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Following McDuff and Tolman’s work on toric manifolds [32], we
focus on 4–dimensional NEF toric manifolds and we show that even
though Seidel’s elements consist of infinitely many contributions,
they can be expressed by closed formulas. From these formulas,
we then deduce the expression of the quantum homology ring of
these manifolds as well as their Landau–Ginzburg superpotential.
We also give explicit formulas for the Seidel elements in some non-
NEF cases. These results are closely related to recent work by
Fukaya, Oh, Ohta, and Ono [15], González and Iritani [19], and
Chan, Lau, Leung, and Tseng [8]. The main difference is that in
the 4–dimensional case the methods we use are more elementary:
they do not rely on open Gromov–Witten invariants nor mirror
maps. We only use the definition of Seidel’s elements and specific
closed Gromov–Witten invariants which we compute via localiza-
tion. This makes the resulting formulas directly readable from the
moment polytope.
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1. Introduction

Let (M,ω) be a closed connected symplectic manifold and let as usual
Ham(M,ω) denote its Hamiltonian diffeomorphism group. Under a suit-
able condition of semipositivity, Seidel defined in [36] a morphism, S, from
π1(Ham(M,ω)) to – after a mild generalization due to Lalonde, McDuff, and
Polterovich [28] – QH∗(M,ω)×, the group of invertible elements of the quan-
tum homology of (M,ω). This morphism has been extensively used in order
to get information on the topology of Hamiltonian diffeomorphism groups
as well as the quantum homology of symplectic manifolds. It has also been
extended in various directions, see the end of the introduction for some of
these extensions related to the present work.

A quantum class lying in the image of S is called a Seidel element. In
[32], McDuff and Tolman were able to specify the structure of the lower
order terms of Seidel’s elements associated to Hamiltonian circle actions
whose maximal fixed point component, Fmax, is semifree. Recall that this
condition means that the action is semifree on a neighborhood of Fmax which
means, in our case, that the stabilizer of each point is trivial or the whole
circle. When the codimension of Fmax is 2, their result immediately ensures
that if there exists an almost complex structure J on M so that (M,J) is
Fano, i.e so that there are no J–pseudo-holomorphic spheres in M with non-
positive first Chern number, all the lower order terms vanish. In the presence
of J–pseudo-holomorphic spheres with vanishing first Chern number, there
is a priori no reason why arbitrarily large multiple coverings of such objects
should not contribute to the Seidel elements. As a matter of fact, McDuff
and Tolman exhibited an example of such a phenomenon when (M,J) is a
NEF pair, which by definition do not admit J–pseudo-holomorphic spheres
with negative first Chern number.

In this paper, we show that even though there are indeed infinitely many
contributions to the Seidel elements associated to the Hamiltonian circle ac-
tions of a NEF 4–dimensional toric manifold, these quantum classes can still
be expressed by explicit closed formulas. Moreover, these formulas only de-
pend on the relative position of representatives of elements of π2(M) with
vanishing first Chern number as facets of the moment polytope. In particu-
lar, they are directly readable from the polytope.

More precisely, we consider (see Section 2 for precise definitions):

• a 4–dimensional closed symplectic manifold (M,ω), endowed with a
toric structure and admitting a NEF almost complex structure,
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• its corresponding Delzant polytope P , which is assumed to have n ≥ 4
facets,

• a Hamiltonian action generated by a circle subgroup Λ, with moment
map ΦΛ.

We assume additionally, that the fixed point component of Λ on which ΦΛ

is maximal is a 2–sphere, Fmax ⊂ M , whose momentum image is a facet
of P , D. We denote by A ∈ H2(M ;Z) the homology class of Fmax and by
Φmax = ΦΛ(Fmax).

In this case, McDuff–Tolman’s result ensures that the Seidel element
associated to Λ is

S(Λ) = A⊗ qtΦmax +
∑

B∈HS
2(M ;Z)>0

aB ⊗ q1−c1(B)tΦmax−ω(B)

where HS
2 (M ;Z)>0 consists of the spherical classes of positive symplectic

area, that is, ω(B) > 0 and aB ∈ H∗(M ;Z) denotes the contribution of B.
As mentioned above, when there exists a Fano almost complex structure, all
the lower order terms vanish and we end up with S(Λ) = A⊗ qtΦmax .

In the non-Fano case, one has to be careful about the number and rela-
tive position of facets, in the vicinity of D, corresponding to spheres in M
with vanishing first Chern number. We denote the number of such facets
by #{c1 = 0}. Theorem 4.4 lists all the contributions made to the Seidel
element associated to Λ in the 6 cases when #{c1 = 0} ≤ 2. We denote the
facets and the corresponding homology classes in M in a cyclic way, that
is, D, which we denote by Dn below, has neighbooring facets Dn−1 on one
side and Dn+1 = D1 on the other, and they respectively induce classes An,
An−1, and An+1 = A1 in H2(M ;Z).

Figure 1 shows the relevant parts of the different polytopes we need to
consider. Dotted lines represent facets with non-zero first Chern number
and we indicate near each facet with non-trivial contribution the homology
class of the corresponding sphere in M . For example, in Case (3c), only
three homology classes contribute: An−1, An, and A1; An−1 and A1 have
vanishing first Chern number while c1(An) 6= 0.

Theorem 4.4. With the notation and under the assumptions above, the
following homology classes have non trivial contributions to S(Λ):

1) An contributes by aAn
= An.

2) When c1(An) = 0,
(2a) then kAn (with k > 0) contributes by akAn

= An,



✐

✐

“1-463” — 2018/4/8 — 21:28 — page 4 — #4
✐

✐

✐

✐

✐

✐

4 S. Anjos and R. Leclercq

Figure 1: The cases appearing in Theorems 4.4 and 4.5, and Appendix A.

(2b) and when c1(A1) = 0, then kAn + lA1 (with k ≥ 0 and l > 0) con-

tributes and its contribution is akAn+lA1
=

{

An if k ≥ l

−A1 otherwise.

3) When c1(An) 6= 0,
(3a) when c1(A1) = 0, then kA1 (with k > 0) contributes by akA1

=
−A1,

(3b) when c1(A1) = 0 and c1(A2) = 0, then kA1 + lA2 (with k > 0
and l > 0) also contributes, and its contribution is akA1+lA2

=
{

−A1 if k ≥ l

A2 otherwise,
(3c) when c1(An−1) = 0 and c1(A1) = 0, then kAn−1 and lA1 (with

k > 0 and l > 0) also contribute, and their contributions are given
by akAn−1

= −An−1 and alA1
= −A1.

Moreover, in each case, if the facets immediately next to the ones mentioned
correspond to spheres with non-zero first Chern number, then these are the
only non-trivial contributions.

Now, under the same assumptions, Theorem 4.5 gives the explicit ex-
pression of the Seidel element associated to Λ when #{c1 = 0} ≤ 2. No-
tice that we give (without proofs) the expression of the Seidel elements for
#{c1 = 0} = 3 in Appendix A.

Theorem 4.5. Under the assumptions above, and in the cases described by
Figure 1, the Seidel element associated to Λ is

(1) S(Λ) = An ⊗ qtΦmax
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(2a) S(Λ) = An ⊗ q
tΦmax

1− t−ω(An)

(2b) S(Λ) =

(

An ⊗ q
tΦmax

1− t−ω(An)
−A1 ⊗ q

tΦmax−ω(A1)

1− t−ω(A1)

)

1

1− t−ω(An)−ω(A1)

(3a) S(Λ) = An ⊗ qtΦmax −A1 ⊗ q
tΦmax−ω(A1)

1− t−ω(A1)

(3b) S(Λ) = An ⊗ qtΦmax −A1 ⊗ q
tΦmax−ω(A1)

1− t−ω(A1)

−

(

A1 ⊗ q
tΦmax

1− t−ω(A1)
−A2 ⊗ q

tΦmax−ω(A2)

1− t−ω(A2)

)

t−ω(A1)−ω(A2)

1− t−ω(A1)−ω(A2)

(3c) S(Λ) = An ⊗ qtΦmax −An−1 ⊗ q
tΦmax−ω(An−1)

1− t−ω(An−1)
−A1 ⊗ q

tΦmax−ω(A1)

1− t−ω(A1)
.

Interest of our approach

This work is closely related to recent work by Fukaya, Oh, Ohta and Ono
[14], González and Iritani [19], and Chan, Lau, Leung and Tseng [8]. Roughly
speaking, for toric NEF symplectic manifolds, on one side Fukaya, Oh, Ohta,
and Ono showed that quantum homology is isomorphic to the Jacobian
of the open Gromov–Witten invariants generating function, Jac(W open).
On the other side, González and Iritani expressed the Seidel elements in
terms of Batyrev’s elements via mirror maps. Finally, Chan, Lau, Leung,
and Tseng proved that W open coincides with the Hori–Vafa superpotential.
Then by using this open mirror symmetry and the aforementioned results,
they showed that the Seidel elements correspond to simple explicit mono-
mials in Jac(W open). In the 4–dimensional case, these results are clearly
related to ours – see for example the discussion on the Landau–Ginzburg
superpotential in Example 1.3 below –, however our approach is somehow
more elementary and stays on the symplectic side of the mirror.

We now sketch our approach. The Seidel element of a symplectic mani-
fold (M,ω) associated to a loop of Hamiltonian diffeomorphisms φ based at
identity is defined by counting pseudo-holomorphic sections of (Mφ,Ω) which
is a symplectic fibration over S2 with fibre M and whose monodromy along
the equator is given by φ (this construction is called the clutching construc-
tion, see Section 2.2 for more details). To compute Seidel’s elements when
(M,ω) is a toric 4–dimensional symplectic manifold and φ = Λ is one of the
distinguished circle actions, we proceed as follows.
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1) Following González and Iritani [19], and Chan, Lau, Leung, and Tseng
[8], we notice that (MΛ,Ω) is a toric 6–dimensional symplectic man-
ifold, see Proposition 2.11. This allows us to reduce the computation
of the Seidel elements to the computation of some 1–point Gromov–
Witten invariants, see Section 4.2.

2) Then we compute the latter by induction using localization formulas
from Spielberg’s [37, 38] or Liu’s [29] for the base cases and the splitting
axiom satisfied by Gromov–Witten invariants for the inductive steps,
see Section 4.4.

3) Step (2) completely ends the computation up to some particular 0–
point Gromov–Witten invariants which we preliminarily compute us-
ing a localization argument, see Section 4.3.

Application in terms of Seidel’s morphism and quantum
homology

As mentioned above, Seidel’s morphism has been extensively studied for its
applications. However not many things are known concerning S itself, for
example its injectivity. It is obvious that Seidel’s morphism is trivial for
symplectically aspherical manifolds since these particular manifolds do not
admit non-constant pseudo-holomorphic spheres at all. In [36], Seidel showed
that for all m ≥ 1 Seidel’s morphism detects an element of order m+ 1 in
π1(Ham(CPm, ωst)), with ωst the Fubini–Study symplectic form. In the case
of CP2 for example, this makes the Seidel morphism injective. Determining
non-trivial elements of the kernel of S in cases when S is not “obviously”
trivial would be interesting, for example to test the Seidel-type second order
invariants introduced by Barraud and Cornea via their spectral sequence
machinery [4]. In order to find such classes, one should first compute all the
Seidel elements in specific cases; here are families of examples for which the
present work allows such computations.

Example 1.1 (Hirzebruch surfaces). It is well-known that Hirzebruch
surfaces F2k are symplectomorphic to S2 × S2 endowed with the split sym-
plectic form ωµ with area µ ≥ 1 for the first S2–factor, and with area 1 for
the second factor. Recall that F0 is Fano, F2 is NEF, and that for all k ≥ 2,
F2k admits spheres with negative first Chern number. As we shall see in
Section 5.3, the computations we present in this paper allow us not only to

1Actually, this first step does not require M to be 4–dimensional.
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compute directly the Seidel elements associated to the circle actions of F2,
but also to compute the Seidel elements associated to the circle actions of
F2k for all k ≥ 2, that is, in the non-NEF cases. We present explicitly the
case of F4.

Similar computations can be made for F2k+1 which can be identified with
the 1–point blow-up of CP2 endowed with its different symplectic forms.

Example 1.2 (2– and 3–point blow-ups of CP2). In the same spirit,
consider the symplectic manifold obtained from CP2 by performing 2 or 3
blow-ups. It carries a family of symplectic forms ων , where ν > 0 determines
the cohomology class of ων . It is well-known that it is symplectomorphic to
Mµ,c1 orMµ,c1,c2 , respectively the 1– or 2–point blow-up of S2 × S2 endowed,
as above, with the symplectic form ωµ. Here, c1 and c2 are the capacities of
the blow-ups.

In previous works, Pinsonnault [34], and Anjos and Pinsonnault [3] com-
puted the homotopy algebra of the Hamiltonian diffeomorphism groups of
Mµ,c1 and Mµ,c1,c2 . In particular they showed that all the generators of its
fundamental group do not depend on the symplectic form nor the size of
the blow-ups provided that µ > 1. In both cases, all the generators but one
can be obtained as Hamiltonian circle actions associated to a Fano polytope
while the last one is associated to a NEF polytope. When µ = 1, the funda-
mental group of the Hamiltonian diffeomorphism group is generated only by
the former. So the computations we present here again allow us to compute
all the Seidel elements of the 2– and 3–point blow-ups of CP2, regardless of
the symplectic form and sizes of the blow-ups.

In relation with these two examples, let us point out that we were able
to exhibit a nontrivial element in the kernel of Seidel’s morphism on some
specific 3–point blow-ups of CP2. We also proved that Seidel’s morphism is
injective on all Hirzebruch surfaces. See [2] for more details.

Then we turn to quantum homology. Following [32], we deduce from the
expression of the Seidel elements described in Theorem 4.5 a presentation
of the quantum homology of 4–dimensional NEF toric manifolds. Batyrev
[5] and Givental [17, 18] showed that the quantum homology of Fano toric
manifolds is isomorphic to a polynomial ring quotiented by relations given
as the derivatives of the well-known Landau–Ginzburg superpotential. For
NEF toric manifolds see also the works by Chan and Lau [7], Fukaya, Oh,
Ohta, and Ono [13, 14], Iritani [25], Usher [39], and references therein. As an
application of our computations we are able to give explicit expressions for
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the potential in the NEF case which can be read directly from the moment
polytope, and obviously can be related with Chan and Lau’s results.

Example 1.3 (4– and 5–point blow-ups of CP2). To illustrate what is
explained above, we explicitly compute the Seidel elements of the 4– and 5–
point blow-ups of CP2. Note that these manifolds are NEF and do not admit
any Fano almost complex structure. Then we deduce their quantum homol-
ogy and we give the explicit expression of the related Landau–Ginzburg
superpotential, see Section 5.2. Of course, this expression agrees with Chan
and Lau’s result [7] and in Remark 5.5 we indicate how.

Extensions and applications

We now discuss some extensions of Seidel’s morphism for which there is hope
to get explicit information in the setting of and with similar techniques as
the ones used in the present work.

Homotopy of Ham in higher degrees. As mentioned above, since [34]
and [3] the homotopy algebra of the Hamiltonian diffeomorphism groups of
the 2– and 3–point blow-ups of CP2 is completely understood. It would
be interesting in this case to compute explicitly some invariants of the
higher-degree homotopy groups generalizing Seidel’s construction: the Floer-
theoretic invariants for families defined by Hutchings in [23] and the quan-
tum characteristic classes introduced by Savelyev in [35]. Briefly recall that
the former are morphisms π∗(Ham(M,ω)) → End∗−1(QH∗(M,ω)) obtained
as higher continuation maps in Floer homology. The latter are defined via
parametric Gromov–Witten invariants and lead to ring morphisms

H∗(ΩHam(M,ω),Q) → QH2n+∗(M,ω).

Both constructions restrict to the Seidel representation, respectively, in de-
gree 1 and 0.

Bulk extension. In this paper, what is called quantum homology should
more precisely be refered to as the small quantum homology ring. There
is also a notion of big quantum homology ring, obtained by considering
not only the usual quantum product but also a family of deformations via
even-degree cohomology classes of M , see e.g Usher [39] and Fukaya, Oh,
Ohta, and Ono [15] for a precise definition. For b ∈ Hev(M), one ends up
with QHb

∗(M,ω) isomorphic to QH∗(M,ω) as a vector space but with a
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twisted product. In [15], the authors extended Seidel’s morphism to mor-
phisms π1(Ham(M,ω)) → QHb

∗(M,ω)× and generalized in the toric case
part of the results of McDuff and Tolman [32]. It would be interesting to see
which information on the big quantum homology can be extracted from the
present work.

Lagrangian setting. The Seidel morphism has been extended to the La-
grangian setting in works by Hu and Lalonde [21], and Hu, Lalonde, and
Leclercq [22]. Following McDuff and Tolman [32], Hyvrier [24] computed the
leading term of the Lagrangian Seidel elements associated to circle actions
preserving some given monotone Lagrangian. He showed that when the lat-
ter is the real Lagrangian of a Fano toric manifold, all lower order terms
vanish. It could be interesting to study the Lagrangian case in NEF toric
manifolds, however the preliminary question of the structure of the lower
order terms has to be tackled with different techniques than the ones used
in [24] since they require the use of almost complex structures which gener-
ically lacks regularity. Let us also mention that Hyvrier’s work as well as
such a possible extension provide examples where one can apprehend the
categorical refinement of the Lagrangian Seidel morphism due to Charette
and Cornea [9].

Organization of the paper

The paper is organized as follows. In Section 2 we review the necessary back-
ground material, that is toric geometry, quantum homology, and Gromov–
Witten invariants. Section 3 is devoted to the case of toric 4–dimensional
NEF manifolds where we specify these notions. In Section 4, we precisely
state the main theorems enumerating all the contributions to the Seidel mor-
phism and the expression of the Seidel elements (Section 4.1) and we prove
them (Section 4.2 to Section 4.4). Finally, we describe explicit examples and
applications mentioned in the introduction in Section 5. In Appendix A we
gather additional computations of Seidel’s elements in more cases, complet-
ing Theorem 4.5.
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2. Toric manifolds and quantum homology

2.1. Toric geometry: the symplectic viewpoint

Recall that a closed symplectic 2m–dimensional manifold (M,ω) is said to
be toric if it is equipped with an effective Hamiltonian action of a m–torus
T and with a choice of a corresponding moment map Φ : M → t

∗, where t
∗

is the dual of the Lie algebra t of the torus T . There is a natural integral
lattice tZ in t whose elements H exponentiate to circles ΛH in T , and hence
also a dual lattice t

∗
Z in t

∗. The image Φ(M) is well-known to be a convex
polytope P , called a Delzant polytope. It is simple (m facets meet at each
vertex), rational (the conormal vectors ηi ∈ t to each facet may be chosen to
be primitive and integral), and smooth (at each vertex v ∈ P the conormals
to the m facets meeting at v form a basis of the lattice tZ). We describe
them as follows:

P = P (κ) := {x ∈ t
∗|〈ηi, x〉 ≤ κi, i = 1, . . . , n},

where P has n facets D1, . . . , Dn with outward2 primitive integral conormals
ηi ∈ tZ and support constants κ = (κ1, . . . , κn) ∈ Rn.

2It seemed more relevant to follow the same convention as in [32] even though
the polytope is often defined by P ′ = {x ∈ t

∗|〈η′
i
, x〉 ≥ −κi, i = 1, . . . , N} for inward

normals η′
i
.



✐

✐

“1-463” — 2018/4/8 — 21:28 — page 11 — #11
✐

✐

✐

✐

✐

✐

Seidel’s morphism of toric 4–manifolds 11

Delzant proved in [11] that there is a one–to–one correspondence between
toric manifolds and Delzant polytopes given by the map that sends the toric
manifold (M,ω, T,Φ) to the polytope Φ(M). (See [27] and the references
therein for more details on this background material.)

2.2. The clutching construction

Let (M,ω) be a closed symplectic manifold and Λ = {Λθ} be a loop in
Ham(M,ω) based at identity. Denote by MΛ the total space of the fibration
over CP1 with fiber M which consists of two trivial fibrations over 2–discs,
glued along their boundary via Λ. Namely, we consider CP1 as the union of
the two 2–discs

D1 = {[1 : z] ∈ CP1 | |z| ≤ 1} and D2 = {[z : 1] ∈ CP1 | |z| ≤ 1}

glued along their boundary

∂D1 = {[1 : e−2iπθ], θ ∈ [0, 1[} = {[e2iπθ : 1], θ ∈ [0, 1[} = ∂D2 .

The total space is

MΛ =
(

M ×D1
⊔

M ×D2

)

/

∼Λ with (x, [1 : e−2iπθ]) ∼ (Λθ(x), [e
2iπθ : 1]).

This construction only depends on the homotopy class of Λ. Moreover, Ω,
the family (parameterized by S2) of symplectic forms of the fibers, can be
“horizontally completed” to give a symplectic form on MΛ, ωΛ,κ = Ω+ κ ·
π∗(ω0) where ω0 is the standard symplectic form on S2 (with area 1), π is the
projection to the base of the fibration and κ a big enough constant to make
ωΛ,κ non-degenerate. (Once chosen, κ will be omitted from the notation.)

So we end up with the following Hamiltonian fibration:

(M,ω) �
�

// (MΛ, ωΛ)
π

// (S2, ω0).

In [32], McDuff and Tolman observed that, when Λ is a circle action (with
associated moment map ΦΛ), the clutching construction can be simplified
since, then, MΛ can be seen as the quotient of M × S3 by the diagonal
action of S1, e2πiθ · (x, (z1, z2)) = (Λθ(x), (e

2πiθz1, e
2πiθz2)). The symplectic

form also has an alternative description in M ×S1 S3. Let α ∈ Ω1(S3) be the
standard contact form on S3 such that dα = χ∗(ω0) where χ : S3 → S2 is
the Hopf map and ω0 is the standard area form on S2 with total area 1. For
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all c ∈ R, ω + cdα− d(ΦΛα) is a closed 2–form on M × S3 which descends
through the projection, p : M × S3 → M ×S1 S3, to a closed 2–form on MΛ:

ωc = p∗(ω + cdα− d(ΦΛα))(1)

which extends Ω. Now, if c > maxΦΛ, ωc is non-degenerate and coincides
with ωΛ,κ for some big enough κ.

In the case of a toric symplectic manifold fiber, the same arguments lead
to the fact that (MΛ, ωΛ) itself is toric. This fact has been already noticed
and used in other instances, e.g. by Gonzáles–Iritani [19, Section 3.2] and
Chan–Lau–Leung–Tseng [8, Section 4] in more general settings than what
we will need in this paper, so that we only give here the specific statement
which we will need, and refer the reader to the aforementioned works for
details.

Proposition 2.1. Let (M2m, ω, T,Φ) be a toric symplectic manifold with
associated Delzant polytope P . Denote by (MΛ, ωΛ) the total space resulting
from the clutching construction associated to Λ, Hamiltonian circle subgroup
of T . Λ admits a representative in T given as the exponential of θb where
θ ∈ [0, 1] and b ∈ tZ, the lattice of circle subgroups of T .

Then there exist a (m+ 1)–dimensional torus TΛ ⊂ Ham(MΛ, ωΛ), and a
moment map ΦΛ : MΛ → t

∗
Λ ≃ t

∗ × R such that (MΛ, ωΛ, TΛ,ΦΛ) is a toric
symplectic manifold, whose associated Delzant polytope PΛ and integral lat-
tice t

Λ
Z are given by

PΛ = {(x, x0) ∈ (t× R)∗ | x ∈ P, c′ + 〈x, b〉 ≤ x0 ≤ 0}

and t
Λ
Z = tZ × Z ⊂ t× R where c′ > max{〈x, b〉, x ∈ P} coincides with the

constant c appearing in (1) above.
Moreover, the outward normals of PΛ, ηΛ, are given in terms of the ones

of P, η, as follows: ηΛ = {(ηi, 0), ηi ∈ η} ∪ {(0, 1), (b,−1)} .

The polytopes P and PΛ are illustrated by Figure 2. The upper and
lower facets of PΛ correspond to two copies of P , the former horizontal, the
latter orthogonal to (b,−1) ∈ t

∗ × R.

2.3. Toric geometry: the algebraic viewpoint

We now briefly review toric varieties since we will use this viewpoint exten-
sively. Good basic references are Cox–Katz [10] and Batyrev [5]. There is
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Figure 2: The polytopes associated to the fiber M (left) and to the total
space MΛ (right).

also a good summary of the definition and some properties of smooth toric
varieties in Spielberg [37]. In what follows we mainly use his notation.

Let m > 0 be a positive integer, tZ = Zm be the m–dimensional integral
lattice and t

∗
Z = Hom(tZ,Z) be its dual space. Moreover, let t = tZ ⊗Z R and

t
∗ = t

∗
Z ⊗Z R be the R–scalar extensions of tZ and t

∗
Z, respectively.

A convex subset σ ⊂ t is called a regular k–dimensional cone (1 ≤ k ≤ m)
if there exists a Z–basis of tZ, {η1, . . . , ηm}, such that the cone σ is generated
by η1, . . . , ηk. The vectors η1, . . . , ηk ∈ tZ are the integral generators of σ. If σ′

is a (proper) face of σ, we will write σ′ ≺ σ. A finite system Σ = {σ1, . . . σs}
of regular cones in t is called a regular m–dimensional fan of cones if any face
σ′ of a cone σ ∈ Σ is in the fan and any intersection of two cones σ1, σ2 ∈ Σ is
again in the fan. A fan Σ is called a complete fan if t = ∪iσi. The k–skeleton
Σ(k) of the fan Σ is the set of all k–dimensional cones in Σ. A subset of the
1–skeleton of a fan is called a primitive collection of Σ if it is not the set of
generators of a cone in Σ, while any of its proper subset is. We will denote
the set of primitive collections of Σ by P.

Suppose the 1–skeleton of Σ is given by η1, . . . , ηd. Let z1, . . . , zd be
a set of coordinates in Cd and let ι : Cd → tZ ⊗Z C be a linear map such
that ι(zi) = ηi. For each primitive collection P = {ηi1 , . . . , ηip} we define a
(d− p)–dimensional affine subspace in Cd by

A(P ) := {(z1, . . . , zd) ∈ Cd | zi1 = · · · = zip = 0}.

Moreover, we define the set U(Σ) to be the open algebraic subset of Cd given
by

U(Σ) = Cd \
⋃

p∈P

A(P ).
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The map ι : Cd → tC induces a map between tori (C∗)d → (C∗)m that we
will also call ι. Its kernel, D(Σ) := ker(ι : (C∗)d → (C∗)m), is a (d−m)–
dimensional subtorus. Then the quotient XΣ := U(Σ)/D(Σ) is called the
toric manifold associated to Σ. Note that there is a torus of dimension m
acting on XΣ. Moreover, Delzant [11] showed that if XΣ is a projective
simplicial toric variety then it can be constructed as a symplectic quotient
and therefore it is endowed with a symplectic form ω (it is also endowed
with an action of a m–dimensional torus). From the moment polytope of
this symplectic toric manifold it is possible to recover the fan Σ. However,
as explained in [6, Part B], changing the cohomology class of the symplectic
form corresponds to changing the lengths of the edges of the polytope. The
size of the faces of a polytope cannot be recovered from the fan which only
encodes the combinatorics of the faces. Hence, the fan does not give the
cohomology class of the symplectic form.

Standard results about toric manifolds explain how to obtain the coho-
mology ring of the toric variety XΣ. Assume the moment map Φ : XΣ → t

∗

is chosen so that each of its components is mean-normalised. Let PΣ ⊂ t∗

be the image of the moment map. Let D1, . . . , Dn be the facets of P (the
codimension–1 faces), and let η1, . . . , ηn ∈ tZ denote the outward primi-
tive integral normal vectors. Let C be the set of subsets I = {i1, . . . , ik} ⊆
{1, . . . , n} such that 1 ≤ k ≤ m and Di1 ∩ · · · ∩Dik 6= ∅. Consider the two
following ideals in Q[Z1, . . . , Zn]:

Lin(Σ) =
〈

∑

(x, ηi)Zi | x ∈ t
∗
Z

〉

, SR(Σ) = 〈Zi1 · · ·Zik | {i1, . . . , ik} /∈ C〉.

The ideal Lin(Σ) is generated by linear relations and the ideal SR(Σ) is
called the Stanley–Reisner ideal. A subset I ⊆ {1, . . . , n} is called primitive
if I is not in C but every proper subset is. Clearly,

SR(Σ) = 〈Zi1 · · ·Zik | {i1, . . . , ik} ⊆ {1, . . . , n} is primitive〉.

The map which sends Zi to the Poincaré dual of Φ−1(Di) (which we shall
also denote by Zi ∈ H2(XΣ;Q)) induces an isomorphism

(2) H∗(XΣ;Q) ∼= R[Z1, . . . , Zn]/〈Lin(Σ) + SR(Σ)〉.

Moreover, there is a natural isomorphism between H2(XΣ;Z) and the set
of tuples (a1, . . . , an) ∈ Zn such that

∑

aiηi = 0, under which the pairing
between such an element of H2(XΣ;Z) and Zi is ai. The linear functional
ηi is constant on Di and let ηi(Di) denote its value. Under the isomorphism
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of (2) we have

(3) [ω] =
∑

i

ηi(Di)Zi and c1(XΣ) =
∑

i

Zi.

Dually, let R(Σ) ⊂ Zn be the subgroup of Zn defined by

(4) R(Σ) := {(γ1, . . . , γn) ∈ Zn | γ1η1 + · · ·+ γnηn = 0} ∼= Zn−m.

Then the group R(Σ) is canonically isomorphic to H2(XΣ;Z).

2.4. Small quantum homology and Gromov–Witten invariants

Except for our application in terms of the Landau–Ginzburg potential in
Section 5, we will work with the (small) quantum homology ring with coeffi-
cients in the ring Π := Πuniv[q, q−1]. The variable q is of degree 2 and Πuniv

is a generalised Laurent series ring in a variable of degree 0:

Πuniv :=

{

∑

κ∈R

rκt
κ
∣

∣ rκ ∈ Q, #{κ > c | rκ 6= 0} < ∞, ∀c ∈ R

}

.(5)

The quantum homology QH∗(M ; Π) = H∗(M,Q)⊗Q Π is Z–graded so that
deg(a⊗ qdtκ) = deg(a) + 2d with a ∈ H∗(M). The quantum intersection
product a ∗ b ∈ QH i+j−dimM (M ; Π), of classes a ∈ Hi(M) and b ∈ Hj(M)
has the form

a ∗ b =
∑

B∈HS
2 (M ;Z)

(a ∗ b)B ⊗ q−c1(B)t−ω(B),

where HS
2 (M ;Z) is the image of π2(M) under the Hurewicz map. The ho-

mology class (a ∗ b)B ∈ Hi+j−dimM+2c1(B)(M) is defined by the requirement
that

(a ∗ b)B ·M c = GWM
B,3(a, b, c) for all c ∈ H∗(M).

In this formula GWM
B,3(a, b, c) ∈ Q denotes the Gromov–Witten invariant

that counts the number of spheres in M in class B that meet cycles repre-
senting the classes a, b, c ∈ H∗(M). The product ∗ is extended to QH∗(M)
by linearity over Π, and is associative. It also respects the Z–grading and
gives QH∗(M) the structure of a graded commutative ring, with unit [M ].
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Gromov–Witten invariants can also be interpreted as homomorphisms

GWM
A,k : H∗(M ;Q)⊗k ⊗H∗(M0,k;Q) −→ Q

GWM
A,k(a1, . . . , ak;β) =

∫

M0,k(A;J)
ev∗1a1 ∪ . . . ev∗kak ∪ π∗PD(β),

whereM0,k(A; J) is the compactified moduli space of J–holomorphic spheres
with k marked points in M representing the homology class A. Let us recall
that in general GWM

A,k(a1, . . . , ak) is the homomorphism

GWM
A,k : H∗(M ;Q)⊗k → Q , (a1, . . . , ak) 7→ GWM

A,k(a1, . . . , ak; [M0,k])

so that when k = 3, GWM
A,3(a1, a2, a3) = GWM

A,3(a1, a2, a3; [pt]).
For easy reference, we gather here the properties of Gromov–Witten in-

variants which will be used explicitly at several places in the computations
of Section 4: The first two are extracted from [31, Proposition 7.5.6] and
the third is the particular case of [31, Theorem 7.5.10] for the invariants

GWM
A,4(a1, . . . , a4; [pt]) = GW

M,{1,2,3,4}
A,4 (a1, . . . , a4) when k = 4 (see [31, Re-

mark 7.5.1.(vi)]).

Proposition 2.2. Let (M,ω) be a semipositive compact symplectic mani-
fold, A ∈ H2(M ;Z), k ≥ 1, and a1, . . . , ak ∈ H∗(M ;Q). Then the following
properties hold.

(Divisor) If (A, k) 6= (0, 3) and deg(ak) = 2 then

GWM
A,k(a1, . . . , ak) = GWM

A,k−1(a1, . . . , ak−1) ·

∫

A

ak .

(Zero) If k 6= 3 then GWM
0,k = 0. If k = 3 then

GWM
0,3(a1, a2, a3) =

∫

M

a1 ∪ a2 ∪ a3 .

(Splitting) If k = 4 then GWM
A,4(a1, . . . , a4; [pt]) is equal to

∑

A=A0+A1

∑

ν,µ

GWM
A0,3(a1, a2, eν) g

νµGWM
A1,3(eµ, a3, a4)

where (eν)ν is a basis of H∗(M ;Q), gνµ are the coefficients of the
cup-product matrix: gνµ =

∫

M
eν ∪ eµ, and gνµ the coefficients of its

inverse.
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2.5. Gromov–Witten invariants of toric manifolds

In this section we present Spielberg’s formula from [38, Theorem 1] for the
computation of Gromov–Witten invariants of toric manifolds, which we will
use in Section 3.2. Note that Liu proved a more general result in [29], however
since we only need to compute genus–0 Gromov–Witten invariants we will
use Spielberg’s formulation and notation.

Definition 2.3. [37, Definition 6.4] Let Σ be a complete regular fan in
Zm and let PΣ be its dual polytope. A graph Γ is a finite 1–dimensional
CW–complex with the following decorations:

1. A map σ : Vert(Γ) → Σ(m) mapping each vertex b of the graph to a vertex
σ(b) of PΣ;

2. A map d : Edge(Γ) → Z>0 representing multiplicities of maps;

3. A map S : Vert(Γ) → B({1, . . . , p}) associating to each vertex a set of
marked points.

These decorations are subject to the following compatibility conditions:

(a) If an edge e ∈ Edge(Γ) connects two vertices b1, b2 ∈ Vert(Γ) labeled
σ(b1) and σ(b2), then the two cones must be different and have a com-
mon (m− 1)–dimensional face: σ(b1) ∩ σ(b2) ∈ Σ(m−1);

(b) The graph represents a stable map with homology class A;

(c) The CW–complex Γ contains no loops;

(d) For any two vertices b1, b2 ∈ Vert(Γ), the sets of associated marked
points are disjoint: S(b1) ∩ S(b2) = ∅;

(e) Every marked point is associated with some vertex.

The following notation will be useful to understand the statement of the
theorem. We define the following subset of Vert:

Vertt,s :=
{

b ∈ Vert
∣

∣ val(b) = t, deg(b) = t+ s
}

,

where val : Vert(Γ) → Z>0 is the function assigning to each vertex the num-
ber of outgoing edges and deg : Vert(Γ) → Z>0 assigns to each vertex the
number of its special points:

deg(b) = #S(b) + #{e ∈ Edge(Γ) | b ∈ ∂e}
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18 S. Anjos and R. Leclercq

where ∂e = {b1(e), b2(e)} associates to an edge e the two vertices b1(e), b2(e)
it connects.

We also need the following result:

Lemma 2.4. [37, Lemma 6.7] Let σ1, σ2 ∈ Σ(m) be two m–cones in Σ that
have a common (m− 1)–face τ ∈ Σ(m−1). Let ηi1 , . . . , ηim−1

be the generators
of the common face τ , such that

σ1 = 〈ηi1 , . . . , ηim−1
, ητ(1)〉 and σ2 = 〈ηi1 , . . . , ηim−1

, ητ(2)〉.

Let ω1, . . . , ωn be the weights of a diagonal action of (C∗)n on Cn with respect
to the standard basis. The induced C∗–action on the invariant 2–sphere Vτ

has weight ωσ1
σ2

at the point Vσ1
given by

ωσ1

σ2
:=

n
∑

ℓ=1

〈ηℓ, um〉ωℓ,

where {u1, . . . , um} is a basis of t∗Z dual to
{

ηi1 , . . . , ηim−1
, ητ(1)

}

.

Corollary 2.5. [37, Corollary 6.8] Let e ∈ Edge(Γ) and b1, b2 ∈ ∂e be the
vertices at its two ends. Let σi = σ(bi) be the m–cones of the vertices bi and
τ = σ1 ∩ σ2 its common (m− 1)–face, that are generated as in the Lemma
above. For a stable map (C;x1, . . . , xp; f) fixed by the torus action, let Ce

be the irreducible component of C corresponding to the edge e. Let F :=
(b1, e) ∈ Vert(Γ)× Edge(Γ) be such that b1 ∈ ∂e. At the point

pF := f−1(Vσ(b1)) ∩ Ce,

the pull back to Ce of the torus action on Vτ has the weight ωF at pF :

ωF :=
1

de

n
∑

ℓ=1

〈ηℓ, um〉ωℓ,

where de is the multiplicity of the component Ce and the vectors ui are as
in the lemma above.

We will introduce some more notation, grouping together certain weights
on a graph Γ. We will write σ1 ⋄ σ2 for the property of σ1 and σ2 having a
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common (m− 1)–dimensional proper face:

σ1 ⋄ σ2 ⇐⇒ σ1, σ2 ∈ Σ(m) and σ1 ∩ σ2 ∈ Σ(m−1).

The total weight of a m–dimensional cone σ is defined to be

ωσ
total :=

∏

α :α⋄σ

ωσ
α .

Finally, let α ∈ Σ(m) be a m–cone in the fan Σ that has a common (m− 1)–
face τ with σ1 : α ⋄ σ1. Then α and σ1 have (m− 1) generators in common;
let ηiα ∈ Σ(1) be the generator of σ1 that is not a generator of α. We then set
λα
e := γiα , where (γ1, . . . , γn) represents the homology class of τ (see (4)).

Since we are interested only in 1–point Gromov–Witten invariants we
will give a simplified version of Spielberg’s formula.

Theorem 2.6. [38, Theorem 1] The 1–point genus–0 Gromov–Witten in-
variants for a toric variety XΣ are given by

GWXΣ

A,1 (Zℓ) =
∑

Γ

1

|AΓ|
TΓ · SΓ

where AΓ is the automorphism group of the graph Γ,

TΓ =

∞
∏

t=1

∏

b∈Vertt,∗(Γ)

(ω
σ(b)
total)

t−1 ·

(

t
∏

i=1

1

ωFi(b)

)

·

(

1

ωF1(b)
+ · · ·+

1

ωFt(b)

)t−3

·
∏

e∈Edge

∂e={b1,b2}















(−1)mm2m

(m!)2(ωσ1
σ2
)2m

∏

α :α 6=σ2

and α⋄σ1

−1
∏

i=λα
e +1

(

ωσ1

α −
i

m
· ωσ1

σ2

)

λα
e
∏

i=0

(

ωσ1

α −
i

m
· ωσ1

σ2

)















SΓ =





∏

t,s

∏

b∈Vertt,s(Γ)

(

1

ωF1(b)
+ · · ·+

1

ωFt(b)

)s



 ·
n
∏

k=1

(ω
σ(1)
k )lk

and where

- we use the convention 00 = 1;

- Z l = Z l1
1 · · ·Z ln

n ;
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- σ(1) is the fixed point the marked point is mapped to;

- we define ω
σ(1)
k :=

{

0 if ηk /∈ Σ
(1)
σ(1),

ω
σ(1)
α if α ⋄ σ(1) and ηk ∈ Σ

(1)
σ(1)\Σ

(1)
α .

3. Toric 4–dimensional NEF manifolds

Now we restrict ourselves to the case of toric 4–dimensional NEF mani-
folds. We explain the construction of MΛ and its properties including its
cohomology ring. This will play a very important role in the next section.

3.1. Toric and homological data

We consider a 4–dimensional toric manifold (M,ω, T,Φ) and its moment 2–
dimensional Delzant polytope P . Assume it has n facets that we denote by
Di, i = 1, . . . , n. Let v1, . . . , vn denote the outward primitive integral normal
vectors and let Λi denote the circle action corresponding to vi, that is, Λi is
the circle action whose moment map is given by ΦΛi

:= 〈vi,Φ(·)〉.
We pick a ω–tame almost complex structure J and denote by c1(M)

the first Chern class of (TM, J). We assume that (M,J) is NEF, that is
〈c1(M), B〉 ≥ 0 for every class B ∈ H2(M,Z) with a J–pseudo-holomorphic
representative.

Moreover, we consider the particular case when there are at most 2 (con-
secutive) facets corresponding to spheres with vanishing first Chern number
and assume their normal vectors are vn and v1 (recall that we denote vn+1

by v1 as for the D′
is). Since the polytope P is Delzant we can assume that

the facets Dn−1 and Dn are perpendicular. Moreover, as explained in [16,
Section 2.5], the vectors vi satisfy the relations

(6) vi−1 + vi+1 = divi,

where −di = Di ·Di denotes the self-intersection of the facet Di. Since the
first Chern number vanishes on the facets Dn and D1 it follows that Dn ·
Dn = D1 ·D1 = −2. Therefore we can assume that the vectors vi satisfy the
following relations:

(7) vn−1 = −e2, vn = −e1, v1 = e2 − 2e1 and v2 = 2e2 − 3e1,

where the vectors e1, e2 form the canonical basis of Z2.
Next, using the clutching construction described in Section 2.2, we con-

struct the manifold MΛn
associated to the loop Λn which we will denote
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simply by MΛ in order to simplify the notation. As we noticed in Propo-
sition 2.1, MΛ is a toric manifold with moment map ΦΛ. The moment im-
age is a 3–dimensional polytope PΛ with n+ 2 facets which we denote by
DΛ

1 , . . . , D
Λ
n , D

Λ
b , D

Λ
t with corresponding outward primitive integral normal

vectors η1, . . . , ηn, ηb, ηt. D
Λ
1 , . . . , D

Λ
n are the vertical facets of PΛ “coming

from” the facets of P , while DΛ
b and DΛ

t are respectively the bottom and
top facets. Note that the vectors η1, . . . , ηn are induced by the normal vec-
tors v1, . . . , vn. More precisely, ηi = (vi, 0) with i = 1, . . . , n. It follows from
(7) together with the clutching construction that the vectors ηi satisfy the
following relations

ηn−1 = −e2 η3 = α3e1 + β3e2 ηb = −e1 − e3
ηn = −e1 · · · ηt = e3
η1 = e2 − 2e1 ηj = αje1 + βje2
η2 = 2e2 − 3e1 · · ·

where now the vectors e1, e2, e3 form the canonical basis of Z3. Clearly, it
follows from the definition of ηi, with i = 1, . . . , n, together with (6) that

(8) ηi−1 + ηi+1 = diηi.

Example 3.1. Consider the second Hirzebruch surface, with a polytope
with normal (outward) vectors (0,−1), (−1, 0), (−2, 1), (1, 0) where the facet
normal to (−1, 0) corresponds to a curve of zero Chern number (in this
example there is only one facet where the first Chern number vanishes). In
this case the vectors ηi are the following: η1 = (−2, 1, 0), η2 = (1, 0, 0), η3 =
(0,−1, 0), η4 = (−1, 0, 0), ηb = (−1, 0,−1), ηt = (0, 0, 1).

The vertical facets of PΛ and the corresponding outward normals are
represented in Figure 3. Note that the polytope is closed, but in Figure 3
we only draw the facets in which we are interested.

The manifold MΛ is 6–dimensional, hence its fan Σ lives in the lattice
Z3. Then the 1–dimensional cones of the fan Σ are generated by the vectors
ηi defined above. The set of primitive collections of the fan Σ is given by the
following set:

P =
{

{η1, η3}, . . . , {η1, ηn−1}, {η2, η4}, . . . , {η2, ηn}, {η3, η5},

. . . , {η3, ηn}, {ηn−2, ηn}, {ηb, ηt}
}

.
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DΛ
n−1

ηn−1

DΛ
n

ηn

DΛ
1

η1

DΛ
2

η2

Figure 3: Some vertical facets of the polytope PΛ and their outward normals.

From (2) it follows that the cohomology ring of MΛ is given by the
following isomorphism:

H∗(MΛ;Q) ∼= Q[Z1, . . . , Zn, Zb, Zt]/〈Lin(Σ) + SR(Σ)〉

where SR(Σ) is the Stanley–Reisner ideal of Σ and Lin(Σ) is the ideal gener-
ated by the linear relations. The former is generated by the set of primitive
collections:

(9) Z1Z3, . . . , Z1Zn−1, Z2Z4, . . . , Z2Zn, Z3Z5, . . . , Z3Zn, . . . ,

Zn−3Zn−1, Zn−3Zn, Zn−2Zn and ZbZt,

while the ideal Lin(Σ) is generated by the following three elements:

Zn + 2Z1 + 3Z2 − α3Z3 − · · · − αn−2Zn−2 + Zb,(10)

Zn−1 − Z1 − 2Z2 − β3Z3 − · · · − βn−2Zn−2, and(11)

Zt − Zb.(12)

In view of the relations (10)–(12), Zn−1, Zn and Zt are linear combinations
of the others, so that the set {Z1, . . . , Zn−2, Zb} is a basis of the degree 2 part
of the cohomology ring. The degree 2 homology H2(MΛ;Z) can be identified
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with the group R(Σ) ⊂ Zn+2 given by

R(Σ) := {(γ1, . . . , γn, γb, γt) ∈ Zn+2 | γ1η1 + · · ·+ γnηn + γbηb + γtηt = 0},

where we identify ηb, ηt with ηn+1, ηn+2 respectively. If follows from the
definition of the vectors ηi that a basis for the degree 2 homology,H2(MΛ;Z),
can be given by the set {λ1, . . . , λn−2, λb} which is dual to the basis of the
degree 2 cohomology, that is, Zi(λj) = 1 if i = j and 0 otherwise. More
precisely, the generators are given by

λ1 = (1, 0, . . . , 0, 1,−2, 0, 0) , λ2 = (0, 1, 0, . . . , 0, 2,−3, 0, 0) ,

λj = (0, . . . 0, 1, 0, . . . , 0, βj , αj , 0, 0) , j = 3, . . . , n− 2, and

λb = (0, . . . , 0,−1, 1, 1) ,

where the entry 1 in λj is located at the j–th entry.
From the description of the set of primitive collections, it is easy to get

the set of maximal cones in Σ. Next we list some 3–dimensional cones (the
ones that are going to be relevant for our computations):

σ1 = 〈ηn−2, ηn−1, ηb〉 σ5 = 〈η2, η3, ηb〉 σ9 = 〈η1, η2, ηt〉
σ2 = 〈ηn−1, ηn, ηb〉 σ6 = 〈ηn−2, ηn−1, ηt〉 σ10 = 〈η2, η3, ηt〉
σ3 = 〈η1, ηn, ηb〉 σ7 = 〈ηn−1, ηn, ηt〉
σ4 = 〈η1, η2, ηb〉 σ8 = 〈η1, ηn, ηt〉

Consider now, for example, the invariant 2–sphere Vσ2∩σ3
, connecting

the fixed points corresponding to σ2 and σ3. Since σ2 = 〈ηn−1, ηn, ηb〉 and
σ3 = 〈η1, ηn, ηb〉, the homology class of Vσ2∩σ3

is Poincaré dual to ZnZb.
Hence the primitive relations yield

〈Z1, Vσ2∩σ3
〉 = Z1ZnZb = Z1Z2Zb, 〈Zb, Vσ2∩σ3

〉 = 0,

〈Z2, Vσ2∩σ3
〉 = 0, . . . 〈Zn−2, Vσ2∩σ3

〉 = 0.

Since {Z1, . . . , Zn−2, Zb} is dual to {λ1, . . . , λn−2, λb}, it follows that Vσ2∩σ3

= λ1. For another example, consider the homology class of Vσ4∩σ5
which is

Poincaré dual to Z2Zb. Since η1 + η3 = d2η2 (see (8)) it follows that 2α3 +
3β3 = 1 and α3 + 2β3 = d2. Using (10) and (11) one obtains

〈Z1, Vσ4∩σ5
〉 = Z1Z2Zb, 〈Z2, Vσ4∩σ5

〉 = Z2
2Zb = −d2Z1Z2Zb, 〈Zb, Vσ4∩σ5

〉 = 0,

〈Z3, Vσ4∩σ5
〉 = Z2Z3Zb = Z1Z2Zb, 〈Z4, Vσ2∩σ3

〉 = 0, . . . 〈Zn−2, Vσ4∩σ5
〉 = 0.

Therefore Vσ4∩σ5
= λ1 − d2λ2 + λ3. Calculations of the homology classes

of the other invariant spheres are similar. Moreover, it is not hard to check
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that the ones not identified in the diagram of Figure 4, all include contribu-
tions of generators λi distinct from λ1, λ2, and λb.

æ æ

ææ

æ

æ æ

æ æ

æ æ

σ6 σ1

σ7 σ2

σ8 σ3

σ9 σ4

σ10 σ5

λb

λb

λb + λ2 − 2λ1

λ1λ1

λ2 − 2λ1λ2 − 2λ1

λ1 − d2λ2 + λ3λ1 − d2λ2 + λ3

Figure 4: Diagram representing some invariant 2–spheres of the toric man-
ifold MΛ and their homology classes.

Let Ai ∈ H∗(M ;Z) with i = 1, . . . , n denote the homology class of the
pre–image under the moment map Φ of the facet Di. Since MΛ is the total
space of a fibration with fiber M , these homology classes can be identified
with some invariant 2–spheres in MΛ, Vσj∩σk

. More precisely, we have An =
λ1, A1 = λ2 − 2λ1. Let

3 Amax = λb = Vσ3∩σ8
= Vσ2∩σ7

. Since

c1(MΛ) = Z1 + · · ·+ Zn + Zb + Zt,

where c1(MΛ) is the first Chern class of the tangent bundle of MΛ, it follows
easily that 〈c1(MΛ), λ1〉 = 〈c1(MΛ), λ2〉 = 0 and 〈c1(MΛ), λb〉 = 1. Therefore
we have 〈c1(MΛ), An〉 = 〈c1(MΛ), A1〉 = 0 and 〈c1(MΛ), Amax〉 = 1.

As we shall see in Section 4.1, in order to compute certain Gromov–
Witten invariants we will need to know some more information about the
ring structure of the cohomology of MΛ, namely certain relations satisfied by

3The notation Amax is due to the fact that this is the homology class of a section
of MΛ through points on the maximal fixed point component of the action (prior
to the clutching construction).
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the coefficients of the cup-product matrix G = (gνµ)νµ, with gνµ =
∫

MΛ
eν ∪

eµ (for some basis (eν)ν of the cohomology ring), and its inverse, G−1 =
(gνµ)νµ.

By noticing that the cohomology of MΛ is non-zero only in even degrees,
that the degree 0 and degree 6 groups are 1–dimensional (respectively gen-
erated by 1 and the fundamental class of MΛ, [MΛ]), and that gνµ 6= 0 only
if the degrees of eν and eµ sum up to 6, it is easy to see that, as soon as
(eν)ν is ordered so that the degree increases, G decomposes as















0 0 0 1

0
0 B

0

BT 0
0 0

1 0 0 0















with B the matrix composed of the (gνµ)|eν |=2,|eµ|=4.
Now, let us specify the basis. Recall that the set {Z1, . . . , Zn−2, Zb} is a

basis of the degree 2 part of the cohomology. Notice that by (9) and (12)
we have Z2

b = 0. Then the degree 4 part of the cohomology consists of all
products ZiZj and ZiZb with 1 ≤ i ≤ j ≤ n− 2. In view of the relations
coming from SR(Σ), Z1Zj = 0 for 3 ≤ j ≤ Zn−2. Then, multiplying (11) by
Z1 immediately leads to the relations Z2

1 + 2Z1Z2 = 0. Hence, for i = 1, only
Z1Z2 and Z1Zb need to be considered. Recall that we have 2α3 + 3β3 = 1
and α3 + 2β3 = d2 as seen above. Then multiplying (10) and (11) by Z2

gives Z2Z3 = Z1Z2 + 2Z2Zb and Z2
2 = −d2Z1Z2 + (1− 2d2)Z2Zb. Thus for

i = 2 we only have to consider Z2Zb. Hence, we can explicitly write some
part of B:

Z1Z2 Z1Zb Z2Zb . . . . . .

Z1 −2 −2 1 0 — 0
Z2 1 1 −d2
Z3 0 0 1
Z4 0 0 0
| 0 0 0

Zn−2 0 0 0
Zb 1 0 0

(13)

Indeed, the vanishing terms come from the relations given by the ideal
SR(Σ), while the non-zero terms can be computed using the definition. For
example, since Z1Zb is Poincaré dual to Vσ3∩σ4

= λ2 − 2λ1 (see Figure 4), it
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follows that Z1Z2Zb is given by

∫

MΛ

Z1Z2Zb = Z2(λ2 − 2λ1) = 1.

Using this computation together with the relations given by the ideals SR(Σ)
and Lin(Σ) we can obtain the other non-vanishing terms.

In order to simplify the notation, we will denote gνµ and gνµ by us-
ing the indices of the corresponding elements eν and eµ. For example, for
eν = Z1 and eµ = Z2Zb, gνµ will be denoted g1,2b and gνµ will be denoted
g1,2b. Of course G and G−1 are symmetric so that gνµ = gµν and gνµ = gµν .
Moreover, note that by commutativity of the cup-product, permuting the
indices does not change the value g1,2b = gb,12 = g2,1b. However, this fails for
the coefficients of G−1.

Since G−1G = 1, we get relations between the coefficients of G and G−1

by multiplying particular lines of G−1 with columns of G. For example,

∑

ν

g1b,νgν,1b = 1 ⇐⇒ −2g1b,1 + g1b,2 = 1

∑

ν

g1b,νgν,12 = 0 ⇐⇒ −2g1b,1 + g1b,2 + g1b,b = 0

∑

ν

g1b,νgν,2b = 0 ⇐⇒ g1b,1 − d2g
1b,2 + g1b,3 = 0

which lead to the fact that g1b,b = −1. By using the lines of G−1 correspond-
ing to Z1Z2, Z2Zb, and again the columns of G corresponding to Z1Z2, Z1Zb,
and Z2Zb, we get some more relations between the coefficients of the matrix
G−1. We gather in the next lemma the result of these computations.

Lemma 3.2 (Some coefficients of G−1).











g1b,b = −1

g1b,2 − 2g1b,1 = 1

g1b,1 − d2g
1b,2 + g1b,3 = 0











g12,b = 1

g12,2 = 2g12,1

g12,1 − d2g
12,2 + g12,3 = 0











g2b,b = 0

g2b,2 = 2g2b,1

g2b,1 − d2g
2b,2 + g2b,3 = 1
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3.2. Gromov–Witten invariants

We now compute some Gromov–Witten invariants of MΛ using Spielberg’s
machinery from [38]. In particular we will use a simplified version of its main
theorem which we give in Section 2.5.

We need to know the weights of the torus action at the different charts.
By general theory each 3–dimensional cone gives a chart of the toric manifold
near a fixed point. For our calculations it will be convenient to know the
following weights, which we compute using Lemma 2.4.

σ2 = 〈ηn−1, ηn, ηb〉 σ7 = 〈ηn−1, ηn, ηt〉
ωσ2
σ3

= a1 ωσ7
σ8

= a1
ωσ2
σ1

= a2 + ωt ωσ7
σ6

= a2 + ωb

ωσ2
σ7

= ωb − ωt ωσ7
σ2

= ωt − ωb

σ3 = 〈η1, ηn, ηb〉 σ8 = 〈η1, ηn, ηt〉
ωσ3
σ2

= −a1 ωσ8
σ7

= −a1
ωσ3
σ4

= 2a1 + a2 + ωt ωσ8
σ9

= 2a1 + a2 + ωb

ωσ3
σ8

= ωb − ωt ωσ8
σ3

= ωt − ωb

σ4 = 〈η1, η2, ηb〉 σ9 = 〈η1, η2, ηt〉
ωσ4
σ3

= −2a1 − a2 − ωt ωσ9
σ8

= −2a1 − a2 − ωb

ωσ4
σ5

= 3a1 + 2a2 + 2ωt ωσ9
σ10

= 3a1 + 2a2 + 2ωb

ωσ4
σ9

= ωb − ωt ωσ9
σ4

= ωt − ωb

where the a1, a2 ∈ Z are linear functions on the weights ω1, . . . , ωn. Now we
are ready to begin calculating Gromov–Witten invariants of this manifold.
In the next lemma we will compute some invariants which will be needed
later in the proof of Theorem 4.6.

Lemma 3.3 (Gromov–Witten invariants).

GWMΛ

Amax+An,1
(ZiZj) = GWMΛ

Amax+An+A1,1
(ZiZj) =











1 if i = 1, j = b

0 if i = 1, j = 2

0 if i = 2, j = b

and GWMΛ

Amax+A1,1
(ZiZj) =











2 if i = 1, j = b

2 if i = 1, j = 2

−1 if i = 2, j = b

Proof. We first compute the invariant GWMΛ

Amax+An+A1,1
(Z1Zb). We use the

formula from Section 2.5. Since the marked point has to lie in the cone σ3
or σ4, we need to consider the graphs which contain one of these cones and
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which represent the class Amax +An +A1. It follows that we should consider
the following graphs:

æ æ æ æ

æ æ æ æ

æ æ æ æ

æ ææ

æ

æ ææ

æ

σ4σ4

σ4

σ3

σ3

σ3

σ3

σ3

σ2

σ2

σ2

σ7

σ7

σ7

σ8

σ8

σ8

σ8

σ9

σ9
(2)

(1)

(3)

(4)

(5)

Therefore Theorem 2.6 gives the following computation

GWMΛ

Amax+An+A1,1
(Z1Zb) = (1) + · · ·+ (5) = −

(a1 + a2 + ωt)(a1 + a2 + ωb)

(ωb − ωt)2

−
(a1 + a2 + ωt)(a2 + ωt)

a1(a1 + ωb − ωt)
−

(a1 + 2(ωb − ωt))(a1 + a2 + ωt)(a1 + a2 + ωb)

(ωb − ωt)2(a1 + ωb − ωt)

+
(a1 + a2 + ωb)

2

(ωb − ωt)2
+

(a1 + a2 + ωt)
2(a1 + ωb − ωt)

(ωb − ωt)2
= 1 .

We can compute the invariant GWMΛ

Amax+An+A1,1
(Z1Z2) in a similar way. In

this case the marked point lies in the cone σ4 or σ9 so we need to consider
the same graphs as in the computation above plus the following graph:

æ æ æ æ

σ2 σ7 σ8 σ9
(6)

The formula now gives for GWMΛ

Amax+An+A1,1
(Z1Z2) = (1) + · · ·+ (6):

GWMΛ

Amax+An+A1,1
(ZnZb) =

(3a1 + 2a2 + 2ωt)(a2 + ωt)(a1 + a2 + ωt)

a1(ωb − ωt)(a1 + ωb − ωt)

+
(3a1 + 2a2 + 2ωb)(a1 + a2 + ωt)(a1 + a2 + ωb)

(ωb − ωt)2(a1 + ωt − ωb)

+
(3a1 + 2a2 + 2ωt)(a1 + a2 + ωt)(a1 + a2 + ωb)

(ωb − ωt)2(a1 + ωb − ωt)

−
(3a1 + 2a2 + 2ωb)(a1 + a2 + ωb)

2

a1(ωb − ωt)2
−

(3a1 + 2a2 + 2ωt)(a1 + a2 + ωt)
2

a1(ωb − ωt)2

+
(3a1 + 2a2 + 2ωb)(a1 + a2 + ωb)(a2 + ωb)

a1(ωt − ωb)(a1 + ωt − ωb)
= 0.

The remaining invariants can be computed using the same formula, therefore
we leave their computation for the interested reader. �
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4. Seidel morphism in the NEF case

In this section we explain how to compute the Seidel element associated
to a Hamiltonian circle action fixing a facet of a toric 4–dimensional NEF
symplectic manifold.

4.1. The Seidel morphism

Recall from Section 2.2 that, starting from any closed symplectic manifold
(M,ω) and a loop of Hamiltonian diffeomorphisms Λ ⊂ Ham(M,ω), one
can construct a Hamiltonian fibration π : (MΛ, ωΛ) → (S2, ω0) with fiber
(M,ω), where ωΛ = Ω+ κ · π∗(ω0) for some big enough κ. Then, follow-
ing [36], one can define Seidel’s morphism, under some appropriate semi-
positivity assumption on (M,ω), by counting pseudo-holomorphic section
classes in HS

2 (MΛ;Z), with respect to some arbitrary choice of such a sec-
tion. This choice was made canonical in [28].

In view of our goal, we now focus on the following specific case:

(i) The manifold M admits an almost complex structure J so that (M,J)
is NEF (that is, there are no J–pseudo-holomorphic spheres with
〈c1(M), B〉 < 0).

(ii) The symplectic manifold (M,ω) is a toric 4–dimensional manifold,
whose associated Delzant polytope has n ≥ 4 facets.

(iii) Λ is a circle action, with moment map ΦΛ, whose maximal fixed point
component corresponds to a divisor, denoted by Fmax.

Notation 4.1. Since the first Chern class of M (and of M only) is exten-
sively used in what follows, we will denote c1(M) by c1 and 〈c1(M), B〉 by
c1(B).

We now extract from [32] the results which will be used in this section.
Notice that in our specific setting, Fmax is semifree and has dimension 2.
We denote by Φmax = ΦΛ(Fmax) the maximal value of the moment map.
Concerning the choice of the section mentioned above, recall that in the
toric case it is convenient to choose σmax = {x} ×D1 ∪Λ {x} ×D2 (see the
description of the clutching construction, Section 2.2) for any fixed point
of the S1–action x lying in Fmax. If we let Amax = [σmax] ∈ HS

2 (M ;Z) then
all the contributions to the Seidel morphism come from the section classes
Amax +B with B ∈ HS

2 (M ;Z) and are determined by counting Gromov–
Witten invariants in the classes Amax +B, see e.g [32, Definition 2.4]. Lastly,
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by [32, Lemma 2.2] the sum of the weights which appear in the formula
giving the Seidel morphism, as part of the exponent of the q variable, is
mmax = −1.

Theorem 4.2 (Theorem 1.10 and Lemma 3.10 of [32]). Under the
assumptions (i)–(iii) above, the Seidel element associated to the circle action
Λ is

S(Λ) = [Fmax]⊗ qtΦmax +
∑

B∈HS
2(M ;Z)>0

aB ⊗ q1−c1(B)tΦmax−ω(B)

where HS
2 (M ;Z)>0 consists of the spherical classes of positive symplectic

area, that is, ω(B) > 0 and aB ∈ H∗(M ;Z) is the contribution of the section
class Amax +B defined by requiring that aB ·M c = GWMΛ

Amax+B,1(c) for all
homology classes c ∈ H∗(M ;Z). Moreover,

(i) If aB 6= 0 either c1(B) = 0 and aB ∈ H2(M ;Z) or c1(B) = 1 and aB ∈
H4(M ;Z).

(ii) If aB 6= 0 then B intersects Fmax.

(iii) If c1(B
′) ≥ 1 for all J–holomorphic spheres B′ which intersect Fmax,

then all the lower order terms vanish.

(iv) If c1(B
′) ≥ 1 for all J–holomorphic spheres B′ which intersect Fmax

but are not included in Fmax, then aB 6= 0 ⇒ c1(B) = 0.

Remark 4.3. Item (i) above reads: If aB 6= 0 then c1(B) = 0 and |aB| = 2.
Indeed, when M is 4–dimensional, |aB| = 4 means that aB has to be a
multiple of the fundamental class [M ], however this case can easily be ruled
out. (See for example the end of the proof of [32, Theorem 1.10].)

Item (ii) is [32, Lemma 3.10] and shows that, even though the formula
above might contain infinitely many terms, computing the Seidel morphism
is somehow “local” (that is, one does not need to know the whole polytope).

Recall the notation we introduced in Section 3: We consider the case
when the polytope P , associated to M , admits n ≥ 4 facets, D1, . . . , Dn.
These facets correspond to divisors whose homology classes we respectively
denote by A1, . . . , An. We put An = [Fmax] and we see the indices mod n.
For any n–tuple ā = (a1, . . . , an) ∈ Zn, we denote by Aā =

∑

i aiAi the ho-
mology class of the union of (possibly multiply covered) spheres in M whose
projection to P is given by Dā = ∪iDi.
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Thus Theorem 4.2, combined with Remark 4.3, implies that the Seidel
element is given by

S(Λ) = An ⊗ qtΦmax +
∑

ā

aAā
⊗ qtΦmax−ω(Aā)

where aAā
6= 0 if and only if

1) Dā is connected and intersects Dn,

2) c1(Aā) = 0 (i.e, by NEF condition, for all i so that ai 6= 0, c1(Ai) = 0).

In Theorem 4.4 below, we compute each contribution aAā
in the case of

polytopes where any Dā satisfying (1) and (2) contains at most two facets
corresponding to spheres with vanishing first Chern number. Notice that in
case the facets corresponding to divisors with vanishing first Chern num-
ber are not Dn and/or D1 (that is, Cases (3b) and (3c)), the content of
Section 3.1 has to be slightly adapted.

Theorem 4.4. Let (M,ω) be a closed NEF toric 4–dimensional symplectic
manifold. Assume that its associated Delzant polytope has n ≥ 4 facets. Let
Λ be a circle action, whose maximal fixed point component is a divisor Fmax

and denote An = [Fmax] its homology class. The following homology classes
have non trivial contributions to S(Λ), the Seidel element associated to Λ:

1) An contributes by aAn
= An.

2) If c1(An) = 0,
(2a) then kAn (with k > 0) contributes by akAn

= An,
(2b) and if c1(A1) = 0, then kAn + lA1 (with k ≥ 0 and l > 0) con-

tributes and its contribution is akAn+lA1
=

{

An if k ≥ l,

−A1 otherwise.

3) If c1(An) 6= 0,
(3a) if c1(A1) = 0, then kA1 (with k > 0) contributes by akA1

= −A1,
(3b) if c1(A1) = 0 and c1(A2) = 0, then kA1 + lA2 (with k > 0 and

l > 0) also contributes, and its contribution is

akA1+lA2
=

{

−A1 if k ≥ l,

A2 otherwise.

(3c) if c1(An−1) = 0 and c1(A1) = 0, then kAn−1 and lA1 (with k > 0
and l > 0) also contribute, with respective contributions akAn−1

=
−An−1 and alA1

= −A1.
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Moreover, in each case, if the facets immediately next to the ones mentioned
above correspond to spheres with non-zero first Chern number, then these
are the only non-trivial contributions.

As a corollary, we compute the Seidel element associated to Λ in these
different cases. (See also Figure 1 in the introduction.) Recall that we also
compute in Appendix A the Seidel element associated to Λ when there exist
three divisors in the vicinity of An with vanishing first Chern number.

Theorem 4.5. Under the assumptions and with the notation of Theo-
rem 4.4 above, the Seidel element associated to Λ is as follows.

1) If c1(An), c1(An−1) and c1(A1) are all non-zero, then S(Λ) = An ⊗
qtΦmax.

2) If c1(An) = 0,
(2a) but c1(An−1) and c1(A1) are non-zero, then

S(Λ) = An ⊗ q
tΦmax

1− t−ω(An)
,

(2b) and c1(A1) = 0 but c1(An−1) and c1(A2) non-zero, then

S(Λ) =

[

An ⊗ q
tΦmax

1− t−ω(An)
−A1 ⊗ q

tΦmax−ω(A1)

1− t−ω(A1)

]

·
1

1− t−ω(An)−ω(A1)
.

3) If c1(An) 6= 0,
(3a) if c1(A1) = 0 and c1(An−1), c1(A2) non-zero, then

S(Λ) = An ⊗ qtΦmax −A1 ⊗ q
tΦmax−ω(A1)

1− t−ω(A1)
,

(3b) if c1(A1) = c1(A2) = 0 but c1(An−1) and c1(A3) non-zero, then

S(Λ) = An ⊗ qtΦmax −A1 ⊗ q
tΦmax−ω(A1)

1− t−ω(A1)

−

(

A1 ⊗ q
tΦmax

1− t−ω(A1)
−A2 ⊗ q

tΦmax−ω(A2)

1− t−ω(A2)

)

·
t−ω(A1)−ω(A2)

1− t−ω(A1)−ω(A2)
,

(3c) if c1(An−1) = c1(A1) = 0, c1(An−2) and c1(A2) non-zero, then

S(Λ) = An ⊗ qtΦmax −An−1 ⊗ q
tΦmax−ω(An−1)

1− t−ω(An−1)
−A1 ⊗ q

tΦmax−ω(A1)

1− t−ω(A1)
.
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We start by deducing Theorem 4.5 from Theorem 4.4. The proof of the
latter is postponed to the next subsection since it is much more involving.

Proof of Theorem 4.5. It is a staigthforward consequence of Theorems 4.2
and 4.4.

(1): By Theorem 4.4, only An contributes and its contribution is of the
form S(Λ) = An ⊗ qtΦmax .

(2a): Here An and its iterations induce the only non-trivial contributions.
The contribution of kAn being An ⊗ q−c1(kAn)tΦmax−ω(kAn), we get the
result by summing over k (starting at k = 0):

S(Λ) = An ⊗ q tΦmax

(

∞
∑

k=0

(t−ω(An))k

)

= An ⊗ q
tΦmax

1− t−ω(An)

(3a): This case is similar to (2a) except that we sum the contributions of all
the kA1’s starting at k = 1 (thus, the new −ω(A1) as power of t).

(3c): This case is similar to (3a) (but for both An−1 and A1).

Now we turn to (3b). The first two terms coincide with the sum of the
contributions induced by An and kA1. However, we also have to count the
contributions of kA1 + lA2. As before, we can see that

−A1 ⊗ q
tΦmax−ω(A1)−ω(A2)

(1− t−ω(A1))(1− t−ω(A1)−ω(A2))

=

∞
∑

k=1,l=0

ak(A1+A2)+lA1
⊗ qtΦmax−(k+l)ω(A1)−kω(A2)

which sums the contributions of k(A1 +A2) + lA1 (with k ≥ 1 and l ≥ 0),
that is, the contributions of all terms of the form kA1 + lA2 with k ≥ l ≥ 1.
In the same way,

A2 ⊗ q
tΦmax−2ω(A2)−ω(A1)

(1− t−ω(A2))(1− t−ω(A1)−ω(A2))

=

∞
∑

k,l=1

ak(A1+A2)+lA2
⊗ qtΦmax−kω(A1)−(k+l)ω(A2)

which sums the contributions of all terms of the form kA1 + lA2 with k < l.
Thus the formula given for the case (3b) is indeed the sum of all non-trivial
contributions.
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Finally, let us look at (2b). First decompose

1

1− t−ω(An)−ω(A1)
= 1 +

t−ω(An)−ω(A1)

1− t−ω(An)−ω(A1)

and by replacing, we check that

S(Λ) =

[

An ⊗ q
tΦmax

1− t−ω(An)
−A1 ⊗ q

tΦmax−ω(A1)

1− t−ω(A1)

]

·
1

1− t−ω(An)−ω(A1)

= An ⊗ q
tΦmax

1− t−ω(An)
+An ⊗ q

tΦmax−ω(An)−ω(A1)

(1− t−ω(An))(1− t−ω(An)−ω(A1))

−A1 ⊗ q
tΦmax−ω(A1)

1− t−ω(A1)
−A1 ⊗ q

tΦmax−2ω(A1)−ω(An)

(1− t−ω(A1))(1− t−ω(An)−ω(A1))
.

Now the first term counts the contributions of all terms of the form kAn

(as in (2a) above), the second term counts the contributions of kA1 (or
An + kA1, see above) and then the last two count (as for (3b) but with An

playing the role of A1 and A1 playing the role of A2) all the contributions
of the terms of the form kAn + lA1 (with k and l both non-zero). �

4.2. Proof of Theorem 4.4

The proof is more or less a case-by-case proof and we focus on Case (2b),
since all the difficulties which one might encounter are already present and
since the methods used to compute the Gromov–Witten invariants are the
same. Notice that Case (2b) is one of the spectific cases described in Sec-
tion 3.

We need to determine the class aB of Theorem 4.2 where B = kAn + lA1

∈ H2(M ;Z). Recall that this class is determined by the requirement that

aB · c = GWMΛ

Amax+B,1(c), for all c ∈ H∗(M ;Z).

In the notation for the Gromov–Witten invariant we can either use the
homology class c or its Poincaré dual. We define Bk,l := Amax + kAn + lA1.
Now we claim that in order to prove the theorem in Case (2b) it is sufficient
to compute the following Gromov–Witten invariants.
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Theorem 4.6. For any k, l ∈ N we have

GWMΛ

Bk,l,1
(Z1Z2) =

{

0 if k ≥ l

2 if k < l
GWMΛ

Bk,l,1
(Z1Zb) =

{

1 if k ≥ l

2 if k < l

and GWMΛ

Bk,l,1
(Z2Zb) =

{

0 if k ≥ l

−1 if k < l

where Z1, Z2, Zb ∈ H2(MΛ;Q) are defined in Section 3.1.

Since the proof of this theorem is quite long and technical, we postpone
it to Sections 4.3 and 4.4, and we first finish the proof of Theorem 4.4 by
proving the claim.

The class aB is a linear combination of the homology classes of the pre-
images, under the moment map Φ of the facets of the polyope P = Φ(M),
that is,

(14) aB =

n
∑

i=1

aiAi,

where ai ∈ Z. Since the dimension of the Z–module HS
2 (M ;Z) is n− 2, we

can assume that two of the coefficients ai vanish. The following lemma shows
that we can choose the coefficients a2 = a3 = 0.

Lemma 4.7. All the classes Ai are linear combinations of the basis ele-
ments {λ1, . . . , λn−2}, defined in Section 3.

Proof. It is known from the diagram of Figure 4 that An = λ1 and A1 =
λ2 − 2λ1 which gives λ1 = An and λ2 = 2An +A1. Recall that ηi = αie1 +
βie2 where i = 1, . . . , n. Let γi,j := αjβi − αiβj . It is not hard to check that
Relation (8) implies that γi,i+1 = 1. Moreover γi,j 6= 0 if j 6= i+ 1 because
the polytope is convex. We can write all the A′

is as linear combinations of
the basis elements λi, using the same argument as we use in Section 3 for
An and A1, which yields:

An−1 = λn−2, A4 = λ3 + γ5,3 λ4 + λ5,

An−2 = λn−3 + γn−1,n−3 λn−2, · · · A3 = λ2 + γ4,2 λ3 + λ4,

An−3 = λn−4 + γn−2,n−4 λn−3 + λn−2, A2 = λ1 − d2 λ2 + λ3.
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Since λn−2 = An−1 it follows from the second equation that λn−3 = An−2 −
γn−1,n−3An−1. Substituting this in the third equation we can find an expres-
sion of λn−4 as a linear combination of An−2 and An−1. Going around the
polytope we easily see that we can, recursively, determine an expression of
each λi as a linear combination of the A′

is with i 6= 2, 3. In particular, we
obtain expressions for λ3 and λ4 which implies, by the last two equations,
that A2 and A3 are linear combinations of the remaining A′

is. �

Therefore, from now on, we assume a2 = a3 = 0 in the linear combina-
tion (14). Recall that

aB · c = GWMΛ

Amax+B,1(PD(c))

for c ∈ H2(M ;Z). If c does not contain An−1, An, A1, A2 then it is clear
that the Gromov–Witten invariant GWMΛ

Amax+B,1(PD(c)) vanishes when B =
kAn + lA1. Therefore

0 = GWMΛ

Amax+B,1(PD(A3)) = aB ·A3 = a4

because a2 = a3 = 0. Then, using that a4 = 0, we get

0 = GWMΛ

Amax+B,1(PD(A4)) = aB ·A4 = a5

and by repeating the process around the polytope we get for all k, 3 ≤ k ≤
n− 2,

0 = GWMΛ

Amax+B,1(PD(Ak)) = aB ·Ak = ak+1

so that all the coefficients vanish except an, a1. That is, we obtain aB =
anAn + a1A1 for some an, a1 ∈ Z when B = kAn + lA1. Since PD(A2) =
Z2Zb and PD(A1) = Z1Zb it follows from Theorem 4.6 that if k ≥ l then

0 = GWMΛ

σBk,l,1
(Z2Zb) = aB ·A2 = (anAn + a1A1) ·A2 = a1,

1 = GWMΛ

σBk,l,1
(Z1Zb) = aB ·A1 = (anAn + a1A1) ·A1 = an − 2a1.

We conclude that an = 1, a1 = 0 and aB = An in this case. If k < l then we
obtain

−1 = GWMΛ

σBk,l,1
(Z2Zb) = a1 and 2 = GWMΛ

σBk,l,1
(Z1Zb) = an − 2a1.

Therefore, in this case, an = 0, a1 = −1 and aB = −A1. This concludes the
proof of Theorem 4.4, Case (2b).
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4.3. An intermediate result

Before giving the proof of Theorem 4.6, we first need an intermediate result
about some particular 0–point Gromov–Witten invariants. Recall that, by
the divisor axiom, the 0–point invariant GWMΛ

0 (A), for A 6= 0 ∈ H2(MΛ;Z),
is given by

GWMΛ

0 (A) =
1

h(A)3
GWMΛ

A,3(h, h, h)

where h ∈ H2(MΛ;Q) is such that h(A) =
∫

A
h 6= 0. From now on we will

suppress the indication of the number of marked points when that number is
clear from the context and the expression for the Gromov–Witten invariant.

Proposition 4.8. Let k and l be non-negative integers. Then

GWMΛ(kAn + lA1) =































−
1

k3
if l = 0,

−
1

l3
if k = 0,

−
1

k3
if k = l,

0 otherwise.

Proof. In Steps 1 and 2 below, we prove the result in the first two cases.
Then, in Step 3., we prove the result in the remaining cases by adapting
Steps 1 and 2. A good reference for what follows is [29].

Step 1. Let k > 0. We begin with some preliminaries about moduli
spaces of stable curves. Let M0,n(CP

1, k) denote the moduli space of genus
0, n–pointed, degree k stable maps to CP1. Let

p : M0,1(CP
1, k) → M0,0(CP

1, k)

be the universal curve, and let ev : M0,1(CP
1, k) → CP1 be the evaluation

map at the marked point. M0,0(CP
1, k) is a smooth Deligne–Mumford stack

of dimension 2k − 2 and the map p is the forgetting morphism, which forgets
the marked point. The following short exact sequence over CP1:

0 → OCP1 → OCP1(1)⊕OCP1(1) → OCP1(2) = TCP1 → 0,

induces the short exact sequence

0 → T ∗
CP1 = OCP1(−2) → OCP1(−1)⊕OCP1(−1) → OCP1 → 0.
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Given a genus 0, 0–pointed, degree k stable map u : C → CP1, we have a
short exact sequence of vector bundles over the domain C:

(15) 0 → u∗OCP1(−2) → u∗OCP1(−1)⊕ u∗OCP1(−1) → OC → 0 .

Since H0(C, u∗OCP1(−2)) = H0(C, u∗OCP1(−1)⊕ u∗OCP1(−1)) = {0}, the
long exact sequence in cohomology associated to (15) becomes

0 → H0(C,OC) → H1(C, u∗OCP1(−2))

→ H1(C, u∗OCP1(−1)⊕ u∗OCP1(−1)) → 0,

where the complex dimension of H1(C, u∗OCP1(−1)⊕ u∗OCP1(−1)) and
H1(C, u∗OCP1(−2)) are respectively 2k − 2 and 2k − 1.

Next we define two bundles over M0,0(CP
1, k):

Ek := p∗ev
∗OCP1(−2) and Vk := p∗ev

∗(OCP1(−1)⊕OCP1(−1)) .

The bundle Ek has rank 2k − 1 and its fiber over [u : C → CP1] is given by
H1(C, u∗OCP1(−2)), while Vk has rank 2k − 2 and fiberH1(C, u∗OCP1(−1)⊕
u∗OCP1(−1)). They belong to the following short exact sequence

0 → OM → Ek → Vk → 0,

where OM is the trivial line bundle over M0,0(CP
1, k). Therefore, the Euler

and Chern classes of these bundles satisfy

(16) e(Ek) = c2k−1(Ek) = 0, e(Vk) = c2k−2(Vk) = c2k−2(Ek).

Finally, recall that
∫

[M0,0(CP1,k)] e(Vk) =
1
k3 (see Manin [30]).

Step 2. We now consider the case of a toric fibration π : MΛ → CP1

where the total space is a toric manifold of (complex) dimension 3 and each
fiber is diffeomorphic to the toric surface M . Using the previous notation,
we want to show that

GW(kAn) =

∫

[M0,0(MΛ,kAn)]vir
1 = −

1

k3
.

We first introduce some notation. We have

H∗
C∗(point;Z) = H∗(BC∗;Z) = H∗(CP∞;Z) = Z[u],

where u = c1(OCP∞(−1)) is the first Chern class of the tautological line
bundle over BC∗ = CP∞. Let Lmu denote the C∗–equivariant line bundle
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over a point given by the 1–dimensional C∗–representation t 7→ tm. Then

(c1)C∗(Lmu) = mu ∈ H2
C∗(point;Z) = Z[u].

The action of C∗ on CP1 by t · [x, y] = [tx, y] has two fixed points: 0 =
[0 : 1] and ∞ = [1 : 0] and at these points

(c1)C∗(T0CP
1) = u, (c1)C∗(T∞CP1) = −u.

There is a unique lift of this action to MΛ which acts trivially on π−1(0).
This lift induces a C∗–action on M0,0(MΛ, kAn) and we have

M0,0(MΛ, kAn)
C∗

= F0 ∪ F∞

where F0 and F∞ can be identified with M0,0(CP
1, k) as moduli spaces of

maps to π−1(0) and π−1(∞), respectively.
By virtual localization [20],

∫

[M0,0(MΛ,kAn)]vir
1 =

∫

[F0]vir

1

eC∗(Nvir
F0

)
+

∫

[F∞]vir

1

eC∗(Nvir
F∞

)

where Nvir
F0

and Nvir
F∞

are the virtual normal bundles to F0 and F∞, respec-
tively.

Let ξ = [u : C → CP1] ∈ F0. As explained in [29], the tangent space T 1
ξ

and the obstruction space T 2
ξ at the moduli point ξ ∈ M0,0(MΛ, kAn) fit in

the tangent-obstruction exact sequence:

0 → Ext0(ΩC ,OC) → H0(C, u∗TMΛ) → T 1
ξ(17)

→ Ext1(ΩC ,OC) → H1(C, u∗TMΛ) → T 2
ξ → 0

where

• Ext0(ΩC ,OC), respectively Ext1(ΩC ,OC), is the space of infinitesimal
automorphisms, respectively deformations, of the domain C,

• H0(C, u∗TMΛ), respectively H1(C, u∗TMΛ), is the space of infinitesi-
mal deformations of, respectively obstructions to deforming, the map
u.
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Equivalently,

0 → Ext0(ΩC ,OC) → H0(C, u∗TCP1)⊕ Lu → T 1
ξ

→ Ext1(ΩC ,OC) → H1(C, u∗O(−2)) → T 2
ξ → 0 .

Together with the fact that e(Ek) = 0, this leads to

∫

[F0]vir

1

eC∗(Nvir
F0

)
=

∫

M0,0(CP1,k)

e(Ek)

e(Lu)
= 0 .

Suppose now that ξ ∈ F∞. In this case (17) is equivalent to

0 → Ext0(ΩC ,OC) → H0(C, u∗TCP1)⊕ L−u → T 1
ξ

→ Ext1(ΩC ,OC) → H1(C, u∗O(−2))⊗ L−u → T 2
ξ → 0

so that
∫

[F∞]vir

1

eC∗(Nvir
F∞

)
=

∫

M0,0(CP1,k)

e(Ek ⊗ L−u)

u

where

e(Ek ⊗ L−u) =

2k−1
∑

i=0

(−u)ic2k−1−i(Ek) = −ue(Vk) +

2k−1
∑

i=2

c2k−1−i(Ek)(−u)i

by (16). Together with the aforementioned result due to Manin, this now
yields

∫

[F∞]vir

1

eC∗(Nvir
F∞

)
= −

∫

M0,0(CP1,k)
e(Vk) = −

1

k3
.

This proves that GW(kAn) = − 1
k3 , which finishes the proof of the first

case of the proposition. The second case follows by symmetry.
Step 3. For the third and fourth cases we adapt Steps 1 and 2 above to

the case of genus 0, 1–pointed, stable maps u : C → CP1 × CP1 of degree k to
the first sphere and of degree l to the second sphere. We denote the moduli
space of such maps by M0,1(CP

1 × CP1, (k, l)), it is a Deligne–Mumford
stack of dimension 2k + 2l.

As above, we define the evaluation map ev : M0,2(CP
1 × CP1, (k, l)) →

CP1 × CP1 and the forgetful map given by p : M0,2(CP
1 × CP1, (k, l)) →
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M0,1(CP
1 × CP1, (k, l)) which forgets the second marked point, and we con-

sider the following short exact sequence over CP1 × CP1:

0 → OCP1(−2)×OCP1(−2)

→ (OCP1(−1)⊕OCP1(−1))× (OCP1(−1)⊕OCP1(−1))

→ OCP1 ×OCP1 → 0 .

Given [u : C → CP1 × CP1] ∈ M0,1(CP
1 × CP1, (k, l)), this exact sequence

pulls-back to

0 → u∗(OCP1(−2)×OCP1(−2))

→ u∗((OCP1(−1)⊕OCP1(−1))× (OCP1(−1)⊕OCP1(−1)))

→ u∗(OCP1 ×OCP1) → 0 .

In a similar way to the previous case we define bundles

Ek,l := p∗ev
∗(OCP1(−2)×OCP1(−2)) and

Vk,l := p∗ev
∗((OCP1(−1)⊕OCP1(−1))× (OCP1(−1)⊕OCP1(−1)))

over M0,1(CP
1 × CP1, (k, l)). Now Ek,l and Vk,l have rank 2k + 2l − 2 and

2k + 2l − 4, respectively. In this case we have the following short exact se-
quence of bundles

0 → OM → Ek,l → Vk,l → 0 ,

where, again, OM is the trivial bundle. So relations (16) become in this case

e(Ek,l) = c2k+2l−2(Ek,l) = 0, e(Vk,l) = c2k+2l−4(Vk,l) = c2k+2l−4(Ek,l) .

We consider the same C∗–action as above, with fixed points 0 = [0 : 1]
and ∞ = [1 : 0], and its lift to MΛ acting trivially on π−1(0). It induces a
C∗–action on M0,0(MΛ, kAn +A1). Analogously to the first case we have

M0,0(MΛ, kAn + lA1)
C∗

= F0 ∪ F∞

where F0 and F∞ can now be identified with M0,1(CP
1 × CP1, (k, l)).

Again, by virtual localization [20],
∫

[M0,0(MΛ,kAn+lA1)]vir
1 =

∫

[F0]vir

1

eC∗(Nvir
F0

)
+

∫

[F∞]vir

1

eC∗(Nvir
F∞

)
.

However, in this case, since dimM0,1(CP
1 × CP1, (k, l)) = 2k + 2l and

both Euler classes e(Ek,l) and e(Ek,l ⊗ L−u) have smaller degree than this
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dimension we conclude that both integrals

∫

[F0]vir

1

eC∗(Nvir
F0

)
=

∫

M0,1(CP1×CP1,(k,l))

e(Ek)

e(Lu)
and

∫

[F∞]vir

1

eC∗(Nvir
F∞

)
=

∫

M0,1(CP1×CP1,(k,l))

e(Ek ⊗ L−u)

u

vanish, unless k = l when we can reduce the calculation of the Gromov–
Witten invariant to the first case by considering curves in class k(An +
A1). �

4.4. Proof of Theorem 4.6

We are now ready to prove Theorem 4.6 which will conclude the proof of
Theorem 4.4.

We use an induction argument. First notice that using the results from
Spielberg recalled in Section 2.5, we can easily compute the value of the
three Gromov–Witten invariants of Theorem 4.6 for the base cases k = 0, 1
and l = 0, 1 (see Lemma 3.3 for the computation of some of these invariants).
Now we assume they hold for all values i, j such that i ≤ k − 1 and j ≤ l − 1
and we will prove they also hold for i = k and j = l. Because [M ] · [σ] = 1
for any section class σ, the divisor axiom for Gromov–Witten invariants (see
Proposition 2.2) implies that the 1–point invariant GWMΛ

Amax+B,1(c) equals

the 3–point invariant GWMΛ

Amax+B,3([M ], [M ], c). It follows easily, from the fan
description of the manifold MΛ in Section 3, that PD([M ]) = Zb. Therefore
we need to compute the Gromov–Witten invariants

GWMΛ

Amax+B,3(Zb, Zb, Z)

with Z ∈ H4(M ;Z) since the degrees satisfy the equation 2 degZb + degZ =
2N + 2c1(Bk,l) + 2m− 6 where dimMΛ = 2N = 6, degZb = 2, c1(Bk,l) = 1
and m = 3 is the number of marked points.

The main idea of the proof is to compute well-chosen Gromov–Witten
invariants via the splitting axiom along two different partitions and then
deduce relations from the two resulting expressions. Namely, we start with
GWMΛ

Bk,l,4
(Z1, Zb, Zb, Z1; [pt]), from which we will deduce:
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Lemma 4.9. GWMΛ

Bk,l
(Z1Zb) and GWMΛ

Bk,l
(Z1Z2) satisfy the following equa-

tions:

(k − 2l)GWMΛ

Bk,l
(Z1Zb) + GWMΛ

Bk,l
(Z1Z2) = k − 2l , if k ≥ l,(18)

(k − 2l)GWMΛ

Bk,l
(Z1Zb) + GWMΛ

Bk,l
(Z1Z2) = 2k − 4l + 2 , if k < l.(19)

Proof. Step 1. We use the partition S0 = {1, 2}, S1 = {3, 4} of the in-
dex set {1, 2, 3, 4} and apply the splitting axiom so that we get:

GWMΛ

Bk,l,4
(Z1, Zb, Zb, Z1; [pt]) =

∑

C0+C1=Bk,l

GWMΛ

C0,3
(Z1, Zb, eν) g

νµGWMΛ

C1,3
(eµ, Zb, Z1)

where the sum runs over all C0, C1 such that

{

C0 = Amax + k0An + l0A1

C1 = k1An + l1A1

or

{

C0 = k0An + l0A1

C1 = Amax + k1An + l1A1

with k0 + k1 = k and l0 + l1 = l. In order to ease the reading, we used in the
equality above as well as in the rest of this proof, the Einstein summation
convention with respect to the basis of the cohomology (and thus forgot
∑

ν,µ from the notation).
This leads us to

GWMΛ

Bk,l,4
(Z1, Zb, Zb, Z1; [pt])

= GWMΛ

Bk,l,3
(Z1, Zb, eν) g

νµGWMΛ

0,3 (eµ, Zb, Z1)

+ GWMΛ

Amax,3
(Z1, Zb, eν) g

νµGWMΛ

kAn+lA1,3
(eµ, Zb, Z1)

+
∑

1≤k0+l0≤k+l−1

GWMΛ

Bk0,l0
,3(Z1, Zb, eν) g

νµGWMΛ

k1An+l1A1,3
(eµ, Zb, Z1)

+ GWMΛ

0,3 (Z1, Zb, eν) g
νµGWMΛ

Bk,l,3
(eµ, Zb, Z1)

+ GWMΛ

kAn+lA1,3
(Z1, Zb, eν) g

νµGWMΛ

Amax,3
(eµ, Zb, Z1)

+
∑

1≤k0+l0≤k+l−1

GWMΛ

k0An+l0A1,3
(Z1, Zb, eν) g

νµGWMΛ

Bk1,l1
,3(eµ, Zb, Z1)
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Now, by using the divisor axiom (see Proposition 2.2) together with the fact
that

∫

An
Zb =

∫

A1
Zb = 0, we end up with:

GWMΛ

Bk,l,4
(Z1, Zb, Zb, Z1; [pt])(20)

= 2GWMΛ

Bk,l,3
(Z1, Zb, eν) g

νµGWMΛ

0,3 (eµ, Zb, Z1) .

Moreover, it is clear that
∫

Bk,l
Z1 = Z1(Amax + kAn + lA1) = k − 2l and

∫

Bk,l
Zb = 1, and by the zero axiom (see Proposition 2.2):

GWMΛ

0,3 (eµ, Zb, Z1) =

∫

MΛ

eµ ∪ Zb ∪ Z1 =











−2 if eµ = Z1,

1 if eµ = Z2,

0 otherwise.

So one gets that (20) leads to

GWMΛ

Bk,l,4
(Z1, Zb, Zb, Z1; [pt])(21)

= 2(k − 2l)
∑

ν : |eν |=4

GWMΛ

Bk,l,1
(eν) (g

νn − 2gν1) .

Remark 4.10. From the diagram of Figure 4, GWMΛ

Bk,l,1
(eν) 6= 0 only if the

class eν is Poincaré dual to one of the following homology classes: An−1, An,
A1, A2, Amax, or Amax +A1, since the marked point should lie in one of the
following cones: σ2, σ3, σ4, σ7, σ8, or σ9. Their Poincaré duals are the classes
Zn−1Zb, ZnZb, Z1Zb, Z2Zb, Z1Zn, and Z1Z2, respectively. Note that the only
ones that belong to the basis of the cohomology are Z1Zb, Z2Zb, and Z1Z2.
Therefore, at most three terms appear in the summation in Equation (21)
above and the coefficients can be computed thanks to Lemma 3.2.

In the case of Equation (21), we end up with

(22) GWMΛ

Bk,l,4
(Z1, Zb, Zb, Z1; [pt]) = 2(k − 2l)GWMΛ

Bk,l,1
(Z1Zb) .

Step 2. We use the partition S0 = {1, 4}, S1 = {2, 3}.

The same Gromov–Witten invariant is given by the following expression

GWMΛ

Bk,l,4
(Z1, Zb, Zb, Z1; [pt])(23)

= GWMΛ

0,3 (Z1, Z1, eν) g
νµGWMΛ

Bk,l,3
(eµ, Zb, Zb)

+
∑

1≤k0+l0≤k+l

GWMΛ

k0An+l0A1,3
(Z1, Z1, eν) g

νµGWMΛ

Bk1,l1
,3(eµ, Zb, Zb).
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Since (by the zero axiom):

GWMΛ

0,3 (Z1, Z1, eν) =

∫

MΛ

Z2
1 ∪ eν

=











4 if eν = Z1

−2 if eν = Z2 or eν = Zb

0 otherwise

and

∫

k0An+l0A1

eν =











k0 − 2l0 if eν = Z1,

l0 if eν = Z2,

0 otherwise

it follows from the divisor axiom that (23) is equal to

=
∑

µ : |eµ|=4

(4g1µ − 2g2µ − 2gbµ)GWMΛ

Bk,l,1
(eµ)(24)

+
∑

µ

∑

1≤k0+l0≤k+l

[

(k0 − 2l0)
2GW(k0An + l0A1)

((k0 − 2l0)g
1µ + l0 g

2µ)GWMΛ

Bk1,l1
,1(eµ)

]

where GW(k0An + l0A1) denotes the 0–point invariant in class k0An + l0A1.
These were computed in Proposition 4.8. In order to simplify the expression,
we will denote them by GW0. We will also omit the index 1 indicating the
number of marked points for the various 1–point Gromov–Witten invariants
appearing in what remains of the proof.

In view of Remark 4.10 above and Lemma 3.2, equation (24) actually
reads

= −2GWMΛ

Bk,l
(Z1Z2)

+
∑

1≤k0+l0≤k+l

(k0 − 2l0)
2GW0

[

(k0 g
1,1b + l0)GWMΛ

Bk1,l1

(Z1Zb)

+ k0 g
1,2bGWMΛ

Bk1,l1

(Z2Zb) + k0 g
1,12GWMΛ

Bk1,l1

(Z1Z2))
]

.

Then, using Proposition 4.8, we separate the summation in three summa-
tions: k0 = 0, l0 = 0, and k0 = l0:
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= −2GWMΛ

Bk,l
(Z1Z2) +

l
∑

l0=1

4l30

(

−
1

l30

)

GWMΛ

Bk,l1

(Z1Zb)(25)

+

k
∑

k0=1

k30

(

−
1

k30

)

[

g1,1bGWMΛ

Bk1,l
(Z1Zb)

+ g1,2bGWMΛ

Bk1,l
(Z2Zb) + g1,12GWMΛ

Bk1,l
(Z1Z2))

]

−

min(k,l)
∑

k0=1

k30

(

1

k30

)

[

(g1,1b + 1)GWMΛ

Bk1,l1

(Z1Zb)

+ g1,2bGWMΛ

Bk1,l1

(Z2Zb) + g1,12GWMΛ

Bk1,l1

(Z1Z2))
]

.

Applying the induction hypotheses and Lemma 3.2 we can simplify even
further this expression. However we need to consider two different cases:

(a) If k ≥ l then (25) is equal to

= −2GWMΛ

Bk,l
(Z1Z2)− 4l +

l−1
∑

k1=0

(−2g1,1b + g1,2b − 2g1,12)(26)

−
k−1
∑

k1=l

g1,1b −
l
∑

k0=1

(g1,1b + 1)

= −2GWMΛ

Bk,l
(Z1Z2) + l (g1,2b − 2g1,12)− (k + 2l) g1,1b − 5l

(b) If k < l then (25) is equal to

= −2GWMΛ

Bk,l
(Z1Z2)− 4

k
∑

l1=0

1− 4

l−1
∑

l1=k+1

2(27)

−
k
∑

k0=1

(2g1,1b − g1,2b + 2g1,12)−
k
∑

k0=1

(g1,1b − g1,2b + 2g1,12)

= −2GWMΛ

Bk,l
(Z1Z2)− 4(k + 1)− 8(l − 1− k) + 6k

− 2k(2g1,12 − g1,2b)

Step 3. We use the fact that the results of Steps 1 and 2 coin-
cide, i.e. when k ≥ l, (22)=(26) while when k < l, (22)=(27).
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First we consider the case k ≥ l, (22)=(26) leads to

2(k − 2l)GWMΛ

Bk,l
(Z1Zb) + 2GWMΛ

Bk,l
(Z1Z2)

= l (g1,2b − 2g1,12)− (k + 2l) g1,1b − 5l.

In particular, when k = 1, l = 0 and k = 1, l = 1, it follows from the base
cases (Lemma 3.3) that the matrix elements satisfy:

g1,1b = −2 and 2g1,12 − g1,2b = 3,(28)

respectively. Getting back to the general case, we finally deduce:

(a) For k ≥ l, (22)=(26) together with (28) give

(k − 2l)GWMΛ

Bk,l
(Z1Zb) + GWMΛ

Bk,l
(Z1Z2) = k − 2l ,

(b) and for k < l, (22)=(27) together with (28) give

(k − 2l)GWMΛ

Bk,l
(Z1Zb) + GWMΛ

Bk,l
(Z1Z2) = 2k − 4l + 2 .

This ends the proof of the lemma. �

We now proceed along the same lines but for two other Gromov–Witten
invariants, namely,

GWMΛ

Bk,l,4
(Z1, Zb, Zb, Z2; [pt]) and GWMΛ

Bk,l,4
(Z2, Zb, Zb, Z2; [pt]) .

Since the method is exactly the same, we leave the computation to the
interested reader and we simply give the four resulting equations.

Lemma 4.11. From GWMΛ

Bk,l,4
(Z1, Zb, Zb, Z2; [pt]), we deduce: if k ≥ l

(29) lGWMΛ

Bk,l
(Z1Zb) + (k − 2l)GWMΛ

Bk,l
(Z2Zb)−GWMΛ

Bk,l
(Z1Z2) = l ;

and if k < l

lGWMΛ

Bk,l
(Z1Zb) + (k − 2l)GWMΛ

Bk,l
(Z2Zb)−GWMΛ

Bk,l
(Z1Z2)(30)

= 4l − k − 2 .
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Lemma 4.12. From GWMΛ

Bk,l,4
(Z2, Zb, Zb, Z2; [pt]) we deduce:

(2l + 2d2 − 1)GWMΛ

Bk,l
(Z2Zb) + d2GWMΛ

Bk,l
(Z1Z2) = 0 , if k ≥ l,(31)

(2l + 2d2 − 1)GWMΛ

Bk,l
(Z2Zb) + d2GWMΛ

Bk,l
(Z1Z2) = 1− 2l , if k < l,(32)

where d2 comes from the matrix G, see Table (13).

In order to conclude the proof of Theorem 4.6, we consider two linear
systems:

• one given by the equations (18), (29), (31), corresponding to the case
k ≥ l of Lemmas 4.9, 4.11, and 4.12 above,

• the other given by the equations (19), (30), (32) corresponding to the
case k < l.

The unknowns of these linear systems are the Gromov–Witten invariants we
are looking for, namely, GWMΛ

Bk,l
(Z1Zb), GWMΛ

Bk,l
(Z1Z2), and GWMΛ

Bk,l
(Z2Zb).

The unique solutions of these systems give us the desired result.

5. Applications and explicit examples

In this section we show some applications of our results and illustrate their
relevance with some particular examples. More precisely, in Section 5.1 we
show how to obtain an expression for the Landau–Ginzburg superpotential
from the moment polytope of a NEF toric 4–manifold. In Section 5.2 we
compute the Seidel elements, the quantum homology ring and the Landau–
Ginzburg superpotential for two examples of NEF toric surfaces, namely CP2

blown–up at 4 or 5 points. Finally, in Section 5.3 we show how we can use the
Fano and NEF computations to obtain explicit expressions of Seidel elements
for some particular non-NEF manifolds, namely the Hirzebruch surfaces F2k

or F2k−1 with k ≥ 2. As an example, we compute them explicitly for F4.

5.1. The Landau–Ginzburg potential

In this section we follow the works of McDuff–Tolman [32] and Ostrover–
Tyomkin [33] which were themselves developments of original ideas due to
Batyrev [5] and Givental [17, 18]. In particular, we will also use quantum
cohomology. The definition is similar to quantum homology in Section 2.4,
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except that the coefficient ring is Π̌ := Π̌univ[q, q−1], with

Π̌univ :=

{

∑

κ∈R

rκt
κ
∣

∣ rκ ∈ Q, #{κ < c | rκ 6= 0} < ∞, ∀c ∈ R

}

(compare with (5)) and that the product on QH∗(M ;ω) = H∗(M ;Q)⊗Q Π̌
is Poincaré dual to the intersection product and is called the quantum cup
product.

Let us recall some notation. Consider a torus T with Lie algebra t and
lattice tZ. Let (M,ω) be a smooth toric 2m–manifold with moment map
Φ : M → t

∗ and with moment polytope P . Let D1, . . . , Dn be the facets of
P , inducing homology classes Ai = [Φ−1(Di)] ∈ H2(M ;Z), and let v1, . . . , vn
denote the outward primitive integral vectors normal to the facets. The
moment polytope is given by

P = {x ∈ t
∗ | 〈x, vj〉 ≤ κj , for j = 1, . . . , n}

where κj ∈ R. Any face of P , given as the intersection of facets Dj1 , . . . , Djℓ,
admits a dual cone consisting by definition of those elements in t which are
positive linear combinations of vj1 , . . . , vjℓ . As explained in [32, Section 5.1],
any vector in t lies in the dual cone of a unique face of P . Therefore, a subset
I = {i1, . . . , ik} ⊆ {1, . . . n} determines a unique face of P whose dual cone
contains vi1 + · · ·+ vik . This face is given as the intersection of facets which
we (still) denote by Dj1 , . . . , Djℓ and there exist unique positive integers
c1, . . . , cℓ so that vi1 + · · ·+ vik − c1vj1 − · · · − cℓvjℓ = 0 . Batyrev showed
that if I is primitive, the sets I and J = {j1, . . . , jℓ} are disjoint. Moreover, if
βI ∈ H2(M ;Z) is the class corresponding to the above relation (recall from
Section 2.3 that H2(M ;Z) is isomorphic to the set of (a1, . . . , an) ∈ Zn such
that

∑

aivi = 0), then by (3):

c1(βI) = k − c1 − · · · − cℓ ,(33)

ω(βI) = vi1(Di1) + · · ·+ vik(Dik)− c1vj1(Dj1)− · · · − cℓvjℓ(Djℓ)(34)

= κi1 + · · ·+ κik − c1κj1 − · · · − cℓκjℓ .

Denote by Λi the circle action corresponding to vi, that is, Λi is the circle
action whose moment map ΦΛi

is given by the composition of the moment
map Φ : M → t∗ with the linear functional vi ∈ t. Let

S∗(Λi) = yi ⊗ q−1t−vi(Di) ∈ QHev(M,ω)×
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be the cohomological counterpart of the Seidel element. In [32] the authors
show the following result.

Proposition 5.1. Let QH∗(M,ω) denote the small quantum cohomology
of the toric manifold (M,ω). The map Θ which sends Zi to the Poincaré
dual of Φ−1(Di) induces an isomorphism

Q[Z1, . . . , Zn]⊗ Π̌/(Lin(P ) + SRY (P )) ∼= QH∗(M,ω),

where the ideal Lin(P ) is generated by the linear relations

Lin(P ) =
〈

∑

(x, vj)Zj | x ∈ t
∗
Z

〉

and the ideal SRY (P ) is given by

SRY (P ) =
〈

Yi1 · · ·Yik − Y c1
j1

· · ·Y cℓ
jℓ

⊗ qc1(βI)tω(βI)(35)
∣

∣ I = {i1, . . . , ik} is primitive
〉

,

where

(36) Yi = Zi + higher order terms,

is a lift of the Seidel element yi in Q[Z1, . . . , Zn]⊗ Π̌, such that Θ(Yi) = yi.

As McDuff and Tolman explain in [32], in general, it is not possible to
find Yi without prior knowledge of the ring structure on QH∗(M,ω) but, in
special cases, we can indeed describe Yi. In the Fano case the higher terms
vanish and we may take Yi = Zi. In the NEF case there might be higher
order terms in the Seidel elements yi, however, from [32, Theorem 1.10] we
know that the lifts Yi of yi are determined by some linear combination of the
Zi which is unique up to the additive relations Lin(P ) (see [32, Example 5.4]
for more details).

5.1.1. Fano case. In this case the Landau–Ginzburg superpotential is
given by

W =

n
∑

j=1

zvj tκj

where for vj = (vj,1, . . . , vj,m) ∈ Zm the term zvj represents the monomial
z
vj,1

1 . . . z
vj,m

m .
We now recall a result obtained by Givental in [18] (which we illustrate

with Ostrover–Tyomkin’s formalism, see [33, Proposition 3.3]).
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Theorem 5.2. If (M,ω) is a symplectic Fano manifold, then

QH∗(M,ω) ∼= Π̌[z±1 , . . . , z
±
m]/JW as Π̌–algebras

and in particular

QH0(M,ω) ∼= Π̌univ[z±1 , . . . , z
±
m]/JW as Π̌univ–algebras

where JW is the ideal generated by all partial derivatives of W .

In [33] the authors consider the natural homomorphism

Ψ : Q[Z1, . . . , Zn]⊗ Π̌ → Π̌[z±1 , . . . , z
±
m]

such that SRY (P ) is in the kernel of Ψ and the image of the additive relations
gives the ideal JW . In this case the homomorphism is defined by

Ψ(Zj) = qzvj tκj

and it is easy to see that Ψ satisfies the desired properties. Indeed, as we
saw above, in the Fano case we may set Yi = Zi hence

SRY (P ) =
〈

Zi1 · · ·Zik − Zc1
j1
· · ·Zcℓ

jℓ
⊗ qc1(βI)tω(βI)

∣

∣ I = {i1, . . . , ik} is primitive
〉

and

Ψ(Zi1 · · ·Zik − Zc1
j1
· · ·Zcℓ

jℓ
⊗ qc1(βI)tω(βI))

= qkzvi1 · · · zvik tκi1
+···+κik

− qc1+···+cℓzc1vj1 · · · zcℓvjℓ tc1κj1
+···+cℓκjℓ ⊗ qc1(βI)tω(βI)

= 0

by (33) and (34). Therefore the ideal SRY (P ) is in the kernel of Ψ.
The image of the additive relations is the following

Ψ





n
∑

j=1

(x, vj)Zj



 = q

n
∑

j=1

(x, vj)z
vj tκj .

On the other hand, we have

qzi
∂W

∂zi
= qzi

n
∑

j=1

vj,i z
vj,1

1 · · · z
vj,i−1
i · · · zvj,m

m tκj = q

n
∑

j=1

vj,i z
vj tκj .
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Note that if x = ei is the i–th vector of the canonical base in Rn then
(x, vj) = vj,i and one obtains the desired result.

5.1.2. NEF case. In this subsection we give the explicit expression of
the Landau–Ginzburg superpotential when M is a NEF 4–dimensional toric
manifold for which at most 2 of the homology classes Ai = [Φ−1(Di)] of the
pre-image of the facets Di have vanishing first Chern number. It follows from
the proof of the next proposition that the result generalizes to any number
of classes (corresponding to facets of the polytope) with Chern number zero,
but the expressions get more complicated as we increase the number of such
classes. Moreover, Theorem 5.2 still holds for these cases.

Proposition 5.3. If M is a NEF toric 4–manifold and Ai = [Φ−1(Di)]
where Di is a facet of the moment polytope then the Landau–Ginzburg su-
perpotential is given by the following expression:

1) if c1 vanishes only on the class Ak then

W =

n
∑

j=1

zvj tκj + zvktκk+1+κk−1−κk ,

2) if c1 vanishes only on the classes Ak−1 and Ak then

W =

n
∑

j=1

zvj tκj + zvktκk+1+κk−1−κk + zvk−1tκk+κk−2−κk−1

+ zvktκk+1+κk−2−κk−1 + zvk−1tκk+1+κk−2−κk .

Proof. Case (1): in this case the Seidel elements are given by Theorem 4.5:

S(Λj) = Aj ⊗ qtκj if j 6= k − 1, k, k + 1,

S(Λk−1) = Ak−1 ⊗ qtκk−1 −Ak ⊗ q
tκk−1−ω(Ak)

1− t−ω(Ak)
,

S(Λk) = Ak ⊗ q
tκk

1− t−ω(Ak)
,

S(Λk+1) = Ak+1 ⊗ qtκk+1 −Ak ⊗ q
tκk+1−ω(Ak)

1− t−ω(Ak)
.
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If S∗ denotes the Seidel morphism in cohomology then we have

S∗(Λj) = Zj ⊗ q−1t−κj if j 6= k − 1, k, k + 1,

S∗(Λk−1) =

(

Zk−1 − Zk ⊗
tω(Ak)

1− tω(Ak)

)

⊗ q−1t−κk−1 ,

S∗(Λk) = Zk ⊗ q−1 t−κk

1− tω(Ak)
,

S∗(Λk+1) =

(

Zk+1 − Zk ⊗
tω(Ak)

1− tω(Ak)

)

⊗ q−1t−κk+1 .

Thus in equation (36) we may take

Yj = Zj if j 6= k − 1, k, k + 1, Yk = Zk ⊗
1

1− tω(Ak)
,

Yk−1 = Zk−1 − Zk ⊗
tω(Ak)

1− tω(Ak)
, Yk+1 = Zk+1 − Zk ⊗

tω(Ak)

1− tω(Ak)

where ω(Ak) = κk+1 + κk−1 − 2κk. In this case, the definition of the homo-
morphism Ψ is such that

(37) ∀ 1 ≤ j ≤ n, Ψ(Yj) = qzvj tκj

so one obtains

Ψ(Zj) = qzvj tκj if j 6= k − 1, k, k + 1 ,

Ψ(Zk−1) = qzvk−1tκk−1 + qzvktκk+1+κk−1−κk ,

Ψ(Zk) = qzvktκk(1− tω(Ak)) = qzvktκk − qzvktκk+1+κk−1−κk ,

Ψ(Zk+1) = qzvk+1tκk+1 + qzvktκk+1+κk−1−κk .

It is clear, by definition of Ψ and the proof in the Fano case that SRY (P )
is in the kernel of the homomorphism. Computing the image of the additive
relations gives

Ψ
(

n
∑

j=1

(x, vj)Zj

)

= q

n
∑

j=1

(x, vj)z
vj tκj − q(x, vk)z

vktκk+1+κk−1−κk

+ q(x, vk−1)z
vktκk+1+κk−1−κk + q(x, vk+1)z

vktκk+1+κk−1−κk .

In order to obtain the derivatives of the potential we need

(x, vk−1) + (x, vk+1)− (x, vk) = (x, vk), that is, vk−1 + vk+1 = 2vk,
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which holds, if dimM = 4 and c1(Ak) = 0, as noticed already in Section 3.1,
Equation (8).

Case (2): In this case Theorem 4.5 gives the following:

Yj = Zj if j 6= k − 2, k − 1, k, k + 1 ,

Yk−2 = Zk−2 − Zk−1 ⊗
tω(Ak−1)+ω(Ak)

(1− tω(Ak−1))(1− tω(Ak−1)+ω(Ak))

− Zk−1 ⊗
tω(Ak−1)

1− tω(Ak−1)
+ Zk ⊗

tω(Ak−1)+2ω(Ak)

(1− tω(Ak))(1− tω(Ak−1)+ω(Ak))
,

Yk−1 =

(

Zk−1 ⊗
1

1− tω(Ak−1)
− Zk ⊗

tω(Ak)

1− tω(Ak)

)

1

1− tω(Ak−1)+ω(Ak)
,

Yk =

(

Zk ⊗
1

1− tω(Ak)
− Zk−1 ⊗

tω(Ak−1)

1− tω(Ak−1)

)

1

1− tω(Ak−1)+ω(Ak)
,

Yk+1 = Zk+1 − Zk ⊗
tω(Ak)

1− tω(Ak)
− Zk ⊗

tω(Ak−1)+ω(Ak)

(1− tω(Ak))(1− tω(Ak−1)+ω(Ak))

+ Zk−1 ⊗
tω(Ak)+2ω(Ak−1)

(1− tω(Ak−1))(1− tω(Ak−1)+ω(Ak))
.

Therefore, as above, if we define Ψ such that it satisfies (37) then we obtain

Ψ(Zj) = qzvj tκj if j 6= k − 2, k − 1, k, k + 1,

Ψ(Zk−2) = qzvk−2tκk−2 + qzvktκk+1,k−1+κk−2 + qzvk−1tκk−2(tκk,k−1 + tκk+1,k),

Ψ(Zk−1) = qzvk−1tκk−1(1− tκk,k−1+κk−2,k−1) + qzvktκk+1(tκk−1,k − tκk−2,k−1),

Ψ(Zk) = qzvktκk(1− tκk+1,k+κk−1,k) + qzvk−1tκk−2(tκk,k−1 − tκk+1,k),

Ψ(Zk+1) = qzvk+1tκk+1 + qzvk−1tκk+1,k+κk−2 + qzvktκk+1(tκk−1,k + tκk−2,k−1)

where κi,j = κi − κj . Again, it is clear that SRY (P ) is in the kernel of the
homomorphism and it is not hard to check that the image of the additive
relations gives the derivatives of the superpotential, under the assumptions
that vk−1 + vk+1 = 2vk and vk−2 + vk = 2vk−1. �

Remark 5.4. Note that in the NEF case we know by, for example, the
previous works of [8] and [19] that the Seidel elements completely determine
the potential so we cannot have constant terms (terms containing only the
variable t) in the potential. In general, in the non-NEF case, we do not know
if that holds. Moreover, we might have an infinite number of (constant) terms
in the potential, as explained to us by K. Chan. See also Remark 5.6.
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5.2. NEF examples: The case of a blow–up of CP2 at 4 or 5 points

In this section, as an application of our results, we compute explicitly the
small quantum cohomology (and homology) of the manifold obtained from
CP2 by performing 4 and 5 blow-ups, X4 and X5 respectively. Note that
these manifolds admit NEF almost complex structures, but no Fano ones.
Since the computations are similar, we show the full computations for X4

and only give the final result for X5. As already noticed in Example 1.2, X4

is symplectomorphic to the 3–point blow-up of S2 × S2 endowed with the
split symplectic form ωµ for which the symplectic area of the first factor is µ
and the area of the second factor is 1 (see [3, Section 2.1] for more details).
Let ci, i = 1, . . . , 4 be the capacities of the blow-ups. Let B, F ∈ H2(X4;Z)
be the homology classes defined by B = [S2 × {p}], F = [{p} × S2] and let
Ei ∈ H2(X4;Z) be the exceptional class corresponding to the blow-up of
capacity ci. Consider X4 endowed with the standard action of the torus
T = S1 × S1 for which the moment polytope is given by

P =
{

(x1, x2) ∈ R2 | 0 ≤ x2 ≤ µ, x2 + x1 ≤ µ− c3,

− 1 ≤ x1 ≤ 0, c1 ≤ x2 − x1 ≤ µ+ 1− c2
}

so the primitive outward normals to P are as follows:

v1 = (0, 1), v2 = (1, 1), v3 = (1, 0), v4 = (1,−1), v5 = (0,−1),

v6 = (−1, 0), and v7 = (−1, 1).

The normalised moment map Φ : X4 → R2 is given by

Φ(z1, . . . , z7) =

(

−
1

2
|z3|

2 + ǫ1,−
1

2
|z1|

2 + µ− ǫ2

)

,

where

ǫ1 =
c31 + 3c22 − c32 + c33 − 3µ

3(c21 + c22 + c23 − 2µ)
and ǫ2 =

c31 − c32 − c33 + 3c22µ+ 3c23µ− 3µ2

3(c21 + c22 + c23 − 2µ)
.

Moreover, the homology classes Ai = [Φ−1(Di)] of the pre-images of the
corresponding facets Di are: A1 = F − E2 − E3, A2 = E3, A3 = B − E1 −
E3, A4 = E1, A5 = F − E1, A6 = B − E2, and A7 = E2. Let Λi be the circle
action associated to vi. Since the complex structure on X4 is NEF and T–
invariant, it follows from Theorem 4.5 that the Seidel elements associated
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to these actions are given by the following expressions

S(Λ1) = (F − E2 − E3)⊗ q
tµ−ǫ2

1− tc2+c3−1
,

S(Λ2) = E3 ⊗ qtµ−c3+ǫ1−ǫ2 − (F − E2 − E3)⊗ q
tµ+c2−1+ǫ1−ǫ2

1− tc2+c3−1

− (B − E1 − E3)⊗ q
tc1+ǫ1−ǫ2

1− tc1+c3−µ
,

S(Λ3) = (B − E1 − E3)⊗ q
tǫ1

1− tc1+c3−µ
,

S(Λ4) = E1 ⊗ qtǫ1+ǫ2−c1 − (B − E1 − E3)⊗ q
tǫ1+ǫ2+c3−µ

1− tc1+c3−µ
,

S(Λ5) = (F − E1)⊗ qtǫ2 , S(Λ6) = (B − E2)⊗ qt1−ǫ1 ,

S(Λ7) = E2 ⊗ qtµ+1−c2−ǫ1−ǫ2 − (F − E2 − E3)⊗ q
tµ+c3−ǫ1−ǫ2

1− tc2+c3−1
.

Therefore we have

S∗(Λ1) = Z1 ⊗ q−1 tǫ2−µ

1− t1−c2−c3
,

S∗(Λ2) = Z2 ⊗ q−1tc3−µ−ǫ1+ǫ2 − Z1 ⊗ q−1 t
1−µ−c2−ǫ1+ǫ2

1− t1−c2−c3

− Z3 ⊗ q−1 tǫ2−ǫ1−c1

1− tµ−c1−c3
,

S∗(Λ3) = Z3 ⊗ q−1 t−ǫ1

1− tµ−c1−c3
,

S∗(Λ4) = Z4 ⊗ q−1tc1−ǫ1−ǫ2 − Z3 ⊗ q−1 tµ−c3−ǫ1−ǫ2

1− tµ−c1−c3
,

S∗(Λ5) = Z5 ⊗ q−1t−ǫ2 , S∗(Λ6) = Z6 ⊗ q−1tǫ1−1,

S∗(Λ7) = Z7 ⊗ q−1tc2−µ−1+ǫ1+ǫ2 − Z1 ⊗ q−1 tǫ1+ǫ2−µ−c3

1− t1−c2−c3
.

Thus in equation (36) we may take

Y1 = Z1 ⊗
1

1− t1−c2−c3
,

Y2 = Z2 − Z1 ⊗
t1−c2−c3

1− t1−c2−c3
− Z3 ⊗

tµ−c1−c3

1− tµ−c1−c3
,
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Y3 = Z3 ⊗
1

1− tµ−c1−c3
, Y4 = Z4 − Z3 ⊗

tµ−c1−c3

1− tµ−c1−c3
, Y5 = Z5,

Y6 = Z6, and Y7 = Z7 − Z1 ⊗
t1−c2−c3

1− t1−c2−c3
.

There are fourteen primitive sets: {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 4}, {2, 5},
{2, 6}, {2, 7}, {3, 5}, {3, 6}, {3, 7}, {4, 6}, {4, 7}, {5, 7}.

Let t2,3 = 1− t1−c2−c3 and t1,3 = 1− tµ−c1−c3 . The corresponding mul-
tiplicative relations for QH∗(X4, ωµ), that is, the generators of the ideal
SRY (P ) defined in Proposition 5.1, can be written as follows

Z1Z3 = Z2 ⊗ qtc3t2,3t1,3 − Z1 ⊗ qt1−c2t1,3 − Z3 ⊗ qtµ−c1t2,3,

Z1Z4t1,3 = Z1Z3 ⊗ tµ−c1−c3 + Z3 ⊗ qtµ−c1t2,3,

Z1Z5 = 1⊗ q2tµt2,3,

Z1Z6 = Z7 ⊗ qtc2t2,3 − Z1 ⊗ qt1−c3 ,

Z2Z4t2,3t1,3 = Z3(Z2 + Z3 + Z4)⊗ tµ−c1−c3t2,3 + Z1Z4 ⊗ t1−c2−c3t1,3

− Z1Z3 ⊗ t1+µ−c1−c2−2c3 ,

Z2Z5t2,3t1,3 = Z1Z5 ⊗ t1−c2−c3t1,3 + Z3Z5 ⊗ tµ−c1−c3t2,3 + Z3 ⊗ qtµ−c3t2,3,

Z2Z6t2,3t1,3 = Z1Z6 ⊗ t1−c2−c3t1,3 + Z3Z6 ⊗ tµ−c1−c3t2,3 + Z1 ⊗ qt1−c3t1,3,

Z2Z7t2,3t1,3 = Z1(Z1 + Z2 + Z7)⊗ t1−c2−c3t1,3 + Z3Z7 ⊗ tµ−c1−c3t2,3

− Z1Z3 ⊗ t1+µ−c1−c2−2c3 ,

Z3Z5 = Z4 ⊗ qtc1t1,3 − Z3 ⊗ qtµ−c3 ,

Z3Z6 = 1⊗ q2tt1,3,

Z3Z7t2,3 = Z1Z3 ⊗ t1−c2−c3 + Z1 ⊗ qt1−c2t1,3,

Z4Z6t1,3 = Z5 ⊗ qt1−c1t1,3 + Z3Z6 ⊗ tµ−c1−c3 ,

Z4Z7t2,3t1,3 = Z1Z4 ⊗ t1−c2−c3t1,3 + Z3Z7 ⊗ tµ−c1−c3t2,3

− Z3Z1 ⊗ qt1+µ−c1−c2−2c3 + 1⊗ q2tµ+1−c1−c2t2,3t1,3,

Z5Z7t2,3 = Z1Z5 ⊗ t1−c2−c3 + Z6 ⊗ qtµ−c2t2,3

(38)

where we should also take in account the additive relations Z6 = Z1 + 2Z2 +
Z3 − Z5 and Z7 = −Z1 − Z2 + Z4 + Z5. It follows from Proposition 5.1 that
QH∗(X4, ωµ) is isomorphic as a ring to Q[Z1, . . . , Zn]⊗ Π̌/I where I is the
ideal generated by the relations above. We can describe the result also in
terms of homology. For that consider the homology classes Ai = [Φ−1(Di)] ∈
H2(X4;Z). They are additive generators of H2(X4;Z) and multiplicative
generators of QH∗(X4, ωµ). Moreover QH4(X4, ωµ) is generated, as a subring
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of QH∗(X4, ωµ), by the elements qAi. These generators are Ei ⊗ q, where
i = 1, 2, 3, (F − E1)⊗ q, (B − E2)⊗ q, (F − E2 − E3)⊗ q, and (B − E1 −
E3)⊗ q. In what follows in order to simplify notation we shall drop the sign
∗ for the quantum product. The multiplicative relations (38) translated to
homology together with the additive relations give a complete description
of the Πuniv–algebra QH4(X4, ωµ). More precisely, we obtain

QH4(X4, ωµ) ∼= Πuniv[u, v]/J

where

u = (F − E2 − E3)⊗ q
1

1− tc2+c3−1
, v = (B − E1 − E3)⊗ q

1

1− tc1+c3−µ

and J is the ideal generated by the two following relations:

v(1 + vtc1) = u2tµ(v + tc2−1)(1 + vtc3),(39)

u(1 + utc2) = v2t(u+ tc1−µ)(1 + utc3).(40)

It follows from Proposition 5.3 (1) that the Landau–Ginzburg superpotential
is given in this example by

W = z2t
µ + z1z2t

µ−c3 + z1 + z1z
−1
2 t−c1 + z−1

2 + z−1
1 t+ z−1

1 z2t
µ+1−c2(41)

+ z1t
µ−c1−c3 + z2t

µ+1−c2−c3 .

Therefore we have

∂W

∂z1
= z2t

µ−c3 + 1 + z−1
2 t−c1 − z−2

1 t− z−2
1 z2t

µ+1−c2 + tµ−c1−c3 ,

∂W

∂z2
= tµ + z1t

µ−c3 − z1z
−2
2 t−c1 − z−2

2 + z−1
1 tµ+1−c2 + tµ+1−c2−c3 .

Passing to homology, simplifying the expressions and setting u = z−1
2 t−µ

and v = z−1
1 we obtain relations (39), as we wish.

Similar arguments give an explicit description of the quantum homology
algebra QH4(X5, ωµ). Moreover, we have

QH4(X5, ωµ) ∼= Πuniv[u, v]/J

where again u = (F − E2 − E3)⊗ q(1− tc2+c3−1)−1, v = (B − E1 − E3)⊗
q(1− tc1+c3−µ)−1 and J is now the ideal generated by the two following



✐

✐

“1-463” — 2018/4/8 — 21:28 — page 59 — #59
✐

✐

✐

✐

✐

✐

Seidel’s morphism of toric 4–manifolds 59

relations:

u2tµ(v + tc2−1)(1 + vtc3) = (1 + vtc1)(v + tc4−1),

v2t(u+ tc1−µ)(1 + utc3) = (1 + utc2)(u+ tc4−µ).

In this case the Landau–Ginzburg superpotential is given by

W = z2t
µ + z1z2t

µ−c3 + z1 + z1z
−1
2 t−c1 + z−1

2 + z−1
1 z−1

2 t1−c4 + z−1
1 t

+ z−1
1 z2t

µ+1−c2 + z1t
µ−c1−c3 + z2t

µ+1−c2−c3

+ z−1
1 tµ+1−c2−c4 + z−1

2 t1−c1−c4 .

Remark 5.5. Note that these results agree with the results of Chan and
Lau. The manifolds X4 and X5 coincide with the surfaces X7 and X10, re-
spectively, described in [7, Appendix A]. We obtain the same expressions for
the potential after changes of variable: replacing z2 by z1z

−1
2 t−c1 , keeping

the variable z1 and letting q1 = tµ−c1−c3 , q2 = tµ−c2 , q3 = tc2 , q4 = t1−c2−c3

and q5 = tc3 in the potential for X7 leads to (41) above. Similarly, mak-
ing the same change of variable for X10 and letting q1 = tµ−c1−c3 , q2 = tc4 ,
q3 = tµ−c2−c4 , q4 = tc2 , q5 = t1−c2−c3 and q6 = tc3 we see again that the two
expressions for the potential agree.

5.3. Non-NEF examples

Particularly interesting examples which are relevant for our study are the
Hirzebruch surfaces. We use the conventions and the description adopted in
[3] for these surfaces. We recall that the toric “even” Hirzebruch surfaces
(F2k, ωµ), 0 ≤ k ≤ ℓ with ℓ ∈ N and ℓ < µ ≤ ℓ+ 1, can be identified with
the symplectic manifolds (S2 × S2, ωµ) where ωµ is the split symplectic form
with area µ ≥ 1 for the first S2–factor, and with area 1 for the second factor.
The moment polytope of F2k is

{

(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, x2 + kx1 ≥ 0, x2 − kx1 ≤ µ− k
}

and its primitive outward normals are

v1 = (1, 0), v2 = (−k,−1), v3 = (−1, 0), and v4 = (−k, 1).

Let Λ2k
e1 and Λ2k

e2 represent the circle actions whose moment maps are, re-
spectively, the first and the second component of the moment map associ-
ated to the torus action T2k acting on F2k. We will also denote by Λ2k

e1 ,Λ
2k
e2
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the generators in π1(T2k). It follows from the classification of 4–dimensional
Hamiltonian S1–spaces given by Karshon in [26] that Λ2k

e1 ,Λ
2k
e2 satisfy the

relations Λ2k
e1 = kΛ2

e1 + (k − 1)Λ0
e1 and Λ2k

e2 = kΛ0
e1 + Λ0

e2 . Since F0 is Fano
and F2 is NEF we can obtain from our results the Seidel elements associ-
ated to Λ0

e1 , Λ
0
e2 , and Λ2

e1 , and thus the ones associated to the circle actions
of F2k even though for all k ≥ 2, F2k is non-NEF.

In particular, we can give explicit expressions for the Seidel elements
associated to F4 which admits a pseudo-holomorphic sphere with negative
first Chern number, representing the class B − 2F where B = [S2 × {p}],
and F = [{p} × S2]. Since F0 is Fano it is easy to check that the Seidel
elements associated to the circle actions Λ0

e1 and Λ0
e2 are given by S(Λ0

e1) =

B ⊗ qt
1

2 and S(Λ0
e2) = F ⊗ qt

µ

2 (see [32, Example 5.7]). From this case we
can also obtain the following products in the quantum homology ring: F ∗
F = 1⊗ q−2t−µ, B ∗B = 1⊗ q−2t−1, F ∗B = p and deduce the remaining
products from these ones.

For the toric manifold F2 the normalised moment map is given by

Φ(z1, z2, z3, z4) =

(

−
1

2
|z1|

2 +
1

2
− ǫ,−

1

2
|z1|

2 −
1

2
|z4|

2 +
µ+ 1

2

)

,

where ǫ = 1
6µ . Let Λ2k

vi
denote the circle action associated to the normal

vector vi to the polytope of the surface F2k. Then Theorem 4.5 implies that,
in the case of F2, the Seidel elements associated to these actions are given
by

S(Λ2
v1
) = (B + F )⊗ qt

1

2
−ǫ, S(Λ2

v3
) = (B − F )⊗ q

t
1

2
+ǫ

1− t1−µ
and

S(Λ2
v2
) = S(Λ2

v4
) = F ⊗ qt

µ

2
+ǫ − (B − F )⊗ q

t1−
µ

2
+ǫ

1− t1−µ
.

Since Λ2
e1 = Λ2

v1
, S(Λ2

e1) = S(Λ2
v1
) and it follows that for the non-NEF

toric manifold F4 the Seidel elements associated to the circle actions Λ4
e1 and

Λ4
e2 are given by

S(Λ4
e1) = S(Λ2

e1)
2 ∗ S(Λ0

e1) = (B + 2F )⊗ qt
1

2
−2ǫ +B ⊗ qt

3

2
−µ−2ǫ,

S(Λ4
e2) = S(Λ0

e1)
2 ∗ S(Λ0

e2) = S(Λ0
e2) = F ⊗ qt

µ

2 ,

because S(Λ0
e1)

2 = 1. Therefore in this case, since Λ4
e1 = Λ4

v1
, it follows that

S(Λ4
v1
) = qt

1

2
−2ǫ ⊗ (B + 2F +B ⊗ t1−µ).
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Since v1 + v3 = 0 we have S(Λ4
v3
) = S(Λ4

e1)
−1 =

(

S(Λ2
e1)

−1
)2

∗ S(Λ0
e1)

−1 and
since

S(Λ2
e1)

−1 = (B − F )⊗ q
t

1

2
+ǫ

1− t1−µ

we obtain

S(Λ4
v3
) =

qt
1

2
+2ǫ

(1− t1−µ)2
⊗
[

B − 2F +B ⊗ t1−µ
]

.

Finally, since v4 = 2v3 + (0, 1), v2 = 2v3 + (0,−1), and S(Λ4
e2) = S(Λ4

e2)
−1

it follows that

S(Λ4
v2
) = S(Λ4

v4
) = S(Λ4

v3
)2 ∗ S(Λ4

e2)

=
qt

µ

2
+4ǫ

(1− t1−µ)4
[

F ⊗ (1− t1−µ)2 − 4t1−µ(B − 2F +B ⊗ t1−µ)
]

.

It follows that in equation (36) we may take

Y1 = Z1 + (Z3 + Z2 + Z4)⊗ tµ−1, Y2 =
1

(1− tµ−1)2
(Z2 − 4tµ−1Y3)

Y3 =
1

(1− tµ−1)2
(Z3 + (Z3 + Z2 + Z4)⊗ tµ−1),

Y4 =
1

(1− tµ−1)2
(Z4 − 4tµ−1Y3).

Since the ring structure on the quantum homology is known we can check
that this choice of Yi satisfies the equations induced by the primitive rela-
tions, that is,

Y1Y3 − 1⊗ q2t and Y2Y4 − (Y3)
4 ⊗ q−2tµ−2

are generators of the ideal SRY (P ). In order to have a potential W such that
the isomorphism in Theorem 5.2 holds we need that the homomorphism Ψ,
inducing the isomorphism, satisfies equations (37). Recall that the generators
of the ideal SRY (P ) should be in the kernel of Ψ and the image of the
additive relations gives the derivatives of the potential.

Ψ(Y1) = qz1t ⇔ Ψ(Z1) + Ψ(Z2 + Z3 + Z4)t
µ−1 = qz1t

Ψ(Y2) = qz−2
1 z−1

2 ⇔ Ψ(Z2)− 4tµ−1Ψ(Y3) = qz−2
1 z−1

2 (1− tµ−1)2

Ψ(Y3) = qz−1
1 ⇔ Ψ(Z3) + Ψ(Z2 + Z3 + Z4)t

µ−1 = qz−1
1 (1− tµ−1)2

Ψ(Y4) = qz−2
1 z2t

µ−2 ⇔ Ψ(Z4)− 4tµ−1Ψ(Y3) = qz−2
1 z2t

µ−2(1− tµ−1)2

(42)
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Since the additive relations are Z1 − Z3 − 2Z2 − 2Z4 = 0 and Z4 − Z2 = 0
it follows from equations (42) that the derivatives of the potential W are
given by the following expressions:

qz1
∂W

∂z1
= Ψ(Z1)−Ψ(Z3)− 2Ψ(Z2)− 2Ψ(Z4) =

qz1t− qz−1
1 (1− tµ−1)2 − 16qz−1

1 tµ−1 − 2(qz−2
1 z−1

2 + qz−2
1 z2t

µ−2)(1− tµ−1)2

qz2
∂W

∂z2
= Ψ(Z4)−Ψ(Z2) = (qz−2

1 z2t
µ−2 − qz−2

1 z−1
2 )(1− tµ−1)2.

Therefore the potential is given by

(43) W = z1t+ (z−1
1 + z−2

1 z−1
2 + z−2

1 z2t
µ−2)(1− tµ−1)2 + 16z−1

1 tµ−1,

up to constant terms, as we pointed out in Remark 5.4.

Remark 5.6. In this non-NEF example we see that the number of terms
corresponding to the quantum corrections in the Landau–Ginzburg super-
potential is still finite. In the formalism of [7] and [8] the primitive rays
of the fan (or the interior normal vectors of the polytope) are given by
v1 = (1, 0), v2 = (0, 1), v3 = (−1,−4), and v4 = (0,−1) and the polytope is
defined by the following inequalities

x1 ≥ 0, x2 ≥ 0, 4t1 + t2 − x1 − 4x2 ≥ 0 and t1 − x2 ≥ 0,

where the tl’s are positive numbers. Let ql = exp(−tl) be the Kähler param-
eters. Then, in their formalism, the potential is given by

W = z1(1− 2q1q2 + q21q
2
2) + z2 +

q41q2
z1z42

(1− 2q1q2 + q21q
2
2)

+
q1
z2

(1 + 14q1q2 + q21q
2
2).

In this expression z1 and z2 correspond to z−2
1 z−1

2 and z1t, respectively, in
equation (43) while q1 = t and q2 = tµ−2. Moreover, if [8, Conjecture 6.7]
holds then we can obtain some of the open Gromov–Witten invariants of
F4 from our computation of the potential. In particular we see that there
must be some negative open Gromov–Witten invariants, phenomenon which
does never happen in the NEF case. Note that if this conjecture holds it
implies that the Seidel elements only determine the non-constant terms of
the potential (see Remark 5.4). Indeed it is natural to expect the potential
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of this example to contain an infinite number of terms, as explained to us
by K. Chan, so these only contain the variable t.

We conclude that, even in this non-NEF example, although there are
infinitely many contributions to the Seidel elements associated to the Hamil-
tonian circle actions, these quantum classes can still be expressed by explicit
closed formulas. It is clear that as we increase the value of k the expressions
for the Seidel elements corresponding to the circle actions Λ2k

e1 ,Λ
2k
e2 in F2k

are going to be harder to write explicitly. However, from the work of Abreu
and McDuff in [1] we know that the generators of the fundamental group
of the symplectomorphism group of (S2 × S2, ωµ) are given by Λ0

e1 ,Λ
0
e2 and

Λ2
e1 , so our computations allow us to give a complete description of the Sei-

del representation for these manifolds (regardless of the value of µ provided
that µ ≥ 1).

Remark 5.7. The “Odd” Hirzebruch surfaces (F2k−1, ω
′
µ), 1 ≤ k ≤ ℓ with

ℓ ∈ N and ℓ < µ ≤ ℓ+ 1, can be identified with the symplectic manifolds
(CP2#CP2, ω′

µ) where the symplectic area of the exceptional divisor is µ > 0
and the area of the projective line is µ+ 1. Its moment polytope is

{

(x1, x2) ∈ R2 | 0 ≤ x1 + x2 ≤ 1, x2(k − 1) + kx1 ≥ 0,

kx2 + (k − 1)x1 ≥ k − µ− 1
}

.

Similar computations can be made for F2k−1, since F1 is Fano and we
can show that Λ2k−1

e1 = Λ2k−1
e2 = (2k − 1)Λ1

e1 , using Karshon’s classification
of Hamiltonian circle actions.

Appendix A. Additional computations of Seidel’s elements

We gather here results of computations of Seidel’s elements in the case when
the number of facets, in the vicinity of Dn, corresponding to spheres in M
with vanishing first chern number is 3 (this is complementary to Theo-
rem 4.5, see Figure 1). In order to ease the reading, we denote the weights
ω(Ai) by ωi.

(2c) If c1(An) = c1(A1) = c1(A2) = 0 but c1(An−1) and c1(A3) are non-
zero, then

S(Λ) =

[(

An ⊗ q
tΦmax

1− t−ωn
−A1 ⊗ q

tΦmax−ω1

1− t−ω1

)

·
1

1− t−ωn−ω1

−

(

A1 ⊗ q
tΦmax

1− t−ω1
−A2 ⊗ q

tΦmax−ω2

1− t−ω2

)

·
t−ω1−ω2

1− t−ω1−ω2

]

·
1

1− t−ωn−ω1−ω2
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(2d) If c1(An) = c1(An−1) = c1(A1) = 0 but c1(A2) and c1(An−2) are
non-zero, then

S(Λ) =

[(

An ⊗ q
tΦmax

1− t−ωn
−An−1 ⊗ q

tΦmax−ωn−1

1− t−ωn−1

)

·
1

1− t−ωn−ωn−1

+

(

An ⊗ q
tΦmax

1− t−ωn
−A1 ⊗ q

tΦmax−ω1

1− t−ω1

)

·
1

1− t−ωn−ω1

−An ⊗ q
tΦmax

1− t−ωn

]

·
1

1− t−ωn−ωn−1−ω1

(3d) If c1(A1) = c1(A2) = c1(A3) = 0 but c1(An), c1(A4) and c1(An−1)
are non-zero, then

S(Λ) = An ⊗ qtΦmax −A1 ⊗ q
tΦmax−ω1

1− t−ω1

−

(

A1 ⊗ q
tΦmax

1− t−ω1
−A2 ⊗ q

tΦmax−ω2

1− t−ω2

)

·
t−ω1−ω2

1− t−ω1−ω2

−

(

A1 ⊗ q
tΦmax

1− t−ω1
−A2 ⊗ q

tΦmax−ω2

1− t−ω2

)

·
t−ω1−ω2−ω3

(1− t−ω1−ω2−ω3)(1− t−ω1−ω2)

+

(

A2 ⊗ q
tΦmax

1− t−ω2
−A3 ⊗ q

tΦmax−ω3

1− t−ω3

)

·
t−ω1−2ω2−2ω3

(1− t−ω2−ω3)(1− t−ω1−ω2−ω3)

(3e) If c1(An−1) = c1(A1) = c1(A2) = 0 but c1(An), c1(A3) and c1(An−2)
are non-zero, then

S(Λ) = An ⊗ qtΦmax −An−1 ⊗ q
tΦmax−ωn−1

1− t−ωn−1
−A1 ⊗ q

tΦmax−ω1

1− t−ω1

−

(

A1 ⊗ q
tΦmax

1− t−ω1
−A2 ⊗ q

tΦmax−ω2

1− t−ω2

)

·
t−ω1−ω2

1− t−ω1−ω2
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MA.
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