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The symplectic displacement energy

AUGUSTIN BANYAGA, DAVID HURTUBISE, AND PETER SPAETH

We define the symplectic displacement energy of a non-empty sub-
set of a compact symplectic manifold as the infimum of the Hofer-
like norm [4] of symplectic diffeomorphisms that displace the set.
We show that this energy (like the usual displacement energy
defined using Hamiltonian diffeomorphisms) is a strictly positive
number on sets with non-empty interior. As a consequence we prove
a result justifying the introduction of the notion of strong symplec-
tic homeomorphisms [3].

1. Statement of results

In [I3], Hofer defined a norm || - ||z on the group Ham(M,w) of compactly
supported Hamiltonian diffeomorphisms of a symplectic manifold (M, w).

For a non-empty subset A C M, he introduced the notion of the dis-
placement energy e(A) of A:

e(A) = inf{||¢||lg | ¢ € Ham(M,w), p(A) N A = (}.

The displacement energy is defined to be +oo if no compactly supported
Hamiltonian diffeomorphism displaces A.
Eliashberg and Polterovich [8] proved the following result.

Theorem 1.1. For any non-empty open subset A of M, e(A) is a strictly
positive number.

It is easy to see that if A and B are non-empty subsets of M such that
A C B, then e(A) < e(B), and that e is a symplectic invariant. That is,

e(f(A)) = e(A)

for all f € Symp(M,w) = {¢ € Diff (M) | ¢*w = w}. This follows from the

fact that || fodo f~Y gy = ||6||lu-
In [4], a Hofer-like metric |- | gz was constructed on the group
Sympy(M,w) of all symplectic diffeomorphisms of a compact symplectic
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manifold (M,w) that are isotopic to the identity. It was proved recently by
Buss and Leclercq [7] that the restriction of || - ||z, to Ham(M, w) is a metric
equivalent to the Hofer metric.

Let us now propose the following definition.

Definition 1.2. The symplectic displacement energy es(A) of a non-
empty subset A C M is defined to be:

es(A) = inf{||hll L | h € Sympo(M,w), h(A) N A = 0}

if some element of Symp,(M,w) displaces A, and +oo if no element of
Sympg (M, w) displaces A.

Clearly, if A and B are non-empty subsets of M such that A C B, then
es(A) < eq(B).

The goal of this paper is to prove the following result.

Theorem 1.3. For any closed symplectic manifold (M,w), the symplectic
displacement energy of any subset A C M with non-empty interior satisfies
es(A) > 0.

2. The Hofer norm || - ||z and the Hofer-like norm || - ||z
2.1. Sympo(M,w) and Ham(M, w)

Let Iso(M,w) be the set of all compactly supported symplectic isotopies
of a symplectic manifold (M,w). A compactly supported symplectic iso-
topy ® € Iso(M,w) is a smooth map ® : M x [0,1] — M such that for all
t € [0,1], if we denote by ¢y(z) = ®(z,t), then ¢, € Symp(M,w) is a sym-
plectic diffeomorphism with compact support, and ¢¢9 = id. We denote by
Sympg (M, w) the set of all time-1 maps of compactly supported symplectic
isotopies.

Isotopies ® = {¢;} are in one-to-one correspondence with families of
smooth vector fields {¢;} defined by

bu(w) = 27 (@)

If & € Iso(M,w), then the one-form i(¢;)w such that

i(Pr)w(X) = w(dr, X)
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for all vector fields X is closed. If for all ¢ the 1-form i(¢)w is exact,
that is, there exists a smooth function F : M x [0,1] = R, F(z,t) = Fy(z),
with compact supports such that i(th)w = dFy, then the isotopy @ is called
a Hamiltonian isotopy and will be denoted by ®r. We define the group
Ham(M,w) of Hamiltonian diffeomorphisms as the set of time-one maps of
Hamiltonian isotopies.

For each ® = {¢;} € Iso(M,w), the mapping

o | [ 1<i<q5t>w>dt] ,

where [a] denotes the cohomology class of a closed form «, induces a well
defined map S from the universal cover of Symp (M, w) to the first de Rham
cohomology group H!'(M,R). This map is called the Calabi invariant (or
the flux). It is a surjective group homomorphism. Let I' C H'(M,R) be
the image by S of the fundamental group of Symp,(M,w). We then get a
surjective homomorphism

S : Sympg(M,w) — H*(M,R)/T.
The kernel of this homomorphism is the group Ham(M,w) [1] [2].
2.2. The Hofer norm

Hofer [13] defined the length [z of a Hamiltonian isotopy ®r as

1
Ly (®p) = / (osc Fy(x)) dt.
0
where the oscillation of a function f: M — R is

ose (f) = max(f(2)) — min(f(x)).

zeM reM

For ¢ € Ham(M,w), the Hofer norm of ¢ is

g = inf{lgy(®r)},

where the infimum is taken over all Hamiltonian isotopies ® p with time-one
map equal to ¢, i.e. op1 = ¢.
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The Hofer distance dg (¢, 1)) between two Hamiltonian diffeomorphisms
¢ and v is

dg($,%) = g0 u.

This distance is bi-invariant. This property was used in [§] to prove Theo-

rem [[1]

2.3. The Hofer-like norm

Now let (M,w) be a compact symplectic manifold without boundary, on
which we fix a Riemannian metric g. For each ® = {¢:} € Iso(M,w), we
consider the Hodge decomposition [19] of the 1-form i(¢;)w as

i(fr)w = Hy + duy,

where H; is a harmonic 1-form. The forms H; and u; are unique and depend
smoothly on ¢.
For ® € Iso(M,w), define

Io(®) = /O (e + osc (ug(x)) dt,

where |H;| is a norm on the finite dimensional vector space of harmonic
1-forms. We let

1
l(¢) = 5 (lo(®) + lo(271),
where &1 = {¢;'}.
For each ¢ € Sympy(M,w), let

16l 5z = inf{l(®)},

where the infimum is taken over all symplectic isotopies ® = {¢;} with
b1 = ¢

The following result was proved in [4].

Theorem 2.1. For any closed symplectic manifold (M,w), ||-||gL is a
norm on Sympgy(M,w).

Remark 2.2. The norm || - ||z depends on the choice of the Riemannian
metric ¢ on M and the choice of the norm |-| on the space of harmonic
1-forms. However, different choices for g and |- | yield equivalent metrics.

See Section 3 of [4] for more details.
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2.4. Some equivalence properties

Let (M,w) be a compact symplectic manifold. Buss and Leclercq have
proved:

Theorem 2.3. [7] The restriction of the Hofer-like norm | - ||gr to
Ham(M,w) is equivalent to the Hofer norm || - ||m.

We now prove the following.
Theorem 2.4. Let ¢ € Sympg(M,w). The norm
hes|lgohod™ uL
on Sympy(M,w) is equivalent to the norm || - || gL

Remark 2.5. We owe the statement of the above theorem to the referee
of a previous version of this paper.

Proof. Let {h:} be an isotopy in Sympy(M,w) from h to the identity, and
let

i(ht)w = H; + duy

be the Hodge decomposition of z(ht)w Then ¥ = {¢ohy o #~1} is an isotopy
from ¢ o ho ¢! to the identity and ¥; = ¢, h;. Therefore,

i(V)w = (¢71) (i(h)¢*w) = (™) (He + dur) = (¢~1) He + d(uz 0 671).

Let {¢;'} be an isotopy from ¢! to the identity, and let Lx = ixd +
dix be the Lie derivative in the direction X. Then

d .

%((sbs_l)*%t) = (65 ) (L1 He) = d((651)"i(d5 ) He),
where gﬁt_l = (%gf)t_l) o ¢¢. Integrating from 0 to 1 we get

(6~ My — Hy = doy
where
1 .
e = [ (6516 d.
0

Therefore,
i(\ilt)w = Ht + d(ut e} ¢—1 + ozt).
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Hence,
1
lo(\I/) / (|/Ht’ +OSC( ,50(;571 —f‘Oét)) dt
01 1
/0 (|He| + osc (ug 0 ¢~ )) +/0 osc (o) dt
1 1
/0 (|H¢| + osc (ut))dt—i-/o osc (o) dt
=lo({Me}) +
where

1
K:/ osc (o) dt
0

Let us now do the same calculation for ¥=! = {$p o h; ' 0 ¢~ 1}.

Since h; ! satisfies h; ! = —(h; ).k, the cohomology classes of i(hy)w
and z(h l)w are of opposite sign. Since the Hodge decomposition is unique
and the harmonic part of the first form is H;, the harmonic part of the
second form is —H;. Therefore, there is a smooth family of functions v; such
that the Hodge decomposition for i(h; })w is

i(hy Vw = —Hy + duy.
The same calculation shows
i(U; Nw = —Hy +d(vi ot — ).

Hence,

(@Y <lo({h ')+ K

We will now estimate K = fol osc (ay) dt. Fix an isotopy {¢; '} from ¢!
to the identity. Consider the continuous linear map

Ligry: H(M, g) = C®(M)
from the finite dimensional vector space of harmonic 1-forms given by
Lo = [ (@yit00) as

Let v > 0 be the norm of £ ort where the norm on H!(M, g) is defined by
the metric g and C°°(M) is given the sup norm. Then [£;,-14(6)] < v|6]. In
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our case oy = £{¢;1}(Ht). Therefore,
|| < v|Hyl

and
osc (o) < 2|ay| < 2v|Hy.

This implies
osc (o) < 2v (|H¢| 4+ osc (ug)) and osc (o) < 2v (|He| + osc (vr)) .
Hence,
K= /01 osc () dt < 20 lo({he}),

and

1
K :/0 osc (ay) dt < 2vlg({h;'}).

Now recall that,
lo(P) < lo({h}) + K and lo(¥™) <lo({hy'}) + K

Therefore,

WW) = = (lo(®) + l(T™)

(lo({he}) +2vlo({he}) + lo({h ' }) + 2vlo({hy '}))
< (2v+ 1)I({he}).

Taking the infimum over the set I(h) of all symplectic isotopies from h to
the identity we get

1
2
1
2

inf [(¥) < (2v + 1)||h
Inf (7)< v+ Diikfa,

and since

-1 < inf (¥
looho o™ < inf 1(0)

we get

lpohod Hmr <klh|mL
with k = 2v + 1.
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We have shown that for every ¢ € Sympy(M,w) there is a k > 1 (de-
pending on an isotopy {¢s} from ¢ to the identity) such that the preceding
inequality holds for all h € Symp,(M,w). Applying this to ¢! we see that
there is an k' > 1 such that

¢~ ohoo||ur <K|h|mL

for all h € Sympy(M,w). Therefore, for any h € Sympy(M,w) we have

Ihllar =|l¢ o (pohod ) odllur <K||pohod™|uL.
That is,

1 _
thHHL <|¢poho¢ L <k|hluL.
(]

Remark 2.6. The constant k& depends only on ¢! rather than the isotopy
{¢1}, because the function £ {¢-11(0) is the unique normalized function on
M such that d(ﬁ{d)s_l}(ﬁ)) = (o7 1)*0 — 0.

3. Proof of the main result

We will closely follow the proof given by Polterovich of Theorem 2.4.A in
[17] that e(A) > 0. We will use without any change Proposition 1.5.B.

Proposition 1.5.B. [I7] For any non-empty open subset A of M, there
exists a pair of Hamiltonian diffeomorphisms ¢ and v that are supported
in A and whose commutator [¢,)] = L o¢ oo is not equal to the
identity.

For the sake of completeness we provide the following alternate proof of
this proposition based on the transitivity lemmas in [2] (pages 29 and 109).
(For a proof of k-fold transitivity for symplectomorphisms see [6].)

Proof. Let U be an open connected subset of A such that U C A. Pick three
distinct points a,b,c € U. By the transitivity lemma of Ham(M,w), there
exist ¢, € Ham(M,w) such that ¢(a) = b and ¢ (b) = c¢. Moreover, we can
choose ¢ and 1) so that supp (¢) and supp (¢)) are contained in small tubular
neighborhoods V' and W of distinct paths in U joining a to b and b to ¢
respectively, and we can assume that ¢ € U\V.
Then (~¢~v6)(a) = (=16 )(c) = ¥~ () = b. Hence [9,4] # id.
O
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We will say that a map h displaces A if h(A) N A = (). Let us denote by
D(A) the set of all h € Symp,(M,w) that displace A. We note the following
fact.

Lemma 3.1. Let ¢ and ¢ be as in Proposition 1.5.B, and let h € D(A).
Then the commutator

0=[h¢ '|=¢ohlog loh
satisfies [6,v] = [0, ).
Proof. If x € A then h(z) ¢ A. Hence,

O(z) = (¢poh™" )¢~ (h(x)))
=o¢(h~ ( (2))) since supp (gzﬁfl) CcA
o(x),

and we see that 0|4 = ¢|4. Similarly, for € A we have ¢~ !(z) € A, and
hence h(¢~!(x)) € A since h(A) N A = (. Thus,

0 (z) = h ™ (6(h(6(2))))
— h 7 (h(¢ (@) since supp (¢) C A
= ¢7(a),

and we see that 0714 = ¢~ 1| 4. Thus, (¢~ L op o p)(z) = (07 0 tp 0 0)(x) for
all x € A since supp (¢) C A.

Now, if z ¢ A and 0(x) € A we would have x = 0~ 1(0(z)) = ¢~ (0(x)) €
A since supp (¢~1) C A, a contradiction. Hence, for z & A we have 0(z) ¢ A
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and

(7 opod)a) =z = (0 0 b0 0)()
since both ¢ and ¢ have support in A. Therefore, ¢ ' oo =010 00,
and we have [¢,v] = [0, 1] O

Proof of Theorem [1.3 continued. Following the proof of Theorem 2.4.A in
[17] we assume there exists h € D(A) # 0. Otherwise, we are done since
es(A) = +o0o. Now, let ¢ and ¢ be as in Proposition 1.5.B, and let 6 be
as in Lemma The commutator 6 is contained in Ham(M,w) because
commutators are in the kernel of the Calabi invariant. Since both 6 and
are in Ham (M, w) and the Hofer norm is conjugation invariant, we have

1[0, ¥]lg = v 00 orpob|n
<y tob o+ 0|
=2(|0]|5-

By Buss and Leclercq’s theorem [7] there is constant A > 0 such that
101z < AllO]| £z

Using the triangle inequality and the constant k > 0 from Theorem [2.4] we
have

10, %]l < 2 (o ho¢™ mr + hlmL)
< 2XA(kl[hllaL + 1P| aL) -

Therefore,

o [ S 07
oAk +1)  2A(k+1)

Since this inequality holds for all h € D(A), we can take the infimum over
D(A) to get

0< < ||h||mL-

e, 1]l
0< WJ{) < ey(A).

This completes the proof of Theorem O

Remark 3.2. The proof of Theorem relied on the bi-invariance of the
distance dg, whereas the proof of Theorem relied on the equivalence of
the norms h + [[¢ o ho ¢ty and || - || gL, i.e. the invariance of dyz, up to
a constant.
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4. Examples

A harmonic 1-parameter group is an isotopy ® = {¢;} generated by the
vector field Vi defined by (V3 )w = H, where H is a harmonic 1-form. It is
immediate from the definitions that

lo(®) =lo(®) = |H|

where || is a norm on the space of harmonic 1-forms. Hence I(®) = |H].
Therefore, if ¢; is the time one map of ® we have

No1llar < |H|

For instance, take the torus 72" with coordinates (1, ...,602,) and the
flat Riemannian metric. Then all the 1-forms df; are harmonic. Given v =
(ai,...,an,b1,...,b,) € R?" the translation z + x +v on R?" induces a
rotation p, on 72", which is a symplectic diffeomorphism. Moreover, =
x + tv on R?" induces a harmonic 1-parameter group {p}} on T?".

Taking the 1-forms df; for ¢ = 1,.. ., 2n as basis for the space of harmonic
1-forms and using the standard symplectic form

w= Z df; N dbjiy
j=1

on T?" we have

n

i(ph)w =3 (a;dfan — byde)).

j=1
Thus,
1{pL}) = [(=b1,..., —bn,a1,...,an)]
where | - | is a norm on the space of harmonic 1-forms, and we see that
ool < o]

if we use |[v| = |ag| + -+ |an| + |b1] + - - - + |bn| as the norm on both R??
and the space of harmonic 1-forms.
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Consider the torus T? as the square:
{(p.g)|0<p<land0<q<1}CR?

with opposite sides identified. For any r < % let

A(r) = {(2.y) |0 < <1} C B2,

and let A(r) be the corresponding subset in T2. If v = (r,0), then the rota-
tion p, induced by the translation (p,q) — (p + r,q) displaces A(r). There-
fore, using the norm |v| = |a;| + |b1] = r we have

lpoller < U{PL}) =7

Therefore,
es(A(r)) <.

Remark 4.1. Note that in the above example the symplectic displacement
energy is finite, whereas the Hamiltonian displacement energy e(A(r)) is
infinite. This follows from a result proved by Gromov [12]: If (M,w) is a
symplectic manifold without boundary that is convex at infinity and L C M
is a compact Lagrangian submanifold such that |[w] vanishes on ma(M, L),
then for any Hamiltonian symplectomorphism ¢ : M — M the intersection
¢(L) N L # (. Stronger versions of this result can be found in [9], [I0], and
[11]. See also Section 9.2 of [15].

5. Application

The following result is an immediate consequence of the positivity of the
symplectic displacement energy of non-empty open sets. For two isotopies
® and ¥ denote by ®~! o ¥ the isotopy given at time ¢ by (®~!1o ¥), =

¢; ' oty

Theorem 5.1. Let ®,, be a sequence of symplectic isotopies and let U be
another symplectic isotopy. Suppose that the sequence of time-one maps ¢n 1
of the isotopies ®,, converges uniformly to a homeomorphism ¢, and I(®; ! o
U) — 0 as n — oo, then ¢ = .

This theorem can be viewed as a justification for the following definition,
which appeared in [5] and [3].
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Definition 5.2. A homeomorphism h of a compact symplectic manifold is
called a strong symplectic homeomorphism if there exist a sequence &,
of symplectic isotopies such that ¢, 1 converges uniformly to h, and I(®,,)
is a Cauchy sequence.

Proof of Theorem[5.1. Suppose ¢ # 11, i.e. ¢~ 0 1hy # id. Then there exists
a small open ball B such that (¢~1 o y)(B) N B = (. Since ¢, 1 converges
uniformly to ¢, ((¢n1)"tot1)(B)N B =0 for n large enough. Therefore,
the symplectic displacement energy es(B) of B satisfies

es(B) < [[(¢n1) " 0¥l <UD, o W),
The last term tends to zero, which contradicts the positivity of es(B). O

Remark 5.3. This theorem was first proved by Hofer and Zehnder for
M = R?" [14], and then by Oh-Miiller in [16] for Hamiltonian isotopies using
the same lines as above, and very recently by Tchuiaga [I8], using the L™
version of the Hofer-like norm.

Acknowledgments. We would like to thank the referee for carefully read-
ing earlier versions of this paper and providing the statement of Theorem 2.4]
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