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Cohomology of toric origami manifolds

with acyclic proper faces
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and Haozhi Zeng

A toric origami manifold is a generalization of a symplectic toric
manifold (or a toric symplectic manifold). The origami symplec-
tic form is allowed to degenerate in a good controllable way in
contrast to the usual symplectic form. It is widely known that
symplectic toric manifolds are encoded by Delzant polytopes, and
the cohomology and equivariant cohomology rings of a symplec-
tic toric manifold can be described in terms of the corresponding
polytope. Recently, Holm and Pires described the cohomology of a
toric origami manifold M in terms of the orbit space M/T when
M is orientable and the orbit space M/T is contractible. But in
general the orbit space of a toric origami manifold need not be con-
tractible. In this paper we study the topology of orientable toric
origami manifolds for the wider class of examples: we require that
every proper face of the orbit space is acyclic, while the orbit space
itself may be arbitrary. Furthermore, we give a general description
of the equivariant cohomology ring of torus manifolds with locally
standard torus actions in the case when proper faces of the orbit
space are acyclic and the free part of the action is a trivial torus
bundle.
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1. Introduction

A symplectic toric manifold is a compact connected symplectic manifold of
dimension 2n with an effective Hamiltonian action of a compact n-
dimensional torus T . A famous result of Delzant [7] describes a bijective
correspondence between symplectic toric manifolds and simple convex poly-
topes, called Delzant polytopes. The polytope associated to a symplectic
toric manifold M is the image of the moment map on M .

Origami manifolds appeared in differential geometry recently as a gen-
eralization of symplectic manifolds [5]. A folded symplectic form on a 2n-
dimensional manifold M is a closed 2-form ω whose top power ωn vanishes
transversally on a subset W and whose restriction to points in W has max-
imal rank. Then W is a codimension-one submanifold of M , called the fold.
The maximality of the restriction of ω to W implies the existence of a line
field on W . If the line field is the vertical bundle of some principal S1-
fibration W → X, then ω is called an origami form.

Toric origami manifolds are generalizations of symplectic toric mani-
folds. The notions of a Hamiltonian action and a moment map are defined
similarly to the symplectic case, and a toric origami manifold is defined to be
a compact connected origami manifold (M2n, ω) equipped with an effective
Hamiltonian action of a torus T . Similarly to Delzant’s theorem for symplec-
tic toric manifolds, toric origami manifolds bijectively correspond to special
combinatorial structures, called origami templates, via moment maps [5]. An
origami template is a collection of Delzant polytopes with some additional
gluing data encoded by a template graph G.

A problem of certain interest is to describe the cohomology ring and
T -equivariant cohomology ring of toric origami manifold M in terms of the
corresponding origami template, see [5] and [9]. In this paper we present
some partial results concerning this problem.
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While in general toric origami manifolds can be non-orientable, in this
paper we restrict to the orientable case. Under this assumption the action
of T on a toric origami manifold M is locally standard, so the orbit space
M/T is a manifold with corners. One can describe the orbit space M/T
as a result of gluing polytopes of the origami template. This shows that
M/T is homotopy equivalent to the template graph G. Every proper face of
M/T is homotopy equivalent to some subgraph of G. Thus a toric origami
manifold has the property that the orbit space and all its faces are homotopy
equivalent to wedges of circles or contractible.

IfG is a tree, thenM/T and all its faces are contractible. Hence, a general
result of [12] applies. It gives a description similar to toric varieties (or qua-
sitoric manifolds): H∗

T (M) ∼= Z[M/T ] and H∗(M) ∼= Z[M/T ]/(θ1, . . . , θn).
Here, Z[M/T ] is the face ring of the manifold with corners M/T , and
(θ1, . . . , θn) is the ideal generated by the linear system of parameters, de-
fined by the characteristic map on M/T . This case is discussed in detail in
[9]. But, if G has cycles, even the Betti numbers of M remain unknown in
general. Only when M is of dimension 4, Holm and Pires described the Betti
numbers of M in [10].

In this paper we study the cohomology of an orientable toric origami
manifold M in the case when M/T is itself arbitrary, but every proper face
of M/T is acyclic (this assumption is not always satisfied, see Section 10).
A different approach to this task, based on the spectral sequence of the
filtration by orbit types, is proposed in a more general situation in [1]. For
toric origami manifolds, the calculation of Betti numbers in this paper gives
the same answer but a simpler proof.

The paper is organized as follows. Section 2 contains necessary defini-
tions and properties of toric origami manifolds and origami templates. In
Section 3 we describe the procedure which simplifies a given toric origami
manifold step-by-step, and give an inductive formula for Betti numbers.
Section 4 provides more convenient formulas expressing Betti numbers of
M in terms of the first Betti number of M/T and the face numbers of the
dual simplicial poset. Section 5 is devoted to an equivariant cohomology.
While toric origami manifolds serve as a motivating example, we describe
the equivariant cohomology ring in a more general setting. In Section 6,
we describe the properties of the Serre spectral sequence of the fibration
π : ET ×T M → BT for a toric origami manifold M . The restriction ho-
momorphism ι∗ : H∗

T (M) → H∗(M) induces a graded ring homomorphism
ῑ∗ : H∗

T (M)/(π∗(H2(BT ))) → H∗(M). In Section 7 we use Schenzel’s the-
orem and the calculations of previous sections to show that ῑ∗ is an iso-
morphism except in degrees 2, 4 and 2n− 1, a monomorphism in degrees 2
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and 2n− 1, and an epimorphism in degree 4; we also find the ranks of the
kernels and cokernels in these exceptional degrees. Since ῑ∗ is a ring homo-
morphism, these considerations describe the product structure on the most
part of H∗(M), except for the cokernel of ῑ∗ in degree 2. Section 8 illus-
trates our considerations in the 4-dimensional case. In section 9 we give a
geometrical description of the cokernel of ῑ∗ in degree 2, and suggest a partial
description of the cohomology multiplication for these extra elements. The
discussion of Section 10 shows which part of the results can be generalized
to the case of non-acyclic faces.

2. Toric origami manifolds

In this section, we recall the definitions and properties of toric origami man-
ifolds and origami templates. Details can be found in [5], [13] or [9].

A folded symplectic form on a 2n-dimensional manifold M is a closed 2-
form ω whose top power ωn vanishes transversally on a subset W and whose
restriction to points in W has maximal rank. Then W is a codimension-
one submanifold of M and is called the fold. If W is empty, ω is a genuine
symplectic form. The pair (M,ω) is called a folded symplectic manifold.
Since the restriction of ω to W has maximal rank, it has a one-dimensional
kernel at each point of W . This determines a line field on W called the
null foliation. If the null foliation is the vertical bundle of some principal S1-
fibration W → X over a compact base X, then the folded symplectic form ω
is called an origami form and the pair (M,ω) is called an origami manifold.
The action of a torus T on an origami manifold (M,ω) is Hamiltonian if
it admits a moment map μ : M → t∗ to the dual Lie algebra of the torus,
which satisfies the conditions: (1) μ is equivariant with respect to the given
action of T on M and the coadjoint action of T on the vector space t∗ (this
action is trivial for the torus); (2) μ collects Hamiltonian functions, that is,
d〈μ, V 〉 = ıV #ω for each V ∈ t, where V # is the vector field on M generated
by V .

Definition 2.1. A toric origami manifold (M,ω, T, μ), abbreviated as M ,
is a compact connected origami manifold (M,ω) equipped with an effective
Hamiltonian action of a torus T with dimT = 1

2 dimM and with a choice
of a corresponding moment map μ.

When the fold W is empty, a toric origami manifold is a symplectic
toric manifold. A theorem of Delzant [7] says that symplectic toric manifolds
are classified by their moment images called Delzant polytopes. Recall that
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a Delzant polytope in Rn is a simple convex polytope, whose normal fan
is smooth (with respect to some given lattice Zn ⊂ Rn). In other words,
all normal vectors to the facets of P have rational coordinates, and the
primitive normal vectors ν(F1), . . . , ν(Fn) form a basis of the lattice Zn

whenever facets F1, . . . , Fn meet in a vertex of P . Let Dn denote the set of
all Delzant polytopes in Rn (with respect to a given lattice) and Fn be the
set of all their facets.

The moment data of a toric origami manifold can be encoded into an
origami template (G,ΨV ,ΨE), where

• G is a connected graph (loops and multiple edges are allowed) with
the vertex set V and edge set E;

• ΨV : V → Dn;

• ΨE : E → Fn;

subject to the following conditions:

• If e ∈ E is an edge of G with endpoints v1, v2 ∈ V , then ΨE(e) is a facet
of both polytopes ΨV (v1) and ΨV (v2), and these polytopes coincide
near ΨE(e) (this means there exists an open neighborhood U of ΨE(e)
in Rn such that U ∩ΨV (v1) = U ∩ΨV (v2)).

• If e1, e2 ∈ E are two edges of G adjacent to v ∈ V , then ΨE(e1) and
ΨE(e2) are disjoint facets of Ψ(v).

The facets of the form ΨE(e) for e ∈ E are called the fold facets of the
origami template.

The following is a generalization of the theorem by Delzant to toric
origami manifolds.

Theorem 2.2 ([5]). Assigning the moment data of a toric origami mani-
fold induces a one-to-one correspondence

{toric origami manifolds} � {origami templates}

up to equivariant origami symplectomorphism on the left-hand side, and
affine equivalence on the right-hand side.

Denote by |(G,ΨV ,ΨE)| the topological space constructed from the dis-
joint union

⊔
v∈V ΨV (v) by identifying facets ΨE(e) ⊂ ΨV (v1) and ΨE(e) ⊂

ΨV (v2) for every edge e ∈ E with endpoints v1 and v2.
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An origami template (G,ΨV ,ΨE) is called coörientable if the graph G
has no loops (this means all edges have different endpoints). Then the corre-
sponding toric origami manifold is also called coörientable. IfM is orientable,
then M is coörientable [9]. If M is coörientable, then the action of Tn on
M is locally standard [9, Lemma 5.1]. We review the definition of locally
standard action in Section 5.

Let (G,ΨV ,ΨE) be an origami template and M the associated toric
origami manifold which is supposed to be orientable in the following. The
topological space |(G,ΨV ,ΨE)| is a manifold with corners with the face
structure induced from the face structures on polytopes ΨV (v), and the
space |(G,ΨV ,ΨE)| is homeomorphic to M/T as a manifold with corners.
The space |(G,ΨV ,ΨE)| has the same homotopy type as the graph G, thus
M/T ∼= |(G,ΨV ,ΨE)| is either contractible or homotopy equivalent to a
wedge of circles.

Under the correspondence of Theorem 2.2, the fold facets of the origami
template correspond to the connected components of the foldW ofM . If F =
ΨE(e) is a fold facet of the template (G,ΨV ,ΨE), then the corresponding
component Z ⊆ μ−1(F ) of the fold W ⊂ M is a principal S1-bundle over a
compact space B. The space B is a (2n− 2)-dimensional symplectic toric
manifold corresponding to the Delzant polytope F . In the following we also
call the connected components Z of the fold W the “folds” by abuse of
terminology.

3. Betti numbers of toric origami manifolds

Let M be an orientable toric origami manifold of dimension 2n with a fold
Z. Let F be the corresponding folded facet in the origami template of M and
let B be the symplectic toric manifold corresponding to F . The normal line
bundle of Z to M is trivial so that an invariant closed tubular neighborhood
of Z in M can be identified with Z × [−1, 1]. We set

M̃ := M − Int(Z × [−1, 1]).

This has two boundary components which are copies of Z. We close M̃ by
gluing two copies of the disk bundle associated to the principal S1-bundle
Z → B along their boundaries. The resulting closed manifold (possibly dis-
connected), denoted M ′, is again a toric origami manifold and the graph
associated to M ′ is the graph associated to M with the edge corresponding
to the folded facet F removed.
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Let G be the graph associated to the origami template of M and let
b1(G) be its first Betti number. We assume that b1(G) ≥ 1. A folded facet
in the origami template of M corresponds to an edge of G. We choose an
edge e in a (non-trivial) cycle of G and let F , Z and B be respectively the
folded facet, the fold and the symplectic toric manifold corresponding to the
edge e. Then M ′ is connected and since the graph G′ associated to M ′ is
the graph G with the edge e removed, we have b1(G

′) = b1(G)− 1.
Two copies of B lie in M ′ as closed submanifolds, denoted B+ and

B−. Let N+ (resp. N−) be an invariant closed tubular neighborhood of B+

(resp. B−) and Z+ (resp. Z−) be the boundary of N+ (resp. N−). Note that
M ′ − Int(N+ ∪N−) can naturally be identified with M̃ , so that

M̃ = M ′ − Int(N+ ∪N−) = M − Int(Z × [−1, 1])

and

M ′ = M̃ ∪ (N+ ∪N−), M̃ ∩ (N+ ∪N−) = Z+ ∪ Z−,(3.1)

M = M̃ ∪ (Z × [−1, 1]), M̃ ∩ (Z × [−1, 1]) = Z+ ∪ Z−.(3.2)

Remark 3.1. It follows from (3.1) and (3.2) that

χ(M ′) = χ(M̃) + 2χ(B), χ(M) = χ(M̃)

and hence χ(M ′) = χ(M) + 2χ(B). Note that this formula holds without
the acyclicity assumption (made later) on proper faces of M/T .

We shall investigate relations among the Betti numbers of M,M ′, M̃ , Z,
and B. The spaces M̃ and Z are auxiliary ones and our aim is to find
relations among the Betti numbers of M,M ′ and B. In the following, all
cohomology groups and Betti numbers are taken with Z coefficients unless
otherwise stated but the reader will find that the same argument works over
any field.

Lemma 3.2. The Betti numbers of Z and B have the relation

b2i(Z)− b2i−1(Z) = b2i(B)− b2i−2(B)

for every i.
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Proof. Since π : Z → B is a principal S1-bundle and Hodd(B) = 0, the Gysin
exact sequence for the principal S1-bundle splits into a short exact sequence

(3.3) 0 → H2i−1(Z) → H2i−2(B) → H2i(B)
π∗−→ H2i(Z) → 0 for every i

and this implies the lemma. �

Lemma 3.3. The Betti numbers of M̃ , M ′, and B have the relation

b2i(M̃)− b2i−1(M̃) = b2i(M
′)− b2i−1(M

′)− 2b2i−2(B)

for every i.

Proof. We consider the Mayer-Vietoris exact sequence in cohomology for the
triple (M ′, M̃ ,N+ ∪N−):

→ H2i−2(M ′) → H2i−2(M̃)⊕H2i−2(N+ ∪N−) → H2i−2(Z+ ∪ Z−)
δ2i−2−−−→ H2i−1(M ′) → H2i−1(M̃)⊕H2i−1(N+ ∪N−) → H2i−1(Z+ ∪ Z−)
δ2i−1−−−→ H2i(M ′) → H2i(M̃)⊕H2i(N+ ∪N−) → H2i(Z+ ∪ Z−)
δ2i−−→ H2i+1(M ′) →

Since the inclusions B = B± 
→ N± are homotopy equivalences and Z± = Z,
the restriction homomorphism Hq(N+ ∪N−) → Hq(Z+ ∪ Z−) above can be
replaced by π∗ ⊕ π∗ : Hq(B)⊕Hq(B) → Hq(Z)⊕Hq(Z) which is surjective
for even q from the sequence (3.3). Therefore, δ2i−2 and δ2i in the exact
sequence above are trivial. It follows that

b2i−1(M
′)− b2i−1(M̃)− 2b2i−1(B) + 2b2i−1(Z)

− b2i(M
′) + b2i(M̃) + 2b2i(B)− 2b2i(Z) = 0.

Here b2i−1(B) = 0 because B is a symplectic toric manifold, and 2b2i−1(Z) +
2b2i(B)− 2b2i(Z) = 2b2i−2(B) by Lemma 3.2. Using these identities, the
identity above reduces to the identity in the lemma. �

Next we consider the Mayer-Vietoris exact sequence in cohomology for
the triple (M, M̃, Z × [−1, 1]):

→ H2i−2(M) → H2i−2(M̃)⊕H2i−2(Z × [−1, 1]) → H2i−2(Z+ ∪ Z−)
→ H2i−1(M) → H2i−1(M̃)⊕H2i−1(Z × [−1, 1]) → H2i−1(Z+ ∪ Z−)
→ H2i(M) → H2i(M̃)⊕H2i(Z × [−1, 1]) → H2i(Z+ ∪ Z−) →
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We make the following assumption:

(∗) The restriction mapH2j(M̃)⊕H2j(Z × [−1, 1]) → H2j(Z+ ∪
Z−) in the Mayer-Vietoris sequence above is surjective for j ≥ 1.

Note that the restriction map above is not surjective when j = 0 because
the image is the diagonal copy of H0(Z) in this case and we will see in
Lemma 3.6 below that the assumption (∗) is satisfied when every proper
face of M/T is acyclic.

Lemma 3.4. Suppose that the assumption (∗) is satisfied. Then

b2(M̃)− b1(M̃) = b2(M)− b1(M) + b2(B),

b2i(M̃)− b2i−1(M̃) = b2i(M)− b2i−1(M) + b2i(B)− b2i−2(B) for i ≥ 2.

Proof. By the assumption (∗), the Mayer-Vietoris exact sequence for the
triple (M, M̃, Z × [−1, 1]) splits into short exact sequences:

0 →H0(M) → H0(M̃)⊕H0(Z × [−1, 1]) → H0(Z+ ∪ Z−)
→H1(M) → H1(M̃)⊕H1(Z × [−1, 1]) → H1(Z+ ∪ Z−)
→H2(M) → H2(M̃)⊕H2(Z × [−1, 1]) → H2(Z+ ∪ Z−) → 0

and for i ≥ 2

0 → H2i−1(M) → H2i−1(M̃)⊕H2i−1(Z × [−1, 1]) → H2i−1(Z+ ∪ Z−)
→ H2i(M) → H2i(M̃)⊕H2i(Z × [−1, 1]) → H2i(Z+ ∪ Z−) → 0.

The former short exact sequence above yields

b2(M̃)− b1(M̃) = b2(M)− b1(M) + b2(Z)− b1(Z) + 1

while the latter above yields

b2i(M̃)− b2i−1(M̃) = b2i(M)− b2i−1(M) + b2i(Z)− b2i−1(Z) for i ≥ 2.

Here b2i(Z)− b2i−1(Z) = b2i(B)− b2i−2(B) for every i by Lemma 3.2, so our
lemma follows. �

Lemma 3.5. Suppose that the assumption (∗) is satisfied and n ≥ 2. Then

b1(M
′) = b1(M)− 1, b2(M

′) = b2(M) + b2(B) + 1,

b2i+1(M
′) = b2i+1(M) for 1 ≤ i ≤ n− 2.
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Proof. It follows from Lemma 3.3 and Lemma 3.4 that

b2i(M
′)− b2i−1(M

′) = b2i(M)− b2i−1(M)(3.4)

+ b2i(B) + b2i−2(B) for i ≥ 2.

Take i = n in (3.4) and use Poincaré duality. Then we obtain

b0(M
′)− b1(M

′) = b0(M)− b1(M) + b0(B)

which reduces to the first identity in the lemma. This together with the first
identity in Lemma 3.4 implies the second identity in the lemma.

Similarly, take i = n− 1(≥ 2) in (3.4) and use Poincaré duality. Then
we obtain

b2(M
′)− b3(M

′) = b2(M)− b3(M) + b0(B) + b2(B).

This together with the second identity in the lemma implies b3(M
′) = b3(M).

Take i to be n− i in (3.4) (so 2 ≤ i ≤ n− 2) and use Poincaré duality.
Then we obtain

b2i(M
′)− b2i+1(M

′) = b2i(M)− b2i+1(M) + b2i−2(B) + b2i(B).

This together with (3.4) implies

b2i+1(M
′)− b2i−1(M

′) = b2i+1(M)− b2i−1(M) for 2 ≤ i ≤ n− 2.

Since we know b3(M
′) = b3(M), this implies the last identity in the lemma.

�
The following is a key lemma.

Lemma 3.6. Suppose that every proper face of M/T is acyclic. Then the
homomorphism H2j(M̃) → H2j(Z+ ∪ Z−) induced from the inclusion is sur-
jective for j ≥ 1, in particular, the assumption (∗) is satisfied.

Proof. Since B+ ∪B− is a deformation retract of N+ ∪N−, the following
diagram is commutative:

H2j(M ′) −−−−→ H2j(B+ ∪B−)⏐⏐� ⏐⏐�π∗
±

H2j(M̃) −−−−→ H2j(Z+ ∪ Z−)
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where π± : Z+ ∪ Z− → B+ ∪B− is the projection and the other homomor-
phisms are induced from the inclusions. By (3.3), π∗± is surjective, so it
suffices to show that the homomorphism H2j(M ′) → H2j(B+ ∪B−) is sur-
jective for j ≥ 1.

The inverse image of a codimension j face of M ′/T by the quotient
map M ′ → M ′/T is a codimension 2j closed orientable submanifold of M ′

and defines an element of H2n−2j(M
′) so that its Poincaré dual yields an

element of H2j(M ′). The same is true for B = B+ or B−. Note that H2j(B)
is additively generated by τK ’s where K runs over all codimension j faces
of F = B/T .

Set F± = B±/T , which are copies of the folded facet F = B/T . Let K+

be a codimension j face of F+. Then there is a codimension j face L of M ′/T
such that K+ = L ∩ F+. We note that L ∩ F− = ∅. Indeed, if L ∩ F− �= ∅,
then L ∩ F− must be a codimension j face of F−, say H−. If H− is the
copy K− of K+, then L will create a codimension j non-acyclic face of
M/T which contradicts the acyclicity assumption on proper faces of M/T .
Therefore, H− �= K−. However, F± are respectively facets of some Delzant
polytopes, say P±, and the neighborhood of F+ in P+ is same as that of
F− in P− by definition of an origami template (although P+ and P− may
not be isomorphic). Let H̄ and K̄ be the codimension j faces of P− such
that H̄ ∩ F = H− and K̄ ∩ F = K−. Since H− �= K−, the normal cones of
H̄ and K̄ are different. However, these normal cones must agree with that
of L because L ∩ F+ = K+ and L ∩ F− = H− and the neighborhood of F+

in P+ is same as that of F− in P−. This is a contradiction.
The codimension j face L of M ′/T associates an element τL ∈ H2j(M ′).

Since L ∩ F+ = K+ and L ∩ F− = ∅, the restriction of τL toH2j(B+ ∪B−) =
H2j(B+)⊕H2j(B−) is (τK+

, 0), where τK+
∈ H2j(B+) is associated to K+.

Since H2j(B+) is additively generated by τK+
’s where K+ runs over all codi-

mension j faces of F+, for each element (x+, 0) in H2j(B+)⊕H2j(B−) =
H2j(B ∪B−), there is an element y+ ∈ H2j(M ′) whose restriction image is
(x+, 0). The same is true for each element (0, x−) ∈ H2j(B+)⊕H2j(B−).
This implies the lemma. �

Finally, we obtain the following.

Theorem 3.7. Let M be an orientable toric origami manifold of dimension
2n (n ≥ 2) such that every proper face of M/T is acyclic. Then

(3.5) b2i+1(M) = 0 for 1 ≤ i ≤ n− 2.
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Moreover, if M ′ and B are as above, then

b1(M
′) = b1(M)− 1

(hence b2n−1(M
′) = b2n−1(M)− 1 by Poincaré duality),

b2i(M
′) = b2i(M) + b2i(B) + b2i−2(B) for 1 ≤ i ≤ n− 1.

(3.6)

Finally, H∗(M) is torsion free.

Proof. We have b1(M
′) = b1(M)− 1 by Lemma 3.5. Therefore, if b1(M) = 1,

then b1(M
′) = 0, that is, the graph associated to M ′ is acyclic and hence

bodd(M
′) = 0 by [9] (or [12]). This together with Lemma 3.5 shows that

b2i+1(M)=0 for 1 ≤ i ≤ n−2 when b1(M)=1. If b1(M)=2, then b1(M
′)=1

so that b2i+1(M
′) = 0 for 1 ≤ i ≤ n− 2 by the observation just made and

hence b2i+1(M) = 0 for 1 ≤ i ≤ n− 2 by Lemma 3.5. Repeating this argu-
ment, we see (3.5).

The relations in (3.6) follow from Lemma 3.5 and (3.4) together with
the fact b2i+1(M) = 0 for 1 ≤ i ≤ n− 2.

As we remarked before Lemma 3.2, the arguments developed in this
section work with any field coefficients, in particular with Z/p-coefficients
for every prime p. Hence (3.5) and (3.6) hold for Betti numbers with Z/p-
coefficients. Accordingly, the Betti numbers of M with Z-coefficients agree
with the Betti numbers of M with Z/p-coefficients for every prime p. This
implies that H∗(M) has no torsion. �

As for H1(M), we have a clear geometrical picture.

Proposition 3.8. Let M be an orientable toric origami manifold of di-
mension 2n (n ≥ 2) such that every proper face of M/T is acyclic. Let
Z1, . . . , Zb1 be folds in M such that the graph associated to the origami tem-
plate of M with the b1 edges corresponding to Z1, . . . , Zb1 removed is a tree.
Then Z1, . . . , Zb1 freely generate H2n−1(M), equivalently, their Poincaré du-
als z1, . . . , zb1 freely generate H1(M). Furthermore, all the products gener-
ated by z1, . . . , zb1 are trivial because Z1, . . . , Zb1 are disjoint and the normal
bundle of Zj is trivial for each j.

Proof. We will prove the proposition by induction on b1. When b1 = 0, the
proposition is trivial; so we may assume b1 ≥ 1. Let Z and M ′ be as be-
fore. Since b1(M

′) = b1 − 1, there are folds Z1, . . . , Zb1−1 in M ′ such that
Z1, . . . , Zb1−1 freely generate H2n−1(M

′) by induction assumption. The folds
Z1, . . . , Zb1−1 are naturally embedded inM and we will prove that these folds
together with Z freely generate H2n−1(M).
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We consider the Mayer-Vietoris exact sequence for the triple (M, M̃, Z ×
[−1, 1]):

0 → H2n(M)
∂∗−→ H2n−1(Z+∪Z−)

ι1∗⊕ι2∗−−−−−→ H2n−1(M̃)⊕H2n−1(Z×[−1, 1])

→ H2n−1(M)
∂∗−→ H2n−2(Z+∪Z−)

ι1∗⊕ι2∗−−−−−→ H2n−2(M̃)⊕H2n−2(Z×[−1, 1])

where ι1 and ι2 are the inclusions. Since ι∗1 : H2n−2(M̃) → H2n−2(Z+ ∪ Z−)
is surjective by Lemma 3.6, ι1∗ : H2n−2(Z+ ∪ Z−) → H2n−2(M̃) is injective
when tensored with Q. However, H∗(Z) has no torsion in odd degrees be-
cause H2i−1(Z) is a subgroup of H2i−2(B) for every i by (3.3) and H∗(B)
is torsion free. Therefore, H∗(Z) has no torsion in even degrees. There-
fore, ι1∗ : H2n−2(Z+ ∪ Z−) → H2n−2(M̃) is injective without tensoring with
Q and hence the above exact sequence reduces to this short exact sequence:

0 → H2n(M)
∂∗−→ H2n−1(Z+ ∪ Z−)

ι1∗⊕ι2∗−−−−−→ H2n−1(M̃)⊕H2n−1(Z × [−1, 1])

→ H2n−1(M) → 0.

Noting ∂∗([M ]) = [Z+]− [Z−] and ι2∗([Z±]) = [Z], one sees that the above
short exact sequence implies an isomorphism

(3.7) ι∗ : H2n−1(M̃) ∼= H2n−1(M)

where ι : M̃ → M is the inclusion map.
Consider the Mayer-Vietoris exact sequence for (M ′, M̃ ,N+ ∪N−):

0 → H2n(M
′)

∂′
∗−→ H2n−1(Z+ ∪ Z−)

ι1∗⊕ι3∗−−−−−→ H2n−1(M̃)⊕H2n−1(N+ ∪N−)

→ H2n−1(M
′)

∂′
∗−→ H2n−2(Z+ ∪ Z−)

ι1∗⊕ι3∗−−−−−→ H2n−2(M̃)⊕H2n−2(N+ ∪N−)

where ι3 is the inclusion map of the unit sphere bundle in N+ ∪N−. Note
that H2n−1(N+ ∪N−) = H2n−1(B+ ∪B−) = 0 and ι1∗ : H2n−2(Z+ ∪ Z−) →
H2n−2(M̃) is injective as observed above. Therefore, the above exact se-
quence reduces to this short exact sequence:

0 → H2n(M
′)

∂′
∗−→ H2n−1(Z+ ∪ Z−)

ι1∗−−→ H2n−1(M̃)
ι∗−→ H2n−1(M

′) → 0.

Here ∂∗([M ]) = [Z+]− [Z−] and H2n−1(M
′) is freely generated by Z1, . . . ,

Zb1−1 by induction assumption. Therefore, the above short exact sequence
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implies that

H2n−1(M̃) is freely generated by Z1, . . . , Zb1−1 and Z+ (or Z−).

This together with (3.7) completes the induction step and proves the lemma.
�

4. Relations between Betti numbers and face numbers

Let M be an orientable toric origami manifold of dimension 2n (n ≥ 2) such
that every proper face of M/T is acyclic. In this section we describe b2i(M)
in terms of the face numbers of M/T and b1(M). Let P be the simplicial
poset dual to ∂(M/T ). As usual, we define

fi = the number of (n− 1− i)-faces of M/T

= the number of i-simplices in P for i = 0, 1, . . . , n− 1

and the h-vector (h0, h1, . . . , hn) by

(4.1)

n∑
i=0

hit
n−i = (t− 1)n +

n−1∑
i=0

fi(t− 1)n−1−i.

Theorem 4.1. Let M be an orientable toric origami manifold of dimension
2n such that every proper face of M/T is acyclic. Let bj be the jth Betti
number of M and (h0, h1, . . . , hn) be the h-vector of M/T . Then

n∑
i=0

b2it
i =

n∑
i=0

hit
i + b1(1 + tn − (1− t)n),

in other words, b0 = h0 = 1 and

b2i = hi − (−1)i
(
n

i

)
b1 for 1 ≤ i ≤ n− 1,

b2n = hn + (1− (−1)n)b1.

Remark 4.2. Since every proper face of M/T is acyclic, we have hn =
(−1)n +

∑n−1
i=0 (−1)n−1−ifi by (4.1) and χ(∂(M/T )) =

∑n−1
i=0 (−1)ifi. There-

fore, hn = (−1)n − (−1)nχ(∂(M/T )). Since b2n = 1, it follows from the last
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identity in Theorem 4.1 that

χ(∂(M/T ))− χ(Sn−1) = ((−1)n − 1)b1.

Moreover, since b2i = b2n−2i, we have

hn−i − hi = (−1)i((−1)n − 1)b1

(
n

i

)
= (−1)i(χ(∂(M/T ))− χ(Sn−1))

(
n

i

)
for 0 ≤ i ≤ n.

These are generalized Dehn-Sommerville relations for ∂(M/T ) (or for the
simplicial poset P), see [18, p. 74] or [3, Theorem 7.44].

We will use the notations in Section 3 freely. For a manifold Q of dimen-
sion n with corners (or faces), we define the f -polynomial and h-polynomial
of Q by

fQ(t) = tn +

n−1∑
i=0

fi(Q)tn−1−i, hQ(t) = fQ(t− 1)

as usual.

Lemma 4.3. The h-polynomials of M ′/T , M/T , and F have the relation
hM ′/T (t) = hM/T (t) + (t+ 1)hF (t)− (t− 1)n. Therefore

tnhM ′/T (t
−1) = tnhM/T (t

−1) + (1 + t)tn−1hF (t
−1)− (1− t)n.

Proof. In the proof of Lemma 3.6 we observed that no facet of M ′/T in-
tersects with both F+ and F−. This means that no face of M ′/T intersects
with both F+ and F− because every face of M ′/T is contained in some facet
of M ′/T . Noting this fact, one can find that

fi(M
′/T ) = fi(M/T ) + 2fi−1(F ) + fi(F ) for 0 ≤ i ≤ n− 1

where F is the folded facet and fn−1(F ) = 0. Therefore,

fM ′/T (t) = tn +

n−1∑
i=0

fi(M
′/T )tn−1−i

= tn +

n−1∑
i=0

fi(M
′/T )ti + 2

n−1∑
i=0

fi−1(F )tn−1−i +

n−2∑
i=0

fi(F )tn−1−i

= fM/T (t) + 2fF (t) + tfF (t)− tn.
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Replacing t by t− 1 in the identity above, we obtain the former identity in
the lemma. Replacing t by t−1 in the former identity and multiplying the
resulting identity by tn, we obtain the latter identity. �

Proof of Theorem 4.1. Since
∑n

i=0 hi(M/T )ti = tnhM/T (t
−1), Theorem 4.1

is equivalent to

(4.2)

n∑
i=0

b2i(M)ti = tnhM/T (t
−1) + b1(M)(1 + tn − (1− t)n).

We shall prove (4.2) by induction on b1(M). The identity (4.2) is well-
known when b1(M) = 0. Suppose that k = b1(M) is a positive integer and
the identity (4.2) holds for M ′ with b1(M

′) = k − 1. Then

n∑
i=0

b2i(M)ti

= 1 + tn +

n−1∑
i=1

(b2i(M
′)− b2i(B)− b2i−2(B))ti (by Theorem 3.7)

=

n∑
i=0

b2i(M
′)ti − (1 + t)

n−1∑
i=0

b2i(B)ti + 1 + tn

= tnhM ′/T (t
−1) + b1(M

′)(1 + tn − (1− t)n)− (1 + t)tn−1hF (t
−1) + 1 + tn

(by (4.2) applied to M ′)
= tnhM/T (t

−1) + b1(M)(1 + tn − (1− t)n)

(by Lemma 4.3 and b1(M
′) = b1(M)− 1),

proving (4.2) for M . This completes the induction step and the proof of
Theorem 4.1. �

5. Equivariant cohomology and face ring

A torus manifold M of dimension 2n is an orientable connected closed
smooth manifold with an effective smooth action of an n-dimensional torus T
having a fixed point ([8]). An orientable toric origami manifold with acyclic
proper faces in the orbit space has a fixed point, so it is a torus manifold.
The action of T on M is called locally standard if every point of M has a
T -invariant open neighborhood equivariantly diffeomorphic to a T -invariant
open set of a faithful representation space of T . Then the orbit space M/T
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is a nice manifold with corners∗. The torus action on an orientable toric
origami manifold is locally standard. In this section, we study the equiv-
ariant cohomology of a locally standard torus manifold with acyclic proper
faces of the orbit space.

We review some facts from [12]. Let Q be a nice manifold with corners
of dimension n. Let R be a ground commutative ring with unit. We denote
by G ∨H the unique minimal face of Q that contains both G and H. The
face ring R[Q] of Q is a graded ring defined by

R[Q] := R[vF : F a face]/IQ

where deg vF = 2 codimF and IQ is the ideal generated by all elements

vGvH − vG∨H
∑

E∈G∩H
vE .

The dual poset of the face poset of Q is a simplicial poset of dimension n− 1
and its face ring over R (see [18, p.113]) agrees with R[Q]. For each vertex
p ∈ Q, the restriction map sp is defined as the quotient map

sp : R[Q] → R[Q]/(vF : p /∈ F )

and it is proved in [12, Proposition 5.5] that the image sp(R[Q]) is the poly-
nomial ring R[vQi1

, . . . , vQin
] where Qi1 , . . . , Qin are the n different facets

containing p.

Lemma 5.1 (Lemma 5.6 in [12]). If every face of Q has a vertex, then
the sum s = ⊕psp of restriction maps over all vertices p ∈ Q is a monomor-
phism from R[Q] to the sum of polynomial rings.

In particular, R[Q] has no nonzero nilpotent element if every face of Q
has a vertex. It is not difficult to see that every face of Q has a vertex if
every proper face of Q is acyclic.

Let M be a locally standard torus manifold. Then the orbit space M/T
is a nice manifold with corners. Let q : M → M/T be the quotient map.
Note thatM◦ := M − q−1(∂(M/T )) is the T -free part. The projection ET ×
M → M induces a map q̄ : ET ×T M → M/T , where ET denotes the total

∗Faces of M/T are defined using types of isotropy subgroups of the T -action on
M . The vertices in M/T correspond to the T -fixed points in M and nice means
that there are exactly n facets (i.e., codimension-one faces) meeting at each vertex
in M/T . A nice manifold with corners is often called a manifold with faces.
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space of the universal principal T -bundle and ET ×T M denotes the orbit
space of ET ×M by the diagonal action of T on ET ×M . Similarly we
have a map q̄◦ : ET ×T M◦ → M◦/T . The exact sequence of the equivariant
cohomology groups for the pair (M,M◦) together with the maps q̄ and q̄◦

produces the following commutative diagram:

H∗
T (M,M◦) η∗

−−−−→ H∗
T (M)

ι∗−−−−→ H∗
T (M

◦)

q̄∗
	⏐⏐ 	⏐⏐(q̄◦)∗

H∗(M/T )
ῑ∗−−−−→ H∗(M◦/T )

where η, ι and ῑ are the inclusions and H∗
T (X,Y ) := H∗(ET ×T X,ET ×T

Y ) for a T -space X and its T -subspace Y as usual. Since the action of T on
M◦ is free and ῑ : M◦/T → M/T is a homotopy equivalence, we have graded
ring isomorphisms

(5.1) H∗
T (M

◦)
((q̄◦)∗)−1

−−−−−−→ H∗(M◦/T )
(ῑ∗)−1

−−−−→ H∗(M/T )

and the composition ρ := q̄∗ ◦ (ῑ∗)−1 ◦ ((q̄◦)∗)−1, which is a graded ring ho-
momorphism, gives the right inverse of ι∗, so the exact sequence above splits.
Therefore, η∗ and q̄∗ are both injective and

(5.2) H∗
T (M) = η∗(H∗

T (M,M◦))⊕ ρ(H∗
T (M

◦)) as graded groups.

Note that both factors at the right hand side above are graded subrings of
H∗

T (M) because η∗ and ρ are both graded ring homomorphisms.
Let P be the poset dual to the face poset of M/T as before. Then

Z[P] = Z[M/T ] by definition.

Proposition 5.2. Suppose every proper face of the orbit space M/T is
acyclic, and the free part of the action gives a trivial principal bundle M◦ →
M◦/T . Then H∗

T (M) ∼= Z[P]⊕ H̃∗(M/T ) as graded rings.

Proof. Let R be the cone of ∂(M/T ) and let MR = MR(Λ) be the T -space
R× T/ ∼ where we use the characteristic function Λ obtained from M for
the identification ∼. Let M◦

R be the T -free part of MR. Since the free part
of the action on M is trivial, we have M −M◦ = MR −M◦

R. Hence,

(5.3) H∗
T (M,M◦) ∼= H∗

T (MR,M
◦
R) as graded rings
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by excision. SinceH∗
T (M

◦
R)

∼= H∗(M◦
R/T )

∼= H∗(R) andR is a cone,H∗
T (M

◦
R)

is isomorphic to the cohomology of a point. Therefore,

(5.4) H∗
T (MR,M

◦
R)

∼= H∗
T (MR) as graded rings in positive degrees.

On the other hand, the dual decomposition on the geometric realization
|P| of P defines a face structure on the cone P of P. Let MP = MP (Λ) be
the T -space P × T/ ∼ defined as before. Then a similar argument to that
in [6, Theorem 4.8] shows that

(5.5) H∗
T (MP ) ∼= Z[P] as graded rings

(this is mentioned as Proposition 5.13 in [12]). Since every face of P is a
cone, one can construct a face preserving degree one map from R to P
which induces an equivariant map f : MR → MP . Then a similar argument
to the proof of Theorem 8.3 in [12] shows that f induces a graded ring
isomorphism

(5.6) f∗ : H∗
T (MP )

∼=−→ H∗
T (MR)

since every proper face of R is acyclic. It follows from (5.3), (5.4), (5.5)
and (5.6) that

(5.7) H∗
T (M,M◦) ∼= Z[P] as graded rings in positive degrees.

Thus, by (5.1) and (5.2) it suffices to prove that the cup product of ev-
ery a ∈ η∗(H∗

T (M,M◦)) and every b ∈ ρ(H̃∗
T (M

◦)) is trivial. Since ι∗(a) = 0
(as ι∗ ◦ η∗ = 0), we have ι∗(a ∪ b) = ι∗(a) ∪ ι∗(b) = 0 and hence a ∪ b lies in
η∗(H∗

T (M,M◦)). Since ρ(H∗
T (M

◦)) ∼= H∗(M/T ) as graded rings by (5.1) and
Hm(M/T ) = 0 for a sufficiently large m, (a ∪ b)m = ±am ∪ bm = 0. How-
ever, we know that a ∪ b ∈ η∗(H∗

T (M,M◦)) and η∗(H∗
T (M,M◦)) ∼= Z[P] in

positive degrees by (5.7). Since Z[P] has no nonzero nilpotent element as
remarked before, (a ∪ b)m = 0 implies a ∪ b = 0. �

As discussed in [12, Section 6], there is a homomorphism

(5.8) ϕ : Z[P] = Z[M/T ] → H∗
T (M)/H∗(BT )-torsions.

In fact, ϕ is defined as follows. For a codimension k face F ofM/T , q−1(F ) =:
MF is a connected closed T -invariant submanifold of M of codimension 2k,
and ϕ assigns vF ∈ Z[M/T ] to the equivariant Poincaré dual τF ∈ H2k

T (M)
of MF . One can see that ϕ followed by the restriction map to H∗

T (M
T ) can
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be identified with the map s in Lemma 5.1. Therefore, ϕ is injective if every
face of Q has a vertex as mentioned in [12, Lemma 6.4].

Proposition 5.3. Let M be a torus manifold with a locally standard torus
action. If every proper face of M/T is acyclic and the free part of the ac-
tion gives a trivial principal bundle, then the H∗(BT )-torsion submodule of
H∗

T (M) agrees with q̄∗(H̃∗(M/T )), where q̄ : ET ×T M → M/T is the map
mentioned before.

Proof. First we prove that all elements in q̄∗(H̃∗(M/T )) areH∗(BT )-torsions.
We consider the following commutative diagram:

H∗
T (M)

ψ∗
−−−−→ H∗

T (M
T )

q̄∗
	⏐⏐ 	⏐⏐

H∗(M/T )
ψ̄∗

−−−−→ H∗(MT )

where the horizontal maps ψ∗ and ψ̄∗ are restrictions to MT and the right
vertical map is the restriction of q̄∗ to MT . Since MT is isolated,
ψ̄∗(H̃∗(M/T )) vanishes. This together with the commutativity of the above
diagram shows that q̄∗(H̃∗(M/T )) maps to zero by ψ∗. This means that all
elements in q̄∗(H̃∗(M/T )) are H∗(BT )-torsions because the kernel of ψ∗ are
H∗(BT )-torsions by the Localization Theorem in equivariant cohomology.

On the other hand, since every face of M/T has a vertex, the map ϕ
in (5.8) is injective as remarked above. Hence, by Proposition 5.2, there are
no other H∗(BT )-torsion elements. �

We conclude this section with observation on the orientability of M/T .

Lemma 5.4. Let M be a closed smooth manifold of dimension 2n with a
locally standard smooth action of the n-dimensional torus T . Then M/T is
orientable if and only if M is.

Proof. Since M/T is a manifold with corners and M◦/T is its interior, M/T
is orientable if and only if M◦/T is. On the other hand, M is orientable if
and only if M◦ is. Indeed, since the complement of M◦ in M is the union
of finitely many codimension-two submanifolds, the inclusion ι : M◦ → M
induces an epimorphism on their fundamental groups and hence on their first
homology groups with Z/2-coefficients. Then it induces a monomorphism
ι∗ :H1(M ;Z/2)→H1(M◦;Z/2) since H1(X;Z/2)=Hom(H1(X;Z/2);Z/2).
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Since ι∗(w1(M)) = w1(M
◦) and ι∗ is injective, w1(M) = 0 if and only if

w1(M
◦) = 0. This means that M is orientable if and only if M◦ is.

Thus, it suffices to prove that M◦/T is orientable if and only if M◦ is.
But, since M◦/T can be regarded as the quotient of an iterated free action
of S1, it suffices to prove the following general fact: for a principal S1-bundle
π : E → B where E and B are both smooth manifolds, B is orientable if and
only if E is. First we note that the tangent bundle of E is isomorphic to the
Whitney sum of the tangent bundle along the fiber τfE and the pullback
of the tangent bundle of B by π. Since the free action of S1 on E yields
a nowhere zero vector field along the fibers, the line bundle τfE is trivial.
Therefore

(5.9) w1(E) = π∗(w1(B)).

We consider the Gysin exact sequence for our S1-bundle:

· · · → H−1(B;Z/2) → H1(B;Z/2)
π∗−→ H1(E,Z/2) → H0(B;Z/2) → · · · .

Since H−1(B;Z/2) = 0, the exact sequence above tells us that the map
π∗ : H1(B;Z/2) → H1(E;Z/2) is injective. This together with (5.9) shows
that w1(E) = 0 if and only if w1(B) = 0, proving the desired fact. �

6. Serre spectral sequence

Let M be an orientable toric origami manifold M of dimension 2n such
that every proper face of M/T is acyclic. Note that M◦/T is homotopy
equivalent to a graph, hence does not admit nontrivial torus bundles. Thus
the free part of the action gives a trivial principal bundle M◦ → M◦/T , and
we may apply the results of the previous section.

We consider the Serre spectral sequence of the fibration π : ET ×T M →
BT . Since BT is simply connected and bothH∗(BT ) andH∗(M) are torsion
free by Theorem 3.7, the E2-terms are given as follows:

Ep,q
2 = Hp(BT ;Hq(M)) = Hp(BT )⊗Hq(M).

Since Hodd(BT ) = 0 and H2i+1(M) = 0 for 1 ≤ i ≤ n− 2 by Theorem 3.7,

(6.1) Ep,q
2 with p+ q odd vanishes unless p is even and q = 1 or 2n− 1.

We have differentials

→ Ep−r,q+r−1
r

dp−r,q+r−1
r−−−−−−→ Ep,q

r
dp,q
r−−→ Ep+r,q−r+1

r →
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and

Ep,q
r+1 = ker dp,qr / im dp−r,q+r−1

r .

We will often abbreviate dp,qr as dr when p and q are clear in the context.
Since

dr(u ∪ v) = dru ∪ v + (−1)p+qu ∪ drv for u ∈ Ep,q
r and v ∈ Ep′,q′

r

and dr is trivial on Ep,0
r and Ep,0

r = 0 for odd p,

(6.2) dr is an H∗(BT )-module map.

Note that Ea,b
r = 0 if either a < 0 or b < 0. Accordingly,

(6.3) Ep,q
r = Ep,q

∞ if p < r and q + 1 < r.

There is a filtration of subgroups

Hm
T (M) = F0,m ⊃ F1,m−1 ⊃ · · · ⊃ Fm−1,1 ⊃ Fm,0 ⊃ Fm+1,−1 = {0}

such that

(6.4) Fp,m−p/Fp+1,m−p−1 = Ep,m−p
∞ for p = 0, 1, . . . ,m.

There are two edge homomorphisms. One edge homomorphism

Hp(BT ) = Ep,0
2 → Ep,0

3 → · · · → Ep,0
∞ ⊂ Hp

T (M)

agrees with π∗ : H∗(BT ) → H∗
T (M). Since MT �= ∅, one can construct a

cross section of the fibration π : ET ×T M → BT using a fixed point in
MT . So π∗ is injective and hence

(6.5) dr : E
p−r,r−1
r → Ep,0

r is trivial for every r ≥ 2 and p ≥ 0,

which is equivalent to Ep,0
2 = Ep,0∞ . The other edge homomorphism

Hq
T (M) � E0,q

∞ ⊂ · · · ⊂ E0,q
3 ⊂ E0,q

2 = Hq(M)

agrees with the restriction homomorphism ι∗ : Hq
T (M) → Hq(M). Therefore,

ι∗ is surjective if and only if the differential dr : E
0,q
r → Er,q−r+1

r is trivial
for every r ≥ 2.

We shall investigate the restriction homomorphism ι∗ :Hq
T (M)→Hq(M).

Since M/T is homotopy equivalent to the wedge of b1(M) circles, Hq
T (M)
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vanishes unless q is 1 or even by Proposition 5.2 whileHq(M) vanishes unless
q is 1, 2n− 1 or even in between 0 and 2n by Theorem 3.7.

Lemma 6.1. The homomorphism ι∗ : H1
T (M) → H1(M) is an isomorphism

(so H1(M) ∼= H1(M/T ) by Proposition 5.2).

Proof. By (6.5),

d2 : E
0,1
2 = H1(M) → E2,0

2 = H2(BT )

is trivial. Therefore E0,1
2 =E0,1∞ . On the other hand, E1,0∞ =E1,0

2 =H1(BT )=
0. These imply the lemma. �

Since H2n−1
T (M) = 0, the homomorphism ι∗ : H2n−1

T (M) → H2n−1(M)
cannot be surjective unless H2n−1(M) = 0.

Lemma 6.2. The homomorphism ι∗ : H2j
T (M) → H2j(M) is surjective ex-

cept for j = 1 and the rank of the cokernel of ι∗ for j = 1 is nb1(M).

Proof. Since dimM = 2n, we may assume 1 ≤ j ≤ n.
First we treat the case where j = 1. Since H3

T (M) = 0, E2,1∞ = 0 by (6.4)

and E2,1∞ = E2,1
3 by (6.3). This together with (6.5) implies that

(6.6) d2 : H
2(M) = E0,2

2 → E2,1
2 = H2(BT )⊗H1(M) is surjective.

Moreover d3 : E
0,2
3 = ker d2 → E3,0

3 is trivial since E3,0
3 = 0. Therefore, E0,2

3 =
E0,2∞ by (6.3). Since E0,2∞ is the image of ι∗ : H2

T (M) → H2(M), the rank of
H2(M)/ι∗(H2

T (M)) is nb1(M) by (6.6).
Suppose that 2 ≤ j ≤ n− 1. We need to prove that the differentials

dr : E
0,2j
r → Er,2j−r+1

r

are all trivial. In fact, the target group Er,2j−r+1
r vanishes. This follows from

(6.1) unless r = 2j. As for the case r = 2j, we note that

(6.7) d2 : E
p,2
2 → Ep+2,1

2 is surjective for p ≥ 0,

which follows from (6.2) and (6.6). Therefore Ep+2,1
3 = 0 for p ≥ 0, in par-

ticular Er,2j−r+1
r = 0 for r = 2j because j ≥ 2. Therefore ι∗ : H2j

T (M) →
H2j(M) is surjective for 2 ≤ j ≤ n− 1.

The remaining case j = n can be proved directly, namely without using
the Serre spectral sequence. Let x be a T -fixed point of M and let ϕ : x → M
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be the inclusion map. Since M is orientable and ϕ is T -equivariant, the
equivariant Gysin homomorphism ϕ! : H

0
T (x) → H2n

T (M) can be defined and
ϕ!(1) ∈ H2n

T (M) restricts to the ordinary Gysin image of 1 ∈ H0(x), that is
the cofundamental class ofM . This implies the surjectivity of ι∗ : H2n

T (M) →
H2n(M) because H2n(M) is an infinite cyclic group generated by the cofun-
damental class. �

7. Towards the ring structure

Let π : ET ×T M → BT be the projection. Note that π∗(H2(BT )) maps
to zero by the restriction homomorphism ι∗ : H∗

T (M) → H∗(M). Hence, ι∗

induces a graded ring homomorphism

(7.1) ῑ∗ : H∗
T (M)/(π∗(H2(BT ))) → H∗(M)

which is surjective except in degrees 2 and 2n− 1 by Lemma 6.2 (and bi-
jective in degree 1 by Lemma 6.1). Here (π∗(H2(BT ))) denotes the ideal in
H∗

T (M) generated by π∗(H2(BT )). The purpose of this section is to prove
the following.

Proposition 7.1. The map ῑ∗ in (7.1) is an isomorphism except in degrees
2, 4 and 2n− 1. Moreover, the rank of the cokernel of ῑ∗ in degree 2 is
nb1(M) and the rank of the kernel of ῑ∗ in degree 4 is

(
n
2

)
b1(M).

The rest of this section is devoted to the proof of Proposition 7.1. We
recall the following result, which was proved by Schenzel ([17], [18, p.73]) for
Buchsbaum simplicial complexes and generalized to Buchsbaum simplicial
posets by Novik-Swartz ([14, Proposition 6.3]). There are several equivalent
definitions for Buchsbaum simplicial complexes (see [18, p.73]). A conve-
nient one for us would be that a finite simplicial complex Δ is Buchsbaum
(over a field k) if Hi(|Δ|, |Δ|\{p}; k) = 0 for all p ∈ |Δ| and all i < dim |Δ|,
where |Δ| denotes the realization of Δ. In particular, a triangulation Δ of a
manifold is Buchsbaum over any field k. A simplicial poset is a (finite) poset
P that has a unique minimal element, 0̂, and such that for every τ ∈ P , the
interval [0̂, τ ] is a Boolean algebra. The face poset of a simplicial complex is
a simplicial poset and one has the realization |P | of P where |P | is a reg-
ular CW complex, all of whose closed cells are simplices corresponding to
the intervals [0̂, τ ]. A simplicial poset P is Buchsbaum (over k) if its order
complex Δ(P ) of the poset P = P\{0̂} is Buchsbaum (over k). Note that
|Δ(P )| = |P | as spaces since |Δ(P )| is the barycentric subdivision of |P |.
See [14] and [18] for more details.
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Theorem 7.2 (Schenzel, Novik-Swartz). Let Δ be a Buchsbaum sim-
plicial poset of dimension n− 1 over a field k, k[Δ] be the face ring of Δ
and let θ1, . . . , θn ∈ k[Δ]1 be a linear system of parameters. Then

F (k[Δ]/(θ1, . . . , θn), t) = (1− t)nF (k[Δ], t)

+

n∑
j=1

(
n

j

)(
j−2∑
i=−1

(−1)j−i dimk H̃i(Δ)

)
tj

where F (M, t) denotes the Hilbert series of a graded module M .

As is well-known, the Hilbert series of the face ring k[Δ] satisfies

(1− t)nF (k[Δ], t) =

n∑
i=0

hit
i.

We define h′i for i = 0, 1, . . . , n by

F (k[Δ]/(θ1, . . . , θn), t) =

n∑
i=0

h′it
i,

following [14].

Remark 7.3. Novik-Swartz [14] introduced

h′′i := h′i −
(
n

j

)
dimk H̃j−1(Δ) = hj +

(
n

j

)(
j−1∑
i=−1

(−1)j−i dimk H̃i(Δ)

)

for 1 ≤ i ≤ n− 1 and showed that h′′j ≥ 0 and h′′n−j = h′′j for 1 ≤ j ≤ n− 1.

We apply Theorem 7.2 to our simplicial poset P which is dual to the face
poset of ∂(M/T ). For that we need to know the homology of the geometric
realization |P| of P. First we show that |P| has the same homological features
as ∂(M/T ).

Lemma 7.4. The simplicial poset P is Buchsbaum, and |P| has the same
homology as ∂(M/T ).

Proof. We give a sketch of the proof. Details can be found in [1, Lemma
3.14]. There is a dual face structure on |P|, and there exists a face preserving
map g : ∂(M/T ) → |P| mentioned in the proof of Proposition 5.2. Let F be
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a proper face of M/T and F ′ the corresponding face of |P|. By induction

on dimF we can show that g induces the isomorphisms g∗ : H∗(∂F )
∼=−→

H∗(∂F ′), g∗ : H∗(F )
∼=−→ H∗(F ′), and g∗ : H∗(F, ∂F )

∼=−→ H∗(F ′, ∂F ′). Since
F is an acyclic orientable manifold with boundary, we deduce by Poincaré-
Lefschetz duality that H∗(F ′, ∂F ′) ∼= H∗(F, ∂F ) vanishes except in degree
dimF . Note that F ′ is a cone over ∂F ′ and ∂F ′ is homeomorphic to the link
of a nonempty simplex of P. Thus the links of nonempty simplices of P are
homology spheres, and P is Buchsbaum [14, Prop.6.2]. Finally, g induces
an isomorphism of spectral sequences corresponding to skeletal filtrations of

∂(M/T ) and |P|, thus induces an isomorphism g∗ : H∗(∂(M/T ))
∼=−→ H∗(|P|).

�

Lemma 7.5. |P| has the same homology as Sn−1�b1(S
1 × Sn−2) (the con-

nected sum of Sn−1 and b1 copies of S1 × Sn−2).

Proof. By Lemma 7.4 we only need to prove that ∂(M/T ) has the same
homology groups as Sn−1�b1(S

1 × Sn−2). SinceM/T is homotopy equivalent
to a wedge of circles, H i(M/T ) = 0 for i ≥ 2 and hence the homology exact
sequence of the pair (M/T, ∂(M/T )) shows that

Hi+1(M/T, ∂(M/T )) ∼= Hi(∂(M/T )) for i ≥ 2.

On the other hand, M/T is orientable by Lemma 5.4 and hence

Hi+1(M/T, ∂(M/T )) ∼= Hn−i−1(M/T )

by Poincaré–Lefschetz duality, and Hn−i−1(M/T ) = 0 for n− i− 1 ≥ 2.
These show that

Hi(∂(M/T )) = 0 for 2 ≤ i ≤ n− 3.

Thus it remains to study Hi(∂(M/T )) for i = 0, 1, n− 2, n− 1 but since
∂(M/T ) is orientable (because M/T is orientable), it suffices to show

(7.2) Hi(∂(M/T )) ∼= Hi(S
n−1�b1(S

1 × Sn−2)) for i = 0, 1.

When n ≥ 3, Sn−1�b1(S
1 × Sn−2) is connected, so (7.2) holds for i = 0

and n ≥ 3. Suppose that n ≥ 4. Then Hn−2(M/T ) = Hn−1(M/T ) = 0, so
the cohomology exact sequence for the pair (M/T, ∂(M/T )) shows that
Hn−2(∂(M/T ))∼=Hn−1(M/T, ∂(M/T )) and henceH1(∂(M/T ))∼=H1(M/T )
by Poincaré–Lefschetz duality. SinceM/T is homotopy equivalent to a wedge
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of b1 circles, this proves (7.2) for i = 1 and n ≥ 4. Assume that n = 3. Then
H1(M/T, ∂(M/T )) ∼= H2(M/T ) = 0. We also know thatH2(M/T ) = 0. The
homology exact sequence for the pair (M/T, ∂(M/T )) yields a short exact
sequence

0 → H2(M/T, ∂(M/T )) → H1(∂(M/T )) → H1(M/T ) → 0.

Here H2(M/T, ∂(M/T )) ∼= H1(M/T ) by Poincaré–Lefschetz duality. Since
M/T is homotopy equivalent to a wedge of b1 circles, this implies (7.2) for
i = 1 and n = 3.

It remains to prove (7.2) when n = 2. We use induction on b1. The asser-
tion is true when b1 = 0. Suppose that b1 = b1(M/T ) ≥ 1. We cutM/T along
a fold so that b1(M

′/T ) = b1(M/T )− 1, where M ′ is the toric origami mani-
fold obtained from the cut, see Section 3. Then b0(∂(M

′/T ))=b0(∂(M/T ))−
1. Since (7.2) holds for ∂(M ′/T ) by induction assumption, this observation
shows that (7.2) holds for ∂(M/T ). �

Lemma 7.6. For n ≥ 2, we have

n∑
i=0

h′it
i =

n∑
i=0

b2it
i − nb1t+

(
n

2

)
b1t

2.

Proof. By Lemma 7.5, for n ≥ 4, we have

dim H̃i(P) =

⎧⎪⎨⎪⎩
b1 if i = 1, n− 2,

1 if i = n− 1,

0 otherwise.

Hence

j−2∑
i=−1

(−1)j−i dim H̃i(P) =

⎧⎪⎨⎪⎩
0 if j = 1, 2,

(−1)j−1b1 if 3 ≤ j ≤ n− 1,

((−1)n−1 + 1)b1 if j = n.
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Then, it follows from Theorem 7.2 that

n∑
i=0

h′it
i =

n∑
i=0

hit
i +

n−1∑
j=3

(−1)j−1b1

(
n

j

)
tj + ((−1)n−1 + 1)b1t

n

=

n∑
i=0

hit
i − b1(1− t)n + b1(1− nt+

(
n

2

)
t2) + b1t

n

=

n∑
i=0

hit
i + b1(1 + tn − (1− t)n)− nb1t+

(
n

2

)
b1t

2

=

n∑
i=0

b2it
i − nb1t+

(
n

2

)
b1t

2

where we used Theorem 4.1 at the last identity. This proves the lemma when
n ≥ 4. When n = 3,

dim H̃i(P) =

⎧⎪⎨⎪⎩
2b1 if i = 1,

1 if i = 2,

0 otherwise,

and the same argument as above shows that the lemma still holds for n = 3.
When n = 2,

dim H̃i(P) =

⎧⎪⎨⎪⎩
b1 if i = 0,

b1 + 1 if i = 1,

0 otherwise,

and the same holds in this case too. �

Remark 7.7. One can check that

n−1∑
i=1

h′′i t
i =

n−1∑
i=1

b2it
i − nb1(t+ tn−1).

Therefore, h′′i = h′′i (P) is not necessarily equal to b2i = b2i(M) although both
are symmetric. This is not surprising because h′′i depends only on the bound-
ary of M/T . It would be interesting to ask whether h′′i (P) ≤ b2i(M) when
the face poset of ∂(M/T ) is dual to P and whether the equality can be
attained for some such M (M may depend on i).

Now we are ready to prove Proposition 7.1.



Cohomology of toric origami manifolds 673

Proof of Proposition 7.1. At first we suppose that k is a field. By Propo-
sition 5.2, we have Z[P] = Heven

T (M). The images of ring generators of
H∗(BT ; k) by π∗ provide an h.s.o.p. θ1, . . . , θn in Heven

T (M ; k) = k[P]. This
fact simply follows from the characterization of homogeneous systems of
parameters in face rings given by [4, Th.5.4]. Thus we have

F (Heven
T (M ; k)/(π∗(H2(BT ; k))), t)(7.3)

=

n∑
i=0

b2i(M)ti − nb1t+

(
n

2

)
b1t

2

by Lemma 7.6. Moreover, the graded ring homomorphism in (7.1)

(7.4) ῑ∗ : k[P]/(θ1, . . . , θn) = Heven
T (M ; k)/(π∗(H2(BT ; k)))→Heven(M ; k)

is surjective except in degree 2 as remarked at the beginning of this section.
Therefore, the identity (7.3) implies that ῑ∗ in (7.4) is an isomorphism except
in degrees 2 and 4. Finally, the rank of the cokernel of ῑ∗ in degree 2 is nb1(M)
by Lemma 6.2 and the rank of the kernel of ῑ∗ in degree 4 is

(
n
2

)
b1 by (7.3),

proving Proposition 7.1 over fields.
Now we explain the case k = Z. The map π∗ : H∗(BT ; k) → H∗

T (M ; k)
coincides with the map π∗ : H∗(BT ;Z) → H∗

T (M ;Z) tensored with k, since
both H∗(BT ;Z) and H∗

T (M ;Z) are Z-torsion free. In particular, the ideals
(π∗(H2(BT ; k))) and (π∗(H2(BT ;Z))⊗ k) = (π∗(H2(BT ;Z)))⊗ k coincide
in H∗

T (M ; k) ∼= H∗
T (M ;Z)⊗ k. Consider the exact sequence

(π∗(H2(BT ;Z))) → H∗
T (M ;Z) → H∗

T (M ;Z)/(π∗(H2(BT ;Z))) → 0

The functor −⊗ k is right exact, thus the sequence

(π∗(H2(BT ;Z)))⊗ k → H∗
T (M ;Z)⊗ k

→ H∗
T (M ;Z)/(π∗(H2(BT ;Z)))⊗ k → 0

is exact. These considerations show that

H∗
T (M ;Z)/(π∗(H2(BT ;Z)))⊗ k ∼= H∗

T (M ; k)/(π∗(H2(BT ; k)))

Finally, the map

ῑ∗ : H∗
T (M ; k)/(π∗(H2(BT ; k))) → H∗(M, k)
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coincides (up to isomorphism) with the map

ῑ∗ : H∗
T (M ;Z)/(π∗(H2(BT ;Z))) → H∗(M,Z),

tensored with k. The statement of Proposition 7.1 holds for any field thus
holds for Z. �

We conclude this section with some observations on the kernel of ῑ∗ in
degree 4 from the viewpoint of the Serre spectral sequence. Recall

H4
T (M) = F0,4 ⊃ F1,3 ⊃ F2,2 ⊃ F3,1 ⊃ F4,0 ⊃ F5,−1 = 0

where Fp,q/Fp+1,q−1 = Ep,q∞ . Since Ep,q
2 = Hp(BT )⊗Hq(M), we have

Ep,q∞ = 0 for p odd. Therefore,

rankH4
T (M) = rankE0,4

∞ + rankE2,2
∞ + rankE4,0

∞ ,

where we know E0,4∞ = E0,4
2 = H4(M) and E4,0∞ = E4,0

2 = H4(BT ). As for
E2,2∞ , we recall that

d2 : E
p,2
2 → Ep+2,1

2 is surjective for every p ≥ 0

by (6.7). Therefore, noting H3(M) = 0, one sees E2,2
3 = E2,2∞ . It follows that

rankE2,2
∞ = rankE2,2

2 − rankE4,1
2 = nb2 −

(
n+ 1

2

)
b1.

On the other hand, rankE0,2∞ = b2 − nb1 and there is a product map

ϕ : E0,2
∞ ⊗ E2,0

∞ → E2,2
∞ .

The image of this map lies in the ideal (π∗(H2(BT ))) and the rank of the
cokernel of this map is

nb2 −
(
n+ 1

2

)
b1 − n(b2 − nb1) =

(
n

2

)
b1.

Therefore

rankE0,4
∞ + rank cokerϕ = b4 +

(
n

2

)
b1

which agrees with the coefficient of t2 in F (Heven
T (M)/(π∗(H2(BT ))), t)

by (7.3). This suggests that the cokernel of ϕ could correspond to the kernel
of ῑ∗ in degree 4.
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8. 4-dimensional case

In this section, we explicitly describe the kernel of ῑ∗ in degree 4 when n = 2,
that is, whenM is of dimension 4. In this case, ∂(M/T ) is the union of b1 + 1
closed polygonal curves.

First we recall the case when b1 = 0. In this case, Heven
T (M) = H∗

T (M).
Let ∂(M/T ) be an m-gon and v1, . . . , vm be the primitive edge vectors in the
multi-fan of M , where vi and vi+1 span a 2-dimensional cone for every i =
1, 2, . . . ,m (see [13]). Note that vi ∈ H2(BT ) and we understand vm+1 = v1
and v0 = vm in this section. Since {vj , vj+1} is a basis of H2(BT ) for every
j, we have det(vj , vj+1) = ±1.

Let τi ∈ H2
T (M) be the equivariant Poincaré dual class to the character-

istic submanifold corresponding to vi. Then we have

(8.1) π∗(u) =
m∑
i=1

〈u, vi〉τi for every u ∈ H2(BT ),

where 〈 , 〉 denotes the natural pairing between cohomology and homology,
(see [11] for example). We multiply both sides in (8.1) by τi. Then, since
τiτj = 0 if vi and vj do not span a 2-dimensional cone, (8.1) turns into

0 = 〈u, vi−1〉τi−1τi + 〈u, vi〉τ2i + 〈u, vi+1〉τiτi+1(8.2)

in H∗
T (M)/(π∗(H2(BT ))).

If we take u with 〈u, vi〉 = 1, then (8.2) shows that τ2i can be expressed as a
linear combination of τi−1τi and τiτi+1. If we take u = det(vi, ), then u can
be regarded as an element of H2(BT ) because H2(BT ) = Hom(H2(BT ),Z).
Hence, (8.2) reduces to

(8.3) det(vi−1, vi)τi−1τi = det(vi, vi+1)τiτi+1 in H∗
T (M)/(π∗(H2(BT ))).

Finally we note that τiτi+1 maps to the cofundamental class of M up to
sign. We denote by μ ∈ H4

T (M) the element (either τi−1τi or −τi−1τi) which
maps to the cofundamental class of M .

When b1 ≥ 1, the above argument works for each component of ∂(M/T ).
In fact, according to [11], (8.1) holds in H∗

T (M) modulo H∗(BT )-torsion
but in our case there is no H∗(BT )-torsion in Heven

T (M) by Proposition 5.3.
Suppose that ∂(M/T ) consists of mj-gons for j = 1, 2, . . . , b1 + 1. To each
mj-gon, we have the class μj ∈ H4

T (M) (mentioned above as μ). Since μj

maps to the cofundamental class of M , μi − μj (i �= j) maps to zero in
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H4(M); so it is in the kernel of ῑ∗. The subgroup ofHeven
T (M)/(π∗(H2(BT )))

in degree 4 generated by μi − μj (i �= j) has the desired rank b1.

Figure 1: The origami template with four polygons.

Example 8.1. Take the 4-dimensional toric origami manifold M corre-
sponding to the origami template shown on Figure 1 (Example 3.15 of [5]).
TopologicallyM/T is homeomorphic to S1 × [0, 1] and the boundary ofM/T
as a manifold with corners consists of two closed polygonal curves, each hav-
ing 4 segments. The multi-fan of M is the union of two copies of the fan of
CP 1 × CP 1 with the product torus action. Indeed, if v1 and v2 are primitive
edge vectors in the fan of CP 1 × CP 1 which spans a 2-dimensional cone,
then the other primitive edge vectors v3, . . . , v8 in the multi-fan of M are

v3 = −v1, v4 = −v2, and vi = vi−4 for i = 5, . . . , 8

and the 2-dimensional cones in the multi-fan are

∠v1v2, ∠v2v3, ∠v3v4, ∠v4v1,
∠v5v6, ∠v6v7, ∠v7v8, ∠v8v5,

where ∠vv′ denotes the 2-dimensional cone spanned by vectors v and v′.
Note that

(8.4) τiτj = 0 if vi, vj do not span a 2-dimensional cone.

We have

(8.5) π∗(u) =
8∑

i=1

〈u, vi〉τi for every u ∈ H2(BT ).
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Let {v∗1, v∗2} be the dual basis of {v1, v2}. Taking u = v∗1 or v∗2 , we see that

(8.6) τ1 + τ5 = τ3 + τ7, τ2 + τ6 = τ4 + τ8 in H∗
T (M)/(π∗(H2(BT ))).

Since we applied (8.5) to the basis {v∗1, v∗2} of H2(BT ), there is no other
essentially new linear relation among τi’s.

Now, multiply the equations (8.6) by τi and use (8.4). Then we obtain

τ2i = 0 for every i,

(μ1 :=)τ1τ2 = τ2τ3 = τ3τ4 = τ4τ1,

(μ2 :=)τ5τ6 = τ6τ7 = τ7τ8 = τ8τ5 in H∗
T (M)/(π∗(H2(BT ))).

Our argument shows that these together with (8.4) are the only degree two
relations among τi’s in H∗

T (M)/(π∗(H2(BT ))). The kernel of

ῑ∗ : Heven
T (M ;Q)/(π∗(H2(BT ;Q))) → Heven(M ;Q)

in degree 4 is spanned by μ1 − μ2.

9. On the cokernel of ῑ∗ in degree 2

In this section we describe the elements of H2(M) that do not lie in the
image of the map (7.4). In fact, we describe geometrically the homology
(2n− 2)-cycles, which are Poincaré dual classes to the elements in H2(M).
A very similar technique was used in [15] to calculate the homology of 4-
dimensional torus manifolds whose orbit spaces are polygons with holes. In
contrast to [15] we do not introduce particular cell structures on M , because
this approach becomes more complicated for higher dimensions.

Denote the orbit space M/T by Q, so Q is a manifold with corners and
acyclic proper faces, and Q is homotopy equivalent to a wedge of b1 circles.
Also let q : M → Q denote the projection to the orbit space, and Γi be the
characteristic subgroup, i.e. the stabilizer of orbits in F ◦

i ⊂ Q. For each face
G of Q, we denote by ΓG the stabilizer subgroup of orbits x ∈ G◦. Thus
ΓG =

∏
i Γi ⊂ T , where the product is taken over all i such that G ⊆ Fi.

The origami manifold M is homeomorphic to the model Q× T/ ∼, where
(x1, t1) ∼ (x2, t2) if x1 = x2 ∈ G◦ and t1t

−1
2 ∈ ΓG for some face G ⊂ Q. This

fact is a consequence of a general result of the work [19]. In the following we
identify M with the model Q× T/ ∼.

Consider a homology cycle σ ∈ Hn−1(Q, ∂Q). Note that σ is Poincare–
Lefschetz dual to some element of H1(Q) ∼= H1(

∨
b1
S1) ∼= Zb1 . Let σ be rep-

resented by a pseudomanifold ξ : (L, ∂L) → (Q, ∂Q), where dimL = n− 1,
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and let [L] ∈ Hn−1(L, ∂L) denote the fundamental cycle, so that ξ∗([L]) = σ.
We assume that ξ(L \ ∂L) ⊂ Q \ ∂Q. Moreover, since every face of ∂Q is
acyclic, we may assume that ξ(∂L) is contained in ∂Q(n−2), — the codi-
mension 2 skeleton of Q. A pseudomanifold (L, ∂L) defines a collection of
(2n− 2)-cycles in homology of M , one for each codimension-one subtorus of
T , by the following construction.

Construction. First fix a coordinate splitting of the torus, T =
∏

i∈[n] T
1
i

in which the orientation of each T 1
i is arbitrary but fixed. For each j ∈ [n]

consider the subtorus T
̂j = T [n]\j =

∏
i∈[n]\j T

1
i , and let κ : T

̂j → T be the in-
clusion map. Given a pseudomanifold (L, ∂L) as in the previous paragraph,
consider the space L× T

̂j and the quotient construction (L× T
̂j)/ ∼∗, where

the identification ∼∗ is naturally induced from ∼ by the map ξ. Since
ξ(∂L) ⊂ ∂Q(n−2), the space (∂L× T

̂j)/ ∼∗ has dimension at most 2n− 4.
Thus (L× T

̂j)/ ∼∗ has the fundamental cycle VL,j . Indeed, there is a dia-
gram:
(9.1)

Hn−1 (L, ∂L)⊗Hn−1(T̂j)

∼= (Kunneth)
��

0 H2n−2(L× T
̂j , ∂L× T

̂j)

∼= (excision)
��

0

H2n−2(
∂L×T

̂j

∼∗
) �� H2n−2(

L×T
̂j

∼∗
)

∼= �� H2n−2(
L×T

̂j

∼∗
,
∂L×T

̂j

∼∗
) �� H2n−3(

∂L×T
̂j

∼∗
)

Let T
̂j be oriented by the splitting T ∼= T

̂j × T 1
j . Given such an orientation,

there exists the distinguished generator Ωj ∈ Hn−1(T̂j). Then the fundamen-
tal cycle VL,j ∈ H2n−2((L× T

̂j)/ ∼∗) is defined as the image of [L]⊗ Ωj ∈
Hn−1(L, ∂L)⊗Hn−1(T̂j) under the isomorphisms of diagram (9.1). The in-
duced map

ζL,j : (L× T
̂j)/ ∼∗→ (Q× T

̂j)/ ∼↪→ (Q× T )/ ∼= M

determines the element xL,j = (ζL,j)∗(VL,j) ∈ H2n−2(M).

Proposition 9.1. Let {σ1, . . . , σb1} be a basis of Hn−1(Q, ∂Q), and let
L1, . . . , Lb1 be pseudomanifolds representing these cycles and satisfying
the restrictions stated above. Consider the set of homology classes {xL,j} ⊂
H2n−2(M), where L runs over the set {L1, . . . , Lb1} and j runs over [n].
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Then the set of Poincare dual classes of xL,j is a basis of the cokernel
H2(M)/ι∗(H2

T (M)).

Proof. Consider disjoint circles S1, . . . , Sb1 ⊂ Q◦ whose corresponding ho-
mology classes [S1], . . . , [Sb1 ] ∈ H1(Q) are dual to σ1, . . . , σb1 . Thus for the
intersection numbers we have [Si] ∩ σk = δik. Consider 2-dimensional sub-
manifolds of the form Si × T 1

l ⊂ M , where l ∈ [n]. They lie in q−1(Q◦) ⊂ M .
Let [Si × T 1

l ] ∈ H2(M) be the homology classes represented by these sub-
manifolds. Then

(9.2) [Si × T 1
l ] ∩ xLk,j = δikδlj ,

since all the intersections lie in q−1(Q◦) = Q◦ × T .
The equivariant cycles of M sit in q−1(∂Q). Thus the intersection of

Si × T 1
l ⊂ q−1(Q◦) with any equivariant cycle is empty. Nondegenerate pair-

ing (9.2) shows that the set {xL,j} is linearly independent modulo equivari-
ant cycles. Its cardinality is precisely nb1 and the statement follows from
Lemma 6.2. �

Remark 9.2. The element xL,j ∈ H2n−2(M) depends on the represent-
ing pseudomanifold L, not only on its homology class in Hn−1(Q, ∂Q).
The classes corresponding to different representing pseudomanifolds are con-
nected by linear relations involving characteristic submanifolds. We describe
these relations next.

At first let us introduce orientations on the objects under consideration.
We fix an orientation of the orbit space Q. This defines an orientation of
each facet (Fi is oriented by TFi ⊕ ν ∼= TQ, where the inward normal vector
of the normal bundle ν is set to be positive). Since the torus T is oriented,
we have a distinguished orientation of M = Q× T/ ∼. Recall that Γi is the
characteristic subgroup corresponding to a facet Fi ⊂ Q. Since the action
is locally standard, Γi is a 1-dimensional connected subgroup of T . Let us
fix orientations of all characteristic subgroups (this choice of orientations is
usually called an omniorientation). Then every Γi can be written as

(9.3) Γi = {(tλi,1 , . . . , tλi,n) ∈ T | t ∈ T 1},

where (λi,1, . . . , λi,n) ∈ Zn is a uniquely determined primitive integral vector.
Let us orient every quotient torus T/Γi by the following construction.

For each Γi choose a codimension 1 subtorus Υi ⊂ T such that the product
map Υi × Γi → T is an isomorphism. The orientations of T and Γi induce
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an orientation of Υi. The quotient map T → T/Γi induces an isomorphism
between Υi and T/Γi providing the quotient group with an orientation. The
orientation of T/Γi defined this way does not depend on the choice of the
auxiliary subgroup Υi.

Finally, the orientations on Fi and T/Γi give an orientation of the char-
acteristic submanifold Mi = q−1(F ). This follows from the fact that Mi con-
tains an open dense subset q−1(F ◦

i ) = F ◦
i × (T/Γi).

Construction. Let Fi be a facet of Q, and [Fi] ∈ Hn−1(Fi, ∂Fi) its funda-
mental cycle. The cycles [Fi] form a basis of

Hn−1(∂Q, ∂Q(n−2)) =
⊕
facets

Hn−1(Fi, ∂Fi).

Let ξε : (Lε, ∂Lε) → (Q, ∂Q), ε = 1, 2, be two pseudomanifolds representing
the same element σ ∈ Hn−1(Q, ∂Q). Then there exists a pseudomanifold
(N, ∂N) of dimension n and a map η : N → Q such that L1 and L2 are
disjoint submanifolds of ∂N , η|Lε

= ξε for ε = 1, 2, and η(∂N \ (L◦
1 � L◦

2)) ⊂
∂Q (this follows from the geometrical definition of homology, see [16, App.
A.2]). The skeletal stratification of Q induces a stratification on N . The
restriction of the map η sends ∂N (n−2) to ∂Q(n−2). Let δ be the connecting
homomorphism

δ : Hn(N, ∂N) → Hn−1(∂N, ∂N (n−2))

in the long exact sequence of the triple (N, ∂N, ∂N (n−2)). Consider the se-
quence of homomorphisms

Hn(N, ∂N)
δ−→ Hn−1(∂N, ∂N (n−2))

∼= Hn−1(L1, ∂L1)⊕Hn−1(L2, ∂L2)⊕Hn−1(∂N \ (L◦
1 ∪ L◦

2), ∂N
(n−2))

id⊕ id⊕η∗−−−−−−→ Hn−1(L1, ∂L1)⊕Hn−1(L2, ∂L2)⊕Hn−1(∂Q, ∂Q(n−2)).

This sequence of homomorphisms sends the fundamental cycle [N ] ∈
Hn(N, ∂N) to the element

(9.4)
(
[L1],−[L2],

∑
i
αi[Fi]

)
of the group Hn−1(L1, ∂L1)⊕Hn−1(L2, ∂L2)⊕Hn−1(∂Q, ∂Q(n−2)), for some
coefficients αi ∈ Z.
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Proposition 9.3. If L1 and L2 are two pseudomanifolds representing a
class σ ∈ Hn−1(Q, ∂Q), then for each j ∈ [n]

(9.5) xL1,j − xL2,j +
∑
facets

αiλi,j [Mi] = 0 in H2n−2(M).

Here Mi is the characteristic submanifold of M corresponding to Fi, the
numbers αi are given by (9.4), and the numbers λi,j are given by (9.3).

Proof. Choose a relative pseudomanifold bordism N between L1 and L2 and
consider the space (N × T

̂j)/ ∼∗. Here ∼∗ is the equivalence relation induced
from ∼ by the map η. We have a map (η × κ)/ ∼ : (N × T

̂j)/ ∼∗→ M . By
the diagram chase, similar to (9.1), the space (N × T

̂j)/ ∼∗ is a (2n− 1)-
pseudomanifold with boundary. Its boundary represents the element (9.5).
Thus this element vanishes in homology. We only need to prove the following
technical lemma.

Lemma 9.4. Let Fi be a facet, and let Γi be its characteristic subgroup
encoded by the vector (λi,1, . . . , λi,1) ∈ Zn for j ∈ [n]. Let Ωj ∈ Hn−1(T̂j) and
Φi ∈ Hn−1(T/Γi) be the fundamental classes (in the orientations introduced
previously). Then the composite map T

̂j ↪→ T � T/Γi sends Ωj to λi,jΦi.

Proof. Let {es | s ∈ [n]} be the positive basis of H1(T ) corresponding to the
splitting T =

∏
s T

1
s , and let {fr | r ∈ [n]} be a positive basis of H1(T ) such

that fn = (λi,1, . . . , λi,n). Thus Ωj = (−1)n−je1 ∧ · · · ∧ êj ∧ · · · ∧ en. Let D
be the matrix of basis change, es =

∑n
r=1D

r
sfr, and let C = D−1. The ele-

ment Ωj maps to

(−1)n−j det(Dr
s)r∈{1,...,n−1}

s∈{1,...,ĵ,...,n}
which is equal to the element Cj

n by Cramer’s rule. Cj
n is the jth coordinate

of fn in the basis {es}. Thus, by construction, Cj
n = λi,j . �

This proves the proposition. �
Proposition 9.3 gives the idea how to describe the multiplication in

H∗(M). Equivalently, we need to describe the intersections of cycles in
H∗(M). Intersections of equivariant cycles are known — they are encoded
by the face ring of Q. To describe the intersections of additional cycles xL,j
sometimes we can do the following:

(1) Let MF be the face submanifold of M , corresponding to the face
F ⊂ Q. If F ∩ ∂L = ∅, then [MF ] ∩ xL,j = 0 in the homology of M . Oth-
erwise, in many cases we can choose a different representative L′ of the
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same homology class as L with the property ∂L′ ∩ F = 0. Then, by Propo-
sition 9.3,

[MF ] ∩ xL,j = [MF ] ∩ xL′,j + [MF ] ∩
∑

facets

αiλi,j [Mi]

=
∑

facets

αiλi,j [MF ] ∩ [Mi]

which can be computed using relations in k[Q]/(θ1, . . . , θn).
(2) To compute the intersection of two elements of the form xL1,j1 and

xL2,j2 sometimes we can use the same trick: find a pseudomanifold L′
1 which

does not intersect L2 and replace xL1,j1 by xL′
1,j1 +

∑
i αiλi,j1 [Mi]. Then the

intersection xL′
1,j1 ∩ xL2,j2 vanishes and intersections of xL2,j2 with [Mi] are

computed using (1).

Remark 9.5. This general idea may not work in particular cases. Fig-
ure 2 provides an example of Q such that every pseudomanifold L with
∂L ⊂ ∂Q(0), representing the generator of H1(Q, ∂Q), intersects every facet
of Q. Unfortunately, such situations may appear as realizations of origami
templates. The picture on the right shows an origami template, whose geo-
metric realization is the manifold with corners shown on the left.

L

Figure 2: Manifold with corners Q for which the products of extra elements
cannot be calculated using linear relations of Proposition 9.3.

10. Some observation on non-acyclic cases

The face acyclicity condition we assumed so far is not preserved under taking
the product with a symplectic toric manifold N , but every face of codimen-
sion ≥ 1

2 dimN + 1 is acyclic. Motivated by this observation, we will make
the following assumption on our toric origami manifold M of dimension 2n:
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every face of M/T of codimension ≥ r is acyclic for some inte-
ger r.

Note that r = 1 in the previous sections. Under the above assumption, the
arguments in Section 3 work to some extent in a straightforward way. The
main point is that Lemma 3.6 can be generalized as follows.

Lemma 10.1. The homomorphism H2j(M̃)→H2j(Z+ ∪ Z−) induced from
the inclusion is surjective for j ≥ r.

Using this lemma, we see that Lemma 3.4 turns into the following.

Lemma 10.2. We have the relations

r∑
i=1

(b2i(M̃)− b2i−1(M̃)) =

r∑
i=1

(b2i(M)− b2i−1(M)) + b2r(B)

b2i(M̃)− b2i−1(M̃) = b2i(M)− b2i−1(M)

+ b2i(B)− b2i−2(B) for i ≥ r + 1.

Combining Lemma 10.2 with Lemma 3.3, Lemma 3.5 turns into the
following.

Lemma 10.3. We have the relations

b1(M
′) = b1(M)− 1, b2r(M

′) = b2r(M) + b2r−2(B) + b2r(B),

b2i+1(M
′) = b2i+1(M) for r ≤ i ≤ n− r − 1.

Finally, Theorem 3.7 is generalized as follows.

Theorem 10.4. Let M be an orientable toric origami manifold of dimen-
sion 2n (n ≥ 2) such that every face of M/T of codimension ≥ r is acyclic.
Then

b2i+1(M) = 0 for r ≤ i ≤ n− r − 1.

Moreover, if M ′ and B are as above, then

b1(M
′) = b1(M)−1 (hence b2n−1(M

′) = b2n−1(M)−1 by Poincaré duality),

b2i(M
′) = b2i(M) + b2i(B) + b2i−2(B) for r ≤ i ≤ n− r.
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