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1. Introduction

A symplectic manifold that is obtained from CP2 by k blowups is encoded
by k + 1 parameters: the size λ of the initial CP2, and the sizes δ1, . . . , δk of
the blowups. In this paper we answer the following question:

Which values of the parameters yield symplectomorphic manifolds?

Example 1.1. For each of the vectors (λ; δ1, δ2, δ3) in the table below,
consider the manifold that is obtained from a CP2 of size λ by blowups of
sizes δ1, δ2, δ3. These three manifolds have the same classical invariants: the
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symplectic volume, which is proportional to λ2 −∑3
j=1 δj

2; the pairing of
the symplectic form with the first Chern class, which is proportional to 3λ−∑3

j=1 δj ; and the set of values that the symplectic form takes on H2(M),
which is proportional to Zλ+ Zδ1 + Zδ2 + Zδ3. The first two manifolds are
symplectomorphic, but the third is not symplectomorphic to the first two.
This follows from Lemma 2.16 and Theorem 1.8.

λ δ1 δ2 δ3

15 9 5 4

12 6 2 1

11 4 1 1

To compare different blowups, it is convenient to fix the underlying man-
ifold, as in McDuff and Polterovich [22]. Once and for all, we fix a sequence

p1, p2, p3, . . .

of distinct points on the complex projective plane CP2, and we denote by Mk

the manifold that is obtained from CP2 by complex blowups at p1, . . . , pk.
We have a decomposition

H2(Mk) = ZL⊕ ZE1 ⊕ · · · ⊕ ZEk

where L is the image of the homology class of a line CP1 in CP2 under the
inclusion map H2(CP

2)→ H2(Mk) and where E1, . . . , Ek are the homology
classes of the exceptional divisors. A blowup form on Mk is a symplectic
form for which there exist pairwise disjoint embedded symplectic spheres in
the classes L,E1, . . . , Ek. (The terminology “blowup form” was suggested to
us by Dusa McDuff.)

Lemma 1.2. The set of blowup forms on Mk is an equivalence class under
the following equivalence relation: symplectic forms ω and ω′ on Mk are
equivalent iff there exists a diffeomorphism f : Mk →Mk that acts trivially
on homology and such that f∗ω and ω′ are homotopic through symplectic
forms.

Lemma 1.3. Any two cohomologous blowup forms on Mk are diffeomorphic
through a diffeomorphism that acts trivially on homology.

Sketch of proof of Lemmas 1.2 and 1.3. These two lemmas follow from work
of Gromov and McDuff. Lemma 1.2 follows from results of Gromov [4, 2.4.A’,
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2.4.A1’], McDuff [19] and McDuff-Salamon [23, Proposition 7.21]; the deduc-
tion of Lemma 1.3 from Lemma 1.2 is by a result of McDuff [20] using the
“inflation” technique. We give more details in [10]. For Lemmas 1.2 and 1.3
in the context of uniqueness questions for symplectic structures, see [28, Ex-
amples 3.8, 3.9, 3.10]. When k = 0, Lemma 1.3 is Gromov’s result [4, 2.4 B′

2

and 2.4 B′
3], �

Our convention is that the size of CP2 equipped with a symplectic form
is 1/2π times the symplectic area of a line CP1 ⊂ CP2 and the size of a
blowup is 1/2π times the symplectic area of the exceptional divisor.

Definition 1.4. Fix a non-negative integer k. Let 〈·, ·〉 denote the pairing
between cohomology and homology on Mk. A vector (λ; δ1, . . . , δk) in R1+k

encodes a cohomology class Ω ∈ H2(Mk;R) if
1
2π 〈Ω, L〉 = λ and 1

2π 〈Ω, Ej〉
= δj for j = 1, . . . , k.

By Lemma 1.3, a blowup form on Mk whose cohomology class is en-
coded by the vector (λ; δ1, . . . , δk) is unique up to a diffeomorphism that
acts trivially on the homology. We denote any of these symplectic manifolds
by

(Mk, ωλ;δ1,...,δk).

Remark 1.5. Suppose that the vector (λ; δ1, . . . , δk) encodes the cohomol-
ogy class of a blowup form ω on Mk. Then the numbers λ, δ1, . . . , δk are
positive (from the definition of “blowup form”), they satisfy δi + δj < λ
for all i �= j (“the Gromov inequality”, see [4, 0.3.B]), and they satisfy
λ2 − δ21 − · · · − δ2k > 0 (“the volume inequality”). In particular, if δ1 = · · · =
δk = λ/3, then k ≤ 8.

Definition 1.6. Let k ≥ 3, and let λ, δ1, . . . , δk be real numbers. The vector
(λ; δ1, . . . , δk) is reduced if

(1.7) δ1 ≥ · · · ≥ δk and δ1 + δ2 + δ3 ≤ λ.

We now state our main theorem.

Theorem 1.8. Let k ≥ 3. Given a blowup form ωλ′;δ′1,...,δ
′
k
on Mk, there

exists a unique reduced vector (λ; δ1, . . . , δk) that encodes a blowup form
ωλ;δ1,...,δk on Mk that is diffeomorphic to the given form:

(Mk, ωλ′;δ′1,...,δ
′
k
) ∼= (Mk, ωλ;δ1,...,δk).
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The “existence” part of Theorem 1.8 is stated as Proposition 2.1 and
proved in Section 2. The “uniqueness” part of Theorem 1.8 is stated as
Theorem 5.1 and proved in Section 5.

Given a vector v = (λ′; δ′1, . . . , δ′k) that encodes the cohomology class
of a blowup form, iterations of the “standard Cremona move” yield the
corresponding reduced vector vred = (λ; δ1, . . . , δk). Given two blowup forms,
to determine whether they are diffeomorphic, examine the resulting reduced
vectors vred and v′red; the blowup forms are diffeomorphic if and only if
these reduced vectors are equal. See the algorithms of Paragraph 2.17 and
Paragraph 5.11. Moreover, the map v �→ vred is continuous. See Lemma 2.18.

In order to prove the “uniqueness” part of Theorem 1.8, for every blowup
form whose cohomology class is represented by a reduced vector we give the
complete list of exceptional homology classes with minimal symplectic area.
See Theorem 3.12 and Remark 3.15. The list always contains the smallest
exceptional divisor Ek and generically contains only it. We give two proofs
of this result, one in Section 3, and one in Section 4 that uses a beautiful
argument of McDuff.

Theorem 1.8, combined with work of Li-Li [16], further leads to the
following characterization of blowup forms, which we prove in Section 6.

Theorem 1.9. Let k ≥ 3. Let (λ; δ1, . . . , δk) be a vector with positive entries
that is reduced and that satisfies the volume inequality λ2 − δ1

2 − · · · − δk
2 >

0. Then there exists a blowup form ωλ;δ1,...,δk whose cohomology class is en-
coded by this vector. This defines a bijection between the set of vectors with
positive entries that are reduced and satisfy the volume inequality and the
set of blowup forms modulo diffeomorphism.

Given a cohomology class, to determine whether or not it contains a
blowup form, first check if the corresponding vector v has positive entries and
satisfies the volume inequality. If it does, apply iterations of the “standard
Cremona move”; the cohomology class then contains a blowup form if and
only if the entries of the resulting vector vred are positive. See the algorithm
of Paragraph 6.3.

For completeness, we also describe now the cases 0 ≤ k ≤ 2, whose proofs
we give in Section 5:

Lemma 1.10. The case k = 2: A vector (λ; δ1, δ2) encodes the coho-
mology class of a blowup form exactly if its entries are positive and satisfy
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the Gromov inequality δ1 + δ2 < λ. Blowup forms that correspond to vec-
tors (λ; δ1, δ2) and (λ′; δ′1, δ′2) are diffeomorphic if and only if λ′ = λ and
{δ′1, δ′2} = {δ1, δ2}.
The case k = 1: A vector (λ; δ1) encodes the cohomology class of a blowup
form exactly if its entries are positive and satisfy δ1 < λ. Two blowup forms
are diffeomorphic if and only if their cohomology classes are represented by
the same vector.

The case k = 0: A vector (λ) encodes the cohomology class of a blowup
form exactly if λ > 0. Two blowup forms are diffeomorphic if and only if
they have the same size λ.

In this paper, we rely on facts that are rather standard in the symplectic
topology community but whose precise statements in the form that we need
are not always explicit in the literature. We spell out more detailed justifica-
tions of these statements in an accompanying manuscript [10], which studies
different toric actions on a fixed symplectic four-manifold.

Throughout this paper, unless we say otherwise, homology is taken with
integer coefficients and cohomology is taken with real coefficients.

Acknowledgements. This paper branched off from a joint project with
Martin Pinsonnault. We are grateful to Martin for his collaboration. We
are also grateful for stimulating discussions with Paul Biran, Dusa McDuff,
Dietmar Salamon, and Jake Solomon. In particular, our communication with
Dusa McDuff has helped clarify Theorem 1.9, and our communication with
Jake Solomon has helped clarify Lemma 2.18. The second author would
also like to acknowledge support from Tamar Ziegler of the Technion, Israel
Institute of Technology.

The first author is partially supported by the Natural Science and En-
gineering Research Council of Canada. The second author was partially
supported by the Center for Absorption in Science, Ministry of Immigrant
Absorption, State of Israel, and by the Israel Science Foundation, Grant
557/08.

2. Existence of reduced form

In this section we prove the “existence” part of Theorem 1.8:

Proposition 2.1 (Existence of reduced form). Let k ≥ 3. Let ω be a
blowup form on Mk. Then there exists a blowup form on Mk that is diffeo-
morphic to ω and whose cohomology class is encoded by a reduced vector.
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Moreover, in Paragraph 2.17 we give an algorithm that associates to
every vector v that encodes the cohomology class of a blowup form ω a
reduced vector vred that encodes the cohomology class of a blowup form that
is diffeomorphic to ω, and in Lemma 2.18 we show that the map v �→ vred is
continuous.

We begin with some algebraic preliminaries.
We will consider the Z-module (“the lattice”) with basis elements

L,E1, . . . , Ek:

ZL⊕ ZE1 ⊕ · · · ⊕ ZEk

(∼= Z
1+k

)
,

with the bilinear form (“the intersection form”) that is given by

L · L = 1, Ei · Ei = −1, Ei · Ej = 0 if i �= j, L · Ej = 0.

2.2. We identify the element Ω = (λ; δ1, . . . , δk) of R
1+k with the homomor-

phism from the lattice ZL⊕ ZE1 ⊕ · · · ⊕ ZEk to R that satisfies λ = 1
2πΩ(L)

and δj =
1
2πΩ(Ej) for all 1 ≤ j ≤ k. (Of course, we think of each lattice el-

ement as a homology class in H2(Mk) and of each vector in R1+k as the
cohomology class in H2(Mk;R) that it encodes.)

We will use the following fact, which we learned from Martin Pinson-
nault. This fact was also a crucial ingredient in our previous work [9].

Lemma 2.3. Let Ω := (λ; δ1, . . . , δk) be a vector in R1+k that satisfies the
volume inequality λ2 − δ21 − · · · − δ2k > 0. Let

H−1 = {E ∈ ZL⊕ ZE1 ⊕ · · · ⊕ ZEk | E · E = −1}.

Then the map E �→ Ω(E) from H−1 to R is proper. That is, for each bounded
closed interval I ⊂ R, the set {E ∈ H−1 | Ω(E) ∈ I} is compact (hence fi-
nite).

Proof. We will refer to the Lorentzian inner product on R1+k:

〈u, v〉 = u0v0 − u1v1 − · · · − ukvk

for u = (u0;u1, . . . , uk) and v = (v0; v1, . . . , vk). ThenH−1 consists of exactly
those elements E in the lattice that have the form

E = aL− b1E1 − · · · − bkEk

with u := (a; b1, . . . , bk) ∈ Z1+k and 〈u, u〉 = −1. (Thinking of E as a ho-
mology class, the vector u encodes its Poincaré dual.) For such an E, we
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have
1

2π
Ω(E) = 〈Ω, u〉.

Because Z1+k is closed in R1+k, it is enough to show that the map

u �→ 〈Ω, u〉

from HR−1 := {u ∈ R1+k | 〈u, u〉 = −1} to R is proper.
Recall that 〈Ω,Ω〉 > 0 (by the volume inequality); by rescaling, we as-

sume without loss of generality that 〈Ω,Ω〉 = 1. Setting ε0 := Ω, by the
Gram-Schmidt procedure there exist ε1, . . . , εk such that 〈ε0, ε0〉 = 1, 〈εj , εj〉
= −1 for 1 ≤ j ≤ k, and 〈εi, εj〉 = 0 for i �= j. In this basis, the bilinear form
〈, 〉 and hence the set HR−1 remain unchanged, Ω is represented by the vec-
tor (1; 0, . . . , 0), and the map u �→ 〈Ω, u〉 becomes (u0;u1, . . . , uk) �→ u0. It is
enough to show that the preimage in HR−1 of the interval [−N,N ] is compact
for each N > 0. This preimage consists of the set of those (u0;u1, . . . , uk)
that satisfy the conditions u20 − u21 − · · · − u2k = −1 and u0 ∈ [−N,N ]. This
set is compact because it is closed and bounded. �

Definition 2.4. Let k ≥ 3. For any vector v = (λ; δ1, . . . , δk), define

defect(v) = δ1 + δ2 + δ3 − λ,

and define the Cremona transformation by

cremona(v) = (λ′; δ′1, . . . , δ
′
k),

where

λ′ = λ− defect(v)

δ′j =

{
δj − defect(v) if 1 ≤ j ≤ 3

δj if 4 ≤ j ≤ k.

Lemma 2.5. Let Ω = (λ; δ1, . . . , δk) be a vector that satisfies the volume
inequality λ2 − δ21 − · · · δ2k > 0. Then the set of real numbers δ′i that occur
among the last k entries in vectors Ω′ = (λ′; δ′1, . . . , δ′k) that can be obtained
from (λ; δ1, . . . , δk) by iterations of the Cremona transformation (Defini-
tion 2.4) and permutations of the last k entries has no accumulation points.

Proof. Identifying R1+k with the set of homomorphisms from the lattice
ZL⊕ ZE1 ⊕ · · · ⊕ ZEk to R as in Paragraph 2.2, the Cremona transforma-
tion of R1+k is induced by the transformation of the lattice that is given
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by

L �→ 2L− E1 − E2 − E3

E1 �→ L− E2 − E3

E2 �→ L− E3 − E1

E3 �→ L− E1 − E2

Ej �→ Ej if 4 ≤ j ≤ k.

Similarly, the permutations of δ1, . . . , δk are induced from the transfor-
mations of the lattice that preserve L and permute E1, . . . , Ek. Thus, if
Ω′ = (λ′; δ′1, . . . , δ′k) is obtained from Ω = (λ; δ1, . . . , δk) by iterations of the
Cremona transformation and permutations of the last k entries, then each
δ′j =

1
2πΩ

′(Ej) is equal to
1
2πΩ(E) where E is obtained from Ej by the cor-

responding transformations of the lattice. Because these transformations
preserve the intersection form on the lattice, we conclude that, for each j,
the entry δ′j belongs to the set { 1

2πΩ(E) | E · E = −1}. By Lemma 2.3, this
set has no accumulation points. �

Definition 2.6. Let k ≥ 3. The standard Cremona move on R1+k (cf.
McDuff and Schlenk [25]) is the composition of the following two maps, in
this order:

(i) The map (λ; δ1, . . . , δk) �→ (λ; δi1 , . . . , δik) that permutes the last k en-
tries such that δi1 ≥ · · · ≥ δik .

(ii) The map v �→
{
cremona(v) if defect(v) ≥ 0

v otherwise.

Lemma 2.7. 1) The standard Cremona move is a piecewise linear con-
tinuous map from R1+k to R1+k.

2) The standard Cremona move preserves the forward positive cone{
(λ; δ1, . . . , δk) | λ2 − δ21 − · · · − δ2k > 0 and λ > 0

}
.

3) If v′ = (λ′; δ′1, . . . , δ′k) is obtained from v = (λ; δ1, . . . , δk) by the stan-
dard Cremona move but is not equal to v, then
a) δ′i ≤ δi for all i, and for at least one i we have δ′i < δi; and
b) λ′ < λ.

4) The vectors that are fixed by the standard Cremona move are exactly
the reduced vectors (see Definition 1.6).

We leave the proof of Lemma 2.7 as an exercise to the reader.
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Remark 2.8. Consider the group of transformations of R1+k that is gener-
ated by the Cremona transformation (Definition 2.4) and by permutations
of the last k entries. The standard Cremona move is not an element of this
group, but on each vector v it acts through some element of this group (that
depends on v).

Lemma 2.9. Let k ≥ 3. For every vector v in the forward positive cone in
R1+k there exists a positive integer m such that applying m iterations of the
standard Cremona move to v yields a reduced vector in the forward positive
cone.

Proof. Let v = (λ; δ1, . . . , δk) be a vector in the forward positive cone, and let

v(n) = (λ(n), δ
(n)
1 , . . . , δ

(n)
k ) be the vector that is obtained from v by applying

n iterations of the standard Cremona move. By Lemma 2.7, for all n

• λ(n) > 0

• (λ(n))2 − (δ
(n)
1 )2 − · · · − (δ

(n)
1 )2 > 0

• λ(n) ≤ λ.

The second inequality implies that (δ
(n)
i )2 < (λ(n))2. The first and third in-

equalities imply that (λ(n))2 ≤ λ2. So the numbers δ
(n)
i all lie in the bounded

interval (−λ, λ). By Lemma 2.5 and Remark 2.8, the set of numbers

{δ(n)i }1≤i≤k, n∈N is finite. The third and fourth items of Lemma 2.7 then
imply that the sequence of vectors v(n) is eventually constant and hence
reduced. �

Example 2.10. Let k = 6 and 1
3 < δ < 2

5 . Then the vector (1; δ, δ, δ, δ, δ, δ)
is not reduced. Applying the Cremona transformation, we get the vector
(2− 3δ; 1− 2δ, 1− 2δ, 1− 2δ, δ, δ, δ). Permuting, we get (2− 3δ; δ, δ, δ,
1− 2δ, 1− 2δ, 1− 2δ). Applying the Cremona transformation again, we get
(4− 9δ; 2− 5δ, 2− 5δ, 2− 5δ, 1− 2δ, 1− 2δ, 1− 2δ); permuting again, we
get (4− 9δ; 1− 2δ, 1− 2δ, 1− 2δ, 2− 5δ, 2− 5δ, 2− 5δ). Applying the Cre-
mona transformation a third time, we get (5− 12δ; 2− 5δ, 2− 5δ,
2− 5δ, 2− 5δ, 2− 5δ, 2− 5δ), which has positive entries and is reduced.

Remark 2.11. In Lemma 2.9, if the entries of v are integers, then applying
iterations of the standard Cremona move eventually yields a reduced vector
by a simpler reason: λ(n) is then a strictly decreasing sequence of positive
integers, so it must be finite. A similar argument was used in [14, Proposi-
tion 1] and again in [16, Lemma 3.4], [18, Lemma 4.7], and [33, Prop. 2.3].
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We will refer to the genus zero Gromov Witten invariant with point
constraints,

GW: H2(Mk)→ Z.

For the precise definition of this invariant, see [24]. Fixing a blowup form ω,
if GW(A) �= 0 then for generic ω-tamed almost complex structure J there
exists a J-holomorphic sphere in the class A. (We recall that J is ω-tame if
ω(u, Ju) > 0 for all nonzero tangent vectors u.)

The Gromov-Witten invariant is the same for all blowup forms; this fol-
lows from Lemma 1.2. Lemma 1.2 also implies that the first Chern class
c1(TMk) ∈ H2(Mk) is the same for all blowup forms. Moreover, the first
Chern class and the Gromov Witten invariant are consistent under the nat-
ural inclusion maps H2(Mk)→ H2(Mk+1) and the natural projection maps
H2(Mk+1)→ H2(Mk); see [6, Theorem 1.4], [13, Proposition 3.5], and the
explanation in [10, Appendix].

Lemma 2.12 (Characterization of exceptional classes). For a ho-
mology class E in H2(Mk), the following conditions are equivalent.

(a) There exists a blowup form ω such that the class E is represented by
an embedded ω-symplectic sphere with self intersection −1.

(b) (i) c1(TM)(E) = 1,
(ii) E · E = −1, and
(iii) GW(E) �= 0.

(c) For every blowup form ω, the class E is represented by an embedded
ω-symplectic sphere with self intersection −1.

Lemma 2.12 follows from McDuff’s “C1 lemma” [19, Lemma 3.1], Gro-
mov’s compactness theorem [4, 1.5.B], and the adjunction formula [24, Corol-
lary 1.7]. We give more details in [10].

Definition 2.13 (Definition of exceptional classes). A homology class
E in H2(Mk) is exceptional if it satisfies the conditions (a), (b), (c) of
Lemma 2.12.

Remark 2.14 (Examples of exceptional classes). The classes E1, . . . ,
Ek are all exceptional, and so are the classes L− Ei − Ej for all 1 ≤ i < j ≤
k. The first fact is by the definition of a blowup form. The second fact is
since L− Ei − Ej contains the proper transform in the complex blowup Mk

of the unique complex line in CP2 through the points pi and pj ; this proper
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transform is an embedded complex sphere in Mk, hence an embedded ω-
symplectic sphere with respect to a Kähler blowup form ω on Mk.

The following lemma is well known. It partially follows from Lemma 2.12
and Remark 2.14. We give details in [10].

Lemma 2.15. Each of the following homology classes has non-zero Gromov
Witten invariant:

L, E1, . . . , Ek, L− Ei, L− Ei − Ej for i �= j,

and 2L− E1 − E2 − E3.

Lemma 2.16. Let k ≥ 3. Let v ∈ R1+k be a vector in the forward positive
cone. Let v′ be the vector that is obtained from v by the standard Cremona
move. Then there exists a blowup form ω on M whose cohomology class
is encoded by v if and only if there exists a blowup form ω′ on M whose
cohomology class is encoded by v′. Moreover, every such ω and ω′ are dif-
feomorphic.

Proof. By Remark 2.8, the vectors v and v′ differ by the Cremona trans-
formation (Definition 2.4) or by a transformation that permutes the last k
entries or by the composition of these two maps.

Identifying R1+k with H2(Mk;R) as in Definition 1.4, each of these
transformations is induced by a diffeomorphism of Mk. Indeed, the Cre-
mona transformation is induced by a diffeomorphism according to Wall [32].
As for the permutations, they are induced by diffeomorphisms of Mk that
are obtained from diffeomorphisms of CP2 that permute the marked points
p1, . . . , pk and are biholomorphic on neighbourhoods of these points.

Each of these diffeomorphisms takes L,E1, . . . , Ek to homology classes
with non-zero Gromov Witten invariants (see Lemma 2.15); this implies that
these diffeomorphisms pull back blowup forms to blowup forms. This and
Lemma 1.3 imply the last part of the statement. �

(As we will note in Section 6, by results of Tian-Jun Li, Bang-He Li,
and Ai-Ko Liu, a reduced vector encodes a blowup form if and only if it is
contained in the forward positive cone and its entries are positive.)

2.17 (Algorithm to obtain a reduced form). Let k ≥ 3. Let v be a
vector in the forward positive cone in R1+k.

Step 1: If v is reduced, declare vred = v and stop.
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Step 2: If v is not reduced, replace it by its image under the standard
Cremona move and return to Step 1.

By Lemma 2.9, this algorithm terminates, and it produces a reduced
vector vred in the forward positive cone. Moreover, by Lemma 2.16, if v
encodes the cohomology class of a blowup form ω, then vred encodes the
cohomology class of a blowup form that is diffeomorphic to ω.

Proof of Proposition 2.1. The proposition follows immediately from Para-
graph 2.17 because a vector that encodes the cohomology class of a blowup
form must lie in the forward positive cone. �

Lemma 2.18. The function v �→ vred of Paragraph 2.17, from the forward
positive cone to the intersection of the forward positive cone with the cone
of reduced vectors, is continuous.

2.19. As before, we consider R1+k with its Lorentzian inner product 〈u, v〉 =
u0v0 − u1v1 − · · · − ukvk for u = (u0;u1, . . . , uk) and v = (v0; v1, . . . , vk). The
null cone is the set of x in R1+k such that 〈x, x〉 = 0, the positive cone is
the set of x in R1+k such that 〈x, x〉 > 0, and, as already noted, the forward
positive cone is the set of x = (x0; . . . , xk) such that 〈x, x〉 > 0 and x0 > 0.

For every nonzero vector e, its Lorentzian orthocomplement e⊥ is a hy-
perplane in R1+k; the hyperplane e⊥ determines the vector e up to scalar;
every hyperplane is obtained in this way.

• If 〈e, e〉 < 0, then the hyperplane e⊥ meets the positive cone, and the
restriction to e⊥ of the Lorentzian metric on R1+k is also a Lorentzian
metric, of type (1, k − 1).

• If 〈e, e〉 > 0, then the hyperplane e⊥ does not meet the positive cone,
it meets the null cone only at the origin, and the restriction to e⊥ of
the Lorentzian metric on R1+k is negative definite.

• If 〈e, e〉 = 0, then the hyperplane e⊥ does not meet the positive cone,
it meets the null cone along the line Re, and the restriction to e⊥ of
the Lorentzian metric on R1+k is negative semi-definite with null space
Re.

For a vector e ∈ R1+k with 〈e, e〉 �= 0, the reflection τe(v) = v − 2 〈v,e〉
〈e,e〉e

is a Lorentzian isometry that fixes the hyperplane e⊥. We call such a map a
Lorentzian reflection. This reflection preserves the forward positive cone
if and only if 〈e, e〉 < 0. The map e⊥ �→ τe, for e such that 〈e, e〉 < 0, embeds
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the space of Lorentzian hyperplanes (with the topology induced from the
Grassmannian) into the space of Lorentzian isometries.

The Cremona transformation is the Lorentzian reflection τe that corre-
sponds to the vector e = (1; 1, 1, 1, 0, . . . , 0). The transposition that switches
δi and δi+1 is the Lorentzian reflection τe that corresponds to the vector
e = (0; 0, . . . ,−1, 1, 0, . . . , 0) with δi = −1, δi+1 = 1, and other entries = 0.
In both of these types of reflections, the vector e has integer entries and
satisfies 〈e, e〉 = −2.

The following lemma is a slight reformulation of an argument of Jake
Solomon [29].

Lemma 2.20. Every compact subset of the forward positive cone in R1+k

meets only finitely many hyperplanes of the form e⊥ for e∈Z1+k with 〈e, e〉=
−2.

Proof. If e has integer entries and satisfies 〈e, e〉 = −2, then the (1 + k)×
(1 + k) matrix that represents the reflection τe has integer entries. Because
the set of matrices with integer entries is a discrete subset of the set of all
matrices, the set of hyperplanes of the form e⊥ for e ∈ Z1+k with 〈e, e〉 = −2
is discrete in the set of all Lorentzian hyperplanes in R1+k. So a hyperplane
that occurs as an accumulation point of such hyperplanes (in the Grass-
mannian) cannot be Lorentzian; in particular, it cannot meet the forward
positive cone. (In fact, such a hyperplane must be tangent to the null cone.)
The lemma then follows from the compactness of the Grassmannian. �

The hyperplanes of Lemma 2.20 divide the forward positive cone into
chambers: the intersections of the forward positive cone with the closures of
the connected components of the complements of these hyperplanes. Note
that the Lorentzian isometries τe, for e ∈ Z1+k with 〈e, e〉 = −2, take cham-
bers to chambers.

Lemma 2.21. The restriction of the standard Cremona move to each cham-
ber coincides with a Lorentzian isometry that takes the chamber to another
chamber.

Proof. Applying the standard Cremona move to a vector (λ; δ1, . . . , δk) is
achieved by iterations of the following single step:

• If the vector is reduced, then stop.
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• Otherwise, if δ1, . . . , δk are not in weakly decreasing order, let i ∈
{1, . . . , k − 1} be the smallest index such that δi < δi+1, and switch
δi and δi+1.

• Otherwise, apply the Cremona transformation (Definition 2.4).

Let S0 denote the cone of reduced vectors. The hyperplanes that are
spanned by its facets are the fixed point set {λ = δ1 + δ2 + δ3} of the Cre-
mona transformation and the fixed point set {δi = δi+1} of the transposition
that switches δi and δi+1 for i ∈ {1, . . . , k − 1}. These hyperplanes divide
R1+k into “big chambers”: the closures of the connected components of the
complements of these hyperplanes. The above single step, restricted to a “big
chamber”, coincides with a Lorentzian reflection. The lemma then follows
from the facts that every chamber is contained in a “big chamber” and that
the Lorentzian reflections τe, for e ∈ Z1+k with 〈e, e〉 = −2, take chambers
to chambers. �
Proof of Lemma 2.18. Let x be a point in the forward positive cone. By
Lemma 2.20, there exists a neighbourhood U of x that meets only finitely
many chambers. For every chamber there exists a positive integer m such
that, on the chamber, the function v �→ vred is obtained by applying m itera-
tions of the standard Cremona move; this follows from Lemma 2.21 and from
the fact that the intersection of the set of reduced vectors with the forward
positive cone is a union of chambers. We conclude that there exists a positive
integer m such that, on the neighbourhood U of x, the function v �→ vred is
obtained by applying m iterations of the standard Cremona move. Because
the standard Cremona move is continuous, the function v �→ vred is continu-
ous near x. Because x was arbitrary, the function is continuous on the entire
forward positive cone. �

Remark 2.22. We can now give another proof of Lemma 2.9. Let v be a
vector in the forward positive cone. Let v′ be a vector in the same chamber
as v and whose entries are rational. By Lemma 2.21, and since the inter-
section of the set of reduced vectors with the forward positive cone is a
union of chambers, it is enough to show that there exists a positive inte-
ger m such that applying m iterations of the standard Cremona move to v′

yields a reduced vector. This, in turn, follows by applying the argument of
Remark 2.11 to Nv′ where N is a positive integer such that Nv′ has integer
entries.

Remark 2.23. Let Sm denote the set of vectors in R1+k that are brought
to reduced form after m or fewer iterations of the standard Cremona move
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(but are not necessarily in the forward positive cone). Let S denote the
(increasing) union of the sets Sm. (By Lemma 2.9, the forward positive cone
is contained in S.)

By applying iterations of the standard Cremona move until we reach a
reduced vector, we obtain a function v �→ vred that assigns to each vector in
the set S a reduced vector, that is, a vector in S0. The restriction of this
function to each Sm, being the composition of m continuous functions, is
continuous.

In particular, S0 is the set of reduced vectors, given by the linear in-
equalities (1.7). and the spans of its facets are the fixed point sets of the
Cremona transformation (Definition 2.4) and of the k − 1 transpositions of
consecutive elements δi, δi+1 for 1 ≤ i ≤ k − 1.

Consider those cones that can be obtained from S0 by Lorentzian re-
flections through the hyperplanes that are spanned by its facets. Continue
recursively; at each stage we have a collection of convex polyhedral cones
and we add those cones that can be obtained from them by Lorentzian reflec-
tions through the hyperplanes that are spanned by the facets of S0. The set
Sm is a finite union of finite intersections of such convex polyhedral cones.
This implies that the union of the interiors of the sets Sm is open and dense
in S. Because the function v �→ vred is continuous on the interior of each Sm,
we conclude that this function is continuous on an open and dense subset of
S. We don’t know if this function is continuous on S (or even on the interior
of S).

Remark 2.24. Other authors [14–16, 18, 33] define “reduced” by the
slightly different conditions δ1 + δ2 + δ3 ≤ λ and δ1 ≥ · · · ≥ δk ≥ 0, and they
allow transformations that flip the signs of the δi.

3. Exceptional classes of minimal area

Let ω be a blowup form on Mk. Lemma 2.12 and Definition 2.13 imply that
the set of exceptional classes of minimal ω-area only depends on the vector
v = (λ; δ1, . . . , δk) that encodes the cohomology class [ω]. We denote this set
by

Evmin.

In this section we identify all the possibilities for the set Evmin; see Theo-
rem 3.12, Remark 3.14, and Remark 3.15.

More generally, let Ω be a cohomology class in H2(Mk;R) that is en-
coded by a vector v = (λ; δ1, . . . , δk), and assume that the set of values
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{〈Ω, E〉 | E is an exceptional class} is bounded from below. Denote by Evmin

the set of exceptional classes E for which 1
2π 〈Ω, E〉 is minimal. If v satisfies

the volume inequality λ2 − δ21 − · · · − δ2k > 0, then this set is non-empty and
finite, by Lemma 2.3.

The following lemma is well known, and is deduced from the positivity
of intersections of J-holomorphic curves in four dimensional manifolds [24,
Appendix E and Proposition 2.4.4], the Hofer-Lizan-Sikorav regularity cri-
terion [5] (see also [24, Lemma 3.3.3]), and the implicit function theorem,
see [24, Chapter 3]. We give more details in [10].

Lemma 3.1 (Positivity of intersections). Let A and B be homology
classes in H2(Mk) that are linearly independent (over R). Suppose that
GW(B) �= 0, that c1(TMk)(A) ≥ 1, and that A is represented by a J holo-
morphic sphere for some almost complex structure J that is tamed by some
blowup form on Mk. Then the intersection number A ·B is non-negative.

In particular, if E is an exceptional class and B is a class that is not a
multiple of E and with GW(B) �= 0, then E ·B is non-negative.

We recall that

c1(TMk)(L) = 3 and c1(TMk)(E1) = · · · = c1(TMk)(Ek) = 1.

We have the following easy technical lemma. Suppose k ≥ 3. Recall that
a vector (λ; δ1, . . . , δk) with positive entries is reduced if δ1 + δ2 + δ3 ≤ λ and
δ1 ≥ · · · ≥ δk. Denote

F := L− E1, B := L− E2, E12 := L− E1 − E2.

Lemma 3.2. Let k ≥ 3. Let Ω be a cohomology class in H2(Mk;R) that is
encoded by a vector v = (λ; δ1, . . . , δk) with positive entries that is reduced.
Let A be a class in H2(Mk). Suppose that A is a multiple of one of the
classes in the set

(3.3) {L, E1, . . . , Ek, F, B, E12},

and suppose that c1(TMk)(A) ≥ 1. Then

(3.4)
1

2π
〈Ω, A〉 ≥ δk.

Moreover, equality in (3.4) holds if and only if either A = E� and δ� = δk,
or A = E12 and λ− δ1 − δ2 = δ3 = δk.
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In this lemma, A is a homology class over the integers, and a-priori it is
a real multiple of one of the classes in the set (3.3).

Proof. Because (λ; δ1, . . . , δk) is a reduced vector,

min
C∈{L,E1,...,Ek,F,B,E12}

1

2π
〈Ω, C〉(3.5)

= min{λ, δ1, . . . , δk, λ− δ1, λ− δ2, λ− δ1 − δ2}
= δk.

Moreover, the minimum is attained on a subset of {E1, . . . , Ek, E12} that
contains E� if and only if δ� = δk and that contains E12 if and only if λ−
δ1 − δ2 = δ3 = δk.

Also note that c1(TMk)(C) is positive for every C ∈ {L,E1, . . . , Ek, F,B,
E12}.

Each of the sets

{L,E1, . . . , Ek}, {F,E1, . . . , Ek}, {F,B,E12, E3, . . . , Ek},

is a basis of H2(Mk) over Z. Therefore, the assumption that A is a mul-
tiple of a class C in {L,E1, . . . , Ek, F,B,E12} and that c1(TMk)(A) > 0 is
equivalent to

A = γC for an integer γ ≥ 1.

The lemma then follows from (3.5). �

Lemma 3.6. Let k ≥ 3. Let Ω be a cohomology class in H2(Mk;R) that is
encoded by a vector v = (λ; δ1, . . . , δk) with positive entries that is reduced.
Let A be a homology class in H2(Mk). Suppose that c1(TMk)(A) ≥ 1, and
suppose that A is represented by a J-holomorphic sphere for some almost
complex structure J that is tamed by some blowup form on Mk. Then

(3.7)
1

2π
〈Ω, A〉 ≥ δk.

Remark 3.8. Equality in (3.7) implies that c1(TMk)(A) = 1; we show this
in our proof. We note that, for a class A of a J-holomorphic sphere, if
c1(TMk)(A) = 1 then either A is an exceptional class or A ·A ≥ 0; this is a
consequence of the adjunction formula.

Remark 3.9. In [10] and [11], to count toric actions on blowups of CP2, we
use the following “indecomposability of minimal exceptional classes”, which
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follows from Lemma 3.6: if ω is a blowup form and E is an exceptional ho-
mology class with minimal ω-symplectic area, then, for every ω-tame almost
complex structure J , there exists an embedded J-holomorphic sphere in the
class E. This result was also obtained by Pinsonnault [26], for more general
four-manifolds, using Seiberg-Witten-Taubes theory.

Lemma 3.10. Let k ≥ 3. Let ω be a blowup form whose cohomology class
is encoded by a vector that is reduced. Then, for every exceptional class E
in H2(Mk),

1

2π
〈[ω], E〉 ≥ 1

2π
〈[ω], Ek〉 .

Moreover, let Ω be a cohomology class in H2(Mk;R) that is encoded by a
vector (λ; δ1, . . . , δk) with positive entries that is reduced. Then, for every
exceptional class E in H2(Mk),

1

2π
〈Ω, E〉 ≥ δk.

Lemma 3.10 follows from Lemma 3.6. We prove these lemmas together
with the next theorem, in which we identify the set Evmin of exceptional
classes of minimal area. In the theorem we refer to the following cases. If
(λ; δ1, . . . , δk) is a vector with positive entries that is reduced, then exactly
one of the following cases occurs, where

λF := λ− δ1, and δE1�
:= λ− δ1 − δ� for 	 �= 1.

1) δ1 ≤ λF /2 (equivalently, δ1 ≤ λ/3), and

a) δk < λ/3.
b) δk = λ/3.

2) δ1 > λF /2, δ2 ≤ λF /2, and

a) δk < λF /2.
b) δk = λF /2.

3) δ1 > λF /2, δ2 > λF /2, and

a) δk < δE12
.

b) δk = δE12
.

Remark 3.11. Let k ≥ 3. Let v = (λ; δ1, . . . , δk) be a vector with positive
entries that is reduced.
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• If v is in case (1b), then v = (λ;λ/3, . . . , λ/3) and k ≤ 8.

• If v is in case (2b), then v = (λ; δ1, λF /2, . . . , λF /2) and δ1 > λF /2.

• If v is in case (3b), then v = (λ; δ1, δ2, δE12
, . . . , δE12

) and δ2 > δE12
.

Theorem 3.12 (Exceptional classes with minimal area). Let k ≥ 3.
Let v = (λ; δ1, . . . , δk) be a vector with positive entries that is reduced; let Ω
be a cohomology class in H2(Mk;R) that is encoded by this vector. Suppose
also that Ω satisfies the volume inequality

(3.13) λ2 − δ21 − · · · − δ2k > 0.

Let j be the smallest non-negative integer for which δj+1 = · · · = δk.

• If v is in one of the cases (1a), (2a), or (3a), then

Evmin = {Ej+1, . . . , Ek} .

• If v is in case (1b), then k ≤ 8, and, by Demazure [3], the excep-
tional classes are those classes that can be written as aL− b1E1 −
· · · − bkEk with (a; b1, . . . , bk) a multi-set of one of the following types:
(0;−1, 0k−1), (1; 12, 0k−2), (2; 15, 0k−5), (3; 2, 16, 0k−7), (4; 23, 15),
(5; 26, 12), (6; 3, 27). In this case, Evmin contains all the exceptional
classes.

• If v is in case (2b), then

Evmin = {E2, . . . , Ek, E12, . . . , E1k}.

• If v is in case (3b), then

Evmin = {E12, E3, . . . , Ek}.

Remark 3.14. Combining Theorem 3.12 with the algorithm of Section 2,
we obtain the list of exceptional classes with minimal ω-area in H2(Mk) for
any blowup form ω on Mk, even if its cohomology class is not represented
by a reduced vector. Indeed, let v be the vector that encodes the cohomol-
ogy class [ω]. The algorithm of Paragraph 2.17 and Definition 2.6 of the
standard Cremona move give maps γ1, . . ., γN of R1+k such that each γi
is a permutation of the last k entries and such that vred := (cremona ◦γN ◦
· · · ◦ cremona ◦γ1)(v) is reduced. Let cremona, γ1, . . ., γN be the transfor-
mations of H2(Mk) such that, for every homology class A, identifying every
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vector v′ ∈ R1+k with the cohomology class in H2(Mk;R) that it encodes,
we have 〈cremona(v′), A〉 = 〈v′, cremona(A)〉 and 〈γi(v′), A〉 = 〈v′, γi(A)〉 for
i = 1, . . . , N . Then Evmin = (γ1 ◦ cremona ◦ · · · ◦ γN ◦ cremona)Evred

min .

Remark 3.15 (Exceptional classes with minimal area when k =
0,1,2). If k = 0, there are no exceptional classes, so Evmin = ∅.

If k = 1, then Evmin = {E1}. In fact, in this case E1 is the only exceptional
class. Indeed, suppose that E = aL− b1E1 ∈ H2(M1) is exceptional. The
equality E · E = −1 gives a2 − b1

2 = −1, and the equality c1(TMk)(E) = 1
(see Lemma 2.12) gives 3a− b1 = 1. Because a and b1 are integers, we deduce
that a = 0 and b1 = −1, i.e., E = E1.

Suppose now that k = 2. Then, by Demazure [3], the set of exceptional
classes is {E1, E2, E12}. We have δ2 < λF /2 exactly if δ2 < δE12

and δ2 =
λF /2 exactly if δ2 = δE12

.

• If δ2 < λF /2 and δ2 < δ1, then Evmin = {E2}.
• If δ2 < λF /2 and δ2 = δ1, then Evmin = {E1, E2}.
• If δ2 = λF /2 and δ2 < δ1, then Evmin = {E2, E12}.
• If δ2 = λF /2 and δ2 = δ1, then Evmin = {E1, E2, E12}.
• If δ2 > λF /2, then Evmin = {E12}.

Proof of Lemmas 3.6 and 3.10 and Theorem 3.12. Lemma 3.10 follows from
Lemma 3.6: because c1(TMk)(E) = 1 and GW(E) �= 0 (by Lemma 2.12 and
Definition 2.13), we can apply Lemma 3.6 to E.

Because v is reduced (see also Remark 3.11), in each of the cases in
Theorem 3.12, each of the listed classes is exceptional and has size δk.

It remains to prove the following results. Let A be a homology class
in H2(Mk). Suppose that c1(TMk)(A) ≥ 1, and suppose that A is repre-
sented by a J-holomorphic sphere for some almost complex structure J that
is tamed by some blowup form on Mk. Then

1
2π 〈Ω, A〉 ≥ δk. If, moreover,

A is an exceptional class with minimal area and v satisfies the volume in-
equality (3.13), then A is one of the classes that are listed in Theorem 3.12,
according to the case of v.

Case 1: when δ1 ≤ λF/2; equivalently, δ1 ≤ λ/3.
First, suppose that A is not a multiple of any of the classes L,E1, . . . , Ek.

Write

A = aL− b1E1 − · · · − bkEk.
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By Lemma 2.15, GW(L),GW(E1), . . . ,GW(Ek) are nonzero; by Lemma 3.1
and by the assumptions on A, the coefficients

a = A · L, b1 = A · E1, . . . , bk = A · Ek

are nonnegative. We have

c1(TMk)(A) = 3a− b1 − · · · − bk;

by assumption, this number is ≥ 1. Also in this case, 0 < δi ≤ λ/3 for i =
1, . . . , k. Thus,

1

2π
〈Ω, A〉 = aλ− b1δ1 − · · · − bkδk(3.16)

≥ aλ− b1λ/3− · · · − bkλ/3

= (3a− b1 − · · · − bk)λ/3

(�)

≥ λ/3

≥ δ1
(��)

≥ δk.

(Moreover, equality in (
) implies that c1(TMk)(A) = 1.)

Suppose moreover that A is an exceptional class with minimal area. The
last inequality of (3.16) being an equality implies that we are in case (1b).
The class A is then in the set of listed classes because this set contains all
the exceptional classes.

Now, suppose that A is a multiple of one of the classes L,E1, . . . , Ek.
Then 1

2π 〈Ω, A〉 ≥ δk, with equality only ifA is one of the classes Ej+1, . . . , Ek,
as in Lemma 3.2. These classes are among those that are listed in all the
cases, and in particular in the cases (1a) and (1b).

Case 2: when δ1 > λF/2 and δ2 ≤ λF/2.
First, suppose that A is not a multiple of any of the classes F,E1, E2, . . . ,

Ek. Write

A = aLL+ aFF − b2E2 − · · · − bkEk.

By Lemma 2.15, GW(F ), GW(E1), GW(E2), . . ., GW(Ek) are nonzero; by
Lemma 3.1 and by the assumptions on A, the coefficients

aL = A · F, aF = A · E1, b2 = A · E2, . . . , bk = A · Ek
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are nonnegative. We have

c1(TMk)(A) = 3aL + 2aF − b2 − · · · − bk;

by assumption, this number is ≥ 1. The assumption δ1 > λF /2 implies that
λ > 3

2λF . Also, 0 < δj ≤ λF /2 for all 2 ≤ j ≤ k. Thus,

1

2π
〈Ω, A〉 = aLλ+ aFλF − b2δ2 − · · · − bkδk(3.17)

≥ aL
3

2
λF + aFλF − b2λF /2− · · · − bkλF /2

= (3aL + 2aF − b2 − · · · − bk)λF /2

(�)

≥ λF /2

≥ δ2

≥ δk.

(Moreover, equality in (
) implies that c1(TMk)(A) = 1.)

Suppose moreover that A is an exceptional class of minimal area.
The first inequality in (3.17) being an equality implies that the coeffi-
cient aL is zero. So −b22 − · · · − b2k = A ·A = −1 and 2aF − b2 − · · · − bk =
c1(TMk)(A) = 1. From this we deduce that A is one of the classes E12, . . . ,
E1k. The last two inequalities of (3.17) being equalities implies that we are
in case (2b), so A is among the listed classes.

Now suppose that A is a multiple of one of the classes F,E1, E2, . . . , Ek.
Then 1

2π 〈Ω, A〉 ≥ δk, with equality only ifA is one of the classes Ej+1, . . . , Ek,
as in Lemma 3.2. These classes are among those that are listed in all the
cases, and in particular in the cases (2a) and (2b).

Case 3: when δ1 > λF/2 and δ2 > λF/2.
First, suppose that A is not a multiple of any of the classes F,B,E12,

E3, . . . , Ek. Write

A = aBB + aFF − b12E12 − b3E3 − · · · − bkEk.

By Lemma 2.15, GW(F ), GW(B), GW(E12), GW(E1),. . ., GW(Ek) are
nonzero; by Lemma 3.1, the coefficients

aB = A · F, aF = A ·B,

b12 = A · E12, b3 = A · E3, . . . , bk = A · Ek
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are nonnegative. We have

c1(TM)(A) = 2aB + 2aF − b12 − b3 − · · · − bk;

by assumption, this number is ≥ 1. Let

λB = λ− δ2.

The assumption δ1 ≥ δ2 implies that λB ≥ λF . The assumption δ2 > λF /2
implies that δE12

< λF /2. Because (λ; δ1, . . . , δk) is reduced, δk ≤ δ3 ≤ λF −
δ2, which also implies that 0 < δj < λF /2 for j = 3, . . . , k. Thus,

1

2π
〈Ω, A〉 = aBλB + aFλF − b12δE12

− b3δ3 − · · · − bkλk(3.18)

≥ aBλF + aFλF − b12λF /2− b3λF /2− · · · − bkλF /2

= (2aB + 2aF − b12 − b3 − · · · − bk)λF /2

(�)

≥ λF /2

> δ3

≥ δk.

(Moreover, equality in (
) implies that c1(TMk)(A) = 1.)

The first inequality in (3.18) being an equality implies that b12 = b3
= · · · = bk = 0, which cannot occur when A is exceptional.

Now, suppose that A is a multiple of one of the classes F,B,E12, E3, . . . ,
Ek. Then 1

2π 〈Ω, A〉 ≥ δk. In case (3a), equality holds only if A ∈ {Ej+1,
. . . , Ek}. In case (3b), equality holds only if A ∈ {E12, Ej+1, . . . , Ek}. See
Lemma 3.2. In each of these cases, A belongs to the set of listed classes. �

Corollary 3.19. Let k ≥ 3. Let ω be a blowup form on Mk whose coho-
mology class is encoded by a reduced vector v = (λ; δ1, . . . , δk). Then one of
the following four possibilities (A), (B), (C), (D) occurs for the set Evmin of
exceptional classes with minimal area.

(A) Evmin ⊇ {E1, E2, . . . , Ek, E12}.
In this case, v = (λ, λ/3, . . . , λ/3).

(B) Evmin = {E2, . . . , Ek, E12, . . . , E1k}.
In this case, v = (λ; δ1, λF /2, . . . , λF /2), and δ1 > λF /2.
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(C) Evmin = {E12, E3, . . . , Ek}.
In this case, v = (λ; δ1, δ2, δE12

, . . . , δE12
) and δ2 > δE12

.

(D) Evmin = {Ej+1, . . . , Ek} ,
where j is the smallest non-negative integer for which δj+1 = · · · = δk.

4. McDuff’s arguments

In Theorem 3.12 we give the complete list of exceptional homology classes
with minimal symplectic area for a blowup form whose cohomology class
is encoded by a reduced vector. McDuff has shown us a different proof ap-
proach, which uses the “reduced” assumption in such a beautiful way that
we feel compelled to include it.

The following lemma and corollary are a slight variation of results that
were communicated to us by Dusa McDuff. Their origin is in [21, Lemma 3.4],
which is attributed to [16, Lemma 3.4].

Lemma 4.1. Let k ≥ 3. Let A be a homology class in H2(Mk). Write

A = aL− b1E1 − · · · − bkEk.

(1) Suppose that a ≥ 0 and b� ≥ 0 for all 	, and that

A ·A+ c1(TMk)(A) ≥ 0.

Then 0 ≤ b� ≤ a for all 	. If, additionally,

A ·A ≥ −1 and A �= 0,

then there exists 	 ∈ {1, . . . , k} such that b� < a.

(2) Suppose that a ≥ 0 and 0 ≤ b� ≤ a for all 	, and that

c1(TMk)(A) ≥ 0.

Let Ω be a cohomology class in H2(Mk;R) that is encoded by a vector
(λ; δ1, . . . , δk) with positive entries and that is reduced. Then

〈Ω, A〉 ≥ 0.
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Proof of (1). Suppose otherwise. Then b�0 = a+ η for some 	0 and for some
η ≥ 1. Then

b2�0 + b�0 = (a+ η)2 + (a+ η) = a2 + (2η + 1︸ ︷︷ ︸
≥3

)a+ η2 + η︸ ︷︷ ︸
>0

> a2 + 3a,

and so

A ·A+ c1(TMk)(A) = (a2 −
∑

b2� ) + (3a−
∑

b�)

= (a2 + 3a)− (b2�0 + b�0)︸ ︷︷ ︸
<0

−
∑
�
=�0

(b2� + b�︸ ︷︷ ︸
≥0

)

< 0,

contradicting our assumption on A. If there does not exist an 	 such that
b� < a, then b� = a for all 	, and A ·A = a2(1− k), which is ≤ −2 if A �=
0. �
Proof of (2). The assumption c1(TMk)(A) ≥ 0 implies that 3a−∑

b� ≥ 0.
We can then write

1

2π
〈Ω, A〉 = aλ− b1δ1 − · · · − bkδk(4.2)

= λ+ · · ·+ λ︸ ︷︷ ︸
a times

− ( δ1 + · · ·+ δ1︸ ︷︷ ︸
b1 times

+ · · ·+ δk + · · ·+ δk︸ ︷︷ ︸
bk times

+ 0 + · · ·+ 0︸ ︷︷ ︸
3a−∑

b� times

).

We set δk+1 = 0.
We label the list of 3a indices

1, . . . , 1︸ ︷︷ ︸
b1 times

, . . . , k, . . . , k︸ ︷︷ ︸
bk times

, k + 1, . . . , k + 1︸ ︷︷ ︸
3a−∑

b� times

as

j11, j21, . . . , ja1, j12, j22, . . . , ja2, j13, j23, . . . , ja3.

Because 0 ≤ b� ≤ a for all 	, for each 1 ≤ i ≤ a those of the three indices
ji1, ji2, ji3 that are different from the artificially-added index k + 1 are dis-
tinct. The right hand side of (4.2) then becomes

(4.3)

a∑
i=1

(λ− (δji1 + δji2 + δji3))
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where at each summand, (δji1 + δji2 + δji3) is the sum of at most three of
δ1, . . . , δk. Because (λ; δ1, . . . , δk) is reduced, the sum (4.3) is ≥ 0. �

Corollary 4.4. Let k ≥ 3. Let Ω be a cohomology class in H2(Mk;R) that
is encoded by a vector (λ; δ1, . . . , δk) with positive entries that is reduced.
Let A be a class in H2(Mk) such that c1(TMk)(A) ≥ 1 and such that A is
represented by a J holomorphic sphere for some almost complex structure J
that is tamed by some blowup form on Mk. Then

1

2π
〈Ω, A〉 ≥ δk.

In particular, let E be an exceptional class in H2(Mk); then

1

2π
〈Ω, E〉 ≥ δk.

Moreover,

• if E is not one of the classes E1, . . . , Ek nor L− E1 − E� for 	 �= 1,
then

1

2π
〈Ω, E〉 ≥ δ1;

• if E is not one of the classes E1, . . . , Ek, then

1

2π
〈Ω, E〉 ≥ λ− δ1 − δ2.

Proof. Assume that A is not a multiple of any of the classes L,E1, . . . , Ek;
otherwise, the result is clearly true. By positivity of intersections (Lemma 3.1)
we can write

E = aL− b1E1 − · · · − bkEk

where a, b1, . . . , bk are nonnegative. By the adjunction formula,

A ·A ≥ c1(TMk)(A)− 2

≥ −1.

By part (1) of Lemma 4.1, we have 0 ≤ b� ≤ a for all 	, and there exists an
	 such that b� < a. We can then apply part (2) of Lemma 4.1 to A− E� and
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conclude that
1

2π
〈Ω, A〉 ≥ δ�.

Now, let E be an exceptional class in H2(Mk) that is not one of the
classes E1, . . . , Ek. We need to show that

1

2π
〈Ω, E〉 ≥ λ− δ1 − δ2,

and that, if E is not equal to L− E1 − E� for any 	 �= 1, then

1

2π
〈Ω, E〉 ≥ δ1.

Because E is not one of the classes E1, . . . , Ek and is exceptional, E
is not a multiple of any of the classes L,E1, . . . , Ek, and by positivity of
intersections (Lemma 3.1) we can write

E = aL− b1E1 − · · · − bkEk

where a, b1, . . . , bk are nonnegative. By part (1) of Lemma 4.1, we have
0 ≤ b� ≤ a for all 	.

First, suppose that bi = a for some 1 ≤ i ≤ k. The properties E · E =
−1 and c1(TMk)(E) = 1 then imply that E = L− Ei − Es for some s �= i.
Similarly, if a = 1, then again E = L− Ei − Es for s �= i. In all these cases

1

2π
〈Ω, E〉 ≥ min

1≤i<s≤k
{λ− δi − δs} = λ− δ1 − δ2,

and if i and s are both different from 1, then

1

2π
〈Ω, E〉 = λ− δi − δs ≥ δ1

because (λ; δ1, . . . , δk) is reduced.
It remains to consider the case that a > 1 and 0 ≤ b� < a for all 	. Be-

cause E · E = −1, there exist two different indices i, s such that bi > 0 and
bs > 0. We can then apply part (2) of Lemma 4.1 to A := E − (L− Ei − Es)
and conclude that

(4.5)
1

2π
〈Ω, E〉 ≥ λ− δi − δs.

The right hand side of (4.5) is ≥ λ− δ1 − δ2, and it is ≥ δ1 if i and s are
both different from 1, since (λ; δ1, . . . , δk) is reduced. �
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We now give an alternative proof to Theorem 3.12, using Corollary 4.4.

Proof of Lemmas 3.6 and 3.10 and Theorem 3.12. Lemmas 3.6 and 3.10 fol-
low from Corollary 4.4.

Because v is reduced (see also Remark 3.11), in each of the cases in
Theorem 3.12, each of the listed classes is exceptional and has size δk.

Now, let E be an exceptional class in H2(Mk). By Corollary 4.4, E is
in Evmin if and only if 1

2π 〈Ω, E〉 = δk. If E is one of the classes E1, . . . , Ek,
then 1

2π 〈Ω, E〉 = δk implies that E is in the set {Ej+1, . . . , Ek}, which is
contained in all the sets of classes that are listed in Theorem 3.12.

We now assume that 1
2π 〈Ω, E〉 = δk and E is not one of the classes

E1, . . . , Ek. It remains to prove that E is one of the classes that are listed
in Theorem 3.12, according to the case of v.

Case 1: when δ1 ≤ λ/3.

1

2π
〈Ω, E〉 ≥ λ− δ1 − δ2 by Corollary 4.4

≥ λ/3

≥ δ1

≥ δk.

Equality implies that we are in case (1b); the class E is then in the set of
listed classes because this set contains all the exceptional classes.

Cases 2 and 3: when δ1 > λ/3.
Since v is reduced, we get

δk ≤ δ3 ≤ δ1 + δ2 + δ3
3

≤ λ/3,

and so

δk ≤ λ/3 < δ1.

By Corollary 4.4, E is one of the classes E1� for 	 > 1. It remains to show
that this can hold only if v is in case (2b) or if 	 = 2 and v is in case (3b).

Indeed, we now rule out the remaining cases.
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If v is in case (2a), for all 	 > 1 we have

1

2π
〈Ω, E1�〉 = λ− δ1 − δ�

≥ λ− δ1 − δ2

= λF − δ2

≥ λF /2

> δk.

If v is case (3a), for all 	 > 1, we have

1

2π
〈Ω, E1�〉 = λ− δ1 − δ�

≥ λ− δ1 − δ2

= δE12

> δk.

If v is in case (3b) then by Remark 3.11 δ2 > δ3 = · · · = δk = δE12
, and

for 	 > 2,

1

2π
〈Ω, E1�〉 = λ− δ1 − δ�

≥ λ− δ1 − δ3

≥ δ2

> δk.

Thus, we have shown that in the cases (2a), (3a), (3b) the class E1�

cannot be minimal for any 2 ≤ 	 ≤ k. �

5. Uniqueness of reduced form

Our goal in this section is to prove the following theorem, which is the
“uniqueness” part of Theorem 1.8.

Theorem 5.1. Let k ≥ 3. Let ω and ω′ be blowup forms on Mk whose
cohomology classes are encoded by the vectors

v = (λ; δ1, . . . , δk) and v′ = (λ′; δ′1, . . . , δ
′
k).

Suppose that v and v′ are reduced. Suppose that (Mk, ω) and (Mk, ω
′) are

symplectomorphic. Then v = v′.
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Let (M,ω) be a closed symplectic four-manifold and C an embedded
symplectic sphere of self intersection −1. We recall that a choice of Weinstein
tubular neighbourhood of C determines a symplectic blow-down (M,ω) of
(M,ω) along C, and that we have a natural splitting

(5.2) H2(M) = H2(M)⊕ Z[C].

We also recall the “uniqueness of blow downs”: if C1 and C2 are two
spheres as above and are in the same homology class, and if (M1, ω1) and
(M2, ω2) are blow-downs of (M,ω) with respect to some choices of Weinstein
tubular neighbourhoods of C1 and C2, then there is a symplectomorphism
between (M1, ω1) and (M2, ω2) that induces the identity map on the second
homology with respect to the decompositions (5.2). An argument for this
was given by McDuff in [19, §3]; for details, see [12, Lemma A.1].

Finally, suppose that (M,ω) is obtained from (M,ω) by a symplectic
blowdown along a sphere C with respect to some Weinstein neighbourhood
of C, and let ψ : (M,ω)→ (M ′, ω′) be a symplectomorphism. Then ψ de-

scends to a symplectomorphism from (M,ω) to the manifold (M
′
, ω′) that

is obtained from (M ′, ω′) by a symplectic blowdown along C ′ := ψ(C) with
respect to the Weinstein tubular neighbourhood that is determined by ψ.

Lemma 5.3. Let ω be a blowup form on Mk. Let (λ; δ1, . . . , δk) be the
vector that encodes the cohomology class [ω]. Then there exists an embedded
ω-symplectic sphere in the class Ek. For every such sphere, blowing down
along it yields a symplectic manifold that is symplectomorphic to (Mk−1, ω),
where ω is a blowup form, and where the cohomology class [ω] is encoded by
the vector (λ; δ1, . . . , δk−1).

We give details in [10].

To proceed, we will need to identify the two-point blowup M2 of CP2

with the one-point blowup of S2 × S2. We have a decomposition

H2(S
2 × S2) = ZB ⊕ ZF

where B = [S2 × {point}] is the “base class” and F = [{point} × S2] is the
“fibre class”. For positive real numbers a, b we consider the split symplectic
form

ωa,b = aτS2 ⊕ bτS2

where τS2 is the rotation invariant area form on S2, normalized such that
1
2π

∫
S2 τS2 = 1.
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Lemma 5.4. Suppose that a ≥ b > 0 and a′ ≥ b′ > 0. Suppose that (S2 ×
S2, ωa,b) and (S2 × S2, ωa′,b′) are symplectomorphic. Then a = a′ and b = b′.

Proof. The forms ωa,b and ωa′,b′ induce the same orientation. An orientation
preserving diffeomorphism on S2 × S2 acts on H2(S2 × S2) = Z2 by a 2× 2
matrix of integers, with determinant ±1, which preserves the intersection
form [ 0 1

1 0 ]. The matrices with this property are ± [ 1 0
0 1 ] and ± [ 0 1

1 0 ]. These
cannot take ωa,b to ωa′,b′ , with a ≥ b > 0 and a′ ≥ b′ > 0, unless (a, b) =
(a′, b′). �

Lemma 5.5. Let ω be a blowup form on M2. Then there exists an em-
bedded ω-symplectic sphere in the class E12 := L− E1 − E2. Moreover, for
every such sphere, blowing down along it yields a symplectic manifold that is
symplectomorphic to (S2 × S2, ωa,b), with a = λ− δ2 and b = λ− δ1, where
(λ; δ1, δ2) is the vector that encodes the cohomology class [ω].

We give details in [10].
We will also use the following observations on symplectomorphisms be-

tween blow ups of CP2. We say that homology classes are disjoint if their
intersection product is zero.

Lemma 5.6. Let ω and ω′ be blowup forms on Mk whose cohomology
classes are encoded by the vectors (λ; δ1, . . . , δk) and (λ′; δ′1, . . . , δ′k). Let
ϕ : (Mk, ω)→ (Mk, ω

′) be a symplectomorphism, and let ϕ∗ : H2(Mk)→
H2(Mk) be the induced map on homology.

1) The isomorphism ϕ∗ preserves the set of exceptional classes.

2) The isomorphism ϕ∗ sends disjoint homology classes to disjoint ho-
mology classes.

3) The isomorphism ϕ∗ restricts to a bijection from the set of minimal
exceptional classes in (Mk, ω) to the set of minimal exceptional classes
in (Mk, ω

′), and

(5.7) δk = δ′k.

4) We have

(5.8) 3λ−
k∑

i=1

δi = 3λ′ −
k∑

i=1

δ′i.
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Proof. We give details in [10]. We note that (5.7) in the case k ≥ 3 fol-
lows from Lemma 3.10 and that (5.8) follows from 1

2π

∫
Mk

ω ∧ c1(TMk) =
1
2π

∫
Mk

ω′ ∧ c1(TMk). �

The properties of a symplectomorphism listed in Lemma 5.6 and the
identification of exceptional classes when k = 1, 2 yield the characterization
of the blowup forms when k ≤ 2 that was stated in Lemma 1.10.

Proof of Lemma 1.10. By Remark 1.5, a vector that encodes the cohomol-
ogy class of a blowup form satisfies the conditions listed in the lemma. The
fact that these conditions are sufficient for the cohomology class encoded by
the vector to contain a blowup form can be shown by toric constructions,
see e.g., [8, 10].

By Lemma 1.3, any two blowup forms whose cohomology classes are
encoded by the same vector are diffeomorphic. When k = 2, switching δ1
and δ2 can be realized by a diffeomorphism. It remains to show that if
two blowup forms are cohomologous, then the vectors that encode their
cohomology classes are equal or (when k = 2) differ by switching δ1 and δ2.

Suppose that k = 2. Suppose that there exists a symplectomorphism
from (M2, ωλ;δ1,δ2) to (M2, ωλ′;δ′1,δ

′
2
). By Demazure [3], the set of exceptional

classes in M2 is {E1, E2, E12}, and the only pair of disjoint exceptional
classes is {E1, E2}. Because a symplectomorphism takes disjoint exceptional
classes to disjoint exceptional classes, {δ1, δ2} = {δ′1, δ′2}. Because a symplec-
tomorphism preserves the pairing of the symplectic form with the first Chern
class, 3λ− δ1 − δ2 = 3λ′ − δ′1 − δ′2, which further implies that λ = λ′. Thus,
(λ′, δ′1, δ′2) is equal to either (λ, δ1, δ2) or to (λ, δ2, δ1). Conversely, these two
vectors correspond to symplectomorphic manifolds. We give more details
in [10].

Suppose that k = 1. Suppose that there exists a symplectomorphism
from (M2, ωλ;δ1) to (M2, ωλ′;δ′1). As noted in Remark 3.15, in this case E1

is the only exceptional class. Because a symplectomorphism must take an
exceptional class to an exceptional class, the symplectomorphism (Mk, ω)→
(Mk, ω

′) takes the set {E1} to itself. Thus, δ1 = δ′1. Because a symplecto-
morphism preserves the pairing of the symplectic form with the first Chern
class, 3λ− δ1 = 3λ′ − δ′1, which further implies that λ = λ′.

Suppose that k = 0. On CP2, if two blowup forms are diffeomorphic
then they take the same value on the generator of H2(CP

2) on which this
value is positive. So they must have the same size. �
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Proof of Theorem 5.1. Corollary 3.19 implies that exactly one of the follow-
ing possibilities for the vector v = (λ; δ1, . . . , δk) occurs. A similar list of
possibilities holds for the vector v′ = (λ′; δ′1, . . . , δ′k).

(A) Not every two minimal exceptional classes are disjoint, and there exist
k pairwise disjoint minimal exceptional classes.

In this case, v = (λ;λ/3, . . . , λ/3).

(B) Not every two minimal exceptional classes are disjoint, and there do
not exist k pairwise disjoint minimal exceptional classes.

In this case, v = (λ; δ1, λF /2, . . . , λF /2) and δ1 > λF /2.

(C) Every two minimal exceptional classes are disjoint, and the blowdown
of (M,ω) along all the minimal exceptional classes yields a manifold
that is symplectomorphic to S2 × S2 with some split symplectic form
ωa,b with a ≥ b > 0.

In this case, v = (λ; δ1, δ2, δE12
, . . . , δE12

), with δ2 > δE12
, and the

parameters a, b are given by a = λ− δ2 and b = λ− δ1.

(D) Every two minimal exceptional classes are disjoint, and the blowdown
of (M,ω) along all the minimal exceptional classes yields a manifold
that is symplectomorphic to (Mj , ω) for some 0 ≤ j < k, where ω is a
blowup class.

In this case, the cohomology class [ω] is encoded in the vector
(λ; δ1, . . . , δj).

By items (2) and (3) of Lemma 5.6, either (Mk, ω) and (Mk, ω
′) are both

in the case (A), or they are both in the case (B), or they are both in the
cases (C) or (D).

In the cases (C) or (D), because a symplectomorphism between (Mk, ω)
and (Mk, ω

′) descends to a symplectomorphism between the blowdowns
along the minimal exceptional spheres, and because S2 × S2 is not sym-
plectomorphic (or even homeomorphic) to any Mj , either both (Mk, ω) and
(Mk, ω

′) are in the case (C) or they are both in the case (D).

Suppose v and v′ are in case (A). This means that v = (λ;λ/3, . . . , λ/3)
and v′ = (λ′;λ′/3, . . . , λ′/3). Substituting in (5.7), the resulting equation
implies that λ = λ′, and thus v = v′.

Suppose v and v′ are in case (B). This means that v = (λ; δ1, λF /2, . . . ,
λF /2) and v′ = (λ′; δ′1, λ′

F /2, . . . , λ
′
F /2). Substituting in (5.7) and in (5.8),

and recalling that λF = λ− δ1 and λ′
F = λ′ − δ′1, we get two linearly inde-

pendent equations that imply that λ = λ′ and δ1 = δ′1, and thus v = v′.
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Suppose v and v′ are in case (C). Then v = (λ; δ1, δ2, δE12
, . . . , δE12

) and
v′ = (λ′; δ′1, δ′2, δ′E12

, . . . , δ′E12
). By (5.7), we get

(5.9) δE12
= δ′E12

.

Because the symplectomorphism descends to a symplectomorphism between
the blowdowns along the minimal exceptional spheres, and by Lemma 5.4,
we obtain that

δ1 + δE12
= δ′1 + δ′E12

and δ2 + δE12
= δ′2 + δ′E12

.

By this and (5.9), we get that

(5.10) δ1 = δ′1 and δ2 = δ′2.

Substituting in (5.8), we get that λ = λ′. Thus, v = v′.
Suppose v and v′ are in case (D). Because the symplectomorphism de-

scends to a symplectomorphism between the blowdowns along the minimal
exceptional spheres, we obtain a symplectomorphism between (Mj , ω) and
(Mj , ω

′), where [ω] is encoded in the vector v = (λ, δ1, . . . , δj) and [ω′] is
encoded in the vector v′ = (λ′, δ′1, . . . , δ′j). Because the vectors v and v′ are
reduced, we can continue by induction. �

5.11 (Algorithm to determine whether two blowup forms are dif-
feomorphic). Suppose that k ≥ 3. Let ω and ω′ be blowup forms on Mk,
and let v and v′ be the vectors that encode their cohomology classes. Apply
to each of v and v′ the algorithm of Paragraph 2.17 to obtain reduced vectors
vred and v′red. Then ω and ω′ are diffeomorphic if and only if vred = v′red.

Indeed, as noted in Paragraph 2.17, the vectors vred and v′red encode
cohomology classes of blowup forms ωred and ω′

red that are, respectively,
diffeomorphic to ω and to ω′. If ω and ω′ are diffeomorphic, then so are ωred

and ω′
red, and, by Theorem 5.1, we conclude that vred = v′red. Conversely, if

vred = v′red, then ωred and ω′
red are diffeomorphic by Lemma 1.3, and then ω

and ω′ are diffeomorphic.
If k = 0, k = 1, or k = 2, two blowup forms on Mk are diffeomorphic if

and only if the vectors that encode their cohomology classes are equal or (in
the case k = 2) differ by switching δ1 and δ2. This follows from Lemma 1.10.

Remark 5.12. Zhao, Gao, and Qiu gave another version of “uniqueness of
reduced form” [33]. They only refer to integral classes. They work with the
slightly different notion of “reduced form” that we described in Remark 2.24.
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They identify the group that is generated by the relevant Lorentzian reflec-
tions with the Weyl group of a certain Kac-Moody Lie algebra, and they
rely on properties of such Weyl groups.

6. Characterization of blowup classes

In this section we give an algorithm that determines if a cohomology class
contains a blowup form. The cone of classes of blowup forms on Mk is
described by Li-Li [16] and Li-Liu [18], following the work of Biran [1, 2]
and McDuff [20], and is explained in McDuff-Schlenk [25, §1.2]. We rely on
the following two facts.

1) A cohomology class Ω ∈ H2(Mk;R) is the cohomology class of a blowup
form on Mk if and only if Ω is encoded by a vector in the forward pos-
itive cone and 〈Ω, E〉 > 0 for every exceptional class E on Mk.

2) Every exceptional class E on Mk can be obtained from E1 by a se-
quence of applications of the transformations on H2(Mk) that induce
the Cremona transformation and the permutations of the δjs.

Remark 6.1. The fact that the cohomology class of every blowup form
satisfies the conditions in (1) follows from our definition of “exceptional
class” (Definition 2.13 and Lemma 2.12, which, in turn, relies on Lemma 1.2).

In the works that we quote above, the authors consider symplectic forms
with a standard canonical class, that is, for which the first Chern class
c1(TM) is the same as for blowup forms; in our notation (Definition 1.4),
this class is encoded by the vector (3; 1, . . . , 1). And by “exceptional class”,
they refer to a homology class E that is represented by a smoothly embed-
ded sphere with self intersection −1 and such that c1(TM)(E) = 1. These
authors show that a cohomology class Ω contains a symplectic form with
standard canonical class if and only if it satisfies the two conditions that we
listed in (1) with their interpretation of “exceptional class”.

To use their work, we need to note that every homology class that is
“exceptional” in their sense is also exceptional in our sense, and that every
symplectic form with standard canonical class is a blowup form.

These facts follow from results that are given in Part 2 of Lemma 3.5 of
[18]: let ω be a symplectic form with standard canonical class.

– If E is an exceptional class in the sense of Li-Li-Liu, then E is repre-
sented by an embedded ω-symplectic sphere.
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– Every finite set of exceptional classes in the sense of Li-Li-Liu that are
pairwise disjoint (with respect to the intersection form) is represented
by a finite set of embedded ω-symplectic spheres that are pairwise
disjoint (as sets).

The first of these results also appeared as the “−1 curve theorem” in The-
orem A of [17], which implies that, for every symplectic form on M , if E is
an exceptional class in the sense of Li-Li-Liu and its pairing with c1(TM) is
positive then either E or −E can be represented by an embedded symplectic
sphere. Li and Liu prove this result using a method of Taubes [30].

Given a finite set of exceptional classes in the sense of Li-Li-Liu that
are pairwise disjoint with respect to the intersection form, there exists an
ω-tamed almost complex structure J for which there exists an embedded
J-holomorphic sphere in each of the classes in the set. This follows from the
first result above, together with the Hofer-Lizan-Sikorav regularity criterion
[5] (see also [24, Lemma 3.3.3]) and the implicit function theorem, see [24,
Chapter 3]. These spheres are disjoint, as follows from the positivity of
intersections of J-holomorphic spheres in four-dimensional manifolds, see
[24, Appendix E and Proposition 2.4.4], and the fact that the classes in the
given set are pairwise disjoint. This yields the second result above.

In particular, the classes E1, . . . , Ek of the exceptional divisors are rep-
resented by disjoint embedded ω-symplectic spheres. Blowing down along
k disjoint embedded ω-symplectic spheres in the classes E1, . . . , Ek yields a
symplectic manifold that is diffeomorphic to CP2. By a result of Gromov [4,
2.4 B′

2 and 2.4 B′
3] and a theorem of Taubes, which uses Seiberg-Witten in-

variants to guarantee the existence of a symplectically embedded two-sphere
[31], this resulting manifold is symplectomorphic to CP2 with a multiple of
the Fubini-Study form and L is represented by a symplectically embedded
sphere. See [28, Example 3.4]. We conclude that ω is a blowup form. Then
Lemma 2.12 and the first result above show that every exceptional class in
the sense of Li-Li-Liu is also exceptional in our sense.

Lemma 6.2. Let k ≥ 3. Let Ω be a cohomology class that is encoded by a
vector (λ; δ1, . . . , δk) with positive entries that is reduced. Suppose that Ω has
positive square. Then Ω contains a blowup form.

Proof. By Lemma 3.10, for every exceptional class E in H2(Mk), we have
1
2π 〈Ω, E〉 ≥ δk, and in particular 〈Ω, E〉 > 0. The result then follows from
the above fact (1). �
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Proof of Theorem 1.9. Theorem 1.9 follows from Lemma 2.9, Lemma 2.16,
Lemma 6.2, and Remark 1.5. �

6.3 (Algorithm that, given a cohomology class in H2(Mk;R), de-
termines whether or not it contains a blowup form). The cases
k = 0, 1, 2 have been addressed in Lemma 1.10. Suppose that k ≥ 3.

Let v denote the vector that encodes the cohomology class. If v is not in
the forward positive cone then the cohomology class does not contain any
blowup form. If v is in the forward positive cone, apply the algorithm of
Paragraph 2.17 to obtain vred. If the entries of vred are all positive, then the
given cohomology class contains a blowup form. Otherwise, it does not.

Indeed, by the definition of a blowup form, a vector that encodes the
cohomology class of a blowup form must be in the forward positive cone. As
noted in Paragraph 2.17, if v is in the forward positive cone, so is vred and v
encodes the cohomology class of some blowup form if and only if vred does.
If the entries of vred are all positive, then by Lemma 6.2, the cohomology
class encoded by vred contains a blowup form. If the entries of vred are not
all positive then, by the definition of a blowup form, it cannot encode the
cohomology class of a blowup form.
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