z− satisfying the bounds
from Lemma 9.11
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Similarly we get using a chart h at any h(0) = z (also from the lemma)
by considering varying z− the bound∣∣‖πΓt(z)(εz)‖ − ‖εy‖

∣∣ ≤ CMCΓ dist(z−, z)2.

with εy = − Im(h−1(z−)).
Now use these bounds for each pair z−j , zj , and the charts fixed before

the lemma, together with∣∣‖a‖2 − ‖b‖2∣∣ = |〈a− b, a+ b〉| ≤ ‖a− b‖(‖a‖+ ‖b‖),

dist(z−j , zj) = ‖εj‖, and ‖εj‖2 = ‖πΓj/r(zj)(εj)‖2 + ‖πΓj/r(zj)⊥(εj)‖2 to con-
clude:∣∣E(~z)− E′(~z)

∣∣ =
∑
j

(
‖εj‖2 − ‖εxj‖2 − ‖εyj‖2

)
≤
∑
j

(2CMCΓ‖εj‖2)3‖εj‖ ≤ 6CMCΓ

√
2β + 8‖H‖2C1

r
E.

Here the 3‖εj‖ comes from the factor (‖a‖+ ‖b‖) and:

• the fact that the orthogonal projections have length less than ‖εj‖ and

• ‖εxj‖ ≤ 2‖εj‖ and ‖εyj‖ ≤ 2‖εj‖, which are easy consequences of the
bounds above (for ‖εj‖ < 1

CMCΓ
, which we can get by adjusting K).

We now see that if we pick K > 50(100)2C2
M we get (when r satisfies Equa-

tion (61)) that

(E − E′)2 ≤ 6C2
MC

2
Γ

2β + 8‖H‖2C1

r
E2

≤ 50C2
M

C2
Γ(β + ‖H‖2C1)

r
E2 ≤ 1

1002
E2.

�

At the end of the proof we saw the following, which will be useful again
later.

Corollary 9.18. For r as in Equation (61) we have:

‖εh
−
j
xj ‖ ≤ 2‖εj‖ and ‖εhjyj ‖ ≤ 2‖εj‖
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9.4. Gradient approximations using extensions

We will analyze several gradients in the following, and in more than one case
it is convenient to consider the same trick as we employed in the proof of
Lemma 4.1. There we extended our function to a larger manifold where the
z−j coordinates did not depend on zj . That is, define the manifold

W ⊂ Λe<βr M × (intM)r(75)

by (~z, ~z−) ∈W if dist(zj , z
−
j ) < δm. In particular, if r > 4‖H‖−1

C1δM (as as-
sumed to define Sr) we have the embedding

χ = χs,r : Λe<βr M →W(76)

given by

χ(~z) = (~z, ϕα0
(z0), . . . , ϕαr−1

(zr−1)).(77)

Now, let f : Λe<βr M → R be a smooth function. If

fe : W → R(78)

is any extension of f in the sense that fe ◦ χ = f then we may calculate the
gradient of f by the formula

∇f = (Dχ)†(∇fe),

which coordinate wise may be written as

∇zjf = ∇zjfe + (Dzj (ϕαj ))
†(∇z−j f

e).(79)

The following lemma is an easy consequence, and it is a proof of the first
part of Proposition 9.1 above.

Lemma 9.19. For r as in Equation (61) we have that

‖∇E‖2 ≤ 20E.
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Proof. As discussed above we extend the definition of E to a function

Ee : W → R

by the simple formula

Ee(~z, ~z−) =
∑
j

dist(zj , z
−
j )2.

So that Ee(χ(~z)) = E(~z). The gradient of Ee is easily calculated (see e.g.
[23]) to be

∇(zj ,z
−
j )E

e = (−2 exp−1
zj (z−j ),−2 exp−1

z−j
(zj))

Note that both components have the norm 2‖εj‖.
The assumption in Equation (24) implies

‖αjH‖C2 ≤ 2‖H‖C2/r.

Let F be the identification of nearby tangent vectors induced by some chart
at zj from Lemma 9.11. Since Fz,z = Id we see by Lemma 4.3 that there is
a δ such that if 2‖H‖C2/r < δ then we have the bound

‖(Dzj (ϕαj ))
†‖ ≤ 6

5

on the operator norm. With K > 2δ−1 we have 2‖H‖C2/r < δ and it thus
follows from Equation (79) that

‖∇E‖2 ≤
∑
j

‖2 exp−1
zj (z−j )− 2(Dzj (ϕαj ))

†(εj+1)‖2

≤8
∑
j

(‖εj‖2 + ‖(Dzj (ϕαj ))
†(εj+1)‖2) ≤ 8(E + (6

5)2E) ≤ 20E.

�

We will also need to extend Sr by χ to relate its gradient to E. However,
before doing this we will get rid of the annoying fact that Γt varies with
the points in M . That is, we will reduce the problem to local charts with Γt
constant in those charts.

Since, we will make choices for each point in Λe<βr M at which we con-
sider the gradient of Sr we now fix such a point ~w ∈ Λe<βr M , and consider
in the following only points ~z close to this ~w, and the goal is to prove Propo-
sition 9.1 at the point ~w.
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To get rid of the varying behavior of Γ we now define a new choice of
Lagrangians locally at ~w. Indeed, pick some charts as in Lemma 9.11 around
each wj ∈M , say hj : Dε(0)→M ′. These induce canonical identifications:

L(hj) : Dε(0)× L(d) = L(TDε(0))→ L(TM ′)|Im(hj).(80)

This defines a possibly different Riemannian structure (locally), but because
of the bounds of the derivatives of hj these will be equivalent. I.e. there is
a constant CM , such that bounding the distance between two points in one
structure bounds the distance by this same amount times this constant in
the other structure. Now we define an alternate function G to Sr by

G(~z) =
∑
j∈Z/r

(∫
γj

(λ−Hsdt) +

∫
γx(z−j ,zj ,Lj)

λ

)
,(81)

where Lj = Γj/r(wj) is now chosen to be constant in the chart L(hj). So, this
is the exact same function as Sr except that we have replaced the dependence
of Γ with the constants Lj . By definition we have

G(~w) = Sr(~w)

However, much more importantly we have the following bound on their
gradient difference at ~w.

Lemma 9.20. For r as in Equation (61) we have

(‖∇(Sr −G)‖(~w))2 ≤ 1
100E(~w)

Proof. Let ~z = ~z(u) be a path parameterized by unit arc length on [−ε, ε]
through ~w = ~z(0). This implies that ~z ′(0) is a unit vector. We may prove the
lemma by proving that | ∂∂u(G− Sr)(~z)|2u=0 ≤ 1

100E(~w) for all such. Indeed,
if ~z ′(0) is parallel to the gradient we get

(‖∇(Sr −G)‖(~w))2 =
∣∣D~w(G− Sr)(~z′(0))

∣∣2 =
∣∣ ∂
∂u(G− Sr)(~z)

∣∣2
u=0

.

Notice that ‖z′j(0)‖ ≤
√∑

i∈Z/r‖z′i(0)‖2 =1 for all j∈Z/r, and so dist(zj , wj)

≤ u.
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Using the bounds on the derivative of Γt from Equation (64) we get (in
L(TM ′) distances) that

dist(Lj ,Γj/r(zj)) ≤ CΓu,

which implies the bound

dist(Lj ,Γj/r(zj)) ≤ CMCΓu(82)

as Lagrangians in L(d) with the standard structure (here the factor CM is
there to convert length bounds in the pull back structure to length bounds
in the standard structure).

The difference between G and Sr at ~z close to ~w is given by:

Sr(~z)−G(~z) =
∑
j∈Z/r

(∫
γx(z−j ,zj ,Γj/r(zj))

λ−
∫
γx(z−j ,zj ,Lj)

λ

)
.

We now consider this in the local coordinates for each j, and at u = 0 (where
the Lagrangians are equal). We get by the chain rule that the terms in the
differential (with respect to u) coming from the first two coordinates (zj and
z−j — i.e. moving the endpoints of the γx paths) cancel and the only part
left is the contribution from changing the Lagrangians in the last coordinate,
and only the first integral actually depends on zj in this coordinate. That
is; we have

∂
∂u

(
(Sr −G)(~z)

)
u=0

= ∂
∂u

∑
j∈Z/r

∫
γx(w−j ,wj ,Γj/r(zj))

λ


u=0

,(83)

where Γj/r(zj)) lies in L(d) depending on u, who’s derivative is bounded in
Equation (82). The derivative of the integral is bounded in Corollary 9.14,
and combined we get

∣∣ ∂
∂u(G− Sr)(~z)u=0

∣∣ ≤ ∑
j∈Z/r

C ′CMCΓ dist(wj , w
−
j )2 ≤ C ′CMCΓE(~w).(84)

Now squaring this and using Lemma 9.10 we get
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∣∣ ∂
∂u(G− Sr)(~z)u=0

∣∣2 ≤ (C ′CMCΓ)2E(~w)2

≤ (C ′CMCΓ)2 2e(~w) + 8‖H‖2C1

r
E(~w)

≤ (C ′CMCΓ)2 2β + 8‖H‖2C1

r
E(~w),

which proves the lemma by adjusting K (Similarly done as in the end of the
proof of Lemma 9.17). �

To relate the gradient of Sr at ~w to E we will also extend G to W (as
we did for E above). So we extend it by the formula

Ge(~z, ~z−) =
∑
j

(∫
γj

(λ−Hdt) +

∫
γx(z−j ,zj ,Lj)

λ

)
.(85)

Here γj is some smooth choice of paths depending on the end points zj
and z−j+1 extending the Hamiltonian flow curves of αjH. As calculated in
Equation (12) the choices of γj does not matter for the gradient of Ge on
the image of χ.

Proof of Proposition 9.1. As above we consider a fixed point ~w ∈ Λe<βr M at
which we want to prove the proposition, and again we pick for each j a
chart hj as in Lemma 9.11 with hj(0) = wj (pulling back Γj/r(zj) to iRd),
and we define G as above. However, we now also pick charts h−j using the

same lemma around each w−j (pulling back Γj/r(z
−
j ) to iRd).

Comparing with Lemma 9.19 and Lemma 9.20 we see that it is sufficient
to prove

3E ≤ 4‖∇G(~w)‖2 ≤ 5E.

Indeed, assuming this we get:

‖∇Sr(~w)‖2 ≤ (‖∇G(~w)‖+ ‖∇(Sr −G)(~w)‖)2 ≤
(√

5
4 + 1

100

)
E ≤ 2E

and

√
E ≤

√
4
3‖∇G(~w)‖ ≤

√
4
3(‖∇Sr(~w)‖+ ‖∇(G− Sr)(~w)‖)

≤
√

4
3(‖∇Sr(~w)‖+

√
1

100E) ⇒ E ≤ 2‖∇Sr(~w)‖2.
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So in the following we only consider G and its extension Ge close to the
points ~w and χ(~w) = (~w, ~w−) respectively.

The gradient of Ge with respect to zj only depends on the position of the
points z−j , zj and zj+1 and the gradient with respect to z−j+1 only depends

on zj , z
−
j+1 and zj+1.

We first consider the gradient of Ge with respect to zj at ~w. For this we
fix the remaining coordinates zi = wi, i 6= j and ~z− = ~w−. We will calculate
the gradient using the chart hj , and we partly suppress this chart from the
notation, and consider g as the Riemannian metric induced by hj close to 0
and g0 as the standard structure. The symplectic structures agree, and we
consider zj as points close to 0 = wj in the domain of hj . We will successively
replace Ge by approximating functions Ge1 and then Ge2 defined for such zj
close to 0, and relate their gradients.

Firstly, define:

Ge1(zj) =

∫
γ
zj,w

−
j+1

(λ0 −Hdt) +

∫
γx(w−j ,zj ,iRd)

λ0,

These are the terms in Ge which actually depends on zj and we have replaced
the integration over λ = h∗jλ with integration over λ0. Since the two paths

concatenate to a path from w−j to w−j+1 independent of zj the gradient of
Ge1 with respect to zj equals that of Ge. That is

∇zjGe = ∇zjGe1(86)

Then define:

Ge2(zj) =

∫
γ
zj,w

−
j+1

(λ0 −Hdt)

+

∫
γx

0 (w−j ,zj ,iRd)
λ0,

Here γx0 means we use the Riemannian structure g0 instead of g to define the
L-curve. This means that in Cd this L-curve consists of two straight lines
the first parallel to Rd the other to iRd. Now since we want the gradient at
zj = wj = 0 in the chart Corollary 9.13 implies that

‖∇zj (Ge1 −Ge2)‖|zj=wj ≤ CM dist(wj , w
−
j )2,(87)

with CM only depending on M . Indeed, the difference between these two
functions are precisely that we use the two different metrics in the chart to
define γx, and this was precisely the difference between the functions F and
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F g in that subsection. Notice in particular that the gradient of the functions
in question at zj = wj do not depend on the metric since the metrics agree
at this point.

Inspecting the definition of Ge2 we see that the gradient with respect
to zj of the first integration term is 0. Indeed it is a flow curve ending
on the zero section of Cd = T ∗Rd, and we saw that this has gradient zero
in Equation (12) with respect to varying this endpoint. The gradient of
the second term was computed in Corollary 9.16 (since zj = wj = 0 in the
chart), and we get that the gradient of Ge2 is given by

∇zjGe2 = J0(εhjyj )
[
= −J0(0, y−j ) = (y−j , 0) in coordinates z− = (x−, y−)

]
,

where J0 is the standard complex structure on Cd, and ε
hj
yj is simply the

imaginary part of z−j . Combining this with Equation (86), Equation (87),
and the fact that J0 = J at 0 in the chart we get

‖∇zjGe − Jεhjyj ‖zj=wj ≤ CM dist(wj , w
−
j )2.

Similarly, in coordinates hz−j we can define functions Ge1 and Ge2 depend-

ing on z−j and get that

‖∇z−j G
e − Jεh

−
j
xj ‖z−j =w−j

≤ CM dist(wj , w
−
j )2.

Notice in particular that even though there is a slight asymmetry in the
definition of G with respect to zj and z−j - we don’t see this when using
Corollary 9.13. Indeed, in that corollary the Lagrangian was also situated
at zj , but the resulting bounds were symmetric in zj and z−j . For G Equa-
tion (79) is

∇zjG = ∇zjGe + (Dzj (ϕαj ))
†(∇z−j+1

Ge),

so combining the above with this we get

‖∇zjG− Jεhjyj −Dzj (ϕαj )
†(Jε

h−j+1
xj+1)‖(88)

≤ CM dist(wj , w
−
j )2 + ‖Dzj (ϕαj )

†‖CM dist(wj+1, w
−
j+1)2

≤ CM (‖εj‖2 + 2‖εj+1‖2).

The latter is because we can adjust K to make ‖Dzj (ϕαj )
†‖ as close to

1 as we would like (Lemma 4.3 as usual). As indicated we now evaluate
everything at ~z = ~w, so ‖εj‖ = dist(wj , w

−
j ).
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For brevity denote v = Jε
hj
yj and w = Dzj (ϕαj )

†(Jε
h−j+1
xj+1). So the above

formula bounds ∇zjG− v − w. The important point now is that v and w
are close to being orthogonal. Indeed, one is an εy and the other an εx - we

will make this precise. Abbreviate w′ = Jε
h−j+1
xj+1 and Φ := Dzj (ϕαj )

† such that
w = Φ(w′). In the local chart hj we can assume by adjusting K and using
Lemma 4.3 that Φ is ε′ > 0 close to the identity. For as small an ε′ > 0 as
we would want. Similarly, let V = Γj/r(zj) = iRd and W ′ = Γ(j+1)/r(z

−
j+1)⊥

(as linear subspace in R2d using the chart hj) we can by Equation (65) see
that

dist(V,W ′⊥) ≤ CΓ2‖H‖C1/r +
√
CΓ

√
1/r.

So again by adjusting K we can assume that this is as small as we would
like. We end up with the abstract situation:

• We have two vectors v, w′ ∈ R2k, which are in two linear subspaces
v ∈ V and w ∈W ′, which are almost orthogonal.

• We then apply a linear map Φ very close to the identity, which maps
w′ to w and W ′ to some W .

• The point is that we still have w ∈W and W is still almost orthogonal
to V . We conclude that

|‖v + w‖2 − ‖w‖2 − ‖v‖2| ≤ ε‖v‖‖w‖,

where ε > 0 is twice cosine to the angle between V and W .

Using (in order at each step) first that J preserves norm; then the ε′ bound
above on I − Φ together with∣∣‖a‖2 − ‖b‖2∣∣ = |〈a− b, a+ b〉| ≤ ‖a− b‖(‖a− b‖+ 2‖b‖);(89)

then the above ε bound on the vectors v and w combined with Φ(w′) = w
and ε′ ≤ 1; then Corollary 9.18; and finally Equation (88) combined with
Equation (89), Corollary 9.18, and the bound ‖Φ‖ ≤ 2; we get∣∣∣‖∇zjG‖2 − ‖εhjyj ‖2 − ‖εh−j+1

xj+1‖2
∣∣∣ =

∣∣‖∇zjG‖2 − ‖v‖2 − ‖w′‖2∣∣
≤
∣∣‖∇zjG‖2 − ‖v‖2 − ‖Φ(w′)‖2

∣∣+ ε′‖w′‖(ε′‖w′‖+ 2‖w′‖)
≤
∣∣‖∇zjG‖2 − ‖v + w‖2

∣∣+ ε‖v‖‖w′‖+ 3ε′‖w′‖2



i
i

“3-323” — 2018/4/8 — 21:30 — page 172 — #88 i
i

i
i

i
i

172 Thomas Kragh

≤
∣∣‖∇zjG‖2 − ‖v + w‖2

∣∣+ 4ε‖εj‖‖εj+1‖+ 12ε′‖εj+1‖2

≤ CM (‖εj‖2 + 2‖εj+1‖2)
(
CM (‖εj‖2 + ‖εj+1‖2) + 2‖εj‖+ 2 · 2‖εj+1‖

)
+ 4ε‖εj‖‖εj+1‖+ 12ε′‖εj+1‖2

≤ 1
100(‖εj‖2 + ‖εj+1‖2).

The very last for appropriately small ε and ε′, which as argued above can
be assumed for appropriate K

Using this and Lemma 9.17 we get∣∣‖∇G‖2 − E∣∣ ≤∣∣‖∇G‖2 − E′∣∣+
∣∣E − E′∣∣

≤ 1
100

∑
j

(‖εj‖2 + ‖εj+1‖2) + 1
100E ≤

3
100E,

which implies that

3E ≤ 4‖∇G‖2 ≤ 5E(90)

at ~w. �

10. Localization

In this section we prove a localization result, which will come in handy in
the following sections. The localization result can be heuristically formulated
as follows. For a family of Hamiltonians Hu, u > 0; with certain bounds
on derivatives (depending on u) and a fixed Hamiltonian flow behavior at
the boundary of M ; the generalized finite dimensional approximations from
Section 9 has good index pairs in Λe<βr M for large r > 0, small u and small
intervals of action (this is Proposition 10.2 below). This is especially helpful
when M = D1/2T

∗L ⊂ T ∗N where we want to relate the spectra W defined
in T ∗N associated with D1/2T

∗L to those defined inside T ∗L. We start by
describing the general setup for the family Hu.

Remark 10.1. Although we never explicitly assume that M is a Liouville
domain the existence of the family Hu is very restrictive, and one possible
way of creating such families is by assuming that M is Liouville and using
the contracting flow associated to the Liouville 1-form.

In this section we consider the same setup as the previous section except
we have a family of Hamiltonians Hu for u ∈]0, 1] satisfying the following
assumptions.
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H1) There exist a neighborhood U ⊂M ′ of ∂M such that the Hamiltonian
flow (ϕt)

u of Hu is
H1a) independent of u on U ,
H1b) preserves the compact closure U , and
H1c) has no periodic orbits (time 1) on U .

H2) There is a constant CH > 1 such that for all u we have:
H2a) ‖Hu‖C1 ≤ CH ,
H2b) ‖Hu‖C2 ≤ u−1CH and
H2c) We restrict to the action interval [au, bu] (both smooth in u and

both for regular for the action) such that bu − au ≤ uCH .

H2c) is the narrowing we have alluded to in previous sections, and to ac-
commodate the possibility (in interesting cases) of this we really need that
H2b) does not simply bound ‖Hu‖C2 by CH (see Example 10.3 below).

In this setup we have that the action and its approximation depends on
u. We also have that the energy type function E considered in Section 9
depends on u. However, we will suppress some of these dependencies from
the notation. The goal in this section is to prove the following proposition.

Proposition 10.2. With K > 1 as in Proposition 9.1 and β large enough
there is an u0 > 0 small enough such that: for any 0 < u < u0 and

r ∈ [2KCHu
−1, 3KCHu

−1]

a good index pair for the total index of Sr = Sur : Λe<βr M → R (with its gra-
dient) exists.

Note, however, that even though the critical points of the finite dimen-
sional approximations are all the same — the dependence on Γ is so profound
that changing it can change the Morse indices of non-degenerate critical
points (a change in Maslov index changes the Conley-Zehnder index). It is
the topic of several of the following sections to precisely describe how chang-
ing Γ in the definition of Sr changes the stable homotopy type of the Conley
indices defined by this proposition.

The set of assumptions on Hu may seem somewhat technical and restric-
tive but the primary example to keep in mind is the following. However, we
will see others (yet similar) in the following sections.

Example 10.3. As in Example 9.3 let M = DT ∗N and M ′ = T ∗N then
let h : R→ R be smooth, convex, with h(t) = µt+ c for t ≥ 1− ε and such
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that

Hu(q, p) = s(h(u−1‖p‖)− c) + c

is smooth for u > 0. Then this is linear at infinity with slope not depending
on u, but more importantly all the critical values of the associated action
lies in the narrowing interval [s(h(0)− c) + c, c], and it satisfies all of the
above assumptions. As u tends to 0 this narrows the bend close to the zero
section, which makes the function look more and more like the non-smooth
function µ‖p‖+ c.

Remark 10.4. An important abstract idea used in the construction of the
index pairs in this section is as follows. Assume that (f,X) is a function and
pseudo-gradient, and we would like to bound some function F on a possible
Conley index. Then in some cases we will be able to construct a cut-off
function that satisfy the property of Lemma 2.12 but which also bounds F .
This can be done if we have a bound of the type:

|X · ∇F | ≤ c(X · ∇f).

for a some c > 0 — with equality only at critical points. Indeed, this will
make the function

F − cf + c′

satisfy the conditions in the lemma, and bound F on the associated Conley
index constructed in the lemma by

F ≤ cf − c′ ≤ cb− c′

where [a, b] is the interval we wish to find Conley indices on.

The idea is to use this on the function E (defined in Section 9) to bound
the energy of the loops in the Conley index. However, we will need more
cut-off functions designed to keep the zj ’s away from the boundary of M .
So define

Q(z) = −dist(z, ∂M), z ∈M.

This is not smooth on all of M . However in Lemma 2.12 we only need
smoothness near the boundary. Because M is compact we can find τ > 0
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such that Q is smooth on the collar

Kτ = {z ∈M | Q(z) ≥ −τ}.(91)

By possibly making τ smaller we may also assume that Kτ ⊂ U , where U
is the set on which Hu has no 1-periodic orbits and is independent of u.
We then define the functions Qj(~z) = Q(zj). The next lemma leads to the
corollary, which is important to be able to bound Qj < −τ/2 on the Conley
index that we will construct.

Lemma 10.5. There exists a c > 0 such that for any r and u (as long as
E is defined) we have

E(~z) >
c

r

when zj ∈ Kτ for some j ∈ Z/r.

Proof. This follows if we show that T =
∑

j‖εj‖ >
√
c. So, define the func-

tion δu : ΛM → R by

δu(γ) =

∫
γ
‖γ′ −XHu‖dt.

This is zero if and only if γ is a 1-periodic orbit of the Hamiltonian flow.
We can approximate T by using δu in the following way: let γ be the
closed curve which is the flow curve (ϕt−j/r)

u(zj) when t ∈ [j/r, (j + 1−
1/k)/r] and when t ∈ [(j + 1− 1/k)/r, (j + 1)/r] it is the geodesic connect-
ing (ϕ(1−1/k)/r)

u(zj) and zj+1. As k tends to infinity δu(γ) tends to Σ. So
all we need is a lower bound on δu for curves γ which has some point in Kτ .
By cyclic symmetry we can assume that this point is γ(0).

Define a path by γ2(t) = (ϕ−t)
u(γ(t)). Now the flow of XHu is indepen-

dent on u on U and preserves it (condition H1 on the Hamiltonians). So,
independently on u we get the bound

δu(γ) ≥C
∫ 1

0
‖Dγ(t)(ϕ−t)

u(γ′(t)− (XHu)γ(t))‖1U (γ2(t))dt

=C

∫ 1

0
‖γ′2(t)‖1U (γ2(t))dt

where C−1 > ‖(Dz(ϕt)
u)−1‖ for all z ∈ U ; and 1U is the indicator function

for U .
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Now we divide into two cases: Case 1: γ lies entirely in U : Then we use

C

∫ 1

0
‖γ′2(t)‖1U (γ2(t))dt = C

∫ 1

0
‖γ′2(t)‖dt ≥ C dist(γ2(0), γ2(1)) > c.

Indeed, the flow has no periodic orbit on U hence there is a lower bound on
dist((ϕ1)u(z), z) for z in the compact set U .

Case 2: γ leaves U at some point. We notice that γ2(0) = γ(0) ∈ Kτ , and
use that

C

∫ 1

0
‖γ′2(t)‖1U (γ2(t))dt ≥ dist(Kτ ,M − U) > 0

because γ2 has to move from Kτ to the complement of U (both sets are
compact in M). �

Corollary 10.6. There is a k > 0 such that with r as in Proposition 9.1
we have

|∇Sr · ∇Qj | <
√
rk‖∇Sr‖2

when zj ∈ Kτ .

Proof. We see that ‖∇Qj‖ = ‖∇zjQj‖ = 1 when zj ∈ Kτ . So by the lemma
above and Proposition 9.1 we have on the set given by zj ∈ Kτ that

|∇Sr · ∇Qj | ≤ ‖∇Sr‖ < 2E ≤
√
r2c−1‖∇Sr‖2.

�

Proof of Proposition 10.2. As explained in Remark 10.4 we will use the con-
struction in Lemma 2.12 to create good index pairs using E and the functions
Qj to define cut-off functions.

The open manifold Λe<βr M has a natural compactification given by ex-
tending the definition to allow all zj ’s to lie in all of M and allowing e(~z) = β.

We will refer to the new points in this extension as the boundary of Λe<βr M .
Fix β ≥ 66C2

HK + 8C2
H + 1 with K as in Proposition 9.1. The condition

on r in that proposition for this family of Hu depending on u ∈]0, 1] is:

r > K(u−1CH + C2
Γ(β + C2

H)),

which for fixed β and K (and CΓ) we can assume is true for r ≥ 2KCHu
−1

for small u. So fix u0 small enough for this to be true, and also fix 0 < u < u0.
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We thus have from Proposition 9.1 that for the r stated in this proposition
we have

|∇Sr · ∇E| ≤ ‖∇Sr‖‖∇E‖ ≤
√

40‖∇Sr‖2(92)

with equality only at critical points. We will use the function

g = E + 10(Sr − bu)− u

as a cut-off function. Indeed, the set

AE = {g ≤ 0} ∩ (Sr)
−1([au, bu])

will by construction contain all points in (Sr)
−1([au, bu]) where E = 0 in its

interior — hence by Proposition 9.1 it contains all critical points of Sr in
that interval. Using Equation (92) we see that on the boundary of AE where
E > 0 we have∇Sr · ∇g > 0. Also we have E ≤ 10(bu − au) + s < 11uCH on
AE (recall bu − au < uCH and CH > 1), which by Lemma 9.10 implies that

e(~z) ≤ 2rE(~z) + 8C2
H < 22ruCH + 8C2

H ≤ 66KC2
H + 8C2

H < β,

since we also assumed in the proposition that ru ≤ 3KCH . Hence AE is
disjoint from the part of the boundary of Λe<βr M where e(~z) = β.

To keep the index pair away from the boundary of Λe<βr M defined by
zj ∈ ∂M we use the functions Qj from the previous lemma to define addi-
tional cut-off functions

gj = Qj +
τ

3uCH
(Sr − bu) +

τ

3
.

The set

Aj = {gj ≤ 0} ∩ (Sr)
−1([a, b])

will have the critical points of Sr in its interiors. Indeed, for Qj < −τ we see

that gj < 0 and thus Aj contains the open set (M − U)r ∩ Λe<βr M , which
contains all 1-periodic orbits. Also when gj = 0 we have Qj ∈ [−2τ/3,−τ/3]
(since bu − au < uCH and au ≤ Sr ≤ bu), which implies zj ∈ Kτ and we may
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use Corollary 10.6 and 2KCHu
−1 ≤ r ≤ 3KCHu

−1 to get the bound

∇Sr · ∇gj >
(
−
√
rk +

τ

3uCH

)
‖∇Sr‖2

≥
(
−
√

3KCHk
√
u−1 +

τ

3CH
u−1

)
‖∇Sr‖2,

which is greater than zero for appropriately small values of u. So, we make
u0 small enough to have this positive for all u < u0.

We have in fact proved that the critical points of Sr lie in the set

A = AE ∩
⋂
j

Aj ,

and since it avoids all parts of the boundary of Λe<βr M it is compact in the
interior and the functions satisfies the requirements in Lemmas 2.12. �

11. The Viterbo isomorphism for spectra

In this section we calculate the homotopy type of the Conley index of the
finite dimensional approximations defined in Section 5 in some specific cases.
This is how Viterbo originally related symplectic homology to homology of
the loop space. The end result is that we calculate the stable homotopy type
of the source spectrum in Equation (59) as (ΛN)−TN (even when N is not
oriented).

As in the construction of a single level of the spectrum Zba(H) we will
start by assuming that α is the standard sub-division αj = 1/r, j ∈ Z/r in
the definition of Sr : T ∗ΛrN → R from Equation (26).

Assume that H : T ∗N → R is any Hamiltonian with

H(q, p) = µ‖p‖+ c

for (q, p) /∈ DT ∗N . We will fix a specific Hamiltonian Hµ with slope µ at
infinity. We can then take the convex combination homotopy tH + (1−
t)Hµ, and Corollary 7.5 tells us that the spectra Z(H) and Z(Hµ) associated
with the total indices are homotopy equivalence using a contractible choice.

With this in mind we explicitly define Hµ(q, p) = h(‖p‖) where h(t) =
µ+ε

2 t2 when t < µ−ε
µ+ε for some small ε > 0 such that [µ− ε, µ] does not con-

tain any geodesic length.
We still want h(t) = µt+ c outside DT ∗N , but we also want h to be

convex so that all the 1-periodic orbits will lie in the set where h is quadratic.
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We achieve this by choosing h′′ to be a smooth function with values in
[0, µ+ ε] and constantly equal to µ+ ε when t < µ−ε

µ+ε and zero when t > 1
such that it integrates to µ over the interval [0, 1].

Lemma 11.1. There exists a constant D > 0 such that for any of the
Hamiltonians Hµ, with µ a geodesic length, we have that r > Dµ implies
existence of index pairs and

I(Sr, Xr) ' Th(TΛµrN) = (ΛµrN)TΛµrN ,

where ΛµrN is the manifold of piecewise geodesic loops in N with each piece
having length less than µ/r

Note that Th(·) is often used for the Thom space, and is notationally
convenient here. The proof of this lemma is a detailed version of Viterbos
argument in [28], and we note that the only subtlety here is that we want
this D to be independent of µ and ε.

Proof. By construction of Hµ we may find a constant C ′ > 0 such that
‖Hµ‖C2 < C ′µ not depending on ε. This means that if r > C ′µ3δ−1

0 then
Equation (25) is satisfied and Sr is defined, which by Lemma 5.4 means we
have good index pairs for (Sr, Xr).

Define Λ
a
rN to be piecewise geodesics, each piece having length less than

or equal to a/r. We then define a discrete version of the Legendre transform,
i.e. we define an embedding

i : Λ
(µ−ε)
r N → T ∗ΛrN,

where i is given by

(i(~q))j =
(
qj , (µ+ ε)−1r exp−1

qj (qj+1)
)
.

For r > 2δ−1
0 µ > δ−1

0 (µ+ ε) we have that Λ
µ−ε
r N ⊂ ΛrN , making this a sec-

tion in the bundle T ∗ΛrN → ΛrN restricted to Λ
(µ−ε)
r N . Furthermore, be-

cause

‖(µ+ ε)−1r exp−1
qj (qj+1)‖ ≤ µ−ε

µ+ε ,

the point (i(~q))j will lie in the set where h is quadratic. In fact using the
description of the flow lines for such Hamiltonians in Section 3 we see that
we have chosen pj as the unique point in T ∗qjN such that q−j+1 = qj+1 (this is
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why we call this a discrete Legendre transform). So on the image of i all εqj
are 0. This implies that the image of i contains all the critical points of Sr,
because it contains all the curves with ‖pj‖ ≤ µ− ε and εqj = 0 for all j.

We will use the fiber directions (~p directions) as a normal bundle. In fact
because εqj = 0 for all j, Lemma 5.2 tells us that ∇pjSr = 0, and because
this is the only point in the fiber such that εj+1 = 0, it tells us that this is
the only critical point when restricting Sr to the fiber. We will need that
this is a global maximum in each fiber in the following very strong sense.

Claim: for appropriate D if ~q ∈ Λ
µ−ε
r N is fixed then the function Sr(~q, ~p)

goes to −∞ as ‖~p‖ goes to ∞ independently of µ and ε.
Proof of claim: the condition ‖~p‖ → ∞ is equivalent to ‖pj‖ → ∞ for

some j. So we look at the terms in the definition of our finite dimensional
approximation that involves pj :

f(pj) =

∫
γj

(λ−Hdt) + p−j+1εqj+ .

Assume that ‖pj‖ > 1, which means that the Hamiltonian flow of (qj , pj)
projects to a geodesic of length µ. The integration part is easy to calculate
and is as described in Section 3 (‖pj‖h′(‖pj‖)− h(‖pj‖))/r, which is constant
on the set ‖pj‖ > 1. Because dist(qj , qj+1) ≤ (µ− ε)/r and dist(qj , q

−
j+1) =

µ/r, we are in the situation depicted in Figure 8. Take the Riemannian

p−j+1

qj

q−j+1

qj+1

εqj+1

projection of γj

Figure 8: Position of points in N when the norm of pj is larger than 1. The
circle has radius µ/r.

structure we have on N and multiply with (r/µ)2 such that lengths get
multiplied with r/µ, and take a normal chart around qj in this new metric.
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Then the circle in the picture is mapped to the unit circle in Rd. Since the
term p−j εqj+1

scales with the norm of pj (when ‖pj‖ ≥ 1) it is enough to see
that if r/µ is greater than some D and ‖pj‖ = 1 then this term is negative.
This D should be independent of ε, because ε depends on µ. So we have to
argue that; if the Riemannian structure is flat enough then the pairing is
negative for all possible qj+1 in the open unit disc, and this is a little tricky
since the pairing is of course 0 if qj+1 is the boundary point qj+1 = q−j+1.
This, of course, does not happen in our case, but we may be arbitrarily close
for different µ’s. So we now consider for fixed (qj , pj) (and thus fixed q−j+1)

with ‖pj‖ = 1 varying qj+1 in a small neighborhood of q−j+1. In fact, we will
consider qj+1’s outside the unit circle as well. In the flat case the pre-image
of 0 of the term p−j εqj+1

is the tangent plane to the unit sphere, but for
a small perturbation it is some other sub-manifold. This manifold will by
construction always contain the point qj+1 = q−j+1, which lies on the unit
sphere; but moreover, it will also be parallel to the sphere. Indeed, parallel
transport preserves the inner product, so the orthogonal complement of p−j+1

is always the tangent space to the unit sphere (even in the non-flat case).
Using this tangency we see that for the Riemannian structure close enough
to the flat one this manifold never enters the interior of the unit sphere. Now
the pairing is negative on all of the interior, and a compactness argument
gives us a choice of D such that this works for all possible (qj , pj) with
‖pj‖ = 1. So for such D, Sr goes to −∞ if ‖pj‖ goes to ∞.

Next we look at Sr on the image of the embedding. Here the last term
vanishes, and

Sr(i(~q)) =
∑
j

∫
γj

(pdq −Hdt) =
1

2(µ+ ε)

∑
j

r‖exp−1
qj (qj+1)‖2.

This is (µ+ ε)−1 times the energy functional

e(γ) =
1

2

∫ 1

0
‖γ′(t)‖2dt(93)

evaluated on the piecewise geodesic ~q. This is positive and we conclude that
if we look at the set defined by Sr ≥ −1 intersected with one of the fibers,
we get a bounded set diffeomorphic to a closed disc. This is true over every

point in the compact set Λ
(µ−ε)
r N , so the set

A = {(~q, ~p) | ~q ∈ Λ
(µ−ε)
r N,Sr(~q, ~p) ≥ −1}



i
i

“3-323” — 2018/4/8 — 21:30 — page 182 — #98 i
i

i
i

i
i

182 Thomas Kragh

is compact and has points in each fiber. We also define

B = {(~q, ~p) | ~q ∈ Λ
(µ−ε)
r N,Sr(~q, ~p) = −1},

which is thus the boundary sphere in each fiber. We wish to construct a
new pseudo-gradient X ′ on A differing from Xr only in a compact set such
that (A,B) is an index pair for (Sr, X

′) and we may thus use Lemma 2.10
to conclude that A/B ' Th(TΛµrN) is the Conley index I(Sr, X

′). We con-
struct X ′ only on A since A has no critical points on its boundary it is easy
to extend X ′ to a slightly larger open set and interpolate with X.

Look at the gradient of Sr restricted to the section we defined above,
which were a constant times the energy. Here minus the gradient of the
energy always flows in a direction where the longest geodesic becomes smaller
or stays the same length. So in fact it flows the section strictly into the

bundle over Λ
(µ−ε)
r N . It is not difficult to use that the fiber-wise gradient

is non-zero away from this section to interpolate this to a pseudo-gradient
that makes B the exit set and (A,B) and index pair. Note that it is only
important what this pseudo-gradient is on the boundary of A where there
are no critical points. �

By considering the proof of the proposition on Conley indices with re-
spect to intervals [−1, b] we get the following corollary.

Corollary 11.2. The inclusion Ib−1(Sr, X)→Ib
′

−1(Sr, X) is homotopy equiv-
alent to the Thom-space construction (the same as in the lemma above) on
the inclusion of loops spaces.

Remark 11.3. For the Hamiltonian Hµ the index Ib−1 is given by

Ib−1(Sr, X) ' Th(TΛ
min(
√

2(µ+ε)b,µ)
r N)

Here the x 7→
√

2(µ+ ε)x is the conversion from (µ+ ε)−1 times energy to
length. This is needed because the critical value corresponding to a geodesic
was calculated in the proof to be µ−1 times the energy, and our notation for
the loop spaces uses length.

A corollary of this construction which is important in [6] is the following.
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Corollary 11.4. Let (Ar, Br) be an index pair for (Sr, Xr) with H as above.
The inclusion Ar ⊂ T ∗ΛrN induces a map

Ar/Br → (T ∗ΛrN)+ ∧Ar/Br,

which is canonically (contractible choice) homotopic to the map

Th(TΛµ−εr N)→ (T ∗Λµ−εr N)+ ∧ Th(TΛµ−εr N)

⊂ (T ∗ΛrN)+ ∧ Th(TΛµ−εr N).

induced by the inclusion DTΛµ−εr ⊂ T ∗ΛrN (and as usual identifying tan-
gent vectors and cotangent vectors).

Here (−)+ means adding a disjoint base-point.

Proof. The map is defined by taking the quotient of the diagonal map Ar →
(Ar)+ ∧Ar/Br = (Ar ×Ar)/(Ar ×Br) and composing with the inclusion
(Ar)+ ⊂ (T ∗ΛrN)+ (still smashed with Ar/Br). This is defined for any index
pair, and the uniqueness proof using the negative gradient flow (in this case
of −Xr) in the proof of Lemma 2.1 extends to define a commuting diagram

Ar/Br //

��

(T ∗ΛrN)+ ∧Ar/Br

��

A′r/B
′
r

// (T ∗ΛrN)+ ∧A′r/B′r

Here (A′r, B
′
r) is an alternate index pair for (Sr, Xr). Furthermore, the proof

of homotopy invariance in Lemma 2.6 similarly extends to a completely
similar diagram, but where (Ar, Br) and (A′r, B

′
r) are an index pair for each

end of the homotopy.
It follows that the above contractible choice identification by first chang-

ing H to Hµ and then changing the pseudo-gradient to the one in the proof
— proves the corollary. Indeed, the map of this type defined by using the
index pair in the proof above is (up to contractible choice homotopy) the
concrete map described in the corollary. �

When defining the generating function spectrum in Section 7 we added
some normal bundles to get rid of all the copies of TN floating around. We
see even more why this is important when comparing the proposition to the
following corollary.
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Corollary 11.5. The Generating function spectrum Z(Hµ) is canonically
(contractible choice) homotopy equivalent to (ΛµN)−TN . Furthermore, the
inclusion Zb−1(Hµ)→ Zb

′

−1(Hµ) for 0 < b < b′ is the obvious Thom-spectrum
construction on the inclusion of loop spaces.

Proof. In Proposition 8.2 we saw how adding copies of the normal bundle
ν made us get an effective virtual bundle −TN over the space of constants
loops. Here we need to be a little more precise about the isomorphism since
the Conley index is not defined until r greater than or equal to some r0 ∈ N0.
So we now write a contractible choice formula for how to identify the stable
bundle as −TN and see that it will be compatible with the suspension maps
(structure maps) in the spectrum.

In the above proof we created (for a perturbed pseudo-gradient) a canon-
ical (contractible choice) index pair canonically homeomorphic to

(Ar, Br) = (DT (Λ
µ−ε
r N), ST (Λ

µ−ε
r N)).

Notice that we have a canonical isomorphism:

T (Λ
µ−ε
r N) ∼=

⊕
j∈Z/r

TqjN.

Recall the addition of r + 1 copies of the normal bundles in Equation (50).
We now pick a specific way of identifying the relative Thom pair (Ar, Br)

νr+1−

from that equation with the pair (Λ
µ−ε
r N,∅)ν⊕ζ

rk−. We will need the home-
omorphism from Equation (48) and the isomorphism from Equation (49) to
construct a bundle isomorphism:⊕

j∈Z/r

TqjN

⊕ νr+1 ∼= ν ⊕ ζrk ∼= ν ⊕ (ζk)r.(94)

Indeed,

• the first copy of ν on the left hand side is identified with the copy of
ν on the right hand side (using identity).

• For each j = 0, . . . , r − 1 we take a parallel transport (contractible
choice) along the piecewise geodesic defined by the sequence qj , qj−1,
. . . , q0 from TqjN

∼= Tq0N , this paired with the (r + 1− j)th copy of ν
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and the isomorphism in Equation (49) produces an isomorphism

TqjN ⊕ ν ∼= Tq0N ⊕ ν ∼= ζk.

Here we view ζk as the jth copy on the right hand side.

This identification is compatible with the suspensions isomorphisms in
Equation (51). Indeed, these where constructed by copying q0 and putting in
the new copy of Tq0N , but also adding a copy of the normal bundle (we add
this copy of the normal bundle as a new last factor). Note that the reason we
choose the parallel transport above to go backwards to q0 along the string
is because when adding a q0 we push the remaining points forward in index
(qj becomes qj+1) — and this is precisely why this is compatible with the
suspensions when increasing r.

The last part of the corollary follows form Corollary 11.2 and the fact
that the construction in this proof respects the inclusion and quotients of
Conley index pairs. �

Also, for the alternative in Remark 7.2 defining alternate spectra, which
we decorated with primes Z ′ba(H) we have the corresponding corollary.

Corollary 11.6. The alternate Generating function spectrum Z ′(Hµ) is
canonically (contractible choice) homotopy equivalent to Σ∞(ΛµN)+. Fur-
thermore, the inclusion Z ′b−1(Hµ)→ Z ′b

′

−1(Hµ) for 0 < b < b′ is the infinite
suspension functor on the inclusion of loop spaces.

Proof. Same as above, but the total bundle is now identified as trivial —
hence we get a standard suspension spectrum. �

Proposition 11.7. There is a canonical (contractible choice) homotopy
equivalence:

Z ' (ΛN)−TN ,

with Z as in Equation (59)

Proof. Consider the function f depicted in Figure 5, which we used to define
Hs. Let x ∈ I be the point at which the tangent with slope µN is tangent to
this. Consider the Hamiltonian Hsl , which defines the spectrum Z(l). Let
y ∈ R be the maximal critical level for the action below the regular level
−4

5sl. Pick a smooth homotopy from this to a Hamiltonian H ′l (illustrated
in Figure 9), which satisfies:
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‖pN‖

sl

4
5sl
−y

1x1
2

slope slµN

H ′l

Figure 9: The Hamiltonian H ′l .

• H ′l depends only on‖pN‖,

• the homotopy (and thus also H ′l) is constantly equal to Hsl outside
the set DxT

∗N ,

• during the homotopy all critical values (for the associated actions) in
the interval ]−∞, y] are from periodic orbits outside DxT

∗N (hence
constant during the homotopy).

• H ′l is convex in ‖pN‖ from 0 until some small value close to zero, then
it is linear with slope slµN until x (and then concave by the above —
this can be done smoothly due to Remark 8.1),

• it is quadratic close to the zero section (as Hµ above, but plus some
constant),

Notice that the value H ′l(q, 0) on the zero section has to be less than y. If
not it would violate the third bullet point.

Such a homotopy and choice of H ′l is canonical (up to a contractible
choice) if we follow the canon:

• first remove the part of the definition of Hsl which depends on ‖pL‖ by
simply scaling and translating it such that the Hamiltonian becomes
constantly equal to 3

4 inside D1/2T
∗N (see Figure 2 as to why this

does not violate the third point above),

• now the Hamiltonian is a function of ‖pN‖ starting below y, then it
has a convex part, and then a concave part. So we may choose the rest
of the homotopy such that this is preserved.
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The contractibility of these choices involves making the small bend at 0
smaller and smaller.

Let ε > 0 be such that at no point during the homotopy do we have a crit-
ical value in ]y, y + ε]. Now because (definition of y) the interval ]y,−4

5sl =
aNl ] is regular for the action associated to Hsl we have that in the definition
of Z(l) we can replace aNl with y + ε. Now since there are no critical val-
ues above −4

5sl for the action associated to H ′l the above homotopy relates
canonically (contractible choice)

Z(l) ' Z
−4

5 sl+ε

y+ε (H ′l)

for small ε > 0. In Proposition 10.2 and Example 10.3 we saw that if we
make the bend close to zero depend on a small parameter u > 0 we can (if
we make u small enough and consider appropriate r) get index pairs inside
the sub-manifold Λe<βr D1/2T

∗N ⊂ ΛrT
∗N .

This implies (using Lemma 2.3) that this index pair cannot see that the
Hamiltonian is not linear outside of D1/2T

∗N (continuing with the slope
it already has at ‖p‖ = 1/2), and hence combining the above with Corol-
lary 11.5 gives a canonical homotopy equivalence:

Z(l) ' (ΛslµNN)−TN .

Notice that the index pairs in Section 5 are defined when r > C‖H ′l‖C2

for some C (from Section 4) and by definition of CH′l we have ‖H ′l‖C2 <
max(u−1CH′l , CH′l ). Furthermore, the index pairs from Proposition 10.2 are
defined for

r ∈ [2KCH′lu
−1, 3KCH′lu

−1].

However, in Remark 9.2 we fixed it such that the latter interval is contained
in the solutions to the first equation (for small u). So we can always find
u small enough (and then r) so that both types of index pairs are defined
at the same time. If this were not the case it would be difficult to compare
them using Lemma 2.3.

To finish the proof of the proposition we need to make this identifica-
tion and the inclusion of loop spaces canonically compatible with the maps
κl : Z(l)→ Z(l + 1) defining Z. To argue this we consider the homotopy of
Hamiltonians (illustrated in Figure 10) defined by the following steps.

• Firstly we create a small convex bend followed by a small concave
bend right at the point x. This can create a lot of new critical points,
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1
sl

4
5sl

1x1
2

slope slµN

H ′l

2
sl

4
5sl

1x1
2

3

sl

4
5sl

1x1
2

slope sl+1µN

4

sl

4
5sl

1x1
2

Figure 10: Homotopy from H ′l to H ′l+1 + c.

but they are divided into canceling pairs (if the critical level was a
single non-degenerate point it would be a canceling pair of cells in
a CW structure on the Conley index). In the figure we have sketches
associated tangents coming from the top concave part in red, and their
canceling partner with the same slope from the bottom convex part of
the bend in green.

• To begin with the associated green and red critical values are all greater
than any critical value before and appear in pairs as indicated on frame
2 (where we have not drawn the associated tangents — as we have in
frame 3 — but only their intersection with the 2. axis is indicated).

• We then slide the convex bend down creating a linear part with slope
Sl+1µN and pushing up the outer bend. In doing so the intersection
between the 2. axis and the red lines will pass through the value 4

5sl
and the value of the Hamiltonian at the zero section.

At the end of this homotopy we have a Hamiltonian which is a translation
of H ′l+1. Now, let b > 0 be greater than any of the critical values during
this homotopy, and let a be regular and slightly smaller than the critical
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value corresponding to the top most red intersection in the last frame (i.e.
corresponding to a point on the 2. axis right above this intersection point).
Notice that through this homotopy all the critical value associated with
tangents outside of x intersect the 2. axis above the red lines. It follows that
the map κl : Z(l)→ Z(l + 1) can now be identified with the homotopy and
quotient on Conley indices (plus the untwisting normal bundles νr+1) given
by the spectra maps:

κ′l : Z(l) ' Z
4
5 sl
−y+ε(H

′
l) ' Zb−y+ε(H

′
l)(95)

' Zba(H ′l+1)→ Zb−y+ε(H
′
l+1) ' Z(l + 1).

Here the first homotopy equivalence is the one above. The second is simply
extending the interval to be much larger, which for H ′l does not include
any new critical points. The second uses Corollary 7.5 and the Hamiltonian
homotopy we described above, which for large b has the creation of red and
green points within the interval, and we need to smoothly change the bottom
value of the interval from −y + ε to a so that it is always a regular value (this
is possible by the concavity of the top part, and can be done precisely as in
Section 7 where we made this value equal to the intersection of the unique
tangent with constant slope). The third map is the map collapsing away the
red critical points. The last map translated the Hamiltonian and the regular
values and then uses the identification from the first part of the lemma
— this uses a homotopy from Hsl+1µL to H ′l+1 backwards. This identifies
κ′l as canonically (contractible choice) homotopy equivalent to κl. Indeed,
the concatenation of all three homotopies can be undone while keeping the
values we used regular.

Now we show that κ′l is homotopy equivalent to the inclusion of loops
(with Thom-constructions on top). Indeed, instead of including the new
pairs directly and making the interval of action large (second step in κ′l) we
have an alternative: we can keep the interval very small around the bend
at the zero section, and wait to include anything until it gets very close. In
fact, we can choose not to include any of the green critical points until the
very end (even when they get close), and we only include the red ones in
the interval when we have to — that is when they actually enter the small
interval. However, very soon after they have entered they leave the other end
of the interval and gets collapsed away. Again Proposition 10.2 tells us that
by narrowing the bend and action interval at 0 (and consequently prolonging
the linear part from the 0-bend to the “green” convex bend) the index pair
does not see the difference before and after the red point passes through.
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So by passing all the red points through we get a sequence of homotopy
equivalences, and then including the green points at the end simply is the
inclusion we already identified in Corollary 11.5.

This alternate description is the same map as in Equation (95). Indeed,
including critical values at the top of an interval and collapsing away critical
points at the bottom of an interval commutes. Furthermore, a very similar
argument shows why the map coming from the concatenations of two such
homotopies is canonically (up to contractible choice) identified with a single
one going from slope slµN to sl+2µN . �

Similarly we have for the alternate spectra Z ′ (Remark 7.2 and Corol-
lary 8.3) the following corollary.

Corollary 11.8. We have a canonical homotopy equivalence

Z ′ ' Σ∞(ΛN)+.

12. Stabilization of generalized finite dimensional
approximations

In this section we describe natural stabilizations of the finite dimensional ap-
proximations defined in Section 10. Indeed, we will cross M with a standard
symplectic disc D2k, and by using a Hamiltonian with a single 1 periodic
orbit on D2k the Hamiltonian Floer homology will be unchanged. However
we will need to be able to manipulate the gradient a bit to be able to de-
scribe precisely what adding this extra factor does for our finite dimensional
approximations and the Conley indices they define. Indeed, we will prove
that: under a certain product assumption the situation is very similar to
putting a trivial vector bundle on M with a non-degenerate quadratic form.
We will then prove that the Conley index will change by the relative Thom
space construction using the negative eigenbundle of said quadratic form,
which in general need not be a trivial bundle.

Let (M,∂M) ⊂M ′ and HM : M → R be as in Section 9 (the Hamilto-
nian is decorated with M to distinguish it in the following). Define P = M ×
(D2k, ω0) and P ′ = M ′ × R2k for some k and λ0 = ydx the standard Liouville
1-form on R2k. Also define H : P ′ → R by H(z1, z2) = HM (z1) +HD(z2),
where

HD(z2) = ‖z2‖2.
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The Hamiltonian flow for HD is circular around 0 with revolution time 2π,
but we only flow for a time period of 1, so the only 1-periodic orbit is 0,
and this orbit has action 0. So the 1-periodic orbits for H are the 1-periodic
orbits for HM on the first factor and constantly equal to 0 on the second
factor, and the critical value of these orbits are the same as on M .

As before we need a compatible Riemannian structure g on P , and in fact
we define this as the product of such a structure on M and the standard one
on R2k. The corresponding finite version of the loop space Λe<βr (M ×D2k)
will consist of curves denoted by ~z = (~z1, ~z2). So that ~z1 consists of r points
in the interior of M , and ~z2 consists of r points in the interior of D2k. We
denote the energy on loops on M by eM and that on D by eD. We see that
we have:

e(~z) = e(~z1, ~z2) = eM (~z1) + eD(~z2).

Similarly we can define the relative energy from Equation (72) factor wise
and we have

E(~z) = EM (~z1) + ED(~z2).

Indeed, the flow and everything is defined factor wise. We now assume the
K > 1 from Proposition 11.7 works for all three domains M ⊂M ′, P ⊂ P ′
and D2k ⊂ R2k simultaneously (the maximum of the three associated K’s).
Notice, that this K depends on the symplectic and Riemannian structures
only.

For us to define finite dimensional approximations as in the Section 9
we still need a section

Γ: P → L(TP ),

which we this time do not assume to be time-dependent (and it will be clear
in this section why we did so before). In fact, we will assume even more
regularity than this.

Definition 12.1. The section Γ is said to be of product type if it factors
through the projection to M and the inclusion L(TM)× L(k) ⊂ L(TP ),
where L(k) is the Grassmannian of Lagrangian subspaces in R2k.

Factoring through the projection to M is equivalent to the section not
depending on the second (contractible) factor D2k. Factoring through the
inclusion is equivalent to all the Lagrangians splitting as direct sums of two
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Lagrangians, one in each factor. For the rest of this section, Γ will be of
product type and Sr will be the finite dimensional approximation defined
as in the previous section on Λe<βr P . The assumptions we now have on Γ
imply that we can write

Γt(z1, z2) = Γ1(z1)⊕ Γ2(z1).

That is, time independent so we remove the t, not depending on z2, and it
is a direct sum of a section

Γ1 : M → L(TM),

and what could be heuristically called a “twisting” map:

Γ2 : M → L(k).(96)

Notice that the bound CΓ from Equation (64) is a bound on the derivative
of this “twisting” map.

In this case Sr splits into two factors

Sr(~z1, ~z2) = SMr (~z1) + SDr (~z1, ~z2)

Here SMr is the function defined in the previous section on Λe<βr M by only
using the first factor Γ1 of Γ. The function SDr (~z1,−) is the finite dimen-
sional approximation on D2k defined by the Hamiltonian HD, but using the
Lagrangians given by the second factors Γ2((z1)j), which depends on j (time
dependence from the point of view of the second factor). This is where the
bounds we assumed on any time-dependent Γ in the previous section comes
in.

Lemma 12.2. With K as in Proposition 9.1 (for all three domains) we
have for

r > K
(
‖H‖C2 + (βC2

Γ)2(β + ‖H‖2C1)
)

(97)

that

‖∇E‖2 ≤ 20E ≤ 40‖∇Sr‖2 ≤ 80E

‖∇EM‖2 ≤ 20EM ≤ 40‖∇SMr ‖2 ≤ 80EM(98)

‖∇ED‖2 ≤ 20ED ≤ 40‖∇~z2
SDr ‖2 ≤ 80ED
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Note that the only difference in the formula for r (compared to Propo-
sition 9.1) is that CΓ is replaced by βC2

Γ.

Proof. The hard part here is the last of the three inequalities in Equa-
tion (98). Indeed, the first two are simply the old proposition for these two
approximations (indeed, we always assumed β > 1 and CΓ > 1 and so the
r satisfying Equation (97) also satisfy Equation (61)). The third and last
is a little more subtle: a priori we have that how large we need r may de-
pend on ~z1 in the first factor. However, since the map in Equation (96) has
derivative bounded by CΓ it follows that for any ~z1 ∈ Λe<βr M we can assume
that the piece-wise geodesic defined in L(k) by the points Γ2((z1)j) has en-
ergy bounded by (CΓ)2β (since the energy of ~z1 is bounded by β). Now we
simply consider the non-compact family of all piece-wise (number of pieces
not fixed) geodesics in L(k) with this bound on the energy. Then this fam-
ily satisfy the bounds we assumed in Equation (63), and Equation (64) is
satisfied (in fact by the 0 bound) since the section does not depend on z2.
This means that independent of what ~z1 ∈ Λe<βr M is we have the bounds in
the old proposition on the last factor alone (now viewed as a time depen-
dent section), but the old bound CΓ had to be replaced with the new bound
βC2

Γ. �

This was the most important reason for not allowing K to depend on β.
Indeed, that would have introduced some circular reasoning here.

A big reason for the subtleties involving the second factor SDr is that we
have a mixing of the gradients:

∇~z1
Sr = ∇SMr +∇~z1

SDr

∇~z2
Sr = ∇~z2

SDr
(99)

The second term in the first line is a little troublesome, and the next part
is to get rid of this “mixed” part of the gradient, and then use this to prove
that we basically get a relative Thom construction on the Conley indices.

To be able to actually have index pairs we now consider the “narrowing”
case in Section 10. That is we replace HM with a family Hu

M and a narrowing
interval [au, bu] (satisfying H1 and H2 from Section 10). However, here in
the product case we define

Hu(z1, z2) = Hu
M (z1) +HD(z2).

So, the Hamiltonian on the second factor will not be narrowed. Indeed, we
don’t have to do this since the “interval” of critical action values is as narrow
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as intervals gets. Indeed, any periodic orbit for Hu is a periodic orbit on M ,
but 0 on the second factor. So, without narrowing this second factor we in
fact have that Hu with values [au < bu] does satisfy H1 and H2. However,
since we assumed that ∂M was smooth, and this is not exactly the case for
∂P (it has corners), we will see a slight elaboration to compensate for this
in the argument below.

Again we will need functions that we can use to create cut-off functions
keeping index pairs away from the boundary of P . Precisely as explained in
Remark 10.4, and since the boundary has corners it is convenient to do each
part separately and define:

QMj (~z) = −dist((z1)j , ∂M) and QDj (~z) = −dist((z2)j , S
2k−1).

We similarly define KM
τ and KD

τ as in Equation (91).

Lemma 12.3. Similarly to Corollary 10.6 we have a constant k > 0 such
that if r is as in Lemma 12.2 then we have

∇SMr · ∇QMr ≤ k
√
r‖∇SMr ‖2

when (z1)j ∈ KM
τ and

∇~z2
SDr · ∇QDr ≤ k

√
r‖∇SDr ‖2

when (z2)j ∈ KD
τ .

Proof. Since r satisfies Equation (97) it satisfies Equation (61) and thus
the first is simply Corollary 10.6. For the second we use that Lemma 10.5
provides a lower bound on ED > c/r which combined with the inequality in
Equation (98) gives

∇~z2
SDr · ∇QDr ≤ ‖∇SDr ‖ < 2

√
rc−1‖∇SDr ‖2.

�

We now have all the functions needed to create good index pairs for
Sr on Λe<βr P using its gradient, but we will need to deform the gradient
through pseudo-gradients to obtain a homotopy that essentially removes
the unwanted mixed term in Equation (99). We also want to scale the term
in the first factor so that we can argue that we essentially get a Conley
index that fibers over the first factor. Hence we will prove a lemma similar
to Proposition 10.2 but with a family of pseudo-gradient suited for this.
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Lemma 12.4. With K as in Lemma 12.2 there exists a β > 0 large enough
and an u0 > 0 small enough so that the following holds.

For any 0 < u < u0, r ∈ [2KCHu
−1, 3KCHu

−1], 0 < t1 ≤ 1 and 0 ≤ t2 ≤
1 there exist a good index pair for the index Ibuau(Sr, X) of Sr : Λe<βr P → R,
where

X = (t1∇SMr + t2∇~z1
SDr )⊕∇~z2

SDr .

The proof is very similar to the proof of Proposition 10.2, but with a
few extra complications.

Proof. Again we write an explicit formula for β. however, the formula is a
little different to accommodate the new proof, but the idea is essentially the
same:

β = 104KC2
H + 8C2

H + 1.

The splitting of E into EM + ED makes the gradient split into:

∇E = ∇EM ⊕∇ED.

Now bounding the mixed term in Equation (99) can be done by using Corol-
lary 9.14. Indeed, this term comes only from the fact that when moving
points on M the Lagrangians on the other factor changes. We have CΓ as a
bound (Equation (64)) on how fast the Lagrangians can change depending
on ~z1. We also have a bound C ′ in Corollary 9.14 on how much changes in
the Lagrangians change Sr. Combined we get

‖∇~z1
SDr ‖ ≤ CΓC

′
∑
j

dist((z2)−j , (z2)j)
2 = CΓC

′ED(100)

Note that this is really a simpler version of Equation (84). Indeed, since the
factor D2k has the standard structure we do not need the constant CM to
translate bounds between the structures.

Again we see that for r > 2KCHu
−1 and small u we have

r > 2KCHu
−1 > K(CHu

−1 + (βC2
Γ)2(β + C2

H)),

So Equation (100) together with Lemma 12.2 now proves:
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|X · ∇E| ≤
(
t1‖∇~z1

SMr ‖+ t2‖∇~z1
SDr ‖

)
‖∇EM‖+ ‖∇~z2

SDr ‖‖∇ED‖
≤
(
t1
√

2EM + t2CΓC
′ED

)√
20EM +

√
2ED

√
20ED

≤ 7(t1EM + t2CΓC
′ED

√
EM + ED) ≤ 8(t1EM + ED),

The last inequality follows for large r (small u) where the middle term
is much smaller than the last terms (EM is very small by Lemma 9.10).
Similarly we have

X · ∇Sr ≥ (t1∇~z1
SMr + t2∇~z1

SDr ) · (∇~z1
SMr +∇~z1

SDr ) + ‖∇~z2
SDr ‖2(101)

≥ t1EM/2− (t1 + t2)
√
EM/2CΓC

′ED

− t2(CΓC
′ED)2 + ED/2

≥ t1/2EM + ED/3 ≥ 1
3(t1EM + ED)

Again the two middle terms are swallowed by the last term (both EM and
ED are small for large r). So by making u0 small we make r larger and this
makes E = EM + ED small. So for small u0 we can assume:

X · ∇E ≤ 8(t1EM + ED) ≤ 24(X · ∇Sr).

This proves that X is a pseudo-gradient, because at non-critical points we
have EM + ED > 0. It also proves that we can use E as a cut-off function
in the same way we did in the proof of Proposition 10.2. Indeed, this time
we can use

g = E + 25(Sr − bu)− u

as a cutt-off function. Indeed, again since critical points has E = 0 these
are inside the set g < 0 and X(g) = X · ∇g > 0 by the above. So using this
function to cut-off as in Lemma 2.12 we have g ≤ 0 implies E ≤ 25(bu −
Sr) + u ≤ 26uCH , and using this with Lemma 9.10

e(~z) ≤ 2rE(~z) + 8C2
H < r52uCH + 8C2

H ≤ 104KC2
H + 8C2

H < β,

For the other part of the boundary we use Lemma 12.3 and ‖∇QMj ‖ ≤ 1

and get on the set QMj (~z) > −τ that
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X · ∇QMj ≤ t1∇~z1
SMr · ∇QMj + t2CΓC

′ED‖∇QMj ‖
≤ t1
√
rk‖∇~z1

SMr ‖2 + t2CΓC
′ED

≤
√
rk

(
t12EM +

t2CΓC
′

√
rk

ED

)
≤ 6
√
rk(X · ∇Sr).

The last inequality follows from Equation (101) and large r (small s), this
is still independent of t1 and t2 as the lemma stipulates.

Similarly (yet easier) we get from Lemma 12.3 (when QDj > −τ) that

X · ∇QDj = ∇SDr · ∇QDj <
√
rk‖∇SDr ‖2 ≤

√
rk(X · ∇SDr ).

Now we have enough cut-off functions to get a compact pair in the interior
of Λe<βr (M ×D2k), just as in the proof of Proposition 10.2. Indeed, the
construction of cut-off functions using QDj and QMj is completely analogous
to the construction in that proof. �

Remark 12.5. Because ∇vz2
HD = v∇z2

HD for v ∈ R+, we see that flow
curves for the Hamiltonian flow of HD is preserved under scaling. So if γ
is a flow curve then vγ is a flow curve. Since the Lagrangian Γ2 does not
depend on ~z2 the L-curves scale as well. This means that the curve over
which we integrate λ0 (in the formula for SDr ) scales proportionally with
~z2, so the integral of the canonical 1-form scales quadratically. Furthermore,
HD is quadratic. So we conclude

SDr (~z1, v ~z2) = v2SDr (~z1, ~z2).(102)

Because this is a smooth function it must be equal to its Hessian at 0 (for
fixed ~z1). So SDr (~z1,−) is in fact a quadratic form in ~z2, and we can thus
extend it uniquely to all of (R2k)r — as that quadratic form — although we
will not need this until the next section.

If the critical point 0 were degenerate for this quadratic form it would
not be an isolated critical point. So in fact this is a non-degenerate quadratic
form.

Definition 12.6. Let W− → Λe<βr M be the vector bundle with fiber at ~z1

the negative eigenspace for the quadratic form SDr (~z1,−).
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Lemma 12.7. Assume that K,β, u0, u and r satisfy the conditions in the
previous lemma. Then the Conley index Ibuau(Sr) is canonically (contractible
choice) the relative Thom space of W− on a Conley index pair for Ibuau(SMr ).

Note that here we claim this for the gradient, but to be able to prove it
we use the above family of pseudo-gradients.

Proof. First we use homotopy invariance from Lemma 2.6 to realize that if
we can prove this for X as in the above lemma with t2 = 0 and t1 very small
the lemma will follow. So, choose a good index pair (A,B) for (SMr , X), with
respect to the narrow interval [au, bu]. We will extend this to an index pair
for Sr with t1 small enough. Let W±~z1

be the negative/positive eigenbundle

of SDr (~z1,−). It is easy to construct index pairs very close to zero for a
non-degenerate quadratic form on D2kr, so we do this fiber-wise

A~z1
= DεE

−
~z1
×DεE

+
~z1

B~z1
= SεE

−
~z1
×DεE

+
~z1
.

Since e(A) ∈ [0, β[ and A is compact we have e(A) ∈ [0, β − c], so we can
find an ε > 0 such that A~z1

is contained in Λe<βr (M ×D2k) for all ~z1 ∈ A.
Define

A′ =
⋃
~z1∈A

A~z1

B′ =

 ⋃
~z1∈B

A~z1

 ∪
 ⋃
~z1∈A

B~z1


for such an ε.

Claim: For sufficiently small t1 (and t2 = 0) this is an index pair for
(Sr, X). I1 and I2 from the definition of index pair have been taken care of.
I3 is because critical points of Sr are of the form (~z1, 0), where ~z1 is a critical
point for SMr . To get I4 we need to carefully pick t1. Indeed, t1 controls the
speed of the flow on the first factor (the base). For t1 equal to zero (where
X is not a pseudo-gradient) any point in B′ will on the second factor flow
entirely out of Λe<βr (M ×D2k) (except if ~z ∈ B so that B′ is all of A~z in this
“fiber”). Because A′ is compact we can choose t1 very small such that the
escaping above for points in B′ is not changed, and such that other points
in the boundary of A′ still flows directly into A′. However for small t1 we
see by the fact that the flow projected to the base Λe<βr M does not depend
on ~z2 that B′ is precisely the exit set of X.
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The quotient A′/B′ is the wanted Conley index. �

13. Quadratic forms associated with the action in R2k.

In the previous section we saw how the negative eigenspace of the quadratic
form (described in Remark 12.5) given by the finite dimensional approxima-
tions (with the Hamiltonian HD(z) = ‖z‖2)

Sr : (R2k)r → R

are important for understanding the Conley index of the generalized approx-
imations from Section 10 on products as in Section 12. This approximation
depended on a single time dependent Lagrangian (i.e. a loop in L(k)), and
we had a family (in that section parameterized by a subspace in Λe<βr M) of
such — with bounded energy. So in this section we assume that we have a
map B → ΛL(k), which we for convenience write as:

lb ∈ ΛL(k) for each b ∈ B,

and we will be assuming that the energy of each lb is bounded by some
Cl. We let Sbr denote the quadratic form defined by finite dimensional ap-
proximation using lb. Let (as in the previous section) W− → B denote the
negative eigenbundle of this non-degenerate (for large r) quadratic form over
B. Recall that the trivial vector bundle of dimension n was denoted ζn over
any base. In this section we prove the following proposition.

Proposition 13.1. For r odd and large enough (only depending on the
bound Cl) the virtual vector bundle class of W− − ζk(r+1) is classified by the
map

B
l−→ ΛL(k)→ ΛL ' ΛU/O

πΩ−→ ΩU/O ' Z ×BO.(103)

We will assume throughout this section that r is odd. We will not assume
that B is compact, but since the energy is bounded by some constant Cl
we can almost assume that B is compact. Indeed, the space of loops with
energy less than Cl in L(k) deformation retracts onto a finite CW complex,
we will refer to this as: “the fact that l has compact homotopy type”. Firstly,
we start by explaining the maps in this composition.

The infinite Lagrangian Grassmannian is defined as L = limk→∞ L(k),
here the maps L(k)→ L(k + 1) are given by adding the trivial Lagrangian
R ⊂ C in a new factor. We will refer to this as a standard stabilization.
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The free loop of the inclusion L(k) ⊂ L is the first map after l in Equa-
tion (103). The next map, the homotopy equivalence L ' U/O, is classical
(in fact U(k)/O(k) ' L(k)) and can be found in e.g. [22]. By Bott period-
icity we have L ' U/O ' Ω6O (see e.g. [23]). Since this is a loop space we
have a homotopy equivalence

ev0×πΩ : ΛL → L× ΩL,(104)

where ev0 is evaluation at the base point, and πΩ is homotopic to point-
wise multiplication with the homotopy loop-inverse of ev0. This is πΩ in
Equation (103). The same Bott periodicity as above shows that

ΩU/O ' Ω7O ' Z×BO,

but we will discuss this homotopy equivalence more explicitly below.
First we reduce the computation to an easier to understand family of

quadratic forms. So, define

Qbr : (R2k)r → R

as the quadratic form defined similarly to Sbr , but using the zero Hamilto-
nian HD = 0. Note that the argument in Remark 12.5 shows why this is a
quadratic form. Indeed, for any HD which is a quadratic form on R2k these
finite dimensional approximations are quadratic forms.

Lemma 13.2. Let K be as in Proposition 9.1 (for K = K(k) associated to
M = D2k ⊂ R2k). For r > 2KC2

l the quadratic forms Qbr has kernel given by
the constant loops ~z ∈ (R2k)r. I.e. those ~z where zj+1 = zj for all j ∈ Z/r.

We could prove this lemma using simple linear algebra, and even get a
more explicit and better bound. However, this is rather cumbersome, and
the work we have already done is extremely helpful.

Proof. Use Proposition 9.1 for Qbr with M = D2k (and K = K(k)), CH = 1,
CΓ = Cl, and ‖H‖C2 = 0 we get for r > K(0 + C2

l (1 + 1)) and ~z ∈ Λe<βr D2k

that

‖∇Qbr‖2 ≥ E(~z).

This means that for ~z close to 0 (energy less than 1) only the periodic orbits
(constant loops) are critical points. However, since this is true close to zero
it means that it is true everywhere (since it is a quadratic form). �
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This allows us to define V − → B as the vector bundle with fiber the
negative eigenbundle of Qbr. Indeed, since the kernel is of constant (in b)
dimension this makes perfect sense.

Lemma 13.3. With K as above and r > K(2 + 3C2
l ) there is a canonical

(contractible choice) isomorphism

W− ∼= V − ⊕ ζ2k

of real vector bundles over B.

Proof. For each b ∈ B define a continuous family Abc of quadratic forms
for c ∈ I by finite dimensional approximation using the Hamiltonians Hc =
c‖z2‖2. Then Qbr = Ab0 and Sbr = Ab1. The argument in Remark 12.5 shows
why all of these are still quadratic forms.

Applying again Proposition 9.1 (as above) to Abc for each c with CH =
2, CΓ = Cl and ‖Hc‖C2 = 2c we get for r > K(2 + C2

l (1 + 2)) ≥ K(2c+
C2
l (1 + 2)) that for all c the kernel of the quadratic form consists precisely

of the periodic orbits. Since the Hamiltonian flow for Hc has the only the
trivial 1-periodic orbit 0 for 0 < c < 2π, these are all non-degenerate. So by
smoothness in b and c (and a parallel transport argument) they have iso-
morphic negative eigenbundles, but we need to see what happens at c = 0.
The critical points of Qbr = Ab0 are precisely the constant curves, so the Hes-
sian is degenerate, and the kernel as a bundle over B is the trivial bundle
of dimension 2k. We prove the lemma by proving that for a small perturba-
tion of c = 0 in positive direction, this kernel becomes part of the negative
eigenspace.

We do this point wise in b. So, fix b ∈ B. Denote by V−, V0 and V+ the
negative, zero and positive eigenspace of Ab0. It is enough to prove that the
first order change in c at c = 0 of Abc is negative definite on the kernel V0.
Indeed, if so we can restrict Ab0 to the sphere of V0 ⊕ V− and what we see is
a non-positive function on a closed manifold, which is then perturbed to the
first order to be negative on the set where it is zero. This will imply that the
function is in fact going to be negative on the entire sphere for very small
c, and thus Abc is negative definite on V0 ⊕ V− for small c > 0.

To prove this negativity to the first order in c on V0, we look at Abc on
V0 for c close to zero. The kernel V0 is the set of constant curves, so we
assume that zj = zj+1 for all j ∈ Z/r. We need to take a look at the precise
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definition of

Abc =
∑
j

(∫
γj

λ0 −Hcdt+

∫
γx
j

λ0

)
.

For c = 0 all of this is zero (on V0) because γj and γxj are constant, and
Hc is zero. We want to prove that the dominating term when perturbing to
positive c is −Hc, which is negative.

Because any time independent Hamiltonian is constant on its flow curves,
we can rewrite this as

Abc =

∫
∑
j(γj+γ

x
j )
λ0 +

1

r

∑
j

Hc(zj)

=

∫
∑
j(γj+γ

x
j )
λ0 −Hc(z0).

The curves γj are the 1/r time flow curves of Hc, so they have lengths
of order ‖∇Hc‖/r which is of order c‖z0‖/r, and since zj = zj+1, and γxj
connects the endpoint of γj with zj+1, the same is true for γxj . This means

that the integral, which is minus2 the symplectic area enclosed by the closed
curve obtained by concatenating γj and γxj , is of order (c‖z0‖/r)2. We have

r of these terms summed, but this is still of order (c‖z0‖)2/r. The term
Hc(z0) is equal to c‖z0‖2, so this is the dominating term (for small c) and
the lemma follows. �

13.1. Special cases

We will in the following compute natural representatives for the negative
eigenbundles in some special cases of Qbr. So, in this subsection we will
assume that B = {b0} and that k = 1. So we are only considering a single
loop of Lagrangians l = lb0 ∈ ΛL(1) ∼= ΛS1, which for each t ∈ I is defined by
an argument l(t) ∈ R/π (RP 1). This means that e2il(t) ∈ C. We also denote
the associated quadratic form from the lemma above simply by Qr = Qb0r .

2we are integrating λ0 = ydx hence we get minus the symplectic area
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Lemma 13.4. The quadratic form Qr is given by

Qr(~z) =
1

2

∑
j

(yj+1 + yj)(xj+1 − xj)−
1

4

∑
j

Im(e−2il(j/r)(zj+1 − zj)2)),

and the first sum is minus the symplectic area inside the loop given by con-
necting the zj in order by straight lines. The second sum is the sum of the
differences of symplectic area of the straight line connection and the L-curve
connecting the two points zj and zj+1.

In the following we will denote the two sums by

A =
∑
j

(yj+1 + yj)(xj+1 − xj) and T =
∑
j

Im(e−2il(j/r)(zj+1 − zj)2).

A for area and T for triangle area.

Proof. Since there is no Hamiltonian term in the definition of Qr it is equal
to minus the symplectic area bounded by the concatenation of the L-curves
from zj to zj+1 defining a zig-zaggy loop in R2k.

The first sum is easy since it is the sum of the integration of the standard
Liouville 1-form λ0 = ydx over the straight line connections.

The second part: pick either of the two numbers representing l(j/r) in
[0, 2π[. Then the area of the jth triangle can be computed as:

−1
2 Re(e−iπl(j/r)(zj+1 − zj)) Im(e−πl(j/r)(zj+1 − zj))

Indeed, multiplying e−iπl(j/r) onto zj+1 − zj simply rotates the vector into
a position where it looks like the Lagrangian l(j/r) equals the real axis,
and in this case this product of real part and imaginary part computes the
symplectic area of the triangle. This formula is the same as minus 1 fourth
of the imaginary part of the square (Re(a) Im(a) = 1

2 Im(a2)), which even
removes the ambiguity of the choice of representative for l(j/r). �

We will need to consider a finite dimensional versions of Fourier coeffi-
cients. Indeed, let ρ = ei2π/r be the standard r’th root of unity. Use this to
define the complex vector spaces Em by

Em = {(bρmj)j∈Z/r | b ∈ C} ⊂ Cr = (R2)r,
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for any m ∈ Z/r. With this we have

Cr =
⊕
m∈Z/r

Em.(105)

For ~z = (zj)j∈Z/r ∈ Em and ~w = (wj)j∈Z/r ∈ Em′ one may readily check that

(zj+1)j∈Z/r ∈ Em(106)

(zj)j∈Z/r ∈ E−m
Re(zj)j∈Z/r ∈ Em ⊕ E−m
Im(zj)j∈Z/r ∈ Em ⊕ E−m

(zj · wj)j∈Z/r ∈ Em+m′ .

and if m 6= 0 ∑
j

zj = 0.

Notice that the second to last fact makes sense only because we have k = 1.

Lemma 13.5. The sum A splits orthogonally on the decomposition from
Equation (105). Furthermore, for ~z = (bρmj)j∈Z/r ∈ Em we have that

1
2A(~z) = −r‖b‖2 sin(2πm/r).

Proof. First we assume ~z ∈ Em and ~w ∈ Em′ with m 6= ±m′ then

A(~z + ~w) =
1

2

∑
j

(ywj+1 + yzj+1 + ywj + yzj )(x
w
j+1 + xzj+1 − xwj − xzj )

=
1

2

∑
j

(ywj+1 + ywj )(xwj+1 − xwj ) +
1

2

∑
j

(yzj+1 + yzj )(x
z
j+1 − xzj )

since the rules above implies that summing mixed terms (in w and z) like e.g.
the term

∑
j(x

w
j+1y

z
j ) is 0. Indeed, the products of the real part of something

in Em with the imaginary part of something in Em′ has components in
E±(m±m′), but no other En — especially not E0. Hence the sum is zero.

The case m = −m′ is a little more tricky. However, for ~z = (bρmj)j∈Z/r ∈
Em and ~w = (b′ρ−mj)j∈Z/r ∈ E−m unit vectors we have that the points (zj +
wj) are all contained in the real 1-dimensional vector space spanned by
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(b+ b′) in C — hence the enclosed area is zero. Now, if we establish the
second part of the lemma it will follow that for these vectors:

A(~z + ~w) = 0 = A(~z) +A(~w)

since the formula for A proves that A(~w) = −A(~z). Having this for all unit
vectors in the two subspaces proves orthogonality.

For the formula we use that 1
2A is minus the symplectic area bounded

by connecting the points zj to zj+1 by straight lines. For ~z ∈ Em this is the
formula given since each piece forms a triangle with 0 with signed symplec-
tic area ‖b‖2 sin(2πm/r). So, in a sense this is the formula you get if you
integrate the other standard primitive for ω0 on R2 given by 1

2ydx−
1
2xdy

over this closed curve. �

Now we will use these linear subspaces to identify natural choices of
negative eigenbundles in 3 very important cases. Define

E− =

(r−1)/2⊕
j=1

Ej and E+ =

r−1⊕
j=(r+1)/2

Ej .

This gives the splitting

Cr = E− ⊕ E0 ⊕ E+.(107)

Lemma 13.5 tells us that this is in fact the splitting into negative, zero, and
positive eigenspaces of A.

Lemma 13.6. Let r > 2 be odd, k = 1, B = {b0}, and l be a constant path
of Lagrangians. Then

E− ⊕ E0 ⊕ E+

is a splitting into negative, zero, and positive vector spaces of Qr.

Notice that we say a splitting and vector spaces instead of eigenspaces.
Indeed, we are not claiming that these are sums of eigenspaces — only
that Qr restricted to each is negative definite, zero, and positive definite
respectively. This, however, implies that there are canonical isomorphisms
to the eigenspaces by taking orthogonal projections.

Proof. Since L is constant we can rotate and assume L = R. Indeed, Qr is
preserved and the splitting in Equation (107) is preserved under rotations.
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In this case Lemma 13.4 provides

Qr(~z) =
1

2

∑
j

(yj+1 + yj)(xj+1 − xj)−
1

4

∑
j

Im((zj+1 − zj)2)).

Now if we assume that ~z ∈ E− then by the rules in Equation (106) above we
have (zj+1 − zj)j∈Z/r ∈ E− and then (zj+1 − zj)2 ∈ E− ⊕ E+. So, we avoid
E0. this is by the fourth rule preserved by taking imaginary part, and hence
by the last rule we have that the sum is actually 0. Hence restricting Qr to
E− we have

Qr(~z) =
1

2

∑
j

(yj+1 + yj)(xj+1 − xj) = 1
2A(~z).

The formula in Lemma 13.5 for this is negative for each m = 1, . . . , (r − 1)/2
— and hence Qr is negative on E−.

The same argument on E+ shows that Qr is positive definite on E+ and
E0 is part of the kernel since translating ~z by a c ∈ C preserves Qr — hence
E0 consists of critical points for Qr. �

Now we need to modify these spaces a little bit for the next case. In-
deed, let n

√
ρ = e−2iπ/(nr) then inside E(r+1)/2 we have the real 1 dimensional

subspace

R = {(bρ(r−1)/2j)j∈Z/r | b 4
√
ρ ∈ (1− i)R}

and its orthogonal complement inside E(r+1)/2 is

R⊥ = {(bρ(r−1)/2j)j∈Z/r | b 4
√
ρ ∈ (1 + i)R}.

Both are real lines in Cr. To ease notation we will write

E+ 	R =

 r−1⊕
m=(r+3)/2

Em

⊕R⊥ ⊂ E+

with codimension 1 in E+. We thus have a new splitting of Cr as

(E− ⊕R)⊕ E0 ⊕ (E+ 	R),

which has “moved” the line R from the E+ part to the E− part.
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Lemma 13.7. Let r > 2 be odd, k = 1, B = {b0}, and l be the Maslov index
1 loop of Lagrangians defined by l(t) = eiπtR. Then

(E− ⊕R)⊕ E0 ⊕ (E+ 	R),

is a splitting into negative, zero, and positive vector spaces of Qr.

Proof. Lemma 13.4 gives us an explicit formula for Qr

Qr(~z) =
1

2

∑
j

(yj+1 + yj)(xj+1 − xj)−
1

4

∑
j

Im(ρ−j(zj+1 − zj)2))

= 1
2A−

1
4B.

We can no longer argue that the last part vanishes on E+. However, since
multiplying with (ρ−j)j∈Z/r ∈ E−1 moves us from Em to Em−1 we get some-
thing very close. Since the symmetry is broken we get different cases when
dealing with E− and E+.

Claim: the quadratic form T splits orthogonally on E(r+1)/2 ⊕ · · · ⊕
Er−1 = E+ and is zero on all factors except E(r+1)/2. To see this, let ~w ∈
Em ⊂ E+ and ~z ∈ Em′ ⊂ E+ then we have

T (~w + ~z) =
∑
j

Im(ρ−j(zj+1 + wj+1 − zj − wj)2)

=
∑
j

Im(ρ−j(zj+1 − zj)2) +
∑
j

Im(ρ−j(wj+1 − wj)2)

unless m = m′ = (r + 1)/2. Indeed, for any other pair (m,m′) the mixed
terms before taking imaginary part (in z and w) like e.g.

∑
j(ρ
−jzj+1wj) are

by the rules of the spaces Em zero since (zj+1wj) lies in Ek for k = 2, . . . , r −
2 and hence (ρ−jzj+1wj) lies in Ek for k = 1, . . . , r − 2. However for m =
m′ = (r + 1)/2 we have (zj+1wj) lying in E1 and hence (ρ−jzj+1wj) ∈ E0

and the sum is no longer 0. This shows the entire claim (for m = m′ 6=
(r + 1)/2 this proves B(2~z) = 2B(~z) hence B(~z) = 0 since it is quadratic).

Now we compute T on E+, where it is in fact non-zero. Indeed, for ~z =∑r−1
m=(r+1)/2 αmρ

mj ∈ E+ we have since only the E(r+1)/2 part contributes
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that

B(~z) =
∑
j

Im(α2
(r+1)/2ρ

−jρ(r+1)j(ρ(r+1)/2 − 1)2)

=
∑
j

Im(α2
(r+1)/2(ρ(r+1)/2 − 1)2)

= r Im(α2
(r+1)/2(−(1 + Re( 4

√
ρ)) 4
√
ρ)2)

= r(1 + Re( 4
√
ρ))2 Im((α(r+1)/2

4
√
ρ)2)

= r(1 + Re( 4
√
ρ))2 Im((α(r+1)/2

4
√
ρ)2)

= r(1 + Re( 4
√
ρ))2(πR⊥(~z)2 − πR(~z)2).

This was the reason for the definition of R. Indeed, R is the negative eigen-
vector in E(r+1)/2 of T . Combined with Lemma 13.5 this imply

Qr(~z) = −r
r−1∑

m=(r+1)/2

‖αm‖2 sin(2πm/r) + r(1 + Re( 4
√
ρ))2(πR⊥(~z)2 − πR(~z)2),

which for πR(~z) = 0 consist only of positive terms — hence Qr is positive
on E+ 	R.

Claim: the quadratic form T splits orthogonally on E1 ⊕ · · ·E(r+1)/2 =
E− ⊕ E(r+1)/2 and is zero on all except E(r+1)/2. This is similar to above if
(m,m′) 6= ((r + 1)/2, (r + 1)/2) the mixed terms cannot have components in
E0. Indeed, m+m′ − 1 ∈ {1, . . . , r − 1}. Again combined with Lemma 13.5
and the calculation of A on E(r+1)/2 above we get for any ~z ∈ E− ⊕ E(r+1)/2

the same formula as above

Qr(~z) = −r
r−1∑

m=(r+1)/2

‖αm‖2 sin(2πm/r) + r(1 + Re( 4
√
ρ))2(πR⊥(~z)2 − πR(~z)2).

However, now we see that this is negative if πR⊥(~z) = 0. Indeed, the one
term that is in fact positive is related to the component in R, but the sum
of all the contributions from R to Qr are:

− r‖α(r+1)/2‖2 sin(π(r + 1)/r) + r(1 + Re( 4
√
ρ))2‖α(r−1)/2‖2

=− r‖α(r+1)/2‖2((1 + Re( 4
√
ρ))2 + sin(π(r + 1)/r)) < 0.

�

Notice that even though we get the same formula for Qr in the two cases
in the proof above it is not true that this formula works generally for any



i
i

“3-323” — 2018/4/8 — 21:30 — page 209 — #125 i
i

i
i

i
i

The Viterbo transfer as a map of spectra 209

~z ∈ Cr. Indeed, there are many possible interacting terms. However, all we
need is to know that the restriction is either positive or negative.

Since R ⊂ E− we may define E− 	R analogous to above. The last case
is the conjugate of the second case.

Lemma 13.8. Let r > 2 be odd, k = 1, B = {b0}, and l be the Maslov index
-1 loop of Lagrangians defined by l(t) = e−iπtR. Then

(E− 	R)⊕ E0 ⊕ (E+ ⊕R),

is a splitting into negative, zero, and positive vector spaces of Qr.

Proof. Since conjugation of ~z and l changes the sign on everything and

(E− 	R)⊕ E0 ⊕ (E+ ⊕R) = (E+ 	R)⊕ E0 ⊕ (E− ⊕R)

this is the same as the lemma above. �

13.2. The general case

We now go back to the general parameterized case where l : B → ΛL(k)
describes a family of loops, and thus a family of quadratic forms Qbr, b ∈ B.
To be able to use the concrete computations in the previous subsection we
will start by arguing that l is homotopic to another map on a standard form
after stabilizing.

Lemma 13.9. The stabilization of l : B → L(k) to a map l′ : B → L(k′)
using the standard inclusion L(k) ⊂ L(k′) for k′ > k does not change the
virtual bundle W− − ζk(r+1) over B considered in Proposition 13.1.

Proof. By Lemma 13.3 we have W− − ζk(r+1) = V − − ζk(r−1) (as virtual
bundles). So if we can argue that this is unchanged by stabilization we are
done. A single stabilization L(k)→ L(k + 1) is given by l′b(t) = lb(t)⊕ R ⊂
Ck × C, and in this case everything is completely defined coordinate wise.
So, the associated quadratic forms satisfy:

(Qbr)
′(~z1, ~z2) = Qbr(~z1) +Qr(~z2),

where (Qbr)
′ is defined on (Ck+1)r using l′, Qbr was the original quadratic

form defined by l on (Ck)r and Qr is defined for ~z2 ∈ (C1)r using the con-
stant Lagrangian R ⊂ C. By Lemma 13.6 the negative eigenspace of Qr is
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isomorphic to R(r−1). Hence a stabilization adds a trivial bundle of dimen-
sion R(r−1) to the negative eigenbundles, but since we are subtracting ζk(r−1)

the increase in k cancels this out. �

For any D+ ⊂ Rk, D− ⊂ Rk and D0 ⊂ Rk pairwise orthogonal and D+ ⊕
D− ⊕D0 = Rk ⊂ Ck, we define the curve γ(D+,D−,D0) ∈ ΩL(k) by

γ(D+,D−,D0)(t) = eiπtD+ ⊕ e−iπtD− ⊕D0 ∈ L(k),

for t ∈ [0, 1]. The space of such curves will be denoted ΩSL(k) (S for stan-
dard form), and is a sub-space of the based loops ΩL(k). Over this space we
have the three canonical vector bundles D+, D− and D0.

Lemma 13.10. Any map l : B → ΛL(k), is after stabilization homotopic
(using a homotopy with energy bounds only depending on Cl) to a map into
the subspace

L(k1)× ΩSL(k2) ⊂ ΛL(k1 + k2)

for large enough k1 and k2. Furthermore, the map πΩ restricted to this sub-
space is the projection to the second factor ΩSL(k2) ⊂ ΩL ' Z ×BO and
the virtual bundle this map classifies is D+ −D−.

Proof. Consider the homotopy equivalence in Equation (104). The inverse
to this can be described as the limit of injective maps

L(n)× ΩL(n)→ ΛL(2n).

as n tends to infinite. To make sense of this we intertwine the factors such
that: if the copy of Cn which the Lagrangians in the first factor is a sub-
space in has standard basis e1, . . . , en and the second factor has standard
basis f1, . . . , fn then the standard basis for C2n on the right hand side
is e1, f1, e2, . . . , en, fn. This defines the injection and this way the maps
are compatible with the standard stabilizations L(n)× ΩL(n) ⊂ L(n+ 1)×
ΩL(n+ 1) and ΛL(2n) ⊂ ΛL(2n+ 2). So, that we can take the limit. This
is, indeed, a homotopy inverse to the map in Equation (104) since the prod-
uct on L is induced by such direct sums, and one may rearranging factors by
a homotopy since Gln(C) is connected. It follows that since l has compact
homotopy type there is a k1 > k large enough such that after stabilization
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into 2k1 we have that l is homotopic to a map into

L(k1)× ΩL(k1).

We now argue that by increasing k1 to some k2 we can assume that the map
to the last factor lands in ΩSL(k2).

So, let f : B → ΩL(n) be any given map (with bounded energy). The
proof of this claim follows the standard Morse theoretic proof of Bott peri-
odicity (see e.g. [23]): multiplication with e−iπt/2 on the based loops gives
a homeomorphism of ΩL(n) = Ω(L(n),Rn,Rn) to Ω(L(n),Rn, iRn). Here
Ω(X, q, q′) denotes paths in X starting at q ending at q′. So by abuse of
notation we now consider f a map into the later space. In [23] part IV para-
graph 24 the space of minimal geodesics for this space is computed to be
(with some notational change to fit the current context)

Ωmin(n) = Ωmin(L(n),Rn, iRn)

= {γ | γ(t) = eiπt/2W ⊕ e−iπt/2W⊥,W ⊂ Rn}.

The embedding of this space into Ω(L(n),Rn, iRn) has high connectivity on
the components where dim(W ) and dim(W⊥) are both high.

To be able to use this high connectivity statement we stabilize f (in a
non-trivial way) by

γ(t) = eiπt/2R⊕ e−iπt/2R ⊂ C2.

That is, we compose with the map

⊕γ : ΩL(n,Rn, iRn)→ ΩL(n+ 2,Rn+2, iRn+2)

given by direct sum with γ. This increases both the dimension of W and its
complement by 1. So, if we do this m > 0 times with m large enough, we
can assume that the map (⊕γ)◦m ◦ f factors through Ωmin(n+ 2m).

Going back with the homeomorphism (above) to our version of ΩL(n)
we see that the stabilization we did corresponds to having stabilized with

eiπt/2(γ(t)) = eiπtR⊕ R

k times. We have thus argued: after m stabilizations of this type, the map
is homotopic to a map which factors through the following subspace

eiπt/2Ωmin(n+ 2m) = {γ | γ(t) = eiπtW ⊕W⊥} ⊂ ΩSL(n+ 2m).
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I.e. the part of ΩSL(n+ 2m) with D− = 0. Now by further stabilizing with

γ2(t) = (e−iπtR)⊕m,

one has in total stabilized f with something homotopic to a standard sta-
bilization. Indeed, it is easy to get the two “twistings” to cancel out. So we
have now homotoped the map f , stabilized in the standard way, to a map
into ΩS(L(n+ 3m)).

The fact that we can assume this homotopy to have bounded energy can
be argued as follows. First compose l with a deformation retraction of all
curves with energy less than Cl to a compact subspace. Then use the above
on this compact subspace in ΛL(k). Now this homotopy has compact image
hence bounded in energy.

The last statement in the lemma follows from the fact that these highly
connected inclusions of Grassmannians into ΩL ' Z×BO used in the proof,
are the standard way of identifying the stable bundle with the difference of
two actual bundles. �

What we in fact proved was that the map is homotopic to a map factoring
through ΩSL(n+ 3m), where D− is the trivial bundle of dimension m (given
by the last m factors in Rn+3m). This is well-known; indeed, any virtual
bundle over a compact space can be written as the difference between an
actual vector bundle and a trivial vector bundle.

Proof of Proposition 13.1. Any stabilization does by Lemma 13.9 not change
the problem and by abuse of notation we still denote such a map l. Stabi-
lizing enough times we can assume by Lemma 13.10 above that we have a
bounded energy homotopy lt : B → ΛL(k), t ∈ I from l0 = l with Im(l1) ⊂
L(k1)× ΩSL(k2). Assume the bound on energy is given by some constant
C ′l . We can use Lemma 13.3 (with this stabilized k) to conclude that for
r > K(2 + 3C ′l):

• Both W− and V − are defined over B × {0} and Lemma 13.3 relates
them by W− ∼= V − ⊕ ζ2k with k = k1 + k2, and the proposition will
follow if we prove the corresponding statement for V −. This corre-
sponding statement is: the virtual vector bundle V − − ζk(r−1) defined
over B = B × {0} is classified by the map in the proposition.

• The vector bundle V − are defined over B × I and since B × {0} ⊂
B × I ⊃ B × {1} are homotopy equivalences we need only prove the
corresponding proposition for V − over B × {1}. This by Lemma 13.10
above reduces us to having to prove: as virtual vector bundle classes
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over B × {1} we have

V − − ζk(r−1) = D+ −D−,

where the D+ and D− are the canonical bundles over ΩSL(k2).

This statement we can prove by pasting together the 3 cases we considered
in the previous subsection. Indeed, for a given b ∈ B we pick a basis in l1b (0)
for Ck1 (which by the constancy in this first factor is in lb(t) for all t ∈ I).
Then pick a basis in Rk2 for Ck2 such that the first k+

2 vectors is a basis for
D+ = D+(b) the next k0

2 a basis for D0 = D0(b) and the last k−2 is basis for
D− = D−(b). So, k+

2 + k0
2 + k−2 = k2. In this basis we have:

l1b (t) = Rk1 ⊕ e−iπtRk
+
2 ⊕ Rk0

2 ⊕ eiπtRk
−
2

This means that l1b is a product of k1 + k2 copies of the cases considered in
the previous subsection. The quadratic form Qbr in this basis splits into a
sum of each part (it defines an orthogonal decomposition). So, (with E−, E0

and E+ in that subsection) we conclude by Lemma 13.6, Lemma 13.7 and
Lemma 13.8 that

(Rk1 ⊗ E−)⊕ (Rk
+
2 ⊗ (E− ⊕R))⊕ (Rk0

2 ⊗ E−)⊕ (Rk
−
2 ⊗ (E− 	R)

is a negative vector space for Qbr of maximal dimension, and hence its or-
thogonal projection to the negative eigenspace of Qbr is an isomorphism.
Since acting by O(k1)×O(k+

2 )×O(k0
2)×O(k−2 ) in the obvious way does

not change this vector space we see that it in fact is canonically defined
without picking the basis.

Had D+ and D− both been 0 then this vector space would simply be
Rk1+k2 ⊗ E− ∼= R(k1+k2)(r−1). However, with the vector spaces non-trivial we
in fact can write the above as:

(Rk1+k2 ⊗ E−)⊕ (Rk
+
2 ⊗R)	 (Rk

−
2 ⊗R).

Here V 	 V ′ means that V ′ ⊂ V and we take the orthogonal complement of
V ′ inside V . In standard coordinates this can be written as

(Rk1+k2 ⊗ E−)⊕ (D+ ⊗R)	 (D− ⊗R),

which as a virtual vector bundle overB is simplyD+ −D− + ζk(r−1). Indeed,
R and R are constant lines hence trivial line bundles over B. �
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14. The Maslov bundle and the homotopy type of the target

In this section we define the virtual Maslov bundle η over ΛL associated to
the embedding L ⊂ T ∗N , and prove the following proposition.

Proposition 14.1. The spectrum W (from Section 11) is homotopy equiv-
alent to

(ΛL)−TL+η

where η is the virtual bundle defined below.

Let j : L→ T ∗N be any Lagrangian embedding (immersion is enough
for the definition of η.). We will define the virtual Maslov bundle relative to
this embedding. It is a generalization of the Maslov index related to curves of
Lagrangian subspaces in R2n (see e.g. [22]). In fact the bundle is a canonical
virtual vector bundle over ΛL, such that the dimension of this bundle on
each component is precisely the Maslov index.

The projection T ∗N → N will be denoted π. For any point q ∈ L the
tangent space TqL is mapped by j∗ to a Lagrangian subspace of Tj(q)(T

∗N),
and by abuse of notation we use this to define a section

j∗ : L→ L(T (T ∗N))|L,

where L(T (T ∗N)) is defined in definition 9.4. A stabilization of this map
with a vector bundle V → N will be denoted by j∗ ⊕ V and is defined by

(j∗ ⊕ V )(q) = j∗(TqL)⊕ (π∗V ) ⊂ Tj(q)(T ∗N)⊕ (π∗V )⊕ (π∗V )∗,

which is also Lagrangian (in the obvious symplectic structure).
Let again ν be the normal bundle of N for some embedding N → Rk,

we get a canonical symplectic trivialization

T (T ∗N)⊕ (π∗V )⊕ (π∗V )∗ → T ∗N × (R2k, ω0).

This is defined by using the Riemannian metric induced from the embedding
to split the tangent space of T ∗N at z into Tπ(z)N ⊕ T ∗π(z)N , then mapping

Vz = Tπ(z)N ⊕ Vπ(z) isomorphically to Rk by the obvious map, and mapping

V ∗z = T ∗π(z)N ⊕ V
∗
π(z), by the inverse of the dual to this map, to iRk. If we

compose this trivialization with j∗ ⊕ V we get a map from L to L(k), and
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since all embeddings are isotopic for k sufficiently large, we have a map
unique up to homotopy

F : L→ L(k).

Since the inclusions {∗} × L(k) ⊂ L(k)× L(k) ⊂ L(2k) and L(k)× {∗} ⊂
L(k)× L(k) ⊂ L(2k) are homotopic, we see that the maps to L(2k), given
by Rk ⊕ F and F ⊕ Rk are homotopic. This implies that after enough sta-
bilization we can homotopy this map to be trivial/horizontal (equal to the
horizontal TN) in the tangent space of T ∗N . If we subsequently stabilize by
a copy of the bundle TN we have essentially stabilized by a trivial bundle.

Since we can globally homotopy horizontal directions in T ∗N to verticals
by the homotopy which multiplies with e−tJπ/2 in T (T ∗N) and since the
same is true close to L ⊂ T ∗N we have argued the following lemma.

Lemma 14.2. For DT ∗L ⊂ DT ∗N the canonical sections ΓL, ΓN|DT ∗L :

DT ∗L→ L(DT ∗L) (from Example 9.6) satisfy

ΓL ⊕ Rk ' ΓN|DT ∗L ⊕ F : DT ∗L→ L(TM)× L(k)

for large enough k.

So, F measures the stable difference of these Lagrangians sections. The
above discussion really tells us that any two sections in L(TM)→M (with
M compact) has such a stable difference map to L(k) for large enough k. It
will actually be more convenient to use the inverse map to F in the following.
Indeed, this is given by taking the conjugate of the Lagrangian (this specific
description will not be important, but motivates the notation) so we denote
this map F . This satisfies:

ΓN|DT ∗L ⊕ Rk ' ΓL ⊕ F : DT ∗L→ L(TM)× L(k),(108)

which is more natural to use in the following.

Definition 14.3. The Maslov bundle η is the virtual vector bundle classi-
fied by the map

ΛL
ΛF // ΛL(k) // ΛL πΩ // ΩL ' // Z×BO.(109)

This is the same map as we saw in Proposition 13.1.
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Proof of Proposition 14.1. Consider the Hamiltonians used in Section 8. Re-
call the narrowing process we used in Section 11 to compute the spectrum
Z. Using this same idea we can narrow Hsl , but in the neighborhood M =
D1/2T

∗L, and argue as in Proposition 11.7 that by narrowing enough we can

have the Conley index completely defined inside Λe<βr D1/2T
∗L ⊂ ΛrT

∗N .
However, to compare it to something defined on T ∗L we need to adjust the
Riemannian structure. So, let gv be the convex combination Riemannian
structure from the one induced from D1/2T

∗L ⊂ T ∗N to the one induced
from D1/2T

∗L ⊂ T ∗L. Simultaneously, let Γv be a homotopy of sections
guaranteed by Equation (108) above. Now consider the domain:

P = D1/4T
∗L×D2k ⊂ T ∗N × R2k

and the Hamiltonians as in Section 12 (narrowing Hsl depending on a pa-
rameter u > 0 on the first factor and not depending on u on the second
factor). The added thing here is that now we have a family of underlying
structures gv and Γv for v ∈ I. The K in Proposition 9.1 can by a compact-
ness argument be chosen to work for all v ∈ I. Similarly, we can pick the
upper bound on the parameter u0 and β in Proposition 10.2 to work for all
v ∈ I.

We may further assume that: since Γv for v = 0 and v = 1 are on product
form this u0 and β works for Lemma 12.4 (and thus Lemma 12.7) in these
two cases as well. Now in the following let r and u be such that all these
Propositions and Lemmas applies to get good index pairs. We will need to
use Proposition 13.1 on the second factor in the product cases (v = 0 and
v = 1), and by compactness of DT ∗L and I we have a bound on the energy
of the loops on the last factor for our entire homotopy. As in Section 12 this
bound can be written as βC2

Γ for CΓ a bound on the derivatives of all the
Lagrangians sections in the homotopy. Now we can make sure that r is also
large enough and odd for Proposition 13.1 to apply for the quadratic forms
on the second factors when v = 0 and v = 1.

The argument that W (l) ' (ΛslµLL)−TL+η (here η is restricted to this
finite length part of the loop space) is now divided into steps

• Consider the Conley index I
bsl
aLsl

(Sr, Xr) (associated to Hsl , which is

not yet narrowed) used to define W (l) (adjusted by r + 1 copies of ν
such that increasing r gives actual suspensions — this adjustment can
simply be carried along during all the following steps).

• The narrowing process (down to the narrow parameter u fixed above)
proves that this is homotopy equivalent to a similar Conley index, but
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with index pair inside Λe<βr D1/2T
∗L (r is completely fixed during all

these steps).

• Adding a new factor of D2k and doing the finite reduction with the
section Γv=0 = ΓN ⊕ Rk on P instead changes the homotopy type of
the Conley index by a Thom-space construction (Lemma 12.7) of the
negative eigenbundle associated to the second factor. This bundle is
trivial since the finite dimensional approximation on the second factor
is constant. For this particular r this is a standard (r + 1)k fold sus-
pension by Proposition 13.1 (the bundle is the trivial ζ(r+1)k — this
follows from Proposition 13.1 with the map l : B → ΛL(k) constant).

• The homotopy of structures for v ∈ I now by Lemma 2.6 (as usual)
provides a Homotopy equivalence of this with the similar index de-
fined on Λe<βr (D1/2T

∗L×D2k), but with the structure from the inclu-

sionD1/2T
∗L ⊂ T ∗L, and the Lagrangian section Γv=1 = ΓL ⊕ F . Now

Lemma 12.7 and Proposition 13.1 states that we get a relative Thom-
space construction using a representative (more specifically W−) of
the virtual bundle η + ζ(r+1)k on the index pair.

• Now Proposition 11.7 applied to L in instead of N with this extra
Thom-space construction from the second factor proves the homotopy
equivalence.

The identification of the maps W (l)→W (l + 1) can be done completely
analogously to the identification in Section 11 of the map Z(l)→ Z(l + 1).
Indeed, the construction there can be done close to L as well, such that we
after the narrowing step above we identify this map with the inclusion of a
Conley index (defined close to L) into a slightly larger one, and the above
remaining steps are all easily compatible with inclusion (and quotients) to
Conley indices of smaller intervals of action. �

Note that the identification of this spectra depends on the choice of
homotopy Γv. So, the identification might not be canonical.

Proof of Theorem 1.1. This follows from combining Proposition 8.2, Propo-
sition 11.7, and the above proposition. �

Again we may also consider the case in Remark 7.2, and use the notation
for this alternate map of spectra Z ′ →W ′, which at each point in the limits
is given by maps Z ′(l)→W ′(l).



i
i

“3-323” — 2018/4/8 — 21:30 — page 218 — #134 i
i

i
i

i
i

218 Thomas Kragh

Corollary 14.4. The spectrum W ′ appearing in Corollary 8.3 satisfy

W ′ ' (ΛL)TN−TL+η,

and the alternate transfer map is the same on the level of homology (up to
a shift) for oriented N .

Proof. This is completely analogous to the above, except the actual bundles
showing up in the target is changed to this because we add on less copy of ν
(and grade a little differently). The statement about the map on homology
follows from naturality of the Thom-isomorphism for the oriented normal
bundle ν — recall that the difference is precisely adding an extra copy of ν
or not. �

The following corollary to the above proof of the proposition is needed
in [6]. This is a generalization of Corollary 11.4.

Corollary 14.5. Let (Ar, Br) be an index pair for Sr with a narrow H ′l as

above. The inclusion Ar ⊂ Λe<βr D1/2T
∗L induces a map

Ar/Br → (T ∗ΛrL)+ ∧Ar/Br,

which induces a spectrum map

W ′(l)→ (T ∗ΛrL)+ ∧W ′(l),

which is canonically (contractible choice) stably homotopic to the map

W ′(l)→ (ΛslµLL)+ ∧W ′(l) ⊂ (ΛL)+ ∧W ′(l)

induced by the diagonal defined using the homotopy equivalence above.

Note here that by the diagonal we mean that: for any Thom space
XV = (X,∅)V/ the diagonal map induces the map XV → X+ ∧XV , and
this induces a similar map of Thom-spectra (see Appendix A for a defini-
tion of Thom-spectra where this is easily incorporated).

Proof. If we disregard (project away from) the second factor D2k the proof
above shows that the map Ar/Br → (T ∗ΛrL)+ ∧Ar/Br is the map we al-
ready identified in Corollary 11.4, but with N replaced by L. Indeed, the
index pair on the product is in the first factor (see proof of Lemma 12.7) an
index pair for the first factor. We also now that the k(r + 1)th space in the
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spectrum is this pair adjusted by adding extra bundles, but that does not
change the map to (ΛL)+ ∧ (. . . ). Hence the map defined

(ΛslµLL)TN−TL+η → (ΛslµLL)+ ∧ (ΛslµLL)TN−TL+η

is canonically identified (contractible choice) with the diagonal (using the
above identification). �

Appendix A.

In Section 7 we defined the notion of a spectrum. To give an idea of what
these are and how to think of them in the present context we relate these
to CW spectra defined by Adams in [7], which we briefly describe here.
We then relate this to Morse homology. We also describe a construction
of Thom-spectra, which is closely related to the construction we see in the
paper; and finally we discus the mapping cylinders and homotopy colimits
appearing in the constructions.

A.1. Spectra and CW-spectra

Let Z = (Zn, σn) be a spectrum and inductively take a based CW approx-
imation cn : Z ′n → Zn (see [17]) such that it extends the previous making
the diagrams

ΣZn
σn // Zn+1

ΣZ ′n
σ′n //

Σcn

OO

Z ′n+1

cn+1

OO

commute on the nose and making σ′n a CW inclusion. Note that the non-
base-point cells in ΣZ ′n are 1-1 with a shift of 1 in dimension to the ones in
Z ′n, and the suspension isomorphism on H̃CW

∗ is given by the corresponding
degree 1 shift on the chain complex level (C̃CW

∗ ). Now the definition of
spectrum homology in Section 7 is recovered by

H∗(Z) ∼= Colim
n→∞

H̃CW
∗+n(Z ′n).

The CW spectrum Z ′ = (Z ′n, σ
′
n) is by construction weakly homotopy equiv-

alent to Z. In [7] Adams defines a category of such CW spectra, and the
reason to have σ′n be a CW inclusion is that then one may think of this
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as actually having cells. Indeed, the cells are increased in dimension each
time the space is suspended, and then we add new cells. Keeping track of
the degrees (a cell of dimension k added at level n has degree k − n) one
can recovered the homology of Z ′ using a single cellular chain complex with
one generator per cell in Z ′. This is precisely the same as the limit chain
complex

C̃CW
∗ (Z ′) = Colim

n→∞
C̃CW
∗+n(Z ′n) = ∪n∈NC̃CW

∗+n(Z ′n).

Here the colimit turns into a union precisely because the maps we are taking
the colimit of are injective on the chain complexes. Note that since colimits
commute with taking homology this, indeed, does recover H∗(Z

′).
This colimit/union idea is what Adams uses to define maps between

spectra. Indeed, he defines maps as you would between colimits. This implies
for example that any CW spectrum level-wise inclusion Y ′ ⊂ Z ′ (commuting
with structure maps) is an isomorphism if and only if all cells in Z ′ eventually
appear in Y ′. If all the cells do not appear one may use a spectrum version
of Hurewitz (which follows from the usual one adapted to this setting) and
conclude that it is a homotopy equivalence of spectra if and only if it induces
an isomorphism when passing to homology. However, we have omitted the
general definition of maps in this paper since all the maps we construct are
actually constructed at some level n. Except in the case of the constructed
homotopy colimits in Equation (56) and Equation (57), which we describe
explicitly below.

Two of the most important operations on spectra is wedging ∨ and
smashing ∧. The wedge ∨ is easy — you simply take the wedge level-wise and
use Σ(X ∨ Y ) = (ΣX) ∨ (ΣY ), and one can consider this as the spectrum
version of disjoint union since the parts never touch except at the base-point
(we really only consider the non base-point cells as cells). The smash product
is much more subtle and requires a lot of structure to define properly and
we omit it here — the subtleties are related to the reordering of suspension
factors mentioned in the proof of Proposition 7.3.

A.2. Relation to Morse homology

The CW spectrum view-point is particularly good when relating to Morse
theory. Indeed, the Conley indices Iba(Sr, Xr) used to define the spectra in
the paper can (in the Morse setting) be CW approximated by using a single
cell per critical point. However, since the action on the infinite dimensional
manifold of loops in T ∗N has infinite Morse indices it is only natural that
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the dimension of these cells goes up as we increase the “fineness” (number of
points r) of the finite dimensional approximations. However, in this case the
CW homology considered above gets a single generator per critical point,
which is precisely what Morse homology has. Relating the differentials of
these and those in Floer homology is more than a little subtle; indeed, the
two approaches are counting the same gradient trajectories, but the signs
may differ. It was thought to be the same signs when N is oriented, but the
homotopy constructions in this paper has revealed that this is only true if
N is also spin (see [20] for more details on this).

A.3. Thom-spectra

The following specific construction is formulated in the way it is used in
the paper, which is why it may look a little warped compared to standard
definitions. However, the reader familiar with some other construction should
easily be able to relate it to this.

Let f : X → Z×BO be any map from a space X = ∪l∈NXl where Xl

is of finite homotopy type (homotopy equivalent to a finite CW complex).
This could of course be ΛL and ΛslµLL, and the map f could be given by
the map described in Definition 14.3, which is precisely what came up in the
paper.

First note that if X is not connected and f has range in different com-
ponents in Z×BO we may simply split it up into components and wedge
the resulting components of the Thom-spectra together. So in the following
we assume that f is a map from X to {d} ×BO.

Then we describe how to define it in the case that all of X is in fact of
finite homotopy type. Indeed, in this case there exists an n ≥ 0 such that
the map f is homotopic to a map f ′ : X → {d} ×BO(n). We then (depen-
dent on this homotopy) define the Thom-spectra as the shifted suspension
spectrum defined by

(Xf )n+d = D(f ′∗γn)/S(f ′∗(γn)).

That is, the (n+ d)th space is the Thom space of the canonical bundle
γn → BO(n) pulled back to X, and for all n′ ≥ n+ d

(Xf )n′ = Σn′−n−d(Xf )n+d

and the structure maps are the identity. So if the bundle is oriented the
homology will (by the Thom isomorphism) be isomorphic to the homology
of X but shifted by the (virtual) dimension d ∈ Z.
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In the general case let nl be strictly increasing and such that f|Xl factors
through {d} ×BO(nl) up to homotopy, we may inductively assume that this
is compatible with the chosen homotopy of the restriction to Xl−1. In fact,
we may we assume that there is a homotopy to a map f ′ : X → {d} ×BO
such that the image of f ′|Xl is in {d} ×BO(nl) ⊂ {d} ×BO. Now we define

for each l the spectrum Xf,l as above, which means it is the degree shifted
suspension spectrum of:

(Xf,l)nl+d = X
(f∗l γnl )

l = D(f∗l γnl)/S(f∗l γnl).

There are canonical maps of spectra from this to the next. Indeed, if we
consider the restriction of the Thom space construction over Xl+1 to Xl,
which is functorial, we see that we have a canonical inclusion

Σnl+1−nl(Xf,l)nl+s = Σnl+1−nlD(f∗l γnl)/S(f∗l γnl)

= D(f∗l γnl+1
)/S(f∗l γnl+1

) ⊂ (Xf,l).

Se Section 7 for an explanation of the second equality. This means that we
have canonical inclusions of spectra

Xf,l ⊂ Xf,l+1

and Xf is “simply” the union of all these. However, in Equation (57) where
a similar sequence turned up we used a homotopy colimit instead of a union.
This was because we had similar maps up to homotopy, but since they were
constructed as quotients of Conley index pairs they were not inclusions.
However, by taking homotopy colimits we replace them by inclusions. The
next sections explains some aspects of this construction.

Remark A.1. One has to be a little careful here with the choice of homo-
topies if one wants to uniquely define a spectrum up to contractible choices.
However, given the initial map f all these choices are contractible choices.

A.4. Limits of spectra and mapping cylinders

Assume we have a sequence of spectra X l ⊂ X l+1 where each inclusion is a
level-wise cofibration. Then we can take their limit as simply the union X =
∪lX l. However, what appears in the paper is a sequence of maps f l : Z l →
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Z l+1 (of spectra) which are not cofibrations, but where we have diagrams

Z l
f l
//

��

Z l+1

��

X l gl
// X l+1

where the vertical maps are homotopy equivalences (sometimes given by a
contractible choice) and the diagram homotopy commutes (again sometimes
given by a contractible choice). Then if we want to take a limit of the maps
Z l → Z l+1 which has a (contractible choice in the case where the above
were such) homotopy equivalence to X we take a homotopy colimit. This we

define by letting Z ′l be the mapping telescope of Z0 f0

−→ Z1 f1

−→ · · · f
l−1

−−−→ Z l.
Now we define

Hocolim
l→∞

Z l = ∪lZ ′1

since Z ′l ⊂ Z ′l+1 is a cofibration. This is (contractible choice) homotopy
equivalent to X by the fact that Hocoliml→∞X

l deformation retracts onto
X, and having the above diagrams means one can construct a map (con-
tractible choice in that case) between mapping cylinders

Z ′l → X ′l,

which are homotopy equivalences, and compatible with the inclusions Z ′l ⊂
Z ′l+1 and X ′l ⊂ X ′l+1.

There is a slight subtlety about these homotopy colimits for readers not
very familiar with spectra. Indeed, above we noted that maps of spectra are
defined only on an equivalent “sub-spectrum” this means that if we fix a
level k ∈ N and look at the mapping cylinders Z ′l kth level (Z ′l)k then for
l increasing the part of Z l

′

k inside this for fixed l′ < l can get smaller and
smaller (even be empty at some point). However, taking their union (and
considering how this looks for CW spectra) we see that all cells appear at
some point. This also means that strictly speaking the “inclusion” of Z ′l into
Z ′l+1 is not actual a level-wise inclusion. It is an inclusion of an isomorphic
“sub-spectrum” of Z ′l into Z ′l+1, but that is just as good as an inclusion in
the category of spectra.

Combining this subtlety with the fact that our level-spaces in Section 7
were already defined as mapping cylinders may not make this less confusing.
This added detail, however, does not change anything in the above.
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