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The symplectic displacement energy

Augustin Banyaga, David Hurtubise, and Peter Spaeth

We define the symplectic displacement energy of a non-empty sub-
set of a compact symplectic manifold as the infimum of the Hofer-
like norm [4] of symplectic diffeomorphisms that displace the set.
We show that this energy (like the usual displacement energy
defined using Hamiltonian diffeomorphisms) is a strictly positive
number on sets with non-empty interior. As a consequence we prove
a result justifying the introduction of the notion of strong symplec-
tic homeomorphisms [3].

1. Statement of results

In [13], Hofer defined a norm ‖ · ‖H on the group Ham(M,ω) of compactly
supported Hamiltonian diffeomorphisms of a symplectic manifold (M,ω).

For a non-empty subset A ⊂M , he introduced the notion of the dis-
placement energy e(A) of A:

e(A) = inf{‖φ‖H | φ ∈ Ham(M,ω), φ(A) ∩A = ∅}.

The displacement energy is defined to be +∞ if no compactly supported
Hamiltonian diffeomorphism displaces A.

Eliashberg and Polterovich [8] proved the following result.

Theorem 1.1. For any non-empty open subset A of M , e(A) is a strictly
positive number.

It is easy to see that if A and B are non-empty subsets of M such that
A ⊂ B, then e(A) ≤ e(B), and that e is a symplectic invariant. That is,

e(f(A)) = e(A)

for all f ∈ Symp(M,ω) = {φ ∈ Diff(M) | φ∗ω = ω}. This follows from the
fact that ‖f ◦ φ ◦ f−1‖H = ‖φ‖H .

In [4], a Hofer-like metric ‖ · ‖HL was constructed on the group
Symp0(M,ω) of all symplectic diffeomorphisms of a compact symplectic
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manifold (M,ω) that are isotopic to the identity. It was proved recently by
Buss and Leclercq [7] that the restriction of ‖ · ‖HL to Ham(M,ω) is a metric
equivalent to the Hofer metric.

Let us now propose the following definition.

Definition 1.2. The symplectic displacement energy es(A) of a non-
empty subset A ⊂M is defined to be:

es(A) = inf{‖h‖HL | h ∈ Symp0(M,ω), h(A) ∩A = ∅}

if some element of Symp0(M,ω) displaces A, and +∞ if no element of
Symp0(M,ω) displaces A.

Clearly, if A and B are non-empty subsets of M such that A ⊂ B, then
es(A) ≤ es(B).

The goal of this paper is to prove the following result.

Theorem 1.3. For any closed symplectic manifold (M,ω), the symplectic
displacement energy of any subset A ⊂M with non-empty interior satisfies
es(A) > 0.

2. The Hofer norm ‖ · ‖H and the Hofer-like norm ‖ · ‖HL

2.1. Symp0(M, ω) and Ham(M, ω)

Let Iso(M,ω) be the set of all compactly supported symplectic isotopies
of a symplectic manifold (M,ω). A compactly supported symplectic iso-
topy Φ ∈ Iso(M,ω) is a smooth map Φ : M × [0, 1]→M such that for all
t ∈ [0, 1], if we denote by φt(x) = Φ(x, t), then φt ∈ Symp(M,ω) is a sym-
plectic diffeomorphism with compact support, and φ0 = id. We denote by
Symp0(M,ω) the set of all time-1 maps of compactly supported symplectic
isotopies.

Isotopies Φ = {φt} are in one-to-one correspondence with families of
smooth vector fields {φ̇t} defined by

φ̇t(x) =
dφt
dt

(φ−1t (x)).

If Φ ∈ Iso(M,ω), then the one-form i(φ̇t)ω such that

i(φ̇t)ω(X) = ω(φ̇t, X)
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The symplectic displacement energy 71

for all vector fields X is closed. If for all t the 1-form i(φ̇t)ω is exact,
that is, there exists a smooth function F : M × [0, 1]→ R, F (x, t) = Ft(x),
with compact supports such that i(φ̇t)ω = dFt, then the isotopy Φ is called
a Hamiltonian isotopy and will be denoted by ΦF . We define the group
Ham(M,ω) of Hamiltonian diffeomorphisms as the set of time-one maps of
Hamiltonian isotopies.

For each Φ = {φt} ∈ Iso(M,ω), the mapping

Φ 7→
[∫ 1

0
(i(φ̇t)ω)dt

]
,

where [α] denotes the cohomology class of a closed form α, induces a well
defined map S̃ from the universal cover of Symp0(M,ω) to the first de Rham
cohomology group H1(M,R). This map is called the Calabi invariant (or
the flux). It is a surjective group homomorphism. Let Γ ⊂ H1(M,R) be
the image by S̃ of the fundamental group of Symp0(M,ω). We then get a
surjective homomorphism

S : Symp0(M,ω)→ H1(M,R)/Γ.

The kernel of this homomorphism is the group Ham(M,ω) [1] [2].

2.2. The Hofer norm

Hofer [13] defined the length lH of a Hamiltonian isotopy ΦF as

lH(ΦF ) =

∫ 1

0
(oscFt(x)) dt,

where the oscillation of a function f : M → R is

osc (f) = max
x∈M

(f(x))− min
x∈M

(f(x)).

For φ ∈ Ham(M,ω), the Hofer norm of φ is

‖φ‖H = inf{lH(ΦF )},

where the infimum is taken over all Hamiltonian isotopies ΦF with time-one
map equal to φ, i.e. φF,1 = φ.
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The Hofer distance dH(φ, ψ) between two Hamiltonian diffeomorphisms
φ and ψ is

dH(φ, ψ) = ‖φ ◦ ψ−1‖H .

This distance is bi-invariant. This property was used in [8] to prove Theo-
rem 1.1.

2.3. The Hofer-like norm

Now let (M,ω) be a compact symplectic manifold without boundary, on
which we fix a Riemannian metric g. For each Φ = {φt} ∈ Iso(M,ω), we
consider the Hodge decomposition [19] of the 1-form i(φ̇t)ω as

i(φ̇t)ω = Ht + dut,

where Ht is a harmonic 1-form. The forms Ht and ut are unique and depend
smoothly on t.

For Φ ∈ Iso(M,ω), define

l0(Φ) =

∫ 1

0
(|Ht|+ osc (ut(x)) dt,

where |Ht| is a norm on the finite dimensional vector space of harmonic
1-forms. We let

l(φ) =
1

2
(l0(Φ) + l0(Φ

−1)),

where Φ−1 = {φ−1t }.
For each φ ∈ Symp0(M,ω), let

‖φ‖HL = inf{l(Φ)},

where the infimum is taken over all symplectic isotopies Φ = {φt} with
φ1 = φ.

The following result was proved in [4].

Theorem 2.1. For any closed symplectic manifold (M,ω), ‖ · ‖HL is a
norm on Symp0(M,ω).

Remark 2.2. The norm ‖ · ‖HL depends on the choice of the Riemannian
metric g on M and the choice of the norm | · | on the space of harmonic
1-forms. However, different choices for g and | · | yield equivalent metrics.
See Section 3 of [4] for more details.
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2.4. Some equivalence properties

Let (M,ω) be a compact symplectic manifold. Buss and Leclercq have
proved:

Theorem 2.3. [7] The restriction of the Hofer-like norm ‖ · ‖HL to
Ham(M,ω) is equivalent to the Hofer norm ‖ · ‖H .

We now prove the following.

Theorem 2.4. Let φ ∈ Symp0(M,ω). The norm

h 7→ ‖φ ◦ h ◦ φ−1‖HL

on Symp0(M,ω) is equivalent to the norm ‖ · ‖HL.

Remark 2.5. We owe the statement of the above theorem to the referee
of a previous version of this paper.

Proof. Let {ht} be an isotopy in Symp0(M,ω) from h to the identity, and
let

i(ḣt)ω = Ht + dut

be the Hodge decomposition of i(ḣt)ω. Then Ψ = {φ ◦ ht ◦ φ−1} is an isotopy
from φ ◦ h ◦ φ−1 to the identity and Ψ̇t = φ∗ḣt. Therefore,

i(Ψ̇t)ω = (φ−1)∗(i(ḣt)φ
∗ω) = (φ−1)∗(Ht + dut) = (φ−1)∗Ht + d(ut ◦ φ−1).

Let {φ−1s } be an isotopy from φ−1 to the identity, and let LX = iXd+
diX be the Lie derivative in the direction X. Then

d

ds
((φ−1s )∗Ht) = (φ−1s )∗(Lφ̇−1

s
Ht) = d((φ−1s )∗i(φ̇−1s )Ht),

where φ̇−1t = ( ddtφ
−1
t ) ◦ φt. Integrating from 0 to 1 we get

(φ−1)∗Ht −Ht = dαt

where

αt =

∫ 1

0
((φ−1s )∗i(φ̇−1s )Ht) ds.

Therefore,

i(Ψ̇t)ω = Ht + d(ut ◦ φ−1 + αt).
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Hence,

l0(Ψ) =

∫ 1

0

(
|Ht|+ osc (ut ◦ φ−1 + αt)

)
dt

≤
∫ 1

0

(
|Ht|+ osc (ut ◦ φ−1)

)
dt+

∫ 1

0
osc (αt) dt

=

∫ 1

0
(|Ht|+ osc (ut)) dt+

∫ 1

0
osc (αt) dt

= l0({ht}) +K

where

K =

∫ 1

0
osc (αt) dt.

Let us now do the same calculation for Ψ−1 = {φ ◦ h−1t ◦ φ−1}.
Since ḣ−1t satisfies ḣ−1t = −(h−1t )∗ḣt, the cohomology classes of i(ḣt)ω

and i(ḣ−1t )ω are of opposite sign. Since the Hodge decomposition is unique
and the harmonic part of the first form is Ht, the harmonic part of the
second form is −Ht. Therefore, there is a smooth family of functions vt such
that the Hodge decomposition for i(ḣ−1t )ω is

i(ḣ−1t )ω = −Ht + dvt.

The same calculation shows

i(Ψ̇−1t )ω = −Ht + d(vt ◦ φ−1 − αt).

Hence,

l0(Ψ
−1) ≤ l0({h−1t }) +K.

We will now estimate K =
∫ 1
0 osc (αt) dt. Fix an isotopy {φ−1s } from φ−1

to the identity. Consider the continuous linear map

L{φ−1
s } : H1(M, g)→ C∞(M)

from the finite dimensional vector space of harmonic 1-forms given by

L{φ−1
s }(θ) =

∫ 1

0
((φ−1s )∗i(φ̇−1s )θ) ds.

Let ν ≥ 0 be the norm of L{φ−1
s } where the norm on H1(M, g) is defined by

the metric g and C∞(M) is given the sup norm. Then |L{φ−1
s }(θ)| ≤ ν|θ|. In



i
i

“2-438” — 2018/4/8 — 21:29 — page 75 — #7 i
i

i
i

i
i

The symplectic displacement energy 75

our case αt = L{φ−1
s }(Ht). Therefore,

|αt| ≤ ν|Ht|

and

osc (αt) ≤ 2|αt| ≤ 2ν|Ht|.

This implies

osc (αt) ≤ 2ν (|Ht|+ osc (ut)) and osc (αt) ≤ 2ν (|Ht|+ osc (vt)) .

Hence,

K =

∫ 1

0
osc (αt) dt ≤ 2ν l0({ht}),

and

K =

∫ 1

0
osc (αt) dt ≤ 2ν l0({h−1t }).

Now recall that,

l0(Ψ) ≤ l0({ht}) +K and l0(Ψ
−1) ≤ l0({h−1t }) +K.

Therefore,

l(Ψ) =
1

2

(
l0(Ψ) + l0(Ψ

−1)
)

≤ 1

2

(
l0({ht}) + 2ν l0({ht}) + l0({h−1t }) + 2ν l0({h−1t })

)
≤ (2ν + 1)l({ht}).

Taking the infimum over the set I(h) of all symplectic isotopies from h to
the identity we get

inf
I(h)

l(Ψ) ≤ (2ν + 1)‖h‖HL,

and since

‖φ ◦ h ◦ φ−1‖HL ≤ inf
I(h)

l(Ψ)

we get

‖φ ◦ h ◦ φ−1‖HL ≤ k‖h‖HL
with k = 2ν + 1.
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We have shown that for every φ ∈ Symp0(M,ω) there is a k ≥ 1 (de-
pending on an isotopy {φs} from φ to the identity) such that the preceding
inequality holds for all h ∈ Symp0(M,ω). Applying this to φ−1 we see that
there is an k′ ≥ 1 such that

‖φ−1 ◦ h ◦ φ‖HL ≤ k′‖h‖HL

for all h ∈ Symp0(M,ω). Therefore, for any h ∈ Symp0(M,ω) we have

‖h‖HL = ‖φ−1 ◦ (φ ◦ h ◦ φ−1) ◦ φ‖HL ≤ k′‖φ ◦ h ◦ φ−1‖HL.

That is,
1

k′
‖h‖HL ≤ ‖φ ◦ h ◦ φ−1‖HL ≤ k‖h‖HL.

�

Remark 2.6. The constant k depends only on φ−1 rather than the isotopy
{φ−1s }, because the function L{φ−1

s }(θ) is the unique normalized function on

M such that d(L{φ−1
s }(θ)) = (φ−1)∗θ − θ.

3. Proof of the main result

We will closely follow the proof given by Polterovich of Theorem 2.4.A in
[17] that e(A) > 0. We will use without any change Proposition 1.5.B.

Proposition 1.5.B. [17] For any non-empty open subset A of M , there
exists a pair of Hamiltonian diffeomorphisms φ and ψ that are supported
in A and whose commutator [φ, ψ] = ψ−1 ◦ φ−1 ◦ ψ ◦ φ is not equal to the
identity.

For the sake of completeness we provide the following alternate proof of
this proposition based on the transitivity lemmas in [2] (pages 29 and 109).
(For a proof of k-fold transitivity for symplectomorphisms see [6].)

Proof. Let U be an open connected subset of A such that U ⊂ A. Pick three
distinct points a, b, c ∈ U . By the transitivity lemma of Ham(M,ω), there
exist φ, ψ ∈ Ham(M,ω) such that φ(a) = b and ψ(b) = c. Moreover, we can
choose φ and ψ so that supp (φ) and supp (ψ) are contained in small tubular
neighborhoods V and W of distinct paths in U joining a to b and b to c
respectively, and we can assume that c ∈ U\V .

Then (ψ−1φ−1ψφ)(a) = (ψ−1φ−1)(c) = ψ−1(c) = b. Hence [φ, ψ] 6= id.
�
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V
U

b

c

a

W

We will say that a map h displaces A if h(A) ∩A = ∅. Let us denote by
D(A) the set of all h ∈ Symp0(M,ω) that displace A. We note the following
fact.

Lemma 3.1. Let φ and ψ be as in Proposition 1.5.B, and let h ∈ D(A).
Then the commutator

θ = [h, φ−1] = φ ◦ h−1 ◦ φ−1 ◦ h

satisfies [φ, ψ] = [θ, ψ].

Proof. If x ∈ A then h(x) 6∈ A. Hence,

θ(x) = (φ ◦ h−1)(φ−1(h(x)))

= φ(h−1(h(x))) since supp (φ−1) ⊂ A
= φ(x),

and we see that θ|A = φ|A. Similarly, for x ∈ A we have φ−1(x) ∈ A, and
hence h(φ−1(x)) 6∈ A since h(A) ∩A = ∅. Thus,

θ−1(x) = h−1(φ(h(φ−1(x))))

= h−1(h(φ−1(x))) since supp (φ) ⊂ A
= φ−1(x),

and we see that θ−1|A = φ−1|A. Thus, (φ−1 ◦ ψ ◦ φ)(x) = (θ−1 ◦ ψ ◦ θ)(x) for
all x ∈ A since supp (ψ) ⊂ A.

Now, if x 6∈ A and θ(x) ∈ A we would have x = θ−1(θ(x)) = φ−1(θ(x)) ∈
A since supp (φ−1) ⊂ A, a contradiction. Hence, for x 6∈ A we have θ(x) 6∈ A
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and

(φ−1 ◦ ψ ◦ φ)(x) = x = (θ−1 ◦ ψ ◦ θ)(x)

since both φ and ψ have support in A. Therefore, φ−1 ◦ ψ ◦ φ = θ−1 ◦ ψ ◦ θ,
and we have [φ, ψ] = [θ, ψ]. �

Proof of Theorem 1.3 continued. Following the proof of Theorem 2.4.A in
[17] we assume there exists h ∈ D(A) 6= ∅. Otherwise, we are done since
es(A) = +∞. Now, let φ and ψ be as in Proposition 1.5.B, and let θ be
as in Lemma 3.1. The commutator θ is contained in Ham(M,ω) because
commutators are in the kernel of the Calabi invariant. Since both θ and ψ
are in Ham(M,ω) and the Hofer norm is conjugation invariant, we have

‖[θ, ψ]‖H = ‖ψ−1 ◦ θ−1 ◦ ψ ◦ θ‖H
≤ ‖ψ−1 ◦ θ−1 ◦ ψ‖H + ‖θ‖H
= 2‖θ‖H .

By Buss and Leclercq’s theorem [7] there is constant λ > 0 such that

‖θ‖H ≤ λ‖θ‖HL.

Using the triangle inequality and the constant k > 0 from Theorem 2.4 we
have

‖[θ, ψ]‖H ≤ 2λ
(
‖φ ◦ h ◦ φ−1‖HL + ‖h‖HL

)
≤ 2λ (k‖h‖HL + ‖h‖HL) .

Therefore,

0 <
‖[φ, ψ]‖H
2λ(k + 1)

=
‖[θ, ψ]‖H
2λ(k + 1)

≤ ‖h‖HL.

Since this inequality holds for all h ∈ D(A), we can take the infimum over
D(A) to get

0 <
‖[φ, ψ]‖H
2λ(k + 1)

≤ es(A).

This completes the proof of Theorem 1.3. �

Remark 3.2. The proof of Theorem 1.1 relied on the bi-invariance of the
distance dH , whereas the proof of Theorem 1.3 relied on the equivalence of
the norms h 7→ ‖φ ◦ h ◦ φ−1‖HL and ‖ · ‖HL, i.e. the invariance of dHL up to
a constant.
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4. Examples

A harmonic 1-parameter group is an isotopy Φ = {φt} generated by the
vector field VH defined by i(VH)ω = H, where H is a harmonic 1-form. It is
immediate from the definitions that

l0(Φ) = l0(Φ
−1) = |H|

where | · | is a norm on the space of harmonic 1-forms. Hence l(Φ) = |H|.
Therefore, if φ1 is the time one map of Φ we have

‖φ1‖HL ≤ |H|.

For instance, take the torus T 2n with coordinates (θ1, . . . , θ2n) and the
flat Riemannian metric. Then all the 1-forms dθi are harmonic. Given v =
(a1, . . . , an, b1, . . . , bn) ∈ R2n, the translation x 7→ x+ v on R2n induces a
rotation ρv on T 2n, which is a symplectic diffeomorphism. Moreover, x 7→
x+ tv on R2n induces a harmonic 1-parameter group {ρtv} on T 2n.

Taking the 1-forms dθi for i = 1, . . . , 2n as basis for the space of harmonic
1-forms and using the standard symplectic form

ω =

n∑
j=1

dθj ∧ dθj+n

on T 2n we have

i(ρ̇tv)ω =

n∑
j=1

(ajdθj+n − bjdθj) .

Thus,

l({ρtv}) = |(−b1, . . . ,−bn, a1, . . . , an)|

where | · | is a norm on the space of harmonic 1-forms, and we see that

‖ρv‖HL ≤ |v|

if we use |v| = |a1|+ · · ·+ |an|+ |b1|+ · · ·+ |bn| as the norm on both R2n

and the space of harmonic 1-forms.
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Consider the torus T 2 as the square:

{(p, q) | 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1} ⊂ R2

with opposite sides identified. For any r < 1
2 let

Ã(r) = {(x, y) | 0 ≤ x < r} ⊂ R2,

and let A(r) be the corresponding subset in T 2. If v = (r, 0), then the rota-
tion ρv induced by the translation (p, q) 7→ (p+ r, q) displaces A(r). There-
fore, using the norm |v| = |a1|+ |b1| = r we have

‖ρv‖HL ≤ l({ρtv}) = r.

Therefore,

es(A(r)) ≤ r.

Remark 4.1. Note that in the above example the symplectic displacement
energy is finite, whereas the Hamiltonian displacement energy e(A(r)) is
infinite. This follows from a result proved by Gromov [12]: If (M,ω) is a
symplectic manifold without boundary that is convex at infinity and L ⊂M
is a compact Lagrangian submanifold such that [ω] vanishes on π2(M,L),
then for any Hamiltonian symplectomorphism φ : M →M the intersection
φ(L) ∩ L 6= ∅. Stronger versions of this result can be found in [9], [10], and
[11]. See also Section 9.2 of [15].

5. Application

The following result is an immediate consequence of the positivity of the
symplectic displacement energy of non-empty open sets. For two isotopies
Φ and Ψ denote by Φ−1 ◦Ψ the isotopy given at time t by (Φ−1 ◦Ψ)t =
φ−1t ◦ ψt.

Theorem 5.1. Let Φn be a sequence of symplectic isotopies and let Ψ be
another symplectic isotopy. Suppose that the sequence of time-one maps φn,1
of the isotopies Φn converges uniformly to a homeomorphism φ, and l(Φ−1n ◦
Ψ)→ 0 as n→∞, then φ = ψ1.

This theorem can be viewed as a justification for the following definition,
which appeared in [5] and [3].
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Definition 5.2. A homeomorphism h of a compact symplectic manifold is
called a strong symplectic homeomorphism if there exist a sequence Φn

of symplectic isotopies such that φn,1 converges uniformly to h, and l(Φn)
is a Cauchy sequence.

Proof of Theorem 5.1. Suppose φ 6= ψ1, i.e. φ−1 ◦ ψ1 6= id. Then there exists
a small open ball B such that (φ−1 ◦ ψ1)(B) ∩B = ∅. Since φn,1 converges
uniformly to φ, ((φn,1)

−1 ◦ ψ1)(B) ∩B = ∅ for n large enough. Therefore,
the symplectic displacement energy es(B) of B satisfies

es(B) ≤ ‖(φn,1)−1 ◦ ψ1‖HL ≤ l(Φ−1n ◦Ψ).

The last term tends to zero, which contradicts the positivity of es(B). �

Remark 5.3. This theorem was first proved by Hofer and Zehnder for
M = R2n [14], and then by Oh-Müller in [16] for Hamiltonian isotopies using
the same lines as above, and very recently by Tchuiaga [18], using the L∞

version of the Hofer-like norm.

Acknowledgments. We would like to thank the referee for carefully read-
ing earlier versions of this paper and providing the statement of Theorem 2.4.
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