JOURNAL OF
SYMPLECTIC GEOMETRY
Volume 15, Number 3, 741-783, 2017

N
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A VB-groupoid is a Lie groupoid equipped with a compatible lin-
ear structure. In this paper, we describe a correspondence, up to
isomorphism, between VB-groupoids and 2-term representations
up to homotopy of Lie groupoids. Under this correspondence, the
tangent bundle of a Lie groupoid G corresponds to the “adjoint
representation” of G. The value of this point of view is that the
tangent bundle is canonical, whereas the adjoint representation is
not.

We define a cochain complex that is canonically associated to
any VB-groupoid. The cohomology of this complex is isomorphic
to the groupoid cohomology with values in the corresponding rep-
resentations up to homotopy. When applied to the tangent bundle
of a Lie groupoid, this construction produces a canonical complex
that computes the cohomology with values in the adjoint represen-
tation.

Finally, we give a classification of regular 2-term representations
up to homotopy. By considering the adjoint representation, we find
a new cohomological invariant associated to regular Lie groupoids.
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1. Introduction

Let G be a Lie group with a representation on a vector space V, and let
G x V be the semidirect product. In addition to being a group, G x V is
a vector bundle over GG, and the multiplication map (G x V) x (Gx V) —
G x V is linear. In other words, the semidirect product is a group object in
the category of vector bundles.

Conversely, let I' — G be a group object in the category of (smooth)
vector bundles. That is, let I' = G be a vector bundle equipped with a Lie
group structure, such that the multiplication map I' x I' — T is linear. Then
G automatically inherits a Lie group structure. Furthermore, using right-
translation by zero-vectors, we can trivialize I', allowing us to canonically
identify it with a semidirect product G x I'., where I'; is the fiber over the
identity element e € G.

Thus there is a one-to-one correspondence between Lie group representa-
tions and group objects in the category of vector bundles. In particular, the
adjoint representation of G on its Lie algebra g corresponds to the tangent
bundle T'G, and the coadjoint representation corresponds to the cotangent
bundle T*G.

The goal of this paper is to extend the above correspondence to the
setting of Lie groupoids. The situation here is complicated by the fact that
Lie groupoids do not in general possess well-defined adjoint representations.
Rather, as was observed by Evens, Lu, and Weinstein [6], there is a sense
in which a Lie groupoid G = M possesses a natural “representation up to
homotopy” on the 2-term complex A — T'M, where A is the Lie algebroid
of G.

The notion of representation up to homotopy was refined by Arias Abad
and Crainic [1], who gave explicit formulas for the adjoint representation up
to homotopy. However, their construction relies on the choice of a certain
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Ehresmann connection on G, so it is not canonical in the strictest sense,
though it is canonical up to isomorphism.

Our approach is to consider VB-groupoids as geometric models for rep-
resentations up to homotopy. Essentially, a VB-groupoid is a Lie groupoid
with a compatible linear structure, making it a groupoid object in the cate-
gory of vector bundles. VB-groupoids were first introduced by Pradines [16]
in relation to the theory of symplectic groupoids [4, 8, 17] and have played an
important role in the study of double structures by Kirill Mackenzie and his
collaborators [11-13, 15]. Given a Lie groupoid G = M with Lie algebroid
A, one can construct two naturally-associated VB-groupoids: the tangent
bundle TG = T'M and the cotangent bundle T*G = A*. The latter is the
standard example of a symplectic groupoid.

Given a Lie groupoid G = M with a representation up to homotopy
on a 2-term complex C' — E of vector bundles over M, we may construct
an associated VB-groupoid which can be viewed as a semidirect product of
G with C' — E. On the other hand, we will see that any VB-groupoid is
noncanonically isomorphic to a semidirect product. Although the resulting
representation up to homotopy depends on the choice, different choices lead
to representations up to homotopy that are isomorphic. We thus obtain a
one-to-one correspondence, up to isomorphism, between VB-groupoids and
2-term representations up to homotopy.

In particular, the tangent and cotangent bundles correspond to the ad-
joint and coadjoint representations up to homotopy. This fact is particularly
pleasing, since it gives us canonical models for the adjoint and coadjoint
representations up to homotopy.

To any VB-groupoid, we can associate a cochain complex that is isomor-
phic to the complex of groupoid cochains with values in the corresponding
representation up to homotopy. As an immediate application, we obtain a
canonical model for the cohomology of a Lie groupoid with values in its
adjoint representation.

The perspective of VB-groupoids allows us to classify regular 2-term
representations up to homotopy. Part of the classification involves a certain
cohomology class, which, in the case of the adjoint representation, becomes
an invariant of the Lie groupoid itself.

This paper is the companion of an earlier paper [7], where VB-algebroids
were studied in relation to representations up to homotopy of Lie algebroids.
Many of the results of this paper can be seen as global analogues of results in
[7]. It is known [12] that VB-groupoids are the global objects corresponding
to VB-algebroids, so the theory of VB-groupoids and VB-algebroids provide
a natural framework for understanding differentiation and integration of
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representations up to homotopy (at least in the 2-term case). In the time
since a preprint version of this paper was first posted on the arXiv in 2010,
this has in fact been done in [2, 3]. Particularly, in [2] the perspective of V13-
groupoids and VB-algebroids was used to fully characterize the obstructions
to integrability of 2-term representations up to homotopy.

Structure of the paper

e In §2, we recall Arias Abad and Crainic’s notion of representation up
to homotopy of a Lie groupoid [1].

e In §3, we recall the definition and basic facts about VB-groupoids,
including the notion of horizontal lift. In §3.3, we give formulas (de-
pending on the choice of a horizontal lift) for the representations up
to homotopy arising from a VB-groupoid. The semidirect product con-
struction appears in Example 3.16.

e In §4, we briefly review the construction of the dual of a VB-groupoid.

e The heart of the paper is §5, where we construct a canonical cochain
complex associated to any VB-groupoid. A choice of horizontal lift
allows us to produce a representation up to homotopy. In Appendix
A, we show that the representations up to homotopy arising in this
manner agree with the formulas given in §3.3. In §5.3, we study how
the representation up to homotopy depends on the choice of horizontal

lift.

e In §6, we prove (Corollary 6.2) that isomorphism classes of VI5-
groupoids are in one-to-one correspondence with isomorphism classes
of 2-term representations up to homotopy. Then, in Theorem 6.11, we
give a classification of VB-groupoids (and hence 2-term representations
up to homotopy) satisfying a regularity condition.

e The classification result of Theorem 6.11 involves a cohomological in-
variant. This characteristic class is a “higher categorical” invariant, in
the sense that it contains information about the “homotopy,” rather
than the “representation.” In §7, we consider the geometric interpre-
tation of this invariant in the case of the VB-groupoid T'G.

e In §8, we describe a different (but equivalent) approach to constructing
representations up to homotopy from VB-groupoids, via something we
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call the fat category. This approach helps to clarify the relationship be-
tween the idea originally outlined by Evens, Lu, and Weinstein [6] and
the Arias Abad-Crainic definition of representation up to homotopy.
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2. Groupoid representations and representations up
to homotopy

In this section, we review Lie groupoid representations from the cohomologi-
cal point of view, from which the generalization to representations up to ho-
motopy is straightforward. The material on representations and cohomology
is standard and can be found in, e.g., [14]. The material on representations
up to homotopy essentially follows that of [1].

The main concern of this paper is 2-term representations up to homo-
topy, and in §§2.7-2.8 we specialize to this case.

We remark that, although we will be working in the smooth category,
the general theory of representations up to homotopy and VB-groupoids
goes through in the topological category. The key points where smoothness
is used are to define the “adjoint representation” via the tangent bundle and
to prove existence of decompositions in §3.2.

2.1. Lie groupoid representations

Let E — M be a vector bundle. The frame groupoid G(E) is the groupoid
whose set of objects is M and whose morphisms are isomorphisms E, — E,
for x,y € M. The frame groupoid is a Lie groupoid; we refer the reader to
[14] for details.

Let G = M be a Lie groupoid. A representation of G is a vector bundle
E — M and a Lie groupoid morphism A : G — G(FE).
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Example 2.1. When M is a point, then G is a Lie group, F is a vector
space, and G(F) is the general linear group on E. Thus we recover the usual
notion of Lie group representation.

Example 2.2. When G = M x M is a pair groupoid, a representation of
G on FE is equivalent to a trivialization of F. When G is the fundamental
groupoid of a manifold M, then a representation of G on E is equivalent
to a flat connection on E. These examples demonstrate that the notion of
Lie groupoid representation is too restrictive. For example, if £ — M is
nontrivializable, then there do not exist any representations at all of the
pair groupoid M x M on E.

2.2. Lie groupoid cohomology

In order to arrive at a natural definition of representation up to homotopy,
we will need to restate the definition of Lie groupoid representation in co-
homological terms. We first recall the notion of Lie groupoid cohomology.

Let G = M be a Lie groupoid with source and target maps s,t: G —
M. Let GO := M, and for p >0 let G® be the manifold consisting of
composable p-tuplets of elements of G. In other words,

G = Gsxg 5% G={(91,---,9p) | 5(gi) = t(git1)}.

The space of (R-valued) smooth groupoid p-cochains is CP(G) :=
C>®(G®)). There is a coboundary operator ¢ : CP(G) — C**1(G) on the
space of cochains, which for p = 0 is given by

(065)(9) = f(s(9)) — f(t(g))
for f € C°(G) = C>®(M) and g € G, and for p > 0 given by

P

(6£)(90s- -+ 9p) = F(g15- -+ 9p) + Y (=1 (g0 -+ G145 -+ p)

i=1

+ (_1)p+1f(g(]> cee 7.gp71)

for f € CP(G) and (go,...,9p) € G®+1) | The equation 62 =0 is a conse-
quence of the groupoid axioms. The cohomology of the complex (C*(G), )
is known as the smooth groupoid cohomology of G.
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There is a product C?(G) x CUG) — CPTU(G), (f1, f2) — f1 * fa, given
by
(fix f2)(915- -5 9p+q) = f1(91, -+, 9p) f2(Gp+15 - -+ s Gptg)
for f1 € CP(G), f2 € CUG), and p,q > 0. If p=0, ¢ > 0, then

(21) (fl *fQ)(gh v 79(1) = fl(t(gl))f2(gla v 7gq)7

and if ¢ =0, p > 0, then

(2.2) (fix f2)(g1,-- - 9p) = fi(g1,-- -, 9p) f2(5(9p))-

If p=¢q =0, then

(2.3) fix fa= fife.

The coboundary operator ¢ is a graded derivation with respect to the prod-
uct:

S(frx fa) = (6f1) * fo + (=)t f1 5 (3 £2).

A cochain f € CP(G), p > 0, is called normalized if f vanishes whenever
at least one of its arguments is a unit. By definition, every 0-cochain is
considered to be normalized. The space of normalized cochains is closed
under the coboundary operator § and under the product *.

2.3. Lie groupoid cohomology with values in a representation

Let G = M be a Lie groupoid, and let £ — M be a vector bundle. The space
of smooth groupoid p-cochains with values in E is CP(G; E) := T'((7})*E),
where 78 : G(P) — M is the identity for p = 0 and is given by 75 (g1, . . - , gp) =
t(g1) for p > 0. More concretely, if w € CP(G; E), then w(gi,...,gp) is an
element of Eyg,).

There is a right C'(G)-module structure on C(G; E), given by

(w*f)(gla vee 7gp+q) = w(glv e :gp)f(gp—i-h v 7gp+l1)

forw e CP(G; E), f € C1G), and p,q > 0. When p or ¢ is zero, the formula
for w* f is similar to equations (2.1)—(2.3).

The space CP(G; E), as the space of sections of a pullback bundle,
can be identified with I'(E) ®ce(ar) CP(G), where the tensor structure is
given by ep @ f =e® (¢p* f) fore e '(E), ¢ € C*(M), and f € CP(G). In
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particular, we see that C(G;E) is generated as a right C(G)-module by
I'(E) = C%G;E).

Given a representation A of G on E, we can construct a degree 1 operator
D on C(G; E), whose action on 0-forms is given by

(De)(9) = Ages(g) — Et(g)

fore e I'(F) and g € G, and for p > 0 given by

(24) (Dw)(goa”'vgp) = Agow(glv'”agp)
p
+ Z(—l)zw(go, <5 9i-1Gi5 - - - 7977)
i=1
+ (=) w(go, .., gp-1)

for w € CP(G; E). The operator D satisfies the equation D? =0 and the
following graded Leibniz identity:

(2.5) D(w f) = (Dw) * f + (—1)*lw x ().

The cohomology of the complex (C(G;E),D) is known as the smooth
groupoid cohomology of G with values in E. In the case where E is the
trivial real line bundle over M with the trivial representation, then we re-
cover the R-valued smooth groupoid cohomology.

We define normalized FE-valued cochains in the same way as with R-
valued cochains. The space of normalized cochains is closed under the ac-
tion of D, and w f is normalized if w € C(G; E) and f € C(G) are both

normalized.

2.4. Lie groupoid representations revisited

In this section, we will proceed in the direction opposite to that of §2.3; that
is, we will begin with an operator D and attempt to construct a represen-
tation A.

Let G = M be a Lie groupoid, let E — M be a vector bundle, and let
D be a degree 1 operator on C(G; E) satisfying (2.5). For any g € G, we
may obtain a linear map Ay : Eyg) — Eyg), given by

(2.6) Agegig) = (De)(g) + eyg)
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for any € € I'(E). Using (2.5), one can verify that

D(ef)(g) + (ef)ig) = (D(E)(9) + ex(g) fs(g)

for any f € C°°(M). This implies that (2.6) well-defines A,.

We may think of A: g~ A, as a map from G to the frame category
C(E) whose set of objects is M and whose morphisms are (not necessarily
invertible) linear maps E, — E, for x,y € M. The frame category is a Lie
category® that contains the frame groupoid as the subcategory consisting
of all invertible elements. In fact, the simplest way to prove that the frame
groupoid is smooth is to recognize it as an open subset of the frame category.
The map A : G — C(E) is smooth since D is continuous, but in general A
will not respect composition. This point motivates the following notion of
quasi-action [1].

Definition 2.3. A quasi-action of G on E is a smooth map A : G — C(E)
that respects source and target maps.

Definition 2.4. A quasi-action A is called

1) unital if Ay, =1id for all x € M,
2) flat if Ay A, = Ay, for all (g1,92) € G,

Clearly, a flat and unital quasi-action is the same thing as a representa-
tion. In particular, if both conditions in Definition 2.4 hold, then the image
of A is contained in the frame groupoid of F.

Example 2.5. To illustrate the notion of quasi-action, we give an example
where G = S? x S? = S? is the pair groupoid and E = T'S?. Given (y,z) €
52 x S2, we define a map AVE T,5% — Ty52 as follows. Equip S? with
the standard spherical metric, where the distance between two antipodal
points is 7. If  and y are antipodal, then A(, ;) is the zero map. Otherwise,
A(y,) is given by parallel transport along the shortest geodesic from z to
y, together with scalar multiplication by a factor of (1 + cos(d(z,v)))/2,
where d is the distance function. The scaling factor ensures that the map
A (y,x) — A(y,z) 1s smooth at antipodal pairs. The quasi-action A is unital
but not flat.
We use this example to emphasize some points about quasi-actions:

Y,T)

LA Lie category is defined in the same way as a Lie groupoid, except without an
inverse map.
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e The definition of quasi-action allows for the possibility of A, being
degenerate, as is the case for antipodal pairs in the above example.
This point is crucial, since if we required every A, to be nonde-
generate (equivalently, if we required the image of A to be in the
frame groupoid), then there would be no examples in the case where
G = 5% xS?% and E = TS?, since such an example would imply the
existence of a trivialization of T'S?.

e This example illustrates the general fact (which we will see in Example
3.15) that unital quasi-actions always exist for arbitrary G and F,
although they are not canonical. For example, we can obtain other
unital quasi-actions of S? x S? on T'S? by replacing the above scaling
factor by any smooth function f(y,z) on S? x S? that equals 1 when
y =z and 0 when x and y are antipodal, such as a bump function
supported on a neighborhood of the diagonal submanifold {(z,x)}.

So far, we have seen that, given a degree 1 operator D on C(G;E)
satisfying (2.5), we can obtain a quasi-action A defined by (2.6). Using
(2.5), one can then show that D must satisfy (2.4) for p > 0. The following
lemma, which we leave as an exercise (also see [1]), expresses in terms of D
the conditions for A to be unital and flat.

Lemma 2.6. Let D be a degree 1 operator on C(G; E) satisfying (2.5), and
let A be the quasi-action given by (2.6). Then

1) A is flat if and only if D* = 0.
2) A is unital if and only if D preserves the space of normalized cochains.

The following theorem ties together the results from this section and
§2.3.

Theorem 2.7. There is a one-to-one correspondence between representa-
tions of G on E and degree 1 operators D on C(G;E) satisfying (2.5),
preserving the space of normalized cochains, and such that D* = 0.

2.5. Representations up to homotopy

Let £ = E; be a graded vector bundle over M. We consider C(G;€&) to
be a graded right C(G)-module with respect to the total grading:

C(G;E)F = P CUG;Ey).

q—r=p
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From the point of view of Theorem 2.7, the following is a natural exten-
sion of the notion of representation to the graded setting.

Definition 2.8 ([1]). A representation up to homotopy of G on a graded
vector bundle £ is a continuous degree 1 operator D on C(G;€&) satistying
(2.5), preserving the space of normalized cochains, and such that D? = 0.

We stress that this definition of representation up to homotopy agrees
with that of unital representation up to homotopy in [1].

2.6. Transformation cochains

Let G = M be a Lie groupoid, and let £Z and C' be vector bundles over M.
We define the space of transformation p-cochains from E to C as CP(G; E —
C) :=T (Hom ((7})*E, (7)*C)), where 7} : G) — M is the identity for p =
0 and is given by 7h(g1,...,9p) = s(gp) for p > 0. More concretely, if w €
CP(G;E — C) and (g1, ...,gp) € GP), then Wy is a linear map from
Es(g,) to Cig)-

We note that C°(G; E— C)=Hom(E, C); however, for p>0, C?(G; E—
() is different from the space of p-cochains with values in Hom(FE, C), except
when M is a point.

Let w € CP(G; E — C), and let € € T'(E) = C°(G; E). Define a p-cochain
w(e) € CP(G;C) by

gn--;gp)

(2.7) W(E)(91, -+ 9p) = Wgy,...0,) (Es(g,)) € Cign)-

The map € +— w(e) can be extended to a C(G)-module morphism @ :
C*(G; E) — C**P(G; C). We leave the following proposition as an exercise
(see [1, Lemma 3.10]).

Proposition 2.9. The map w — @ is an isomorphism from CP(G; E — C)
to the space of C(G)-module morphisms from C*(G; E) to C*P(G;C).

Suppose that G is equipped with quasi-actions A¥ and A® on E and
C, respectively. Then we may define an operator D on C(G; E — C) by

(2.8) (Dw) (g0, ---,9p) = Ag) ow(gi,.--,9p)

p
+ Z(—l)lW(go, <y 9i—19i5 - - - 79]7)
i=1

+ (=1 w(go, ..., gp-1) © Afp.
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Via the isomorphism of Proposition 2.9, this operator is equivalently given
by
Dw =D 0@+ (—1)""'& o DF,
where D¢ and D¥ are the operators on C(G;C) and C(G; E), respectively,
corresponding to the two quasi-actions.
In the case where AP and A® are both representations, then the oper-

ator D in (2.8) satisfies D? = 0, and one can then define the cohomology
H*(G;E — (O).

2.7. Representations up to homotopy: 2-term case

In this paper, we will be concerned primarily with representations up to
homotopy on graded vector bundles that are concentrated in degrees 0 and
1. In this case, we use the notation & = E @ C[1], where F is the degree 0
part and C' is the degree 1 part. Then

C(G;E @ C[1))P = CP(G; E) & CPHH(G; 0).

Any degree 1 operator D on C(G; E @ C[1]) decomposes as the sum of the
following four homogeneous components:

0:C*(G;C) — C*(G; E),
DY C*(G;C) = C*TH(G; ),
DF . C*(G;E) —» C*TY(G; E),
Q:C*(G;E) = C**%(G; 0).

The Leibniz rule (2.5) for D is equivalent to the requirements that
1) DY and DF satisfy (2.5), and
2) 0 and Q are right C(G)-module morphisms.

Requirement (1) implies that there are quasi-actions A¢ and AF on C' and
E, respectively, given by the following graded versions of (2.6):

(2.9) Aga = —(DCOé) (g) + at(g)
(2.10) Afs = (DPe)(g) + Et(g)
for a € I'(C) and ¢ € T'(E). The reason for the sign difference between (2.9)

and (2.10) is that the Leibniz rule now incorporates the vector bundle grad-
ing.
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Requirement (2) above implies (via Proposition 2.9) that 0 corresponds
to a linear map @ € Hom(C, E) = C%(G;C — E), and that © corresponds
to a transformation 2-cochain Q € C%(G; E — O).

Next, we will express equation D? = 0 and the property of preserving
normalized cochains in terms of A%, AP 9, and Q.

The equation D? = 0 decomposes into the following equations:

DP9+ 6DC =0,
(DY) +Qd =0,
(D)2 + 90 =0,
DO+ ODF = 0.

These equations respectively translate into the following equations:

(2.11) AFo—oAS =0,
C AC C

(2.12) ACAC —AC 4 Q, ,0=0,

(213) AgElAgEZ - A_igg + 8991792 = 07

(2'14) Ag 992793 - Q9192,93 + th»gzgs - 991792 Af&‘» =0

for (g1, g2,93) € G®). Equation (2.11) says that Ay, = (Ag,Afl) is a chain
map on the 2-term complex C' o) Equations (2.12)(2.13) say that Qg, 4,
provides a chain homotopy from Ay Ay, to Ag,,. Equation (2.14) is a
Bianchi-type identity, saying that DQ = 0, where D is defined as in (2.8).
In particular, in the case where A¢ and AP are genuine representations,
then (2.14) can be interpreted as a cocycle condition.

The total operator D preserves normalized cochains if and only if all of
the four components do. For 0, the property is automatic. For the remaining
three components, we obtain the following conditions:

(2.15) A® and A are unital,
(2.16) 2 is normalized.

The following theorem summarizes the results from this section:

Theorem 2.10. There is a one-to-one correspondence between representa-
tions up to homotopy of a Lie groupoid G = M on a 2-term graded vector
bundle E © C[1] — M and 4-tuples (9, A, AF,Q), where

e 0:C — FE is a linear map,
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o A and AP are unital quasi-actions of G on C and E, respectively,
and

e ) is a normalized element of C*(G; E — C),

satisfying (2.11)—(2.14).
2.8. Gauge transformations

Let &£ be a graded vector bundle over M. There is a natural quotient map
w:C(G;E) — T'(€) whose kernel is spanned by all C4(G; E,) where ¢ > 0.

Definition 2.11. A gauge transformation of C(G; &) is a degree-preserving
C(G)-module automorphism 7" of C(G; &), preserving the space of normal-
ized cochains, such that g oT = . Under a gauge transformation, a repre-
sentation up to homotopy D transforms as D' =T o D o T~ !. In this case,
we say that D and D’ are gauge-equivalent.

Gauge-equivalent representations up to homotopy are isomorphic in the
sense of [1], but the notion of gauge-equivalence is slightly more refined than
that of isomorphism. Specifically, the condition involving x4 in Definition 2.11
serves the purpose of restricting attention to isomorphisms that “cover” the
identity map on I'(€).

In the case where £ = E is concentrated in degree 0, a representation
up to homotopy is the same thing as a representation, and there are no
nontrivial gauge transformations.

Let G = M be a Lie groupoid, let E @ C[1] be a 2-term graded vector
bundle, and consider a normalized transformation 1-cochain o € C'(G; E —
C). The associated operator & : C*(G; E) — C**Y(G; C) may be viewed as
a degree 0 operator on C(G; E @ C[1]). Clearly, 62 = 0, so the map 1+ &
is invertible with inverse 1 — . One can easily see that 1+ & is a gauge
transformation. The converse is also true:

Proposition 2.12. Ewvery gauge transformation of C(G; E @ C[1]) is of the
form 1+ 6 for some normalized o € C*(G; E — C).

Proof. Let T : C(G; E & C|[1]) — C(G; E & C[1]) be a gauge transformation.
Since T' is a C'(G)-module automorphism, it is completely determined by its
action on the 0-cochain spaces I'(E) and I'(C'). Since T is degree-preserving,
it sends I'(C) to I'(C) and I'(E) to I'(E) ® C*(G; C). The condition po T =
u implies that the action of T' on I'(C') is the identity, and that T'(¢) — ¢ is
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in ker y (and therefore must be in C1(G;C)) for € € T'(E). Hence, the map
T — 1 is a C(G)-module morphism taking C*(G; E) to C**1(G; () and can
be identified via Proposition 2.9 with & for some o € C1(G; E — C). Since
T preserves the space of normalized cochains, so does &, implying that o is
normalized. U

We will study how 2-term representations up to homotopy transform
under gauge transformations in §5.3; in particular, see equations (5.8).

3. VB-groupoids

In this section, we review the various equivalent definitions of VB-groupoid,
the construction of the core of a VB-groupoid, and the notion of horizontal
lift. Most of the material in §§3.1-3.2 can be found elsewhere (for example,
[14]), but we hope that the reader will find our presentation valuable. In
§3.3, we present the formulas for the components of the representation up
to homotopy arising from the choice of a horizontal lift.

3.1. The definition of VB-groupoid

Consider a commutative diagram of Lie groupoids and vector bundles as
follows:

(3.1) I'—=F

G _ s M
By this we mean that I' = E is a Lie groupoid (with source, target, mul-
tiplication, identity, and inverse maps 3, t, m, 1, and 7), G = M is a Lie
groupoid (with source, target, multiplication, identity, and inverse maps s,
t, m, 1, and ¢), I' = G is a vector bundle (with projection map and zero
section ¢ and 0), E — M is a vector bundle (with projection map and zero

section ¢ and 0) and such that ¢5 = s§ and ¢f = tG. For the rest of this
subsection we will always start with this data.

Definition 3.1. A VB-groupoid is a commutative diagram of Lie groupoids
and vector bundles like (3.1) such that the following conditions hold:

1) (8, s) is a morphism of vector bundles.

2) (t,t) is a morphism of vector bundles.
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3) (q,q) is a morphism of Lie groupoids.

4) Interchange law:

(71 +3)(v2 +74) = 172 + V3 N4

for any 7; € I' for which the equation makes sense; specifically, for
any (y1,72) € T, (y3,74) € T such that §(71) = ¢(73) and G(72) =
q(va)-

Example 3.2. Let G = M be any Lie groupoid and take I' =TG, E =
TM. Then (3.1) is a VB-groupoid where § = T's, t = Tt, i = T'm, et cetera.
This is the tangent prolongation VB-groupoid which, as we will later see,
plays the role of the “adjoint representation” of G.

On the surface, our definition of VB-groupoid appears different from the
usual ones (e.g. [10, 14]). In what follows, we will show that the various
definitions are equivalent. More precisely, we will see that the conditions
in Definition 3.1 are equivalent to the requirement that I' — G be a “Lie-
groupoid object in the category of vector bundles” or, equivalently, that
I' = F be a “vector-bundle object in the category of Lie groupoids”.

First of all, we remark that the usual definition includes the following
technical condition. Consider the manifold E x, G := s*E = {(e,g) € E x
G | q(e) = s(g)} and the map

p.I' 5 Ex,G=¢sE

(3:2) 7 (51), (7))

The technical condition is that p’ is required to be a surjective submersion.
However, Li-Bland and Severa showed in [9, Appendix A] that this condition
is unnecessary. Specifically, if I' is a commutative diagram like (3.1) and
Condition 1 in Definition 3.1 is satisfied, then the map p’ is automatically
a surjective submersion.

Definition 3.3. A Lie-groupoid object in the category of vector bundles is
a commutative diagram of Lie groupoids and vector bundles like (3.1) such
that

1) (8,s) is a morphism of vector bundles.
2) (,t) is a morphism of vector bundles.

3) T® — G is a vector bundle with the natural structure.
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4) (m,m) is a morphism of vector bundles.

In Definition 3.3, Condition 3 is necessary to make sense of Condition 4.
Each fiber of I'® — G?) has a natural vector space structure thanks to
Conditions 1 and 2, so only local trivializability needs to be checked for
Condition 3. Note that the conditions of Definition 3.3 imply that the iden-
tity (1,1) and inverse (7,:) maps are also morphisms of vector bundles.

Definition 3.4. A vector-bundle object in the category of Lie groupoids is
a commutative diagram of Lie groupoids and vector bundles like (3.1) such
that

1) (G, q) is a morphism of Lie groupoids.
2) I'ix431' = E x4 E is a Lie groupoid with the natural structure.
3) The addition maps (+,+) are a morphism of Lie groupoids.

In Definition 3.4, Condition 2 is necessary to make sense of Condition 3.
There is a natural groupoid structure on I' 5 x5 I' = F'; x, E/ thanks to Con-
dition 1, and all the maps involved are smooth, so we only need to check that
the source map is a submersion in order to satisfy Condition 2. Note that
the conditions of Definition 3.4 imply that the scalar multiplication maps
and the zero sections are also morphisms of Lie groupoids.

Definitions 3.1, 3.3, and 3.4 are equivalent per the next proposition.

Proposition 3.5. Consider a commutative diagram of Lie groupoids and
vector bundles like (3.1). Then the following are equivalent:

e ' is a VB-groupoid,
e I" is a “Lie-groupoid object in the category of vector bundles”,

e [' is a “vector-bundle object in the category of Lie groupoids”.

Proof. In Lemma 3.13 below we will show that Condition 3 in Definition 3.3
and Condition 2 in Definition 3.4 follow from the property of p being a
submersion, rendering them completely unnecessary.

Next, we notice that Conditions 3 and 4 in Definition 3.1 are equivalent
to Condition 4 in Definition 3.3, and that Conditions 1, 2, and 4 in Defi-
nition 3.1 are equivalent to Condition 3 in Definition 3.4. This is shown by
writing down each condition as a commutative diagram. This completes the
proof. O
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Finally, we note the following identities which are satisfied by VB-
groupoids:

0,09, = 0g,g,» 01, = 1o,

for all (g1,92) € G® and all z € M. We will use these identities without
reference throughout the remainder of the paper.

3.2. Cores and decompositions of a VB-groupoid

3.2.1. The right-core. Let I" be a VB-groupoid as in (3.1). Notice that
s*E = E x4, G — G is a vector bundle, and that p?, as defined in (3.2), is a
surjective morphism of vector bundles covering the identity map on G.

Definition 3.6. The kernel of p’, which we will denote VE — G, is the
right-vertical subbundle of I' — G. Equivalently, for every g € GG, the fiber
VgR is the kernel of s, : I'y — E(,). Elements in VE are called right-vertical
elements of I'.

Definition 3.7. The right-core of the VB-groupoid (3.1) is C¥ := 1*(VF).
In other words, C* is the restriction of V' to the units of G.

For any (g1, 92) € G®), right-multiplication by 0y, produces a linear iso-

morphism from Vglf to Vfgz. In particular, for any g € G, right-multiplication

by ﬁg produces a linear isomorphism from Cﬁg)

natural isomorphism of vector bundles over G between V and t*(CF) =
CT x; G given by:

to VgR. Hence, we have a

ety =cfx,G—VECT
(3.3) -
(c,g) +— 04

Now consider the following short exact sequence of vector bundles:

R

(3.4) (o) A A O

L]

Ie. id e id e

where p® and j® are defined by Equations (3.2) and (3.3) respectively.
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We recall that a section of (3.4) is a morphism of vector bundles h :
s*E — T such that pf® o h = id. Such a section induces a splitting, that is,
an isomorphism of vector bundles s*E @ t*(CF) = T, given by

thfg) & Eyy) =Ty,

(3.5) (ce) = ¢ 04 + hyle),

where hy(e) := h(e,g). Given a choice of a section, the image of h, is a
complement to VgR CTI'y. We will refer to vectors in the image of hy as
right-horizontal.

Of course, the right-horizontal subspaces are noncanonical; however,
when ¢ is a unit, there is a natural splitting

(3.6) Iy, =CRqpI1(E,) for all z € M.

We will restrict our attention to splittings whose restriction to the units
coincides with (3.6).

Definition 3.8. A right-horizontal lift of the VB-groupoid (3.1) is a section
h:s*E — T of (3.4) such that

(3.7) h(e,1;) =1, for all z € M and e € FE,.

A right-decomposition of the VB-groupoid (3.1) is a splitting of (3.4) which
coincides with the splitting (3.6) at the units of G.

Clearly, right-horizontal lifts and right-decompositions are equivalent to
each other. Since a right-decomposition is a splitting of a short exact se-
quence of vector bundles which agrees with a given splitting on an embed-
ded submanifold, the existence of right-decompositions (and hence right-
horizontal lifts) follows from a standard partition-of-unity argument.

Example 3.9. For the tangent prolongation VB-groupoid T'G, the right-
core consists of vectors at units of GG that are tangent to the s-fibers. In other
words, the right-core is the Lie algebroid A of G. The short exact sequence
(3.4) is then

(3.8) t*(A) - TG — s*(TM),

where the first map is given by right-translation and the second map is
push-forward by s. A right-horizontal lift of T'G is the same thing as an
Ehresmann connection on G, in the sense of [1].
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3.2.2. The left-core. By exchanging the roles of source and target, one
can similarly define a left-core. All the concepts in §3.2.1 have analogues in
this setting. In particular, the analogue of (3.4) is the short exact sequence
<L L

(3.9) §*(CF) =T —>1'E,

Example 3.10. For the tangent prolongation VB-groupoid T'G, the left-
core consists of vectors at units of G that are tangent to the t-fibers, so the
left-core can also be identified with the Lie algebroid of G. The left-core and

right-core for T'G correspond to the two models for the Lie algebroid of G,
defined via left- and right-invariant vector fields, respectively.

3.2.3. Two cores, un coeur. There is a canonical isomorphism between
the left- and right-cores of a VB-groupoid. This fact allows us to see O
and CF as simply being two different models for a single natural vector
bundle C.

Proposition 3.11. The involution
F:yel' » —yterl
exchanges the right-core CT and the left-core C.

We will abuse notation and use F' to refer to the restriction of F' to
either C* or O, Explicitly, the restrictions are given by

(3.10) Fle)=—c ' =c—Ty,

for c € CF and F(c) =c— 15(0) for ¢ € CY. The map F can be used to
transform expressions involving one core into those involving the other.

Example 3.12. Consider the tangent prolongation groupoid T'G in the
case where M is a point (so that G is a Lie group). In this case, the left-core
and the right-core are both equal to the tangent space at the identity of G,
and the isomorphism F' is the identity map.

There is a natural correspondence between left- and right-horizontal lifts.
Explicitly, let A : E x; G — I be a section of (3.4). We can associate a sec-
tion b’ : E xs G — T of (3.9) by

W(e.g) = (h(e,g") "
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In the remainder of the paper we will, whenever possible, remain model-
agnostic and simply refer to the core C. However, when writing specific
formulas it will frequently be necessary to choose a model. Unless otherwise
specified, we will in these situations take C' to mean C''%.

3.2.4. Proof of technical conditions. We shall now prove the following
lemma, which completes the proof of Proposition 3.5.

Lemma 3.13. FEvery VB-groupoid satisfies Condition 3 in Definition 3.3
and Condition 2 in Definition 3.4.

Proof. First, we choose a decomposition, so that we have isomorphisms
I ~s*(Ch) @ t*E and T = t*(CF) @ s*E. These isomorphisms allow us to
decompose T'? as

I = (7§)*(C*) @ge (1) E @ge (m3)*(C),
where 73, 72, 73 : G(®) — M are the three vertex maps given by 72 (g1, g2) =
t(g1), 7 (g1,92) = s(g1) = t(ga2), and 73(g1,g2) = s(g2). This shows that
I'® — G® is a vector bundle, which is Condition 3 in Definition 3.3.
Next, we observe that Condition 2 in Definition 3.4 reduces to checking
that the source map of the groupoid I'3x3I' = E ;x4 F is a submersion.
This source map can be written as the following composition:

FngF — EqXSGingF = EqugF — EquE
(71,7%2) = (3(1),dm),2) = (Bn)e) = (8(n),8(12)

The first map in this composition is the fibered product of p’ and the
identity, the second map is an isomorphism, the third map is the fibered
product of the identity and ¢. Hence they are all submersions, and so is
their composition. O

3.3. How to obtain a representation up to homotopy from a
VB-groupoid

Let I" be a VB-groupoid as in (3.1). In this section, we give formulas and some
geometric explanation for the components 9, A, AP, Q) that correspond (via
Theorem 2.10) to a representation up to homotopy of G on the 2-term graded
vector bundle £ & C[1].

Although it is possible to check conditions (2.11)—(2.16) directly (see
Example 3.16), we will not do so. Instead, we will later see in §5 that there
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is a canonically defined complex that, given a horizontal lift, can be identified
with C(G; E @ C[1]). In Appendix A, we show that the formulas for 9, A,
AP and € can be derived by transferring the differential from the canonical
complex to C(G; E @ C[1]) and decomposing into homogeneous components.
Conditions (2.11)—(2.16) are then immediate consequences.

3.3.1. The core-anchor. The core-anchor is a vector bundle morphism
0 : C — E, given by projection by :

(3.11) Oc = t(c)

for ¢ € C®. In the case I' = T'G, the core is the Lie algebroid A of G, and
0: A — TM coincides with the anchor map.

3.3.2. The core quasi-action. The core quasi-action A is given by
(3.12) ASc = hy(t(c)) - c- 0y

for c € Cﬁg). This may be interpreted as a conjugation action of g on ¢, in the
sense that h,(f(c)) is the unique horizontal element of I'; by which ¢ can be
left-multiplied, and ngl is the unique horizontal element of I'j-1 by which ¢
can be right-multiplied. In particular, if ¢ is in ker 0, then Agc = (~)g -c- ﬁg—l.
It is clear from this formula that the induced representation on kerd is
canonical.

In the case I' = T'G, the right-core C® corresponds to the “right-invariant
vector field” model of the Lie algebroid A of G. In this model, an element
a € Ayg) isavectorin T, G that is tangent to the s-fiber. Right-translation
is well-defined for such vectors, but left-translation is not well-defined un-
less a € ker p. However, when we have chosen a “horizontal” subspace of
T,G that is complementary to the s-fiber, then left-translation is possible,
giving us a quasi-action of G on A.

3.3.3. The side quasi-action. The side quasi-action AF is given by
(3.13) AgEe = t(hy(e))

for e € Fy(4). Geometrically, (3.13) simply says that e is horizontally lifted to
I'y and then projec:ced back to E via t. If b/ is another horizontal lift, then
hy(e) = hy(e) + c- 0, for some c € ngg). Then t(hy(e)) = t(hy(e)) +t(c) =
Af e 4+ dc. Thus, although A® depends on the choice of h, the induced rep-
resentation on coker 0 is canonical.
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In the case I' = TG, we have E = T'M, where the action of g € G on a
vector v € Ty M is given by horizontally lifting v to a vector in T;G and
then projecting by T'.

3.3.4. The transformation cochain. The 2-cochain ) measures the
failure of the horizontal lift A to be multiplicative. The precise formula is

(3.14) Qg 9.6 = (hgng(e) — hg, (f(hgz(e))) . hQQ(e)) . ﬁ(glgz)_l
= (hglgz (e) — hgl(Afze) - hg, (e)) ) 6(9192)*1

for (g1,92) € G@ and e e E4,)- We will say more about the geometric
meaning of ) in the case I' = T'G in §7.

Remark 3.14. The reader may verify that, in the case I' = T'G, the for-
mulas for 0, A®, AP and Q agree with the components of the adjoint
representation up to homotopy as defined in [1].

3.4. More examples of VB-groupoids

An important example of VB-groupoid is the tangent prolongation TG,
which has already been mentioned many times. In this section, we describe
more examples. In particular, we describe the semidirect product of G with
a 2-term representation up to homotopy.

Example 3.15. Let G = M be a Lie groupoid and let £ — M be a vector
bundle. Then, as a vector bundle, let I' — G be defined as I' := t*E @ s*F;
that is

I' = {(61,9,62) | el € Ey(g), €2 € Es(g)}.

Then I' is the total space for a VB-groupoid, with source, target, and mul-
tiplication maps given by

5(e1,9,e2) = e,

t(elag7 62) = €1,
(81,91762) ) (62392,63) = (61,9192,63)-

In this case, C'= FE and 0 is the identity. There is a one-to-one corre-
spondence between horizontal lifts h and unital quasi-actions A on E given
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by
hg(e) = (Ag(e), g,€).
Given a horizontal lift, the resulting representation up to homotopy has side
and core quasi-actions both equal to A, with  being the “curvature” of A,
given by
Qg9 = ADg g6 — Ay, Ay, e

For the purposes of representation theory, we argue that the V5-groupoid
t*"E @ s*E plays the role of the “trivial” representation of G on F, since it
contains no additional information beyond the Lie groupoid G = M and
the vector bundle £ — M.

Example 3.16 (Semidirect product). Let G = M be a Lie groupoid,
and let D be a representation up to homotopy of G on E @ C[1]. Let
(0, A%, AT Q) be the 4-tuple corresponding to D via Theorem 2.10.

Let

I'= t*C@ sSE = {(C>ga€) | ce Ct(g)’ €c Es(g)}

We endow I' with a Lie groupoid structure over E, defined as follows. The
source and target maps 3,¢: I' — F are given by

(3'15) (0797 e) = e’
(3.16) (c,g,€) = 0c+ Afe.

It is clear that § is a submersion. Multiplication for compatible pairs is given
by

§
¢

(3.17) (c1,91,e1) - (c2,92,€2) = (01 + AgCQ — Qg,.9.€2, 9162, 62) .
For e € E,, the identity over e is 1, = (0, 1., ¢). Inverses are given by
(c,g,e) b = (—Ag_lc + Q41 g€, g L dc+ Afe) )
The maps 3, t, and 7 are clearly linear, and the groupoid axioms can
be verified by direct computation. We point out the following;:
e The condition £(7; - 72) = (1) is equivalent to (2.11) and (2.13).

e Associativity of the product is equivalent to (2.12) and (2.14).

e Equations (2.15) and (2.16) are equivalent to the fact that the identity
map 1 we defined is indeed an identity.
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The existence of horizontal lifts means that any VB-groupoid can be
identified with a semidirect product, albeit noncanonically. Using this, one
could give a direct proof of the fact that the structures defined in 3.3 satisfy
the axioms of a representation up to homotopy.

4. Dual of a VB-groupoid

Consider a VB-groupoid T like in (3.1), with core C, and let I'* — G be
the dual vector bundle to I' — G. Then [14, 16] there is an associated dual
VB-groupoid

(4.1) I —=C*

L

GHM

In the case I' = T'G, the dual VB-groupoid is the cotangent prolongation
T°G = A*.

The dual construction plays a significant role in the definition of the
canonical VB-groupoid complex in §5, and we will briefly recall the formulas
for the structure maps for later use. We refer the reader to [14] for details
and proofs.

The source and target 3,7 : I'* = C* are defined as follows. Let ¢ € ry.

Then 3(§) € C’;"(g) and £(£) € C:(g) are given by

(4.2) (8(€) [ e1) = —(€ ] Og - c7h),

(4.3) (L&) [ c2) = (€] c2-0g)

for all ¢; € Cyy) and ca € Cy(y). Here and in the following, (| ) denotes the
pairing of a vector space and its dual.

The formulas (4.3)—(4.2) can be derived by requiring that the short exact
sequences

$1(B) =T = 17(C")

are dual to (3.4) and (3.9), respectively. In particular, we note that, for any
g€ @G, kert C I'; is the annihilator of ker § C I'y, and similarly with s and ¢
reversed.
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Let (&1,&) € (T)®), where &; € I';,. Under the assumption that 5(&;) =

(&), the product &7 - & € '}, g, is given by the formula

(4.4) (€18 |71 72) = (&1 I 7) + (2| 12)

for 4; € I'g,. The formula (4.4) can be interpreted as saying that the graph
of multiplication in I'* is, up to sign, the annihilator of the graph of multi-
plication in I'.

5. VB-groupoids and representations up to homotopy

In this section, we introduce the canonical VB-groupoid complex, and we
show that a choice of horizontal lift induces a decomposition of the complex
into a 2-term representation up to homotopy. Different choices of horizontal
lift lead to gauge-equivalent representations up to homotopy. In this sense,
we can think of 2-term representations up to homotopy as simply being
manifestations of the VB-groupoid complex.

5.1. VB-groupoid cohomology

Consider a VB-groupoid T'" as in (3.1) with dual VB-groupoid I'*. Let
(C"(F*), 5) be the complex of smooth groupoid cochains associated to the
Lie groupoid I'* = C*. There is a natural subcomplex CY,(I'™*), whose p-
cochains are functions of (I'*)(?) that are linear over G(?). We call (Cf, ('), 0)
the complex of linear cochains for the dual VB-groupoid I'*.

Definition 5.1. A linear p-cochain ¢ € Cf! (I'*) is called left-projectable if

1) @(ngla"'vgpfl) :Ov and
2) @(Qq'édv--agp):So(é.la'-')gp)a
for all (&1,...,&) € (I'*)®) and g € G such that #(&) = Os(g)-

The first condition in Definition 5.1 implies that ¢(&1,...,&p) only de-
pends on & and ¢(&;) for 2 < i < p. The second condition is a left-invariance
condition for the dependence on £&. When p = 0, both conditions are vacu-
ous, so the space of left-projectable 0-cochains is C{} (I'*) = I'(C)). The space
of left-projectable 1-cochains consists of sections X of I' that project via §
to a section of E (see Proposition 5.5 below).
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It follows directly from the definition of the coboundary operator ¢ that
the left-projectable cochains form a subcomplex of Cy;, (I'*). This fact allows
us to make the following definition.

Definition 5.2. The VB-groupoid complex (C\') (1), 5) of T is the subcom-
plex of left-projectable cochains in CY, (I'*). The VB-groupoid cohomology
of I' is the cohomology of the VB-groupoid complex.

In §5.2, we will see that a choice of decomposition allows us to iden-
tify Cyg(I') with C(G; E @ C[1]), and that under this identification the
differential & defines a representation up to homotopy of G' on E @ C[1].
For now, we make the following observation, which says that Cyp(T'), like
C(G; E @ C[1]), is a right C'(G)-module for which the coboundary operator
satisfies the graded Leibiz rule.

Lemma 5.3. Let ¢ € CL (I'*) be left-projectable, and let f € CI(G) be

viewed as a fiberwise-constant element of C4(I'*). Then

1) @ * f is linear and left-projectable, and
2) d(px f) = (0p) * f+ (=1)Po = (5f).
5.2. VB-groupoid cohomology and decompositions
Let T' be a VB-groupoid as in (3.1), and let ¢ € C}5(T") be a VB-groupoid

cochain. We define an associated map ¢ : G® — T, where P(gr,gn) € Lars
by the equation

(51) <£1 | @(91,...,gp)> = (70(517 527 cee aép)
for any (&,...,&,) € (T*)P~Y where (&) = g;. Condition (1) of Defini-

tion 5.1 implies that ¢ is well-defined and that ¢ is completely determined
by ¢. The following lemma examines the implications of Condition (2).

Lemma 5.4. For ¢ € C5(T), let ¢ be defined as above. Then

VAR
—
>

~
[N
=
o
N
Q
&)
)
S
N
SN—r

5(95(91,92 ----- gp)) = S\ P(Litgy),925-,

for all (g1,...,9p) € G,
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Proof. Expressed in terms of ¢, Condition (2) in Definition 5.1 says

(52) <090 é’ | @(9091792 11111 gp)> = <£ | ¢(917921'“791))>

for all (go,...,gy) € GPTV and ¢ € I such that (§) = 0y,). Pick any
7 €'y, such that ty) =t (gog1.g0. .g,))- Then, using (4.4) and the fact
that (Og, | v) =0, we can rewrite the left side of (5.2) as (Og, <& |y -y~ '-

P(gogng2rgp)) = <£ |y (‘0(90917927---79p)> Thus, we have that

(5.3) €l - P(gog1,92,-90) — ¢(91792:-~79p)> =0.

») is in the annihilator of

—1
In other WOI“dS v '(‘0(90917927 wgp) 1x (legzw--, )

kerf C 'y, , and therefore satisfies 5y~ P(g0g1,92,-9p) Sa(gl,gz,...,gp)) =0. We
obtain the desured result by setting go = g7 - 0

Conversely, given a map ¢ : G®) — T', where Pg1,.ng,) € L'gi» satistying
the equation in Lemma 5.4, we may define a linear cochain ¢ € C¥ (I'*)
by (5.1), which will satisfy Definition 5.1. In other words, we have the fol-
lowing result:

Proposition 5.5. The map ¢ +— ¢ given by equation (5.1) is a bijection
from C3,5(T) to the space of maps ¢ : G®) — T, where Plg1,gy) € Lgis sUCh

that 5(@(91792,...,9,,)) = ~((p(lt(g2)792,...,gp ) fOT all (g17 ce 7gp) < G(Pp

Now suppose that I' is equipped with a horizontal lift h: s*E — T.
Given ¢ € C?5(T'), we may then decompose ¢ as in (3.5) to obtain ¢¥ €
CP~YG; E) and ¢ € CP(G;C), given by the equation

5 E
(5:4) P(grensgp) = hgl(w(gz,m,gp)) + 90(91, Lap) " Ogu-

Note that ¢ does not depend on g1, as a consequence of Lemma 5.4.
We view the pair (¢, ¢%) as an element of CP~1(G; E) @ CP(G;C) =
C(G; E @ C[1])P~L. The following result is immediate.

Theorem 5.6. The map O, : p — (pF, %) is an isomorphism of graded
right C(G)-modules from Cyg(I')[1] to C(G; E & C[1]).

The isomorphism Oy in Theorem 5.6 depends on the choice of horizontal
lift and is therefore noncanonical. However, given such a choice, we may use
O}, to transfer the coboundary operator 6 on Cyp(T') to an operator Dy,
on C(G; E & C[1]). The operator Dy, satisfies the Leibniz rule as a result of
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Lemma 5.3, and it squares to zero and preserves normalized cochains since
0 does. Thus we have the following:

Corollary 5.7. The operator Dy, := O 0 (—0) 00, on C(G; E @ C[1)) is
a representation up to homotopy of G on the 2-term graded vector bundle
E & C[1].

The minus sign in the definition of Dy, arises from the fact that the
isomorphism Oy, involves a shift in grading.

In Appendix A, we show that the components 9, A®, AF and Q of the
representation up to homotopy Dy agree with the formulas given in §3.3,
giving us the following:

Corollary 5.8. The 4-tuple (A€, AF 0,Q), as given by formulas (3.11)—
(3.14), satisfies (2.11)—~(2.16) and therefore defines a representation up to
homotopy.

5.3. Dependence of the representation up to homotopy on the
decomposition

Let I' be a VB-groupoid as in (3.1). We would like to determine how the
representation up to homotopy Dy, changes under a change of horizontal lift.
Let h and h be two horizontal lifts. Let g € G and let e € E(,. Then

o

5(hg(e)) = 3(hg(e)), so hg(e) — hqy(e) is vertical. We write

(5.5) hg(e) = hg(e) + ag(e) - O,

for a unique element og4(e) € Cyy). We may view o as a normalized element
of CY(G;E — C). Conversely, given a horizontal lift » and a normalized
transformation 1-cochain o € C1(G; E — C), we can define a new horizontal
lift A by (5.5). Thus, we have proven the following.

Lemma 5.9. The space of horizontal lifts is an affine space modeled on the
normalized subspace of C1(G; E — C).

Suppose that h and h are two horizontal lifts related by o via (5.5).
From (5.4) and (5.5), we can see that the associated “chart transformation”
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on C(G; E & C]1]) is given by

(5.6) 0,00, =1-4,

where & is the operator associated to o (see Proposition 2.9). Therefore,
(5.7) Dy =(1—-6)oDpo(l+6).

In light of Proposition 2.12, we see that D; and D), are gauge-equivalent,
and that every element of the gauge-equivalence class of Dy, appears as D;,
for some choice of h. We summarize the result as follows:

Theorem 5.10. Let T be a VB-groupoid as in (3.1). The set of all represen-
tations up to homotopy Dy, arising from U for different choices of horizontal

lift h is equal to exactly one gauge-equivalence class of representations up to
homotopy of G on C' @ E[1].

We can expand (5.7) to obtain the following gauge transformation for-
mulas:

d=0,
Ag = Ag + 040,
AE = AP + g,

3 _ E c
Qg1.9o = Qg1 — gy Agg - A91‘792 +0g,g, — 04,00y,

(5.8)

6. The moduli space of VB-groupoids

6.1. The relationship between VB-groupoids and representations
up to homotopy

Corollary 5.8 tells us that (3.11)—(3.14) give a well-defined map taking VB-
groupoids equipped with horizontal lifts to 2-term representations up to
homotopy. This map is inverted by the semidirect product construction in
Example 3.16. Thus we have the following:

Theorem 6.1. There is a one-to-one correspondence between 2-term repre-
sentations up to homotopy and VB-groupoids equipped with horizontal lifts.

Together, Theorems 5.10 and 6.1 imply the following:
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Corollary 6.2. There is a one-to-one correspondence between isomorphism
classes of 2-term representations up to homotopy and isomorphism classes
of VB-groupoids.

6.2. Classification of regular 2-term representations up to
homotopy

Recall from §3.3 that the core-anchor 0 : C' — FE associated to a VB-groupoid
(3.1) is independent of the choice of a horizontal lift.

Definition 6.3. A VB-groupoid (or a 2-term representation up to homo-
topy) is called regular if its core-anchor O has constant rank.

Clearly, a 2-term representation up to homotopy is regular if and only
if it corresponds, via Theorem 6.1, to a regular VB-groupoid.

As we have seen in §3.3, one can recover from a VB-groupoid canonical
representations of G on K := ker 0 and v := coker 0, but in general these
bundles are singular. If the VB-groupoid is regular, then K and v are vector
bundles.

In this section, we classify regular VB-groupoids up to isomorphism. Per
Corollary 6.2, such a classification is equivalent to a classification of the
moduli space of regular 2-term representations up to homotopy. We begin
by considering two special cases of regular VB-groupoids.

6.2.1. VB-groupoids of type 1.

Definition 6.4. A VB-groupoid (or a 2-term representation up to homo-
topy) is of type 1 if its core-anchor 0 is an isomorphism.

We consider how conditions (2.11)(2.16) for the 4-tuple (9, A, AF Q)
specialize in the type 1 case. We may assume that C = E and 0 = 1. Then,
from (2.11)—(2.13) and (2.15), we have that A = AP where A¥ is a unital
quasi-action, and that €, 4, is equal to the “curvature” Afl P Afl Afz of
AP, Then (2.14) and (2.16) are automatically satisfied.

The representations up to homotopy of the type that we have just de-
scribed are exactly those that arise from VB-groupoids of the form in Exam-
ple 3.15, which do not include any more information than the Lie groupoid
G and the vector bundle E. Using Corollary 6.2, we conclude the following.

Proposition 6.5. Fvery VB-groupoid of type 1 is isomorphic to a VB-
groupoid of the form in Example 3.15.



772 A. Gracia-Saz and R. A. Mehta
6.2.2. VB-groupoids of type 0.

Definition 6.6. A VB-groupoid (or a 2-term representation up to homo-
topy) is of type 0 if its core-anchor 0 is the zero map.

In the type 0 case, 9 =0 and (2.11) holds automatically. Equations
(2.12), (2.13), and (2.15) say that A® and AF are representations of G
on C and F, respectively. Then we may interpret (2.14) and (2.16) as say-
ing that Q € C?(G; E — C) is normalized and closed with respect to the
differential D in (2.8).

Next, we consider how a type 0 representation up to homotopy trans-
forms under a gauge transformation. From (5.8), we see that the represen-
tations A® and A¥ are invariant, while  changes by an exact term:

(6.1) Q=Q-Do

Proposition 6.7. 1) A type 0 representation up to homotopy of G on
E @ C[1] is given by a triple (AC, AF Q), where AC and AF are rep-
resentations of G on C and E, respectively, and Q € C*(G; E — C) is
a normalized cocycle.

2) Two such triples (A€, AF Q) and (AC, AE, Q) are gauge-equivalent if
and only if A® = AC, AF = AE | and Q is cohomologous to €.

Corollary 6.8. Type 0 VB-groupoids like (3.1) are classified up to isomor-
phism by triples (AY, AP [Q]), where AC and AP are representations of G
on C and E, respectively, and [Q)] is a cohomology class in H*(G; E — C).

Remark 6.9. The cochains ) appearing in the above analysis are always
normalized. The conclusion in Corollary 6.8 uses the fact that the complex
C(G; E — C) retracts to the subcomplex of normalized cochains. The proof
given by Eilenberg and Maclane [5] in the case of group cohomology can be
easily extended to the present context.

6.2.3. The general case. Given two VB-groupoids

I'n——=Ey ' —=E

o

G——=M G——=M
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over the same Lie groupoid G, we can form the direct sum VB-groupoid

el —=Ey® Ey

l |

G M

Note that the core of I'g ¢ I'y is the direct sum of the cores of I'y and I'y.

Lemma 6.10. Given a regular VB-groupoid T', there exist unique (up to
isomorphism) VB-groupoids Ty of type 0, and T'1 of type 1, such that T is
isomorphic to I'o & 1'1.

Proof. Let I be a regular VB-groupoid as in (3.1). Let K :=ker 0, F' := im0,
and v := coker 0. As a result of the regularity condition, we have that K,
F', and v are all vector bundles that fit into the short exact sequences

K—C——=F,
(6.2)

F—sF——uv.
We choose splittings of the sequences (6.2), giving isomorphisms

Cr~KoF

(6.3)
E~vaF

Next, we make a choice of horizontal lift for I". Such a choice gives us a
representation up to homotopy (9, A AE, ), which completely describes
the VB-groupoid structure of I'. Each of the components may be written in

“block-matrix” form with respect to the direct sums in (6.3). In particular,
the block form of 9 is (§9). By (2.11), the block forms of A® and AF are

of the form
AEK  AC AV 0
2= ar) 2= )

Here, AKX and A are the canonical representations of G on K and v, re-
spectively, and Af is a quasi-action on F' that depends on the choice of
horizontal lift.
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We can block-diagonalize A® and AP by setting

[ 0  —AC¢
L TR
and making the associated gauge transformation (see (5.8)). From (2.12)-
(2.13), we then see that, in the new gauge, Q) takes the form

w 0
2= (5 ar)

where R is the curvature of A, Thus, for an appropriate choice of hori-
zontal lift, the associated representation up to homotopy decomposes as the
direct sum of a type 0 representation up to homotopy on v @ K[1] and a
type 1 representation up to homotopy on F' & F'[1].

For uniqueness, we use the classification of type 1 and type 0 VB-
groupoids in Proposition 6.5 and Corollary 6.8. As a type 1 VB-groupoid, I’y
is determined up to isomorphism by the vector bundle F. As a type 0 V-
groupoid, I'g is determined up to isomorphism by the representations A” and
AF and the cohomology class [w] € H?(G;v — K). Both A¥ and AKX are
canonical, and it can be seen that the cohomology class [w] is independent
of the choices. OJ

The following result ties together the results in this section.

Theorem 6.11. Let G = M be a Lie groupoid, and let E,C — M be vector
bundles. Regular VB-groupoids over G with side bundle E and core C' are
classified up to isomorphism by the following data:

e a reqular bundle map 0 : C — E,

e a representation A® of G on K := ker 0,

e q representation AY of G on v := coker 0, and

e a cohomology class [w] € H*(G;v — K).
Therefore, regular representations up to homotopy of G on E & CI[1] are
classified up to isomorphism by the same data.

7. Example: the adjoint representation

Let G = M be a regular Lie groupoid, and let A — M be the Lie algebroid
of G, with anchor map p: A — T M. Consider the VB-groupoid TG = T'M,
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which plays the role of the adjoint representation. By Theorem 6.11, there
is a canonically-defined cohomology class [w] € H*(G;v — K), where v :=
coker p and K := ker p. In this section, we give a geometric interpretation of
the class [w] in some nice cases.

7.1. Restriction to orbits

Before interpreting [w], we require some notation and terminology. For x €
M, the orbit through z is O, :=t(s~1(x)) C M. If the s-fibers of G are
connected, then O, is the leaf through x of the integrable distribution F' :=
imp CTM, where p: A —TM is the anchor map for the Lie algebroid
A of G. We may restrict G to a (immersed) Lie subgroupoid G|o, =% Oy,
where G|o, := s71(O,). On the other hand, it is clear that the disjoint union
of G|p, (taken over all distinct O,) is isomorphic to G as a set-theoretic
groupoid. Intuitively, we should be able to recover the Lie groupoid structure
of G from “gluing data” describing how the different G|p, fit together.

7.2. Bundles of Lie groups

We first consider the case where s = ¢, so that GG is a bundle of Lie groups
over M. In this case, each orbit consists of a single point x € M, and in
particular, the anchor map p is zero, so T'G is a type 0 VB-groupoid.

Let h: G xpy TM — TG be a horizontal lift. Note that, in this situation,
h is equivalent to a connection on the fiber bundle G — M.

Since the representation of G on T'M is trivial in this case, the formula
for 2 in (3.14) simplifies slightly:

le,gzv = (hgng (U) - hgl (’U) ' hg2 (’U)) ’ 6(9192)’1

for g1,92 € G, and v € T, M. We can see that () measures the failure of par-
allel transport by h to induce group homomorphisms of the fibers. Therefore,
G is locally trivializable as a Lie group bundle if and only if it is possible
to choose h such that € vanishes, and the cohomology class [Q2] can thus be
viewed as an obstruction to such local trivializability.

7.3. Regular Lie groupoids
We now consider a more general case of a regular Lie groupoid G = M. Let

x be a point in M. To avoid potential technical issues, we will assume that
the orbit space is nice near O,; specifically, we assume that the quotient
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M/ ~, where points in the same orbit are identified, has a smooth structure
near O, such that O, is a regular value of the quotient map. As a result
of this assumption, the quotient map induces an isomorphism between v,
and T, (M/~) for all y € O,, and therefore any v € v, can be canonically
extended to a section v of v|p, .

Suppose that we have chosen splittings TM ~v ® F and A~ K & F,
where ' = im p, and a horizontal lift i : s*(T'M) — T'G such that the quasi-
actions AT and A4, as well as the 2-cochain €, are block-diagonal with
respect to the chosen splittings. The existence of such an A is part of the proof
of Lemma 6.10. Because of block-diagonality, we have that AT*|, = A¥ and
one can see that Ajv = Uy, for any v € v, and g € s~ (). We may then
express the formula for w = €|, as

W(g1,92)V " 69192 = hg,g, (V) — hg, (5y) - hg, )

for v € v, and (g1, g2) € G such that s(go) = 2. In other words, w measures
the infinitesimal failure of parallel transport by A in the normal directions
to give isomorphisms of the restricted groupoids G|o, .

We may give a more simple intepretation in the nicest case, where the
orbit space is smooth and the quotient map M — M/~ is a submersion. In
this case, we may think of G as a “bundle of transitive Lie groupoids” over
M/ ~, where the fiber over O, € M/~ is the Lie groupoid G|p, . It is possible
to choose h such that w vanishes if and only if this bundle of transitive Lie
groupoids is locally trivializable (so a “transitive Lie groupoid bundle”).
Therefore, the cohomology class [w]| can be viewed as an obstruction to such
local trivializability.

It would be nice to find a simple interpretation of [w] that does not
require so many technical assumptions.

8. The Fat category (groupoid)

In [6], Evens, Lu, and Weinstein observed that the 1-jet prolongation
groupoid J'G of a Lie groupoid G = M, consisting of 1-jets of bisections,
carries natural representations on the Lie algebroid A of G and on T M. They
noted that, although these representations do not pass to representations of
G on A and T M, there is a sense in which they induce a “representation up
to homotopy” on the complex A £ TM. However, the Arias Abad-Crainic
notion of representation up to homotopy [1] which we have used in this paper
differs from that of Evens-Lu-Weinstein.
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In this section, we describe a construction for VB-groupoids that gener-
alizes the 1-jet prolongation groupoid, thus providing a conceptual link be-
tween the two notions of representation up to homotopy. Specifically, given
a VB-groupoid I', we construct a Lie groupoid ,C’;(F) — M, with canonical
representations on C' and E, such that G(I') = J'G when I' = T'G. We then
briefly describe how the formulas in §3.3 for the components of a represen-
tations up to homotopy can be derived directly from an object that is very
closely related to G(T).

8.1. The fat category

Let T' be a VB-groupoid. The fat category é(f‘) consists of pairs (g, H),
where g € G and H C I is a subspace that is complementary to the right-
vertical subspace VgR (see Definition 3.6). There is an obvious projection
map C (') — G, where the fiber over g € G is an affine space modeled on
Hom(E (4, Cy(q))- Thus, C(T') is a smooth manifold.

As the name suggests, ¢ (I") has the structure of a Lie category, where
the source and target maps factor through the projection ¢ (') — G and the
multiplication is given by (g1, H1) - (g2, H2) = (9192, H1 H2), where

H1H2 = {U1 D) ’ v; € Hi and §(U1) = E(UQ)}

If (g, H) is invertible, then its inverse is simply (¢~!, H!). However, it is
possible for (g, H) to be noninvertible; this occurs exactly when H fails to
be complementary to VgL.

8.2. The fat groupoid

The fat groupoid G(I') consists of all invertible elements of C(I'), i.e. pairs
(9,H), where g € G and H C Ty is a subspace complementary to both VgR
and VgL. The elements of G(T') form an open subset of C(T'), so G(T') naturally
inherits a smooth Lie groupoid structure.

In the case where I' = T'G, the fat groupoid Q(F) consists of pairs (g, H),
where g € G and H C TG is a subspace complementary to both the source-
fiber and the target-fiber; in other words, H is the 1-jet of a bisection of
G. Thus, in this case, the fat groupoid G(()T'G) is the 1-jet prolongation
groupoid J'G.
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8.3. Representations of the fat category (groupoid)

The fat category has canonical Lie category representations ¢ and ¥ on
the vector bundles C' and F, respectively, defined as follows. For e € E )
and ¢ € Cy(g),

w(g,H)e = E(’U),

@Z)(C;,H)c =w-c-04-1

where v is the unique vector in H such that 5(v) = e, and w is the unique
vector in H such that 5(w) = #(c). The representations /¢ and ¥ restrict in
the obvious way to produce Lie groupoid representations of the fat groupoid,
which we will also denote as ¥¢ and ¥,

Recall that the core-anchor 0 : C' — E is given by d(c) = t(c). It follows
that the representations ¥ and ¥ are related by the core-anchor: 9y¢ =
YFo.

8.4. Sections and representations up to homotopy

We would like to pass the canonical representations ¢ and ¢¥ of G (T) to
G. The obvious way to do so would be to choose a section of the projection
map G(F) — G and then use the section to pull ¥¢ and ¥ back to G.
However, such a section does not always exist globally. On the other hand,
global sections do always exist for the projection ¢ (T') — G; indeed, such a
section is equivalent to a section of the short exact sequence (3.4).

We may impose the additional requirement that a unit 1, lift to
(12, 1(E,)). Sections of C(T') — G satisfying this requirement are equivalent
to (right-)horizontal lifts of I'. Specifically, given a horizontal lift h : s*E —
', the map g = g := (g, hy(FEs(y))) is a section of C(T) = G. If we use this
section to pull the representations ¥¢ and ¥ back to G, we immediately
recover the formulas (3.12)—(3.13).

In general, we can’t expect the lift g — g to respect multiplication, which
is why A® and AP are only quasi-actions and not representations. The
failure of the lift to respect multiplication is measured by g1g2 — ¢ - go,
which can be identified with €, 4, as given by (3.14).
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Appendix A. Derivation of the representation up to
homotopy formulas

A.1. Horizontal lifts and dual pairings

Let T' be a VB-groupoid. Throughout this section, we will assume that I’
has a fixed right-horizontal lift i : s*E — I'. By (3.5), any v € I'y may be
uniquely written as

Y= ’YV : ()g + hg(')’H)7

where v = 3(~) € Eyg) and 7V e Cyg)- We refer to vV and v, respec-
tively, as the vertical and horizontal parts of ~. Similarly, any £ € I'; may
be uniquely written as

§= Og : 5\/ + ng(fH)a
where ¢ = {(¢) € Cyy and Ve EY > with E* identified with the left-core
of I'*. Here, n : t*C* — I'* is the left-horizontal lift given by the equation

(A1) (ng@) | 7) = (v1~")

forv € C't*( and v € I'y. Equation (A.1) defines a one-to-one correspondence
between right-horizontal lifts on I' and left-horizontal lifts on I'*. We also
have the following equation, which is a consequence of the fact that the
natural inclusion s*E* — I'*| (g,7) — f)g -, is the dual of the projection
I — s E, v (4(7),7"):

(A.2) (O -7 [7) = (T +").

Together, (A.1) and (A.2) allow us to simply express the pairing of v and &
as

(A.3) (€1 =€ 177+ (" 1Y),
In particular, horizontal elements of I'* annihilate horizontal elements of T,

and vertical elements of I'* annihilate vertical elements of T'.
We conclude the section with a lemma that will be useful in §A.2.

Lemma A.1. For any § € ') and c € Ty,

(386) | e) = (6 | —H(e)) + (6" | hg(#(c)) - ¢ Og-1).
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Proof. From the definition of § in (4.2), we have

(386) [ e) = (€| 0g- (=c1)),

which may be decomposed via (A.3). The horizontal part of 0y (—c71) is
5(04 - (—c71)) = 3(—c!) = —#(c). To obtain the vertical part, we subtract
the horizontal lift of the horizontal part:

(O - (=c™))Y 0y = 0g - (=¢71) + hy(E(c))
=04 (=) + hy(E(0)) - Ty,
= (0g + hgt(c)) - (=1 + i())
= hyt(c) - c
In the last line, we have used (3.10). Thus the vertical part of 0y (—c71) is
hy(t(c)) - ¢-04-1, and the result follows from (A.3). O

A.2. Formulas for representation up to homotopy components

We wish to show that the formulas (3.11)—(3.14) for the four components
9, A® AP and Q agree with the representation up to homotopy Dj in
Corollary 5.7. We will do this by applying Dy, to 0-cochains « € T'(C) =
CY(G;C)and e € T'(E) = C°(G; E), and showing that the resulting cochains
decompose as

(A.4) Dypa = D% + da,
(A.5) Dpe = Qe + DFe.
First, we consider Dja. By alternatively viewing « as a section of C' and

as a linear function on C*, we may write @gla =, so Dpa = —@h(—ga).
By the definition of the differential 9,

—da(€) = (H(€) | ayg) — (5(8) | aug)

for £ € I'y. Using (4.3), (A.3), and Lemma A.1, we can rewrite this as

<£H | At(g) — hg(g(as(g))) * Og(g) '()g_l> + <£V | 7§(O‘s(g)))
- <€H ’ Qt(g) — A5043(51)> + <€V ‘ 8CVs(g))'

Using (2.9) and comparing (5.4) with (A.3), we conclude that (A.4) does
indeed hold.
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Next, we consider Dpe. Equations (5.1) and (5.4) imply that @,:15 €
Cyi(T) is given by

), 'e(§) = (¢ | hyles(g))
for £ € T'*. By the definition of 0,
g

( Wle) (&, &)
= le(&) + 0, 'e(& - &) — 65 e(é)
= < \ 2 (Es(ga))) T (61 &2 | hgiga(Es(gn))) — (€1 | gy (Es(gr)))

for (&1,&) € (F*)g) g2)° Using (3.14) and (4.4), we can rewrite the middle
term as
(€1 €2 | Qgu,g.85(0s)  Oguge + gy (AgGiEs(02)) * Prga(Esg)))
= (& | Qg,,9:€5(g2)  Ogn + hgl(Ag;ES(gz)» + (&2 | hy, (58(92)»'

Substituting this into the previous equation and using (A.3), we get

_5(9}:15)(51752) = <§1 ‘ Q9179255(92) 691 =+ hgl(AE s(g2) — ES(gl))>
<£1 |le792 > <£1 |A9258(92) (91)>‘

Using (2.10) and comparing (5.4) with (A.3), we conclude that (A.5) does
indeed hold.
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