The symplectic displacement energy

Augustin Banyaga, David Hurtubise, and Peter Spaeth

We define the symplectic displacement energy of a non-empty subset of a compact symplectic manifold as the infimum of the Hoferlike norm [\[4\]](#page-12-0) of symplectic diffeomorphisms that displace the set. We show that this energy (like the usual displacement energy defined using Hamiltonian diffeomorphisms) is a strictly positive number on sets with non-empty interior. As a consequence we prove a result justifying the introduction of the notion of strong symplectic homeomorphisms [\[3\]](#page-12-1).

1. Statement of results

In [\[13\]](#page-13-0), Hofer defined a norm $\|\cdot\|_H$ on the group $\text{Ham}(M,\omega)$ of compactly supported Hamiltonian diffeomorphisms of a symplectic manifold (M, ω) .

For a non-empty subset $A \subset M$, he introduced the notion of the **displacement energy** $e(A)$ of A:

$$
e(A) = \inf \{ ||\phi||_H \mid \phi \in \text{Ham}(M, \omega), \phi(A) \cap A = \emptyset \}.
$$

The displacement energy is defined to be $+\infty$ if no compactly supported Hamiltonian diffeomorphism displaces A.

Eliashberg and Polterovich [\[8\]](#page-13-1) proved the following result.

Theorem 1.1. For any non-empty open subset A of M, $e(A)$ is a strictly positive number.

It is easy to see that if A and B are non-empty subsets of M such that $A \subset B$, then $e(A) \leq e(B)$, and that e is a symplectic invariant. That is,

$$
e(f(A)) = e(A)
$$

for all $f \in \text{Symp}(M, \omega) = \{ \phi \in \text{Diff}(M) \mid \phi^* \omega = \omega \}.$ This follows from the fact that $|| f \circ \phi \circ f^{-1} ||_H = ||\phi||_H$.

In [\[4\]](#page-12-0), a Hofer-like metric $\|\cdot\|_{HL}$ was constructed on the group $\mathrm{Symp}_0(M,\omega)$ of all symplectic diffeomorphisms of a compact symplectic manifold (M, ω) that are isotopic to the identity. It was proved recently by Buss and Leclercq [\[7\]](#page-13-2) that the restriction of $\|\cdot\|_{HL}$ to $\text{Ham}(M, \omega)$ is a metric equivalent to the Hofer metric.

Let us now propose the following definition.

Definition 1.2. The symplectic displacement energy $e_s(A)$ of a nonempty subset $A \subset M$ is defined to be:

$$
e_s(A) = \inf \{ ||h||_{HL} \mid h \in \text{Symp}_0(M, \omega), h(A) \cap A = \emptyset \}
$$

if some element of $\text{Symp}_0(M,\omega)$ displaces A, and $+\infty$ if no element of $\mathrm{Symp}_0(M,\omega)$ displaces A.

Clearly, if A and B are non-empty subsets of M such that $A \subset B$, then $e_s(A) \leq e_s(B)$.

The goal of this paper is to prove the following result.

Theorem 1.3. For any closed symplectic manifold (M, ω) , the symplectic displacement energy of any subset $A \subset M$ with non-empty interior satisfies $e_s(A) > 0.$

2. The Hofer norm $\|\cdot\|_H$ and the Hofer-like norm $\|\cdot\|_{HL}$

2.1. Symp₀ (M, ω) and Ham (M, ω)

Let Iso (M, ω) be the set of all compactly supported symplectic isotopies of a symplectic manifold (M, ω) . A compactly supported symplectic isotopy $\Phi \in \text{Iso}(M, \omega)$ is a smooth map $\Phi : M \times [0, 1] \to M$ such that for all $t \in [0, 1]$, if we denote by $\phi_t(x) = \Phi(x, t)$, then $\phi_t \in \text{Symp}(M, \omega)$ is a symplectic diffeomorphism with compact support, and $\phi_0 = id$. We denote by $\mathrm{Symp}_0(M,\omega)$ the set of all time-1 maps of compactly supported symplectic isotopies.

Isotopies $\Phi = {\phi_t}$ are in one-to-one correspondence with families of smooth vector fields $\{\dot{\phi}_t\}$ defined by

$$
\dot{\phi}_t(x) = \frac{d\phi_t}{dt}(\phi_t^{-1}(x)).
$$

If $\Phi \in \text{Iso}(M, \omega)$, then the one-form $i(\dot{\phi}_t)\omega$ such that

$$
i(\dot{\phi}_t)\omega(X) = \omega(\dot{\phi}_t, X)
$$

for all vector fields X is closed. If for all t the 1-form $i(\dot{\phi}_t)\omega$ is exact, that is, there exists a smooth function $F: M \times [0,1] \to \mathbb{R}, F(x,t) = F_t(x)$, with compact supports such that $i(\dot{\phi}_t)\omega = dF_t$, then the isotopy Φ is called a Hamiltonian isotopy and will be denoted by Φ_F . We define the group $\text{Ham}(M, \omega)$ of Hamiltonian diffeomorphisms as the set of time-one maps of Hamiltonian isotopies.

For each $\Phi = {\phi_t} \in Iso(M,\omega)$, the mapping

$$
\Phi \mapsto \left[\int_0^1 (i(\dot \phi_t) \omega) dt \right],
$$

where $[\alpha]$ denotes the cohomology class of a closed form α , induces a well defined map \tilde{S} from the universal cover of $\text{Symp}_0(M,\omega)$ to the first de Rham cohomology group $H^1(M,\mathbb{R})$. This map is called the **Calabi invariant** (or the flux). It is a surjective group homomorphism. Let $\Gamma \subset H^1(M,\mathbb{R})$ be the image by \tilde{S} of the fundamental group of $\text{Symp}_0(M,\omega)$. We then get a surjective homomorphism

$$
S: \mathrm{Symp}_0(M,\omega) \to H^1(M,\mathbb{R})/\Gamma.
$$

The kernel of this homomorphism is the group $\text{Ham}(M, \omega)$ [\[1\]](#page-12-2) [\[2\]](#page-12-3).

2.2. The Hofer norm

Hofer [\[13\]](#page-13-0) defined the length l_H of a Hamiltonian isotopy Φ_F as

$$
l_H(\Phi_F) = \int_0^1 (\csc F_t(x)) dt,
$$

where the oscillation of a function $f : M \to \mathbb{R}$ is

osc
$$
(f)
$$
 = max _{$x \in M$} $(f(x)) - min$ _{$x \in M$} $(f(x)).$

For $\phi \in \text{Ham}(M, \omega)$, the **Hofer norm** of ϕ is

$$
\|\phi\|_H = \inf\{l_H(\Phi_F)\},
$$

where the infimum is taken over all Hamiltonian isotopies Φ_F with time-one map equal to ϕ , i.e. $\phi_{F,1} = \phi$.

The Hofer distance $d_H(\phi, \psi)$ between two Hamiltonian diffeomorphisms ϕ and ψ is

$$
d_H(\phi, \psi) = \|\phi \circ \psi^{-1}\|_H.
$$

This distance is bi-invariant. This property was used in [\[8\]](#page-13-1) to prove Theorem [1.1.](#page-0-0)

2.3. The Hofer-like norm

Now let (M, ω) be a compact symplectic manifold without boundary, on which we fix a Riemannian metric g. For each $\Phi = {\phi_t} \in Iso(M,\omega)$, we consider the Hodge decomposition [\[19\]](#page-13-3) of the 1-form $i(\dot{\phi}_t)\omega$ as

$$
i(\dot{\phi}_t)\omega = \mathcal{H}_t + du_t,
$$

where \mathcal{H}_t is a harmonic 1-form. The forms \mathcal{H}_t and u_t are unique and depend smoothly on t.

For $\Phi \in \text{Iso}(M, \omega)$, define

$$
l_0(\Phi) = \int_0^1 (|\mathcal{H}_t| + \csc(u_t(x)) dt,
$$

where $|\mathcal{H}_t|$ is a norm on the finite dimensional vector space of harmonic 1-forms. We let

$$
l(\phi) = \frac{1}{2}(l_0(\Phi) + l_0(\Phi^{-1})),
$$

where $\Phi^{-1} = {\phi_t^{-1}}.$

For each $\phi \in \text{Symp}_0(M, \omega)$, let

 $\|\phi\|_{HL} = \inf\{l(\Phi)\},\,$

where the infimum is taken over all symplectic isotopies $\Phi = {\phi_t}$ with $\phi_1 = \phi$.

The following result was proved in [\[4\]](#page-12-0).

Theorem 2.1. For any closed symplectic manifold (M, ω) , $\|\cdot\|_{HL}$ is a norm on $\mathrm{Symp}_0(M,\omega)$.

Remark 2.2. The norm $\|\cdot\|_{HL}$ depends on the choice of the Riemannian metric g on M and the choice of the norm $|\cdot|$ on the space of harmonic 1-forms. However, different choices for g and $|\cdot|$ yield equivalent metrics. See Section 3 of [\[4\]](#page-12-0) for more details.

2.4. Some equivalence properties

Let (M, ω) be a compact symplectic manifold. Buss and Leclercq have proved:

Theorem 2.3. [\[7\]](#page-13-2) The restriction of the Hofer-like norm $\|\cdot\|_{HL}$ to $\text{Ham}(M,\omega)$ is equivalent to the Hofer norm $\|\cdot\|_H$.

We now prove the following.

Theorem 2.4. Let $\phi \in \text{Symp}_0(M, \omega)$. The norm

$$
h\mapsto \|\phi\circ h\circ \phi^{-1}\|_{HL}
$$

on $\text{Symp}_0(M, \omega)$ is equivalent to the norm $\|\cdot\|_{HL}$.

Remark 2.5. We owe the statement of the above theorem to the referee of a previous version of this paper.

Proof. Let $\{h_t\}$ be an isotopy in $\text{Symp}_0(M, \omega)$ from h to the identity, and let

$$
i(\dot{h}_t)\omega = \mathcal{H}_t + du_t
$$

be the Hodge decomposition of $i(h_t)\omega$. Then $\Psi = \{\phi \circ h_t \circ \phi^{-1}\}$ is an isotopy from $\phi \circ h \circ \phi^{-1}$ to the identity and $\Psi_t = \phi_* h_t$. Therefore,

$$
i(\dot{\Psi}_t)\omega = (\phi^{-1})^*(i(\dot{h}_t)\phi^*\omega) = (\phi^{-1})^*(\mathcal{H}_t + du_t) = (\phi^{-1})^*\mathcal{H}_t + d(u_t \circ \phi^{-1}).
$$

Let $\{\phi_s^{-1}\}\$ be an isotopy from ϕ^{-1} to the identity, and let $L_X = i_X d +$ di_X be the Lie derivative in the direction X. Then

$$
\frac{d}{ds}((\phi_s^{-1})^*\mathcal{H}_t) = (\phi_s^{-1})^*(L_{\dot{\phi}_s^{-1}}\mathcal{H}_t) = d((\phi_s^{-1})^*i(\dot{\phi}_s^{-1})\mathcal{H}_t),
$$

where $\dot{\phi}_t^{-1} = (\frac{d}{dt} \phi_t^{-1}) \circ \phi_t$. Integrating from 0 to 1 we get

$$
(\phi^{-1})^* \mathcal{H}_t - \mathcal{H}_t = d\alpha_t
$$

where

$$
\alpha_t = \int_0^1 ((\phi_s^{-1})^* i(\dot{\phi}_s^{-1}) \mathcal{H}_t) \ ds.
$$

Therefore,

$$
i(\dot{\Psi}_t)\omega = \mathcal{H}_t + d(u_t \circ \phi^{-1} + \alpha_t).
$$

Hence,

$$
l_0(\Psi) = \int_0^1 \left(|\mathcal{H}_t| + \csc(u_t \circ \phi^{-1} + \alpha_t) \right) dt
$$

\n
$$
\leq \int_0^1 \left(|\mathcal{H}_t| + \csc(u_t \circ \phi^{-1}) \right) dt + \int_0^1 \csc(\alpha_t) dt
$$

\n
$$
= \int_0^1 \left(|\mathcal{H}_t| + \csc(u_t) \right) dt + \int_0^1 \csc(\alpha_t) dt
$$

\n
$$
= l_0(\lbrace h_t \rbrace) + K
$$

where

$$
K = \int_0^1 \csc(\alpha_t) \ dt.
$$

Let us now do the same calculation for $\Psi^{-1} = \{ \phi \circ h_t^{-1} \circ \phi^{-1} \}.$

Since \dot{h}_t^{-1} satisfies $\dot{h}_t^{-1} = -(h_t^{-1})_* \dot{h}_t$, the cohomology classes of $i(\dot{h}_t)\omega$ and $i(h_t^{-1})\omega$ are of opposite sign. Since the Hodge decomposition is unique and the harmonic part of the first form is \mathcal{H}_t , the harmonic part of the second form is $-\mathcal{H}_t$. Therefore, there is a smooth family of functions v_t such that the Hodge decomposition for $i(h_t^{-1})\omega$ is

$$
i(\dot{h}_t^{-1})\omega = -\mathcal{H}_t + dv_t.
$$

The same calculation shows

$$
i(\dot{\Psi}_t^{-1})\omega = -\mathcal{H}_t + d(v_t \circ \phi^{-1} - \alpha_t).
$$

Hence,

$$
l_0(\Psi^{-1}) \le l_0(\{h_t^{-1}\}) + K.
$$

We will now estimate $K = \int_0^1 \csc(\alpha_t) dt$. Fix an isotopy $\{\phi_s^{-1}\}\$ from ϕ^{-1} to the identity. Consider the continuous linear map

$$
\mathcal{L}_{\{\phi_s^{-1}\}} : \mathcal{H}^1(M, g) \to C^\infty(M)
$$

from the finite dimensional vector space of harmonic 1-forms given by

$$
\mathcal{L}_{\{\phi_s^{-1}\}}(\theta) = \int_0^1 ((\phi_s^{-1})^* i(\dot{\phi}_s^{-1})\theta) \ ds.
$$

Let $\nu \geq 0$ be the norm of $\mathcal{L}_{\{\phi_s^{-1}\}}$ where the norm on $\mathcal{H}^1(M, g)$ is defined by the metric g and $C^{\infty}(M)$ is given the sup norm. Then $|\mathcal{L}_{\{\phi_s^{-1}\}}(\theta)| \leq \nu |\theta|$. In

our case $\alpha_t = \mathcal{L}_{\{\phi_s^{-1}\}}(\mathcal{H}_t)$. Therefore,

 $|\alpha_t| \leq \nu |\mathcal{H}_t|$

and

$$
\operatorname{osc}(\alpha_t) \le 2|\alpha_t| \le 2\nu |\mathcal{H}_t|.
$$

This implies

$$
\operatorname{osc}\left(\alpha_{t}\right) \leq 2\nu\left(\left|\mathcal{H}_{t}\right|+\operatorname{osc}\left(u_{t}\right)\right) \text{ and } \operatorname{osc}\left(\alpha_{t}\right) \leq 2\nu\left(\left|\mathcal{H}_{t}\right|+\operatorname{osc}\left(v_{t}\right)\right).
$$

Hence,

$$
K = \int_0^1 \csc(\alpha_t) \ dt \le 2\nu \, l_0(\{h_t\}),
$$

and

$$
K = \int_0^1 \csc(\alpha_t) \ dt \le 2\nu \, l_0(\{h_t^{-1}\}).
$$

Now recall that,

$$
l_0(\Psi) \le l_0({h_t}) + K
$$
 and $l_0(\Psi^{-1}) \le l_0({h_t^{-1}}) + K$.

Therefore,

$$
l(\Psi) = \frac{1}{2} (l_0(\Psi) + l_0(\Psi^{-1}))
$$

\n
$$
\leq \frac{1}{2} (l_0(\{h_t\}) + 2\nu l_0(\{h_t\}) + l_0(\{h_t^{-1}\}) + 2\nu l_0(\{h_t^{-1}\}))
$$

\n
$$
\leq (2\nu + 1)l(\{h_t\}).
$$

Taking the infimum over the set $I(h)$ of all symplectic isotopies from h to the identity we get

$$
\inf_{I(h)} l(\Psi) \le (2\nu + 1) \|h\|_{HL},
$$

and since

$$
\|\phi \circ h \circ \phi^{-1}\|_{HL} \le \inf_{I(h)} l(\Psi)
$$

we get

$$
\|\phi \circ h \circ \phi^{-1}\|_{HL} \le k \|h\|_{HL}
$$

with $k = 2\nu + 1$.

We have shown that for every $\phi \in \text{Symp}_0(M, \omega)$ there is a $k \geq 1$ (depending on an isotopy $\{\phi_s\}$ from ϕ to the identity) such that the preceding inequality holds for all $h \in \text{Symp}_0(M, \omega)$. Applying this to ϕ^{-1} we see that there is an $k' \geq 1$ such that

$$
\|\phi^{-1} \circ h \circ \phi\|_{HL} \le k' \|h\|_{HL}
$$

for all $h \in \text{Symp}_0(M, \omega)$. Therefore, for any $h \in \text{Symp}_0(M, \omega)$ we have

$$
||h||_{HL} = ||\phi^{-1} \circ (\phi \circ h \circ \phi^{-1}) \circ \phi||_{HL} \le k' ||\phi \circ h \circ \phi^{-1}||_{HL}.
$$

That is,

$$
\frac{1}{k'} \|h\|_{HL} \le \|\phi \circ h \circ \phi^{-1}\|_{HL} \le k \|h\|_{HL}.
$$

Remark 2.6. The constant k depends only on ϕ^{-1} rather than the isotopy $\{\phi_s^{-1}\}\$, because the function $\mathcal{L}_{\{\phi_s^{-1}\}}(\theta)$ is the unique normalized function on M such that $d(\mathcal{L}_{\{\phi_s^{-1}\}}(\theta)) = (\phi^{-1})^*\theta - \theta$.

3. Proof of the main result

We will closely follow the proof given by Polterovich of Theorem 2.4.A in [\[17\]](#page-13-4) that $e(A) > 0$. We will use without any change Proposition 1.5.B.

Proposition 1.5.B. [\[17\]](#page-13-4) For any non-empty open subset A of M , there exists a pair of Hamiltonian diffeomorphisms ϕ and ψ that are supported in A and whose commutator $[\phi, \psi] = \psi^{-1} \circ \phi^{-1} \circ \psi \circ \phi$ is not equal to the identity.

For the sake of completeness we provide the following alternate proof of this proposition based on the transitivity lemmas in [\[2\]](#page-12-3) (pages 29 and 109). (For a proof of k-fold transitivity for symplectomorphisms see $[6]$.)

Proof. Let U be an open connected subset of A such that $\overline{U} \subset A$. Pick three distinct points $a, b, c \in U$. By the transitivity lemma of $\text{Ham}(M, \omega)$, there exist $\phi, \psi \in \text{Ham}(M, \omega)$ such that $\phi(a) = b$ and $\psi(b) = c$. Moreover, we can choose ϕ and ψ so that supp (ϕ) and supp (ψ) are contained in small tubular neighborhoods V and W of distinct paths in U joining a to b and b to c respectively, and we can assume that $c \in U\backslash V$.

Then $(\psi^{-1}\phi^{-1}\psi\phi)(a) = (\psi^{-1}\phi^{-1})(c) = \psi^{-1}(c) = b$. Hence $[\phi, \psi] \neq id$. \Box

We will say that a map h displaces A if $h(A) \cap A = \emptyset$. Let us denote by $D(A)$ the set of all $h \in \text{Symp}_0(M, \omega)$ that displace A. We note the following fact.

Lemma 3.1. Let ϕ and ψ be as in Proposition 1.5.B, and let $h \in D(A)$. Then the commutator

$$
\theta = [h, \phi^{-1}] = \phi \circ h^{-1} \circ \phi^{-1} \circ h
$$

satisfies $[\phi, \psi] = [\theta, \psi]$.

Proof. If $x \in A$ then $h(x) \notin A$. Hence,

$$
\theta(x) = (\phi \circ h^{-1})(\phi^{-1}(h(x)))
$$

= $\phi(h^{-1}(h(x)))$ since supp $(\phi^{-1}) \subset A$
= $\phi(x)$,

and we see that $\theta|_A = \phi|_A$. Similarly, for $x \in A$ we have $\phi^{-1}(x) \in A$, and hence $h(\phi^{-1}(x)) \notin A$ since $h(A) \cap A = \emptyset$. Thus,

$$
\theta^{-1}(x) = h^{-1}(\phi(h(\phi^{-1}(x))))
$$

= $h^{-1}(h(\phi^{-1}(x)))$ since supp $(\phi) \subset A$
= $\phi^{-1}(x)$,

and we see that $\theta^{-1}|_A = \phi^{-1}|_A$. Thus, $(\phi^{-1} \circ \psi \circ \phi)(x) = (\theta^{-1} \circ \psi \circ \theta)(x)$ for all $x \in A$ since supp $(\psi) \subset A$.

Now, if $x \notin A$ and $\theta(x) \in A$ we would have $x = \theta^{-1}(\theta(x)) = \phi^{-1}(\theta(x)) \in A$ A since supp $(\phi^{-1}) \subset A$, a contradiction. Hence, for $x \notin A$ we have $\theta(x) \notin A$ and

$$
(\phi^{-1} \circ \psi \circ \phi)(x) = x = (\theta^{-1} \circ \psi \circ \theta)(x)
$$

since both ϕ and ψ have support in A. Therefore, $\phi^{-1} \circ \psi \circ \phi = \theta^{-1} \circ \psi \circ \theta$, and we have $[\phi, \psi] = [\theta, \psi]$.

Proof of Theorem [1.3](#page-1-0) continued. Following the proof of Theorem 2.4.A in [\[17\]](#page-13-4) we assume there exists $h \in D(A) \neq \emptyset$. Otherwise, we are done since $e_s(A) = +\infty$. Now, let ϕ and ψ be as in Proposition 1.5.B, and let θ be as in Lemma [3.1.](#page-8-0) The commutator θ is contained in $\text{Ham}(M,\omega)$ because commutators are in the kernel of the Calabi invariant. Since both θ and ψ are in $\text{Ham}(M,\omega)$ and the Hofer norm is conjugation invariant, we have

$$
\begin{aligned} ||[\theta,\psi]||_H &= ||\psi^{-1} \circ \theta^{-1} \circ \psi \circ \theta||_H \\ &\leq ||\psi^{-1} \circ \theta^{-1} \circ \psi||_H + ||\theta||_H \\ &= 2||\theta||_H. \end{aligned}
$$

By Buss and Leclercq's theorem [\[7\]](#page-13-2) there is constant $\lambda > 0$ such that

$$
\|\theta\|_H \le \lambda \|\theta\|_{HL}.
$$

Using the triangle inequality and the constant $k > 0$ from Theorem [2.4](#page-4-0) we have

$$
\begin{aligned} ||[\theta,\psi]||_H &\le 2\lambda \left(\|\phi \circ h \circ \phi^{-1}\|_{HL} + \|h\|_{HL} \right) \\ &\le 2\lambda \left(k \|h\|_{HL} + \|h\|_{HL} \right). \end{aligned}
$$

Therefore,

$$
0 < \frac{\|[\phi, \psi]\|_H}{2\lambda(k+1)} = \frac{\|[\theta, \psi]\|_H}{2\lambda(k+1)} \le \|h\|_{HL}.
$$

Since this inequality holds for all $h \in D(A)$, we can take the infimum over $D(A)$ to get

$$
0 < \frac{\|[\phi,\psi]\|_H}{2\lambda(k+1)} \le e_s(A).
$$

This completes the proof of Theorem [1.3.](#page-1-0)

Remark 3.2. The proof of Theorem [1.1](#page-0-0) relied on the bi-invariance of the distance d_H , whereas the proof of Theorem [1.3](#page-1-0) relied on the equivalence of the norms $h \mapsto ||\phi \circ h \circ \phi^{-1}||_{HL}$ and $|| \cdot ||_{HL}$, i.e. the invariance of d_{HL} up to a constant.

4. Examples

A harmonic 1-parameter group is an isotopy $\Phi = {\phi_t}$ generated by the vector field V_H defined by $i(V_H)\omega = H$, where H is a harmonic 1-form. It is immediate from the definitions that

$$
l_0(\Phi) = l_0(\Phi^{-1}) = |\mathcal{H}|
$$

where $|\cdot|$ is a norm on the space of harmonic 1-forms. Hence $l(\Phi) = |\mathcal{H}|$. Therefore, if ϕ_1 is the time one map of Φ we have

$$
\|\phi_1\|_{HL} \leq |\mathcal{H}|.
$$

For instance, take the torus T^{2n} with coordinates $(\theta_1, \ldots, \theta_{2n})$ and the flat Riemannian metric. Then all the 1-forms $d\theta_i$ are harmonic. Given $v =$ $(a_1, \ldots, a_n, b_1, \ldots, b_n) \in \mathbb{R}^{2n}$, the translation $x \mapsto x + v$ on \mathbb{R}^{2n} induces a rotation ρ_v on T^{2n} , which is a symplectic diffeomorphism. Moreover, $x \mapsto$ $x + tv$ on \mathbb{R}^{2n} induces a harmonic 1-parameter group $\{\rho_v^t\}$ on T^{2n} .

Taking the 1-forms $d\theta_i$ for $i = 1, ..., 2n$ as basis for the space of harmonic 1-forms and using the standard symplectic form

$$
\omega = \sum_{j=1}^n d\theta_j \wedge d\theta_{j+n}
$$

on T^{2n} we have

$$
i(\dot{\rho_v^t})\omega = \sum_{j=1}^n (a_j d\theta_{j+n} - b_j d\theta_j).
$$

Thus,

$$
l(\{\rho_v^t\}) = |(-b_1, \ldots, -b_n, a_1, \ldots, a_n)|
$$

where $|\cdot|$ is a norm on the space of harmonic 1-forms, and we see that

$$
\|\rho_v\|_{HL} \le |v|
$$

if we use $|v| = |a_1| + \cdots + |a_n| + |b_1| + \cdots + |b_n|$ as the norm on both \mathbb{R}^{2n} and the space of harmonic 1-forms.

Consider the torus T^2 as the square:

$$
\{(p,q) \mid 0 \le p \le 1 \text{ and } 0 \le q \le 1\} \subset \mathbb{R}^2
$$

with opposite sides identified. For any $r < \frac{1}{2}$ let

$$
\tilde{A}(r) = \{(x, y) \mid 0 \le x < r\} \subset \mathbb{R}^2
$$

and let $A(r)$ be the corresponding subset in T^2 . If $v = (r, 0)$, then the rotation ρ_v induced by the translation $(p, q) \mapsto (p + r, q)$ displaces $A(r)$. Therefore, using the norm $|v| = |a_1| + |b_1| = r$ we have

$$
\|\rho_v\|_{HL} \le l(\{\rho_v^t\}) = r.
$$

Therefore,

 $e_s(A(r)) \leq r$.

Remark 4.1. Note that in the above example the symplectic displacement energy is finite, whereas the Hamiltonian displacement energy $e(A(r))$ is infinite. This follows from a result proved by Gromov [\[12\]](#page-13-6): If (M, ω) is a symplectic manifold without boundary that is convex at infinity and $L \subset M$ is a compact Lagrangian submanifold such that $[\omega]$ vanishes on $\pi_2(M, L)$, then for any Hamiltonian symplectomorphism $\phi : M \to M$ the intersection $\phi(L) \cap L \neq \emptyset$. Stronger versions of this result can be found in [\[9\]](#page-13-7), [\[10\]](#page-13-8), and [\[11\]](#page-13-9). See also Section 9.2 of [\[15\]](#page-13-10).

5. Application

The following result is an immediate consequence of the positivity of the symplectic displacement energy of non-empty open sets. For two isotopies Φ and Ψ denote by $\Phi^{-1} \circ \Psi$ the isotopy given at time t by $(\Phi^{-1} \circ \Psi)_t =$ $\phi_t^{-1} \circ \psi_t.$

Theorem 5.1. Let Φ_n be a sequence of symplectic isotopies and let Ψ be another symplectic isotopy. Suppose that the sequence of time-one maps $\phi_{n,1}$ of the isotopies Φ_n converges uniformly to a homeomorphism ϕ , and $l(\Phi_n^{-1} \circ$ Ψ) \rightarrow 0 as $n \rightarrow \infty$, then $\phi = \psi_1$.

This theorem can be viewed as a justification for the following definition, which appeared in [\[5\]](#page-12-4) and [\[3\]](#page-12-1).

Definition 5.2. A homeomorphism h of a compact symplectic manifold is called a strong symplectic homeomorphism if there exist a sequence Φ_n of symplectic isotopies such that $\phi_{n,1}$ converges uniformly to h, and $l(\Phi_n)$ is a Cauchy sequence.

Proof of Theorem [5.1.](#page-11-0) Suppose $\phi \neq \psi_1$, i.e. $\phi^{-1} \circ \psi_1 \neq id$. Then there exists a small open ball B such that $(\phi^{-1} \circ \psi_1)(\overline{B}) \cap \overline{B} = \emptyset$. Since $\phi_{n,1}$ converges uniformly to ϕ , $((\phi_{n,1})^{-1} \circ \psi_1)(B) \cap B = \emptyset$ for *n* large enough. Therefore, the symplectic displacement energy $e_s(B)$ of B satisfies

$$
e_s(B) \le ||(\phi_{n,1})^{-1} \circ \psi_1||_{HL} \le l(\Phi_n^{-1} \circ \Psi).
$$

The last term tends to zero, which contradicts the positivity of $e_s(B)$. \Box

Remark 5.3. This theorem was first proved by Hofer and Zehnder for $M = \mathbb{R}^{2n}$ [\[14\]](#page-13-11), and then by Oh-Müller in [\[16\]](#page-13-12) for Hamiltonian isotopies using the same lines as above, and very recently by Tchuiaga [\[18\]](#page-13-13), using the L^{∞} version of the Hofer-like norm.

Acknowledgments. We would like to thank the referee for carefully reading earlier versions of this paper and providing the statement of Theorem [2.4.](#page-4-0)

References

- $[1]$ Augustin Banyaga, *Sur la structure du groupe des difféomorphismes qui* préservent une forme symplectique, Comment. Math. Helv. 53 (1978), no. 2, 174–227.
- [2] Augustin Banyaga, The structure of classical diffeomorphism groups, Vol. 400 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1997.
- [3] Augustin Banyaga, On the group of symplectic homeomorphisms, C. R. Math. Acad. Sci. Paris 346 (2008), no. 15-16, 867–872.
- [4] Augustin Banyaga, A Hofer-like metric on the group of symplectic diffeomorphisms, in: Symplectic topology and measure preserving dynamical systems, Vol. 512 of Contemp. Math., pages 1–23. Amer. Math. Soc., Providence, RI, 2010.
- [5] Augustin Banyaga and Stéphane Tchuiaga, The group of strong symplectic homeomorphisms in the L^{∞} -metric, Adv. Geom. 14 (2014), no. 3, 523–539.
- [6] William M. Boothby, Transitivity of the automorphisms of certain ge*ometric structures*, Trans. Amer. Math. Soc. 137 (1969), 93–100.
- $[7]$ Guy Buss and Rémi Leclercq, *Pseudo-distances on symplectomorphism groups and applications to flux theory, Math. Z. 272 (2012), no.* 3-4, 1001–1022.
- [8] Yakov Eliashberg and Leonid Polterovich, Bi-invariant metrics on the group of Hamiltonian diffeomorphisms, Internat. J. Math. 4 (1993), no. 5, 727–738.
- [9] Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513–547.
- [10] Andreas Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988), no. 6, 775–813.
- [11] Andreas Floer, Cuplength estimates on Lagrangian intersections, Comm. Pure Appl. Math. 42 (1989), no. 4, 335–356.
- [12] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. **82** (1985), no. 2, 307-347.
- [13] Helmut Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), no. 1-2, 25–38.
- [14] Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2011. Reprint of the 1994 edition.
- [15] Dusa McDuff and Dietmar Salamon, J-holomorphic curves and quantum cohomology, Vol. 6 of University Lecture Series, American Mathematical Society, Providence, RI, 1994.
- [16] Yong-Geun Oh and Stefan Müller, The group of Hamiltonian homeomorphisms and C^0 -symplectic topology, J. Symplectic Geom. 5 (2007), no. 2, 167–219.
- [17] Leonid Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001.
- [18] Stéphane Tchuiaga, On symplectic dynamics, Afr. Diaspora J. Math. 20 (2017), no. 2, 69–94.
- [19] Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Vol. 94 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1983.

DEPARTMENT OF MATHEMATICS, PENN STATE UNIVERSITY University Park, PA 16802, USA E-mail address: banyaga@math.psu.edu

Department of Mathematics and Statistics PENN STATE ALTOONA, ALTOONA, PA 16601, USA E-mail address: Hurtubise@psu.edu

GE Global Research 1 Research Circle, Niskayuna, NY 12309, USA and Department of Mathematics and Statistics PENN STATE ALTOONA, ALTOONA, PA 16601 E-mail address: peter.spaeth@ge.com

Received January 17, 2014 Accepted August 8, 2016