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The Hamiltonian tube of a

cotangent-lifted action

Miguel Rodŕıguez-Olmos and Miguel Teixidó-Román

The Marle-Guillemin-Sternberg (MGS) form is local model for a
neighborhood of an orbit of a Hamiltonian Lie group action on a
symplectic manifold. One of the main features of the MGS form is
that it puts simultaneously in normal form the existing symplectic
structure and momentum map. The main drawback of the MGS
form is that it does not have an explicit expression. We will obtain
a MGS form for cotangent- lifted actions on cotangent bundles
that, in addition to its defining features, respects the additional
fibered structure present. This model generalizes previous results
obtained by T. Schmah for orbits with fully-isotropic momentum.
In addition, our construction is explicit up to the integration of
a differential equation on G. This equation can be easily solved
for the groups SO(3) or SL(2), thus giving explicit symplectic
coordinates for arbitrary canonical actions of these groups on any
cotangent bundle.

1. Introduction

The study of the local geometry of symplectic manifolds equipped with
Hamiltonian group actions constitutes a field which originated with the clas-
sical papers [6, 11]. In these references the authors obtain a universal model
for a tubular neighborhood of the orbit of a point under a Hamiltonian
action which puts in normal form both the symplectic structure and the
momentum map (Theorem 2.1). This model is known as the Hamiltonian
tube or Marle-Guillemin-Sternberg form and it is the base of almost all the
local studies concerning Hamiltonian actions of Lie groups on symplectic
manifolds. In fact, since the decade of the 80’s almost all the relevant re-
sults about the qualitative local dynamics of equivariant Hamiltonian flows
have been obtained using techniques based on the Hamiltonian tube, for
example [8, 10, 13–18, 21, 24, 25, 30]. Moreover, the Hamiltonian tube was
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a major ingredient for many of the generalizations of the Marsden-Weinsten
reduction scheme to singular actions like [2, 9, 19, 31].

In this paper we will focus on the cotangent bundle case. Let T ∗Q be a
cotangent bundle equipped with its canonical symplectic structure ωQ and
let G be a Lie group that acts smoothly on Q. The canonical lift of this
action to T ∗Q is automatically a Hamiltonian action. The Marle-Guillemin-
Sternberg construction (Theorem 2.1) applied to a canonical action over
a cotangent bundle gives, as for every Hamiltonian action, an equivariant
local model of (T ∗Q,ωQ) that puts in normal form both the symplectic
structure and the momentum map. However, in general this model does not
respect the fibration T ∗Q → Q. Moreover, the map given by Theorem 2.1 is
not constructive and only some of its properties are known. In the concrete
case of cotangent bundles there is a strong motivation coming from geomet-
ric mechanics and geometric quantization to obtain explicit or fibred local
models. In this paper we obtain a construction of the Hamiltonian tube for
a canonical cotangent-lifted action in a cotangent bundle specially adapted
to this kind of manifold and that puts the fibration in a normal form (The-
orem 5.6). In other words, this assumes that the space that models locally
the neighborhood of an orbit of the group in T ∗Q has a fibered structure
τ : Y → U where U is a local model of the base Q such that

T : Y → T ∗U

is a fibered map. Additionally, the construction of T will be explicit up
to the integration of a differential equation on G. The restricted G-tubes
(Definition 4.7) will be the basic building blocks and are the only non-explicit
part of the model. Given a Hamiltonian action the restricted G-tube depends
only on the group G and its algebraic structure. For example, for SO(3) and
SL(2) the expressions of their restricted G-tubes can be obtained explicitly,
see Section 7. For larger groups the computation will be more cumbersome
but could be done with a computer algebra system. As an additional result of
our construction we obtain a fibered analogue of the Lerman-Bates lemma
[2] (Proposition 6.1) that characterizes the set of points with prescribed
momentum in a neighborhood of the form τ−1(U). We believe that this
result can be used to study in detail the structure of singular reduction for
cotangent bundles, generalizing the results of [22] to non-zero momentum.
This will be addressed elsewhere.

The first works studying symplectic normal forms in the specific case
of cotangent bundles seem to have been [27, 28]. In these references T.
Schmah found a Hamiltonian tube around those points z ∈ T ∗Q such that
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its momentum μ = J(z) is fully-isotropic (that is, Gμ = G with respect to
the coadjoint representation). One of the main differences between her con-
struction and the classical MGS model for symplectic actions is that the one
for cotangent bundles was constructive, unlike the general MGS model. The
next step came with [23] which provides a general descripion of the symplec-
tic slice of a cotangent bundle, without the assumption G = Gμ. Recently
[29] constructed Hamiltonian tubes for free actions of a Lie group G and
showed that this construction can be made explicit for G = SO(3).

This paper is organized as follows: in Section 2 we review some back-
ground material regarding proper actions and the classical MGS model. In
Section 3 we introduce in Proposition 3.1 a splitting of the Lie algebra that
will be needed in all the subsequent development. This splitting already
appeared partially in [23] (Theorem 3.4). In Section 4 we introduce simple
and restricted G-tubes (Definitions 4.2 and 4.7). Simple G-tubes are, up to
technical details, MGS models for the lift of the left action of G on itself to
T ∗G. Their existence is proved in Proposition 4.3. Restricted G-tubes are
defined implicitly in terms of a simple G-tube (Proposition 4.8) and are the
technical tool that we will need later to construct the general Hamiltonian
tube.

In Section 5 we construct the general Hamiltonian tube for a cotangent-
lifted action in such a way that it is explicit up to a restricted G-tube. This
general tube will be the composition of two maps. We will first construct
a Hamiltonian tube around points in T ∗Q with certain maximal isotropy
properties (Theorem 5.2) and then an adaptation of the ideas of [28] will
be used to construct a Γ map (Proposition 5.4). Together these two maps
will give the general Hamiltonian tube in Theorem 5.6. In Section 6 we use
a zero section-centered tube to construct a cotangent-bundle version of a
result due to Bates and Lerman in Proposition 6.2. One important novelty
of this lemma is that our version is global in the vertical direction in the
sense that given z ∈ J−1(μ) we can describe, via a Hamiltonian tube, not
only a set of the form J−1(μ) ∩ U where U is a neighborhood of z, but a
set τ−1(τ(U)) ∩ J−1(μ) with U is a neighborhood of z. That is, with one
Hamiltonian tube we can describe all the points in J−1(μ) whose projection
is close enough to the projection of the center point. Finally, in Section 7
we present explicit examples of G-tubes for both the groups SO(3) (where
we recover the results of [29]) and SL(2,R). In Subsection 7.4 we present an
explicit Hamiltonian tube for the natural action of SO(n) on T ∗Rn which
generalizes the final example of [28] to the case μ �= 0.
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thanks the support of the EU-ERG grant “SILGA”. The authors would like
to thank the anonymous referees for several suggestions that significantly
improved this article.

2. Preliminaries

This section collects background material from the theory of Hamiltonian
actions and MGS normal forms that will be used through this paper. Most
material is standard and can be found in greater detail in several references,
for instance [19].

2.1. Proper actions and slices

Let G be a Lie group with Lie algebra g. We will always denote by e the
identity element of the group and by Lg, Rg;G → G the left and right mul-
tiplications by g respectively. If G acts on M we say that M is a G-space.
For p ∈ M the isotropy subgroup of p is

Gp = {g ∈ G | g · p = p}.

A map f : M1 → M2 between two manifolds endowed with G-actions is
called G-equivariant if f(g · p) = g · f(p) for all p ∈ M1 and g ∈ G.

An action is proper if the map G×M → M ×M defined by (g, z) �→
(z, g · z) is a proper map. For a proper G-action all the isotropy subgroups
Gz are compact subgroups of G. For any Lie group G the left and right
actions on itself are proper.

If a compact subgroup H ⊂ G acts on a manifold A then on G×A we
can consider two actions:

• twisting action of H: h ·T (g, a) = (gh−1, h · a), h ∈ H

• left action of G: h ·L (g, a) = (hg, a), h ∈ G.

If necessary we will use as above the superindexes T or L to indicate the
HT -action (twisting) or the GL-action (left) on the product G×A. As both
actions commute G×A supports an action of the direct product group
GL ×HT .
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The twisting action is free and proper and, therefore, the quotient space
(G×A)/HT is a manifold and it will be called the twisted product. We
will denote it as G×H A and its elements will be denoted as [g, a]H g ∈
G, a ∈ A. The twisted product G×H A admits a proper G-action given by
g · [g′, a]H = [gg′, a]H . In fact the twisted product is exactly the associated
bundle for the principal H-bundle G → G/H and the H-manifold A.

The Tube Theorem [20] shows that in fact every proper G-space is lo-
cally a twisted product. That is, if G acts properly on M , z ∈ M and A is
an Gz-invariant complement of g · z in TzM then there is a G-equivariant
diffeomorphism

(1) s : G×Gz
A −→ U ⊂ M

satisfying s([e, 0]Gz
) = z where U is a G-invariant neighborhood of z.

A Gz-invariant complement of g · z in TzM will be called a linear slice
for the G action at z ∈ M .

2.2. Hamiltonian actions and Hamiltonian tubes

Assume now that G acts symplectically on a symplectic manifold (M,ω). A
momentum map is a function J : M → g∗ such that

iξMω = d〈J(·), ξ〉 ∀ξ ∈ g

where ξM ∈ X(M) is the fundamental vector field associated with ξ ∈ g. If
J is equivariant with respect to the coadjoint action on g∗ then we will
say that the action is Hamiltonian. If G acts Hamiltonially on a symplectic
manifold (M,ω) there is a symplectic version of the Tube Theorem for proper
G-spaces, and this is precisely the content of the Marle-Guillemin-Sternberg
normal form proven by Marle, Guillemin and Sternberg in [6, 11] for compact
groups and extended to proper actions of arbitrary groups in [2].

Theorem 2.1 (Hamiltonian Tube Theorem). Let (M,ω) be a sym-
plectic manifold endowed with a proper Hamiltonian action of a Lie group
G with momentum map J : M → g∗. Let z ∈ M , μ = J(z), and choose a
Gz-invariant splitting gμ = gz ⊕m. Let N be a Gz-invariant complement
of gμ · z in KerTzJ and JN : N → g∗z defined by 〈JN (v), ξ〉 := 1

2ω(ξ · v, v).
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Consider the set Y := G×Gz
(m∗ ×N) equipped with the two-form

ΩY (T(g,ν,v)πGz
(u1), T(g,ν,v)πGz

(u2))(2)

= 〈ν̇2 + TvJN (v̇2), ξ1〉 − 〈ν̇1 + TvJN (v̇1), ξ2〉
+ 〈ν + JN (v) + μ, [ξ1, ξ2]〉+ ω(v̇1, v̇2)

where ui = (TeLgξi; ν̇i, v̇i) ∈ T(g,ν,v)(G×m∗ ×N) and πGz
: G× (m∗ ×

N) → G×Gz
(m∗ ×N). There is a neighborhood Yr of the zero section of

Y such that the restriction (Yr,ΩY ) is a symplectic manifold equipped with a
Hamiltonian action of G (seen as a twisted product) for which the momen-
tum map is

(3) JY [g, ν, v]Gz
= Ad∗g−1(μ+ ν + JN (v)).

Additionally, there is a map

T : Yr −→ M

such that:

• T : Yr −→ T (Yr) ⊂ M is a G-equivariant diffeomorphism with
T ([e, 0, 0]Gz

) = z.

• T ∗ω = ΩY .

The pair (Yr,ΩY ) is called the MGS model at z ∈ M , the G-equivariant
symplectomorphism T is called a Hamiltonian tube around z and the space
N a symplectic slice at z.

Note that whereas in the Palais model (1) the twisted product depends
only on a Gz-invariant complement to g · z in TzM in the Hamiltonian
tube the normal form depends on a Gz-invariant complement N of gμ · z in
KerTzJ and on the complement m of gz in gμ. Note also that N , equipped
with the restriction of ω(z) is a symplectic linear space supporting a linear
Hamiltonian representation of Gz which admits JN as equivariant momen-
tum map. In addition, since T is a symplectomorphism equivariant with
respect to the Hamiltonian actions of G on Yr and M , by general geometric
arguments we have

JY = J ◦ T

when the above expression is well defined.
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2.3. The MGS model as a reduced space

We can interpret the symplectic form ΩY in (2) as the reduced symplectic
form for a more basic structure. In this section we are going to recall some
well-known facts about this interpretation of the MGS model that will be
used throughout the paper. Let G be a Lie group, μ ∈ g∗ and K ⊂ Gμ a
compact subgroup. Since K is compact we can choose a K-invariant com-
plement of gμ in g and this choice induces a K-equivariant linear inclu-
sion ι : g∗μ → g∗. Consider the product Tμ := G× g∗μ and the map Tμ → T ∗G
given by (g, ν) �→ TeL

∗
g−1(μ+ ι(ν)) ∈ T ∗G. With this map we can pull-back

the canonical symplectic form of T ∗G obtaining the two-form ωTμ
given by

ωTμ
(g, ν)(v1, v2) = 〈ν̇2, ξ1〉 − 〈ν̇1, ξ2〉+ 〈μ+ ι(ν), [ξ1, ξ2]〉,

where vi = (TeLgξi, ν̇i) ∈ T(g,ν)G× g∗μ. This form satisfies ωTμ
= −dθTμ

where

(4) θTμ
(g, ν)(v1) = 〈μ+ ι(ν), ξ1〉.

It can be checked that, for any g ∈ G the two-form ωTμ
(g, 0) is non-

degenerate and, therefore there is an open K-invariant neighborhood (g∗μ)r
of 0 ∈ g∗μ such that (G× (g∗μ)r, ωTμ

) is a symplectic space (see Proposition
7.2.2 of [19]). Let (N,ωN ) be a symplectic linear space with aK-Hamiltonian
linear action with momentum map

(5) 〈JN (v), ξ〉 := 1

2
ωN (ξ · v, v).

The product Z := G× ((g∗μ)r ×N) equipped with the two-form ωTμ
+ ωN is

a symplectic space and the natural GL and KT -actions are free and Hamil-
tonian with momentum maps

(6) KKT (g, ν, v) = −ν
k
+ JN (v), and KGL(g, ν, v) = Ad∗g−1ν.

By the Marsden-Weinstein reduction procedure [12] the quotientK−1
KT (0)/KT

is a symplectic manifold. Since the GL and KT actions commute then the
induced G-action on this quotient is also Hamiltonian.

Let now m be a K-invariant complement of k = Lie(K) in gμ. There are
small enough open neighborhoods m∗r and Nr of the origin in m∗ and N such
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that ν + JN (v) ∈ (g∗μ)r for every ν ∈ m∗r and v ∈ Nr. In this setting

L : G×K ((m∗)r ×Nr) −→ K−1
KT (0)/K

T(7)

[g, ν, v]K �−→ [g, ν + JN (v), v]K

is a well-defined G-equivariant symplectomorphism between the MGS model
Yr = G×K (m∗r ×Nr) equipped with the symplectic form (2) and the re-
duced space K−1

KT (0)/KT equipped with its canonical reduced symplectic
form.

3. The symplectic slice for cotangent-lifted actions

If G acts on a manifold Q then the natural lift of the action to T ∗Q will
be called the cotangent-lifted action. The cotangent-lifted action of a proper
action is again proper and it is Hamiltonian with respect to the canonical
symplectic form with momentum map

(8) 〈JT ∗Q(q, p), ξ〉 = 〈p, ξQ(q)〉

Fix z = (q, p) ∈ T ∗Q with μ := JT ∗Q(z). By the equivariance of the
cotangent bundle projection τ : T ∗Q → Q and of JT ∗Q we have Gz ⊂ Gq

and Gz ⊂ Gμ. Moreover, from (8) we see that μ is annihilated by any ξ ∈ gq.
Graphically, the several groups involved can be put into lattice form as

G

Gμ

��

Gq

��

Gq ∩Gμ

�� ��

Gz

��

where each arrow represents an inclusion. As we shall see, one of the main
problems of building a Hamiltonian tube for a cotangent-lifted action is that
the relationship between the subgroups Gq, Gz and Gμ can be complicated
in general. In this section we will first introduce a splitting of g that has
good properties with respect to μ and Gq and then will use this splitting
to restate the characterization of the symplectic slice for cotangent-lifted
actions obtained in [23].
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3.1. A Lie algebra decomposition

We start by giving a useful invariant splitting of g that will be the starting
point of many of the constructions we will make in the next sections.

Proposition 3.1. Let G be a Lie group, H a compact subgroup and μ ∈ g∗

with [h, h] ∈ 〈μ〉◦. Let Ωμ be the bilinear form on g given by Ωμ(ξ1, ξ2) =
−〈μ, [ξ1, ξ2]〉. Then there is a Hμ-invariant splitting

(9) g = gμ ⊕ o⊕ l⊕ n

satisfying

1) h = hμ ⊕ l.

2) Ωμ

o
is non-degenerate.

3) l and n are Ωμ-isotropic subspaces and Ωμ

l ⊕ n
is non-degenerate.

4) Ωμ(ξ1, ξ2) = 0 if ξ1 ∈ o, ξ2 ∈ l⊕ n.

Proof. As H is compact we can endow g with an AdH -invariant metric. The

two-form Ωμ restricted to g⊥μ is non-degenerate because if ξ ∈ KerΩμ

g⊥μ
then 〈μ, [ξ, η]〉 = 0 for all η ∈ g⊥μ but if now η ∈ gμ then 0 = 〈ad∗ημ, ξ〉 =
−〈μ, [ξ, η]〉 = 〈ad∗ξμ, η〉 for any η in g but this implies that ad∗ξμ = 0 and

as ξ ∈ g⊥μ then ξ = 0. Denote by ω = Ωμ

g⊥μ
the restriction. The form ω is

symplectic on g⊥μ .
Define now l := h ∩ g⊥μ and

o = {λ ∈ g⊥μ ∩ h⊥ ⊂ g | 〈ad∗λμ, η〉 = 0 ∀η ∈ h}.

If ξ ∈ g⊥μ is ω-orthogonal to l then it must lie in o⊕ l because ξ can be

decomposed as ξ = ξ1 + ξ2 with ξ1 ∈ h ∩ g⊥μ = l and ξ2 ∈ h⊥ ∩ g⊥μ but then
as 〈μ, [ξ2, η]〉 = 〈μ, [ξ, η]〉 = 0 for any η ∈ h then ξ2 ∈ o. That is, lω ⊂ o⊕ l.
Conversely, if ξ ∈ o then by definition of o ξ ∈ lω, and if ξ ∈ h for any η ∈ l
we have 〈μ, [ξ, η]〉 = 0 because l ∈ h and μ ∈ [h, h]◦ so ξ ∈ lω and, therefore,
lω = o⊕ l.

Let ξ ∈ o ∩ oω. Noting that ξ ∈ lω we have ξ ∈ oω ∩ lω = (o⊕ l)ω =

(lω)ω = l but as o ∩ l = 0 this implies that ξ = 0, thus the restriction ω
o

is non-degenerate.
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To build the space n we will need a preliminary standard result in linear
algebra.

Lemma 3.2. Let A,B,C ⊂ E be three linear subspaces of a linear space E
such that A ⊂ B and A ∩ C = 0. Then

B ∩ (C ⊕A) = (B ∩ C)⊕A

Note that l ⊂ oω and as 〈μ, [ξ, η]〉 = 0 for any ξ, η ∈ l, then l is an isotropic
subset of the symplectic subspace oω, but in fact

lω ∩ oω = oω ∩ (o⊕ l) = (oω ∩ o)⊕ l = l

where we applied the previous lemma with A = l, B = oω and C = o. This
implies that l is actually a Lagrangian subspace of oω and it is clearly Hμ-
invariant. By Lemma 7.1.2 of [19] there must exists a Hμ-invariant comple-
ment n ⊂ g⊥μ of l. That is, we have g = gμ ⊕ o⊕ l⊕ n and with respect to
this splitting Ωμ block diagonalizes as

Ωμ =

⎡⎢⎢⎢⎣
0 0 0 0

0 Ω
o

0 0

0 0 0 ∗
0 0 ∗ 0

⎤⎥⎥⎥⎦
where the entries ∗ will not be important in our discussion. �

Remark 3.3. The subspace o was introduced in [23] by a different proce-
dure. In that work o was constructed as a symplectic slice for the H-action
on the coadjoint orbit Oμ ⊂ g∗. In fact the subspaces l and n can be under-
stood as part of a Witt-Artin decomposition TμOμ = l · μ⊕ n · μ⊕ o · μ (see
[19]). Note that as vector spaces supporting a Hμ-action both l and n are
isomorphic to the quotient h/hμ and o is isomorphic to hΩμ/(KerΩμ + h).

3.2. The symplectic slice

The first step towards the construction of a Hamiltonian tube for cotangent-
lifted actions is to describe the symplectic slice at a point z = (q, p) ∈ T ∗Q.
This was done in [28] under the assumption Gq ⊂ Gμ. Later, in [23] the
symplectic slice for the general case was worked out. Before stating the
result we will introduce some new notation that will be used throughout the
paper. Let V be a linear space supporting a linear representation of a group
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G and let a ∈ V and b ∈ V ∗. The diamond product (see [7]) a � α ∈ g∗ is
defined as

〈a � α, η〉 := 〈α, η · a〉
for all η ∈ g. With this notation the cotangent lift of a linear G-action on V
has momentum map J(a, b) = a � b ∈ g∗. Note that if we considerG = SO(3)
acting on R3 the diamond product is just the usual cross product. If h ⊂ g is

a subspace then a �h b := (a � b)
h
∈ h∗. If h is the Lie algebra of a subgroup

H ⊂ G, a �h b is the momentum map for the H-action on T ∗V induced by
restriction of the original G-action, which is in turn the same as the lift
of the restricted H-action on V . In this context, the next result gives a
characterization of the symplectic slice for a cotangent-lifted action.

Theorem 3.4 (Theorem 6.1 of [23]). Let z = (q, p) ∈ T ∗Q and S be a
Gq-invariant complement of g · q in TqQ. Define H := Gq, μ := J(z), α :=
z

S
∈ S∗, B := (hμ · α)◦ ⊂ S. Let o be as defined in (9)
The symplectic slice N at z is linearly and Gz-equivariantly symplecto-

morphic to the product o× T ∗B equipped with the symplectic form

(10) ΩN ((λ1, v1, w1)(λ2, v2, w2)) = −〈μ, [λ1, λ2]〉+ 〈w2, v1〉 − 〈w1, v2〉

with λj ∈ o and (vj , wj) ∈ B ×B∗. The corresponding momentum map for
the linear Gz-action is

JN (λ, (a, β)) =
1

2
λ �gz

ad∗λμ+ a �gz
β.

4. G-tubes

In this section we will define both simple and restricted G-tubes. These maps
will be the building blocks needed to find an explicit Hamiltonian tube for
cotangent-lifted actions.

4.1. Simple G-tubes

From now on we will identify TG with G× g and T ∗G with G× g∗ using
left trivializations

G× g −→ TG G× g∗ −→ T ∗G

(g, ξ) �−→ TeLg(ξ) (g, ν) �−→ T ∗e Lg−1(ν).
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Combining them we can trivialize T (T ∗G) ∼= G× g× g∗ × g∗.
We will need the following well-known properties of the symplectic struc-

ture and the cotangent-lifted actions of G on T ∗G (see [1])

Proposition 4.1. Let G act on itself by the left multiplication action and
by cotangent lifts on T ∗G then we have

• Symplectic structure: Let ui := (ξi, βi) ∈ T(g,ν)T
∗G with i = 1, 2, the

canonical one-form of T ∗G is

(11) θT ∗G(u1) = 〈ν, ξ1〉

and the canonical symplectic form ωT ∗G = −dθT ∗G is

(12) ωT ∗G(u1, u2) = 〈β2, ξ1〉 − 〈β1, ξ2〉+ 〈ν, [ξ1, ξ2]〉.

• Cotangent-lifted left multiplication: The G-action given by h ·L (g, ν) =
(hg, ν) has as infinitesimal generator ηLT ∗G(g, ν) = (Adg−1η, 0) and is
Hamiltonian with momentum map JL(g, ν) = Ad∗g−1ν.

• Cotangent-lifted right multiplication: The G-action given by

h ·R (g, ν) = (gh−1,Ad∗h−1ν)

has as infinitesimal generator ηRT ∗G(g, ν) = (−η,−ad∗ην) and is Hamil-
tonian with momentum map JR(g, ν) = −ν.

Notice that if we think of g∗ as a manifold endowed with the G-action
g · ν = Ad∗g−1ν then the above left and right actions of G on T ∗G are exactly

the actions GL and GT on the product manifold G× g∗ (see Subsection 2.1).
We now define simple G-tubes.

Definition 4.2. Let H be a compact subgroup of G and μ ∈ g∗. Given a
splitting g = gμ ⊕ q invariant under the Hμ-action, a simple G-tube is a map

Θ : G× U ⊂ G× (g∗μ × q) −→ G× g∗ ∼= T ∗G

such that:

1) U is a connected Hμ-invariant neighborhood of 0 in g∗μ × q.

2) Θ is a GL-equivariant diffeomorphism onto Φ(G× U) satisfying
Θ(e, 0) = (e, μ).
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3) Let ui := (ξi, ν̇i, λ̇i) ∈ T(g,ν,λ)G× g∗μ × q with i = 1, 2, then

(Θ∗ωT ∗G)(u1, u2) = 〈ν̇2, ξ1〉 − 〈ν̇1, ξ2〉+ 〈ν + μ, [ξ1, ξ2]〉 − 〈μ, [λ̇1, λ̇2]〉(13)

4) Θ is HT
μ -equivariant.

5) T(e,0,0)Θ(ξ, ν̇, λ̇) = (ξ + λ̇; ν̇ + ad∗
λ̇
μ) ∈ T(e,0)(T

∗G).

If q is defined as above, note that the symplectic slice for the cotangent-
lifted left multiplication of G on T ∗G at (e, μ) ∈ T ∗G is precisely q. Indeed,
as T(e,μ)JL(e, μ) · (ξ, ν̇) = −ad∗ξμ+ ν̇ then a complement to gμ · (e, μ) can
be chosen to be the space {(ξ, ad∗ξμ) | ξ ∈ q}, and using (12), this linear

space is symplectomorphic to (q,Ωμ
q
). According to Theorem 2.1, the MGS

model at (e, μ) ∈ T ∗G for the free cotangent-lifted left multiplication of G
on T ∗G will be of the form G× g∗μ × q and, in this case, the symplectic form
(2) is precisely the one given by(13). In other words, a simple G-tube is a
Hamiltonian tube for T ∗G at (e, μ) (properties 1–3) but we further require
HT

μ -equivariance and a prescribed property on its linearization (properties
4–5).

The next result ensures the existence of simple G-tubes. The idea is
that an equivariant version of the Moser trick can be used to construct
them. This part follows closely Theorem 6 in [2] and Theorem 7.3.1 in [19].
We are going to apply Moser’s trick to an explicit, well-behaved, family of
symplectic potentials.

Proposition 4.3 (Existence of simple G-tubes). Given a Hμ-invariant
splitting g = gμ ⊕ q there exists a Hμ-invariant open neighborhood D of 0 ∈
g∗μ × q and a simple G-tube Θ : G×D ⊂ G× g∗μ × q → G× g∗.

Proof. As a first approximation we will consider the map

F : G× g∗μ × q −→ G× g∗(14)

(g, ν, λ) �−→ (g exp(λ),Ad∗exp(λ)(ν + μ))

defined only for λ small enough so that it is contained in the injectivity
domain of the group exponential exp : g → G. The map F is GL-equivariant
and also HT

μ -equivariant because

F (g′g, ν, λ) = (g′g exp(λ),Adexp(λ)(ν + μ)), and
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F (gh−1,Ad∗h−1ν,Adhλ) = (gh−1 exp(Adhλ),Ad
∗
exp(Adhλ)

(Ad∗h−1ν + μ)

= (g exp(λ)h−1,Ad∗h−1Ad∗exp(λ)(ν + μ)).

Consider now the one-form on G× (g∗μ × q) given by θY (g, ν, λ)(ξ, ν̇, λ̇) =

〈ν + μ, ξ〉+ 1
2〈μ, adλλ̇〉+ 〈μ, λ̇〉. It is clearly GL-invariant and HT

μ -invariant
because

θY (gh
−1,Ad∗h−1ν,Adhλ)(Adhξ,Ad

∗
h−1 ν̇,Adhλ̇)

= 〈Ad∗h−1(ν) + μ,Adhξ〉+
1

2
〈μ, [Adhλ,Adhλ̇]〉+ 〈μ,Adhλ̇〉

= θY (g, ν, λ)(ξ, ν̇, λ̇).

Let ui := (ξi, ν̇i, λ̇i) ∈ T(g,ν,λ)(G× g∗μ × q) with i = 1, 2. Note that

(−dθY )(u1, u2)

is the right-hand side of equation (13). Consider now the family of GL ×HT
μ -

invariant one-forms

θt = tF ∗θT ∗G + (1− t)θY

and define ωt := −dθt. Using (12) and T(e,0,0)F (ξ, ν̇, λ̇) = (ξ + λ̇, ν̇ + ad∗
λ̇
μ)

it can be checked that

(−dθt)(g, 0, 0)(ξ1, ν̇1, λ̇1)(ξ2, ν̇2, λ̇2)

= 〈ν̇2, ξ1〉 − 〈ν̇1, ξ2〉+ 〈μ, [ξ1, ξ2]〉 − 〈μ, [λ̇1, λ̇2]〉,

but this two-form is non-degenerate because it corresponds precisely to ΩY

of Theorem 2.1. This implies that Moser’s equation iXt
ωt =

∂θt
∂t defines a

time-dependent vector field Xt on an open set G× V ⊂ G× g∗μ × q. If Ψt is
the local flow of Xt then Ψ∗tωt = ω0 (see Theorem 7.3.1 of [19] for techni-
cal details). As θt and −dθt are GL ×HT

μ invariant differential forms, then

the vector field Xt is GL ×HT
μ invariant and, therefore, the local flow Ψt

is GL ×HT
μ -equivariant for any t. Note that θY (g, ν, 0) = 〈μ+ ν, ξ〉+ 〈μ, λ̇〉

and F ∗θT ∗G(g, ν, 0) = 〈μ+ ν, ξ〉+ 〈μ+ ν, λ̇〉 = 〈μ+ ν, ξ〉+ 〈μ, λ̇〉. This im-
plies that ∂θt

∂t (g, ν, 0)
= 0 and Xt(g, ν, 0) = 0 so Ψt(g, ν, 0) = (g, ν, 0) for any

t ∈ R and then there is a Hμ-invariant open set U ⊂ V such that Ψ1 is a
diffeomorphism with domain G× U .
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The simple G-tube will then be the composition Θ = F ◦Ψ1 : G× U −→
T ∗G. It is GL ×HT

μ -equivariant and it satisfies

ωY = ω0 = Ψ∗1ω1 = Ψ∗1F
∗ωT ∗G = Θ∗ωT ∗G

and Θ(e, 0, 0) = (e, μ).

Let Ψt be the local flow of Xt and ηt be any time-dependent tensor field
then

(15)
d

dt
Ψ∗t ηt = Ψ∗t

(
LXt

ηt +
d

dt
ηt

)
.

This expression can be used to compute T(e,0,0)Θ. To do so let Y be any
time-independent vector field on G× g∗μ × q not vanishing at (e, 0, 0). As

Xt vanishes at (e, 0, 0) then LXt
Y

(e, 0, 0)
= 0. Setting ηt = Y in (15) it gives

d
dtΨ

∗
tY = 0 but this implies T(e,0,0)Ψ1 = Id and, therefore, T(e,0,0)Θ(ξ, ν̇, λ̇) =

(ξ + λ̇, ν̇ + ad∗
λ̇
μ). That is, Θ satisfies all the five required conditions for a

simple G-tube. �

The main shortcoming with the previous existence result is that, as
happens with Theorem 2.1, it does not produce an explicit map and it
relies on the integration of a time-dependent field. However, we will see
in Section 7 that in some particular cases we can explicitly describe these
objects. Nevertheless, using momentum maps we can still find a simpler
expression for the simple G-tube Θ. Decompose Θ as

Θ(g, ν, λ) = (A(g, ν, λ), B(g, ν, λ)) ∈ G× g∗.

The property of GL-equivariance implies that A(g, ν, λ) = gA(e, ν, λ). As
Θ(e, 0, 0) = (e, μ) then A(e, 0, 0) = e and B(e, 0, 0) = μ.

Using Section 2.3 we have that the product G× g∗μ × q is equipped with

GL and HT
μ Hamiltonian actions with momentum maps KGL and KHT

μ

respectively (see (6)). We also have GL and HT
μ Hamiltonian actions on

G× g∗ and their momentum maps are JGL and JHT
μ
(see Proposition 4.1).

As the difference between two momentum maps is a locally constant function
and both JGL and KGL are equivariant thenJGL ◦Θ = KGL , that is

Ad∗A(g,ν,λ)−1B(g, ν, λ) = Ad∗g−1(ν + μ)
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so

B(g, ν, λ) = Ad∗A(g,ν,λ)Ad
∗
g−1(ν + μ)

= Ad∗g−1A(g,ν,λ)(ν + μ)

= Ad∗A(e,ν,λ)(ν + μ).

If we denote E(ν, λ) = A(e, ν, λ) then we can write

Θ : G× gμ × q −→ T ∗G

(g, ν, λ) �−→ (gE(ν, λ),Ad∗E(ν,λ)(ν + μ)).(16)

Therefore, a simple G-tube is determined by a function E : U ⊂ g∗μ × q → G.
Rewriting Definition 4.2 in terms of the function E we could obtain necessary
and sufficient conditions for E.

Remark 4.4. Note that if g = gμ, which is the hypothesis used in [28],
then q = 0 and the shifting map

G× g∗ −→ G× g∗

(g, ν) �−→ (g, ν + μ)

is a simple G-tube.

Remark 4.5. As Θ is HT
μ -equivariant, the momentum preservation argu-

ment gives

(17) JHT
μ
(Θ(g, ν, λ)) = KHT

μ
(g, ν, λ) = −ν

hμ
+

1

2
λ �hμ

ad∗λμ.

That is, we have the condition (Ad∗E(ν,λ)(ν + μ))
hμ

= ν
hμ

− 1
2λ �hμ

ad∗λμ.
This property will be useful later during the proof of Proposition 6.2.

Remark 4.6. In the proof of Proposition 4.3 we noted that Ψt(g, ν, 0) =
(g, ν, 0) for any t, hence for any simple G-tube Θ given by the previous
proposition it always satifies Θ(g, ν, 0) = (g, ν + μ) ∈ T ∗G.

4.2. Restricted G-tubes

If G acts freely on Q we will see in Section 5.4 that the simple G-tube is
enough to construct explicitly the Hamiltonian tube for T ∗Q but for non-free
actions we will need to adapt a simple G-tube to the corresponding isotropy
subgroup, the result being the restricted G-tube.
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Definition 4.7. Given an adapted splitting g = gμ ⊕ o⊕ l⊕ n as in Propo-
sition 3.1 a restricted G-tube is a map

Φ : G× U ⊂ G× g∗μ × o× l∗ −→ T ∗G

such that:

1) U is a connected Hμ-invariant neighborhood of 0 in g∗μ × o× l∗.

2) Φ is aGL ×HT
μ -equivariant diffeomorphism betweenG× U and Φ(G×

U) such that Φ(e, 0, 0; 0) = (e, μ).

3) Let ui := (ξi, ν̇i, λ̇i, ε̇i) ∈ T(g,ν,λ,ε)G× g∗μ × o× l∗ with i = 1, 2, then
Φ∗ωT ∗G is

ωrestr(u1, u2) = 〈ν̇2, ξ1〉 − 〈ν̇1, ξ2〉+ 〈ν + μ, [ξ1, ξ2]〉 − 〈μ, [λ̇1, λ̇2]〉.(18)

4) JR(Φ(g, ν, λ, ε))
l
= −ε for any (g, ν, λ, ε) where JR is the momentum

map for the GR-action on T ∗G (see Proposition 4.1).

If we are given a simple G-tube Θ then we can build a restricted G-tube
Φ solving a non-linear equation. In fact, the restricted G-tube will be of the
form Φ(g, ν, λ, ε) = Θ(g, ν, λ+ ζ(ν, λ, ε)) for some map ζ : g∗μ × o× l∗ → n.
This is the main idea behind the following result.

Proposition 4.8 (Existence of restricted G-tubes). Given an adapted
splitting g = gμ ⊕ o⊕ l⊕ n as in Proposition 3.1 there is an Hμ-invariant
open neighborhood D of 0 ∈ g∗μ × o× l∗ and a restricted G-tube Φ : G×D →
T ∗G.

Proof. Define q = o⊕ l⊕ n. Using Proposition 4.3 there exists a simple G-
tube Θ defined on the symplectic space Y := G× U ⊂ G× (g∗μ × q) with
symplectic form ωY (13). As U ⊂ g∗μ × q is a neighborhood of 0 there are
Hμ-invariant neighborhoods of the origin (g∗μ)r ⊂ g∗μ, or ⊂ o and nr ⊂ n such
that (g∗μ)r × (or + nr) ⊂ U . Consider now the map

ιW : W = G× ((g∗μ)r × or × nr) −→ Y = G× U ⊂ G× (g∗μ × q)

(g, ν, λ, ζ) �−→ (g, ν, λ+ ζ)
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This map is a GL ×HT
μ -equivariant embedding. By the properties of the

adapted splitting (see Proposition 3.1) Ωμ(λ, ζ) = 0 if λ ∈ o and ζ ∈ n, there-
fore,

(ι∗WωY )(u1, u2) = 〈ν̇2, ξ1〉 − 〈ν̇1, ξ2〉+ 〈ν + μ, [ξ1, ξ2]〉 − 〈μ, [λ̇1, λ̇2]〉

where ui := (ξi, ν̇i, λ̇i, ζ̇i) ∈ T(g,ν,λ,ζ)G× g∗μ × o× n with i = 1, 2. In order to
obtain the restricted G-tube we will need to impose the relationship between
ε and JR. To do so define the map

ψ : W −→ G× g∗μ × o× l∗

(g, ν, λ, ζ) �−→ (g, ν, λ;−JR(Θ(g, ν, λ+ ζ))
l
).

Note that this map is GL ×HT
μ -equivariant because

(g′g, ν, λ;−JR(Θ(g′g, ν, λ+ ζ))
l
)

= (g′g, ν, λ;−JR(g
′Θ(g, ν, λ+ ζ))

l
)

= (g′g, ν, λ;−JR(Θ(g, ν, λ+ ζ))
l
)

and

ψ(h ·T (g, ν, λ, ζ)) =
(
gh−1,Ad∗h−1ν,Adhλ;−JR(Θ(h ·T (g, ν, λ+ ζ))

l

)
=
(
gh−1,Ad∗h−1ν,Adhλ;−JR(h ·T Θ((g, ν, λ+ ζ))

l

)
=
(
gh−1,Ad∗h−1ν,Adhλ;−Ad∗h−1JR(Θ((g, ν, λ+ ζ))

l

)
= h ·T

(
g, ν, λ;−JR(Θ(g, ν, λ+ ζ))

l

)
.

Moreover, if we endow G×g∗μ×o×l∗ with the two-form (18) then ψ∗ωrestr =
ι∗WωY . We will now check that Ψ is invertible. Let

v := (ξ, ν̇, λ̇, ζ̇) ∈ T(e,0,0,0)G× g∗μ × o× n,

then

T(e,0,0,0)ψ · v =
(
ξ, ν̇, λ̇;−T(e,0,0)

(
JR l

◦Θ
)
· (ξ, ν̇, λ̇+ ζ̇)

)
=
(
ξ, ν̇, λ̇;−T(e,0)

(
JR l

)
· (ξ + λ̇+ ζ̇ , ν̇ + ad∗

λ̇+ζ̇
μ)
)

=
(
ξ, ν̇, λ̇;−(ν̇ + ad∗

λ̇+ζ̇
μ)

l

)
=
(
ξ, ν̇, λ̇;−(ad∗

ζ̇
μ)

l

)
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where we have used the expression for T(e,0,0)Θ given in Definition 4.2 and
that ad∗

λ̇
μ

l
= 0 since o and l are Ωμ-orthogonal (see Proposition 3.1).

Since l and n are complementary isotropic subspaces, the map σ : n → l∗

given by σ(ζ) = ad∗ζμ
l
is a linear Hμ-equivariant isomorphism. This implies

that T(e,0,0,0)ψ is invertible. By the Inverse Function Theorem there is a
neighborhood of (e, 0, 0, 0) ∈ G× g∗μ × o× l∗ on which ψ−1 is well defined.

Due to GL ×HT
μ equivariance of Ψ this neighborhood must be of the form

G×D with D ⊂ g∗μ × o× l∗ a Hμ-invariant neighborhood of zero.
Note that the composition Θ ◦ ιW ◦ ψ−1 is a restricted G-tube because

it satisfies

(Θ ◦ ιW ◦ ψ−1)∗ωT ∗G = (ιW ◦ ψ−1)∗ωY = ωrestr,

it is GL ×HT
μ -equivariant (because it is the composition of GL ×HT

μ -
equivariant maps), the origin (e, 0, 0, 0) is mapped to (e, μ) ∈ T ∗G, and it is
a diffeomorphism onto its image (because it is a composition of diffeomor-
phisms onto its images). Finally, if (g, ν, λ, ε) = ψ(g, ν, λ, ζ) then

JR(Θ(g, ν, λ+ ζ))
l
= −ε,

that is (JR l
◦Θ ◦ ιW ◦ ψ−1)(g, ν, λ, ε) = −ε, which is the condition needed

for a restricted G-tube.
To sum up, the composition Φ := Θ ◦ ιW ◦ ψ−1 : G×D → T ∗G is a re-

stricted G-tube. This map can also be written as

Φ : G×D ⊂ G× g∗μ × o× l∗ −→ T ∗G(19)

(g, ν, λ; ε) �−→ Θ(g, ν, λ+ ζ(ν, λ; ε))

where ζ : D ⊂ g∗μ × o× l∗ → n is determined by the equation JR l
(Φ(g, ν, λ+

ζ, ε)) = −ε. In fact, using Remark 4.6 and this characterization of Φ it fol-
lows that

(20) Φ(g, ν, 0, 0) = (g, ν + μ) ∈ T ∗G.

�

5. Cotangent bundle Hamiltonian tubes

Let G be a Lie group acting properly on Q, and fix z ∈ T ∗Q. In this section
we will construct a Hamiltonian tube for the cotangent-lifted action of G on
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T ∗Q around z that will be explicit except for the computation of a restricted
G-tube. This Hamiltonian tube will be a generalization of the construction
in [28] under the hypothesis Gμ = G.

5.1. Cotangent-lifted Palais model

We will first reduce the problem on T ∗Q to a problem on T ∗(G×H S). This
first simplification is already discussed in [28]. Recall the well-known regular
reduction theorem for cotangent bundles at zero momentum [26].

Theorem 5.1 (Regular cotangent reduction at zero). Let G act freely
and properly by cotangent lifts on T ∗Q with momentum map J. Denote by
πG the projection Q → Q/G and consider the map ϕ : J−1(0) → T ∗(Q/G)
defined by 〈ϕ(z), TπG(v)〉 = 〈z, v〉 for every z ∈ T ∗q Q and v ∈ TqQ. Let π0
and ι by the natural projection π0 : J

−1(0) → J−1(0)/G and the inclusion
ι : J−1(0) → T ∗Q. The map ϕ is a G-invariant surjective submersion that
induces a symplectomorphism

ϕ̄ : J−1(0)/G −→ T ∗(Q/G)

where J−1(0)/G is endowed with the unique symplectic form ω0 satisfying
and π∗0ω0 = ι∗ωT ∗Q.

Let G be a Lie group and H a compact subgroup that acts linearly on
the linear space S. Let Sr be a H-invariant open neighborhood of 0 ∈ S. We
will consider the symplectic space T ∗(G× Sr) that can be identified with
G× g∗ × Sr × S∗ using the left-trivialization of G and the linear structure
of S. In Section 2.1 we introduced the GL and HT actions on the space
G× Sr. These actions can be lifted to Hamiltonian actions on T ∗(G× Sr).
More explicitly, using Proposition 4.1 and the diamond notation we have

• cotangent-lifted GL-action: g′ ·L (g, ν, a, b) = (g′g, ν, a, b) with momen-
tum map

JGL(g, ν, a, b) = Ad∗g−1ν.

• cotangent-liftedHT -action: h ·T (g, ν, a, b) = (gh−1,Ad∗h−1ν, h · a, h · b)
with momentum map

JHT (g, ν, a, b) = −ν
h
+ a � b.
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Theorem 5.1 applied to G× Sr with the HT -action gives the diagram

(21) J−1HT (0)
� � ��

ϕ

����

T ∗(G× Sr)

J−1HT (0)/HT ϕ̄
�� T ∗(G×H Sr)

but, since J−1HT (0) is GL-invariant the quotient J−1HT (0)/HT supports a G-
action that it can be checked to be Hamiltonian with momentum map
Jred([g, ν, a, b]HT ) = Ad∗g−1ν. That is, ϕ̄ is in fact a G-equivariant symplec-

tomorphism and ϕ is a GL-equivariant surjective submersion.
Consider now a Lie group G acting properly on a general manifold Q

and by cotangent lifts on T ∗Q with momentum map JT ∗Q. Our goal is
to construct a Hamiltonian tube around an arbitrary point z ∈ T ∗Q. For
that, let q = τ(z) where τ : T ∗Q → Q is the projection, define H := Gq

and consider a linear slice at q, that is a H-invariant complement S to
g · q in TqQ. Using Palais’ model (1) there is a H-invariant neighborhood
Sr ⊂ S and a G-equivariant diffeomorphism s : G×H Sr −→ U ⊂ T ∗Q sat-
isfying s([e, 0]H) = q. As s is a diffeomorphism the cotangent lift T ∗s−1 :
T ∗(G×H Sr) −→ π−1(U) ⊂ Q is a G-equivariant symplectomorphism onto
T ∗U ∼= τ−1(U) ⊂ T ∗Q.

If we denote α = z
S

and μ = JT ∗Q(z), then T ∗s−1(ϕ(e, μ, 0, α)) = z
since τ(ϕ(e, μ, 0, α)) = [e, 0]H = s−1(q), and as any v ∈ TqQ can be decom-
posed as v = ξ · q + ȧ with ξ ∈ g and ȧ ∈ S then

〈T ∗q s−1(ϕ(e, μ, 0, α)), v〉 = 〈ϕ(e, μ, 0, α), Tqs
−1 · v〉 = 〈ϕ(e, μ, 0, α), (ξ, ȧ)〉

= 〈(μ, α), (ξ, ȧ)〉 = 〈μ, ξ〉+ 〈α, ȧ〉
= 〈JT ∗Q(z), ξ〉+ 〈z, ȧ〉
= 〈z, ξ · q〉+ 〈z, ȧ〉 = 〈z, v〉.

Therefore, from now on we will assume without loss of generality Q =
G×H Sr and z = ϕ([e, μ, 0, α]H) with μ ∈ g∗ and α ∈ S∗. Moreover, this
simplification is explicit up to the exponential of a metric.

The G-isotropy of z is Gz = Hα ∩Gμ since Gz = G[e,μ,0,α]H = H(μ,α) =
Hμ ∩Hα = Gμ ∩Hα. If p is a Hμ-invariant complement of hμ in gμ, s is
a complement of gz in hμ and B = (hμ · α)◦ ⊂ S then, using Theorems 3.4
and 2.1, and the adapted splitting of Proposition 3.1, the Hamiltonian tube
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around z has to be a map of the form

(22) T : G×Gz

(
(s∗ ⊕ p∗)︸ ︷︷ ︸

m∗

× o×B ×B∗︸ ︷︷ ︸
N

)
−→ T ∗(G×H S).

The first difficulty that we find is that the MGS model is a Gz-quotient but
the target space is a H-quotient. For this reason, instead of constructing
directly the tube we are going to split it as the composition of two maps:
one that goes from an Hμ-quotient to an H-quotient (essentially this is done
by a restricted G-tube) and another that goes from a Gz-quotient to an Hμ-
quotient. We will carefully explain this process in the following sections.

5.2. The α = 0 case

In this section we will construct a Hamiltonian around a point of the form
z0 = ϕ(e, μ, 0, 0) ∈ T ∗(G×H S) which is explicit up to a restricted G-tube.
Notice thatGz0 = Gμ ∩Hα = Hμ and by Theorem 3.4 and the adapted split-
ting of Proposition 3.1 the symplectic slice is N0 = o× S × S∗ with symplec-
tic form (10). Then the map (22) reduces in this case to

T0 : G×Hμ
( p∗︸︷︷︸

m∗

× o× S × S∗︸ ︷︷ ︸
N0

) −→ T ∗(G×H S)

where G×Hμ
(p∗ × o× S × S∗) is equipped with the symplectic form (2).

As the general Hamiltonian tube will eventually factor through T0 we will
need to ensure that its domain is large enough, and in particular it should
contain all the points of the form [e, 0, 0, 0, b]Hμ

for all b ∈ S∗.

Theorem 5.2. Consider the point z0 = ϕ(e, μ, 0, 0) ∈ T ∗(G×H S). Let g =
gμ ⊕ o⊕ l⊕ n be an adapted splitting in the sense of Proposition 3.1 and
let Φ : G× UΦ −→ T ∗G be an associated restricted G-tube. In this context,
there are Hμ-invariant open neighborhoods of zero: p∗r ⊂ p∗, or ⊂ o and an
H-invariant open neighborhood of zero h∗r ⊂ h∗ such that the map

T0 : G×Hμ
(p∗r × or × (T ∗S)r) −→ T ∗(G×H S)(23)

[g, ν, λ; a, b]Hμ
�−→ ϕ(Φ(g, ν̃, λ; a �l b); a, b)

is a Hamiltonian tube around the point z0, where

ν̃ = ν +
1

2
λ �hμ

ad∗λμ+ a �hμ
b︸ ︷︷ ︸

JN0
(λ,a,b)
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and (T ∗S)r := {(a, b) ∈ T ∗S | a �h b ∈ h∗r}.

Proof. If we assume the existence of (p∗)r, or and hr such that the map T0
is well defined then it follows from the properties of Φ that

T0([e, 0, 0; 0, 0]Hμ
) = ϕ(Φ(e, 0, 0; 0); 0, 0) = ϕ(e, μ; 0, 0)

and by the G-equivariance of Φ it is also clear that

T0(g′ · [g, ν, λ; a, b]Hμ
) = T0([g′g, ν, λ; a, b]Hμ

)

= ϕ(Φ(g′g, ν̃, λ; a �l b); a, b)
= ϕ(g′ · Φ(g, ν̃, λ; a �l b); a, b)
= g′ · ϕ(Φ(g, ν̃, λ; a �l b); a, b)
= g′ · T0([g, ν, λ; a, b]Hμ

).

We will divide the rest of the proof in three steps. In the first one we
prove that there is a set G×Hμ

(p∗dom × odom × (T ∗S)dom) such that the map
T0 is well defined, it pulls-back the natural symplectic form of T ∗(G×H S)
to the MGS form G×Hμ

(p∗dom × odom × (T ∗S)dom) and it is a local diffeo-
morphism. In the second one we will show that it is injective in a certain
subset and in the third we will prove that it is a diffeomorphism onto its
image.

1- T0 is a local symplectomorphism. Let N0 = o× S × S∗ be the sym-
plectic slice at z0 = ϕ(e, μ, 0, 0). As in Section 2.3, there must be an Hμ-
invariant neighborhood (g∗μ)r such that the product Z := G× (g∗μ)r × (o×
S × S∗) with ωZ := ωTμ

+ΩN0
is a symplectic manifold with GL and HT

μ

Hamiltonian actions with momentum maps KGL and KHT
μ
(see (6)).

We will now use the restricted G-tube (see Definition 4.7) Φ : G× UΦ ⊂
G× g∗μ × o× l∗ → T ∗G to relate Z with T ∗(G× S). As Φ is only defined on
G× UΦ we will define the open set

D := {(ν, λ, a, b) | (ν, λ, a �l b) ∈ UΦ, ν ∈ (g∗μ)r} ⊂ g∗μ × o× S × S∗

and the map

f : G×D −→ T ∗G× T ∗S

(g, ν, λ, a, b) �−→ (Φ(g, ν, λ, a �l b), a, b).(24)
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The pullback of ωT ∗(G×S) by f is ωZ , because

(f∗ωT ∗(G×S))(u1, u2)

= (Φ∗ωT ∗G)(g, ν, λ, a �l b)(v1, v2) + ωT ∗S(a, b)(w1, w2)

= 〈ν̇2, ξ1〉 − 〈ν̇1, ξ2〉+ 〈ν + μ, [ξ1, ξ2]〉︸ ︷︷ ︸
ωTμ

− 〈μ, [λ̇1, λ̇2]〉+ 〈ḃ2, ȧ1〉 − 〈b1, ḃ1〉︸ ︷︷ ︸
ΩN0

where ui = (ξi, ν̇i, λ̇i, ȧi, ḃi) ∈ T(g,ν,λ,a,b)(G×D).
Note that on G×D there is a GL ×HT

μ action but on T ∗G× T ∗S ∼=
G× g∗ × S × S∗ there is a GL ×HT action. As the map f is GL ×HT

μ -
equivariant it preserves the Hμ-momentum, that is, KHT

μ
= JHT

μ
◦ f . In par-

ticular f(K−1
HT

μ
(0)) ⊂ J−1HT

μ
(0). However, the l-momentum property (see Def-

inition 4.7) of restricted G-tubes allows us to improve this since for any
ξ ∈ l

〈JHT (f(g, ν, λ; a, b)), ξ〉 = 〈JR(Φ(g, ν, λ; a �l b)) + a �h b, ξ〉
= 〈JR(Φ(g, ν, λ; a �l b)) l

+ a �l b, ξ〉
= 〈−a �l b+ a �l b, ξ〉 = 0.

This means that f can be restricted to a map

f̃ : K−1
HT

μ
(0) −→ J−1HT (0)

and this is the key condition that will allow us to relate the Hμ-quotient
G×Hμ

(p∗ ×N0) with the H-quotient J−1HT (0)/HT ∼= T ∗(G×H S). To do so
consider the diagram

G×D
f

�� T ∗(G× S)

G× p∗dom × odom × (T ∗S)dom
l ��

��

K−1
HT

μ
(0)

f̃
��

�� ��

��

��

J−1H (0)

��

��

��

ϕ

��

G×Hμ
(p∗dom × odom × (T ∗S)dom)

L ��

T0
		

K−1
HT

μ
(0)/HT

μ
F �� J−1HT (0)/HT ϕ

�� T ∗(G×H S)

Composing f̃ with the projection by HT in the target we get a smooth
map K−1

HT
μ
(0) −→ J−1HT (0)/HT which is GK-equivariant and HT

μ -invariant
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and so it induces the smooth mapping

F : K−1
HT

μ
(0)/HT

μ −→ J−1HT (0)/H
T .

IfK−1
HT

μ
(0)/HT

μ is endowed with the reduced form (ωZ)red and J−1HT (0)/HT

with (ωT ∗(G×S))red then F ∗(ωT ∗(G×S))red = (ωZ)red because f∗ωT ∗(G×S) =
ωZ . In particular F is an immersion. Also, as the HT

μ -action on G×D is
free

dimK−1
HT

μ
(0)/HT

μ = dimK−1
HT

μ
(0)− dim hμ

= dim(G× (g∗μ × o)) + 2 dimS − 2 dim hμ

= dim g+ dim gμ + dim o− 2 dim hμ + 2dimS

= 2dim p+ 2dim o+ dim l+ dim n+ 2dimS

= 2dim p+ 2dim o+ 2dim l+ 2dimS

= 2(dim g− dim h+ dimS).

Analogously,

dimJ−1H (0)/HT = dimJ−1HT (0)− dim h = 2(dim g− dim h+ dimS).

This implies that F is a local diffeomorphism because it is an immersion
between spaces of the same dimension.

By continuity we can choose Hμ-invariant neighborhoods of the origin
p∗dom ⊂ p∗, odom ⊂ o and an H-invariant neighborhood of the origin h∗dom ⊂
h∗ such that (ν +

1

2
λ �hμ

ad∗λμ+ a �hμ
b︸ ︷︷ ︸

JN0

, λ, a, b) ∈ D for any ν ∈ p∗dom, λ ∈

odom and a, b ∈ T ∗S with a �h b ∈ h∗dom. The map

L : G×Hμ
(p∗dom × odom × (T ∗S)dom) → K−1

HT
μ
(0)/HT

given by [g, ν, λ, a, b]Hμ
�→ [g, ν + JN0

(λ, a, b), λ, a, b]Hμ
is well defined and,

as in (7), L∗(ωZ)red = ΩY . The conclusion of this first step is that the
composition T0 := ϕ̄ ◦ F ◦ L is then a local diffeomorphism that pulls-back
the canonical form of T ∗(G×H S) to the MGS form on the set G×Hμ

(p∗dom × odom × (T ∗S)dom).

2- T0 is locally injective. As T0 : G×Hμ
(p∗dom × odom × (T ∗S)dom) →

T ∗(G×H S) is a local diffeomorphism, there is a neighborhood of [e, 0, 0,
0, 0]Hμ

such that T0 is injective on it. Using that T0 is G-equivariant and that
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the action is proper this neighborhood can be chosen to be G-invariant (see
for example the proof of Theorem 2.3.28 in [19]). That is, T0 will be injective
when restricted to the set G×Hμ

(
p∗inj × oinj × (T ∗S)inj

)
where p∗inj ⊂ p∗dom,

oinj ⊂ odom are Hμ-invariant neighborhoods and (T ∗S)inj is an H-invariant
neighborhood of 0 on (T ∗S)dom. Note that we cannot ensure that (T ∗S)inj
will be big enough to contain all the points of the form (0, b) ∈ T ∗S. This
issue will be addressed in the next step.

3- T0 is injective. In this step, we will define an open set (T ∗S)r ⊂
(T ∗S)dom such that the restriction

T0 : G×Hμ

(
p∗inj × oinj × (T ∗S)r

)
−→ T0

(
G×Hμ

(
p∗inj × oinj × (T ∗S)r

))
is a proper map

The key result that we will use to prove the properness of T0 is the
following topological result.

Proposition 5.3 (Lemma 5 of [16]). Let H be a compact Lie group
acting on a symplectic vector space (W,ωW ) denote by J : W → h∗ the as-
sociated homogeneous momentum map (5). Then J is H-open relative to
its image. That is, if U is an H-invariant open set of W then J(U) is an
H-invariant open set of the topological space J(W ) ⊂ h∗.

Let U1 ⊂ S and U2 ⊂ S∗ be H-invariant neighborhoods of the origin
such that U1 × U2 ⊂ (T ∗S)inj. Using Proposition 5.3 there is h∗r an open
neighborhood of 0 ∈ h∗ such that

h∗r ∩ (S �h S∗) = U1 �h U2 ⊂ h∗.

In this setting, define (T ∗S)r := {(a, b) ∈ T ∗S | a �h b ∈ h∗r}. From the first
part of the proof we have the following commutative diagram

G× p∗dom × odom × (T ∗S)dom

πHμ

��

f̃◦l
�� J−1HT (0)

ϕ◦πH

��

G×Hμ
(p∗dom × odom × (T ∗S)dom)

T0 �� T ∗(G×H S)

The problem is that f̃ ◦ l is an injective embedding but it is not clear if it is
proper. We will now show that T0 ◦ πHμ

is a proper map onto its image when
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restricted to G× p∗inj × oinj × (T ∗S)r. To do so let xn = (gn, νn, λn; an, bn) be
a sequence in G× p∗inj × oinj × (T ∗S)r such that

T0(πHμ
(xn)) −→ T0(πHμ

(ḡ, ν̄, λ̄; ā, b̄))

with (ḡ, ν̄, λ̄; ā, b̄) ∈ G× p∗inj × oinj × (T ∗S)r. We will construct a subsequence
{xσ3(n)} ⊂ {xn} which is convergent on G× p∗inj × oinj × (T ∗S)r.

The map ϕ ◦ πH : J−1HT (0) → T ∗(G×H S) is proper because it is a com-
position of an homeomorphism and the projection by a compact group.
Since T0 ◦ πHμ

= ϕ ◦ πH ◦ f̃ ◦ l then there is a increasing map σ1 : N → N
such that the sequence {(f̃ ◦ l)(xσ1(n))}n converges in J−1HT (0) ⊂ T ∗(G× S)
(we are just taking a subsequence). But then by uniqueness of the limit there
is h ∈ H such that

(f̃ ◦ l)(xσ1(n)) −→ h ·T ((f̃ ◦ l)(ḡ, ν̄, λ̄; ā, b̄)),

but using the expression of f (24) this implies that aσ1(n)→h · ā and bσ1(n)→
h · b̄. By the definition of (T ∗S)r we can choose for each n a pair (αn, βn) ∈
U1 × U2 satisfying

αn �h βn = an �h bn.

Since U1 × U2 is a relatively compact subset of (T ∗S)inj we can find an
increasing map σ2 : N → N such that σ2(N) ⊂ σ1(N) and (ασ2(n), βσ2(n)) →
(α∞, β∞) but then (f̃ ◦ l)(gσ2(n), νσ2(n), λσ2(n), ασ2(n), βσ2(n)) converges and

(f̃ ◦ l)(gσ2(n), νσ2(n), λσ2(n), ασ2(n), βσ2(n))

−→h ·T
(
(f̃ ◦ l)(ḡ, ν̄, λ̄, h−1α∞, h−1β∞)

)
.

As (gσ2(n), νσ2(n), λσ2(n), ασ2(n), βσ2(n)) lies in G× p∗inj × oinj × (T ∗S)inj
by the facts that T0 restricted to G× p∗inj × oinj × (T ∗S)inj is a diffeomor-
phism and πHμ

is proper then there is an increasing map σ3 : N → N with
σ3(N) ⊂ σ2(N) such that (gσ3(n), νσ3(n), λσ3(n), ασ3(n), βσ3(n)) converges in
G× p∗inj × oinj × (T ∗S)inj. Therefore, {xσ3(n)} is a convergent sequence on
G× p∗inj × oinj × (T ∗S)r.

This proves that

T0 ◦ πHμ
: G× p∗inj × oinj × (T ∗S)r

→ (T0 ◦ πHμ
)(G× p∗inj × oinj × (T ∗S)r)
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is proper. But since

πHμ
: G× p∗inj × oinj × (T ∗S)r → G×Hμ

(
p∗inj × oinj × (T ∗S)r

)
is surjective and continuous this implies that

T0 : G×Hμ

(
p∗inj × oinj × (T ∗S)r

)
−→ T0

(
G×Hμ

(
p∗inj × oinj × (T ∗S)r

) )
is a proper map.

As T0 is a local homeomorphism which is also proper it is a covering
map. Then if ϕ(e, μ, 0, 0) has only one preimage, this implies that the cover-
ing map is in fact injective. But if T0([g, ν, λ, a, b]Hμ

) = ϕ(e, μ, 0, 0) then it is
clear from the expression of T0 (23) that a = b = 0 and then [g, ν, λ, 0, 0]Hμ

∈
G×Hμ

(
p∗inj × oinj × (T ∗S)inj

)
⊂ G×Hμ

(
p∗inj × oinj × (T ∗S)r

)
. Therefore,

by injectivity we have [g, ν, λ, 0, 0]Hμ
= [e, 0, 0, 0, 0]Hμ

. But as in the first
step of this proof we showed that T0 is a local symplectomorphism the in-
jectivity implies that T0 is a diffeomorphism. That is, the map

T0 : G×Hμ

(
p∗inj × oinj × (T ∗S)r

)
−→ T0(G×Hμ

(
p∗inj × oinj × (T ∗S)r

)
)

⊂ T ∗(G×H S)

[g, ν, λ; a, b]Hμ
�−→ ϕ(Φ(g, ν̃, λ; a �l b); a, b)

where ν̃ = ν + JN0
(λ, a, b) = ν + 1

2λ �hμ
ad∗λμ+ a �hμ

b, is a diffeomorphism.
�

5.3. The Γ map

In this section we are going to introduce the Γ map, a technical tool used
in [28] to build the Hamiltonian cotangent tube when G = Gμ. Here we will
use it as the final step towards generalizing the previous tube at α = 0 to
the general case α �= 0.

Let ϕ(e, μ, 0, α) ∈ T ∗(G×H S) and define K = Hμ ∩Hα. Recall that in
(22) we defined B := (hμ · α)◦ ⊂ S and a K-invariant complement s of k
in hμ. As K is compact we can choose a K-invariant splitting S = B ⊕ C
inducing the K-invariant splitting S∗ = B∗ ⊕ C∗.

However the previous splitting of S∗ is not in principleHμ-invariant. The
following technical result studies how it behaves with respect to the infinites-
imal Hμ-action on S. The next result is a straightforward generalization to
the case gμ �= g of Lemmas 27 and 28 of [28].
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Proposition 5.4. In the above situation:

• If a ∈ B, c ∈ C and b ∈ B∗ then

(a+ c) �hμ
(α+ b) = a �hμ

b+ c �s (α+ b).

• There is a K-invariant neighborhood (B∗)r of the origin in B∗ and a
K-equivariant map

Γ : s∗ × (B∗)r −→ S

defined by

〈Γ(ν; b), ξ · (α+ b) + β〉 = 〈ν, ξ〉 ∀β ∈ B∗, ∀ξ ∈ s.

That is, Γ satisfies Γ(ν; b) �s (b+ α) = ν and Γ(ν; b) ∈ C for any ν ∈
s∗ and b ∈ (B∗)r.

With the notation that we have already introduced the symplectic slice
at ϕ(e, μ, 0, 0) is N0 = o× T ∗S whereas the symplectic slice at ϕ(e, μ, 0, α) is
Nα = o× T ∗B (see Theorem 3.4). The abstract MGS models at ϕ(e, μ, 0, 0)
and ϕ(e, μ, 0, α) are G×Hμ

(p∗ ×N0) and G×K (s∗ ⊕ p∗ ×Nα) respectively.
The next result shows that Γ can be used to build a well-behaved map
between both spaces.

Theorem 5.5. In the above context there is an open K-invariant neigh-
borhood W of zero in (s∗ ⊕ p∗)× o×B ×B∗ such that the G-equivariant
map

F : G×K W −→ G×Hμ
(p∗ × o× S × S∗)

[g, νs + νp, λ, a, b]K �−→ [g, νp, λ, ã, b+ α]Hμ
,

where ã = a+ Γ(νs − a �s b− 1
2λ �s ad∗λμ; b), is a local symplectomorphism.

Proof. As in the first part of the proof of Theorem 5.2 there is a neigh-
borhood (g∗μ)r of 0 ∈ g∗ such that Z0 := G× (g∗μ)r × (o× S × S∗) is a sym-
plectic space with ωZ0

:= ωTμ
+ΩN0

. We are in the same setting as in Sub-
section 2.3, therefore, Z0 supports GL and HT

μ Hamiltonian actions with
momentum maps that were denoted as KGL and KHT

μ
.
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Similarly Zα := G× (g∗μ)r × (o×B × (B∗)r) is a symplectic space with
symplectic form ωZα

:= ωTμ
+ΩNα

because Nα = o×B ×B∗. Note that Zα

has GL and KT Hamiltonian actions with momentum maps MGL
and MKT .

Consider now the map

f : Zα −→ Z0

(g, ν, λ; a, b) �−→ (g, ν, λ; a+ Γ(η; b), b+ α)

where η = ν
s
− a �s b− 1

2λ �s ad∗λμ. As Γ is K-equivariant then f is GL ×
KT equivariant. Note that the potential θZ0

(g, ν, λ; a, b)(ξ, ν̇, λ̇; ȧ, ḃ) = 〈ν +
μ, ξ〉+ 1

2〈μ, [λ, λ̇]〉+ 〈b, ȧ〉 − 〈α, ȧ〉 generates the symplectic structure ωZ0

(see (4)) and

(f∗θZ0
)(g, ν, λ, a, b) · v = θZ0

(f(g, ν, λ, a, b))(T(g,ν,λ,a,b)f · v)

= 〈μ+ ν, ξ〉+ 1

2
〈μ, [λ, λ̇]〉

+ 〈b, ȧ+ T(ν,λ,a,b)Γ · (ν̇, λ̇, ȧ, ḃ)〉

= 〈μ+ ν, ξ〉+ 1

2
〈μ, [λ, λ̇]〉+ 〈b, ȧ〉

where v = (ξ, ν̇, ȧ, ḃ) ∈ T(g,ν,a,b)Zα. Taking the exterior derivative of this
equality we get f∗ωZ0

= ωZα
.

Additionally, the HT
μ -momentum evaluated at f(g, ν, λ, a, b) is

KHT
μ
(f(g, ν, λ; a, b))(25)

= −ν +
1

2
λ �hμ

ad∗λμ+ (a+ Γ(η; b)) �hμ
(b+ α)

= −ν
hμ

+
1

2
λ �hμ

ad∗λμ+ a �hμ
b+ Γ(η; b) �s (b+ α)

= −ν
hμ

+
1

2
λ �hμ

ad∗λμ+ a �hμ
b+ η

= −ν
hμ

+
1

2
λ �hμ

ad∗λμ+ a �hμ
b+ ν

s
− a �s b−

1

2
λ �s ad∗λμ

= −ν
k
+

1

2
ad∗λμ �k λ+ a �k b.

This means that if ξ ∈ s then 〈KHT
μ
(f(g, ν, λ, a, b)), ξ〉 = 0 and as

MKT (g, ν, λ, a, b) = −ν
k
+

1

2
ad∗λμ �k λ+ a �k b,
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f can be restricted to

f̃ : M−1
KT (0) −→ K−1

HT
μ
(0).

As we did in Theorem 5.2 we can construct from the top to the bottom
all the arrows of the diagram

Zα
f

�� Z0

M−1
KT (0)

f̃
��

�� ��

��

��

K−1
Hμ

(0)

��

��

��

M−1
KT (0)/KT F �� K−1

Hμ
(0)/HT

μ

using the same arguments as in the first part of Theorem 5.2. Therefore,
as F is an immersion between spaces of the same dimension, it is a local
diffeomorphism onto its image.

Adapting the construction of map (7) to this setting define the K-
invariant open set

W :=

{
(νs + νp, λ, a, b) ∈ (s∗ ⊕ s∗)× o×B × (B∗)r

∣∣∣
νs + νp +

1

2
ad∗λμ �k λ+ a �k b︸ ︷︷ ︸

JNα

∈ (g∗μ)r

}

and the map Lα : G×K W −→ M−1
KT (0)/KT given by

Lα([g, νs + νp, λ, a, b]K) = [g, νs + νp + JNα
(λ, a, b), λ, a, b]K ,

then Lα is a G-equivariant symplectomorphism. And similarly,

R0 : K
−1
HT

μ
(0)/HT

μ → G×Hμ
(p∗ × o× S × S∗)

defined by [g, ν, λ, a, b]Hμ
�→ [g, ν

p
, λ, a, b]Hμ

is a G-equivariant symplecto-
morphism.

Finally, we can conclude that the composition F = R0 ◦ F ◦ Lα : G×K

W → G×Hμ
(p∗ × o× S × S∗) is a G-equivariant local diffeomorphism that
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pulls-back the MGS symplectic form of the target to the MGS symplectic
form of G×K W . �

5.4. General tube

In this section we will deal with the most general situation and will construct
a Hamiltonian tube around an arbitrary point ϕ(e, μ, 0, α). To do so we will
use Theorem 5.2 to obtain a Hamiltonian tube around ϕ(e, μ, 0, 0) and then
we will compose it with the map F of Theorem 5.5. The result of this
composition will be the desired Hamiltonian tube around ϕ(e, μ, 0, α).

Theorem 5.6. Consider the point z ∈ T ∗(G×H S) defined by z = ϕ(e, μ,
0, α). Let g = gμ ⊕ o⊕ l⊕ n be an adapted splitting in the sense of Propo-
sition 3.1 and let Φ : G× UΦ −→ T ∗G be an associated restricted G-tube.
Let gμ = hμ ⊕ p be a Hμ-invariant splitting and hμ = gz ⊕ s a Gz invariant
splitting. Define B = (hμ · α)◦ ⊂ S and let the map Γ : s∗ ×B∗r → S be the
one defined in Proposition 5.4.

In these conditions there are small enough Gz-invariant neighborhoods
of zero s∗r ⊂ s∗, p∗r ⊂ p∗, or ⊂ o, Br ⊂ B and B∗r ⊂ B∗ such that the map

T : G×Gz
((s∗r ⊕ p∗r)× or ×Br ×B∗r ) −→ T ∗(G×H S)(26)

[g, νs + νp, λ; a, b]Gz
�−→ ϕ(Φ(g, ν̃, λ; ε); ã, b+ α)

where

ã = a+ Γ

(
νs − a �s b−

1

2
λ �s ad∗λμ; b

)
ν̃ = νp + νs +

1

2
λ �gz

ad∗λμ+ a �gz
b

ε = ã �l (b+ α)

is a Hamiltonian tube around the point z = ϕ(e, μ, 0, α).

Proof. Using Theorem 5.2, there is a Hamiltonian tube T0 : G×Hμ
V →

T ∗(G×H S) with V ⊂ p∗ × o× S × S∗ satisfying T0([e, 0]Hμ
) = ϕ(e, μ, 0, 0).

By Theorem 5.5, there is a map F : G×Gz
W → G×Hμ

(p∗ × o× T ∗S) with
W ⊂ (p∗ ⊕ s∗)× o×B ×B∗.

Note that G×Hμ
V is an open G-invariant subset of G×Hμ

(p∗ × o×
T ∗S). Since F is continuous then the preimage of G×Hμ

V by F is open
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and it contains the point [e, 0, 0, 0, 0]Gz
because

F([e, 0, 0, 0, 0]Gz
) = [e, 0, 0, 0, α]Hμ

⊂ G×Hμ
V

since 0 �h α = 0 ∈ h∗r . Therefore, we can choose small enough Gz-invariant
neighborhoods of zero s∗r ⊂ s∗, p∗r ⊂ p∗, or ⊂ o, Br ⊂ B and B∗r ⊂ B∗ such
that the composition T := T0 ◦ F : G×Gz

(s∗r ⊕ p∗r)× or ×Br ×B∗r →
T ∗(G×H S) is well-defined and injective. Using Theorems 5.2 and 5.5 we
conclude that T is a Hamiltonian tube around ϕ(e, μ, 0, α).

More precisely, as F([g, νs + νp, λ, a, b]Gz
) = [g, νp, λ, ã, b+ α]Hμ

with
ã = a+ Γ(νs − a �s b− 1

2λ �s ad∗λμ; b) then (T0 ◦ F)([g, νs + νp, λ; a, b]Gz
) =

ϕ(Φ(g, ν̃, λ; ε); ã, b+ α) where ε = ã �l (b+ α) and

ν̃ = νp +
1

2
λ �hμ

ad∗λμ+ ã �hμ
(b+ α),

but using exactly the same computations that as in (25) we get ã �hμ
(b+

α) = a �gz
b+ νs − 1

2λ �s ad∗λμ, that is ν̃ = νp + νs +
1
2λ �gz

ad∗λμ+ a �gz
b.
�

Note that if we assume that μ ∈ g∗ satisfies gμ = g then o = 0 and the
Hamiltonian tube T will be of the form

T : G×Gz
((s∗r ⊕ p∗r)×Br ×B∗r ) −→ T ∗(G×H S)

[g, νs + νp; a, b]Gz
�−→ ϕ(g, μ+ ν̃; ã, b+ α)

where

ν̃ = νp + νs + a �gz
b, ã = a+ Γ(νs − a �s b; b).

This map is the content of Theorem 31 of [28]. That is, the map T coincides
with the results of [28] when we restrict to their totally isotropic hypothesis
g = gμ. What happens in this case is that the map given by Theorem 5.2
becomes the trivial μ-shift

T0 : G×Hμ
(p∗ × S × S∗) −→ T ∗(G×H S)

[g, ν; a, b]Hμ
�−→ ϕ(g, μ+ ν + a �hμ

b; a, b).

The other extreme case is when Γ becomes trivial. This will happen for
example if S = 0, which is equivalent to assuming that locally Q = G/H.
Fix a point z = ϕ(e, μ) ∈ T ∗(G/H), as Gz = Hμ then s = 0 and as S = 0
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then B = 0, therefore, according to (26) T becomes

T : G×Hμ
(p∗r × or) −→ T ∗(G/H)

[g, νp, λ]Hμ
�−→ ϕ(Φ(g, νp +

1

2
λ �hμ

ad∗λμ, λ; 0)).

6. A fibered Bates-Lerman Lemma

One of the most important consequences of the MGS model is that it pro-
vides a local description of the set of points with momentum μ which is
very useful in the theory of singular reduction. This is the content of the
following result that appeared in [2] and previously in [31] for μ = 0. More
precisely, instead of using the orbit-reduction-approach of [2] we are going
to need the point-reduction-approach of Proposition 8.1.2 of [19].

Proposition 6.1. Let (M,ω) be a symplectic manifold supporting a proper
Hamiltonian G-action with momentum map J. Let m ∈ M , μ = J(m) and
T : G×Gm

(m∗r ×Nr) → M a Hamiltonian tube around m. There is an open
Gμ-invariant neighborhood UM of Gμ ·m such that

UM ∩ J−1(μ) = T (Z)

where

Z = {[g, ν, λ, v]Gm
∈ T −1(UM ) | g ∈ Gμ, ν = 0, JN (v) = 0}.

Recall that, in some cases, we saw that the domain of the cotangent bun-
dle Hamiltonian tube is unbounded in the S∗ direction (see Theorem 5.2). In
this section we will present an important consequence of this which is that
for cotangent-lifted actions the open neighborhood UM can be global in the
vertical direction. That is, it will be of the form τ−1(UQ) where τ : T ∗Q → Q
is the natural projection and UQ is a neighborhood in Q.

Proposition 6.2. Consider the Hamiltonian tube T0 : G×Hμ
(p∗r × or ×

(T ∗S)r) → T ∗(G×H S) of Theorem 5.2 at the point ϕ(e, μ, 0, 0) ∈ T ∗(G×H

S). There is a Gμ-invariant neighborhood UQ of [e, 0]H ∈ G×H S such that

(27) τ−1(UQ) ∩ J−1(μ) = T0(Z)
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where

Z =

{
[g, ν, λ, a, b]Hμ

∈ T −10 (τ−1(UQ))
∣∣∣

g ∈ Gμ, ν = 0,
1

2
λ �hμ

ad∗λμ+ a �hμ
b = 0

}
.

Proof. As in the previous section, N0 = o× T ∗S will be the symplectic slice
at ϕ(e, μ, 0, 0) with the symplectic form (10). The Hamiltonian tube puts
the momentum map J in the normal form (3), that is J ◦ T0 = JY . We will
now proceed as in the proof of Proposition 6.1 in [2] and we will factorize
JY = γ ◦ β, with

β : G×Hμ
(p∗ ×N0) −→ G×Hμ

g∗μ, γ : G×Hμ
g∗μ −→ g∗

[g, ν, v]Hμ
�−→ [g, ν + JN0

(v)] [g, ν]Hμ
�−→ Ad∗g−1(μ+ ν).

Using this factorization it will be easy to describe J−1Y (μ). Note that, since
the map

T[e,0]Hμ
γ · (ξ, ν̇) = −ad∗ξμ+ ν̇

is onto, γ is a submersion near [e, 0]Hμ
but by G-equivariance there is a

G-invariant open set Usubm ⊂ G×Hμ
g∗ where γ is a submersion. Therefore,

γ−1(μ) ∩ Usubm is a manifold of dimension dimGμ − dimHμ. As Gμ ×Hμ

{0} ⊂ γ−1(μ), Gμ ×Hμ
{0} has to be an open submanifold of γ−1(μ) ∩ U ,

that is, there is an open set UBL ⊂ Usubm with Gμ ×Hμ
{0} = γ−1(μ) ∩ UBL.

By equivariance of γ we can assume that UBL is Gμ-invariant. Applying β−1

on the equality Gμ ×Hμ
{0} = γ−1(μ) ∩ UBL, we get

(28) {[g, 0, v]Hμ
∈ G×Hμ

(p∗ ×N0) | JN0
(v) = 0} = J−1Y (μ) ∩ β−1(UBL).

In this setting, let UG be a GL
μ ×HR

μ -invariant neighborhood of e ∈
G, p∗0 ⊂ p∗, o0 ⊂ o Hμ-invariant neighborhoods of zero and h∗0 ⊂ h∗ a H-
invariant neighborhood of zero such that

{
[g, ν, λ, a, b]Hμ

| g ∈ UG, ν ∈ p∗0, λ ∈ o0, a �h b ∈ h∗0
}

⊂
(
G×Hμ

(p∗r × or × (T ∗S)r)
)
∩ β−1(UBL).
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Let now Φ be the restricted tube used in the definition of T0 (see Theo-
rem 5.2) and consider the map

f : UG × p∗0 × o0 × h∗0 −→ T ∗G/HT

(g, ν, λ, ρ) �−→ πHT (Φ(g, ν +
1

2
λ �hμ

ad∗λμ+ ρ
hμ
, λ, ρ

l
)).

Note that this expression is very similar to (23) but we have changed the
dependence on T ∗S by a dependence on h∗μ. We claim that this map is a
submersion at (e, 0, 0, 0). Using the notation of the proof of Proposition 4.8,
if v = (ξ, ν̇, λ̇, ε̇) ∈ T(e,0,0,0)(G× g∗μ × o× l∗),

T(e,0,0,0)Φ · v = T(e,0,0,0)(Θ ◦ ιW ◦ ψ−1) · v = T(e,0,0,0)Θ · (ξ, ν̇, λ̇+ σ−1 · ε)
= (ξ + λ̇+ σ−1 · ε̇, ν̇ − ε̇+ ad∗

λ̇
μ)

where σ : n → l∗ is the linear isomorphism σ · ζ = ad∗ζμ l
. Applying this re-

sult to f we get

(29) T(e,0,0,0)f · (ξ, ν̇, λ̇, ρ̇) = T(e,μ)πHT · (ξ + λ̇+ σ−1 · ρ
l
, ν̇ + ad∗

λ̇
μ+ ρ̇).

But, since the splitting of Proposition 3.1 induces the dual decomposi-
tion g∗ = h∗μ ⊕ p∗ ⊕ o∗ ⊕ l∗ ⊕ n∗ each element of g∗ can be expressed as

ρ̇
hμ

+ ν̇ + ad∗
λ̇
μ+ ρ̇

l
+ ad∗ημ for some ρ̇ ∈ h∗, ν̇ ∈ p∗, λ̇ ∈ o∗ and η ∈ h. Fi-

nally Ker(T(e,μ)πHT ) = {(η, ad∗ημ) | η ∈ h} and (29) imply that T(e,0,0,0)f is
a surjective linear map.

Since f is G-equivariant f is a submersion on a neighborhood of G ·
(e, 0, 0, 0) and since submersions are open maps the image of f contains an
open neighborhood of G · [e, μ]H so there must exist a neighborhood Ug∗ of
μ ∈ g∗ such that

(30) πH(G×H Ug∗) ⊂ f(UG × p∗0 × o0 × h∗0).

Define UG := {g ∈ UG | Ad∗gμ ∈ Ug∗} ∩ {g ∈ UG | Ad∗gμ h
∈ h∗0} which is

an open neighborhood of e ∈ G and let UQ := UG ×H S which is an open
neighborhood of [e, 0]H ∈ Q. We will now check that UQ satisfies (27).

• τ−1(UQ) ∩ J−1(μ) ⊃ T0(Z).
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This inclusion is trivial because if [g, 0, λ, a, b]Hμ
∈ Z then

T0([g, 0, λ, a, b]Hμ
) ∈ τ−1(UQ) and

(J ◦ T0)([g, 0, λ, a, b]Hμ
) = JY ([g, 0, λ, a, b]Hμ

)

= Ad∗g−1(μ+ JN0
(λ, a, b)) = Ad∗g−1μ = μ.

• τ−1(UQ) ∩ J−1(μ) ⊂ T0(Z).
Let z ∈ τ−1(UQ) ∩ J−1(μ). Using the cotangent reduction map ϕ

(see (21)), there is an element (g, ν, a, b) such that ϕ(g, ν, a, b) = z,
but, as τ(z) ∈ UQ then g ∈ UG. Since ϕ(g, ν, a, b) ∈ J−1(μ), using (6)
we have Ad∗g−1ν = μ. Additionally, as (g, ν, a, b) ∈ J−1HT (0), then ν

h
=

a �h b. Using ν = Ad∗gμ this implies the relation (Ad∗gμ) h
= a �h b.

As g ∈ UG, using the definition of UG we have (g,Ad∗gμ) ∈ G× Ug∗ .
Equation (30) implies that there is a point (g′, ν ′, λ, ρ) ∈ UG × p∗0 ×
o0 × h∗0 such that f(g′, ν ′, λ, ρ) = [g,Ad∗gμ]H . Therefore there is h ∈ H
such that

(31) (gh−1,Ad∗h−1Ad∗gμ) = Φ

(
g′, ν ′ +

1

2
λ �hμ

ad∗λμ+ ρ
hμ
, ρ

l

)
.

Moreover, using (17) and (19) it can be checked that the HT
μ -

momentum of a restrictedG-tube is JHT
μ
(Φ(g, ν, λ, ε)) = −ν

hμ
+ 1

2λ �hμ

ad∗λμ. Therefore taking the HT
μ -momentum on the previous equation

−(Ad∗h−1Ad∗gμ) hμ
= −1

2
λ �hμ

ad∗λμ− ρ
hμ

+
1

2
λ �hμ

ad∗λμ = −ρ
hμ
.

Now, using item 4. in Definition 4.7 we have that HT -momentum re-
stricted to l∗ ⊂ g∗ in (31) becomes the equality

−(Ad∗h−1Ad∗gμ) l
= −ρ

l
.

That is (Ad∗h−1Ad∗gμ) h
= ρ. But, as Ad∗gμ h

= ν
h
= a �h b, it follows

that ρ = Ad∗h−1(a �h b) = (h · a) �h (h · b) and therefore
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T0([g′, ν ′, λ, h · a, h · b]Hμ
)

= ϕ(Φ(g′, ν ′ +
1

2
λ �hμ

ad∗λμ+ ρ
hμ
, λ, (h · a) �l (h · b);h · a, h · b)

= ϕ(Φ(g′, ν ′ +
1

2
λ �hμ

ad∗λμ+ ρ
hμ
, λ, ρ

l
;h · a, h · b)

= ϕ(gh−1,Ad∗h−1Ad∗gμ, h · a, h · b)
= ϕ(g,Ad∗gμ, a, b) = ϕ(g, ν, a, b).

Finally, as g ∈ UG, Ad
∗
gμ h

∈ h∗0 and h∗0 is H-invariant, then (h · a) �h
(h · b) = Ad∗h−1(Ad∗gμ h

) ∈ h∗0. This observation implies that (g′, ν ′,

λ′, h · a, h · b) ∈ π−1Hμ
(β−1(UBL)). Using the characterization (28), ν ′ =

0, g ∈ Gμ and JN0
(λ′, h · a, h · b) = 0, that is [g′, 0, λ′, h · a, h · b]Hμ

∈ Z
as we wanted to show. �

Remark 6.3. Note that we have started with a tube centered around
ϕ(e, μ, 0, 0). In general if we consider a tube around ϕ(e, μ, 0, α) we can-
not expect its image to be global in the B∗ direction. This is because all
the points in the model space G×Gz

(
(s∗r ⊕ p∗r)× or ×Br ×B∗r

)
must have

G-isotropy conjugate to a subgroup of Gz. From this observation we can con-
clude that, in general, (s∗r ⊕ p∗r)× or ×Br ×B∗r will not be an open neigh-
borhood containing containing points of the form (0, 0, 0, b) for arbitrary
large b ∈ B∗. Indeed, if that was true, we would have (0, 0, 0, α) ∈ (s∗r ⊕ p∗r)×
or ×Br ×B∗r which would imply T ([e, 0, 0, 0,−α]Gz

) = ϕ(e, μ, 0, 0). But this
is a point with G-isotropy Hμ and in general, Gz � Hμ, producing a contra-
diction.

7. Explicit examples

In Proposition 4.3 we proved the existence of simple G-tubes using Moser’s
trick. In this section we will write down the actual differential equation that
must be solved. We will see that if dim q = 2 then the simple G-tube will
be a scaling of an exponential map and we will compute it explicitly for
SO(3) and SL(2,R). Using a different approach, without the explicit SO(n)
restricted tube in Subsection 7.4 we will present the Hamiltonian tube for
the natural action of SO(3) on T ∗R3 generalizing the final example of [28]
to μ �= 0.

We will compute explicitly the flow that determines a simple G-tube.
For that we are going to use the notation of the proof of Proposition 4.3.
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Recall that we constructed the simple G-tube as the composition Θ =
F ◦Ψ1 where

F (g, ν, λ) = (g exp(λ),Ad∗exp(λ)(ν + μ))

(see (14)) and Ψ1 is the time-1 flow of the time dependent vector field Xt

that satisfies the Moser equation associated with θt = tF ∗θT ∗G + (1− t)θY ,
that is, iXt

(−dθt) =
∂θt
∂t .

Moser’s equation can be written explicitly in this case. Using the above
expression of F and (11) we have

F ∗θT ∗G(g, ν, λ)(ξ, ν̇, λ̇) = 〈Ad∗exp(λ)(ν + μ),Ad−1exp(λ)ξ + TeL
−1
exp(λ)Tλ exp(λ̇)〉

= 〈ν + μ, ξ〉+ 〈ν + μ,Adexp(λ)TeL
−1
exp(λ)Tλ exp(λ̇)〉

= 〈ν + μ, ξ〉+ 〈ν + μ, TeR
−1
exp(λ)Tλ exp(λ̇)〉.

The last term can be expressed as a series of Lie brackets (see for example
[5])

M(λ) · λ̇ := TeR
−1
exp(λ)Tλ exp(λ̇) =

∑
n≥0

1

(n+ 1)!
adnλλ̇.

And, in fact, this series is just the pullback of the right Maurer-Cartan
form�R(g) = TeR

−1
g by the restricted exponential exp

q
: q → G. Therefore

using the Maurer-Cartan relation

(dM)(X,Y ) = d(exp∗�R)(X,Y ) = exp∗(d�R)(X,Y )(32)

= [exp∗�R(X), exp∗�R(Y )] = [M(X),M(Y )].

Now, since

θt(g, ν, λ)(ξ, ν̇, λ̇) = 〈μ+ ν, ξ〉+ t〈μ+ ν,M(λ) · λ̇〉+ (1− t)
1

2
〈μ, [λ, λ̇]〉

(using (32)) the exterior derivative ωt = −dθt simplifies as

ωt(g, ν, λ)(ξ1, ν̇1, λ̇1)(ξ2, ν̇2, λ̇2)

= 〈ν̇2, ξ1〉 − 〈ν̇1, ξ2〉+ 〈ν + μ, [ξ1, ξ2]〉
+ t〈ν̇2,M(λ)λ̇1〉 − t〈ν̇1,M(λ)λ̇2〉
+ t〈ν + μ,−[M(λ) · λ̇1,M(λ) · λ̇2]〉 − (1− t)〈μ, [λ̇1, λ̇2]〉.

Also, the expression ∂θt
∂t = θ1 − θ0 can be written as

(33)
∂θt
∂t

(g, ν, λ)(ξ, ν̇, λ̇) = 〈ν + μ,M(λ) · λ̇〉 − 〈μ, 1
2
adλλ̇+ λ̇〉.
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From now on we will assume that dim q = 2. Note that the one-form

ωt(g, ν, λ)(0, 0, λ)(ξ2, ν̇2, λ̇2)

= t〈ν̇2, λ〉+ t〈ν + μ,−[λ,M(λ) · λ̇2]〉 − (1− t)〈μ, [λ, λ̇2]〉
= t〈ν + μ,−M(λ)[λ, λ̇2]〉 − (1− t)〈μ, [λ, λ̇2]〉

and (33) have the same kernel g⊕ g∗μ ⊕ R · λ ⊂ T(g,ν,λ)(G× g∗μ × q). There-
fore, there is a real-valued function f such that

ωt(g, ν, λ)(0, 0, f(ν, λ, t)λ)(ξ2, ν̇2, λ̇2) =
∂θt
∂t

(g, ν, λ)(ξ2, ν̇2, λ̇2).

That is, Xt(g, ν, λ) = f(ν, λ, t) ∂
∂λ and in particular

Ψt(g, ν, λ) = (g, ν,mt(ν, λ)λ)

for certain scaling factor mt : g
∗
μ × q → R. We will obtain an equation that

fully determines m1 and therefore the map Ψ1 and the simple G-tube.
Taking the time-derivative of the time-dependent pull-back (see (15))

∂

∂t
(Ψ∗t θt) = Ψ∗t

(
(diXt

+ iXt
d)θt +

∂θt
∂t

)
= Ψ∗t (diXt

θt) = Ψ∗t (diXt
(θ0 + t(θ1 − θ0))

= Ψ∗t (diXt
θ0) = d(Ψ∗t (iXt

θ0)).

Additionally

Ψ∗t (iXt
θ0) = Ψ∗t (〈μ, λ〉f(ν, λ, t))

= 〈μ, λ〉f(ν,mt(ν, λ)λ, t)) =
∂

∂t
〈μ,mt(ν, λ)λ〉

from where we get

∂

∂t
(Ψ∗t θt − d〈μ,mt(ν, λ)λ〉) = 0.

This equation implies that Ψt satisfies the following equation on one-
forms

(34) Ψ∗1θ1 − d〈μ,m1(ν, λ)λ〉 = θ0 − d〈μ, λ〉.
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But this equation does not depend on the derivatives of the scaling factor
m1 because

Ψ∗1θ1(ξ, ν̇, λ̇) = 〈μ+ ν, (Dνm1 · ν̇ +Dλm1 · λ̇)λ+M(m1λ) · (m1λ̇)〉
= 〈μ, λ〉(Dνm1 · ν̇ +Dλm1 · λ̇) + 〈μ+ ν,M(m1λ) · (m1λ̇)〉

and

d〈μ,m1λ〉(ξ, ν̇, λ̇) = 〈μ, λ〉(Dνm1 · ν̇ +Dλm1 · λ̇) + 〈μ,m1λ̇〉.

Since 〈μ, [λ, λ̇]〉 is a non-vanishing one-form on the two dimensional space
q with kernel R · λ and 〈μ+ ν,M(λ) · λ̇〉 − 〈μ, λ̇〉 has also kernel R · λ then
there is real-valued function h(λ, ν) such that

〈μ+ ν,M(λ) · λ̇〉 − 〈μ, λ̇〉 = h(λ, ν)〈μ, [λ, λ̇]〉.

With this notation, (34) becomes the non-linear equation

(35) h(m1 λ, ν)m
2
1 =

1

2
.

To find the solution m1(λ, ν) it is enough to write down explicitly the simple
G-tube

Θ(g, ν, λ) = (g exp(m1(λ, ν)λ),Adexp(m1(λ,ν)λ)(ν + μ)).

In the following lemmas we will see that under some algebraic assumptions
on g we can write down m1 in terms of elementary functions.

Lemma 7.1. Assume that the subspace q defined by the splitting g = gμ ⊕
q is a 2-dimensional subalgebra. Then the equation (35) has the solution
m1(ν, λ) = E(− tr (adλ q

)) where E : R → R+ the unique analytic function
that satisfies

(36) e−xE(x) = 1− xE(x) + x2

2
.
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Proof. As the dimension of q is two and adξ is singular it follows that ad
2
η q

−
tr (adη q

)adη q
= 0 for any η ∈ q. Therefore,

∑
k≥0

1

(k + 1)!
adkξ = Id+

∑
k≥0

(tr (adξ q
))k

(k + 2)!
adξ = Id+

ex − x− 1

x2
adξ

where x = tr (adξ q
). Then (34) becomes

〈μ+ ν,M(λ) · λ̇〉 = 〈μ,M(λ) · λ〉 = 〈μ, λ̇〉+ 〈μ, [λ, λ̇]〉e
x − x− 1

x2
.

Comparing with (35) we see that h(ν, λ) = e−x+x−1
x2 with x = − tr (adξ q

).
�

Remark 7.2. The function E can be written in terms of the Lambert W
function (see [4])

E(x) =
{

x
2 +

W0(− exp(−1− 1

2
x2))+1

x if x > 0
x
2 +

W−1(− exp(−1− 1

2
x2))+1

x if x < 0

where W0 and W−1 are defined in the same reference. It can be checked that
E(x) is positive and strictly increasing for all x ∈ R. Additionally E(x) is
asymptotic to x

2 as x → ∞, and satisfies E(0) = 1 and E(x) → 0 as x → −∞.

Lemma 7.3. Assume that the splitting g = gμ ⊕ q satisfies

1) ad3ξ + a(ξ)adξ = 0 ∀ξ ∈ q for a certain smooth function a : q → R, and

2) 〈μ+ ν, ad2ξη〉 = 0 for any ξ, η ∈ q and ν ∈ q◦.

In addition, let b : (g∗μ)r → R be the function satisfying

〈ν + μ, [ξ, η]〉 = b(ν)〈μ, [ξ, η]〉

for any ξ, η ∈ q. Then equation (35) has the solution

m1(ν, λ) = F
(

a(λ)

4b(ν)

)
1√
b(λ)

,
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where F : (−∞, 1) → R+ is the analytic function

F(x) =

⎧⎨⎩
arcsin(

√
x)√

x
if x > 0

arcsinh(
√
|x|)√

|x|
if x < 0

Proof. Using the first hypothesis

∑
n≥0

1

(n+ 1)!
adnξ = Id +A1(a(ξ))adξ +A2(a(ξ))ad

2
ξ

where A1 and A2 are analytic scalar functions. Then

〈μ+ ν,M(λ) · λ̇) = 〈μ+ ν, λ̇〉+A1(a(λ))〈μ+ ν, [λ, λ̇]〉
= 〈μ, λ̇〉+A1(a(λ))b(ν)〈μ, [λ, λ̇]〉,

that is h(λ, ν) = A1(a(λ))b(ν). It can be checked that A1(x) =
1−cos(√x)

x . If
we assume a(λ) > 0 then using simple formal manipulations (35) is equiv-

alent to m1

√
a(λ) = arccos

(
1− a(λ)

2b(ν)

)
and as 2 arcsinx = arccos(1− 2x2)

then m1(λ, ν) = F
(

a(λ)
4b(ν)

)
1√
b(λ)

. If a(λ) ≤ 0 a similar computation gives

the same result. �

7.1. SO(3) simple tube

Under the hat map the Lie algebra g = so(3) can be identified with R3

equipped with the cross product. The standard inner product 〈·, ·〉 on R3 ∼= g
will correspond to the dual pairing between g and g∗, identifying them.

Fix an element μ ∈ g∗. We have two different possibilities:

• μ = 0. In this case the G-tube is trivial (see Remark 4.4).

• μ �= 0. In this case gμ is the subspace generated by μ and we will
define q as the orthogonal complement to gμ. The subspace g∗μ being
the annihilator of q is also identified with the subspace generated by
μ.

The vector identity a× (a× c) = 〈a, c〉a− 〈a,a〉c implies that both
conditions of Lemma 7.3 hold for so(3) with a(λ) = ‖λ‖2. Therefore
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the map

G× g∗μ × q −→ SO(3)× R3 ∼= T ∗SO(3)(37)

(g, ν, λ) �−→ (gE(ν, λ), E(ν, λ) · (ν + μ))

with E(ν, λ) = exp

(
2
arcsin

(√
μ

μ+ν

‖λ‖
2

)
‖λ‖ λ̂

)
is a simple SO(3)-tube at

(e, μ) ∈ T ∗SO(3).

Note that this expression is exactly the same as the one obtained in
Theorem 3 of [29]. In fact, this map was known in celestial mechanics as reg-
ularized Serret-Andoyer-Deprit coordinates (see [3] and references therein).

7.2. SL(2,R) simple tube

On the Lie algebra g = sl(2,R) the bilinear form 〈A,B〉 = −2Tr(AB) is non-
degenerate and we will use it to identify g and g∗. If ξ, η ∈ sl(2,R) it can
be checked that adξadξη = 〈ξ, η〉ξ − 〈ξ, ξ〉η and then for any ξ ∈ g we have
ad3ξ + ‖ξ‖2adξ = 0.

Fix an element μ ∈ g∗. We now have three different cases:

• μ = 0. In this case the G-tube is trivial (see Remark 4.4)

• ‖μ‖2 := 〈μ, μ〉 �= 0. Then gμ is one dimensional and is the space gen-
erated by μ. We will define q to be the orthogonal space to μ with
respect to the pairing. Since the norm of μ is non-zero g = gμ ⊕ q. As
before g∗μ = q◦ = gμ so we can apply Lemma 7.3 obtaining that

G× g∗μ × q −→ T ∗SL(2,R)

(g, ν, λ) �−→ (gE(ν, λ),Ad∗E(ν,λ)(ν + μ))

with E(ν, λ) = exp
(
F
(
‖λ‖2μ
4(μ+ν)

)√
μ

μ+νλ
)
is a simple SL(2,R)-tube at

(e, μ) ∈ T ∗SL(2,R).

• ‖μ‖2 = 0 and μ �= 0. In this case, using basic linear algebra, it can

be shown that there is k ∈ SL(2,R) such that μ = k

[
0 s
0 0

]
k−1 with

s = 1 or s = −1.
Also in this case gμ is the subspace generated by μ, and we will

define q as the subspace generated by k

[
1 0
0 −1

]
k−1 and k

[
0 0
1 0

]
k−1.
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A generic element in q will be represented as k

[
a 0
b −a

]
k−1. It can be

checked that g∗μ = q◦ is the subspace generated by k

[
0 0
1 0

]
k−1.

A simple computation shows that q is a subalgebra of g so we can
apply Lemma 7.1, obtaining that the map

G× g∗μ × q −→ T ∗SL(2,R)

(g, νμ, λ) �−→
(
gE(λ),Ad∗E(λ)

(
(ν + 1)μ

))
,

where λ = k

[
a 0
b −a

]
k−1, ν ∈ R and E(λ) = exp (E(2a)λ), is a sim-

ple SL(2,R)-tube at (e, μ) ∈ T ∗SL(2,R). Note that for this tube the
domain is the whole space G× g∗μ × q. There are no restrictions on ν
or λ but the map is not onto.

7.3. A SO(3) restricted tube

Let H be a compact non-discrete proper subgroup of SO(3). Note that H
must be one-dimensional. We will denote by ξh ∈ R3 the generator of h with
unit norm. In this setting the adapted splitting of Proposition 3.1 reduces
to l = R · ξh, p = R · μ and n = R · ξh × μ. To obtain the restricted tube we
will use (19), so we neeed to find ζ ∈ n satisfying the condition

(38) JR(Θ(g, ν, ζ)
l
= −ε

as a function of ν and ε. Using the notation of (16), Θ can be written as

Θ(g, ν, λ) = (gE(ν, λ),Ad∗E(ν,λ)(ν + μ)).

Using Proposition 4.1 we can rewrite (38) as

(39) Ad∗E(ν,ζ)(ν + μ)
l
= ε.

Applying the explicit expression (37) for the SO(3) simple tube we have

E(ν, ζ) = exp(ρ(ν, ζ)
ξh×μ
lξh×μl). Then, solving (39) is equivalent to finding the

real parameter ρ as a function of ν and ε that satisfies
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〈
exp

(
− ρ

ξh × μ

‖ξh × μ‖
)
· (ν + μ), ξh

〉
= 〈ε, ξh〉.

Since {ξh, μ
‖μ‖ ,

ξh×μ
‖ξh×μ‖} is an orthogonal basis this last equation is equivalent

to

〈sin(ρ)(ν + μ),
μ

‖μ‖〉 = 〈ε, ξh〉.

Therefore, if we denote by r the expression arcsin
(ε·ξh)‖μ‖
(ν+μ)·μ , the equation

Φ(g, ν; ε) =

(
g exp

(
r

ξh × μ

‖ξh × μ‖

)
, exp

(
−r

ξh × μ

‖ξh × μ‖

)
· (ν + μ)

)
(40)

∈ SO(3)× R3

defines a a restricted SO(3)-tube.
With (40) and (37) we could apply Theorem 5.6 to obtain an explicit

Hamiltonian tube for any cotangent lifted SO(3)-action, however in the next
example we will compute an explicit Hamiltonian tube not only for SO(3)
acting on T ∗R3 but for SO(n) acting on T ∗Rn.

7.4. Hamiltonian tube for SO(n) acting on T ∗Rn

Consider the natural action of SO(n) on Rn and fix a point z = (q, p) ∈
T ∗Rn. Although we don’t have an explicit expression even for a simple
SO(n)-tube we will see that we don’t need it to compute an explicit tube for
T ∗Rn. We can identify the Lie algebra of the orthogonal group SO(n) with
the second skew-symmetric power Λ2(Rn), moreover the euclidean metric of
Rn induces an identification of so(n) with its dual.

If μ = J(z) = q ∧ p = 0 then [28] provides an explicit computation of the
Hamiltonian tube centered at (q, p). Therefore, we will assume μ = q ∧ p �= 0,
and in particular q �= 0 so the isotropy H := Gq = SO(〈q〉⊥

R
) is the group of

rotations of the hyperplane 〈q〉⊥
R
. The linear slice S = (g · q)⊥ is the subspace

generated by q, and note that this subspace is fixed by H and in this setting
α = z

S
= p·q
‖q‖2 q ∈ S∗. Note also that Gz = Hμ = SO(〈p, q〉⊥

R
) ∼= SO(n− 2).

The linear splitting of Proposition 3.1 becomes

g = {v ∧ w | v, w ∈ 〈q, p〉⊥
R
}︸ ︷︷ ︸

hμ

⊕R · μ︸︷︷︸
p

⊕{p ∧ v | v ∈ 〈q, p〉⊥
R
}︸ ︷︷ ︸

l

⊕ {q ∧ v | v ∈ 〈q, p〉⊥
R
}︸ ︷︷ ︸

n

.
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Let Sr := {a ∈ R · q | ‖a‖ < ‖q‖} ⊂ S and p∗r := {ν ∈ R · μ | ‖ν‖ < ‖μ‖}.
If Φ is a restricted tube adapted to the previous splitting the map (26) given
by Theorem 5.6 becomes

T : G×Hμ
(p∗r × Sr × S∗) −→ T ∗(G×H S)

[g, ν, a, b]Hμ
�−→ ϕ(Φ(g, ν, 0, 0); a, b+ α)

because H fixes S and s = 0. But using (20) Φ(g, ν, 0, 0) = (g, ν + μ). It
can be easily checked that the map s : G×H Sr → Rn defined by [g, a]H �→
g · (q + a) is a Palais’ tube around q. Using this tube, after some easy ma-
nipulations the previous Hamiltonian tube at (q, p) can be written as

T : SO(n)×Hμ
(p∗r × Sr × S∗) −→ T ∗Rn

[g, ν, a, b]Hμ
�−→

(
g · (q + a), g ·

(
ν̂ + μ

q + a

‖q + a‖2 + b+
q · p
‖q‖2 q

))
where ξ̂v represents the Lie algebra action of ξ ∈ g ∼= g∗ at the point v ∈ Rn.
Alternatively, this map can be written as

T ([g, ν, a, b]Hμ
) =

(
g · (q + a), g ·

(
μ+ ν

μ

q

q + a

(
p− q · p

‖q‖2 q
)
+ b+

q · p
‖q‖2 q

))
where μ+ν

μ is the real scalar ρ such that ρμ = μ+ ν and similarly for q
q+a .

The same ideas and computations can be used to obtain a cotangent
Hamiltonian tube for the cotangent bundle of the sphere T ∗Sn−1 endowed
with the natural SO(n) action. More specially if we identify T ∗Sn−1 with
the subset T ∗Sn−1 = {(q, p) | ‖q‖ = 1, 〈q, p〉 = 0} ⊂ T ∗Rn ∼= Rn × Rn and
we fix a point (q, p) ∈ T ∗Sn−1 then

T : SO(n)×Hμ
p∗r −→ T ∗Sn−1

[g, ν]Hμ
�−→

(
g · q, g ·

(
μ+ ν

μ
p

))
is a Hamiltonian tube at (q, p) ∈ T ∗Sn−1.
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[20] R. S. Palais, On the existence of slices for actions of non-compact Lie
groups, Ann. of Math. 73 (1961), 295–323.

[21] G. Patrick, Relative equilibria of hamiltonian systems with symmetry:
linearization, smoothness, and drift, J. Nonlinear Sci. 5 (1995), no. 5,
373–418.
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