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We show that positive S1-equivariant symplectic homology is a
contact invariant for a subclass of contact manifolds which are
boundaries of Liouville domains. In nice cases, when the set of
Conley-Zehnder indices of all good periodic Reeb orbits on the
boundary of the Liouville domain is lacunary, the positive S1-
equivariant symplectic homology can be computed; it is generated
by those orbits. We prove a “Viterbo functoriality” property: when
one Liouville domain is embedded into an other one, there is a
morphism (reversing arrows) between their positive S1-equivariant
symplectic homologies and morphisms compose nicely.

These properties allow us to give a proof of Ustilovsky’s result
on the number of non isomorphic contact structures on the spheres
S4m+1. They also give a new proof of a Theorem by Ekeland and
Lasry on the minimal number of periodic Reeb orbits on some
hypersurfaces in R2n. We extend this result to some hypersurfaces
in some negative line bundles.
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1. Introduction

A contact structure on a manifold M of dimension 2n− 1 is a hyperplane
field ξ which is maximally non integrable; i.e. writing locally ξ = kerα, one
has α ∧ (dα)n−1 �= 0 everywhere. A first natural question is to determine
how many non-diffeomorphic contact structures there are on a
given manifold and in particular on the sphere S2n−1. In this paper
we consider only coorientable contact structures, i.e. such that α can be
globally defined; α is then called a contact form; this form is not unique; for
any function f : M → R, the 1-form efα defines the same contact structure.
The Reeb vector field Rα associated to a contact form α is the unique vector
field onM such that ι(Rα)dα = 0 and α(Rα) = 1. Since this vector field does
not vanish anywhere, there are no fixed points of its flow. Periodic orbits
are thus the most noticeable objects in the flow. If (M, ξ) is a compact
contact manifold, can one say something about the minimal number of
geometrically distinct periodic Reeb orbits for any contact form α
(eventually in a subclass) defining the contact structure ξ? A way
to tackle those two questions is to find an invariant of the contact structure
built out of the periodic Reeb orbits. To build such an invariant is the aim
of contact homology. At the time of this writing, contact homology is still in
development and encounters “transversality” problems. Instead we consider
positive S1-equivariant symplectic homology which is built from periodic
orbits of Hamiltonian vector fields in a symplectic manifold whose boundary
is the given contact manifold. In this spirit, Bourgeois and Oancea, in [5],
relate, in the case where it can be defined, the linearised contact homology
of the boundary to the positive S1-equivariant symplectic homology of the
symplectic manifold.

The goal of this paper is to prove that positive S1-equivariant symplectic
homology is a contact invariant for a subclass of contact manifolds and that
this allows to obtain results about the two questions mentioned earlier.

In Section 2, we recall the definition of positive S1-equivariant symplec-
tic homology, first describing symplectic homology SH, positive symplectic
homology SH+, and S1-equivariant symplectic homology SHS1

. We show
in Section 3 that, in nice cases, generators of the positive S1-equivariant
symplectic homology SHS1,+ are given by good periodic Reeb orbits. This
relies heavily on earlier results from Bourgeois and Oancea [3] and recent
results from Zhao [31]. Precisely, we prove

Theorem 1.1. Let (W,λ) be a Liouville domain. Assume there exists a
contact form α on the boundary ∂W such that the set of Conley-Zehnder
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indices of all good periodic Reeb orbits is lacunary1. Then

SHS1,+(W,Q) =
⊕

γ∈P(Rα)

Q〈γ〉

where P(Rα) denotes the set of good periodic Reeb orbits on ∂W .

In Section 4, we show that positive S1-equivariant symplectic homology
has good functorial properties. In the first part, we construct a “transfer
morphism” between all the above mentioned variants of symplectic homol-
ogy when one Liouville domain is embedded into an other Liouville domain.
This construction generalises a construction given by Viterbo ([30]). We
prove in Theorem 4.9 that this morphism has nice composition properties.
The second part of Section 4 is dedicated to the invariance of the variants
of symplectic homology. This is not new, but a complete and self-contained
proof is difficult to find in the literature. We prove :

Theorem 1.2. Let (W0, λ0) and (W1, λ1) be two Liouville manifolds2 of fi-
nite type such that there exists a symplectomorphism f : (W0, λ0)→ (W1, λ1).
Then

SH†(W0, λ0) ∼= SH†(W1, λ1).

where † can be any of the following symbol: ∅,+, S1, (S1,+).

We prove that the positive S1-equivariant symplectic homology yields
an invariant of some contact manifolds in the following sense.

Theorem 1.3. Let (M0, ξ0) and (M1, ξ1) be two contact manifolds that are
exactly fillable; i.e. there exist Liouville domains (W0, λ0) and (W1, λ1) such
that ∂W0 = M0, ξ0 = ker(λ0|M0

), ∂W1 = M1 and ξ1 = ker(λ1|M1
). Assume

there exists a contactomorphism ϕ : (M0, ξ0)→ (M1, ξ1). Assume moreover
that ξ0 admits a contact form α0 such that all periodic Reeb orbits are non-
degenerate and the set of Conley-Zehnder indices of all good periodic Reeb
orbits is lacunary. Then

SHS1,+(W0, λ0) ∼= SHS1,+(W1, λ1).

1A set of integer numbers is lacunary if it does not contain two consecutive
numbers.

2We refer to Definition 4.20 for a precise definition of Liouville manifold.
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Note that the isomorphism in Theorem 1.3 is between the graded mod-
ules. There can be a shift in the degree of the generators (by even numbers).
This Theorem, together with Theorem 1.1, allow us to reformulate in Sec-
tion 4.5 the proof of Ustilovsky’s result on the existence of non diffeomorphic
contact structures on the spheres S4m+1. The original proof depends on a
theory of cylindrical contact homology, which is not yet rigorously estab-
lished due to transversality problems. Another proof of this result using
Rabinowitz-Floer homology was done independently by Fauck [16].

Theorem 1.4 ([29]). For each natural number m, there exist infinitely
many pairwise non isomorphic contact structures on S4m+1.

In Section 5 we use positive S1-equivariant symplectic homology to get
results about the minimal number of distinct periodic Reeb orbits on some
contact manifolds. We first give in Theorem 5.1 a new proof (in the non
degenerate case) of a Theorem by Ekeland and Lasry stating that the mini-
mal number of geometrically distinct periodic Reeb orbits on a contact type
hypersurfaces Σ in R2n is at least n when the hypersurface is nicely pinched
between two spheres of radius R1 and R2. We then use the techniques de-
veloped for this proof to study some hypersurfaces in some negative line
bundles. We first get a description for circle bundles.

Proposition 1.5. Let Σ be a contact type hypersurface in a negative line
bundle over a closed symplectic manifold L → B such that the intersection
of Σ with each fiber is a circle. The contact form is the restriction of r2θ∇

where θ∇ is the transgression form on L and r is the radial coordinate on the
fiber. Then Σ carries at least

∑2n
i=0 βi geometrically distinct periodic Reeb

orbits, where the βi are the Betti numbers of B.

We study then hypersurfaces pinched between circles bundles and get:

Theorem 1.6. Let Σ be a contact type hypersurface in a negative line bun-
dle L, over a symplectic manifold B. Suppose that there exists a Liouville
domain W ′ (such that its first Chern class vanishes on all tori) whose bound-
ary coincides with the circle bundle of radius R1 in L, denoted SR1

. Suppose
there exists a Morse function f : B → R such that the set of indices of all
critical points of f is lacunary. Let α be the contact form on Σ induced by
r2θ∇ on L (θ∇ is the transgression form on L and r is the radial coordinate
on the fiber). Assume that Σ is “pinched” between two circle bundles SR1

and SR2
of radii R1 and R2 such that 0 < R1 < R2 and R2

R1
<
√
2. Assume

that the minimal period of any periodic Reeb orbit on Σ is bounded below
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by R2
1. Then Σ carries at least

∑2n
i=0 βi geometrically distinct periodic Reeb

orbits, where the βi denote the Betti numbers of B.

Examples of line bundles where this theorem can be applied are given :
the tautological bundle over a complex projective space and the tautological
bundle over the Grassmannian of oriented 2-planes in R2n.

Acknowledgements. The results presented here are part of my PhD the-
sis; I thank my thesis advisers Frédéric Bourgeois and Alexandru Oancea
for their guidance and enlightening remarks. My work also greatly benefited
from discussions with Strom Borman, Samuel Lisi, Michael Hutchings, Jung-
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from the ERC via grants StG-259118-STEIN and StG-239781-ContactMath,
from the Communauté française de Belgique via an ARC and from the Bel-
gian federal government via the PAI “Dygest”.

2. Background on symplectic homology

Definition 2.1 (The Setup). Let (W,ω) be a compact symplectic man-
ifold with contact type boundary M := ∂W . This means that there exists a
Liouville vector field X (i.e. a vector field X such that LXω = ω) defined on
a neighbourhood of the boundary M , and transverse to M . In the sequel,
we assume that the Liouville vector field has been chosen and we denote by
(W,ω,X) such a manifold. We denote by λ the 1-form defined in a neigh-
bourhood of M by λ := ι(X)ω and by α the contact 1-form on M which is
the restriction of λ to M :

α :=
(
ι(X)ω

)
|M .

We denote by ξ the contact structure defined by α (ξ := kerα), and by Rα

the Reeb vector field on M (ι(Rα)dα = 0, α(Rα) = 1). The action spectrum
of (M,α) is the set of all periods of the Reeb vector field :

Spec(M,α) := {T ∈ R+ | ∃γ periodic orbit of Rα of period T}.
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The symplectic completion of (W,ω, λ) is the symplectic manifold defined
by

Ŵ := W
⋃
G

(M × R+) :=
(
W � (M × [−δ,+∞])

)
/∼G

with the symplectic form

ω̂ :=

{
ω on W

d(eρα) on M × [−δ,+∞]
.

The equivalence ∼G, between a neighbourhood U of M in W and M ×
[−δ, 0], is defined by the diffeomorphism G : M×[−δ, 0]→U : (p, ρ) �→ϕX

ρ (p)
which is induced by the flow of the vector field X.

A Liouville domain is a compact symplectic manifold with contact type
boundary (W,ω,X) for which the vector field X is globally defined. In that
case the symplectic 2-form is exact : ω = dλ where λ = ι(X)ω; a Liouville
domain is also called an exact symplectic manifold with contact type boundary
and is sometimes denoted (W,λ).

Throughout this paper we assume that W is symplectically atoroidal,
i.e the symplectic form and the first Chern class vanish on all tori. This
assumption implies that the action of a loop and the Conley-Zehnder index3

of a 1-periodic orbit of a Hamiltonian are well-defined.

Symplectic homology was developed by Viterbo in [30], using works of
Cieliebak, Floer, Hofer [10, 17]; it is defined for a compact symplectic mani-
fold W with boundary of contact type, as a direct limit of Floer homologies
of the symplectic completion of W , using some special Hamiltonians.

Definition 2.2. The class Hstd of admissible Hamiltonians consists of
smooth functions H : S1 × Ŵ → R satisfying the following conditions:

1- H is negative and C2-small on S1 ×W ;
2- there exists ρ0 ≥ 0 such that H(θ, p, ρ) = βeρ + β′ for ρ ≥ ρ0, with

0 < β /∈ Spec(M,α) and β′ ∈ R;
3- H(θ, p, ρ) is C2-close to h(eρ) on S1 ×M × [0, ρ0], for h a convex

increasing function.
We say furthermore that it is non degenerate if all 1-periodic orbits of

XH are nondegenerate (for a time-dependent HamiltonianH : S1 × Ŵ → R,
the time dependent Hamiltonian vector field XH is defined by the relation
ω̂(Xθ

H , .) = dH(θ, ·) for each θ ∈ S1).

3For a definition of the Conley-Zehnder index, which will be denoted μCZ in the
following, we refer to [1, 13, 21]
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We denote by P(H) the set of 1-periodic orbits of XH .

The class J of admissible J : S1 → End(TŴ ) : θ �→ Jθ consists of

smooth loops of compatible almost complex structures Jθ on Ŵ , such that,
at infinity (i.e. for ρ large enough) J is autonomous (i.e. independent of θ),
invariant under translations in the ρ variable, and satisfies

Jθξ = ξ Jθ(∂ρ) = Rα.

Remark 2.3. Condition 1 implies that the only 1-periodic orbits of XH in
W are constants; they correspond to critical points of H.

On S1 ×M × [0,+∞[, for a Hamiltonian of the formH1(θ, p, ρ) = h1(e
ρ),

one has Xθ
H1

(p, ρ) = −h′1(eρ)Rα(p). Hence, for such a Hamitonian H1, with
h1 increasing, the image of a 1-periodic orbit of XH1

is the image of a peri-
odic orbit of the Reeb vector field −Rα of period T := h′1(eρ) located at level
M × {ρ}. In particular, condition 2 implies that there is no 1-periodic orbit
of XH in M × [ρ0,+∞[ for a Hamiltonian H in Hstd. Condition 3 ensures
that for any non constant 1-periodic orbit γH of XH for a Hamiltonian H in
Hstd, there exists a closed orbit of the Reeb vector field Rα of period T < β
(with β the slope of H “at ∞”), such that γH is close to this closed orbit of
(minus) the Reeb vector field located in M × {ρ} with T = h′(eρ).

We can consider a larger class of admissible Hamiltonians, removing
conditions 1 and 3.

Definition 2.4 (Symplectic homology). The Floer complex SC(H, J)
is the complex generated by 1-periodic orbits of the Hamiltonian vector field
XH , graded by minus their Conley Zehnder index , with boundary ∂ (well
defined for a so called regular pair (H, J)) defined by a count with signs of
Floer trajectories, i.e maps u : R× S1 →W satisfying:

(2.1)
∂u

∂s
(s, θ) + Jθ

(
u(s, θ)

)(∂u

∂θ
(s, θ)−Xθ

H

(
u(s, θ)

))
= 0.

The symplectic homology of (W,ω,X) is defined as the direct limit

SH∗(W,ω,X) := lim−→
H∈Hstd

SH∗(H, J)

where, for each H, J : S1 → End
(
(Γ(TŴ )

)
is chosen so that (H, J) is a reg-

ular pair. To define the direct limit one needs a partial order ≤ on Hstd and
morphisms SH(H1, J1)→ SH(H2, J2) whenever H1 ≤ H2 are non degener-
ate. The partial order on Hstd is given by H1 ≤ H2 if H1(θ, x) ≤ H2(θ, x)
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for all (θ, x) ∈ S1 × Ŵ (for more general Hamiltonians, it is enough to have
H1(θ, x) ≤ H2(θ, x) for all (θ, x) outside a compact domain).

The morphism SH(H1, J1)−→SH(H2, J2) is the continuation morphism
induced by a smooth increasing homotopy of regular pairs (Hs, Js), s ∈ R

between (H1, J1) and (H2, J2), with (Hs, Js) constant for |s| large, when it
is regular. By increasing, we mean ∂sHs ≥ 0 (again for more general H it is
enough to consider ∂sHs ≥ 0 outside a compact subset). The continuation

morphism is defined by a count with signs of solutions u : R× S1 → Ŵ of
the equation

(2.2)
∂u

∂s
+ Jθ

s ◦ u
(∂u
∂θ
−Xθ

Hs
◦ u
)
= 0

with finite energy E(u) :=
∫ +∞
−∞

∫
S1

∥∥∂u
∂s

∥∥2 dθds .

The idea of positive symplectic homology is to “remove” the data of con-
stant 1-periodic orbits from symplectic homology. We assume that (W,ω,X)
is a Liouville domain, in order to identify the set of critical points of a Hamil-
tonian with its 1-periodic orbits of small action.

Let H : S1 × Ŵ → R be a Hamiltonian in Hstd. The Hamiltonian action
functional AH : C∞

contr(S
1, Ŵ )→ R is defined as

AH(γ) := −
∫
D2

σ�ω̂ −
∫
S1

H
(
θ, γ(θ)

)
dθ

where σ : D2 → Ŵ is an extension of γ to the disc D2. When the symplectic
form is exact, ω = dλ, the action is AH(γ) := − ∫S1 γ

�λ̂− ∫S1 H
(
θ, γ(θ)

)
dθ.

The 1-periodic orbits of H ∈ Hstd fall into two classes: critical points
in W , whose action is strictly less than some small positive constant ε (in-
deed, if (θ, x) is a critical point of H, the action of the constant orbit is

equal to −H(θ, x)) and non-constant periodic orbits lying in Ŵ \W whose
action is strictly greater than ε ( indeed, the action of such an orbit is
close, for a given ρ in [0, ρ0] with T = h′(eρ) in Spec(M,α), to the action
of the orbit of the vector field −h′(eρ)Rα located in M × {ρ}; this is given
by − ∫S1 e

ρα(−h′(eρ)Rα)dθ −
∫
S1 h(e

ρ)dθ = eρh′(eρ)− h(eρ) = eρT − h(eρ);
it is positive since h is convex).

The ε above is chosen (for instance) as half the minimal value of the
periods of closed orbits of the Reeb vector field on M = ∂W . Functions H
are chosen so that the value of |H| in S1 ×W is less than ε, so that h(eρ) is
less than 1

2ε (hence eρT − h(eρ) is greater than 3
2ε) and the C2-closeness to

an autonomous function is such that the actions differ at most by 1
2ε.
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Definition 2.5 (positive symplectic homology). Let (W,ω,X) be a
Liouville domain and let H be in Hstd. Let SC≤ε(H, J) be the complex
generated by the 1-periodic orbits of action no greater than ε. It is built out
of critical points of H and it is a subcomplex of SC(H, J), since the action
decreases along Floer trajectories. The positive Floer complex is defined as
the quotient of the total complex by the subcomplex of critical points;

SC+(H, J) := SC(H, J)/SC≤ε(H, J)

The differential induces a differential on the quotient which is still denoted
∂. The continuation morphisms mentioned above descend to the quotient
since the action decreases along a solution of (2.2) (when the homotopy is
increasing everywhere). The positive symplectic homology of (W,ω) is defined
as a direct limit over non degenerateH ∈ Hstd of the homology of SC+(H, J)

SH+(W,ω,X) := lim−→
H∈Hstd

H∗
(
SC+

∗ (H, J), ∂
)
.

2.1. S1-equivariant symplectic homology

Let X be a topological space endowed with an S1-action. If the S1-action
is free, X/S1 is a topological space. The aim of S1-equivariant homology
is to build on the space X a homology which coincides, when the action
is free, with the singular homology of the quotient. One considers the uni-
versal principal S1-bundle ES1 → BS1. The diagonal action on X × ES1

is free and one denotes by X ×S1 ES1 the quotient (X × ES1)/S1. Follow-
ing Borel, the S1-equivariant homology of X with Z-coefficients is defined
as HS1

∗ (X) := H∗(X ×S1 ES1,Z). For symplectic homology, one defines in a
similar way the S1-equivariant symplectic homology for any compact sym-
plectic manifold with contact type boundary (W,ω,X); the S1-action one is
referring to is the reparametrization action on the loop space (not an action
on W )

ϕ · γ(θ) = γ(θ − ϕ).

This homology was first introduced by Viterbo in [30]; we present here a
different approach, which was sketched by Seidel in [28] and which was
studied in detail by Bourgeois and Oancea in [4–6]. It has the advantage
to use a special class of Hamiltonians and simplified equations for Floer
trajectories, so that computations are often doable. The important point is
that this S1equivariant symplectic homology coincides with the one defined
by Viterbo.
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The model of ES1 is given as a limit of spheres S2N+1 for N going
to ∞ with the Hopf S1-action. To provide S1-invariant functionals, we use
S1-invariant Hamiltonians : H : S1 × Ŵ × S2N+1 → R such that

H(θ + ϕ, x, ϕz) = H(θ, x, z) ∀θ, ϕ ∈ S1, ∀z ∈ S2N+1.

The parametrised action functional A : C∞
contr(S

1, Ŵ )× S2N+1 −→ R, is de-
fined as

(2.3) A(γ, z) := −
∫
D2

σ�ω̂ −
∫
S1

H
(
θ, γ(θ), z

)
dθ

where σ : D2 → Ŵ is an extension of γ to the disc D2. It is invariant under
the diagonal S1-action on C∞(S1, Ŵ )× S2N+1.

The critical points of the parametrised action functional are pairs (γ, z)
such that

(2.4) γ ∈ P(Hz) and

∫
S1

∂Hz

∂z

(
θ, γ(θ)

)
dθ = 0,

where Hz is the function on S1 × Ŵ defined by Hz(θ, x) := H(θ, x, z) and
where P(Hz) denote, as before, the set of 1-periodic orbits of XHz

. The
set PS1

(H) of critical points of A is S1-invariant. If q = (γ, z) ∈ PS1

(H),
we denote by Sq the S1-orbit of q. Such an Sq is called nondegenerate if
the Hessian d2A(γ, z) has a 1-dimensional kernel for some (and hence any)
(γ, z) ∈ Sq.

The data : We consider a compact symplectic manifold with compact type
boundary (W,ω,X). We fix a sequence of C2-small perfect Morse functions
fN : CPN → R, together with a Riemannian metric ḡN on CPN for which
the gradient flow of fN has the Morse-Smale property. We shall take the
standard metric and

fN
(
[w0 : · · · : wN ]

)
= C

∑N
j=0(j + 1)

∣∣wj
∣∣2∑N

j=0 |wj |2 with C < 0 ∈ R.

We denote by f̃N : S2N+1 → R their S1-invariant lift, and by Crit(f̃N ) the
set of critical points of f̃N (which is a union of circles). We choose a point zj
on the critical circle which projects on the critical point of −fN of index 2j.
In our example, zj = (w0, . . . , wN ) ∈ S2N+1 with wi = δij . We fix a local slice

Tzj transverse in S2N+1 to the circle in Crit(f̃N ) at zj ; again in our example
Tzj = {(w0, . . . , wN ) ∈ S2N+1 |wj ∈ R+}. We consider UN a neighbourhood
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of Crit(f̃N ) and ρ̌N : S2N+1 → R a S1 invariant cut-off function on UN which
is equal to 1 in a neighbourhood U ′

N ⊂ UN of Crit(f̃N ) and 0 outside UN .
We set

εN := min
z∈S2N+1\U ′

N

∥∥∥�∇f̃N (z)
∥∥∥ > 0.

Definition 2.6 (Class of admissible Hamiltonians). An S1-invariant
Hamiltonian H is admissible if Hz is in Hstd (as in Definition 2.2) with
constant slope independent of z for all z ∈ S2N+1 and if for any critical
point q ∈ PS1

(H), the S1-orbit Sq is non degenerate. Let HS1,N be the
family of such Hamiltonians. We look at the subfamily HS1,N (fN ) ⊂ HS1,N

consisting of Hamiltonians of the form H + f̃N withH : S1 × Ŵ × S2N+1 →
R in HS1,N such that

1. Each critical point (γ, z) of the parametrized action functional AH+f̃N

defined by H + f̃N lies over a z which is a critical point of f̃N ;
2. For every z ∈ Crit(f̃N ), H(·, ·, z) has non degenerate periodic orbits;
3. H + f̃N has nondegenerate S1-orbits;

4.
∥∥∥�∇zH

(
θ, x, z

)∥∥∥ < ε, for all z ∈ S2N+1 \ U ′;

5. For all z ∈ U ′, �∇zH · �∇f̃N (z) = 0.

Remark 2.7. Condition 3 can be replaced by the following : near every
critical orbit of f̃N , we have H(θ, x, z) = H ′(θ − φz, x), where φz ∈ S1 is
the unique element such that the action of its inverse brings z into Tz0 ,
i.e. φ−1

z · z ∈ Tz0 and H ′ ∈ Hstd. We shall consider elements H which are

built from an H ′ : S1 × Ŵ → R in Hstd as in Definition 2.2, close to an
autonomous Hamiltonian; we shall develop this in next section.

Definition 2.8 (The chains). Given an admissible H + f̃N , the set de-
noted PS1

(H + f̃N ) of critical points (γ, z) of the parametrized action func-
tional AH+f̃N

is a union of circles

{
S(γ,z) := S1 · (γ, z) = {ϕ · (γ, z) = (ϕ · γ, ϕz) |ϕ ∈ S1}

}
.

Each of those circle gives a generator of the chain complex. The index of the
generator S(γ,z) is defined to be

μ(Sγ,z) := −μCZ(γ) + μMorse(z;−f̃N ).
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The chain complex is defined as:

SC̃S1,N
∗ (H, fN ) :=

⊕
Sp⊂PS1 (H+f̃N )

Z〈Sp〉.

Definition 2.9 (The differential). A parametrized loop of almost com-

plex structures J : S1 × S2N+1 → End(TŴ ), (θ, z) �→ Jθ
z is S1-invariant if

Jθ+ϕ
ϕz = Jθ

z , ∀θ, ϕ ∈ S1, ∀z ∈ S2N+1 and is admissible if for all z in S2N+1,
the loop of almost complex structures Jz is in J as defined in Definition 2.2.

Let (Jθ
z ) be an S1-invariant family of almost complex structures inde-

pendent of z along each local slice. Let p− = (γ−, z−) and p+ = (γ+, z+) be

two critical points of AH+f̃N
. We denote by M̂(Sp− , Sp+ ;H, fN , Jθ

z , g) the

space of solutions (u, z), u : R× S1 → Ŵ , z : R→ S2N+1 to the system of
equations

(2.5)

{
∂su+ Jθ

z(s) ◦ u
(
∂θu−XHz(s)

◦ u) = 0

ż − �∇f̃N (z) = 0

such that lims→−∞
(
u(s, ·), z(s)) ∈ Sp− and lims→∞

(
u(s, ·), z(s)) ∈ Sp+ .

If Sp− �= Sp+ , we denote by M(Sp− , Sp+ ;H, fN , Jθ
z , g) the quotient of

the space M̂(Sp− , Sp+ ;H, fN , Jθ
z , g) by the reparametrization R-action. This

quotient M(Sp− , Sp+ ;H, fN , Jθ
z , g) carries a free S1-action and we denote

by MS1

(Sp− , Sp+ ;H, fN , Jθ
z , g) the quotient of M(Sp− , Sp+ ;H, fN , Jθ

z , g) by
this S1-action. For generically chosen Jθ

z and g, it is proven in [5] that the
spacesMS1

(Sp− , Sp+ ;H, fN , Jθ
z , g) are smooth manifolds of dimension equal

to −μ(Sp−) + μ(Sp+)− 1.

The differential ∂̃S1

: SC̃S1,N
∗ (H, fN )→ SC̃S1,N

∗−1 (H, fN ) is defined by

∂̃S1

(Sp−) :=
∑

S+
p ⊂PS1

(H+f̃N )

μ(Sp− )−μ(Sp+ )=1

#MS1

(Sp− , Sp+ ;H, fN , Jθ
z , g)Sp+

where # is a count with signs defined in [5]. Continuation maps are defined
as usual, using the space of solutions (u, s) of

(2.6)

{
∂su+ Jθ

s,z(s) ◦ u
(
∂θu−XHs,z(s)

◦ u) = 0

ż − �∇f̃N (z) = 0

with Hs + f̃N an increasing homotopy between H0 + f̃N and H1 + f̃N .
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Definition 2.10 (S1-equivariant symplectic homology).
The S1-equivariant Floer homology groups are

SHS1,N
∗ (H, fN , J, g) := H∗

(
SC̃S1,N

∗ (H, fN ), ∂̃S1)
.

The S1-equivariant symplectic homology groups of W are

SHS1

∗ (W,ω,X) := lim−→
N

lim−→
H∈HS1,N (fN )

SHS1,N
∗ (H, fN , J, g).

The direct limit over N is taken with respect to the S1-equivariant embed-
dings S2N+1 ↪→ S2N+3 which induce maps

SHS1,N
∗ (W,ω,X)→ SHS1,N+1

∗ (W,ω,X) for each N.

We show here below that the action decreases along these continuation
maps. This allows to define SHS1,+ in the context of Liouville domains.

Proposition 2.11. Let H0 + f̃N and H1 + f̃N be Hamiltonians in HS1,N (f)
and let H̃s := Hs + f̃N be an increasing homotopy between H0 + f̃N and
H1 + f̃N . If (u, z), u : R× S1 → Ŵ and z : R→ S2N+1 is a solution of equa-
tions (2.6) satisfying the conditions lims→−∞

(
u(s, ·), z(s)) = (γ−(·), z−) and

lims→+∞
(
u(s, ·), z(s)) = (γ+(·), z+), then

A(γ−, z−) ≥ A(γ+, z+).
Proof. The parametrized action for the Hamiltonian Hs + f̃ on the pair
(u(s, ·), z(s)) is given by

−
∫
D2

σ�
s ω̂ −

∫
S1

(Hs + f̃N ) (θ, u(s, θ), z(s)) dθ

where σs : D
2 → Ŵ is an extension of γs = u(s, ·) to the disc D2. By the

asphericity condition,
∫
D2 σ

�
s ω̂ =

∫
D2 σ

�
s0ω̂ +

∫
S1×[s0,s]

u�ω̂ so that

∂

∂s
AHs+f̃N

(
u(s, ·), z(s))

= −
∫
S1

ω(∂su, ∂θu)dθ −
∫
S1

∂
∂uHs

(
θ, u(s, θ), z(s)

)
∂
∂su(s, θ)dθ

−
∫
S1

�∇z(Hs + f̃N )
(
θ, u(s, θ), z(s)

) · ż(s)dθ
−
∫
S1

(
∂
∂s(Hs + f̃N )

)(
θ, u(s, θ), z(s)

)
dθ
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= −
∫
S1

ω(∂su, ∂θu)dθ −
∫
S1

dHs,z(s)(∂su)dθ

−
∫
S1

�∇z(Hs + f̃N )
(
s, θ, u(s, θ), z(s)

) · �∇fN (z)dθ

−
∫
S1

∂
∂s(Hs + f̃N )

(
θ, u(s, θ), z(s)

)
dθ.

The last term is ≤ 0 since the homotopy is increasing. The first line can be
rewritten as

−
∫
S1

ω(∂su, ∂θu)dθ −
∫
S1

ω(XHs,z(s)
, ∂su)dθ = −

∫
S1

ω(∂su, ∂θu−XHs,z(s)
)dθ

= −
∫
S1

ω(∂su, J
θ
z(s)∂su)dθ

= −‖∂su‖2gJθ
z(s)

≤ 0.

The first term in the second line is ≤ 0 by conditions 4 and 5 in Definition 2.6
and by the definition of ε. �

Remark 2.12. With the assumptions of Proposition 2.11, it appears in
the proof above that

∫ ‖∂su‖2gJθ
z(s)

dsdθ ≤ A(γ−, z−)−A(γ+, z+).

Definition 2.13 (Positive S1-equivariant symplectic homology). Let
H ∈ HS1,N (fN ) be a Hamiltonian. The positive S1-equivariant complex is
defined as

SC̃S1,N,+(H, fN ) := SC̃S1,N (H, fN )/SC̃S1,N,≤ε(H, fN )

where SC̃S1,N,≤ε(H, fN ) is the set of critical points of AH+f̃N
of action less

than ε. The differential passes to the quotient where we still denote it ∂̃S1

and the positive S1-equivariant Floer groups are defined as

SHS1,N,+(H, fN ) := H
(
SC̃S1,N,+(H, fN ), ∂̃S1)

.

The positive S1-equivariant symplectic homology is defined by

SHS1,+
∗ (W,ω,X) := lim−→

N

lim−→
H∈HS1,N (fN )

SHS1,N,+
∗ (H, fN ).

We assume (W,ω,X) to be exact and we assume the function fN to be small
in order to identify 1-periodic orbits of small action with a pair (p, z), p a
critical points of H.
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3. SHS1,+ and periodic Reeb orbits

The goal of this section is prove Theorem 1.1 which relates the positive S1-
equivariant homology of a Liouville domain (W,λ) to the Reeb orbits on
(M = ∂W,α = λ|M ).

3.1. The multicomplex defining positive S1-equivariant homology

We use the nice subclass of Hamiltonians introduced in [5]; they are con-
structed using elements inHstd which are small perturbations of autonomous
Hamiltonians.

Definition 3.1 (Construction of admissible Hamiltonians from el-
ements in Hstd). For H ′ ∈ Hstd, we define an S1-invariant Hamiltonian

HN : S1 × Ŵ × S2N+1 → R as follows. Define H̃N : S1 × Ŵ × UN → R by
H̃N (θ, x, z) := H ′(θ − φz, x) where φz ∈ S1 is the unique element such that
φ−1
z · z ∈ Tzj when z is close to the critical circle including zj , and extend

H̃N to HN : S1 × Ŵ × S2N+1 → R, by

(3.1) HN (θ, x, z) := ρ̌N (z)H̃N (θ, x, z) +
(
1− ρ̌N (z)

)
β(x)H ′(θ, x)

using the cutoff function ρ̌N on S2N+1 and a function β : Ŵ → R which
is 0 where H ′ is time-dependent and equal to 1 outside a compact set.
The element HN is automatically in HS1,N (fN ), when H ′ ∈ Hstd is a small
perturbation of some autonomous functions as developed further in this
section.

The complex for a subclass of special Hamiltonians.
LetH ′ : S1 × Ŵ → R inHstd be fixed, with non degenerate 1-periodic orbits,
and consider a sequence HN ∈ HS1,N , N ≥ 1 such that

HN (θ, x, z) = H ′(θ − φz, x) for every z ∈ Crit(f̃N )

(for instance by the construction above) and a sequence JN ∈ J S1,N such
that JN is regular for HN .

Let i0 : CP
N ↪→ CPN+1 : [w0 : · · · : wN−1] �→ [w0 : · · · : wN−1 : 0] and let

i1 : CP
N ↪→ CPN+1 : [w0 : · · · : wN−1] �→ [0 : w0 : · · · : wN−1] and denote by

ĩ0 : S
2N+1 → S2N+3 : z �→ (z, 0) and ĩ1 : S

2N+1 → S2N+3 : z �→ (0, z) their
lifts. Observe that Im(i0) and Im(i1) are invariant under the gradient flow
of fN+1, fN = fN+1 ◦ i0 = fN+1 ◦ i1 + cst and i�1ḡN+1 = i�0ḡN+1 = ḡN . We
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assume furthermore that HN+1

(·, ·, ĩ1(z)) = HN+1

(·, ·, ĩ0(z)) = HN (·, ·, z),
and also that JN+1,̃i1(z)

= JN+1,̃i0(z)
= JN,z. The critical points of AHN+f̃N

are pairs (γz, z) where z is a critical point of f̃N and where γz is a φz-

translation of a 1-periodic orbit γ of H ′ in Ŵ (i.e γz(θ) = γ(θ − φz) which
writes γz = φz · γ). There is thus a natural identification (with gradings)

SC̃S1,N
∗ (HN , fN ) � Z[u]/uN+1 ⊗Z SC∗(H ′, J)

S1 · (γzj , zj) �→ uj ⊗ γ =: ujγ

where zj is the chosen critical point of −f̃N of index 2j and u is a formal
variable of degree 2.

The differential, under this identification of complexes, writes

(3.2) ∂̃S1

(ul ⊗ γ) =

l∑
j=0

ul−j ⊗ ϕj(γ).

for maps ϕj : SC∗(H ′)→ SC∗+2j−1(H
′) defined by counting with signs the

elements of the space MS1

(S(γ−
zj ,zj)

, S(γ+
z0 ,z0)

;HN , fN , JN , gN ) which is the

quotient by the R and the S1-action of the space of solutions of{
∂su+ Jθ

z(s) ◦ u
(
∂θu−XHN,z(s)

◦ u) = 0

ż − �∇f̃N (z) = 0

going from S1 · (γ−zj , zj) to S1 · (γ+z0 , z0).
It follows from the assumptions that for a fixed j, the maps ϕj obtained

for varying values of N ≥ j coincide. Therefore the limit as N →∞ of all
the SC̃S1,N

∗ (HN , fN ) is encoded into a complex denoted

SĈS1

∗ (H ′) := Z[u]⊗Z SC∗(H ′)

with differential induced by (3.2) that we can formally write as

∂̂S1

= ϕ0 + u−1ϕ1 + u−2ϕ2 + · · ·

As before, there are well-defined continuation maps induced by increasing
homotopies of Hamiltonians.

Proposition 3.2. [5] The S1 equivariant homology of W is given by:

SHS1

∗ (W ) := lim−→
H∈Hstd

H
(
SĈS1

∗ (H ′), ∂̂S1
)
.
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Definition 3.3 (Perturbation of Morse-Bott Hamiltonians). [3] Let
(W,λ) be a Liouville domain. The set of Morse-Bott Hamiltonians HMB

consists of Hamiltonians H : Ŵ → R so that
1. H|W is a negative C2-small Morse function;
2. H(p, ρ) = h(ρ) outside W , where h is a strictly increasing function,

and h(ρ) = βeρ + β′ for ρ > ρ0, where β, β′ ∈ R and β /∈ Spec(M,α), and
we assume that h′′ − h′ > 0 on [0, ρ0).

The 1-periodic orbit of XH are either critical points of H in W or non
constant 1-periodic orbits, located on levels M × {ρ}, ρ ∈ (0, ρ0), which are
in correspondence with periodic −Rα-orbits of period eρh′(ρ). Since H is
autonomous, every 1-periodic orbit, γH of XH , corresponding to the periodic
Reeb orbit γ, gives birth to a S1 family of 1-periodic orbits of XH , denoted
by Sγ .

An element H ∈ HMB is deformed, as in [11], into a time-dependent
Hamiltonian Hδ with only non degenerate 1-periodic orbits in the follow-
ing way. We choose a perfect Morse function on the circle, f̌ : S1 → R. For
each 1-periodic orbit γH of XH , we consider the integer lγH

so that γH is a
lγH

-fold cover of a simple periodic orbit; lγH
is constant on Sγ and we set

lγ = lγH
= 1

T where T is the period of γ. We choose a symplectic trivializa-

tion ψ := (ψ1, ψ2) : Uγ → V ⊂ S1 × R2n−1 from Uγ ⊂ ∂W × R+ ⊂ Ŵ ,open
neighborhood of the image of γH , to V ,open neighborhood of S1 × {0},
such that ψ1

(
γH(θ)

)
= lγθ. Here S1 × R2n−1 is endowed with the standard

symplectic form. Let ǧ : S1 × R2n−1 → [0, 1] be a smooth cutoff function
supported in a small neighborhood of S1 × {0} such that ǧ|S1×{0} ≡ 1. We

denote by f̌γ the function defined on Sγ by f̌ ◦ ψ1|Sγ
.

For δ > 0 and (θ, p, ρ) ∈ S1 × Uγ , we define

(3.3) Hδ(θ, p, ρ) := h(ρ) + δǧ
(
ψ(p, ρ)

)
f̌
(
ψ1(p, ρ)− lγθ

)
.

The Hamiltonian Hδ coincides with H outside the open sets S1 × Uγ .

Lemma 3.4 ([3, 11]). The 1-periodic obits of Hδ, for δ small enough,
are either constant orbits (the same as those of H) or nonconstant orbits
which are non degenerate and form pairs (γmin, γMax) which coincide with
the orbits in Sγ starting at the minimum and the maximum of f̌γ respec-
tively, for each Reeb orbit γ such that Sγ appears in the 1-periodic orbits
of H. Their Conley-Zehnder index is given by μCZ(γmin) = μCZ(γ)− 1 and
μCZ(γMax) = μCZ(γ).
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3.2. Computing SHS1,+

We consider now the symplectic homologies with coefficients in Q, denoted
SH†(W,Q) on a Liouville domain (W,λ). We consider a Hamiltonian de-
noted Hδ,N which is a S1-equivariant lift, as given by formula 3.1, of a
Hamiltonian Hδ which is a perturbation, as in fomula 3.3, of a Hamiltonian
H in HMB such that the slope a is big and ρ0 is small. The non constant crit-
ical points of AHδ,N+f̃N

are pairs (γz, z) where z is a critical point of f̃N and

where γz is a φz-translation of a non constant 1-periodic orbit γ′ of Hδ in Ŵ .
Such a γ′ is of the form γmin or γMax, located on a level M × {ρ}, ρ ∈ (0, ρ0)
corresponding to a periodic orbit of −Rα of period T = eρh′(ρ).

Remark 3.5. The action of this critical point (γz, z) is given by− ∫S1 γ
�
z λ̂−∫

S1(HN + f̃N )(θ, γz(θ), z) dθ. With our assumptions (f small, ρ0 small), the

second term is close to zero. The first term is equal to − ∫S1(γ
′)�λ̂ = eρT .

Hence the action of this critical point is close to T .

We now prove Theorem 1.1; (W,λ) is a Liouville domain and α a contact
form on ∂W such that the set of Conley-Zehnder indices of the set P(Rα)
of all good periodic Reeb orbits is lacunary. We shall show that

SHS1,+(W,Q) =
⊕

γ∈P(Rα)

Q〈γ〉.

Proof. Let H be a Hamiltonian in HMB such that the action is distinct for
S1-families of orbits corresponding to Reeb orbits of different period. This is
possible by Remark 3.5. We consider, as mentioned above, the S1-equivariant
functions Hδ,N which are lifts of a perturbation Hδ of H. We use the natural
identification, described in Section 3.1:

SC̃S1,N,+(Hδ,N , fN ) � Z[u]/uN+1 ⊗ SC+(Hδ)

and the description of SC+(Hδ) given by Lemma 3.4.

Remark 3.6. The energy E(u) =
∫ ‖∂su‖2gJθ

z(s)

dsdθ of all Floer trajecto-

ries involved in the definition of the boundary operator which are linking
elements (γz, z) corresponding to distinct γ’s, say γ− and γ+, is bounded be-
low by some positive constant E depending only on H. Indeed4, the result
follows from the two following facts:

4this argument is borrowed from [20]
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First, ‖∂su‖2gJθ
z(s)

is bounded above ([26]) since, otherwise, there would

be some “bubbling off” which is prevented by exactness of the symplectic

form. Secondly
∫
S1

∥∥∥∂θu(s, θ)−XHδ,Nz(s)
(u(s, θ))

∥∥∥2
gJθ

z(s)

dθ is bounded below

by an ε valid for any smooth loop u(s, ·) : S1 → W̃ : θ �→ u(s, θ) with some
values outside a neighborhood of the critical orbits [27, Exercice 1.22]. This
is proven by contradiction, using Arzela-Ascoli Theorem to prove that ev-
ery sequence un : S1 → W̃ with ‖u̇n(t)−Xt(un)‖L2 �→ 0 has a subsequence
which converges uniformly to a 1-periodic orbit of the Hamiltonian vector
field.

The complex SC̃S1,N,+(Hδ,N , fN ) is filtered by the action thanks to
Proposition 2.11. We take the filtration by the action, i.e. by the period;
we define FpSC̃

S1,N,+(Hδ,N , fN ), p ∈ Z such that for every p ∈ Z, the quo-
tient

Fp+1SC̃
S1,N,+(Hδ,N , fN )/FpSC̃

S1,N,+(Hδ,N , fN )

is a union of sets

{1⊗ γMax, . . . , u
N ⊗ γMax, 1⊗ γmin, . . . , u

N ⊗ γmin}

corresponding to underlying Reeb orbits γ of the same period T .
We consider the zero page of the associated spectral sequence.

E0,N
p,q := Fp+1SC̃

S1,N,+
p+q (Hδ,N , fN )/FpSC̃

S1,N,+
p+q (Hδ,N , fN )

We have “twin towers of generators”, one tower corresponding to each peri-
odic Reeb orbit of period T on ∂W ,

uN ⊗ γMax

u−1ϕ1

��

uN ⊗ γmin
ϕ0��

...
...

u2 ⊗ γMax

u−1ϕ1

��

u2 ⊗ γmin
ϕ0��

u⊗ γMax

u−1ϕ1

��

u⊗ γmin
ϕ0��

1⊗ γMax 1⊗ γmin
ϕ0��
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with induced differential as in the above diagram with the notation of Sec-
tion 3.1. The differential between two elements in distinct towers of the same
period vanishes, since for any Floer trajectory involved in the differential and
linking the two towers, by Remarks 2.12 and 3.6,

E <

∫
‖∂su‖2gJθ

z(s)

dsdθ ≤ A(γ−, z−)−A(γ+, z+)

and the last can be chosen to be less than E (choosing small δ and fN ).
To study any given tower, we use the explicit description of ϕ0 and ϕ1. It

was first described by Bourgeois and Oancea but in their computation, they
assumed transversality of contact homology. It was then computed without
this assumption by Zhao.

1) [31, Proposition 6.2], [3, Lemma 4.28] Let γmin, γMax and Hδ be as
above. For δ small enough, the moduli space M(γmin, γMax;Hδ, J)/R
consists of two elements; they have opposite signs, due to the choice of
a system of coherent orientations, if and only if the underlying Reeb
orbit γ is good. This implies that,

ϕ0(γmin)

{
0 if γ is good,

±2 γMax if γ is bad.

Recall that a Reeb orbit is called bad if its Conley-Zehnder index is
not of the same parity as the Conley-Zehnder index of the simple Reeb
orbit with same image, and an orbit γH is bad if the underlying Reeb
orbit is bad.

2) [31, Proposition 6.2], [5, Lemma 3.3] With the same notations, the
map ϕ1 : SC

+∗ (Hδ)→ SC+
∗+1(Hδ) acts by

ϕ1(γMax) =

{
kγγmin if γ is good,

0 if γ is bad

where kγ is the multiplicity of the underlying Reeb orbit γ i.e. γ is a
kγ-fold cover of a simple periodic Reeb orbit.

The complex in E0;N
p,q defined by the twin tower corresponding to a good

orbit yields

Q
0 �� Q

(×kγ)�� . . .
(×kγ) �� Q

0 �� Q
(×kγ) �� Q

0 �� Q
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and thus, in the homology E1;N
p,q , it gives one copy of Q in degree −μCZ(γ)

and one copy of Q in degree −μCZ(γ) + 2N . The first page is given by

E1;N =
⊕

γ∈P(Hδ)

Q〈γMax〉 ⊕Q〈uN ⊗ γmin〉.

There are no bad orbits in the generators of the S1-equivariant symplectic
homology. Indeed the complex in E0;N

p,q defined by the twin tower over a bad
orbit is :

Q
×(±2)�� Q

0 �� . . .
0 �� Q

×(±2)�� Q
0 �� Q

×(±2)�� Q

and the corresponding homology gives 0 in E1;N
p,q .

The differential on the first page of the spectral sequence vanishes be-
cause of the lacunarity of the set of Conley-Zehnder indices; therefore, for
N large enough, it gives the homology :

SHS1,N,+(Hδ,N ) =
⊕

γ∈P(Hδ)

Q〈γMax〉 ⊕Q〈uN ⊗ γmin〉.

The morphism induced by a regular homotopy between two such Hamilto-
nians (built from standard Hamiltonians close to Morse Bott Hamiltonians)
respects the filtration, thanks to Proposition 2.11. We can therefore take
the direct limit on the pages over those Hamiltonians which form a cofinal
family. The inclusion S2N+1 ↪→ S2N+3 induces a map

E1;N =
⊕

γ∈P(Rα)

Q〈γMax〉 ⊕Q〈uN ⊗ γmin〉 → E1;N+1.

which is the identity on the first factor and zero on the second factor. Taking
the direct limit over the inclusion S2N+1 ↪→ S2N+3 we have

SHS1,+(W ;Q) = lim−→
N

E1;N =
⊕

γ∈P(Rα)

Q〈γ〉.

�

Remark 3.7. Stricto sensu, in the proof of the above Theorem, we have
assumed that the orbits are contractible. Nonetheless Theorem 1.1 is true
after extending the definition of SHS1,+(H) to all 1-periodic orbits of H. To
deal with non contractible orbits, one chooses for any free homotopy class
of loops a, a representative la and one chooses a trivialisation of the tangent
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space along that curve. For the free homotopy class of a contractible loop, l0
is chosen to be constant loop with constant trivialisation. One ask moreover
that la−1 is la in the reverse order and with the corresponding trivialisation.
The action functional induced by a Hamiltonian H becomes

A(γ) := −
∫
[0,1]×S1

u�ω −
∫
S1

H(θ, γ(θ))dθ

where u : [0, 1]× S1 →W is a homotopy from la to γ. For any loop γ belong-
ing to the free homotopy class a, one chooses a homotopy u : [0, 1]× S1 →W
from la to γ and one considers the trivialisation of TW on γ induced by u
and by the choice of the trivialisation along la. Let us observe that any
Floer trajectory can only link two orbits in the same free homotopy class
and as before, the action decreases along Floer trajectories. As before, the
Floer complex is generated by the 1-periodic orbits of H graded by minus
their Conley-Zehnder index. The differential “counts” Floer trajectories be-
tween two orbits whose difference of grading is 1. The positive version of
symplectic homology is defined as before since the set of critical points of
H is still a subcomplex : Floer trajectories can only link a critical point to
a contractible orbit. All the results stated above extend to this framework.

Corollary 3.8. The only generators that may appear in the positive S1-
equivariant homology are of the form u0 ⊗ γMax with γMax a good orbit.

Corollary 3.9. The number of good periodic Reeb orbits of periods ≤ T is
bounded below by the rank of the positive S1-equivariant symplectic homology
of action ≤ T .

4. Structural properties of symplectic homology

4.1. Transfer morphism for symplectic homology

In this section, we prove that symplectic homology, positive symplectic
homology, S1-equivariant symplectic homology and positive S1-equivariant
symplectic homology are functors (reversing the arrows) defined on the cat-
egory where objects are Liouville domains, and morphisms are embeddings.
Precisely, we construct a morphism between the (S1- equivariant positive)
symplectic homologies when one Liouville domain is embedded in another
one, and we show that those morphisms compose nicely. Such a morphism,
called a transfer morphism, has been studied by Viterbo [30] in the case of
the symplectic homology. We adapt his construction to extend it to all the
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variants of the symplectic homology considered above. We consider a Liou-
ville domain (W,λ) and its completion Ŵ = W ∪ (∂W × R+) built from the
flow of the Liouville vector field X as in Definition 2.1. We denote by λ̂ the
1-form on Ŵ defined by λ on W and by eρα on ∂W × R+ with α := λ|∂V

.

We denote by SH†(W,λ) its symplectic homology SH†(W,dλ,X).

Definition 4.1. Let (V, λV ) and (W,λW ) be two Liouville domains. A Li-
ouville embedding j : (V, λV )→ (W,λW ) is a symplectic embedding j : V →
W with V and W of codimension 0 such that j�λW = λV . (One can con-
sider, more generally, a symplectic embedding j of codimension 0 such that
λW coincides in a neighbourhood of j(∂V ) in W with λ̂V + df .)

To construct transfer morphisms, we introduce a special class of Hamil-
tonians Hstair(V,W ) and we use, as in [30], increasing homotopies between

H1 : S
1 × Ŵ → R ∈ Hstd(W ) and an H2 : S

1 × Ŵ → R in Hstair(V,W ).

Definition 4.2. We fix a neighbourhood U of ∂V in W \ V̊ so that (U, ωW )
is symplectomorphic to

(
∂V × [0, δ], d(eραV )

)
.

A Hamiltonian H2 : S
1 × Ŵ → R is in Hstair(V,W ) if and only if

• on S1 × V , H2 is negative and C2-small;

• on S1 × U ∼= S1 × ∂V × [0, δ], with ρ the last coordinate, H2 is of the
following form
– there exists 0 < ρ0 � δ such that H2(θ, p, ρ) = βeρ + β′ for ρ0 ≤

ρ ≤ δ − ρ0, with 0 < β /∈ Spec(∂V, α) ∪ Spec(∂W,α) and β′ ∈ R;
– H2(θ, p, ρ) is C2-close on S1 × ∂V × [0, ρ0] to a convex increasing

function of eρ which is independent of θ and p;
– H2(θ, p, ρ) is C

2-close on S1 × ∂V × [δ − ρ0, δ] to a concave increas-
ing function of eρ which is independent of θ and p;

• on S1 ×W \ (V ∪ U), H2 is C2-close to a constant;

• on S1 × ∂W × [0,+∞[, with ρ′ the R+ coordinate on ∂W × R+, H2 is
of the following form
– there exists ρ′1 > 0 such that H2(θ, p, ρ

′) = μeρ
′
+ μ′ for ρ′ ≥ ρ′1,

with 0 < μ /∈ Spec(∂V, α) ∪ Spec(∂W,α), μ < β(eδ−1)
eδ , μ′ ∈ R;

– H2(θ, p, ρ
′) is C2-close on S1 × ∂W×]0, ρ′1] to a concave increasing

function of eρ
′
which is independent of θ and p;

• all 1-periodic orbits of Xθ
H2

are non-degenerate, i.e the Poincaré return
map has no eigenvalue equal to 1.
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H2

W U V
I

II

III

IV

V

Figure 1: Example of H2 on Ŵ .

A representation of H2 is given in Figure 1.
The 1-periodic orbits of H2 lie either in the interior V̊ (which we call

region I), either in ∂V × [0, ρ0] (region II), either in ∂V × [δ − ρ0, δ] (re-
gion III), either in W \ (V ∪ U) (region IV) or in ∂W × [0, ρ1] (region V).
We consider their action (using the obvious fact that if H and H̃ are two
C2-close Hamiltonians and if γ ∈ P(H) and γ̃ ∈ P(H̃) are C2-close, then
A(γ) is close to A(γ̃).)

I. In region I, there are only critical points so the action of the critical
point q is non negative and small (< ε).

II. In region II, H2 is C2-close to a convex function H = h(r) (with r =
eρ); since ωW = d(rαV ), we have XH = −h′(r)RαV

where RαV
is the

Reeb vector field on ∂V associated to the contact form αV = λV |∂V
.

An orbit of XH lies on a constant level for r and its action is given by:

A(γ) = −
∫
S1

γ�(rαV )−
∫
S1

H
(
γ(θ)

)
dθ = −

∫
S1

rαV

(−h′(r)RαV

)− h(r)

= h′(r)r − h(r).

Since ρ0 is small we have eρ0 ∼ 1 and h(eρ0) ∼ 0, so the actions of 1-
periodic orbits of H2 in this region are close to the periods of closed
orbits of the Reeb vector field on the boundary of V of periods T < β
and they are greater than ε.

III. In region III, the computation is similar to the case of region II: A(γH2
)

is equal to h′(r)r − h(r) which is less than eδβ − (eδβ − β) = β5.

5The author is grateful to Oleg Lazarev who pointed out a mistake in an earlier
computation
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IV. In region IV, there are only critical points so the action of the critical
point q is given by −H2(q) which is close to −(eδβ − β).

V. In region V, the computation of the action is similar to the case of
region II: A(γ) is close to h′(r)r − h(r) with r = eρ

′
. Observe that

here the 1-periodic orbits are close to 1-periodic orbits of −h′(r)RαW

where now RαW
is the Reeb vector field on ∂W . The action of any

1-periodic orbit of H2 in this region is close to eρ
′
T ′ − h(eρ

′
) where T ′

is the period of a closed orbit of the Reeb vector field on the boundary
of W with T ′ < μ and thus the action is < μeδ − β(eδ − 1) < 0.

So, for nice parameters (for instance ρ′1 < δ), we have

A(IV ) < A(V ) < 0 < A(I) < ε < A(II).

There are no Floer trajectories from III to I or II by [12, Lemma 2.3].
We denote by CIV,III,V,I(H2, J) the subcomplex of the Floer complex for
H2 generated by critical orbits lying in regions IV, III, V, and I and by
CIV,III,V (H2, J) the subcomplex of the Floer complex for H2 generated by
critical orbits lying in regions IV, III and V. We have the identifications:

CI,II(H2, J) = CIV,III,V,I,II(H2, J)/CIV,III,V (H2, J)

CII(H2, J) = CIV,III,V,I,II(H2, J)/CIV,III,V,I(H2, J)

We have subcomplexes using the fact that the action decreases along Floer
trajectories, and using [12, Lemma 2.3]. The Floer differential passes to
the quotient where we still denote it ∂. Remark that the function H2 is
not in Hstd(V ). We want to relate the homology of

(
CI,II(H2, J), ∂

)
to the

homology of a function in Hstd(V ).

Definition 4.3. Let H2 ∈ Hstair(V,W ); we denote by β the slope of the
linear part close to ∂V , as in Definition 4.2. We associate to H2 the function
denoted H = ιV (H2) ∈ Hstd(V ), defined on S1 × V̂ , which coincides with
H2 on V ∪ (∂V × [0, δ − ρ0]) and which is linear with slope β “further” in
the completion: H(θ, eρ) = βρ+ β′ for all ρ ≥ δ − ρ0.

Proposition 4.4. Let H2 be an function in Hstair and let H = ιV H2 be
the associated function in Hstd(V ) as defined above. We assume furthermore
that the Hamiltonians are generic in the sense that the homologies are well-
defined for a good choice of J ’s. Then

H
(
CI,II(H2, J), ∂

)
= H

(
SC(H, J)

)
andH

(
CII(H2, J), ∂

)
= H

(
SC+(H, J)

)
.
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Proof. We need to check that there is no Floer trajectory u : R× S1 → Ŵ
going from an orbit in CI,II (resp. CII) to an orbit in CI,II (resp. CII) with

points in Ŵ \ (U ∪ V ). We prove it by contradiction, as a direct application
of Abouzaid maximum principle which we prove below as Theorem 4.5.
Assume that u : R× S1 → Ŵ is a Floer trajectory whose image intersects
Ŵ \ (U ∪ V ). We consider the intersection of the image with a slice ∂V × {ρ}
for any ρ0 < ρ < δ − ρ0 and we choose a regular value ρ0 + ε of ρ ◦ u. The
manifold W ′ := Ŵ \ (V ∪ (∂V × [0, ρ0 + ε[)) is symplectic with contact type
with boundary ∂V × {ρ0 + ε} and Liouville vector field pointing inwards.
Let S be the inverse image of W ′ under the map u; it is a compact Riemann
surface with boundary; the complex structure j is the restriction to S of
the complex structure j on the cylinder defined by j(∂s) = ∂θ. We define
β to be the restriction of dθ to S. The fact that u is a Floer trajectory is
equivalent to (du−XH ⊗ β)0,1 := 1

2 ((du−XH ⊗ β) + J(du−XH ⊗ β)j) =
0, where du is the differential of the map u viewed as a section of T �S ⊗
u�TW ′. Then part a of Theorem 4.5, which is slight generalisation of a
theorem of Abouzaid, concludes. �

Theorem 4.5 (Abouzaid, [25]). Let (W ′, ω′ = dλ′) be an exact symplec-
tic manifold with contact type boundary ∂W ′, such that the Liouville vector
field points inwards. Let ρ be the coordinate near ∂W ′ defined by the flow
of the Liouville vector field starting from the boundary and let r := eρ; near
the boundary the symplectic form writes ω′ = d(rα) with α the contact form
on ∂W ′ given by the restriction of λ′. Let J be a compatible almost complex
structure such that J∗λ′ = dr on the boundary.

a) Let H : W ′ → R be non negative, and such that H = h(r) where h is a
convex increasing function near the boundary. Let S be a compact Riemann
surface with boundary and let β be a 1-form such that dβ ≥ 0. Then any
solution u : S →W ′ of (du−XH ⊗ β)0,1 = 0 with u(∂S) ⊂ ∂W ′ is entirely
contained in ∂W ′.

b) Let H : R× S1 ×W ′ → R be an increasing homotopy, such that
H(s, θ, p, ρ) = Hθ

s (p, ρ) = hs(r) where hs are convex increasing functions
near the boundary. Let S be a compact Riemann surface with boundary em-
bedded in the cylinder (R× S1 with the standard structure). Then any so-
lution u : S →W ′ of (du−XHs

⊗ dθ)0,1 = 0 with u(∂S) ⊂ ∂W ′ is entirely
contained in ∂W ′.

Proof. Proof of part a. The energy of a map u : S →W ′ is defined as E(u) :=
1
2

∫
S ‖du−XH ⊗ β‖2volS where du is viewed as a section of T �S ⊗ u�TW ′.

If s+ it is a local holomorphic coordinate on S, so that j(∂s) = ∂t and
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volS = ds ∧ dt we have

1

2
‖du−XH ⊗ β‖2volS

= ω′ (∂su−XHβ(∂s), ∂tu−XHβ(∂t)) ds ∧ dt

=
(
ω′(∂su, ∂tu)− dH(∂tu)β(∂s) + dH(∂su)β(∂t)

)
ds ∧ dt

= u�ω′ + u�(dH) ∧ β.

It is obviously non negative for any path. Since d(u�Hβ) = u�(dH) ∧ β +
u�Hdβ︸ ︷︷ ︸

≥0

, we have

E(u) =

∫
S
u�dλ′ + u�(dH) ∧ β

≤
∫
S
d(u�λ′) + d(u�Hβ) ≤

∫
∂S

u�λ′ − λ′(XH)β

since H = h(r) ≤ rh′(r) = rα
(
h′(r)Rα

)
= −λ′(XH) on u(∂S) ⊂ ∂V

=

∫
∂S

λ′(du−XH ⊗ β)

=

∫
∂S
−λ′J(du−XH ⊗ β)j since (du−XH ⊗ β)0,1 = 0

=

∫
∂S
−dr(du−XH ⊗ β)j since J�λ′ = dr along u(∂S) ⊂ ∂W ′

=

∫
∂S
−dr du j since dr vanishes on XH on u(∂S) ⊂ ∂W ′.

Let ν be the outward normal direction along ∂S. Then (ν, jν) is an oriented
frame, so ∂S is oriented by jν. Now dr(du)j(jν) = d(r ◦ u)(−ν) ≥ 0 since
in the inward direction, −ν, r ◦ u can only increase because r is minimum
on ∂W ′. So E(u) ≤ 0 hence E(u) = 0. This implies that du−XH ⊗ β = 0
which shows that the image of du is in the span of XH which is the span of
Rα ∈ T∂W ′ on ∂W ′. Hence the image of u is entirely in contained in ∂W ′.

Proof of part b. The proof starts as above. The energy of u is non negative
and given by

E(u) :=
1

2

∫
S
‖du−XHs

⊗ dθ‖2volS =

∫
S
u�ω′ + u�(dHθ

s ) ∧ dθ.

We have u�(dHθ
s ) ∧ dθ = d(u

′�H) ∧ dθ − u�∂sH
θ
sds ∧ dθ︸ ︷︷ ︸
≥0

, for u′ : S → R×

S1 ×W ′ which maps an element (θ, s) ∈ S to the element (s, θ, u′(θ, s)).
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Hence

E(u) =

∫
S
u�dλ′ + u�(dH) ∧ dθ

≤
∫
S
d(u�λ′) + d(u

′�Hdθ)

≤
∫
∂S

u�λ′ − λ′(XHs
)dθ

using Stokes’s theorem and

H = hs(r) ≤ rα
(
h′s(r)Rα

)
= −λ′(XHs

) on u(∂S) ⊂ ∂V

=

∫
∂S

λ′(du−XHs
⊗ dθ)

and the proof proceeds as in part a. �
For any element H1 ∈ Hstd(W ), one can consider an element in H2 ∈

Hstair(V,W ) such that H1 and H2 coincide “far in the completion”, i.e.

on ∂W × [ρ′2,+∞[⊂ Ŵ . Let H = ιV (H2) ∈ Hstd(V ). We want to build a
morphism from the homology defined by H1 to the homology defined by
H. We shall first construct a morphism in the homology defined by H2.
With H1 ∈ Hstd(W ) and H2 ∈ Hstair(V,W ) as above, we can consider an
increasing homotopy Hs, s ∈ R, between H1 and H2, i.e

d
dsHs ≥ 0, with the

property that there exists s0 such that Hs ≡ H1 for s ≤ −s0 and Hs ≡ H2

for s ≥ s0. We define a morphism SC(H1, J1)→ SC(H2, J2) by counting
Floer trajectories for the homotopy. Denote by M(γ1, γ2, Hs, Js) the space

of Floer trajectories from γ1 to γ2 i.e maps u : R× S1 → Ŵ such that:

(4.1) ∂su+ Jθ
s ◦ u(∂θu−Xθ

Hs
◦ u) = 0

with lims→−∞ u(s, ·) = γ1(·) and lims→∞ u(s, ·) = γ2(·). It is proven in [18,
24] that for a generic choice of the pair (Hs, Js), the spacesM(γ1, γ2, Hs, Js)
are manifolds of dimension μCZ(γ2)− μCZ(γ1) for any γ1 in P(H1) and γ2
in P(H2). Let us observe that there is no general R-action on this space.
The homotopy Hs gives rise to a morphism

φHs
: SC(H1, J1)→ SC(H2, J2) : γ1 �→

∑
γ2∈P(H2)

μCZ(γ2)=μCZ(γ1)

#M(γ1, γ2, Hs, Js)γ2

where the count involves, as always, signs. The study of the boundary
of a space of Floer trajectories M(γ1, γ2, Hs, Js) for γ1 ∈ P(H1) and γ2 ∈
P(H2) such that μCZ(γ1) = μCZ(γ2) + 1 shows that the morphism φHs

is
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a chain map, hence induces a morphism in homology, still denoted φHs
:

SH(H1, J)→ SH(H2, J). The homotopy of homotopies theorem shows that
φHs

is independent of the choice of the homotopy; hence we denote it by
φH1,H2

.

Definition 4.6. Given an element H1 in Hstd(W ), consider an element
H2 ∈ Hstair(V,W ) such that H1 and H2 coincide “far in the completion”,
and let H = ιV (H2) ∈ Hstd(V ). We define the transfer morphism

SH(H1, J)→ SH(H, J ′) = SH(H2, J)/SH≤−η(H2, J)

= H
(
CI,II(H2, J), ∂

)
which is the composition of φH1,H2

followed by the natural projection.
The action decreases along Floer trajectories, so this maps SH≤ε(H1, J)

to

SH+(H, J ′) = SH≤ε(H2, J), ∂)/SH≤−η(H2, J), ∂)
= H

(
CII(H2, J), ∂

)
and induces a transfer morphism for the positive homology

SH+(H1, J)→ SH+(H, J ′) = H
(
CII(H2, J), ∂

)
.

With our identification, the map is obtained by counting solutions of equa-
tion (4.1) going from a 1-periodic orbit of XH1

to a 1-periodic orbit of XH2

lying in region I or II.

The homotopy of homotopies theorem shows that the map does not
depend on the choice of stair function H2 such that ιV H2 = H and such
that H1 and H2 coincide far in the completion; we shall denote it φH

H1
.

It also shows that the map φH1,H2
commutes with continuation, i.e if ρ1 :

SH(H1)→ SH(H ′
1) is a continuation for H1 and ρ2 : SH(H2)→ SH(H ′

2)
is a continuation for H2 then φH′

1,H
′
2
◦ ρ1 = ρ2 ◦ φH1,H2

.

Proposition 4.7. The transfer map φH
H1

: SH(H1, J)→ SH(H, J ′) com-
mutes with continuations.

Proof. To show this, we still have to show that a continuation map built in
W from SH(H2, J) to SH(H ′

2, J
′), defined by an increasing homotopy Hs :

S1 × Ŵ → R, induces a continuation map in V from SH(H = ιV (H2), J) to
SH(H ′ = ιV (H

′
2), J

′). For this, it is enough to check that there is no Floer

trajectory corresponding to the homotopy, i.e. u : R× S1 → Ŵ solution of
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(4.1) going from an orbit in CI,II(H2, J) (resp. CII(H2, J)) to an orbit in

CI,II(H ′
2, J

′) (resp. CII(H ′
2, J

′)) with points in Ŵ \ (U ∪ V ). We prove it
by contradiction, proceeding as in the proof of Proposition 4.4, using the
generalized Abouzaid maximum principle proven in part b of Theorem 4.5.
Assume that u : R× S1 → Ŵ is a Floer trajectory whose image intersects
Ŵ \ (U ∪ V ). We consider the intersection of the image with a slice ∂V × {ρ}
for any ρ0 < ρ < δ − ρ0 and we choose a regular value ρ0 + ε of ρ ◦ u. The
manifold W ′ := Ŵ \ (V ∪ (∂V × [0, ρ0 + ε[)) is symplectic with contact type
with boundary ∂V × {ρ0 + ε} and the Liouville vector field pointing inwards.
Let S be the inverse image of W ′ under the map u; it is a compact Riemann
surface embedded in the cylinder with boundary; the complex structure j
is the restriction to S of the complex structure j on the cylinder defined
by j(∂s) = ∂θ. The fact that u is a Floer trajectory is equivalent to (du−
XHs

⊗ dθ)0,1 := 1
2 ((du−XHs

⊗ dθ) + J(du−XHs
⊗ dθ)j) = 0, where du is

the differential of the map u viewed as a section of T ∗S ⊗ u∗TW ′. Then part
b of Theorem 4.5 concludes. �

Corollary 4.8. The maps {φH
H1
} induce a transfer map: φW,V : SH(W,λW )

→ SH(V, λV ) and, on the quotient, the morphism φ+ = φ+
W,V : SH+(W,λW )

→ SH+(V, λV ).

Theorem 4.9 (Composition). Let (V1, λV1
) ⊆ (V2, λV2

) ⊆ (V3, λV3
) be Li-

ouville domains with Liouville embeddings. Then the following diagram com-
mutes:

(4.2) SH+(V3, λV3
)
φ+

V3,V2 ��

φ+
V3,V1

��
SH+(V2, λV2

)
φ+

V2,V1 �� SH+(V1, λV1
)

Proof. The proof results from the comparison of a count of Floer trajecto-
ries. On one hand, one counts Floer trajectories corresponding to an increas-
ing homotopy H13, going from a 1-periodic orbit of XH1

for an admissible

Hamiltonian H1 on S1 × V̂3 to the CII,I part of a stair Hamiltonian H3

with two “steps”. On the other hand, one counts trajectories relative to the
composition of two increasing homotopies, H12 going from H1 to H2 (a stair
Hamiltonian with one step) and H23 going from H2 to H3. The property is
a consequence of the composition of homotopies. �
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4.2. Transfer morphism for S1-equivariant symplectic homology

We extend the definition of the transfer morphisms of the previous section
to S1-equivariant and positive S1-equivariant symplectic homology. We con-
sider two embedded Liouville domains (V, λV ) ⊂ (W,λW ) and we want to de-
fine a morphism SHS1

(W,λW )→ SHS1

(V, λV ). We start with autonomous
Hamiltonians H in Hstd, we do small Morse Bott type deformations Hδ

and then lift those to S1-equivariant functions HN
δ . In this setting, the S1-

equivariant symplectic homology can be computed by the simplified complex
as described in Sections 3.1 and 3.2 :

SĈS1

∗ (Hδ) := Z[u]⊗Z SC∗(Hδ)

with differential ∂̂S1

= ϕ0 + u−1ϕ1 + u−2ϕ2 + · · · where the maps ϕj counts
Floer trajectories for parametrized Hamiltonians going from S1 · (γ−, zj) to
S1 · (γ+, z0) with zj the critical point of f of index −2j.

The action of the element represented by uk ⊗ γ is very close to the
action of γ. To define transfer morphisms, we start with an autonomous
Hamiltonian H1 in Hstd(W ) and an autonomous H2 in Hstair(W ), and we
do small Morse Bott type deformations H1δ et H2δ. We define as in the
previous section the subcomplex Z[u]⊗Z (CIII,IV,V (H2δ)) corresponding to
points with negative action and elements in region III, and we identify the
quotient Z[u]⊗Z SC∗(H2δ)/Z[u]⊗Z (CIII,IV,V (H2δ)) to Z[u]⊗Z CI,II(H2δ).
We consider the Hamiltonian ιV H2δ in Hstd(W ).

Proposition 4.10. For δ small enough, the S1 equivariant homology of the
quotients coincide with the S1 equivariant homology of the small domain:

H
(
Z[u]⊗Z CI,II(H2δ), ∂

)
= H

(
SC(Z[u]⊗Z SC(ιV H2δ))

)
H
(
Z[u]⊗Z CII(H2δ), ∂

)
= H

(
SC+(Z[u]⊗Z SC(ιV H2δ))

)
Proof. What remains to be checked is again there is no parametrized Floer
trajectory u : R× S1 → Ŵ going from an orbit in CI,II(H2δ) to an orbit

in CI,II(H2δ) with points in Ŵ \ (U ∪ V ); this is due to the decomposition
of ∂̂S1

mentioned above. This is proven by contradiction. If there was a
parametrized trajectory going from an orbit in CI,II(H2δ) to an orbit in

CI,II(H2δ) with points in Ŵ \ (U ∪ V ) for all δ’s, then, by a theorem of
Bourgeois and Oancea [3, Proposition 4.7], there would be such a broken
trajectory for the autonomous Hamiltonian and we have proven in Proposi-
tion 4.4 that this can not exist. �
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To get a transfer map, we use an autonomous increasing homotopy between
H1 and H2 and we deform it into an increasing homotopy between H1δ and
H2δ; this induces a map

Z[u]⊗Z SC∗(H1δ)→ Z[u]⊗Z SC∗(H2δ).

This map decreases the action (which is defined on the second factor) and
commutes with the differential so it induces a map on the quotient

H
(
(Z[u]⊗Z SC∗(H1δ, ∂

)
)→ H

(
Z[u]⊗Z CII(H2δ), ∂

)
.

This commutes with continuation maps.

Proposition 4.11. For δ small enough, a continuation map in the homol-
ogy defined from an H2δ induces a continuation continuation map in the
homology defined from ιV H2δ.

Proof. One checks again that there is no parametrized Floer trajectory, cor-
responding to a homotopy, going from an orbit in CI,II(H2δ) to an orbit

in CI,II(H ′
2δ) with points in Ŵ \ (U ∪ V ). This is done as in the former

proposition, using the fact that the existence of such a trajectory for all δ’s
would imply the existence of such a broken trajectory for the autonomous
Hamiltonian and we have proven in Proposition 4.7 that this can not exist.

�
We thus get a transfer morphism

φS1

W,V : SHS1

(W,λW )→ SHS1

(V, λV ).

and, on the quotient, the morphism

φS1,+ = φS1,+
W,V : SHS1,+(W,λW )→ SHS1,+(V, λV ).

By the same arguments as before, those morphisms compose nicely.

Theorem 4.12 (Composition). Let (V1, λV1
) ⊆ (V2, λV2

) ⊆ (V3, λV3
) be

Liouville domains with Liouville embeddings. Then the following diagram
commutes:

(4.3) SHS1,+(V3, λV3
)
φS1,+

V3,V2 ��

φS1,+
V3,V1

��
SHS1,+(V2, λV2

)
φS1,+

V2,V1 �� SHS1,+(V1, λV1
).
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4.3. Invariance of symplectic homology

In this section, we study the invariance of the (S1-equivariant) positive sym-
plectic homology with respect to the choice of the Liouville vector field in
a neighbourhood of the boundary. This has been studied by Viterbo [30],
Cieliebak [8] and Seidel [28] in the case of the symplectic homology.

Lemma 4.13. Let (W,ω,X) be a compact symplectic manifold with contact
type boundary and let k be a positive real number. Then SH†(W,ω,X) =
SH†(W,kω,X), where † denotes any of the variants that we have considered
∅,+, S1 or (S1,+).

Proof. The symplectic completions are (Ŵ , ω̂) and (Ŵ , kω̂); the chain com-

plexes for a pair (H, J) on (Ŵ , ω̂) and the pair (kH, J) on (Ŵ , kω̂) are
the same, since the 1 periodic orbits are the same, and the Floer trajecto-
ries satisfy the same equations; indeed Xω

H = Xkω
kH . Similarly, continuation

maps are equivalent taking as homotopies Hs and kHs. The result follows,
observing that kH form a cofinal family. �
For positive or S1-equivariant positive homology, we assume that (W,ω,X)
is a Liouville domain.

Lemma 4.14. Let (W,ω,X) and (W ′, ω′, X ′) be two compact symplec-
tic manifolds with contact type boundary. If there exists a symplectomor-
phism ϕ : W →W ′ such that ϕ(∂W ) = ∂W ′, and such that ϕ�(X) = X ′ on
a neighbourhood of ∂W then SH†(W,ω,X) ∼= SH†(W ′, ω′, X ′).

Proof. We can extend ϕ to a symplectomorphism ϕ̂ : Ŵ → Ŵ ′ of the com-
pletions. For J ′ an almost complex structure on Ŵ ′, we take the correspond-
ing almost complex structure J on Ŵ defined by Jx := ϕ̂−1

�x
◦ J ′

ϕ̂(x) ◦ ϕ̂�x
and

if H ′ is a Hamiltonian on Ŵ ′, we take the Hamiltonian H on Ŵ defined by
H := ϕ̂�H ′. Then the 1 periodic orbirs are in bijection and so are the Floer
trajectories. The subfamily {ϕ̂�H ′} of Hamiltonians is cofinal hence the con-
clusion. �

Lemma 4.15. Let (W,λ) be a Liouville domain. Then for all R ∈ R+, we
have

SH†(W,λ) ∼= SH†(W ∪ (∂W × [0, R]), λ′)
where the 1-form λ′ on ∂W × [0, R] is the restriction of the 1-form λ̂, thus
(eρα) with α := λ|∂W

.
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Proof. Denote by ϕX
t the flow of X; since LXλ = λ we have ϕX

t
�
λ = etλ.

This gives a symplectomorphism

ϕX
R : (W, eRω)→ (W ∪ (∂W × [0, R]), ω′)

mapping the boundary ∂W to the boundary {R} × ∂W and such that
ϕX
R

∗
λ = eRλ. One concludes by the two lemmas above.

Explicitly, the diffeomorphism ϕX
R : Ŵ → Ŵ maps Hamiltonian vector

fields as follows : (ϕX
R )∗(XH′) = XH whenH ′ = e−R(ϕX

R )∗H; hence ϕX
R gives

a bijection between 1-periodic orbits of XH′ and 1-periodic orbits of XH ,
and, with suitable choices of J ’s, a bijection between Floer trajectories be-
tween 1-periodic orbits of XH′ and Floer trajectories between 1-periodic
orbits of XH . Hence it yields an isomorphism

SH†(W, e−R(ϕX
R )∗H) ∼= SH†(W ∪ (∂W × [0, R]), H

)
.

Furthermore, the diffeomorphism ϕX
R intertwines a continuation morphism

defined by a homotopy H ′
s to the corresponding continuation morphism

defined by Hs when again H ′
s = e−R(ϕX

R )∗Hs. This yields the isomorphism
mentioned above. �

Lemma 4.16. The transfer morphism

SH†(W ∪ (∂W × [0, R]), λ′) �→ SH†(W,λ)

is an isomorphism; it coincides with the natural identification of Lemma
4.15.

Proof. LetH be an admissible Hamiltonian forW ∪ (∂W × [0, R]). Consider
the homotopy H1

s := e−f(s)ϕX
f(s)

�
H with f : R→ [0, R] a smooth function so

that H1
s = H for large negative s and H1

s = H̃ := e−R(ϕX
R )∗H for large posi-

tive s. The set of 1 periodic orbits for H1
s is constant (since, as in the Lemma

above, the diffeomorphism ϕX
f(s) of the completion is a bijection between 1-

periodic orbits of XH1
s
and 1-periodic orbits of XH). This homotopy defines

the “transfer morphism”

φ : SH
(
W ∪ (∂W × [0, R]), H

)→ SH(W, H̃).

Let {Hη
s }η∈[0,1] be a family of homotopies (with non fixed endpoint) such

that H0
s is the constant homotopy H0

s = H for all s, and such that all Hη
s

are of the form e−f ′(s,η)ϕX
f ′(s,η)

�
H with f ′(., η) : R→ [0, ηR] and f ′(., 1) = f .



SHS1,+ as an invariant for some contact manifolds 1053

We have Hη
+∞ = e−ηRϕX

ηR
�
H = H1

f−1(ηR). The set of 1-periodic orbits of H
η
s

is in bijection with the set of orbits of H. We consider, for a given η, the
space of Floer trajectories

M(Hη
s , J

η
s ) :=

⋃
(γη

−,γη
+)∈P(Hη

−∞)×P(Hη
+∞)

μCZ(γ
η
−)=μCZ(γ

η
+)

M(γη−, γ
η
+, H

η
s , J

η
s )

and the parametrized moduli space M({Hη
s , J

η
s }) :=

⋃
η∈[0,1]M(Hη

s , J
η
s ),

which could have boundaries for some η �= 0, 1. It defines a cobordism be-
tweenM(H0

s , J
0
s ) andM(H1

s , J
1
s ). NowM(H0

s , J
0
s ) =M(H, J) is the space

of constant trajectories {u(s, ·) = γ0(·) | γ0 ∈ P(H)}. Thus for small η’s, say
η ≤ η0, the cobordism is a bijection,M(Hη

s , J
η
s ) consists of exactly one Floer

trajectory starting from each orbit in P(H) and arriving at the correspond-
ing orbit in P(Hη

+∞). The morphism induced by Hη0
s is thus the natural

identification of periodic orbits. Hence the transfer

φ : SH
(
W ∪ (∂W × [0, R]), H

)→ SH
(
W ∪ (∂W × [0, R− ε]), eεϕX

ε
�
H
)

is the natural identification for ε = η0R. Now we use the flow of the Liouville
vector field, ϕX

ε , to carry all this construction further and we get the natural
identification as the transfer morphism

φ : SH
(
W ∪ (∂W × [0, R− ε]), eεϕε

X
�H
)

→ SH
(
W ∪ (∂W × [0, R− 2ε]), e2εϕ2ε

X
�
H
)
.

By induction and functoriality, we get the result. �

Lemma 4.17. Let W be a compact symplectic manifold with contact type
boundary. Let λt, t ∈ [0, 1] be an isotopy of Liouville forms on W such
that in a neighbourhood U of the boundary, λt = λ0. Then SH†(W,λ0) ∼=
SH†(W,λ1).

Proof. Remark that we do not require the dλt to be equal. We define the
time dependent vector field Xt by ι(Xs)(dλs) = −

(
d
dtλ(t)|s

)
and we denote

by ϕt its flow. In the neighbourhood U , the vector field vanishes, Xs = 0,

and so ϕ�
1λ1 = λ1 = λ0 on U . Furthermore ϕ�

1dλ1 = dλ0 because
d
dtϕ

�
tλt

∣∣∣
s
=

ϕ�
s

(
dλt

dt

∣∣∣
s

)
+ ϕ�

sLXs
λs = d

(
ϕ�
s

(
λs(Xs)

))
. This implies that the completions

for λ0 and ϕ�
1λ1 are the same, therefore, by Lemma 4.14, SH†(W,λ1) =

SH†(W,ϕ�
1λ1) = SH†(W,λ0). �
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supp(g)

∂W × {0}
∂W × {ρ0}

∂W × {ρ′0}

f−1(∂W1 × {ρ1}) f−1(∂W1 × {ρ′1})

Figure 2: The choice of ρ0, ρ1, ρ
′
0 and ρ′1.

Theorem 4.18. Let W be a compact symplectic manifold with contact type
boundary. Let λt, t ∈ [0, 1] be a homotopy of Liouville forms on W . Then

SH†(W,λ0) ∼= SH†(W,λ1).

To prove this Proposition, we use the following Proposition from
Cieliebak and Eliashberg:

Proposition 4.19 ([9], Proposition 11.8). Let W be a compact symplec-
tic manifold with contact type boundary. Let λt, t ∈ [0, 1] be a homotopy of
Liouville forms on W . Then there exists a diffeomorphism of the completions
f : Ŵ0 → Ŵ1 such that f�λ̂1 − λ̂0 = dg where g is a compactly supported
function.

Proof of Theorem 4.18. There exists a real ρ0 > 0 such that supp(g) ⊂W ∪
(∂W × [0, ρ0]). We choose positive real numbers ρ1, ρ

′
0 and ρ′1 such that

f−1(W ∪ (∂W × [0, ρ1]) contains W ∪ (∂W × [0, ρ0]),

f−1(W ∪ (∂W × [0, ρ1])) ⊂W ∪ (∂W × [0, ρ′0]) and

W ∪ (∂W × [0, ρ′0]) ⊂ f−1(W ∪ (∂W × [0, ρ′1])).

The situation is represented in Figure 2. The diffeomorphism f and the flow
of X1 on Ŵ1 give(
f−1(W ∪ (∂W × [0, ρ1])), f

�λ̂1

) ∼= (W ∪ (∂W × [0, ρ1], λ̂1

) ∼= (W, eρ1λ1).
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The completion of
(
f−1(W ∪ (∂W × [0, ρ1])), f

�λ̂1

)
coincides with (Ŵ0, λ̂0)

since close to the boundary f�X0 = X1. We have

SH(W,λ1) ∼= SH
(
W ∪ (∂W × [0, ρ1]), λ̂1

)
by Lemma 4.15

∼= SH
(
f−1(W ∪ (∂W × [0, ρ1])), f

�λ̂1

)
by Lemma 4.14

∼= SH
(
f−1(W ∪ (∂W × [0, ρ1])), λ̂0 + dg

)
by Proposition 4.19

∼= SH
(
f−1(W ∪ (∂W × [0, ρ1])) =: W1, λ̂0

)
by Lemma 4.17.

Denoting by ϕX0

t the flow of X0 and by W0 the manifold W ∪ (∂W ×
[0, ρ0]), we have ϕX0

ρ′
1−ρ1

(W1) = f−1(W ∪ (∂W × [0, ρ′1])) and ϕX0

ρ′
0−ρ0

(W0) =

W ∪ (∂W × [0, ρ′0]). Using the functoriality of the transfer morphism, we get

SH(ϕX0

ρ′
1−ρ1

(W1), λ̂0) ��

∼=
��SH(ϕX0

ρ′
0−ρ0

(W0), λ̂0)

∼=
		

�� SH(W1, λ̂0) �� SH(W0, λ̂0);

therefore SH(W,λ1) ∼= SH(W1, λ̂0) ∼= SH(W0, λ̂0) ∼= SH(W,λ0). �
Seidel in [28] has extended the definition of symplectic homology (and

all its variants) to Liouville manifolds.

Definition 4.20 (see for instance [9]). A Liouville manifold is an exact
symplectic manifold (W,ω,X), where the vector field X is an expanding
Liouville vector field, i.e LXω = ω and ϕX

t ω = etω such that the vector field
X is complete and the manifold is convex in the sense that there exists
an exhaustion W = ∪∞

k=1W
k by compact domains Wk ⊂W with smooth

boundaries along which X is outward pointing.

In the following we will denote a Liouville manifold either by (W,ω,X) or
by (W,λ := ι(X)ω). The set Skel(V, ω,X) :=

⋃∞
k=1

⋂
t>0 ϕ

X−t(W
k) is called

the skeleton of the Liouville manifold (W,ω,X). It is independent of the
choice of the exhausting sequence of compact sets W k. A Liouville manifold
(W,ω,X) is said to be of finite type if its skeleton is compact. Every finite
type Liouville manifold is the completion of a Liouville domain6.

Definition 4.21 ([28]). Let (W,ω,X) be a Liouville manifold non nec-
essarily of finite type and let W k be an exhaustion by compact domains
Wk ⊂W with smooth boundaries along which X is outward pointing such

6We refer to the book by Cieliebak and Eliashberg for more details, [9, Chapter 11]
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that W k ⊂W k+1. The symplectic homology (and its variants) of (W,λ) is
defined as the inverse limit of the symplectic homologies of (W k, λ|Wk

)

SH†(W,λ) := lim←− SH†(W k, λ|Wk
).

The morphisms appearing in this inverse limit are the transfer morphisms.
This definition is independent of the chosen exhaustion. Remark that in
the case of finite type Liouville manifolds, this definition coincides with the
previous one.

Proposition 4.22. Let (W0, λ0) and (W1, λ1) be two Liouville manifolds
not necessarily of finite type. Assume there exists an exact symplectomor-
phism f : W0 →W1 i.e. such that f�λ1 − λ0 = dg with g a function on W0.
Then SH†(W0, λ0) ∼= SH†(W1, λ1).

Proof. Let W k
0 be an exhaustion for W0 and W k

1 be an exhaustion for W1

such that for all k,

W k
0 ⊂ f−1(W k

1 ) ⊂W k+1
0

where the inclusion at each level means the inclusion in the interior of the
next compact space. Let η be a smooth function η : W0 → [0, 1] such that
η = 1 in a neighbourhood of ∪∞

k=1f
−1(∂W k

1 ) and η = 0 in a neighbourhood
of ∪∞

k=1∂W
k
0 . We define the 1-form λ := λ0 + d(ηg) on W0. We have

SH(W k
0 , λ0) ∼= SH(W k

0 , λ) and SH(W k
1 , λ1) ∼= SH

(
f−1(W k

1 ), λ
)
.

The functoriality of the transfer morphism implies that the following dia-
gram is commutative:

· · · ��
		

SH
(
f−1(W k+1

1 ), λ
)

��
��SH(W k+1

0 , λ)
		

�� SH
(
f−1(W k

1 ), λ
)

�� 

SH(W k
0 , λ)

�� · · · .

Therefore,

SH(W0, λ0) ∼= lim←−SH(W k
0 , λ0) ∼= lim←−SH(W k

0 , λ)

∼= lim←−SH
(
f−1(W k

1 ), λ
) ∼= lim←−SH(W k

1 , f�λ)

∼= lim←−SH(W k
1 , λ1) ∼= SH(W1, λ1).

�

The above result may be extended thanks to the following Lemma:
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Lemma 4.23 ([2], see also [9], Lemma 11.2). Any symplectomorphism
between finite type Liouville manifolds f : (W0, λ0)→ (W1, λ1) is diffeotopic
to an exact symplectomorphism.

We have thus proven the invariance Theorem 1.2 stated in the introduc-
tion.

4.4. Invariance of the homology of contact fillings

In this section we shall prove Theorem 1.3 giving an invariant of the contact
structure.

Lemma 4.24 ([8]). Let (αt)t∈[0,1] be a smooth family of contact forms on
a closed manifold M of dimension 2n− 1. Then there exists R > 0 and a
non-decreasing function f : [0, R]→ [0, 1] such that f ≡ 0 close to ρ = 0 and
f ≡ 1 close to ρ = R and d

(
eραf(ρ)

)
is symplectic on M × [0, R].

Proof. The proof is a computation:

d
(
eραf(ρ)

)
= eρdρ ∧ αf(ρ) + eρdαf(ρ) + eρf ′(ρ)dρ ∧ α̇f(ρ) and(

d
(
eραf(ρ)

))n
= nenρ

(
dρ ∧ (αf(ρ) + f ′(ρ)α̇f(ρ)

) ∧ (dαf(ρ)

)n−1
)
;

thus d
(
eραf(ρ)

)
is symplectic if and only if

(
αf(ρ) + f ′(ρ)α̇f(ρ)

)(
Rαf(ρ)

)
> 0.

This is true if f ′ is small. �

Lemma 4.25. If (M, ξ) is a compact contact manifold which is exactly
fillable by a Liouville domain (W,λ0) (i.e. ∂W = M and ξ = kerα0 where
α0 = λ0

∣∣
M
) then, for any contact form α1 such that ξ = kerα1 (and α1

defines the same orientation on M), there exists a homotopy of Liouville
form λs, s ∈ [0, 1] on W such that λ1

∣∣
M

= α1.

Proof. Since α1 = egα0, for a smooth function g on M , we consider the
smooth family of contact forms αt = etgα0, t ∈ [0, 1].

We define on W ∪M × [0, R] ⊂ Ŵ the 1-form λ̃ such that λ̃ = λ0 on
M and λ̃ = eραf(ρ) on M × [0, R] with f as in Lemma 4.24, so that dλ̃

is symplectic. The flow ϕX0−r of the vector field X0, where ι(X0)dλ0 = λ0,
induces a diffeomorphism from W ∪M × [0, r] to W . The pull-back by this
flow of e−rλ̃ gives the desired λf(r). �

Combining with Theorem 4.18 and Theorem 1.1, this yields
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Lemma 4.26. Let (M0, ξ0) be a contact manifold that is exactly fillable
by the Liouville domains (W0, λ0). Assume that there exists a (oriented)
contact form α̃0 on M0 such that all periodic Reeb orbits are nondegenerate
and their Conley-Zehnder index have all the same parity. Then

SHS1,+(W0, λ0) =
⊕

γ∈P(Rα̃0
)

Q〈γ〉

where P(Rα̃0
) denotes the set of periodic Reeb orbits on (M0, α̃0).

Proof of Theorem 1.3. Given the contactomorphism ϕ : (M0, ξ0)→ (M1, ξ1)
and the contact form α̃0, we define the form α̃1 := (ϕ−1)�α̃0; it is a contact
form onM1 and its periodic orbits are non degenerate, in bijection with those
of α̃0. The isomorphism preserves the Conley-Zehnder index if the orbit is
null-homologous in the boundary but, in general, the isomorphism sends the
framing (trivialisation) chosen for the orbit of Rα̃0

on a framing for the orbit
of Rα̃1

. There is a Z-action on the framings (corresponding to the number
of twists). For any integer number, the Conley-Zehnder index will change
by an even number (see [13, 21, 23]). We apply twice Lemma 4.26; once for
(W0, λ0, α̃0) and for (W1, λ1, α̃1). We have therefore an isomorphism between
the two graded modules with eventually shifts of degree of the generators
given by the choice of framings. �

4.5. Application : Non isomorphic contact structures on S4m+1.

A first application of our results is to give a proof of Ustilovsky’s Theorem.

Definition 4.27 (The Brieskorn spheres). The Brieskorn manifold, de-
noted Σ(a0, . . . , an), with all ai ≥ 2 positive integers, is defined as the in-
tersection of the unit sphere S2n+1 ⊂ Cn+1 with the singular hypersurface
{(z0, . . . , zn) ∈ Cn+1 | za0

0 + · · ·+ zan
n = 0} in Cn+1.

It is a smooth 2n− 1-dimensional manifold which admits a contact form
α = i

8

∑n
j=0 aj(zjdzj − zjdzj) with corresponding Reeb vector field Rα =(

4i
a0
z0, . . . ,

4i
an
zn

)
. For any odd number n = 2m+ 1 and any p ≡ ±1 mod 8,

the Brieskorn manifold Σ(p, 2, . . . , 2) is diffeomorphic to the standard sphere
S4m+1 [7]. One defines the contact structures ξp on S4m+1 defined as the
kernel of the contact form αp with

αp :=
ip

8
(z0dz0 − z0dz0) +

i

4

n∑
j=1

(zjdzj − zjdzj).
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The fact that the Brieskorn spheres are exactly fillable can be found, for
instance, in the book of Geiges [19].

Proposition 4.28. For p1 �= p2, the positive S1 equivariant homologies of
symplectic fillings of the Brieskorn spheres are different.

Proof. We consider the description of the chain complex for those homologies
in terms of good periodic orbits of the Reeb vector field, graded by minus
their Conley indices. We shall show that all Conley-Zehnder indices are even.
To compute them, the first thing to do is to build an explicit perturbation
of the contact form so that all periodic Reeb orbits are non degenerate. We
proceed as in [29]. We make the change of coordinates

w0 = z0, w1 = z1

(
w2j

w2j+1

)
=

1√
2

(
1 i
1 −i

)(
z2j
z2j+1

)
, forj ≥ 1;

then

Σ(p, 2, . . . 2) =

⎧⎨⎩w ∈ Cn+1

∣∣∣∣wp
0 + w2

1 + 2

m∑
j=1

w2jw2j+1 = 0, |w|2 = 1

⎫⎬⎭ .

Consider the real positive function f : Σ(p, 2, . . . 2)→ R given by

f(w) = |w|2 +
m∑
j=1

εj
(|w2j |2 − |w2j+1|2

)
, where 0 < εj < 1.

The contact form fα defines the same contact structure on Σ(p, 2, . . . 2) as
α and its associated Reeb vector field is given by

Rfα(w) =
(
4i
p w0, 2iw1, 2i(1 + ε1)w2, 2i(1− ε1)w3,

. . . , 2i(1 + εm)wn−1, 2i(1− εm)wn

)
.

If all the εj are irrational and linearly independent over Q, the only
periodic orbits are

γ0(t) =
(
re

4it

p , ir
p

2 e2it, 0, . . . , 0
)
, for r > 0, rp + r2 = 1, 0 ≤ t ≤ pπ,

γ+j (t) =
(
0, . . . , 0, e2it(1+εj)︸ ︷︷ ︸

2j

, 0, . . . , 0
)
, for 0 ≤ t ≤ π

1 + εj
, j = 1, . . . ,m;

γ−j (t) =
(
0, . . . , 0, e2it(1−εj)︸ ︷︷ ︸

2j+1

, 0, . . . , 0
)
, for 0 ≤ t ≤ π

1− εj
, j = 1, . . . ,m
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and all their iterates, γN0 , γ+j
N
, γ−j

N
, for all N ≥ 1. Their Conley-Zehnder

index is given by

μCZ

(
γN0
)
= 2Np(n− 2) + 4N ;

μCZ

(
γ±j

N
)
= 2

⌊
2N

p(1± εj)

⌋
+ 2

⌊
N

1± εj

⌋
+ 2

m∑
k=1
k 
=j

(⌊
N(1 + εk)

1± εj

⌋
+

⌊
N(1− εk)

1± εj

⌋)
+ n− 1.

All indices have the same parity, thus applying Theorem 1.1, the S1-
equivariant positive symplectic homologies are generated by the periodic
orbits of the Reeb vector field graded by their Conley indices. If p1 �= p2,
those positive S1-equivariant symplectic homologies are different as proven
in [29]. �
A more complete description of Brieskorn manifolds and computations of the
symplectic homologies can be found in the paper by Kwon and van Koert
[22].

Corollary 4.29 (Ustilovsky, [29]). For each natural number m, there
exist infinitely many pairwise non isomorphic contact structures on S4m+1.

Proof. We see that one can build contact structures on S4m+1, which are
exactly fillable, but which do not yield isomorphic SHS1,+ homologies of the
filling. The result then follows from Theorem 1.3. The contact structures in
question are those defined by the Brieskorn spheres as above. The fact that
the homologies are different follows from Proposition 4.28. �

5. On the minimal number of periodic Reeb orbits

We now use the properties of positive S1-equivariant symplectic homology
to get results on the minimal number of geometrically distinct periodic Reeb
orbits on some contact manifolds.

5.1. Minimal number of periodic Reeb orbits on
a hypersurface in R2n

We use the transfer morphism to give an alternative proof of a result by
Ekeland and Lasry concerning the number of simple periodic Reeb orbits
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on a hypersurface in R2n, pinched between two spheres, endowed with the
restriction of the standard contact form on R2n.

Theorem 5.1 (Ekeland, Lasry, [14, 15]). Let Σ be a contact type hyper-
surface in R2n. Let ξ = kerα be the contact structure induced by the standard
contact form on R2n. Assume there existsnumbers 0 < R1 ≤ R2 such that:

∀x ∈ Σ, R1 ≤ ‖x‖ ≤ R2 with
R2

R1
<
√
2

Assume also that ∀x ∈ Σ, TxΣ ∩BR1
(0) = ∅. Assume moreover that all peri-

odic Reeb orbits are non degenerate. Then Σ carries at least n geometrically
distinct periodic Reeb orbits.

Remark 5.2. The assumption ∀x ∈ Σ, TxΣ ∩BR1
(0) = ∅ (which is weaker

than convexity) can be stated as

(5.1) 〈νΣ(z), z〉 > R1, ∀z ∈ Σ

where νΣ(z) is the exterior normal vector of Σ at point z and 〈·, ·〉 denotes
the Euclidean scalar product on R2n.

Proof. We consider ellipsoids, very close to the spheres,

S′
R1

=

{
n∑

i=1

a−1
i

(
(xi)2 + (yi)2

)
= R2

1

}
and

S′
R2

=

{
n∑

i=1

a−1
i

(
(xi)2 + (yi)2

)
= R2

2

}
,

with a1 < · · · < an real numbers arbitrarily close to 1 and rationally in-

dependent, and we denote by S̃′
R1
, Σ̃ and S̃′

R2
the compact regions in R2n

bounded respectively by S′
R1
, Σ and S′

R2
, endowed with the restriction of the

standard symplectic form ω on R2n. We take the parameters ai sufficiently
close to 1 so that we have the inclusion

S̃′
R1
⊂ Σ̃ ⊂ S̃′

R2

of Liouville domains. The contact form on the boundaries is the one induced
by ι(Xrad)ω, where Xrad is the radial vector field Xrad = 1

2

∑
xi∂xi + yi∂yi .
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The completion of those Liouville domain is (R2n, ω). By Theorem 4.12, the
transfer morphisms yields the following commutative diagram:

(5.2) SHS1,+(S̃′
R2
, ω)

φ ��
∼= 



SHS1,+(Σ̃, ω) �� SHS1,+(S̃′
R1
, ω).

We can consider the positive S1-equivariant symplectic homology truncated
by the action at level ≤ T , SHS1,+,T . Since all Floer trajectories inducing
the morphisms lower the action, we still have the commutative diagram for
the truncated positive invariant symplectic homology:

(5.3) SHS1,+,T (S̃′
R2
, ω)

φ ��
∼= 



SHS1,+,T (Σ̃, ω) �� SHS1,+,T (S̃′
R1
, ω).

where we have chosen a number T such that

(5.4) πanR
2
2 < T < 2πa1R

2
1.

This is possible thanks to the “pinching” hypothesis R2

R1
<
√
2.

By Theorem 1.1, SHS1,+,T (S̃′
R2
, ω) is generated by n elements

u0 ⊗ γ1Max, . . . u
0 ⊗ γnMax

corresponding to n simple periodic Reeb orbits on S′
R2
, γ1, . . . , γn, of action

πa1R
2
2, . . . , πanR

2
2. The analogous is true for SHS1,+,T (S̃′

R1
, ω) with actions

πa1R
2
1, . . . , πanR

2
1.

By (5.3), SHS1,+,T (Σ̃, ω) is thus of rank at least n. All applications in the
above diagrams decrease the action thus the action of each of those n gen-
erators in SHS1,+,T (Σ̃, ω) ∩ Im(φ) is pinched between πa1R

2
1 and πanR

2
2 <

2πa1R
2
1.

By Corollary 3.8, the only generators that may appear in SHS1,+,T (Σ̃, ω)
are elements of the form u0 ⊗ γMax with γ a good Reeb orbit on Σ.

It remains to prove that the n elements in the image of φ are geometri-
cally distinct. By the pinching condition on their action, we know that they
are not iterate one from another but we still need to prove that two of them
can not be the iterates of a same orbit of smaller action. This we do by
proving that the smallest possible action for any periodic Reeb orbit on Σ
is greater than πa1R

2
1. Let γ : [0, T ]→ Σ be a simple periodic Reeb orbit.
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We have:

2T = 2

∫ T

0
αγ(t)

(
γ̇(t)
)
dt(5.5)

=

∫ T

0
〈γ̇(t), Jγ(t)〉dt since αx(Xx) =

1
2〈Xx, Jx〉

=

∫ T

0
〈γ̇(t), Jγ̄(t)〉dt with γ̄(t) := γ(t)− 1

T

∫ T

0
γ(t)dt

≤ ‖γ̇‖L2‖γ̄‖L2

≤ ‖γ̇‖2L2
T
2π via the Wirtinger’s inequality

=
T

2π

∫ T

0
‖γ̇(t)‖2dt = T

2π

∫ T

0
‖(Rα)γ(t)‖2dt

For any point x in Σ, the norm of the Reeb vector field is bounded by
‖(Rα)x‖ ≤ 2

R1
. Indeed, Rα is proportional to JνΣ since ι(JνΣ)dα = 0 be-

cause ι(JνΣ)dα(Y ) = ω(JνΣ, Y ) = −〈νΣ, Y 〉 = 0 for all Y ∈ TΣ. Thus Rα =
cJνΣ with |c| = ‖Rα‖. But αx(Rαx) = 1 = 1

2〈cxJνΣ(x), Jx〉 = cx
2 〈νΣ(x), x〉.

Therefore, by assumption (5.1), cx = 2
〈νΣ(x),x〉 ≤ 2

R1
. And thus (5.5)≤ 4

R2
1
T T

2π .

Then 2T ≤ 2T T
πR2

1
and we reach the conclusion

T ≥ πR2
1.

Hence the conclusion of the Theorem. �
We have to assume here that all periodic Reeb orbits are non degenerate;
this hypothesis is not needed in the original proof. The original proof of
Theorem 5.1 uses variational methods that work only in R2n.

5.2. Reeb orbits on hypersurfaces in negative line bundles

Our framework here is a complex line bundle L π→ B2n over a closed sym-
plectic manifold (B2n, ωB), endowed with a Hermitian structure h and a
connection ∇. We assume L to be negative i.e. c1(L) = −κ[ωB] for a real
number κ > 0. The transgression 1-form, θ∇ ∈ Ω1

(L \OL,R
)
is defined by

(5.6)

{
θ∇u (u) = 0, θ∇u (iu) = 1

2π u ∈ L \OL
θ∇|H∇ ≡ 0 where H∇ is the horizontal distribution.

We have

dθ∇ = κπ�ωB.
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We denote by r : L → R : u �→ hπ(u)(u, u)
1

2 =: |u| the radial function on the
fiber. Observe that d(r2θ∇) is symplectic except on the zero section OL. We
want to have information about the minimal number of periodic orbits of
the Reeb vector field on a hypersurface in L \OL endowed with the contact
form defined by the restriction of (r2θ∇) to Σ.

Proof of Proposition 1.5. We start by determining Reeb orbits on the circle
bundle with varying radius. Let f : B → R be a smooth function. Define the
contact hypersurface(

Sef = {u ∈ L | |u| = ef(π(u))}, α := (r2θ∇)|S
ef

)
.

The Reeb vector field on Sef is given by:

(5.7) Rα = e−2f(π(u))

(
2π∂θ +

2

κ
X̄f

)
where ∂θ is the infinitesimal rotation in the fiber (∂θ at the point u identifies
with iu), where Xf is the Hamiltonian vector field on B corresponding to
the function f (i.e. ι(Xf )ωB = df) and where X̄ denotes the horizontal lift
of a vector X ∈ TB. Periodic Reeb orbits correspond to the critical points of
f . Thus, using Morse’s inequalities, we have: if Σ is a contact type hypersur-
face in L such that the intersection of Σ with each fiber is a circle, and if the
contact form is the restriction of r2θ∇, then Σ carries at least

∑2n
i=0 βi geo-

metrically distinct periodic Reeb orbits, where βi denote the Betti numbers
of B. �

We are now ready to prove Theorem 1.6 for a contact type hypersurface
Σ in a negative line bundle L over a symplectic manifold B, when it is
“pinched” between two circle bundles SR1

and SR2
of radii R1 and R2 such

that 0 < R1 < R2 and R2

R1
<
√
2, and when there exists a Liouville domain

W ′ (such that its first Chern class vanishes on all tori) whose boundary
coincides with the circle bundle SR1

. We endow Σ with the contact form α
induced by r2θ∇ on L. We assume that the minimal action of any periodic
Reeb orbit on Σ is bounded below by R2

1. We also assume that there exists a
Morse function f : B → R such that the set of indices of all critical points of
f is lacunary. We want to prove that Σ carries at least

∑2n
i=0 βi geometrically

distinct periodic Reeb orbits.

Proof of Theorem 1.6. The proof is the same as for Theorem 5.1 using trans-
fer morphisms for Liouville domains. We see the hypersurfaces as lying in
the completion of the Liouville domain W ′ which we assumed to exist. We
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find a small ε so that the convex domain Σ̃ bounded by the hypersurface Σ
is such that

S̃R1eεf ⊂ Σ̃ ⊂ S̃R2eεf ⊂ Ŵ ′

where S̃f is the domain bounded by Sf . We can compute the positive S1-
equivariant symplectic homology, which is spanned by periodic orbits of the
Reeb vector field by Theorem 1.1. This is possible by the pinching condition.
One uses then the transfer morphisms with truncated action. We have seen
that there are

∑2n
i=0 βi simple periodic orbits on SR1eεf whose actions are very

close to R2
1 and the same number of simple periodic orbits on SR2eεf whose

actions are very close to R2
2. The transfer morphism imply the existence of

at least
∑2n

i=0 βi periodic orbits on Σ with action between R2
1 et R2

2. Since
we have assumed here that the minimal action of any periodic Reeb orbit
on Σ is bounded below by R2

1, those orbits are geometrically distinct. �
In this Theorem, the assumption on the existence of a Morse function all of
whose critical points have Morse indices of the same parity is of a technical
nature. Its purpose is to bring the situation within the scope of Theorem 1.1,
which is our tool for computing the positive S1-equivariant symplectic ho-
mology. The lower bound on the period of any periodic Reeb orbit is semi-
technical; it is now the only way we have to distinguish the images of the
orbits. The “pinching” assumption is more conceptual, its main implication
is that the “n first generators” of the positive S1-equivariant symplectic
homology are simple orbits.

Example 5.3 (Tautological complex line bundle over CPn−1). We
consider the tautological complex (negative) line bundle over CPn−1, O(−1)
−→ CPn−1. The corresponding disk bundle, which is the canonical disk bun-
dle over CPn−1, is canonically isomorphic to the ball blown up at the ori-

gin, B̂2n :=
{(

z, [t]
) ∈ Cn × CPn−1 | z ∈ [t] |z| ≤ 1

}
. Its boundary is the

sphere, which is the boundary of the ball in Cn � R2n which is a Liouville
domain. The basis B = CPn−1 admits the Morse function fn−1 defined ear-
lier, whose critical points have even Morse indices.

Example 5.4 (Tautological complex line bundle over the Grass-
mannian G+

2,n). We consider the tautological complex negative line bun-
dle over the Grassmannian of oriented 2-planes in Rn (an oriented real 2-
plane being considered as a complex 1-dimensional space). The circle bundle,
which is the boundary of the corresponding disk bundle, is canonically iso-
morphic to the unit sphere bundle in the cotangent bundle T ∗Sn−1 to the
sphere Sn−1; indeed any element z above an oriented 2-plane π in this circle
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bundle represents two oriented orthonormal vectors u, v in Rn spanning π;
this can be viewed as an element u in Sn−1 and an element v in T ∗

u (S
n−1).

This unit bundle in the cotangent bundle T ∗Sn−1 is also the boundary of
the Liouville domain defined by all cotangent vectors of length at most 1 in
T ∗Sn−1. The basis of our tautological complex line bundle is the Grassman-
nian G+

2,n; when n is even, it admits the Morse function [32]

f(π) = c1(u
1v2 − u2v1) + c2(u

3v4 − u4v3) + · · ·+ cn(u
2n−1v2n − u2nv2n−1)

with c1 > c2 > · · · > cn > 0, where the oriented 2-plane π is generated by
the oriented orthonormal vectors u =

∑2n
i=1 u

iei and v
∑2n

j=1 v
jei in R2n. The

critical points of f are the planes spanned by the oriented basis { e1, e2 },
{ e3, e4 }, . . . , { e2n−1, e2n } and { e2n, e2n−1 }, . . . , { e4, e3 }, { e2, e1 }; they
have Morse indices 0, 2, . . . , 2n− 2, 2n− 2, . . . , 4n− 6, 4n− 4 respectively.
These are all even integers.
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