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Lagrangian submanifolds at infinity and

their parametrization

Sandro Coriasco and René Schulz

In this paper, we study a class of Lagrangian submanifolds which
may be viewed as intersecting at infinity. They are objects natu-
rally associated with a class of tempered oscillatory integrals. In
this context, we prove the adapted versions of the classical the-
orems, such as parametrization results, as well as equivalence of
phase functions.
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1. Introduction

The study of Lagrangian submanifolds is an important branch in symplec-
tic geometry. One of the main motivations for their study is due to the
fundamental role they play as carriers of singularities in the global theory
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of Fourier integral operators on manifolds, see [10, 16, 19, 20]. The fun-
damental connection is that the kernels of Fourier integral operators are
Lagrangian distributions associated with a Lagrangian submanifold given
by a canonical relation.

The resulting calculus is especially well-suited for working on compact,
boundaryless manifolds, while a global theory of Fourier integral operators
on unbounded manifolds, even on Rd, is far from being complete. A natural
choice of a class of pseudodifferential operators that such operators should
contain are those defined through the so-called SG-symbols, see [2, 32, 34].
There are many contributions to the long-standing problem of introducing
a suitable global calculus of SG-Fourier integral operators, see for instance
[1, 3, 4, 8]. As a key ingredient, it is desirable to understand the suitable
class of associated Lagrangian submanifolds that should be considered.

In [25, 26, 30], a geometric approach to the SG-calculus on general
asymptotically conic manifolds, the so-called scattering geometry, has been
developed. Unbounded geometries are therein viewed as manifolds with
boundary and the cotangent bundle is replaced by a rescaled and compact-
ified version, the scattering cotangent bundle. Melrose and Zworski subse-
quently introduced the so-called Legendrian distributions, see [30], which
are smoooth functions with a prescribed singularity at infinity, associated
with Legendrian submanifolds “at infinity” (see also [14, 15, 39]). On a vec-
tor space, these distributions correspond to Fourier transforms of compactly
supported Lagrangian distributions.

In [9] we discussed SG-type tempered oscillatory integrals on Rd, which
are Lagrangian distributions with a suitable behaviour at infinity. It turned
out that their singularities, encoded by their SG-wave front set, may be
decomposed into two sets: one which admits an interpretation as a Lagran-
gian submanifold, and one that corresponds to a Legendrian. These sets
may thus be used as the starting point of a global theory of SG-Fourier
integral operators, and a clear understanding of their geometric properties
and local parametrization is then a necessary prerequisite.

Here we provide the details needed to start such analysis. In particular,
we introduce a class of pairs of Lagrangian-Legendrian submanifolds and
show how they can be parametrized by a class of SG-phase functions. We
then review in which sense the resulting objects are suitable to formulate
the singularities of SG-Lagrangian distributions. In future publications, we
will then establish a calculus of the associated SG-Lagrangian distributions.

The paper is organized as follows. In Section 2, we revisit some features
of the scattering geometry and outline the geometric setting in which our
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analysis takes place. Here we give our main definition of SG-Lagrangian sub-
manifold, and emphasize in which sense the components of it are Lagrangian
“at infinity” and “at co-infinity”. In Section 3 we introduce the class of phase
functions that may be used to parametrize SG-Lagrangians. We check that
such (non-degenerate) phase functions indeed give rise to SG-Lagrangian
submanifolds. In the main Parametrization Theorem 3.24 we state that the
converse is also true. That is, we may always parametrize SG-Lagrangians
by a phase function - in a suitable sense of locality. The subsequent Section 4
is devoted to the proof of the Parametrization Theorem. In Section 5 we
outline when two phase functions parametrizing the same Lagrangian may
be considered equivalent. Section 6 is devoted to reviewing some elements
of the theory of tempered oscillatory integrals from [9] and give an example
of how SG-Lagrangian submanifolds arise. Finally, for the benefit of the
reader, we collected some results on the analysis of manifolds with corners
in Appendix A.

Acknowledgements

The authors would like to express their gratitude for helpful advice and com-
ments received by D. Bahns, U. Battisti, A. Fino, B.-W. Schulze, A. Vasy
and I. Witt. We also thank an anonymous referee, for the useful remarks and
suggestions, aimed at improving the general organization of the paper and
the presentation of the results. The second author would like to gratefully
acknowledge the support received from the universities of Göttingen and
Hannover as well as from the “Studienstiftung des deutschen Volkes”. The
authors have been partially supported by the Gruppo Nazionale per l’Analisi
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2. Asymptotically Euclidean manifolds and their
symplectic structure

2.1. Scattering manifolds

There are many definitions available to formulate aysmptotic flatness of
manifolds. In this subsection we give a short description of the scattering
geometry, introduced in [25, 26, 30]. Therein, an asymptotically Euclidean
manifold X is one that admits a specific compactification, in the sense that
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X may be viewed as a compact manifold with boundary Xo ∪ ∂X, equipped
with a Riemannian metric g defined in the interior. In a neighbourhood of
the boundary, of the form [0, ε)× ∂X � (ỹ, y), where ỹ is a boundary defining
function, it is required that g can be written in the form

(1) g(ỹ, y) =
dỹ⊗2

ỹ4
+

h

ỹ2
,

with h being a smooth symmetric 2-tensor which restricts to a metric on the
boundary. The geometry “at infinity”, identified with the boundary, is then
modelled by the scattering vector fields, that is, vector fields that are tangent
to the boundary and of bounded length w.r.t. g. These are the sections of
a vector bundle, denoted by scTX, and are spanned by vector fields of the
form ỹ2∂ỹ and ỹ∂yj

. In fact, these vector fields, the scattering vector fields
scV , may be obtained as ỹVb where Vb are the vector fields tangent to the
boundary. Consequently, there is a natural map scTX ↪→ TX, under which
g restricts to a well-defined tensor of scTX, and a corresponding dual bundle
T ∗X ↪→ scT ∗X.

In the next subsection we recall one way of viewing Rd as a scattering
manifold.1

2.2. Radial compactification

We set Bd = {x ∈ Rd : |x| ≤ 1}, and denote ∂Bd = Sd−1, (Bd)o = {x ∈ Rd :
|x| < 1}, and R+ = (0,∞). Pick any diffeomorphism ι : Rd → (Bd)o that for
|x| > 3 is given by

ι : x �→ x

|x|
(
1− 1

|x|
)
.

Then its inverse is given, for |y| ≥ 2
3 , by

ι−1 : y �→ y

|y|(1− |y|)
−1.

The map ι is called the radial compactification map. The associated polar
coordinates equip Rd with a differential structure “at infinity”. Indeed,
introducing polar coordinates (r, ϕ) ∈ Rd we see that ι is simply given (for

1The choice of compactification is motivated by that of [12], here reformulated
in terms of scattering geometry.
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large r) by

(2) r �→ 1− 1

r
and ϕ �→ ϕ.

Denote by x �→ [x] any smooth function Rd → R+ that coincides with |x| for
|x| > 3. Then, the map Bd → [0,∞) given by y �→ 1

[ι−1(y)] =: ỹ is a boundary
defining function, that is, a non-negative smooth function that vanishes on
and only on the boundary of Bd, and whose differential is non-vanishing
at ∂Bd. Notice that, for |y| > 2/3, the map y �→ ỹ is simply given by y �→
(1− |y|). In a collar neighbourhood of the boundary, 0 ≤ ỹ < 1/3, the metric
induced by these coordinates from the standard Euclidean metric on Rd

is given by g = dỹ⊗2

ỹ2 + h
ỹ4 , where h is the (lifted) standard metric on the

(d− 1)-sphere.

2.3. Scattering geometry at infinity

We now return to the case of a general scattering manifold. Since scT ∗X is
a vector bundle, it is possible to apply radial compactification to its fibres,
resulting in an object denoted by scT ∗X. We denote coordinates therein by
(ỹ, y, η̃, η), where η̃ is the fibre-boundary defining function. The resulting
set scT ∗X carries the structure of a manifold with corners. Various elements
of the theory of manifolds with corners are recalled in Appendix A, based
on [23]. In the sequel, we will refer to its contents whenever needed.

The boundary of scT ∗X consists of two components,

∂(scT ∗X) = scS∗X ∪ scT ∂X
∗ X,

which intersect in the corner (of codimension 2) scS∂X
∗ X. Here, scS∗X is a

(co-)sphere bundle on X, where the (co-)sphere is interpreted as the bound-
ary of Bd.

It is important to note that by the rescaling isomorphism dy
ỹ ↔ dy, using

the boundary defining function, we have

scT ∂X
∗ X ∼= T ∗∂XX.

This corresponds to the fact that the (dual) rescaling isomorphism scV �
v �→ ỹ−1v induces an isomorphism scT∂XX ∼= T∂XX. In the same way, using
η̃, we may identify scS∗X with the usual co-sphere bundle.

Following [2], we call W̃ := ∂(scT ∗X) the wave front space and the bound-
ary components its faces. In our model case Rd, the resulting space is
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W̃ψ

W̃e

W̃ψe

Xo

scT ∂X
∗ X

∂X

Figure 1: The boundary faces and corner of scT ∂X
∗ X.

W̃ := ∂(Bd × Bd). The one-dimensional case is depicted in Figure 1. Note
that it is exceptional, since ∂B1 = S0 = ±1, which is not connected. We
depict the situation near the top right corner (+1,+1).

Notation. The faces of W̃ behave in a lot of ways “symmetrically”. In
order to reflect this in a more symmetric notation, following [12], we attach to

any object defined on scS∗(Xo) =: W̃ψ an index “ψ” and to the corresponding

one in scT ∗∂XX =: W̃e an index “e”. To the corner, scS∂X
∗ X =: W̃ψe, we

attach the label “ψe”. In the model case this becomes

∂(Bd × Bd) = (Sd−1 × (Bd)o) ∪ ((Bd)o × Sd−1) ∪ (Sd−1 × Sd−1)

=: W̃e ∪ W̃ψ ∪ W̃ψe.

We will need to interpret conic subsets of T ∗X \ {0} as subsets of W̃ψ and
viceversa. We then form

Wψ := W̃ψ × R+
∼= T ∗X \ {0}, We := R+ × W̃e ∼= T ∗(Γ(∂X)),

where Γ(∂X) is the cone with base ∂X, that is R+ × ∂X with metric dr +
r2h.
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2.4. Symplectic structure at infinity

In the sequel, we will view ∂(scT ∗X) from two viewpoints: as the correct
space for (scattering) microlocalization, and as the carrier of a natural sym-
plectic structure, induced from the interior bundle T ∗(Xo). That is, the

symplectic structure on W̃ should be obtained from the canonical symplec-
tic 2-form ω defined in the interior. However, this 2-form blows up near the
boundary ∂X, see [30]. Since we aim at connecting microlocal phenomena
to the symplectic geometry of the underlying manifold, we need a suitable
extension of the symplectic structure of T ∗(Xo) to ∂(scT ∗X). This can be
achieved by rescaling as follows, cf. [25, 39] and [19, Sect. 21.1]. We set

α̃ψ := (η̃2∂η̃) ⌟ ω restricted to W̃ψ,

α̃e := (ỹ2∂ỹ) ⌟ ω restricted to W̃e.

The 1-forms α̃ψ and α̃e turn out to be two contact forms. Before proceeding,
we will establish a different viewpoint for these 1-forms.

Recall that T ∗X is a vector bundle and, as such, a conical manifold.
This yields a distinguished radial vector field ρψ, corresponding to fibre-wise
dilation, given by ρψ(f)(x, ξ) = ∂tf(x, tξ)|t=1. In local coordinates (x, ξ),
ρψ is then given by

∑
ξj · ∂ξj , which, under radial compactification in the

fibre with η̃ = 1
|ξ| , becomes η̃∂η̃. It is well-known that insertion of ρψ into

ω yields the canonical 1-form αψ, which restricts to the canonical contact
form on the co-sphere bundle. Thus, α̃ψ corresponds to a rescaling of the
canonical 1-form under the rescaling isomorphism scS∗X ∼= S∗X. We may
obtain α̃e by an analogous construction. Indeed, any choice of boundary
defining function, and corresponding collar decomposition X = [0, ε)× ∂X,
introduces a conical structure near the boundary of X. The associated
radial vector field yields again a 1-form, of which α̃e is the rescaling. In our
model example T ∗Rd with standard symplectic coordinates, these 1-forms
correspond to a rescaling of the 1-forms

αe = −x · dξ, αψ = ξ · dx.

Lemma 2.1. The differential 1-forms α̃e and α̃ψ do not depend on the
choice of coordinates.

Proof. We check the statement for α̃e, since it here represents the main new
element of the symplectic structure at infinity, and the result for α̃ψ can be
obtained in a completely similar way (cfr. also [30]). Let (ỹ′, y′) be new
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coordinates inducing the same smooth structure. Then (ỹ′, y′) are related
to (ỹ, y) by a diffeomorphism. Since ỹ and ỹ′ are both boundary defining
functions we have ỹ′ = ỹf(ỹ, y) for some smooth f > 0. Moreover, the fact
that the metric has to take the form (1) for both of them implies that near
the boundary ỹ = ỹ′ = 0 we necessarily have

f−2
(
f + ỹ

(
∂f

∂ỹ

))
= 1 +O(ỹ).

We compute

ỹ2∂ỹ = f−2
(
f + ỹ

(
∂f

∂ỹ

))
(ỹ′)2∂ỹ′ +

(ỹ′)2

f2

n∑
j=1

(
∂y′

∂ỹ

)
∂y′ .

Therefore, ỹ2∂ỹ = (ỹ′)2∂ỹ′ , up to contributions from ỹ scV . As sections of
scTX, the bundle obtained by scTX through radial compactification of the
fibers, the latter vanish under restriction to the boundary ỹ = 0. Hence,
α̃e does not depend on the choice of coordinates associated with the same
scattering structure, as claimed. �
We have then obtained two well-defined 1-forms, that describe the sym-
plectic structure “at infinity” and at “co-infinity” in the wave front space,
induced by the symplectic and scattering structures in the interior. In terms
of contact geometry, this corresponds to the freedom of passing from a con-
tact manifold to the associated symplectic cone and going back by contract-
ing with the Liouville vector field ρe or ρψ.

Recall, see e.g. [10, Section 3.7], that a conic submanifold L of T ∗X ⊂
{0} is called Lagrangian if αψ|L ≡ 0. Since αe and αψ are defined by con-
traction with radial vector fields, they vanish on that radial vector field by
antisymmetry of ω. Consequently, by applying the rescaling isomorphism
for the tangential vector fields, we have also proved:

Lemma 2.2. A compact submanifold L̃ of W̃ψ is Legendrian with respect
to α̃ψ, that is, it satisfies α̃ψ|scTL̃X ≡ 0, if and only if on the associated cone
L = L̃× (0,∞) we have αψ|L = 0. Correspondingly, a compact submanifold

L̃ of W̃e is Legendrian with respect to α̃e if and only if on the associated
cone L = (0,∞)× L̃ we have αe|L = 0.

It follows that we may view such submanifolds either as conic and
Lagrangian or Legendrian for the corresponding contact forms. In the next
step we will generalize this notion to pairs of ψ- and e-Legendrian submani-
folds with boundary that intersect in the corner. That is, we want to have a
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Lagrangian structure across the corner, as shown schematically2 in Figure 2.

W̃ψ

W̃e

W̃ψe

Λ̃ψeΛ̃ψeΛΛ̃̃ΛΛΛ̃̃ΛΛΛ̃

y, η
ỹ

η̃
Λ̃e

Λ̃ψ

Figure 2: Intersection of Λ̃ψ ⊂ W̃ψ and Λ̃e ⊂ W̃e at the corner W̃ψe.

We are now in the position to introduce such Legendrian submanifolds.

Definition 2.3. A closed, embedded Legendrian (corner-crossing) subman-
ifold Λ̃ = (Λ̃e, Λ̃ψ) is a pair of closed, embedded submanifolds with boundary
of ∂(scT ∗X), such that

1. (Λ̃e)o ⊂ W̃e, (Λ̃ψ)o ⊂ W̃ψ,

2. dim(Λ̃e) = dim(Λ̃ψ) = d− 1,

3. (Λ̃e ∩ Λ̃ψ) = ∂Λ̃e = ∂Λ̃ψ =: Λ̃ψe ⊂ W̃ψe (with dim(Λ̃ψe) = d− 2), with
the intersection being clean,

4. The contact forms α̃e and α̃ψ satisfy

α̃e|
˜Λe ≡ 0, α̃ψ|

˜Λψ ≡ 0.

Furthermore, we make the following assumptions, which will become clear
in the later parts of the document:

5. (Λ̃e)o ∩ (∂X × {0}) = ∅,
6. Λ̃ψe is the conormal sphere to some submanifold S̃ of ∂X, namely,

Λ̃ψe = ∂(scN∗S̃).

2The simplest non-trivial situation, in which this arises, is in 4 dimensions.
In Figure 2, the boundary coordinates (y, η) were combined and drawn as one-
dimensional.
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We call the associated pair (Λe,Λψ) of submanifolds, ofWe andWψ respec-
tively, an SG-Lagrangian submanifold.

Remark 2.4. We remark that Definition 2.3 only covers the case where
there is actually an intersection in the corner. The case where Λ is a compact
Legendrian submanifold (w.r.t. one of the contact forms) without boundary
in the corresponding face - or a finite collection thereof - is straightforward
to formulate. Since this case is already well-studied in [19] and [30], respec-
tively, we focus on the corner-crossing case in the remainder of the paper.

3. Phase functions and associated submanifolds

Having formulated what a Legendrian submanifold/pair of Lagrangian sub-
manifolds is in our context, we now turn towards its parametrization. In
this section, we will discuss the class of phase functions that may be used to
parametrize the previously defined objects. We start by recalling elements
from the classical theory.

3.1. Introduction and motivation

Assume for now that X is a compact manifold without boundary, and Λ ⊂
T ∗X \ {0} is a Lagrangian submanifold conic in the fiber. Introduce local
coordinates around a given point x0 ∈ X such that (x0, ξ0) ∈ Λ. Then, it
is always possible to find a (real) phase function ϕ(x, θ) ∈ C∞(Rd × (Rs \
{0})), that is, a smooth function, positively 1-homogeneous w.r.t. θ, that
has no critical points, i.e. dxϕ+ dθϕ �= 0, which locally parametrizes Λ.
This means that, in a suitable neighbourhood of (x0, ξ0), conic in ξ, we have

(3) Λ ≡ Λϕ = {(x,∇xϕ(x, θ)) | ∇θϕ(x, θ) = 0}.

In fact, ϕ may be assumed non-degenerate, meaning that the map λϕ :
(x, θ) �→ (x,∇xϕ) is a local diffeomorphism

{(x, θ) : ∇θϕ(x, θ) = 0} =: Cϕ → Λ.

In the following, we will reinterpret this analysis and establish a suitable ana-
logue in the non-compact setting. The guiding idea is that the phase func-
tion ϕ, in the previous setting of compact manifolds without boundary, is
actually determined, by homogeneity, by its restriction to X × Ss−1. More-
over, Λ is determined by its (Legendrian) intersection with the co-sphere
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bundle, Λ ∩ S∗X. In local coordinates, we thus have a (local) correspon-
dence of smooth, 1-homogenous, non-critical functions on Rd × Ss−1 and
Legendrian submanifolds in W̃ψ. This motivates that a Legendrian corner-
crossing submanifold should be locally parametrized by a smooth function ϕ̃
on a “suitable model corner” ∂(Bd × Bs). Revisiting Figure 2 the situation
is schematically modelled in Figure 3.

λ̃ϕ

λ̃ϕλ̃ϕ

Λ̃ψ
ϕ

Λ̃e
ϕ

Figure 3: Parametrization of Λ̃ϕ from a model corner.

Smooth functions on such a model corner are given by pairs ϕ̃ = (ϕ̃ψ, ϕ̃e)
of smooth function on the respective faces that are compatible in the corner.
Actually, such a smooth function is the restriction of a smooth function on
Bd × Bs to the boundary. This gives rise, under inverse radial compactifica-
tion, to the classical SG symbols, also called scattering symbols.

3.2. Classical SG-symbols and phase functions

Notation. In the sequel, we need to introduce some notation in order to
distinguish the different faces and the corner in the (compactified) cotangent
bundle and the space used for parametrization by a phase function. These
different faces of manifolds and corners behave somewhat symmetrically. To
avoid confusion when different spaces are involved, we make systematic use
of the following notation:

• y denotes “variable-type” elements of Bd, η denotes “co-variable-type”
elements of Bd, γ denotes “co-variable-type” elements of Bs; if we
distinguish one variable as a boundary defining function, we mark it
by adding a tilde to it;
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• the corresponding elements of Rd are denoted by x and ξ and elements
of Rs are named θ.

Subsets of Bd and Bs that correspond to subsets of Rd � (Rd \ {0}) or Rs �
(Rs \ {0}) are usually denoted by the same symbol equipped with a tilde.

We recall that the SG-wave front space is defined as W̃ := ∂(Bd × Bd) =

W̃e � W̃ψ � W̃ψe, where

(4) W̃e := Sd−1 ×
(
Bd

)o
, W̃ψ :=

(
Bd

)o × Sd−1, W̃ψe := Sd−1 × Sd−1.

In a completely similar fashion to the faces of W̃, substituting s in place of d
in the dimensions of the second factors in (4), we define B̃ := ∂(Bd × Bs) =
B̃e � B̃ψ � B̃ψe. We also set W =We �Wψ �Wψe, with

(5) We := R+ × W̃e, Wψ := W̃ψ × R+, Wψe := R+ × W̃ψ × R+,

and, again with s in place of d in the dimensions of the second factors of (5),
B := Be � Bψ � Bψe. Finally, we set S = Se � Sψ � Sψe, with

Se = Sd−1 × Rs, Sψ = Rd × Ss−1, Sψe = Sd−1 × Ss−1.

Moreover, we will use the symbol χ for any excision function, that is, a
smooth function χ : Rd → [0, 1] (or defined on Rs) that equals 0 in a neigh-
bourhood of the origin and is identically equal to 1 outside some compact
set. When appropriate, we attach a label “e” or “ψ” to it, to emphasize the
variables on which χ acts.

SG-symbol classes. The class of SG-symbols on Rd × Rs of order (me,mψ)
∈ R2 consists of those a ∈ C∞(Rd × Rs) such that, for all α, β ∈ Nd

0, there
exist Cαβ > 0 such that, for all (x, θ) ∈ Rd × Rs,

|∂α
x ∂

β
θ a(x, θ)| ≤ Cαβ〈x〉me−|α|〈θ〉mψ−|β|.

Such symbol classes will be denoted by SGme,mψ(Rd × Rs). On a general
(SG-admissible) manifold X, these are introduced by covering X with local
coordinate patches that make X look like Rd, see [25].

There is an important subclass of SG-symbols, denoted by SG
me,mψ

cl (Rd ×
Rs), which consists of those elements of SGme,mψ(Rd × Rs) that admit poly-
homogeneous expansions (in both x and θ separately), see [12, 31, 41]. The
important feature for our analysis is that these are precisely given, by radial
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compactification, as weighted smooth functions on the corresponding com-
pactifications, see [12, 25, 41]. From here on, we will denote coordinates
on Bs, viewed as the radial compactification of Rs, by (γ̃, γ). We use the
symbol ι for both the radial compactification map in Rd as well as Rs.

Theorem 3.1 (Realization as smooth functions). For (me,mψ) ∈ R×
R, consider the map ι

me,mψ

SG on SG
me,mψ

cl (Rd × Rs) given by

a(x, θ) �→ b(y, γ) := ỹme γ̃mψ [(ι−1 × ι−1)∗a](ỹ, y, γ̃, γ)(6)

= ỹme γ̃mψ ã(ỹ, y, γ̃, γ).

Then, (6) extends to an isomorphism

ι
me,mψ

SG : SG
me,mψ

cl (Rd × Rs)→ C∞(Bd × Bs).

Remark 3.2. This means that ã = (ι−1 × ι−1)∗a ∈ ỹ−me γ̃−mψC∞(Bd ×
Bs), and that under radial compactification we have a filtration-preserving
isomorphism3. Namely,

SGcl(R
d × Rs) =

⋃
me,mψ

SG
me,mψ

cl (Rd × Rs) ∼=
⋃

me,mψ

ỹ−me γ̃−mψC∞(Bd × Bs).

Under this isomorphism, the polyhomogeneous expansions correspond to
Taylor series in polar coordinates. In particular we may recover the principal
symbols.

Definition 3.3. Let a ∈ SG
me,mψ

cl (Rd × Rs). The principal symbol of a is
the triple of smooth functions σ(a) = (σψ(a), σe(a), σψe(a)) on Bψ, Be and
on Bψe, respectively, obtained by

σψ(a)(x, θ) = lim
λ→∞

λ−mψa(x, λθ),

σe(a)(x, θ) = lim
μ→∞μ−mea(μx, θ),

σψe(a)(x, θ) = lim
μ→∞ lim

λ→∞
λ−mψμ−mea(μx, λθ).

Lemma 3.4 (Properties of the principal symbol). Let a∈SGme,mψ

cl (Rd×
Rs). Then

3We remark that this isomorphism may be used to equip SGcl with a Fréchet
topology, see [12, 41].
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a) for any two excision functions χe and χψ we have

(7) a(x, θ)− χψσψ(a)− χeσe(a) + χeχψσψe(a) ∈ SG
me−1,mψ−1
cl (Rd × Rs);

b) for all (α, β) ∈ Nd
0 × Ns

0, • ∈ {e, ψ, ψe} we have

σ•
(
∂α
x ∂

β
θ a

)
(x, θ) = ∂α

x ∂
β
θ (σ

•a)(x, θ);

c) the symbol a is said to be •-elliptic at a given point (x, θ) in the respec-
tive domain of σ•(a), • ∈ {ψ, e, ψe}, if we have σ•(a)(x, θ) �= 0;

d) under the isomorphism in Theorem 3.1, the principal symbol may be
computed as the restriction of ã to the respective boundary face, homo-
geneously continued into the interior, that is, we have σ•(a)|S•(x, θ) =
ã|

˜B•(y, γ); explicity, using polar coordinates,

σψ(a)(x, θ) = |θ|mψ ã

(
ι(x); 0,

θ

|θ|
)
,

σe(a)(x, θ) = |x|me ã

(
0,

x

|x| ; ι(θ)
)
,

σψe(a)(x, θ) = |x|me |θ|mψ ã

(
0,

x

|x| ; 0,
θ

|θ|
)
.

Remark 3.5. Notice that, in view of point d) in Lemma 3.4, equation
(7) is nothing else than the fact that ỹme γ̃mψ ã, subtracted by (any smooth
continuation to the interior of) its restriction to the boundary, vanishes
there. Similarly, ellipticity at a point in Rd × Rs is simply the non-vanishing
of ỹme γ̃mψ ã at the corresponding point on B̃.

SG-Phase functions. We will now introduce the class of SG-symbols that
may be used to parametrize Lagrangian submanifolds, that is, SG-phase
functions. Such phase functions were introduced in [9], see also Section 6
below. We restrict our attention to phase functions of order (1, 1).4

Definition 3.6. An element of SG1,1(Rd × Rs) is called an (admissible,
classical) SG-phase function near (x0, θ0) ∈ B if it is real-valued and the

4In view of Theorem 3.1, this is no real restriction, since any space SG
(me,mψ)
cl

is isomorphic to the smooth functions, and this isomorphism actually contains the
geometric information.
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associated function

(8) Φ(x, θ) := 〈x〉2 |∇xϕ(x, θ)|2 + 〈θ〉2 |∇θϕ(x, θ)|2

is elliptic at (x0, θ0). We associate with a phase function the critical set

Cϕ =
{
(x0, θ0) ∈ B : |∇θϕ| is not elliptic at (x0, θ0)

}
.

More precisely, we write ϕ• = σ•(ϕ) and split Cϕ into

Ceϕ := {(x0, θ0) ∈ Be : ∇θϕ
e(x0, θ0) = 0},

Cψϕ := {(x0, θ0) ∈ Bψ : ∇θϕ
ψ(x0, θ0) = 0},

Cψeϕ := {(x0, θ0) ∈ Bψe : ∇θϕ
ψe(x0, θ0) = 0}.

Remark 3.7. The principal symbol of a SG1,1-symbol ϕ is a triple of func-
tions ϕe(x, θ), ϕψ(x, θ) and ϕψe(x, θ), each 1-homogeneous in x, θ and both
separately, respectively. It follows that ϕψ is then a phase function in the
ordinary sense, and the Cψϕ -component coincides with the standard notion
of critical set Cϕ for a homogenous phase function ϕψ.

We will now characterize Cϕ in the boundary components on the com-

pactified space B̃ by the compactification map ι.

Lemma 3.8. The condition that the associated function Φ = |π1,0 · ∇xϕ|2 +
|π0,1 · ∇θϕ|2 is SG-elliptic of order (2, 2) is equivalent to the condition that(
γ̃∇̃xϕ, ỹ∇̃θϕ

)
is not vanishing on the corresponding point B̃. We can write

C̃ϕ := {(y0, γ0) ∈ B̃ : ỹ∇̃θϕ(y0, γ0) = 0},

for which we have

C̃eϕ = (ι× id)
(Ceϕ ∩ Se

)
, C̃ψϕ = (id× ι)

(Cψϕ ∩ Sψ
)
, C̃ψeϕ = Cψeϕ ∩ Sψe.

Proof. By Lemma 3.4, Φ is elliptic if and only if ι2,2SG(Φ) is not vanishing at

the corresponding point in B̃. We can also write,

ι2,2SG(Φ)(y, γ) = γ̃2ỹ2
(〈x〉2|∇xϕ(x, θ)|2 + 〈θ〉2|∇θϕ(x, θ)|2

) ∣∣
(x,θ)=(ι−1(y),ι−1(γ))

=
[
|(ι1,0SG(〈x〉) · ι0,1SG(∇xϕ)|2 + |(ι0,1SG(〈θ〉) · ι1,0SG(∇θϕ)|2

]
(y, γ)
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Since 〈x〉 and 〈θ〉 are elliptic, their images under ι1,0SG and ι0,1SG are nowhere

vanishing, which proves the first assertion. The characterization of C̃ϕ fol-
lows by repeating the same argument for |〈θ〉 · ∇θϕ(x, θ)|2, in view of Defi-
nition 3.6. �
Lemma 3.8 allows for us to write the image of Cϕ as the null set of a smooth

function. We will now show that C̃ϕ may be regarded as a pair of smooth
manifolds in the boundary faces which intersect cleanly in the corner.

Definition 3.9 (Non-degenerate classical SG-phase functions). Let
ϕ ∈ SG1,1

cl (R
d × Rs) be a classical SG-phase function. Then ϕ is called non-

degenerate if the differentials
{
d
(
ỹ∂̃θjϕ|X

)}
j=1,...,s

form, for every (y0, γ0) ∈
C̃ϕ, a set of linearly independent vectors in T ∗(y0,γ0)

(B̃•), for any choice of

• ∈ {e, ψ, ψe} .

Each of the boundary faces B̃e and B̃ψ are submanifolds (with boundary)
of the manifold with corners Bd × Bs, that intersect cleanly at their joint
boundary B̃ψe. That is, for every (y0, γ0) ∈ Sd−1 × Ss−1 we have

T(y0,γ0)B̃ψe = T(y0,γ0)B̃e ∩ T(y0,γ0)B̃ψ.

We recall that, by Lemma 3.8, C̃ϕ is the set of boundary elements (y0, γ0)

jointly annihilated by ỹ∇̃θϕ, j = 1, . . . , s. From that we are able to obtain
a similar set-up for the different components of C̃ϕ, detailed in the next
Proposition 3.10.

Proposition 3.10. Let ϕ ∈ SG1,1
cl (R

d × Rs) be a non-degenerate SG-phase
function. Then, the following properties hold true.

1) The different components of C̃ϕ are totally neat submanifolds of the
corresponding boundary component in Bd × Bs. That is, we have

C̃ϕ = C̃eϕ ∪ C̃ψϕ ⊂ B̃e ∪ B̃ψ,

and their possible boundaries form a subset C̃ψeϕ of B̃ψe.

2) The codimension of the respective component is (if non-empty) always
s, meaning dim(C̃eϕ) = dim(C̃ψϕ ) = d− 1 and dim(C̃ψeϕ ) = d− 2.

3) The tangent space to each face of C̃•ϕ in B̃• may be calculated as{
v ∈ T(y0,γ0)(B̃•)

∣∣∣ (dy,γ (
ỹ∂̃θjϕ

∣∣
˜B•
))

v = 0 ∀j ∈ {1, . . . , s}
}
.
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4) The intersection C̃ψϕ ∩ C̃eϕ = C̃ψeϕ is clean.

Proof. Statements (1)–(3) are consequences of the regular value theorem for
manifolds with corners, see Theorem A.17. Then, also the cleanness of the
intersection follows. �
We now show how a non-degenerate SG-phase functions ϕ parametrizes
a pair of associated submanifolds Λ•ϕ over its critical set C•ϕ. We seek to
generalize (3). To that end, we set

Definition 3.11. Let ϕ ∈ SG1,1
cl (R

d × Rs) be a classical SG-phase function.
We define

Λe
ϕ :=

{
((x,∇xϕ

e(x, θ))
∣∣ ∃ (x, θ) ∈ Be : ∇θϕ

e(x, θ) = 0
}
,

Λψ
ϕ :=

{(
(x,∇xϕ

ψ(x, θ)
) ∣∣ ∃ (x, θ) ∈ Bψ : ∇θϕ

ψ(x, θ) = 0
}
,

Λψe
ϕ :=

{(
(x,∇xϕ

ψe(x, θ)
) ∣∣ ∃ (x, θ) ∈ Bψe : ∇θϕ

ψe(x, θ) = 0
}
.

The problem of Definition 3.11 is that it is hard to extract geometric
insight “at infinity”. In this “limit”, Λe

ϕ = Λψ
ϕ = Λψe

ϕ , but this is hard to
define for manifolds that are not even submanifolds of the same space. In
order to overcome this difficulty, we pass again to the compactified space.

We may first look at the map λϕ : Rd × Rs → Rd × Rd given by (x, θ) �→
(x,∇xϕ(x, θ)). This is a map whose components are SG1,0 and SG0,1-
symbols, respectively. We want to find an analogue to this function on
(Bd)o × (Bs)o → (Bd)o × (Bd)o that extends it to (parts of) the boundary
that becomes an isomorphism suitably close to C̃ϕ. We start by considering
the map

(y, γ) �→
(
ι−1(y), ∇̃xϕ(y, γ)

)
=̂(x, ∇̃xϕ(x, θ)),

defined on (Bd)o × (Bs)o. We may compactify the image space to Bd × Bd,
by means of the map ι× ι, to look at the extension of

(9) λ̃ϕ

∣∣
(Bd)o×(Bs)o

= (ι× ι) ◦ (
(ι−1 × ι−1)∗λϕ

)
to the subset

(10)
Ẽ = ((Bd)o × (Bs)o) � B̃e � B̃ell,

B̃ell = {(y0, γ0) ∈ B̃ψ ∪ B̃ψe : |∇xϕ|2 is elliptic at (y0, γ0)}.
Remark 3.12. This construction may be visualized through the following
commuting diagram:
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Ẽ Bd × Bd

(
Bd

)o × (Bs)o
(
Bd

)o × (
Bd

)o

Rd × Rs Rd × Rs

λ̃ϕ

λ̃ϕ

λϕ

ι−1 × ι−1 ι× ι

Indeed, we know by Theorem 3.1 that the map (ι1,0SG × ι0,1SG)λϕ : Bd ×
Bs → Bd × Rd given by

(11) (y, γ) �→
(
y, γ̃ ∇̃xϕ(y, γ)

)
is smooth up to the boundary. We will show that, close to the boundary
components of Ẽ , this property yields the desired extension of λ̃ϕ.

Proposition 3.13. λ̃ϕ defined on (Bd)o × (Bs)o by (9), can be extended as

a smooth map to the subset Ẽ ⊂ Bd × Bs defined in (10).

Proof. Since ι is a diffeomorphism, it is clear that λ̃ϕ is smooth in the
interior, i.e. on (Bd)o × (Bs)o. So, it is enough that we look at (9) for
|y|, |γ| > 2/3. It is also clear that we have to prove the existence of the
extension only for the second component of λ̃ϕ, since the first one coincides
with pr1, the projection on the first set of variables, which is of course
smoothly extendable from the interior to the whole of Bd × Bs.

By Theorem 3.1 and Lemma 3.4, we have, for a vector-valued symbol
p ∈ SG−1,1,

ι(∇̃xϕ(y, γ)) = ι

(
∇xϕ

e

(
y

|y|(1− |y|)
−1,

γ

|γ|(1− |γ|)
−1

)
+ p̃(y, γ)

)
(12)

= ι

(
∇xϕ

e

(
y

|y| ,
γ

|γ|(1− |γ|)
−1

)
+ p̃(y, γ)

)
.

Then, λ̃ϕ can be extended smoothly to

A1 = {y ∈ Bd : 2/3 < |y| ≤ 1} × {γ ∈ Bs : |γ| < r′},
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with arbitrary r′, 1 > r′ > 2/3. In fact, this is clearly true for the first term
appearing in the argument of ι in the right hand side of (12). For the second
term, it is enough to observe that, by Theorem 3.1, for any p ∈ SG−1,1,
p̃ ∈ ỹγ̃−1C∞(Bd × Bs), that is, also p̃ is smooth on A1. Moreover, the values
of both such extensions to A1 remain bounded, and ι is smooth on Rd. This
implies that λ̃ϕ can be smoothly extended to any point in B̃e.

We now consider the subset of Bd × Bs given by

A2 = {y ∈ Bd : 2/3 < |y| < 1} × {γ ∈ Bs : |γ| > r},

r′ > r > 2/3, so that, of course, B̃ell ⊂ A2. Observe that, by Lemma 3.4 (in
fact by its analogue for vector-valued symbols),

ι(∇̃xϕ(y, γ)) = ι

(
∇xϕ

ψ

(
y

|y|(1− |y|)
−1,

γ

|γ|(1− |γ|)
−1

)
+ q̃(y, γ)

)
(13)

= ι

(
∇xϕ

ψ

(
y

|y|(1− |y|)
−1,

γ

|γ|
)
(1− |γ|)−1 + q̃(y, γ)

)
.

q̃ can be extended smoothly to Bd × Bs, since, by Theorem 3.1, for any
q ∈ SG0,0

cl , i
0,0
SG(q) = q̃ ∈ C∞(Bd × Bs). At points (y0, γ0) ∈ B̃ell, we have

either (y0, γ0) ∈ B̃ψ and ∇xϕ
ψ(ι−1(y0), γ0) �= 0,

or (y0, γ0) ∈ B̃ψe and ∇xϕ
ψe(y0, γ0) �= 0.

In the former case, the norm of the first term in the argument of ι in the
right hand side of (13) tends to +∞ when |γ| ↗ 1. Then, sufficiently close
to (y0, γ0) we have

ι(∇̃xϕ) =
∇̃xϕ

|∇̃xϕ|

(
1− 1

|∇̃xϕ|

)
=

γ̃∇̃xϕ

|γ̃∇̃xϕ|

(
1− γ̃

|γ̃∇̃xϕ|

)
,(14)

where γ̃∇̃xϕ = ι0,1SG(∇xϕ) is smooth up to the boundary. Moreover,

γ̃∇̃xϕ(y, γ) = γ̃(ι−1 × ι−1)∗∇xϕ(y, γ)

= ∇xϕ
ψ

(
y

|y|(1− |y|)
−1,

γ

|γ|
)
+ γ̃ · q̃(y, γ),

so such an expression cannot vanish close to (y0, γ0), since |∇xϕ
ψ(ι−1(y0),γ0)|

= k > 0 and |γ̃ · q̃(y, γ)| < k/2 for (y, γ) ∈ V , suitably small neighborhood
of (y0, γ0), by |γ̃(γ0) · q̃(y0, γ0)| = 0. Then the smooth extendability of (14)
to points in B̃ell ∩ B̃ψ follows.
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The remaining case, that is, the result for (y0, γ0) ∈ B̃ell ∩ B̃ψe, follows
in a similar way, writing

ι(∇̃xϕ(y, γ)) = ι((ι−1 × ι−1)∗∇xϕ(y, γ))

= ι

(
∇xϕ

ψe

(
y

|y|(1− |y|)
−1,

γ

|γ|(1− |γ|)
−1

)
+ p̃(y, γ) + q̃(y, γ)

)
= ι

(
∇xϕ

ψe

(
y

|y| ,
γ

|γ|
)
(1− |γ|)−1 + p̃(y, γ) + q̃(y, γ)

)
,

with p ∈ SG−1,1, q ∈ SG0,0 and ∇xϕ(y0, γ0) �= 0, so that

γ̃(∇̃xϕ(y, γ) = ∇xϕ
ψe

(
y

|y| ,
γ

|γ|
)
+ γ̃ · p̃(y, γ) + γ̃ · q̃(y, γ),

with the last two terms smoothly extendable to (y0, γ0) and vanishing there.
The proof is complete. �

Remark 3.14. Observe that, in view of the assumption (8) on Φ, λ̃ϕ is

well defined in a neighborhood of C̃ϕ. In fact, at points (y0, γ0) ∈ C̃ϕ we
necessarily have γ̃∇yϕ̃(y0, γ0) �= 0⇔ |∇xϕ|2 is elliptic at (y0, γ0). Since this
is equivalent to the fact that ι0,1SG(∇xϕ) does not vanish at (y0, γ0), the same

holds, by continuity, in a neighborhood of (y0, γ0) in B̃.
Finally, we can state in which sense a non-degenerate phase function may
parametrize a pair of Lagrangian submanifolds.

Definition 3.15. Let ϕ ∈ SG1,1
cl (R

d × Rs) be a classical SG-phase function.

Then we set Λ̃ϕ := λ̃ϕ(C̃ϕ).
For a given Legendrian submanifold Λ̃ we say that ϕ parametrizes Λ̃

near some p ∈ Λ̃ if we have, in a neighbourhood Ũ of p in W̃, that Λ̃ = Λ̃ϕ

or, equivalently, if Λ = (Λe,Λψ) is the corresponding pair of Lagrangian
submanifolds, we have Λ• ∩ U• = Λ•ϕ ∩ U•, • ∈ {e, ψ}, in the associated5

neighbourhoods U e and Uψ.

Remark 3.16. Notice that if p is a corner point, U e and Uψ will necessarily
be unbounded (asymptotically conic) in both variables, that is we have a
local parametrization “up to infinity”.

From the smoothness of λ̃ϕ up to the boundary in a neighborhood of

C̃ϕ, we now obtain a statement similar to Lemma 3.8 for Λ̃ϕ.

5Associated under inverse radial compactification.



Lagrangian submanifolds at infinity 957

Proposition 3.17. Let ϕ ∈ SG1,1
cl (R

d × Rs) be a non-degenerate SG-phase
function. Then, the following properties hold true.

1) The different components of Λ̃ϕ are each totally neat, immersed sub-
manifolds of the corresponding boundary component Bd × Bs. That is,
we have

Λ̃ϕ = Λ̃e
ϕ︸︷︷︸

⊂˜We

∪ Λ̃ψ
ϕ︸︷︷︸

⊂˜Wψ

,

and their possible boundaries form a subset Λ̃ψe
ϕ of W̃ψe.

2) The codimension of the respective component is always s, meaning
dim(Λ̃e

ϕ) = dim(Λ̃ψ
ϕ) = d− 1 and (if non-empty) dim(Λ̃ψe

ϕ ) = d− 2.

3) The tangent space to each face of Λ̃•ϕ in W̃ may be calculated by means

of the differential of λ̃ϕ, that is, via

T Λ̃•ϕ =
(
d
(
λ̃ϕ| ˜C•ϕ

))
T C̃•ϕ, • ∈ {e, ψ}.

4) The intersection Λ̃ψ
ϕ ∩ Λ̃e

ϕ = Λ̃ψe
ϕ is clean.

Proof. By the non-degeneracy of ϕ, λ̃ϕ is an immersion near C̃ϕ, and we may
use Theorem A.14. �

Again, Figure 2 provides a schematic visualization of the geometric situ-
ation. We now check that Λ̃ψ is truly the analogue of Λϕ under radial
compactification.

Lemma 3.18. Let ϕ ∈ SG1,1
cl (R

d × Rs) be a classical SG-phase function.
We have

Λ̃e
ϕ = (id× ι)

(
Λe
ϕ ∩ Se), Λ̃ψ

ϕ = (ι× id)
(
Λψ
ϕ ∩ Sψ

)
, Λ̃ψe

ϕ = Λψe
ϕ ∩ Sψe.

Proof. We start with the proof for Λψ
ϕ, which coincides with the classical

definition of the manifold of stationary points for a classical homogeneous
phase function. We have Λ̃ψ

ϕ = λ̃ϕ(C̃ψϕ ). By Lemma 3.8 we have ỹ∇̃θϕ(y, γ) =

0 on C̃ϕ. Thus, in view of the same Lemma, γ̃∇̃xϕ(y, γ) �= 0. Recalling (14)

from the proof of Proposition 3.13 and using the fact that γ̃ vanishes on C̃ψϕ
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and Lemma 3.4, we can write

(ι−1 × id)(Λ̃ψ
ϕ) =

{(
(ι−1(y),

γ̃∇̃xϕ(y, γ)

|γ̃∇̃xϕ(y, γ)|

)∣∣∣∣(y, γ) ∈ C̃ψϕ
}
,

and the cone over it as

(ι−1 × id)(Λ̃ψ
ϕ)× R+ =

{(
(x, μ

∇xϕ
ψ(x, θ)

|∇xϕψ(x, θ)|
) ∣∣∣∣(x, θ) ∈ Cψϕ , μ > 0

}
.

Making use of the homogeneity of ϕψ, we may write this simply as

(ι−1 × Γ)(Λ̃ψ
ϕ)

=
{(

(x,∇xϕ
ψ(x, θ)

)
: (x, θ) ∈ Rd × (Rs \ 0)and∇θϕ

ψ(x, θ) = 0
}
,

which is the definition of Λψ
ϕ, as claimed. In the same way we can write

R+ × (id× ι−1)(Λ̃e
ϕ) = R+ ×

[
(id× ι−1)λ̃ϕ

]
(C̃eϕ)

=
{(

μy, ∇̃xϕ(y, γ)
)
: (y, γ) ∈ C̃eϕ

}
=

{
(x,∇xϕ

e(x, θ)) : (x, θ) ∈ Ceϕ
}
,

where we have again made use of Lemma 3.4. The characterization of the
corner component Λψe

ϕ follows in exactly the same way. �

Remark 3.19. Note that in the classical theory, also clean phase functions
are permitted to parametrize Lagrangian submanifolds, see [19], in which
case λϕ is locally a fibration of a fixed dimension, called the excess e. In
our case, this would give rise to complicated geometric structures, such as
(compactified) fibrations over manifolds with corners. While there are tools
available to also treat these, see [24, 28], we omit such complications here,
and will address the question of excess phase parameters and the elimination
thereof in future works on the calculus of Lagrangian distributions.

3.3. Lagrangian properties of the components and their
parametrization

So far, we have only stated how phase function parametrize a submanifold,
but have not actually discussed its Lagrangian properties. We will now
prove:
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Theorem 3.20. Let ϕ ∈ SG1,1
cl (R

d × Rs) be a non-degenerate SG-phase

function. Then Λ̃ϕ = (Λ̃e
ϕ, Λ̃

ψ
ϕ) is an SG-Legendrian submanifold of W̃ in

the sense of Definition 2.3.

We start by checking the symplectic properties. For a classical phase
function, Λψ is well-known to be Lagrangian. We will now obtain an analo-
gous statement for Λe.

Lemma 3.21. Let ϕ be a non-degenerate classical SG-phase function. Then
αe vanishes on Λe

ϕ. As a consequence, α̃e vanishes on Λ̃ψe.

Remark 3.22. We remark that, to our best knowledge, Lemma 3.21 indeed
requires its own proof, and cannot be simply “deduced by symmetry” from
the classical theory, due to the “asymmetrical definition” of Λϕ with respect
to x and θ.

Proof. We adopt here the notation in [10], and denote the induced coordi-
nates on TxM by δx. We first notice that Λe

ϕ is, by definition, the image
of

Ceϕ = {(x0, θ0) ∈ Rd \ {0} × Rs : ∇ξϕ
e(x0, θ0) = 0},

which, by the non-degeneracy of ϕ, is a smooth manifold, under the map
λe
ϕ = (pr1,∇xϕ

e). We can thus calculate its tangent space in terms of that
of the preimage.6 T(x,θ)Ceϕ is given by

(15) (δx · ∇x)∇θϕ+ (δθ · ∇θ)∇θϕ = 0,

and we thus have

T(x,∇xϕe(x,θ))Λ
e
ϕ = J(pr1,∇xϕ

e) · T(x,θ)Ceϕ,

where J(pr1,∇xϕ
e) denotes the Jacobian matrix of the map (pr1,∇xϕ

e).
Furthermore,

(16) J(x,θ)(pr1,∇xϕ
e)(δx, δθ) = (δx, (δx · ∇x)∇xϕ

e + (δθ · ∇θ)∇xϕ
e).

6As in Lemma 2.3.2 of [10], we can conclude from (15) and (16) that (pr1,∇xϕ
e) is

an immersion, and thus its image is an immersed d-dimensional conic submanifold.



960 S. Coriasco and R. Schulz

Computing αe = x · dξ on such a vector, we see that

x · (δx · ∇x)∇xϕ
e + x · (δθ · ∇θ)∇xϕ

e(17)

=
∑
j,k

xj(δxk∂xk
)∂xj

ϕe +
∑
j

(δθ · ∇θ)xj∂xj
ϕe

=
∑
j,k

(δxk∂xk
)xj∂xj

ϕe −
∑
k

δxk∂xk
ϕe +

∑
j

(δθ · ∇θ)xj∂xj
ϕe.

Since ϕe is 1-homogeneous in the first set of variables, by Euler’s theorem
for homogeneous functions (17) is equal to∑

k

(δxk∂xk
)ϕe −

∑
k

δxk∂xk
ϕe + (δθ · ∇θ)ϕ

e,

= δθ · (∇θϕ
e)

(x,θ)∈Ce
ϕ

= 0

This proves the assertion. �

Finally, we observe the additional properties that these kind of submani-
folds, arising from SG-classical phase functions, possess, which limit their
behaviour at infinity.

Lemma 3.23. Let ϕ ∈ SG1,1
cl (R

d × Rs) be a non-degenerate classical SG-
phase function. Then,

1) the pairing 〈x, ξ〉 vanishes on Λψe
ϕ , meaning that Λ̃ϕ is contained in

the conormal to its base pr1(Λ̃
ψ);

2) Λe
ϕ does not intersect (Rd \ {0})× {0}.

Proof. On Λψe we have, by Euler’s theorem for homogeneous functions
applied twice,

〈x, ξ〉 = 〈x,∇xϕ
ψe(x, θ)〉 = ϕψe(x, θ) = θ · ∇θϕ

ψe(x, θ) = 0.

The second assertion follows from the characterization of Λe
ϕ in Lemma 3.18,

since the assumption on Φ in Definition 3.6 implies that if ∇θϕ
e(x, θ) = 0

we have ∇xϕ
e(x, θ) �= 0. �

We have then proved Theorem 3.20, meaning that every non-degenerate
classical SG-phase function gives rise to an associated SG-Lagrangian sub-
manifold. We are now ready to prove our main result, namely, that it is
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always possible to find a SG-classical phase function to locally7 parametrize
a given SG-Lagrangian.

Theorem 3.24 (Parametrization Theorem). Let Λ = (Λe,Λψ) be an
SG-Lagrangian submanifold. Then, Λ is locally parametrizable by a non-
degenerate SG-classical phase function. That is, ∀(y0, η0) ∈ Λ̃ there exist

1) a neighbourhood Ũ of (y0, η0) in Bd × Bd,

2) an open set Ṽ ⊂ Bd × Bs,

3) a function ϕ̃ ∈ γ̃−1ỹ−1C∞(Ṽ ) such that the corresponding (locally de-
fined) phase function ϕ = (ι× ι)∗ϕ̃ is non-degenerate,

such that

Λ̃ ∩ Ũ = λ̃ϕ

({
(y0, γ0) ∈ Ṽ ∩ B̃ : (y0, γ0) ∈ C̃ϕ

})
.

Remark 3.25. We will say, for short, that both the functions ϕ̃ and ϕ =
(ι× ι)∗ϕ̃, satisfying the properties stated in Theorem 3.24, are (local) non-
degenerate SG-phase functions, associated with the Legendrian Λ̃ and/or
the corresponding SG-Lagrangian Λ.

4. Proof of the Parametrization Theorem

We will only consider the case where (y0, η0) ∈ Λ̃ψe, since the other possible
situations are far simpler and will be covered by the same argument. The
outline of the proof is classical, cf. [15] and [19], but here some tools from the
theory of manifolds with corners are essential to achieve the result, as well
as the extension of λ̃ϕ and the symplectic structure “at infinity” discussed
in Section 2.

Let (y0, η0) ∈ Λ̃ψe. Λ̃ψe is a (d− 2)-dimensional embedded submanifold
of Sd−1 × Sd−1 and we may assume, possibly after a rearrangement of vari-
ables in a neighbourhood Ũ of (y0, η0), that Λ̃

ψe is parametrized as

Ũ ∩ Λ̃ψe =
{
y′, y′′,

√
1− (y′)2 − (y′′)2,

√
1− (η′)2 − (η′′)2, η′, η′′

}
,

7Notice that “locally” near the corner component means “up to infinity”, which
is where the difficulty of the theory lies.
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where, for some s ≤ d− 1, we have that η′ = (η2, . . . , ηs) and y′′ = (ys+1, . . . ,
yd−1) are independent variables and the remaining variables,

y′ = Ỹ ψe(y′′, η′), η′′ = H̃ψe(y′′, η′),

are smoothly dependent on (y′′, η′). We may further assume that yd and η1
do not vanish in the chosen coordinate neighbourhood, that is we have, for
some 1 ≥ c > 0, yd > c and η1 > c.

Due to the clean intersection at the corner Λ̃ψe = Λ̃e ∩ Λ̃ψ = ∂Λ̃e = ∂Λ̃ψ,
that is T

˜ΛψeΛ̃
e ∩ T

˜ΛψeΛ̃
ψ = T Λ̃ψe, we may find, accordingly, parametriza-

tions of Λ̃e and Λ̃ψ near the corner point (y0, η0), namely

Ũ ∩ Λ̃e =
{
y′, y′′,

√
1− (y′)2 − (y′′)2, η1, η′, η′′

}
,

Ũ ∩ Λ̃ψ =
{
y′, y′′, yd,

√
1− (η′)2 − (η′′)2, η′, η′′

}
.

Here we have the independent coordinates (y′′, η1, η′) on Λ̃e and (y′′, yd, η′)
on Λ̃ψ. The remaining variables on Ũ ∩ Λ̃ψ may be written as functions
smooth up to the boundary,

y′ = Ỹ e(y′′, η1, η′), η′′ = H̃e(y′′, η1, η′),

and on Ũ ∩ Λ̃ψ as

y′ = Ỹ ψ(y′′, yd, η′), η′′ = H̃ψ(y′′, yd, η′).

By Λ̃e ∩ Λ̃ψ = ∂Λ̃e = ∂Λ̃ψ = Λ̃ψe we conclude that, if(
η1, η

′, H̃e(y′′, η1, η′)
) ∈ Sd−1 and

(
Ỹ ψ(y′′, yd, η′), y′′, yd

) ∈ Sd−1,

we have

Ỹ e(y′′, η1, η′) = Ỹ ψ(y′′, yd, η′) = Ỹ ψe(y′′, η′),(18)

H̃e(y′′, η1, η′) = H̃ψ(y′′, yd, η′) = H̃ψe(y′′, η′).(19)

This choice of coordinates induces coordinates on the associated conic man-
ifolds Λe = R+ × Λ̃e and Λψ = Λ̃ψ × R+. That is, we may take, as indepen-
dent variables on Λe,

x′′ = (μy′′, μ
√

1− (y′)2 − (y′′)2), ξ′ = ι−1(η1, η′).
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In particular, x′′ may be defined implicitly in terms of the map

(y′′, μ) �→
(
μ(id× ι)∗Ỹ e(y′′, ξ′), μy′′, μ

√
1− ((id× ι)∗Ỹ e(y′′, ξ′))2 − (y′′)2

)
.

We obtain that x′ = μ(id× ι)∗Ỹ e(y′′, ξ′) =: Xe(x′′, ξ′) is a smooth function
of x′′ and ξ′ and polyhomogeneous in ξ′, of maximal degree 0. By |(x′, x′′)| =
μ it is further 1-homogeneous in x′′. Similarly we have that

ξ′′ = ι−1
(
(id× ι)∗H̃e(y′′, ξ′)

)
=: Ξe(x′′, ξ′)

is 0-homogeneous in x′′ and polyhomogeneous in ξ′. We can thus write,
locally near (x0, ξ0) = (id× ι−1)(y0, η0),

Λe =
{(

Xe(x′′, ξ′), x′′; ξ′,Ξe(x′′, ξ′
)}

.

In the same way we may write, in coordinates

x′′ = ι−1(y′′, yd), ξ′ = (μη1, μη
′),

that

Λψ =
{(

Xψ(x′′, ξ′), x′′; ξ′,Ξψ(x′′, ξ′
)}

.

We now define phase functions parametrizing these conic submanifolds in
the given neighbourhoods. We set

φe(x, ξ) = 〈x′, ξ′〉+ 〈x′′,Ξe(x′′, ξ′)〉,(20)

φψ(x, ξ) = 〈x′, ξ′〉 − 〈Xψ(x′′, ξ′), ξ′〉.(21)

By the above definitions of Ξe and Xψ we observe that φe is 1-homogeneous
in x and 1-polyhomogeneous in ξ, whereas φψ is 1-homogeneous in ξ and
polyhomogeneous in x. In fact these functions, restricted to (suitable neigh-
bourhoods in) Sd−1 × Rd and Rd × Sd−1, respectively, may be written as

φe(x, ξ)|Sd−1×Rd(22)

= (id× ι)∗
(〈

(y′, y′′, yd) , ι−1
(
η1, η

′, H̃e(y′′, η1, η′))
)〉)

︸ ︷︷ ︸
=:ỹ·φ̃e|

˜We

,
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φψ(x, ξ)|Rd×Sd−1(23)

= (ι× id)∗
(〈

ι−1(y′)− ι−1
(
Ỹ ψ(y′′, yd, η′)

)
, (η1, η

′)
〉)

︸ ︷︷ ︸
=:η̃·φ̃ψ|

˜Wψ

.

Using ι−1(y) = y
|y|(1− |y|)−1 = ỹ−1 y

|y| for large arguments and Theorem 3.1,
we obtain the desired symbol properties.

We now show that φe and φψ may be obtained as the respective principal
symbol components of a single SG-phase function. To this aim, we calculate
the principal symbols of φe and φψ by means of the proof of Lemma 3.4.
Using limn→∞ ỹn ι

−1(yn) = y
|y| in case yn → y with yn ∈ (Bd)o and y ∈ Sd−1

as well as (18) and (19) in (22) and (23) we obtain in the corner component

σψ(φ
e)|Sd−1×Sd−1 = (id× id)∗

〈
(y′, y′′, yd),

(
η1, η

′, H̃ψe(y′′, η′)
) 〉

,

σe(φ
ψ)|Sd−1×Sd−1 = (id× id)∗

〈
y′ − Ỹ ψe(y′′, η′),

(
η1, η

′)〉 ,

and thus we have

σψ(φ
e)|Sd−1×Sd−1 − σe(φ

ψ)|Sd−1×Sd−1

= (id× id)∗
(〈

Ỹ ψe(y′′, η′), (η1, η′)
〉
+

〈
(y′′, yd), H̃ψe(y′′, η′)

〉)
,

which is nothing else than 〈x, ξ〉 restricted to Sd−1 × Sd−1 in Λψe and thus
vanishes by the conormality assumption. We are then able, using (18) and
(19), Lemma 3.4 and Remark 3.5, to continue (φe, φψ) to a single SG-symbol
with principal symbol (φe, φψ, φψe).

To have a chance of non-degeneracy, we first reduce the number of phase
variables since, so far, the resulting phase function is constant in the ξ′′-
variables. Getting rid of these redundant variables, we may define ϕ : Rd ×
Rs → R by ((x′, x′′); θ) �→ φ((x′, x′′); (θ, ξ′′0 )) for some arbitrary ξ′′0 . We then
obtain the components of the principal symbol ϕ• = σ•(ϕ) for • ∈ {e, ψ, ψe}
and may define ϕ̃ ∈ γ̃−1ỹ−1C∞(Ũ) via (ι−1 × ι−1)∗ϕ.

We now have to see that the functions ϕ• indeed parametrize Λϕ. For
that we gather, by α•|Λ• = 0, the identities

Xe(x′′, ξ′) +∇ξ′
(
x′′ · Ξe(x′′, ξ′)

)
= 0,

x′′ · ∂x′′j Ξe(x′′, ξ′) = 0, j ∈ {s+ 1, . . . , d},
θ · ∂ξ′kXψ(x′′, ξ′) = 0, k ∈ {1, . . . , s},

∇x′′

(
θ ·Xψ(x′′, ξ′)

)
+ Ξψ(x′′, ξ′) = 0.
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We may then use these to compute, using (20) and (21),

∇θϕ
e(x, θ) = x′ + x′′ · ∇θΞ

e(x′′, θ)︸ ︷︷ ︸
=−Xe(x′′,θ)

,

∂θkϕ
ψ(x, θ) = (x′k −Xψ

k (x
′′, θ))−

(
∂θkX

ψ(x′′, θ)
)
· θ︸ ︷︷ ︸

=0

.

We therefore have ∇θϕ
• = 0 if and only if x′ = X•(x′′, θ), and we have

obtained

C•ϕ = {(X•(x′′, θ), x′′; θ
)}, • ∈ {e, ψ}.

In a similar fashion, using the remaining two identities,

Λ•ϕ =
{(

X•(x′′, θ), x′′; θ,Ξ•(x′′, θ)
)}

= Λ•, • ∈ {e, ψ}.

We can thus (locally) parametrize Λ• by ϕ•, • ∈ {e, ψ}. Finally, we have to
check that the symbol ϕ actually defines a phase function in the sense of
Definition 3.6, which means σ•(Φ) �= 0 on B•, • ∈ {e, ψ}. By assumption,
∇θϕ

• vanishes only on C•ϕ, • ∈ {e, ψ}. There, however, we always have
∇xϕ

• �= 0, • ∈ {e, ψ}, since, by assumption, none of the faces of Λϕ contains
a point of the form (x, 0).

This concludes the proof of Theorem 3.24. �

5. Equivalence of phase functions

Having established that we can always find a (local) non-degenerate SG-
phase function parametrizing any SG-Lagrangian, we now investigate when
two such phase functions may be considered equivalent. Here we rely again
on the identification provided in Theorem 3.1

Theorem 5.1. Let ϕ̃1, ϕ̃2 ∈ γ̃−1ỹ−1C∞(Bd × Bs) be two non-degenerate

SG-phase functions that parametrize the same SG-Legendrian Λ̃ ⊂ W̃ in a
neighbourhood of (y0, η0) ∈ Λ̃ such that

1) there exists (y0, γ0,1) ∈ C̃ϕ1
and (y0, γ0,2) ∈ C̃ϕ2

such that8

(y0, η0) = λ̃ϕi(y0, γ0,i) and ϕ̃1(y0, γ0,1) = ϕ̃2(y0, γ0,2),

8We note that this is always fulfilled in the classical case since, by homogeneity,
ϕi vanishes on Cϕi , i = 1, 2.
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2) The matrices(
γ̃−1ỹ ∂̃2

θjθk
ϕ1|X

)
j,k=1,...,s

and

(
γ̃−1ỹ ∂̃2

θjθk
ϕ2|X

)
j,k=1,...,s

have the same signature at (y0, γ0,i) ∈ C̃ϕi
, where ϕi := (ι× ι)∗ϕ̃i are

the (locally defined) phase functions associated with ϕ̃i, i = 1, 2.

Then, there exists a local diffeomorphism9 κ̃ of the boundary B̃ �→ B̃ that is
defined in a neighbourhood of (y0, γ0,2) in the corresponding faces, which is
smooth on each face and such that ϕ̃2 ◦ κ̃ = ϕ̃1| ˜B. In this case, ϕ̃1 and ϕ̃2

are called equivalent phase-functions.

Remark 5.2. Note that the statement only ensures that the principal sym-
bols of the corresponding phase functions ϕi may be arranged to agree, that
is, the triples (ϕe

i , ϕ
ψ
i , ϕ

ψe
i ), i = 1, 2. This is, however, not a drawback, since

only the principal symbols of ϕi, i = 1, 2, are used in the definition of Λ̃ϕ

and C̃ϕ.

Proof of Theorem 5.1. We assume (y0, η0) ∈ Λ̃ψe since again this case (with
slight adaptations) includes the others. Indeed, the case of Λ̃ψ

ϕ is known
from the classical theory and our proof follows the classical outline of [16]
and [10]. We begin by arranging ϕ̃1 and ϕ̃2 such that they agree “up to
second order” on C̃ϕ1

. Consider the maps Φ̃1, Φ̃2 given by

(y, γ) �→ Φ̃i(y, γ) : = (λ̃ϕi(y, γ), ỹ∇̃θϕi(y, γ)) ∈ Bd × Bd × Rd.

By Theorem 3.1 and Proposition 3.13, these maps are well-defined and
smooth up to the boundary in a neighbourhood of C̃ϕi

. By Lemma 3.8

and Lemma 3.15 we have, for (y, γ) ∈ B̃,

(pr3 ◦ Φ̃i)(y, γ) = 0⇐⇒ (y, γ) ∈ C̃ϕi
⇐⇒ Φ̃i(y, γ) ∈ Λ̃× {0}, i = 1, 2.

By the implicit function theorem on manifolds with corners, that is, Theo-
rem A.10, and the non-degeneracy assumption of ϕ̃i, i = 1, 2, we may thus
locally invert, in each closed face B̃ψ ∪ B̃ψe = Bd × Ss−1 and B̃e ∪ B̃ψe =
Sd−1 × Bs separately, to obtain two maps defined in neighbourhoods of

9In the sense of manifolds with boundary, meaning it is the restriction of a
diffeomorphism of surrounding extensions, see [24].
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(y0, η0,i, 0), namely,

Ψ̃ψ
i : (W̃ψ ∪ W̃ψe)× Rd → Bd × Ss−1,

Ψ̃e
i : (W̃e ∪ W̃ψe)× Rd → Sd−1 × Bs,

such that

Ψ̃•i ◦
(
Φ̃i| ˜B•

)
= id

˜B• , • ∈ {e, ψ}, i = 1, 2.

That is, we have the diagrams, for • ∈ {e, ψ}, i = 1, 2,

(y0, γ0,i) C̃•ϕi
∪ C̃ψeϕi B̃• ∪ B̃ψe

(y0, η0, 0) Λ̃• × {0} (W̃• ∪ W̃ψe)× Rd

∈ ⊂

∈ ⊂

Φ̃•iΨ̃•i Φ̃•iΨ̃•i Φ̃•iΨ̃•i

Notice that the last column is only meant locally, since, in general, we cannot
achieve a global definition of Φ̃•i and Ψ̃•i , • ∈ {e, ψ}, i = 1, 2. However, in a

neighbourhood of (y0, η0,i, 0) in W̃ψe × Rd, we have

Ψ̃ψ
i |˜Wψe×Rd = Ψ̃e

i |˜Wψe×Rd , i = 1, 2.

We also note that pr1 ◦ λ̃ϕi = id, i = 1, 2. Therefore, the compositions Ψ̃•1 ◦(
Φ̃2| ˜S•

)
induce a diffeomorphism κ̃, which on each face is given by

κ̃• : W̃ • ⊆ C̃•ϕ2
−→ C̃•ϕ1

: (y, γ2) �→
(
y, γ1(y, γ2)

)
,

where W̃ • is a neighbourhood of (y0, γ0) in C̃•ϕ2
, • ∈ {e, ψ}. We then define

the new (local) phase function

f̃ :=

{
ϕ̃2 ◦ κ̃e (y, γ) ∈ B̃e

ϕ̃2 ◦ κ̃ψ (y, γ) ∈ B̃ψ.

This yields a continuous function on the boundary B̃ that is smooth in the
interior of each boundary face up to the corner. Since f̃ and ϕ̃2 are related
by the diffeomorphism κ̃, we may continue our analysis by replacing ϕ̃2 with
f̃ . If we thus look at the principal symbol of this phase function, by means
of Lemma 3.4, we see that f̃ agrees (at the boundary) up to second order
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with ϕ̃1 on C̃ϕ1
. In fact, their differentials vanish there, and both functions

agree at the point (y0, γ0,1).
We may now essentially argue as in [16] on each of the two faces. Indeed,

since all the involved objects are smooth up to the boundary of each face,
Seeley’s Extension Theorem allows us to extend them smoothly to a mirror
copy of B̃•, • ∈ {e, ψ}, across S̃ψe. It is then possible to consider Taylor
expansions around points in B̃ψe.

Let now ϕ̃ and χ̃ be two non-degenerate SG-phase functions parametriz-
ing the same Legendrian and agreeing up to second order on C̃ϕ = C̃ψ, up to
the boundary, in the sense above. Using the non-degeneracy of ϕ̃, setting
h̃j = ỹ∂̃θjϕ(y, γ), j = 1, . . . , s, we can write, at any given point in C̃ϕ,

ỹγ̃χ̃(y, γ) = ỹγ̃ϕ̃(y, γ) +

s∑
j,k=1

b̃jk(y, γ)h̃j h̃k,

for a symmetric matrix B̃ = (b̃jk(y, γ)). The non-degeneracy of χ̃ is then
equivalent to

det(I + B̃Ã) �= 0 at (y0, γ0),

where we have set Ã =

(
γ̃−1ỹ ∂̃2

θjθk
ϕ(y, γ)

)
j,k=1,...,s

. When B̃ is sufficiently

small, we can show the equivalence between χ̃ and ϕ̃. In fact, by Taylor
expansion,

ỹγ̃ϕ̃(y, δ) = ỹγ̃ϕ̃(y, γ) +

s∑
j=1

(δj − γj)γ̃∂̃θjϕ(y, γ)

+

s∑
j,k=1

c̃jk(y, γ, δ)(δj − γj) (δk − γk),

with a symmetric matrix C̃ = (c̃jk)j,k=1,...,s. Setting

δj = γj +

s∑
k=1

w̃jk(y, γ)hk,

we prove the assertion if we show that there exist a matrix W̃ =(w̃j,k)j,k=1,...,s

such that

W̃ + tW̃ C̃ W̃ = B̃.

It is well known that, under the condition that the signatures of Ã and C̃
agree, this equation has a solution for small B̃, which holds true in our cases,
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in view of the hypothesis (2) and the fact that the two phase functions agree
on C̃ϕ. The statement then follows, by determining a continuous family of
non-degenerate phase functions χ̃t, t ∈ [0, 1], such that χ̃0 = ϕ̃ and χ̃1 = χ̃.
In fact, two elements χ̃s and χ̃t of such a family will be equivalent for |s− t|
sufficiently small. Since the procedure can be performed separately on the
two faces, and χ̃ and ϕ̃ agree to second order up to the boundary including
the corner, they are equivalent also there. The remaining details of this
analysis, with reference to [16], are left to the reader. �

6. Tempered oscillatory integrals

In this section we give a brief summary of the results we obtained in [9], to
provide an example of how the previously introduced geometric structures
arise in the study of tempered distributions. In [9] we associated with a given
(inhomogeneous) SG-phase function ϕ a family of tempered distributions,
denoted by Iϕ(a), parametrized by amplitudes that are SG-symbols.

Theorem 6.1. With any fixed admissible SG-phase function ϕ of order
(1, 1) we may associate a map

Iϕ : SG(Rd × Rs)→ S ′(Rd),

uniquely determined by the the following properties:

1) a �→ Iϕ(a) is a linear map,

2) If a ∈ S (Rd × Rs), then Iϕ(a) coincides with the (absolutely conver-
gent) integral

(24) Iϕ(a) =

∫
Rs

eiϕ(x,θ) a(x, θ) dθ,

3) the restriction of Iϕ to SGme,mψ(Rd × Rs) is a continuous map

SGme,mψ(Rd × Rs)→ S ′(Rd).

We call the resulting distribution Iϕ(a) a SG-oscillatory integral.

For these families of tempered oscillatory integrals we proved an inclu-
sion for their so-called SG-wave front set, which generalizes the correspond-
ing statement valid for Hörmander’s wave front set WFcl(u) and the usual
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class of oscillatory integrals, see [16].10 In order to state our result in the
SG setting, we first recall the definition of the SG-wave front set.

Definition 6.2. Let u ∈ S ′ (Rd
)
. Then WFSG(u) ⊂ W is defined in terms

of its complement as follows: (x0, ξ0) /∈WFSG(u) if and only if there exists
a pseudo-differential operator with symbol in SG0,0

cl (R
d × Rd) elliptic at

(x0, ξ0) such that Au ∈ S
(
Rd

)
.

For a broader exposition and description of the properties of this notion
of wave front set, we refer to [2, 7, 9, 25, 26]. In [9] we proved the follow-
ing bounds for the singularities of the temperate oscillatory integral Iϕ(a)
defined in Theorem 6.1.

Theorem 6.3. Let ϕ be an admissible SG-phase function. Then, for any
amplitude a ∈ SGme,mψ(Rd × Rs) we have the inclusions

pr1(WFSG(Iϕ(a))) ⊂ pr1(Cϕ) and WFSG(Iϕ(a)) ⊂ Λϕ .

This theorem establishes a connection between the singularities of oscil-
latory integrals and the geometric structures established above.

Remark 6.4. Recalling the existence of a canonical principal part for clas-
sical SG-symbols, we can write

ϕ(x, θ) = χe(x)ϕe(x, θ) + χψ(θ)ϕψ(x, θ)− χe(x)χψ(θ)ϕψe(x, θ) + rϕ(x, θ).

Since eirϕ ∈ SG0,0, we may absorb the rϕ part of the phase function in an
oscillatory integral into the amplitude. We are thus reduced to the case of
studying phase functions of the form

ϕ(x, θ) = χe(x)ϕe(x, θ) + χψ(θ)ϕψ(x, θ)− χe(x)χψ(θ)ϕψe(x, θ).

and thus we have found that only the behaviour at infinity, i.e. the principal
symbol of ϕ, enters in the study of the SG-singularities of such oscillatory
integrals. It is by this logic that only the boundary components Λϕ play a
role in the study of Lagrangian distributions, and this is why we do not ask
for SG-Lagrangians Λ to arise as the boundary of a manifold in the interior,
which would be simpler.

10In the present paper we follow a notation close to the one used in [19], dif-
ferent from the one we adopted in [9]. In particular, in the original statement of
Theorem 6.3 proved there, C̃ϕ was denoted by Mϕ, and Λ̃ϕ by SPϕ, respectively.
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6.1. An example

In this subsection, we revisit the example of [9], see also [35, 42], and study a
distribution associated with an SG-Lagrangian that has a non-trivial (ψe)-
component, and hence it is neither Legendrian, nor a Lagrangian in the
classical sense.

We consider the two-point function of a free, scalar, bosonic quantum
field theory on a flat space-time, that is, Minkowski space R× Rd, wherein
we denote points by (x0, x) for x0 ∈ R and x ∈ Rd. Let m > 0, ωm(x) =√

m2 + |x|2. The two-point function11 is the distribution given by the formal
oscillatory integral (see [33, Sect. IX.8])

(25) Δ+(x0, x) :=
i

2(2π)d

∫
Rd

ei(−x0ωm(θ)+xθ)

ωm(θ)
dθ

It also arises in the study of the fundamental solutions of the Klein-Gordon
equation, and therein its microlocal properties play a significant role, see
[21].

We observe that (25) is expressed as a formal oscillatory integral like the
one in (24). In fact, we have12 ωm(θ) ∈ SG0,1

cl (R
d+1 × Rd), and we conclude

ϕ(x0, x; θ) := −x0ωm(θ) + xθ ∈ SG1,1
cl (R

d+1 × Rd).

We may then compute the principal symbols and their gradients at an arbi-
trary point (x0, x; θ) on their respective domains of definition:

ϕψ = −x0|θ|+ xθ, ∇θϕ
ψ = −x0 θ

|θ| + x, ∇xϕ
ψ = (−|θ|, θ)t;

ϕe = −x0ωm(θ) + xθ, ∇θϕ
e = −x0 θ

ωm(θ) + x, ∇xϕ
e = (−ωm(θ), θ)t;

ϕψe = −x0|θ|+ xθ, ∇θϕ
ψe = −x0 θ

|θ| + x, ∇xϕ
ψe = (−|θ|, θ)t.

Since ∇xϕ
• does not vanish onW•, • ∈ {ψ, e, ψe}, the function Φ associated

with ϕ is SG-elliptic, hence ϕ is a classical SG-phase function in the sense

11Recall that the two-point function takes this form in difference variables x =
y − y′.

12Indeed,

ωm(θ) =

√
m2 + |θ|2 = |θ|

√
1 + (|θ|/m)−2 = |θ|

∞∑
j=0

(−1)j(2j)!
(1− 2j)(j!)2(4j)

(|θ|/m)−2j ,

where the series converges for |θ| > m, and therefore we have a polyhomogeneous
expansion.
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of Definition 3.6. Theorem 6.1 then defines (25) as a tempered oscillatory
SG-integral. From the principal symbols of ϕ, we may now reproduce the
bounds on the singularities of Δ+ in terms of the associated geometric sets
Cϕ and Λϕ given in [9, 35]. We find

Cψϕ =
{
(0, 0; θ) : θ ∈ (Rd \ {0})} ∪ {

(±|x|, x;±λx) : x ∈ Rd \ {0}, λ > 0
}
,

Ceϕ =

{(
±x0, x; ±mx√

x20 − |x|2

)
: x0 ∈ R+, x ∈ Rd, |x|2 < x20

}
,

Cψeϕ =
{
(±|x|, x;±λx) : x ∈ Rd \ {0}, λ > 0

}
,

and Λϕ is, by Definition 3.11, the union of

Λψ
ϕ =

{
(0, 0;−|ξ|, ξ) : ξ ∈ Rd

}
∪ {

(±|x|, x;−λ|x|,±λx) : x ∈ Rd \ {0}, λ > 0
}
,

Λe
ϕ =

{(
±x0, x; −m|x0|√

x20 − |x|2
,

±mx√
x20 − |x|2

)
: x0 ∈ R+, x ∈ Rd, |x|2 < x20

}
,

Λψe
ϕ =

{
(±|x|, x;−λ|x|,±λx) : x ∈ Rd \ {0}, λ > 0

}
.

As in [9], we may parametrize the e-component of Λϕ also as follows:

(26) Λe
ϕ =

{
(±λωm(θ),±λθ;−ωm(θ), θ) : θ ∈ Rd, λ > 0

}
.

Thus, Theorem 6.3 yields WFSG(Δ+) ⊆ Λϕ, and, in fact, equality holds true
(see [9, 35]).

We now turn to a discussion of these sets. pr1(Λ
ψ
ϕ) yields the light-cone,

that is {(x0, x) : |x0| = |x|}, and pr1(Λ̃
ψe
ϕ ) is simply the boundary of the

light-cone “at infinity”. Then, Λψ
ϕ and Λψe

ϕ are formed by attaching those
tangential co-vectors to the light-cones that have a negative ξ0-component.
On the other hand, pr1(Λ

e
ϕ) is formed by all the time-like directions that

satisfy |x|2 < x20. Λe
ϕ can also be understood by considering (26) as a bun-

dle over the second set of variables, the (negative) mass shell {−ωm(θ), θ},
reversing the role of fibre and base space. This information— (schematically,
in 1 + 1 dimensions) — is visualized in Figure 4, consider also [9, 33, 35].
Obviously, Λψe and Λe are manifolds. The remaining Λψ has a (bi-)conical
singularity at (x0, x) = 0. This stems from the fact that ϕ is everywhere
non-degenerate, except at all point of Cϕ of the form (0, 0, θ).

Therefore, the singular sets associated with the two-point function (in
fact, with any of the distinguished fundamental solutions to the Klein-
Gordon equation) provide an example of a SG-Lagrangian submanifold,
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Figure 4: The sets Λψ
ϕ ∪ Λψe

ϕ and Λe
ϕ associated with ϕ.

apart from a singularity at the origin. This singularity, however, is expected,
since the it lies in the classical ψ-part of the Lagrangian. To allow also such
kind of singularity, which arises, for instance, in the construction of paramet-
rices to hyperbolic Cauchy problems, one could pass to an extended version
of the calculus of paired Lagrangian distributions, see [29].

The previous example shows how SG-Lagrangian submanifolds, which
can be decomposed into two suitable submanifolds, one of which is Legen-
drian, while the other one is Lagrangian, arise.

Appendix A. Manifolds with corners

In this appendix we will present some results from the analysis on mani-
folds with corners that are employed in the study of SG-Lagrangians. There
are different definitions of manifold with corners, see [28], and, e.g. [22, 23].
Since in the main part of this document we only deal with finite-dimensional
manifolds with corners, here we shortly recall the approach of [23] in such
a case, while in its original formulation it is based on quadrants in gen-
eral Banach spaces. Therein, the results needed for our purposes (notably,
Theorem A.17 below) are explained in full detail, within the complete pre-
sentation of this theory.

Definition A.1. With d ∈ N, let Λ ⊆ {1, . . . , d}. The set

E+
Λ,d =

{
Rd, if Λ = ∅,
{x ∈ Rd : xj ≥ 0, j ∈ Λ}, otherwise,
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is called (Λ-)quadrant of Rd. The notation E+
j,d is used when Λ = {j}.

Obviously,

E+
Λ,d =

⋂
j∈Λ

E+
j,d.

The notion of differentiability on open subsets of a quadrant of Rd can
be introduced exactly as on open subsets of Rd.

Definition A.2. Let U be an open subset of E+
Λ,d, f : U → Rd′ a map, and

x ∈ U . Then, if there exists an element u ∈ L(Rd,Rd′) such that

lim
y→x

‖f(y)− f(x)− u(y − x)‖
‖y − x‖ = 0,

‖.‖ denoting the standard Euclidean norms on Rd, Rd′ , f is said to be
differentiable at x. In such a case, u is called differential of f at x and
is denoted by Jf(x). If f is differentiable at every x ∈ U , f is said to be
differentiable on U .

The notion of differentiability and of differential in Definition A.2 is
well-defined and coincides with the ordinary one when Λ = ∅. The basic
properties and notions of differentiability, such as continuous differentiability
and higher order differentiability, carry over to this notion of differentiation
on quadrants. In particular, we call f of class ∞, or smooth (up to the
boundary) in a (relatively) open subset U ⊂ Rd, denoted f ∈ C∞(U), if for
every p ∈ N0 the maps Jpf : (Rd)⊗p → Rd′ are continuous and differentiable
at every x ∈ U .

Equivalent alternative definitions of smooth maps on E+
Λ,d can be given

in terms of existence of extensions on open sets of Rd including U , or on
neighbourhoods in Rd of points x ∈ U , which are continuously differentiable
of any order with respect to the standard notion, see [23], Sections 1.1
and 2.1, for details.

Definition A.3. Let X be a set. The triple (U, ν,E+
Λ,d) is a chart on X if:

1) U ⊆ X;

2) ν : U → E+
Λ,d is an injective map and ν(U) is an open set of E+

Λ,d.

Let (U, ν,E+
Λ,d), (U

′, ν ′, E+
Λ′,d) be charts on X. They are smoothly compati-

ble if U ∩ U ′ = ∅ or, if U ∩ U ′ �= ∅,
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3) ν(U ∩ U ′) and ν ′(U ∩ U ′) are open subsets of E+
Λ,d and E+

Λ′,d, respec-
tively;

4) ν ′ ◦ ν−1 : ν(U ∩ U ′)→ ν ′(U ∩ U ′) and ν ◦ ν ′−1 : ν ′(U ∩ U ′)→ ν(U ∩
U ′) are smooth maps.

A collection A of smoothly compatible charts that cover X is called a smooth
atlas. As usual, two atlases A, A′ are called equivalent if A ∪A′ is an atlas,
which yields an equivalence relation. An equivalence class [A]∼ is called
smooth differentiable structure on X and the pair (X, [A]∼) is called smooth
manifold or a C∞-manifold, denoted simply by X. If Λ cannot be chosen
as empty, X is called a smooth manifold with corners.

Given a C∞-manifold X, the set

{U ⊆ X : U is the domain of a chart on X}

is a basis for a topology on X. The space of smooth maps among C∞-
manifoldsX and Y , denoted by C∞(X,Y ), is defined in a completely similar
fashion to the usual way. In particular the tangent bundle may be defined
in a neighbourhood U given by a chart as U × Rd, and consequently over
the full manifold by imposing contravariant transformation behaviour. The
differential of a smooth map f : X → Y in local coordinates then induces a
map df : TX → TY .

Definition A.4. Let U be an open set of E+
Λ,d.

1) For x ∈ E+
Λ,d, ind(x) := indΛ(x) = #{j ∈ Λ: xj = 0};

2) The set {x ∈ U : ind(x) ≥ 1} is called boundary of U , and denoted
∂ΛU = ∂U ;

3) The set {x ∈ U : ind(x) = 0} is called interior of U , and denoted
intΛU = intU = Uo.

It can be proved that the value ind(x) is invariant under smooth diffeo-
morphisms13, that is, it has an invariant meaning on a manifold X. This
implies that also the notions of boundary and interior are invariantly defined
on X. More generally, for any k ∈ N0, it is possible to define ∂kX, the k-
boundary of X, as the set of all points x ∈ X such that ind(x) ≥ k. We

13A smooth diffeomorphism is a smooth bijective map X → X whose inverse is
also smooth.
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set ∂X := ∂1X. Moreover, for any k ∈ N0, the set {x ∈ X : ind(x) = k} is
denoted by BkX. The set B0X is called the interior of X.

Example A.5. Consider d ∈ N, Bd = {y ∈ Rd : ‖y‖ ≤ 1}, and, for all j ∈
{1, . . . , d}, (V +

j , ν+j , E
+
j,d), (V

−
j , ν−j , E

+
j,d), where

• V +
j = {y ∈ Bd : yj > 0}, V −j = {y ∈ Bd : yj < 0};

• ν+j (y) = (. . . , yj−1,
√

1− (· · ·+ y2j−1 + y2j+1 + . . . )− yj , yj+1, . . . );

• ν−j (y) = (. . . , yj−1,
√

1− (· · ·+ y2j−1 + y2j+1 + . . . ) + yj , yj+1, . . . ).

Then, it turns out that

A = {(V +
j , ν+j , E

+
j,d)}j=1,...,n ∪ {(V −j , ν−j , E

+
j,d)}j=1,...,n ∪ {(Bd)o, id,Rd)}

is a smooth atlas on Bn. Furthermore, the topology of of the manifold
(Bd, [A]) is the usual (subset) topology of Bd ⊂ Rd, ∂Bd = Sn−1, ∂2Bd = ∅.

Proposition A.6. Let X, X ′ be C∞-manifolds, f : X → X ′ a diffeomor-
phism. Then, for any k ∈ N, f(∂kX) = ∂kX ′. In particular, if ∂2X = ∅, f
is a diffeomorphism of ∂X onto ∂X ′.

It is well known that the finite Cartesian product of manifolds with-
out boundary is a natural, well-defined construction, which yields another
manifold without boundary. However, in the category of manifolds with
boundary (i.e., ∂2X = ∅), there is no such a natural finite product construc-
tion. It turns out that the category of manifolds with corners is the suitable
one in which to define finite Cartesian products.

Proposition A.7. Let X,X ′ be C∞-manifolds. Then, there exists a unique
C∞-structure [A] on X × Y such that, for every chart (U, ν,E+

Λ,d) on X

and every chart (U ′, ν ′, E+
Λ′,d′) on X ′, (U × U ′, ν × ν ′, E+

Λ�Λ′,d+d′), Λ� Λ′ =
Λ ∪ {d+ j′ : j′ ∈ Λ′}, is a chart of (X ×X ′, [A]). The pair (X ×X ′, [A]) is
called the product manifold of X and X ′.

Proposition A.8. Let X,X ′ be C∞-manifolds. Then, the following state-
ments hold true.

1) The topology of the product manifold X ×X ′ is the product topology
of those on X and X ′.

2) For every (x, x′) ∈ X ×X ′, ind(x, x′) = ind(x) + ind(x′).
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3) For all l∈N, ∂l(X ×X ′) =
⋃

j+k=l
j,k≥0

∂jX×∂kX ′. Moreover, (X×X ′)o=

Xo × (X ′)o.

Example A.9. This proposition allows us to construct a differential struc-
ture on Bd × Bs, s ∈ N, in terms of that in Example A.5, that turns this set
into a manifold with corners of codimension 2 such that

Bk(B
d × Bs) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Bd)o × (Bs)o k = 0

((Bd)o × Ss−1
) ∪ (

Sd−1 × (Bs)o
)

k = 1

Sd−1 × Ss−1 k = 2

∅ k > 2.

It is a remarkable aspect of this theory that the implicit function theorem
extends to manifolds with corners, under a rather mild (and natural) addi-
tional condition on boundaries. In the next statement, given a map f : X ×
Y → Z, for any (a, b) ∈ X × Y , we write d(a,b)f = (dX(a,b)f, d

Y
(a,b)f) with the

linear morphisms dX(a,b)f : TaX → Tf(a,b)Z and dY(a,b)f : TbY → Tf(a,b)Z.

Theorem A.10. Let X,Y, Z be C∞-manifolds, f : X × Y → Z a smooth
map and (a, b) ∈ X × Y . Suppose that dY(a,b)f : TbY → Tf(a,b)Z is a linear
homeomorphism, and suppose that there are open neighbourhoods Va of a
and Vb of b such that f(Va × (Vb ∩ ∂Y )) ⊂ ∂Z.

Then there exist an open neighborhood Wa of a, an open neighbourhood
Wb of b and a unique map g : Wa →Wb such that f(x, g(x)) = f(a, b) for
x ∈Wa. Furthermore:

1) g(a) = b, and g is smooth on Wa;

2) for every x ∈Wa, d
Y
(x,g(x))f is a linear homeomorphism and

dxg = −(dY(x,g(x))f)−1 ◦ dX(x,g(x))f.

We now state the definition of a submanifold (with corners) in this set-
ting.

Definition A.11. Let X be a C∞-manifold and X ′ ⊂ X. Then, X ′ is a
C∞-submanifold of X if, for every x′ ∈ X ′, there exist:

1) a chart (U, ν,E+
Λ,d) of X such that x′ ∈ U and ν(x′) = 0;
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2) an integer d′ ∈ N, d′ ≤ d, and Λ′ ⊆ {1, . . . , d′}, such that ν(U ∩X ′) =
ν(U) ∩ E+

Λ′,d′ , and ν(U) ∩ E+
Λ′,d′ is an open subset of E+

Λ′,d′ .

In particular, Xo is an open submanifold of X and if ∂2X = ∅, ∂X is a
submanifold of X. In general, there is no relation between the boundary of
X and that of a submanifold of X. This leads to the definition of special
submanifolds, whose boundaries have “good positions” within the boundary
of the ambient manifold.

Definition A.12. Let X ′ be a submanifold of X. Then:

1) X ′ is a neat submanifold of X if ∂X ′ = (∂X) ∩X ′;

2) X ′ is a totally neat submanifold of X if, for all x′ ∈ X ′, indX′(x′) =
indX(x′), that is, BkX

′ = X ′ ∩BkX for any k ∈ N0.

An equivalent condition for X ′ to be a totally neat submanifold of X is
that, for all x′ ∈ X ′ ∩BkX,

∂X ′ = (∂X) ∩X ′ and Tx′X = (dx′j
′)(Tx′X

′) + (dx′j)(Tx′BkX),

where j′ : X ′ ↪→ X and j : BkX ↪→ X are the canonical inclusions. The prop-
erties of being a neat or totally neat submanifold are invariant under diffeo-
morphisms.

Definition A.13. Let f : X → X ′ be a C∞-map and x ∈ X. f is called
(smooth) immersion at x if there is a chart (U, ν,E+

Λ,d) on X such that

ν(x) = 0, and a chart (U ′, ν ′, E+
Λ′,d′) on X ′ with ν ′(f(x)) = 0, such that

f(U) ⊆ U ′, ν(U) ⊂ ν ′(U ′) and ν ′ ◦ f|U ◦ ν−1 : ν(U)→ ν(U ′) is the inclusion
map. If f is an immersion ∀x ∈ X, it is called immersion on X.

Theorem A.14. Let f : X → X ′ be a smooth map and x ∈ X such that
f(x) ∈ (X ′)o. Then, the following statements are equivalent:

1) f is an immersion at x;

2) dxf is an injective map.

We now recall the definition of embeddings in this context, and describe
how they can be characterized.

Definition A.15. Let f : X → X ′ be a map of class p. Then, f is called
embedding if it is an immersion and f : X → f(X) is a homeomorphism.



Lagrangian submanifolds at infinity 979

We may now give a characterization of embedded submanifolds.

Proposition A.16. Let X,X ′ be C∞-manifolds and f : X → X ′ a map.
Then, the following statements are equivalent:

1) f is a smooth embedding;

2) f(X) is a C∞-submanifold of X ′ and f : X → f(X) is a diffeomor-
phism.

The next result, [23, Prop. 4.2.10], with which we conclude this appendix,
shows that also on manifolds with corners the solutions to systems of equa-
tions give rise to submanifolds, provided that the corresponding differentials
are linearly independent.

Theorem A.17. Let X be a smooth manifold and f1, . . . , fs : X → R be
C∞(X)-maps. Consider the set Y = {x ∈ X : f1(x) = · · · = fs(x) = 0}, and
suppose that, for every x ∈ Y , (dx(f1|BkX), . . . , dx(fs|BkX)) is a linearly
independent system of elements of (Tx(BkX))∗, where k = ind(x). Then
we have

1) Y is a closed totally neat C∞-submanifold of X;

2) Tx(j)(TxY ) = {v ∈ TxX : Txf1(v) = · · · = Txfn(v) = 0}, where j : Y →
X is the inclusion map and x ∈ Y ;

3) For all x ∈ Y , codimxY = s.
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sächsische Staats-und Universitätsbibliothek Göttingen, 2014.

[36] B.-W. Schulze, Boundary value problems and singular pseudo-
differential operators, J. Wiley, Chichester, 1998.

[37] R. T. Seeley, Extension of C∞ functions defined in a half space, Proc.
Amer. Math. Soc. 15 (1964), 625–626.

[38] F. Treves, Introduction to pseudodifferential and Fourier integral oper-
ators, Vol. 1-2. The University Series in Mathematics. Plenum Press,
New York-London, 1980.

[39] A. Vasy and J. Wunsch, The spectral projections and the resolvent for
scattering metrics, Journal d’ Analyse Mathematique 79 (1999), no. 1,
241–298.

[40] H. Whitney, Analytic extensions of differentiable functions defined in
closed sets, Trans. Amer. Math. Soc. 36 (1934), 63–89.

[41] I. Witt, A calculus for classical pseudo-differential operators with non-
smooth symbols, Math. Nachr. 194 (1998), 239–284.

[42] J. Zahn, The wave front set of oscillatory integrals with inhomogeneous
phase function, J. Pseudo-Differ. Oper. Appl. 2 (2011), 101–113.

Dipartimento di Matematica “G. Peano”
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