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Dirac spectral flow on contact three

manifolds I: Eigensection estimates

and spectral asymmetry

Chung-Jun Tsai

Let Y be a compact, oriented 3-manifold with a contact form a and
a metric ds2. Suppose that F → Y is a principal bundle with struc-
ture group U(2) = SU(2)×{±1} S

1 such that F/S1 is the principal
SO(3) bundle of orthonormal frames for TY . A unitary connec-
tion A0 on the Hermitian line bundle F ×det U(2) C determines a
self-adjoint Dirac operator D0 on the C

2-bundle F ×U(2) C
2.

The contact form a can be used to perturb the connection A0

by A0 − ira. This associates a one parameter family of Dirac op-
erators Dr for r ≥ 0. When r � 1, we establish a sharp sup-norm
estimate on the eigensections of Dr with small eigenvalues. The
sup-norm estimate can be applied to study the asymptotic behav-
ior of the spectral flow from D0 to Dr. In particular, it implies that
the subleading order term of the spectral flow is strictly smaller
than O(r

3
2 ). We also relate the η-invariant of Dr to certain spec-

tral asymmetry function involving only the small eigenvalues of Dr.
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1. Introduction

In Taubes’s proof of the Weinstein conjecture [16], a key ingredient is the
spectral flow estimate for a one parameter family of Dirac operators. The
spectral flow estimate has a natural generalization [17] to any odd dimen-
sional manifolds. Although being used to prove the Weinstein conjecture,
the spectral flow estimate is established in a general setting. When the one
parameter family of Dirac operators is constructed from a contact form, it
is interesting to see how its spectral flow function and the zero eigensections
are related to the geometry of the contact form. This paper is the first step
toward the study of this question.

1.1. Spin-c Dirac operator in three dimension

Suppose that Y is a compact, oriented 3-manifold with a Riemannian metric
ds2. Let Fr be the principal SO(3) bundle of oriented, orthonormal frames.
A spin-c structure on Y is an equivalent class of lifting of Fr to a principal
SpinC(3) = U(2) bundle. In dimension three, the spin-c structures can be
constructed explicitly. Since any compact oriented 3-manifold is paralleliz-
able, Fr can be identified with Y × SO(3). It suggests an obvious spin-c
structure, the trivial U(2) bundle F = Y ×U(2). Let U → Y be a principal
S1 bundle. The principal bundle F ×S1 U is a different spin-c structure if U
is non-trivial, where S1 acts on U(2) as its center. This construction iden-
tifies the set of spin-c structures on Y with the set of equivalent classes of
principal S1 bundles. Note that the equivalent classes of S1 bundles is an
affine space isomorphic to H2(Y ;Z).

Let S be the associated bundle of F by the fundamental representation
of U(2) on C2. It is called the spinor bundle. The Levi-Civita connection
on Fr and a unitary connection A on det(S) = U ×S1 C together induce a
unitary connection on S. Denote the connection by ∇A.

The tangent bundle TY admits an action on S defined as follows. Identify
R3 with 2× 2 skew Hermitian matrices. The group U(2) acts on R3 by
x �→ gxg∗ for any x ∈ R3 and g ∈ U(2). The associated bundle of F of this
representation is exactly the tangent bundle TY . The matrix action of a
2× 2 skew Hermitian matrix on C2 induces a bundle map cl : TY × S→ S.
This map is called the Clifford action. The Dirac operator DA associated to
∇A is the composition of the following maps

C∞(Y ; S)
∇A−→ C∞(Y ;T ∗Y ⊗ S)

metric dual−→ C∞(Y ;TY ⊗ S)
cl−→ C∞(Y ; S).
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The Dirac operator is self-adjoint with respect to the L2-inner product. It
has discrete spectrum and each eigenvalue has finite multiplicity. Moreover,
its eigenvalues is unbounded from above and below.

There are two different conventions for the Clifford action. The conven-
tion in this paper is determined by what follows: suppose that {e1, e2, e3}
is an oriented, orthonormal basis of tangent vectors, then cl(e1) cl(e2) =
− cl(e3).

1.2. Dirac spectral flow

Suppose that S is a spinor bundle. Let A0 and A1 be unitary connections
on det(S). Choose a path of unitary connections {As}s∈[0,1] on det(S) which
starts at A0 and ends at A1. This path associates a path of Dirac operators
from DA0

to DA1
. The Dirac spectral flow is the algebraic count of the

zero crossings of eigenvalues: a zero crossing contributes to the count with
+1 if the eigenvalue crosses zero from a negative to a positive value as s
increases, and count with −1 if the eigenvalue crosses zero from a positive
to a negative value as s increases. For a generic choice of the path {As}s∈[0,1],
only these two cases occur. This algebraic count is the Dirac spectral flow.
The complete definition of the spectral flow can be found in [3, §7] and [16,
§5.1].

Atiyah, Patodi and Singer [3, p.95] observed that the spectral flow func-
tion is equal to the index of certain Dirac operator on [0, 1]× Y with ap-
propriate boundary conditions. They also proved that this index [1, (4.3)]
is path independent [3, p.89]. Therefore, the spectral flow function depends
only on the ordered pair (A0, A1), but not on the path {As}s∈[0,1].

Given a real-valued 1-form a, we can consider the spectral flow from A0

to A0 − ira for any r ≥ 1. The spectral flow can be thought as a function
of r, which we denote by fa(A0, r). In [16, §5] and [17], Taubes studied the
asymptotic behavior of fa(A0, r) as r →∞. He proved:

Theorem A. ([16, Proposition 5.5]) There exist a universal constant δ ∈
(0, 12) and a constant c1 determined by ds2 and A0 such that∣∣∣∣fa(A0, r)− r2

32π2

∫
Y
a ∧ da

∣∣∣∣ ≤ c1r
3

2
+δ

for any real-valued 1-form a with ‖a‖C3 ≤ 1 and any r ≥ c1.

This theorem specifies the leading order term of the spectral flow func-
tion, and gives a bound on the subleading order term.
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1.3. Spectral flow on contact three manifolds

A contact form a on an oriented three manifold is a 1-form such that a ∧
da > 0. An adapted metric on a contact three manifold is a Riemannian
metric so that |a| = 1 and da = 2 ∗ a, where ∗ is the Hodge star operator.
Chern and Hamilton [7] proved that such a metric always exists.

Suppose that (Y, a) is a contact three manifold, and ds2 is an adapted
metric. Suppose that DA0

is a spin-c Dirac operator on Y . The zero eigen-
sections of the Dirac operator DA0−ira have the following properties when
r � 1.

• The Reeb vector field is the unique vector field v such that da(v, ·) = 0
and a(v) = 1. The covariant derivative of the zero eigensection along
v is close to the multiplication by ir/2. Thus, its magnitude does not
change much along the Reeb vector field v.

• The contact hyperplane (or the contact structure) is the two dimen-
sional distribution in TY defined by ker(a). On the contact hyper-
planes, the zero eigensections almost satisfy a Cauchy–Riemann equa-
tion.

The precise statements will appear in §3. These properties suggest that
instead of the Riemannian geometry in three dimension, the scenery here is
more like the complex geometry in one dimension. It motivates the following
questions.

Question. Suppose that (Y, a) is a contact three manifold with an adapted
metric ds2.

(i) Is the subleading order term of fa(A0, r) of order r instead of order
r

3

2
+δ? If this being the case, what is the coefficient of the subleading

order term, and what is its geometric meaning?

(ii) What is the relation between the zero locus of the zero eigensection of
DA0−ira and the behavior of the Reeb vector field as r →∞?

1.4. Main results

The main result of this paper is that the subleading order term of the spectral
flow function is of O(r

3

2 ). It sort of suggests that the answer to Question (i)
is affirmative.



Dirac spectral flow on contact 3-manifolds I 545

Theorem B (Theorem 5.8(ii)). Suppose that (Y, a) is a contact three
manifold with an adapted metric ds2. Suppose that DA0

is a spin-c Dirac
operator. Then, there exists a constant c2 determined by a, ds2 and A0 such
that ∣∣∣∣fa(A0, r)− r2

32π2

∫
Y
a ∧ da

∣∣∣∣ ≤ c2r
3

2 (log r)−
1

2 for any r ≥ c2.

Recently, Savale [14] proved that the subleading order term is of O(r
3

2 )
for any 1-form a, and improved Theorem A in a greater generality. In this
regards, Theorem B provides a more precise order when a is a contact form.
When a is a contact form, the subleading order term is expected to be of
O(r). In the sequel of this paper [19], we will make a further study on this
question.

There are two main ingredients in the proof of Theorem B. The following
theorem is the first ingredient. It investigates the eigensections of DA0−ira

with small eigenvalues.

Theorem C (Theorem 3.1). Suppose that (Y, a) is a contact three mani-
fold with an adapted metric ds2. Suppose that DA0

is a spin-c Dirac operator.
For any positive r and λ, let

V(r, λ) = span
{
ψ ∈ C∞(Y ; S)

∣∣ DA0−iraψ = νψ, for some ν with |ν| ≤ λ
}
.

Then, there exists a constant c3 determined by a, ds2 and A0 such that

sup
Y
|ψ|2 ≤ c3rλ

∫
Y
|ψ|2

for any r ≥ c3, 1 ≤ λ ≤ 1
2r

1

2 and ψ ∈ V(r, λ).

This theorem implies (Corollary 3.3(i)) that

dimV(r, λ) ≤ c3rλ.(1.1)

It provides another evidence that DA0−ira behaves more like the complex
geometry in one dimension. This estimate (1.1) was also obtained by Brum-
melhuis, Paul and Uribe [5] in a more general setting, by using the tech-
niques of microlocal analysis. The proof of Theorem C says more about the
behavior of ψ along the direction of the Reeb vector field and on the contact
hyperplane. The information shall be useful if one wants to understand more
about the zero locus of ψ.
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With the help of the heat kernel argument, this dimension estimate (1.1)
leads to the following estimate on the spectral flow function. It is the second
ingredient in the proof of Theorem B.

Theorem D (Theorem 5.8(i)). Suppose that (Y, a) is a contact three
manifold with an adapted metric ds2. Suppose that DA0

is a spin-c Dirac
operator. Then, there exists a constant c4 determined by a, ds2 and A0 such
that

∣∣ fa(A0, r)− r2

32π2

∫
Y
a ∧ da− η̇(A0 − ira)

∣∣ ≤ c4r(log r)
9

2

for any r ≥ c4. The function η̇(A0 − ira) is defined by

(
80

π

) 1

2
(
log r

r

) 1

2

⎛
⎝∑

ψ∈V+
r

∫ 1

3
r

1
2

λψ

e−20(r−1 log r)u2

du−
∑
ψ∈V−

r

∫ λψ

− 1

3
r

1
2

e−20(r−1 log r)u2

du

⎞
⎠

where V+
r consists of orthonormal eigensetions of DA0−ira whose eigenvalue

belongs to (0, 13r
1

2 ), V−
r consists of orthonormal eigensetions of DA0−ira

whose eigenvalue belongs to (−1
3r

1

2 , 0), and λψ is the corresponding eigen-
value of ψ. (The constants 1

3 and 20 are not crucial. They are just convenient
choices.)

Theorem D says that we only need to focus on the small eigenvalues of
DA0−ira in order to study the spectral flow from A0 to A0 − ira. With the
help of (1.1), both summations of η̇(A0 − ira) can be shown to be smaller
than c5r

3

2 (log r)−
1

2 . That is to say,

(
80

π

) 1

2

r−
1

2 (log r)
1

2

(∣∣∣∣∣
∑
ψ∈V+

r

∫ 1

3
r

1
2

λψ

e−20(r−1 log r)u2

du

∣∣∣∣∣
+

∣∣∣∣∣
∑
ψ∈V−

r

∫ λψ

− 1

3
r

1
2

e−20(r−1 log r)u2

du

∣∣∣∣∣
)
≤ 2c5r

3

2 (log r)−
1

2 ,

and Theorem B follows.
If the eigenvalues of V+

r ∪ V−
r are ‘uniformly distributed’, one can image

that η̇(A0 − ira) is actually much smaller than r
3

2 (log r)−
1

2 due to cancel-
lation. In the sequel of this paper [19], the ‘uniformly distributed’ property
will be justified for certain types of contact forms in each isotopy class of
contact structures.
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1.5. Spectral asymmetry

By combining with the results of Atiyah, Patodi and Singer, Theorem D has
an interesting corollary. As a background for the corollary, consider the four
manifoldX = [0, r]× Y . The spinor bundle S→ Y can naturally be regarded
as a bundle over X. Define the operator D : C∞(X; S)→ C∞(X; S) by

D =
∂

∂s
+DA0−isa

where s is the parameter for the interval [0, r]. With appropriate bound-
ary conditions ([1, (2.3)]), the operator D is a Fredholm operator from
L2
1(X, S)→ L2(X, S). As observed by [3, p.95], the index of D is equal to

the spectral flow from A0 to A0 − ira. Meanwhile, [1, (4.3) and pp. 59–60]
gives a formula for the index of D. Their result in the present setting says
that

fa(A0, r) =
r2

32π2

∫
Y
a ∧ da+

r

16π2

∫
Y
a ∧ (iFA0

)(1.2)

+
1

2
(h(A0 − ira) + η(A0 − ira)− h(A0)− η(A0))

where h(A) is the dimension of ker(DA) and η(A) is the spectral asymmetry
function of DA. This spectral asymmetry function is defined as follows: it is
the value at z = 0 of the analytic continuation to C of

∑
ψ

sign(λψ)|λψ|−z defined on where Re(z)� 1.

The summation is indexed by an orthonormal eigenbasis of DA with nonzero
eigenvalue, and λψ is the eigenvalue of ψ. Theorem 3.10 of [1] asserts that
the analytic continuation is finite at z = 0. One can also see [13, §1] for a
nice survey on the η-invariant and the formula (1.2).

Roughly speaking, η(A) measures the difference between the total num-
ber of positive eigenvalues and the total number of negative eigenvalues. As
pointed out by Taubes [17, Corollary 3], Theorem A and formula (1.2) imply
that the subleading order term of the spectral flow function is the same as

1

2

(
h(A0 − ira) + η(A0 − ira)

)
up to an O(r) difference.
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Let (Y, a) be a contact three manifold with an adapted metric ds2. The
dimension estimate (1.1) implies that

h(A0 − ira) ≤ c3r.

It follows from Theorem D and (1.2) that there exists an r-independent
constant c6 such that

∣∣η(A0 − ira)− 2η̇(A0 − ira)
∣∣ ≤ c6r(log r)

9

2(1.3)

for any r ≥ c6. This relates the full spectral asymmetry to the spectral asym-
metry involving only small eigenvalues. It would be interesting if one can
say something about the behavior of η(A0 − ira) as r →∞ without using
the spectral flow.

Remark 1.1. The constants c(·) in this paper are always independent of r.
In other words, they only depend on the contact form a, the metric ds2 and
the connection A0. The subscript is simply to indicate that these constants
might increase/decrease after each step. The subscript will be returned to 1
at the beginning of each section.

1.6. Contents of this paper

This paper is divided into three parts.
§2 and §3 are devoted to the proof of Theorem C. The Clifford action of

the contact form on S is skew-Hermitian. It induces the eigenbundle splitting
S = E1 ⊕ E2, where cl(a) acts as i|a| and −i|a|, respectively. With respect
to this splitting, a section ψ ∈ C∞(Y ; S) can be written as (α, β). There are
three observations based on this splitting. The first observation is that β
is much smaller than α. Secondly, on a small disk transverse to the Reeb
vector field, the E2-component of the Dirac equation reads

(∂x + i∂y)(α) = smaller terms such as β

where x and y are local coordinate on the disk. Lastly, the E1-component
of the Dirac equation implies that the integral of |α|2 over a transverse disk
is bounded by its integral over Y . That is to say, the integral of |α|2 do not
concentrate on some particular disk. With this understood, the strategy is
to estimate the sup-norm of β and other smaller terms by the sup-norm of
α. Then apply the Cauchy integral formula to estimate the sup-norm of α.
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In §4 we apply the parametrix technique to study the heat kernel for
the square of the Dirac operator DA0−ira. With an a priori estimate on the
heat kernel, the parametrix argument generates a small time expansion of
the heat kernel. The accuracy of the output relies on the original a priori
estimate. Proposition 4.1 supplies such an a priori estimate. It uses Theorem
C to obtain a L2 estimate (in space) of the heat kernel.

In §5 we discuss on the spectral flow from DA0
to DA0−ira. Let Er be the

following eigenvalue configuration:

Er =
{
(s, λ)

∣∣ 0 < s < r, λ ∈ spec(DA0−isa), and |λ| < 1

3
r

1

2

}
.

We assign a displacement function Ψ to Er. The displacement Ψ(Er) is closely
related to the spectral flow fa(A0, r). Its behavior for r � 1 can be computed
by the heat kernel expansion. The main purpose of §5 is to prove Theorem
B and Theorem D by this displacement Ψ(Er).

Acknowledgement. The author would like to thank Cliff Taubes for the
support and for helpful comments on an earlier draft of this paper. He would
also like to thank the anonymous referees for providing useful references.
This research is supported in part by Taiwan MOST grant 102-2115-M-002-
014-MY2.

2. Dirac operator on contact three manifolds

Suppose that (Y, a) is a contact three manifold. A metric ds2 is called confor-
mally adapted if ds2 = Ω2d̊s2 for some adapted metric d̊s2 and some smooth
function Ω with

9

10
≤ Ω ≤ 10

9
.

The function Ω is called the conformal factor. The particular bounds chosen
here are just convenient normalizations; any other fixed bounds would do
the job. This notion is a minor generalization of an adapted metric. It is
designed to handle some technical issue in [19, §4].

2.1. Spectral flow and conformal change of the metric

Many spectral properties of a Dirac operator are invariant under conformal
changes of metric. The main purpose of this subsection is to review some
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of them. Denote by DA the associated Dirac operator using the metric ds2,
and by D̊A the associated Dirac operator using the metric d̊s2.

In [8, §1.4] Hitchin found the transformation formula between DA and
D̊A, which is explained as follows. The spinor bundles using ds2 and d̊s2 can
be thought as the same bundle with the same Hermitian metric. With this
understood, the Clifford actions of TY are related by

cl(u) = Ω c̊l(u)(2.1)

for any tangent vector u. The Dirac operators are related by

DAψ = Ω−n+1

2 D̊A(Ω
n−1

2 ψ) = Ω−2D̊A(Ωψ)(2.2)

for any ψ ∈ C∞(Y ; S). The formula in the middle wors for any dimension
n. It follows that the dimension of ker(DA) is a conformal invariant ([8,
Proposition 1.3]).

In [8], Hitchin did the computation for the trivial spin-c structure (or the
spin structure). Since cl(w) = Ω−1c̊l(w) for any 1-form w, the formula (2.2)
holds for any spin-c Dirac operator as well. It can be seen from the local
expression of the Dirac operator ([12, (3.3)]).

Besides the dimension of the kernel, the spectral flow function fa(A0, r)
is also a conformal invariant. A näıve reason is that the spectral flow is
constructed by counting the dimension of the kernel of associated Dirac
operators.

According to (1.2), the conformal invariance of the spectral flow function
fa(A0, r) follows from the conformal invariance of the η-invariant. The latter
property is proved by Atiyah, Patodi and Singer [2, pp. 420–421] for cer-
tain Dirac operator, and by Rosenberg [15, Theorem 3.8] for general Dirac
operators.

2.2. Canonical spin-c structure of a contact form

As described in [16, §2.1], the spin-c structures and spin-c Dirac operators
can be seen more geometrically with the help of the contact form. Suppose
that ds2 = Ω2d̊s2 is a conformally adapted metric.

Since the Reeb vector field v is nowhere vanishing, it induces the splitting
S = E1 ⊕ E2 of any spinor bundle into eigenbundles for cl(v). The conven-
tion here is that cl(v) acts as i|v| on E1 and as −i|v| on E2. There is a
canonical spin-c structure determined by the contact form a, that where
the bundle E1 is the trivial bundle. The splitting of the canonical spinor
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bundle is written as C⊕K−1, where K−1 is isomorphic as an SO(2) bundle
to ker(a) with the orientation given by da. To be more precise, let J be the
rotation counterclockwisely on ker(a) by 90 degree. The rotation operator J
is determined by ds2 and da. The local sections of K−1 consists of u− iJ(u)
for any u ∈ ker(a).

The conformally adapted metric determines a canonical connection on
the canonical spinor bundle C⊕K−1. Let 1 be the unit-normed, trivializing
section of C. The canonical connection is the unique spin-c connection such
that the associated Dirac operator annihilates the section Ω−11. The proof
for its existence and uniqueness can be found in [9, Lemma 10.1].

Remark 2.1. The Dirac operator of the canonical connection satisfies the
transformation rule (2.2). Let C⊕ K̊−1 be the canonical spinor bundle us-
ing d̊s2. The metrics ds2 and d̊s2 define the same rotation operator J . It
follows that the isometric identification of the canonical spinors bundles is
characterized by

C⊕K−1 −→ C⊕ K̊−1

(1, u− iJ(u)) �→ (
1,Ω(u− iJ(u))

) .

Since the canonical connection is uniquely determined by the annihilation
property, the canonical connections of ds2 must become the canonical con-
nection of d̊s2 under the above identification.

Any two spin-c structures differ by the tensor product with a complex
line bundle [11, Appendix D]. The specification of a canonical spin-c struc-
ture allows us to write any spinor bundle as

S = E ⊕ EK−1

for some Hermitian line bundle E → Y . Its determinant bundle det(S) is
E2K−1. Let Acan be the connection on K−1 = det(C⊕K−1) that induces
the canonical connection. Any connection on E2K−1 can be written as A0 =
Acan + 2AE for some unitary connection AE on E. In other words, a unitary
connection AE on E determines a unitary connection A0 on det(S), and
hence determines a spin-c connection on S = E ⊕ EK−1.

We abbreviate DA0−ira as Dr, and the spectral flow function fa(A0, r)
as fa(r). The above settings and notations (the contact form, conformally
adapted metric and spin-c Dirac operators) will be used throughout the rest
of this paper.
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2.3. Some basic estimates

With the splitting S = E ⊕ EK−1, the following proposition provides a fun-
damental estimate on components of the eigensections of Dr.

Proposition 2.2. There exists a constant c1 determined by the contact
form a, the conformally adapted metric ds2 and the connection A0 on det(S)
such that the following holds.

(i) For any r ≥ c1, suppose that ψ is a eigensection of Dr such that |λψ|2 <
3
4r. Then ∫

Y
|β|2 + r−1

∫
Y
|∇rβ|2 ≤ c1r

−1

∫
Y
|α|2

where α is the E component of ψ, and β is the EK−1 component of ψ.

(ii) Suppose that there is a continuous path of eigenvalues λ(s) of Ds which
is smooth at r ≥ c1 and |λ(r)|2 < 3

4r. Then

9

20
− c1r

−1 ≤ λ′(r) ≤ 5

9
.

In particular, there are only positive zero crossings for the spectral flow
of Ds when s ≥ 3c1.

Proof. (Assertion (i)) The proof is essentially the same as that of Proposi-
tion 3.1(i) in [18]. The key is the Weitzenböck formula:

D2
rψ = ∇∗

r∇rψ +
κ

4
ψ + cl

(
FA0

2

)
ψ − ir cl

(
da

2

)
ψ(2.3)

where κ is the scalar curvature. Since ∗da = 2Ω−1a with respect to the
metric ds2, the Clifford action cl(da/2) is equal to −Ω−1 cl(a). Pair (2.3)
with β, and integrate over Y . After integration by parts, we find that

λ2
ψ

∫
Y
|β|2 ≥

∫
Y

((
81

100
r − c2

)
|β|2 + 1

2
|∇rβ|2 − c2|α|2

)

for some constant c2. Assertion (i) of the proposition follows from this in-
equality.

(Assertion (ii)) According to [16, §5.1], there exists a constant ε1 > 0
such that the multiplicity of λ(s) of Ds is a constant for any s ∈ (r, r + ε1),
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and λ(s) is smooth when s ∈ (r, r + ε1). Due to [16, (5.4)], the derivative of
λ(s) is given by

λ′(s) =
∫
Y

〈
ψs,− i

2
cl(a)ψs

〉
=

∫
Y

1

2
Ω−1
(|αs|2 − |βs|2

)
(2.4)

where ψs = (αs, βs) is a unit-normed eigensection of Ds with eigenvalue
λ(s). Since |λ(r)|2 < 3

4r, there exists some positive constant ε2 ≤ ε1 such
that |λ(s)|2 < 3

4r for any s ∈ (r, r + ε2). It follows from Assertion (i) and
(2.4) that

9

20
− c3r

−1 ≤ λ′(s) ≤ 5

9

for any s ∈ (r, r + ε2). Since λ′(s) = lims→r+ λ′(s), it completes the proof of
the proposition. �

As a remark, (2.4) implies that

|λ′| ≤ 5

9
(2.5)

without any assumption on λ.

3. Pointwise estimate on eigensections

Let V(r, λ) be the vector space spanned by eigensections of Dr whose eigen-
value has magnitude less than or equal to λ. Namely,

V(r, λ) = span
{
ψ ∈ C∞(Y ; S)

∣∣Drψ = νψ, for some scalar ν with |ν| ≤ λ
}
.

This main purpose of this section is to prove the following pointwise estimate
on ψ ∈ V(r, λ).

Theorem 3.1. There exists a constant c1 determined by the contact form
a, the conformally adapted metric ds2 and connection A0 on det(S) such
that the following holds. Suppose that r ≥ c1 and 1 ≤ λ ≤ 1

2r
1

2 , then

sup
Y
|ψ|2 ≤ c1rλ

∫
Y
|ψ|2(3.1)

for any ψ ∈ V(r, λ).
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Notice that Proposition 2.2(i) only holds for an individual eigensection.
A generic element in V(r, λ) is a linear combination of eigensections. What
follows is a modified version.

Lemma 3.2. There exists a constant c2 determined by the contact form
a, the conformally adapted metric ds2 and the connection A0 such that: for
any r ≥ c2 and 1 ≤ λ ≤ 1

2r
1

2 ,

∫
Y
|β|2 + r−1

∫
Y
|∇rβ|2 ≤ c2r

−1λ2

∫
Y
|α|2

for any ψ = (α, β) ∈ V(r, λ) ⊂ C∞(Y ;E ⊕ EK−1).

Proof. For any k ∈ N, consider the kth power of the Dirac operator Dr. If ψ
belongs to V(r, λ), Dk

rψ also belongs to V(r, λ) for any k ∈ N. By writing ψ
as a linear combination of L2-orthonormal eigenbases, it is not hard to see
that ∫

Y
|Dk

rψ|2 ≤ λ2k

∫
Y
|ψ|2.(3.2)

In particular,
∫
Y |D2

rψ|2 ≤ λ4
∫
Y |ψ|2 for any ψ ∈ V(r, λ). With the same

computation as that in the proof of Proposition 2.2(i),

∫
Y

((
81

100
r − c3

)
|β|2 + 1

2
|∇rβ|2 − c3|α|2

)

≤
∫
Y
|D2

rψ||β|

≤ λ2

(∫
Y
(|α|2 + |β|2)

) 1

2
(∫

Y
|β|2
) 1

2

≤ 1000λ2

∫
Y
|α2|+ 11

10
λ2

∫
Y
|β|2,

and the lemma follows. �

3.1. Corollaries of the sup-norm estimate

Before getting into the proof, here are some useful consequences of Theo-
rem 3.1.



Dirac spectral flow on contact 3-manifolds I 555

Corollary 3.3. There exists a constant c1 determined by the contact form
a, the conformally adapted metric ds2 and the connection A0 with the fol-
lowing significance.

(i) Suppose that r ≥ c1 and 1 ≤ λ ≤ 1
2r

1

2 . Let {ψj}j∈J be an orthonormal
eigenbasis for V(r, λ). Then,∑

j∈J
|ψj(q)|2 ≤ c1rλ

for any q ∈ Y . Its integration over Y says that dimV(r, λ) ≤ c1rλ.

(ii) For any r ≥ c1, the spectral flow from r − 1 to r is less than or equal
to c1r. Namely, fa(r)− fa(r − 1) ≤ c1r.

Proof. (Assertion (i)) For any q ∈ Y , choose isometric identifications be-
tween E|q ∼= C and EK−1|q ∼= C. With this understood, write ψj(q) as
(αj(q), βj(q)), and introduce the following linear maps on L2(Y ; S)

L2(Y ; S) → C

ev1q : ψ �→ ∫
Y 〈ψ(p),

∑
j∈J ᾱj(q)ψj(p)〉dp

ev2q : ψ �→ ∫
Y 〈ψ(p),

∑
j∈J β̄j(q)ψj(p)〉dp.

It is a standard fact in functional analysis that ev1q and ev2q are bounded

linear functionals, and the operator norms are equal to (
∑

j∈J |αj(p)|2) 1

2

and (
∑

j∈J |βj(p)|2)
1

2 , respectively.

Let Πλ : L2(Y ; S)→ V(r, λ) be the L2-orthogonal projection. For any
ψ ∈ C∞(Y ; S), the linear functionals are equal to

ev1q(ψ) = (pr1 ◦ evq ◦Πλ)(ψ) and ev2q(ψ) = (pr2 ◦ evq ◦Πλ)(ψ)

where evq is the evaluation map at q, pr1 is the projection onto the E
component, and pr2 is the projection onto the EK−1 component. According
to Theorem 3.1,

∣∣ ev1q(ψ)∣∣2 + ∣∣ ev2q(ψ)∣∣2 ≤ sup
Y
|Πλ(ψ)|2 ≤ c1rλ

∫
Y
|Πλ(ψ)|2

≤ c1rλ

∫
Y
|ψ|2.

It follows that the operator norm of ev1q and ev2q are no greater than (c1rλ)
1

2 .
This completes the proof of Assertion (i).
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(Assertion (ii)) Suppose that {rk}Kk=1 are where the zero crossing hap-
pens between r − 1 and r (counting multiplicities). According to [16, §5.1],
one can assign for each k a continuous, piecewise smooth function λk(s) of
s ∈ [r − 1, r] such that

• λk(s) is an eigenvalue Ds for s ∈ [r − 1, r], and λk(rk) = 0;

• moreover, {λk(s)}Kk=1 are disjoint eigenvalues (counting multiplicities)
of Ds for any s ∈ [r − 1, r].

There is no canonical way to do it, but any method will suffice. It follows
from (2.5) that λk(s) always belongs to (−1, 1) for s ∈ [r − 1, r]. Thus, K <
dimV(r, 1), which is less than c1r by Assertion (i). �

When the metric is adapted rather than conformally adapted, the di-
mension estimate of Corollary 3.3(i) can be refined into a density version.
For an adapted metric, the slope estimate of Proposition 2.2(ii) is refined to
be ∣∣∣∣λ′(r)− 1

2

∣∣∣∣ ≤ c2r
−1(3.3)

provided λ(r) is an eigenvalue of Dr with |λ(r)|2 ≤ 3
4r. This is proved in

[18, Proposition 3.1(ii)]. Notice that the leading order term of the slope is
exactly 1

2 .

Corollary 3.4. Suppose that the metric is adapted, namely Ω ≡ 1. There
exists a constant c3 determined by the contact form a, the conformally
adapted metric ds2 and the connection A0 such that the following holds. Sup-
pose that r ≥ c3 and λ−, λ+ ∈ [12r

1

2 , 12r
1

2 ] satisfying 0 < λ+ − λ− ≤ 2. Then,
the total number of eigenvalues (counting multiplicity) of Dr within [λ−, λ+]
is no greater than c3r.

Proof. Consider the case when λ− ≥ 0. Other cases can be proved by the
same argument. Suppose that λ− = λ1 ≤ λ2 ≤ · · · ≤ λL = λ+ are all the
eigenvalues of Dr within [λ−, λ+]. For each l ∈ {1, 2, . . . , L}, assign a con-
tinuous, piecewise smooth function λl(s) for s ∈ [r − 21

10λ+, r] such that

• λl(s) is an eigenvalue of Ds for s ∈ [r − 21
10λ+, r], and λl(r) = λl;

• moreover, {λl(s)}Ll=1 are disjoint eigenvalues (counting multiplicities)
of Ds for any s ∈ [r − 21

10λ+, r].

There is no canonical way to do it, but any method will suffice.
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We claim that |λl(s)|2< 3
4s for any s ∈ [r− 21

10λ+, r] and l∈{1, 2, . . . , L}.
Due to (2.4), |λl(s)− λl| ≤ 1

2(r − s) for any s ∈ [r − 21
10λ+, r]. It follows that

|λl(s)| ≤ 31
20λ+, and

|λl(s)|2 ≤ 961

1600
r ≤ 3

4
(r − 3λ+) ≤ 3

4
s.

Hence, (3.3) applies to λl(s). According to the intermediate value theorem,
there is some

sl ∈
[
r −
(
1

2
+ c4r

−1

)
λl, r −

(
1

2
− c4r

−1

)
λl

]

such that λl(sl) = 0. It follows that

L ≤ fa

(
r −
(
1

2
− c4r

−1

)
λ−
)
− fa

(
r −
(
1

2
+ c4r

−1

)
λ+

)
.

Since |λ±| ≤ 1
3r

1

2 and λ+ − λ− ≤ 2, the corollary follows from Corollary
3.3(ii). �

3.2. Pointwise estimate on β

The rest of this section is devoted to the proof of Theorem 3.1. Suppose that
ψ = (α, β) is an element of V(r, λ) for some λ ≤ 1

2r
1

2 . Proposition 2.2(i) says
that the L2-norm of β is small. The purpose of this subsection is to derive
a pointwise estimate on β.

The following lemma is a preliminary version of Theorem 3.1.

Lemma 3.5. There exists a constant c6 determined by the contact form
a, the conformally adapted metric ds2 and the connection A0 such that the
following holds. Suppose that r ≥ c6 and λ ≤ 1

2r
1

2 , then

sup
Y
|ψ|2 ≤ c6r

3

2

∫
Y
|ψ|2

for any ψ ∈ V(r, λ). On the other hand, if λ ≥ 1
2r

1

2 , then

sup
Y
|ψ|2 ≤ c6λ

3

∫
Y
|ψ|2

for any ψ ∈ V(r, λ).
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Proof. Suppose that the maximum of |ψ| is achieved at p0 ∈ Y . Let χ be a
standard cut-off function which depends only on the distance ρ to p0 and

{
χ(ρ) = 1 when ρ ≤ ε1,

χ(ρ) = 0 when ρ ≥ 2ε1.

Here, ε1 is a small number less than one-tenth of the injectivity radius, and
the precise value will be chosen later. Due to the Weitzenböck formula (2.3),
χψ satisfies the following differential inequality:

d∗d|χψ|2 ≤ χ2d∗d|ψ|2 + 8χ|dχ||ψ||∇rψ|+ |d∗d(χ2)||ψ|2
≤ (2χ2〈∇∗

r∇rψ, ψ〉 − 2χ2|∇rψ|2
)
+
(
2χ2|∇rψ|2 + 8|dχ|2|ψ|2)

+ 2(χ|d∗dχ|+ |dχ|2)|ψ|2
≤ c7r|χψ|2 + c7(χ|d∗dχ|+ |dχ|2)|ψ|2 + 2|χψ||χD2

rψ|.

Let B be the geodesic ball centered at p0 with radius to be half of the
injectivity radius. The cut-off function χ vanishes on ∂B. By the maximum
principle, |(χψ)(p0)|2 is less than the Green’s function of d∗d acting on the
right-hand side. Since the three dimensional Green’s function is bounded
from above by c8ρ

−1,

|ψ(p0)|2 ≤ c9

(
r

∫
B
ρ−1|χψ|2 + ε−3

1

∫
B
|ψ|2 +

∫
B
ρ−1|χψ||χD2

rψ|
)

≤ c9

(∫
B
ρ−1|χψ|2 + ε−3

1

∫
B
|ψ|2 + ε−1

2

∫
B
ρ−2|χψ|2 + ε2

∫
B
|D2

rψ|2
)

for any ε2 > 0. Since sup |ψ| = |ψ(p0)|, the first term can be estimated in
terms of ψ(p0):

∫
B
ρ−1|χψ|2 ≤ |ψ(p0)|2

∫
dist(·,p0)≤ε1

ρ−1 + ε−1
1

∫
dist(·,p0)≥ε1

|χψ|2

≤ c10ε
2
1|ψ(p0)|2 + c10ε

−1
1

∫
B
|ψ|2.

By the same token, the third term is less than or equal to

∫
B
ρ−2|χψ|2 ≤ c11ε1|ψ(p0)|2 + c11ε

−2
1

∫
B
|ψ|2.
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The above inequalities together with (3.2) for k = 2 imply that |ψ(p0)|2 is
less than or equal to

c12(rε
2
1 + ε1ε

−1
2 )|ψ(p0)|2 + c12(rε

−1
1 + ε−3

1 + ε−2
1 ε−1

2 + ε2λ
4)

∫
Y
|ψ|2.

By taking ε1 = (100c12r)
− 1

2 and ε2 = c
1

2

12r
− 1

2 , the first assertion of the lemma

follows. For the second assertion, take ε1 = (1000c12)
− 1

2λ−1 and ε2 = c
1

2

12λ
−1.
�

Since Dk
rψ still belongs to V(r, λ) for any ψ ∈ V(r, λ), Lemma 3.5 applies

to Dk
rψ as well.

Corollary 3.6. There exists a constant c13 determined by the contact form
a, the conformally adapted metric ds2 and the connection A0 with the fol-
lowing significance. Suppose that r ≥ c13 and λ ≤ 1

2r
1

2 , then

sup
Y
|Drψ|2 ≤ c13r

3

2λ2

∫
Y
|ψ|2 and sup

Y
|D2

rψ|2 ≤ c13r
3

2λ4

∫
Y
|ψ|2

for any ψ ∈ V(r, λ).

Proof. It follows from Lemma 3.5 and (3.2). �

The second assertion of Lemma 3.5 implies the following dimension
bound of V(r, λ) for λ ≥ 1

2r
1

2 .

Corollary 3.7. There exists a constant c6 determined by the contact form
a, the conformally adapted metric ds2 and the connection A0 with the fol-
lowing property. Suppose that r ≥ c6 and λ ≥ 1

2r
1

2 . Let {ψj}j∈J be an or-
thonormal eigenbasis for V(r, λ). Then ∑j∈J |ψj(p)|2 ≤ c6λ

3 for any p ∈ Y .

It follows that dimV(r, λ) ≤ c6λ
3.

Proof. This corollary follows from the same functional analysis argument as
that for Corollary 3.3(i). �

The following proposition gives a pointwise estimate on β in terms of α.

Proposition 3.8. There exists a constant c15 determined by the contact
form a, the conformally adapted metric ds2 and the connection A0 such that
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the following holds. For r ≥ c15 and 1 ≤ λ ≤ 1
2r

1

2 , suppose that ψ = (α, β)
is an element in V(r, λ). Then,

sup
Y
|β|2 ≤ c15r

−1 sup
Y
|α|2 + c15r

− 1

2λ4

∫
Y
|ψ|2.

It follows that supY |ψ|2 ≤ (1 + c15r
−1) supY |α|2 + c15r

− 1

2λ4
∫
Y |ψ|2.

Proof. Project the Weitzenböck formula (2.3) onto the summand of E and
EK−1, and take the inner product with α and β, respectively. It leads to
the following inequalities:

1

2
d∗d|α|2 + |∇rα|2 − 100

81
r|α|2 ≤ c16

(|α|2 + |β||α|+ |∇rβ||α|+ |D2
rψ||α|

)
,

1

2
d∗d|β|2 + |∇rβ|2 + 81

100
r|β|2 ≤ c16

(|β|2 + |α||β|+ |∇rα||β|+ |D2
rψ||β|

)
.

Due to Corollary 3.6 and the Cauchy–Schwarz inequality, they become:

d∗d|α|2 + 2|∇rα|2 ≤ c17

(
r|α|2 + r−1|β|2 + r−1|∇rβ|2 + r

1

2λ4

∫
Y
|ψ|2
)
,

d∗d|β|2 + 2|∇rβ|2 + r|β|2 ≤ c17

(
r−1|α|2 + r−1|∇rα|2 + r

1

2λ4

∫
Y
|ψ|2
)
.

It follows that the combination |β|2 + c17r
−1|α|2 obeys the following differ-

ential inequality:

d∗d(|β|2 + c17r
−1|α|2) + r(|β|2 + c17r

−1|α|2)(3.4)

+ (|∇rβ|2 + c17r
−1|∇α|2)

≤ c18|α|2 + c18r
1

2λ4

∫
Y
|ψ|2.

Let ζ be the function

ζ ≡ |β|2 + c17r
−1|α|2 − c18r

−1 sup
Y
|α|2 − c18r

− 1

2λ4

∫
Y
|ψ|2.

The equation (3.4) implies that d∗dζ + r ζ ≤ 0. By the maximum principle,
ζ cannot have positive maximum. This finishes the proof of the proposition.

�
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3.3. Pointwise estimate on covariant derivatives

To prove Theorem 3.1, some estimate on the covariant derivative of ψ is
needed. The following lemma provides a preliminary estimate on ∇rψ.

Lemma 3.9. There exists a constant c20 determined by the contact form a,
the conformally adapted metric ds2 and the connection A0 with the following
significance. For any r ≥ c20 and 1 ≤ λ ≤ 1

2r
1

2 , suppose that ψ ∈ V(r, λ).
Then,

sup
Y
|∇rψ|2 ≤ c20r

5

2

∫
Y
|ψ|2

and supY |∇r(D
2
rψ)|2 ≤ c20r

5

2λ4
∫
Y |ψ|2.

Proof. The first step is to estimate the L2-norm of ∇rψ. Integrating the
Weitzenböck formula (2.3) against ψ implies that

∫
Y |∇rψ|2 ≤ c21r

∫
Y |ψ|2 +∫

Y |D2
rψ||ψ|. It follows from (3.2) and the Cauchy–Schwarz inequality that∫

Y
|∇rψ|2 ≤ c22r

∫
Y
|ψ|2 and∫

Y
|∇r(D

2
rψ)|2 ≤ c22r

∫
Y
|D2

rψ|2 ≤ c23rλ
4

∫
Y
|ψ|2.

(3.5)

Commuting covariant derivatives gives the following formula:

∇∗
r∇r∇rψ −∇r∇∗

r∇rψ(3.6)

= ir da(∇rψ, · )− ir

2
(d∗da)⊗ ψ +Q1(∇rψ) +Q2(ψ)

where Q1 and Q2 are operators defined from the contact form a, the metric
ds2 and the connection A0; in particular, neither depends on r, and neither
is a differential operator. The computation for (3.6) is included in §A.1. The
significance of (3.6) is that the crucial terms of right hand side are r∇rψ
and rψ.

The term ∇r∇∗
r∇rψ can be replaced by the covariant derivative of (2.3).

Let χ be a cut-off function. After some simple manipulations, χ∇rψ obeys
the following differential inequality:

d∗d|χ∇rψ|2 ≤ c24r|χ∇rψ|2 + c24|χ∇rψ|
(
r|χψ|+ |χ∇r(D

2
rψ)|

)
+ c24(χ|d∗dχ|+ |dχ|2)|∇rψ|2.
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The same Green’s function argument as that in the proof of Lemma 3.5
shows that

sup
Y
|∇rψ|2 ≤ c25

(
r

3

2

∫
Y
|∇rψ|2 + r−

1

2

∫
Y
|∇r(D

2
rψ)|2 + r

3

2

∫
Y
|ψ|2
)
.

This estimate and (3.5) together prove the first assertion. The second asser-
tion follows from the first assertion and (3.2). This completes the proof of
the lemma. �

The following lemma provides a refined estimate on ∇rψ.

Lemma 3.10. There exists a constant c26 determined by the contact form
a, the conformally adapted metric ds2 and the connection A0 such that the
following holds. For any r ≥ c26 and 1 ≤ λ ≤ 1

2r
1

2 , suppose that ψ ∈ V(r, λ).
Then

sup
Y
|∇rψ|2 ≤ c26r sup

Y
|ψ|2 + c26r

1

2λ4

∫
Y
|ψ|2.

Proof. Take the inner product of (2.3) with ψ and apply Corollary 3.6 to
obtain the following differential inequality:

1

2
d∗d|ψ|2 + |∇rψ|2 ≤ 2r|ψ|2 + |ψ||D2

rψ|(3.7)

≤ c27

(
r|ψ|2 + r

1

2λ4

∫
Y
|ψ|2
)
.

Similarly, take the inner product of (3.6) with∇rψ, replace∇r∇∗
r∇rψ by the

covariant derivative of (2.3), and apply Lemma 3.9 to obtain the following
differential inequality:

1

2
d∗d|∇rψ|2 + |∇r∇rψ|2(3.8)

≤ c28r|∇rψ|2 + c28r|∇rψ||ψ|+ |∇rψ||∇r(D
2
rψ)|

≤ c29

(
r(|∇rψ|2 + |ψ|2) + r

3

2λ4

∫
Y
|ψ|2
)
.

It follows from (3.7) and (3.8) that

d∗d(|∇rψ|2 + c30r|ψ|2) + r(|∇rψ|2 + c30r|ψ|2) ≤ c31

(
r2|ψ|2 + r

3

2λ4

∫
Y
|ψ|2
)
.



Dirac spectral flow on contact 3-manifolds I 563

By the maximum principle,

|∇rψ|2 + c30r|ψ|2 − c31r sup
Y
|ψ|2 − c31r

1

2λ4

∫
Y
|ψ|2

cannot admit positive maximum. This completes the proof of the lemma. �

Lemma 3.2 says that the L2-norm of ∇rβ cannot be not large. The
following proposition is a pointwise version.

Proposition 3.11. There exists a constant c35 determined by the contact
form a, the conformally adapted metric ds2 and the connection A0 such
that the following holds. For any r ≥ c35 and 1 ≤ λ ≤ 1

2r
1

2 , suppose that
ψ ∈ V(r, λ). Then

sup
Y
|∇rβ|2 ≤ c35 sup

Y
|α|2 + c35r

1

2λ4

∫
Y
|ψ|2.

Proof. In order to derive the equation for ∇rβ, consider (3.6) for β:

∇∗
r∇r∇rβ = ∇r∇∗

r∇rβ + irda(∇rβ, ·)(3.9)

− 1

2
ir(d∗da)⊗ β +Q1(∇rβ) +Q2(β).

The connection Laplacian on β can be formally expressed in terms of ψ:

∇∗
r∇rβ = pr2(∇∗

r∇rψ) +Q3(∇rψ) +Q4(ψ)

= pr2(D
2
rψ)− rΩ−2β +Q3(∇rψ) +Q5(ψ).

The first equality is a straightforward computation, and the second equality
follows from (2.3). Here, Q3, Q4 and Q5 are operators defined from the con-
tact form, the metric and the base connection; in particular, none depends
on r, and none is a differential operator. The covariant derivative of the
above equation reads

∇r∇∗
r∇rβ = −r∇r(Ω

−2β) +Q6(∇r(D
2
rψ)) +Q7(D

2
rψ)(3.10)

+Q8(∇r∇rψ) +Q9(∇rψ) +Q10(ψ)

where all the Qj are independent of r, and they are not differential operators.
Take the inner product of (3.9) with ∇rβ, and substitute ∇r∇∗

r∇rβ
by (3.10). After applying the Cauchy–Schwarz inequality, it becomes the
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following differential inequality:

1

2
d∗d|∇rβ|2 ≤ c36

(
r|∇rβ|2 + r|β|2 + r−1|∇r(D

2
rψ)|2 + r−1|D2

rψ|2

+r−1|∇r∇rψ|2 + r−1|∇rψ|2 + r−1|ψ|2) .
To proceed, apply Lemma 3.9 on |∇r(D

2
rψ)|2 and Corollary 3.6 on |D2

rψ|2.
Then add (3.8) multiplied by c36r

−1 to cancel c36r
−1|∇r∇rψ|2. It ends up

with the following inequality:

1

2
d∗dζ1 + r ζ1 ≤ c37

(
r|∇rβ|2 + |∇rψ|2 + |ψ|2 + r

3

2λ4

∫
Y
|ψ|2
)

where

ζ1 = |∇rβ|2 + c36r
−1|∇rψ|2.

The first three terms on the right hand side can be canceled by adding (3.4)
multiplied by c37r. It leads to the following inequality:

d∗dζ2 + c38r ζ2 ≤ c39

(
r|α|2 + r

3

2λ4

∫
Y
|ψ|2
)

where

ζ2 = ζ1 + c37r(|β2|+ c17r
−1|α|2).

The maximum principle implies that ζ2 − c40 supY |α|2 − c40r
1

2λ4
∫
Y |ψ|2

cannot have positive maximum for some constant c40. This completes the
proof of the proposition. �

3.4. Estimate the integral over a transverse disk

The purpose of this subsection is to estimate the integral of α over a trans-
verse disk. This is a local computation. It is easier to work with the adapted
metric d̊s2 instead of the conformally adapted metric ds2 = Ω2d̊s2. Let
ψ̊ = (α̊, β̊) be Ωψ = (Ωα,Ωβ). Note that ψ̊ and ψ have uniformly equiva-
lent sup-norms and L2-norms. According to (2.2), the equation for ψ̊ reads

D̊rψ̊ = Ω2Drψ.(3.11)

3.4.1. Adapted coordinate chart. Given an adapted metric d̊s2, [16,
§6.4] introduces the notion of an adapted coordinate chart. For any p ∈ Y ,
the adapted coordinate chart centered at p is defined as the follows. Denote
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by v the Reeb vector field. Choose two oriented, orthonormal vectors e1 and
e2 for ker(a)|p. For any � > 0, let I� be the interval [−�, �], and C� be the
standard disk of radius � in R2. Consider

C� × I� → Y
ϕ0 : ((x, y), 0) �→ expp(xe1 + ye2),
ϕ : ((x, y), z) �→ expϕ0(x,y)(zv)

where exp is the geodesic exponential map of d̊s2. The map ϕ defines a
smooth embedding for sufficiently small �. Similar to the injectivity radius,
the constant

�a =
1

2
inf
p∈Y
(
sup{� > 0

∣∣ϕ defines a smooth embedding on C� × I� (at p)}
)

is strictly positive, and depends only on the contact form a and the adapted
metric d̊s2. For any p ∈ Y , the adapted coordinate chart at p is ϕ(C�a × I�a).
For simplicity, the subscript �a will be suppressed. The adapted coordinate
chart has the following properties.

(i) The Reeb vector field v is ∂z, and da = 2B dx ∧ dy. The function B
is positive, and independent function of z. As (x, y)→ 0, B(x, y) =
1 +O(x2 + y2).

(ii) The metric d̊s2 is equal to dx2 + dy2 + dz2 + h where h obeys:
a) h(∂z, ∂z) = 0;
b) as a symmetric 2-tensor measured by dx2 + dy2, the restriction

h|z=0 = O(x2 + y2) as (x, y)→ 0.

(iii) Since ϕ is an embedding, the image of the disks C�a × {z} are trans-
verse to the Reeb vector field v for any z ∈ I�a . These disks are called
the transverse disks, and are denoted by Cz.

3.4.2. Dirac operator in adapted coordinate chart. In this step, we
introduce a transverse-Reeb exponential gauge to trivialize the bundle K−1

and E. The exponential coordinate and exponential gauge is a standard trick
in differential geometry and gauge theory. The detail of the computation will
be presented in §A.2.

Consider the adapted metric d̊s2. Parallel transport e1 and e2 along
radial geodesics on C0. Denote the resulting vector fields by u1 and u2.
They are linearly independent with the Reeb vector field v, but need not
to be orthonormal. The Gram–Schmidt process on {v, u1, u2} produces an
orthonormal frame {v, e1, e2} on C0. Note that the Gram–Schmidt process
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does nothing at TpY , and the notation is consistent. Then parallel transport
{v, e1, e2} along the integral curves of v. It ends up with a smooth, or-
thonormal frame on the adapted chart. Denote the frame by by {v, e1, e2}.
The unit-normed section 1√

2
(e1 − ie2) trivialize the bundle K

−1. The bundle

E is trivialized in a similar way: start with any unit-normed section at p,
parallel transport along radial geodesic on C0, and then parallel transport
along the integral curves of v. Since E is a line bundle, the trivialization of
E does not require the Gram–Schmidt process.

With such a unitary trivialization of E ⊕K−1E, the sections α̊ and β̊ are
identified with complex valued functions on C × I. Remember that v = ∂z.
The expression of e1 and e2 in ∂x, ∂y and ∂z can be found by the standard
Jacobi field computation. The Dirac operator takes the following form:

{
pr1(D̊rψ̊) =

r
2 α̊+ i∂zα̊+ μ0α̊+ ∂̄∗β̊ − iμ̄1∂zβ̊ + μ̄2β̊,

pr2(D̊rψ̊) = ∂̄α̊− iμ1∂zα̊+ μ2α̊−
(
r
2 + c0

)
β̊ − i∂zβ̊ + μ3β̊

(3.12)

where ∂̄ and ∂̄∗ consist of taking derivatives in x and y, but not in z.
Besides the±r/2 terms, all the other terms are independent of r. Namely,

they depend only on the contact form a, the adapted metric d̊s2 and the
connection A0. The coefficients μ0 and μ3 are real-valued smooth functions,
and μ1 and μ2 are complex-valued functions.

The operators ∂̄ and ∂̄∗ are first order elliptic operators on Cz. In other
words, they are a smooth family of Cauchy–Riemann operators. ∂̄ and ∂̄∗

are almost adjoint to each other in the following sense. The volume form of
the adapted metric d̊s2 is 1

2a ∧ da = Bdx ∧ dy ∧ dz. Let ω = Bdx ∧ dy. The

self-adjointness of D̊r and the z-independence of B imply that

∫
Cz

(〈∂̄α̊, β̊〉 − 〈α̊, ∂̄∗β̊〉)ω =

∫
Cz

−i(∂zμ1)〈α̊, β̊〉ω(3.13)

for any z ∈ I and any α̊ and β̊ with compact support in Cz.
On the zero slice C0, the frame {e1, e2} differs from the usual exponential

frame {u1, u2} by the Gram–Schmidt process, which leads to a O(
√

x2 + y2)
difference. By the standard expansion in the exponential gauge, the coeffi-
cients of (3.12) on C0 satisfies

(i) |μj | ≤ c45
√

x2 + y2 for j = 0, 1, 2, 3;

(ii) ∂̄ = ∂x + i∂y + μ4∂x + μ5∂y where μ4 and μ5 are complex-valued func-

tions which are also bounded by c45
√

x2 + y2.
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The constant c45 is determined by the contact form a, the adapted metric
d̊s2 and the connection A0.

3.4.3. Integral estimate over a transverse disk. For any p ∈ Y , de-
fine S(p, ψ; ε) to be the 2-dimensional integral

S(p, ψ; ε) =

∫
C0,ε

|α̊|2ω =

∫
C0,ε

|α|2Ω2ω

where C0,ε is the geodesic disk {
√

x2 + y2 ≤ ε} on C0.

Proposition 3.12. There exists a constant c46 determined by the contact
form a, the conformally adapted metric ds2 and the connection A0 such
that the following holds. For any r ≥ c46 and 1 ≤ λ ≤ 1

2r
1

2 , suppose that
ψ ∈ V(r, λ). Then

S(p, ψ; ε) ≤ c46(λ+ r−
1

2 ε−1λ+ r
1

2 ε2λ2)

∫
Y
|ψ|2

for any p ∈ Y and any ε ≤ 1
4�a.

Proof. Let χ̃ε be a cut-off function which depends on ρ̃ =
√

x2 + y2 with
χ̃ε(ρ̃) = 1 for ρ̃ ≤ ε and χ̃ε(ρ̃) = 0 for ρ̃ ≥ 2ε. Apply (3.12) to compute the
rate of change of slice integrals:

d

dz

(∫
Cz

χ̃ε|α̊|2ω
)

= 2

∫
Cz

Re
(− iχ̃ε〈α̊, ∂̄∗β̊〉+ χ̃εμ1〈α̊, ∂zβ̊〉

− iχ̃εμ2〈α̊, β̊〉+ iχ̃ε〈α̊, D̊rψ̊〉
)
ω,

d

dz

(∫
Cz

χ̃ε|β̊|2ω
)

= 2

∫
Cz

Re
(− iχ̃ε〈∂̄α̊, β̊〉+ χ̃εμ1〈∂zα̊, β̊〉

− iχ̃εμ2〈α̊, β̊〉+ iχ̃ε〈D̊rψ̊, β̊〉
)
ω.

(3.14)

Let S̃(z) to be the following integral

S̃(z) =

∫
Cz

χ̃ε

(|α̊|2 − |β̊|2 − 2Re(μ1〈α̊, β̊〉)
)
ω.(3.15)

Since ∂̄ and ∂̄∗ are almost adjoint (3.13) to each other, (3.14) leads to the
following gradient estimate:∣∣∣∣ ddz S̃(z)

∣∣∣∣ ≤ c47

∫
Cz

(|dχ̃ε||α̊||β̊|+ χ̃ε|ψ̊||D̊rψ̊|
)
ω.(3.16)
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Its integration says that

∣∣S̃(w)− S̃(0)
∣∣ = ∣∣∣∣

∫ w

0

(
d

dz
S̃(z)

)
dz

∣∣∣∣(3.17)

≤
∫ w

0

∫
Cz

(|dχ̃ε||α̊||β̊|+ χ̃ε|ψ̊||D̊rψ̊|
)
B dx dy dz

≤ c47

∫
Y

(|dχ̃ε||α̊||β̊|+ χ̃ε|ψ̊||D̊rψ̊|
)
a ∧ da

≤ c48(1 + r−
1

2 ε−1)λ

∫
Y
|ψ|2

for any w ∈ [−�a, �a]. The last inequality follows from Lemma 3.2, (3.2)
and (3.11).

The quantity S̃(0) can be written as

S̃(0) =
1

2�a

(
−
∫ �a

−�a

(S̃(z)− S̃(0))dz +

∫ �a

−�a

S̃(z)dz

)
.

The first integral is bounded by (3.17), and the second integral is automat-
ically bounded by

∫
Y |ψ|2. Hence,

|S̃(0)| ≤ c49(1 + r−
1

2 ε−1)λ

∫
Y
|ψ|2.

Since μ1 is uniformly bounded on C0, we apply the triangle inequality and
the Cauchy–Schwarz inequality on (3.15) to conclude that∫

C0

χ̃ε|α̊|2 ω ≤ c50(1 + r−
1

2 ε−1)λ

∫
Y
|ψ|2 + c50

∫
{ρ̃≤2ε}⊂C0

|β̊|2 ω.(3.18)

The last term is less than c51ε
2 supY |β|2. According to Proposition 3.8 and

Lemma 3.5,

sup
Y
|β|2 ≤ c51(r

1

2 + r−
1

2λ4)

∫
Y
|ψ|2 ≤ 2c51r

1

2λ2

∫
Y
|ψ|2.

Plugging it into (3.18) finishes the proof of the proposition. �

3.5. Pointwise estimate on α

The main purpose of this subsection is to prove the pointwise estimate on α.
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Proof of Theorem 3.1. Let p0 be the point where |α| achieves its maximum.
It suffices to estimate α̊(p0) = (Ωα)(p0). Let x, y, z be the adapted coor-
dinate at p0, and let ρ̃ be

√
x2 + y2. Let χ̃ε(ρ̃) be the (slice-wise) cut-off

function as introduced in the proof of Proposition 3.12. The precise value of
ε will be chosen later.

Multiply the first equation of (3.12) by μ1, and add it to the second
equation.

∂̄α̊ = iμ1∂zα̊− μ2α̊− pr2(D̊rβ̊) + pr2(D̊rψ̊)

= −μ1

(r
2
α̊+ μ0α̊+ pr1(D̊rβ̊)− pr1(D̊rψ̊)

)
− μ2α̊− pr2(D̊rβ̊) + pr2(D̊rψ̊).

According to (3.12) and the discussion in §3.4.2, the restriction of the equa-
tion on the slice C0 reads:

(∂x + i∂y)(χ̃εα̊) =
(
(∂x + i∂y)(χ̃ε)

)
α̊− χ̃ε

(
(μ4∂x + μ5∂y)α̊

)
(3.19)

− χ̃ε(μ1
r

2
+ μ0μ1 + μ2)α̊− χ̃ε(pr2+μ1 pr1)(D̊rβ̊)

+ χ̃ε pr2(D̊rψ̊) + χ̃εμ1 pr1(D̊rψ̊).

The value of α̊ at p0 can be found by the Cauchy integral formula for smooth
functions. It is equal to the integral of the right hand side of (3.19) against

− dx ∧ dy

4π(x+ iy)
over the disk C0.

The area element dx ∧ dy = 1
Bω is uniformly equivalent to ω = Bdx ∧ dy.

Due to the uniformly equivalence, the crucial term is the factor 1/(x+ iy).
We divide the right hand side of (3.19) into six terms. Their Cauchy

integrals are estimated as follows.

(i) By Proposition 3.12, the Cauchy integral of the first term is no greater
than

∣∣∣∣
∫
C0

(
(∂x + i∂y)(χ̃ε)

x+ iy
α̊

)∣∣∣∣ ≤ c55

(∫
C0

|dχ̃ε|2
|ρ̃|2

) 1

2
(∫

C0

χ̃2ε|α̊|2
) 1

2

≤ c56 ε
−1
(
λ

1

2 + r−
1

4 ε−
1

2λ
1

2 + r
1

4 ελ
)(∫

Y
|ψ|2
) 1

2

.
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(ii) After integration by parts, the Cauchy integral of the second term can
be estimated by the same argument. It is less than or equal to

c57

(∫
C0

χ̃ε

|ρ̃|
(
1 + |dμ4|+ |dμ5|

)|α̊|+ (∫
C0

(|μ4|2 + |μ5|2)|dχ̃ε|2
|ρ̃|2

)1

2
(∫

Y
|ψ|2
)1

2

)

≤ c58

(
ε sup

Y
|α|+

(
λ

1

2 + r−
1

4 ε−
1

2λ
1

2 + r
1

4 ελ
)(∫

Y
|ψ|2
)1

2

)
.

(iii) By the Cauchy–Schwarz inequality and Proposition 3.12, the Cauchy
integral of the third term is no greater than

c59 r

(∫
C0

χ̃ε|μ1|2
|ρ̃|2

) 1

2
(∫

C0

χ̃ε|α̊|2
) 1

2

≤ c60 rε
(
λ

1

2 + r−
1

4 ε−
1

2λ
1

2 + r
1

4 ελ
)(∫

Y
|ψ|2
) 1

2

.

(iv) To estimate the fourth term, note that |Drβ| ≤ |∇rβ|. Invoke Propo-
sition 3.11 and Lemma 3.5 to bound sup |∇rβ|. The Cauchy integral
of the fourth term is less than or equal to

c61

(
sup
Y
|∇rβ|

)∫
C0

|χ̃ε|
|ρ̃| ≤ c62 ε

(
r

3

4 + r
1

4λ2
)(∫

Y
|ψ|2
) 1

2

.

(v) Since Drψ still belongs to V(r, λ), we can apply Proposition 3.8, Corol-
lary 3.6 and (3.2) to bound sup | pr2(Drψ)|. The Cauchy integral of the
fifth term is no greater than

c63

(
sup
Y
| pr2(Drψ)|

)∫
C0

|χ̃ε|
ρ̃
≤ c64 ε

(
r

1

4λ+ r−
1

4λ3
)(∫

Y
|ψ|2
) 1

2

.

(vi) With the help of Corollary 3.6, the Cauchy integral of the last term is
less than or equal to

c65

(
sup
Y
|Drψ|

)∫
C0

χ̃ε|μ1|
|ρ̃| ≤ c66 ε

2
(
r

3

4λ
)(∫

Y
|ψ|2
) 1

2

.

Set ε to be r−
1

2 . A straightforward computation on the above six estimates
shows that

sup
Y
|α| ≤ c67

(
rλ

∫
Y
|ψ|2
) 1

2

.(3.20)
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With Proposition 3.8, it completes the proof of Theorem 3.1. �

4. The heat kernel

Denote by πL and πR the respective projection from (0,∞)× Y × Y to the
left and right hand factor of Y . The heat kernel for D2

r is a smooth section
of Hom(π∗

RS, π
∗
LS) over (0,∞)× Y × Y given by

Hr(t; p, q) =
∑
j

e−λ2
j tψj(p)ψ

†
j(q)(4.1)

where {ψj} constitutes a complete, orthonormal basis of eigensections for
Dr, and λj is the corresponding eigenvalue. As a function of t and p with q
fixed, the heat kernel obeys the equation

∂

∂t
Hr = −D2

rHr.(4.2)

Moreover, the t→ 0 limit of Hr exists as a bundle valued measure:

lim
t→0

Hr(t; p, · ) = I δp( · )(4.3)

where I is the identity homomorphism in End(S) and δp is the Dirac measure
at p. In other words, ζ(p) = limt→0

∫
Y Hr(t; p, q)ζ(q)dq for any ζ ∈ C∞(Y ; S).

For any q ∈ Y , choose unitary identifications E|q ∼= C and EK−1|q ∼= C.
Consider the following smooth section of π∗S over (0,∞)× Y :

hr,q(t; p) =
∑
j

e−λ2
j tαj(q)ψj(p).(4.4)

Roughly speaking, it is the ‘first column’ of Hr. In particular, it obeys that
heat equation (4.2), and

lim
t→0+

∫
Y
〈ζ(p), hr,q(t; p)〉dp = pr1 ζ(q)(4.5)

for any ζ ∈ C∞(Y ; S). Here pr1 is the projection onto E|q ∼= R.

4.1. Integral estimate of the heat kernel

There are standard parametrix techniques to generate small time asymptotic
expansion of the heat kernel, see [4, chapter 2] or [17, §2]. In order to estimate
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the remainder term in the asymptotic expansion, it requires some estimate
on the heat kernel. The following proposition provides a L2-estimate on the
heat kernel. One can compare it with [17, Proposition 2.1].

Proposition 4.1. There exists a constant c1 determined by the contact
form a, the conformally adapted metric ds2 and the connection A0 such
that: ∫

Y
|hr,q(t; p)|2 dp ≤ c1(r + rt−

1

2 + t−
3

2 e−
1

10
r t)

for any r ≥ c1, q ∈ Y and t > 0.

Proof. We may assume that |λj | is non-decreasing in j. Weyl’s asymptotic

formula (see [4, Corollary 2.43]) says that |λj |2 = O(j
1

3 ) as j →∞. It follows
that the L2-integral of hr,q(t; p) can be computed term by term:

∫
Y
|hr,q(t, p)|2dp =

∑
j

e−2λ2
j t|αj(q)|2

for any t > 0. Divide the summation into two parts: |λj | < 10 and |λj | ≥ 10.
According to Corollary 3.3(i), the first part is less than or equal to c2r.

For the second part, note that

t

∞∑
i=0

e−2(k+i)t =
t

1− e−2t
e−2kt ≥ 1

2
e−2kt

for any k ≥ 0 and t > 0. By the trick of summation by parts,

∞∑
k=100

⎛
⎝2te−2kt

∑
|λj |2<k+1

|ψj(q)|2
⎞
⎠ ≥ ∞∑

k=100

⎛
⎝ 2te−2kt

1− e−2t

∑
k≤|λj |2<k+1

|ψj(q)|2
⎞
⎠

≥
∞∑

k=100

⎛
⎝e−2kt

∑
k≤|λj |2<k+1

|ψj(q)|2
⎞
⎠

≥
∑

|λj |≥10

e−2λ2
j t|αj(q)|2.

Hence, it suffices to estimate
∑∞

k=100 te
−2kt(

∑
|λj |2<k+1 |ψj(q)|2). When k ≤

[ 110r], apply Corollary 3.3(i) on
∑

|λj |2<k+1 |ψj(q)|2; when k > [ 110r], apply
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Corollary 3.7 on
∑

|λj |2<k+1 |ψj(q)|2. It follows that

∑
10≤|λj |

e−2λ2
j t|αj(q)|2 ≤ c2t

⎛
⎝ [ 1

10
r]∑

k=100

e−2ktrk
1

2

⎞
⎠+ c2t

⎛
⎝ ∞∑

k=[ 1

10
r]

e−2ktk
3

2

⎞
⎠

≤ c3t

(
r

∫ ∞

100
e−2ktk

1

2dk +

∫ ∞

1

10
r
e−2ktk

3

2dk

)
.

Note that ∫ ∞

0
e−2ktk

1

2dk = (32)−
1

2π
1

2 t−
3

2 , and∫ ∞

1

10
r
e−2ktk

3

2dk ≤ e−
rt

10

∫ ∞

0
e−ktk

3

2dk =
3

4
π

1

2 t−
5

2 e−
1

10
rt.

Combining these estimates gives

∑
j

e−2λ2
j t|αj(q)|2 ≤ c4(r + rt−

1

2 + t−
3

2 e−
1

10
rt),

which finishes the proof of the proposition. �

4.2. Asymptotic expansion of the heat kernel

4.2.1. Local expression of D2
r . Consider the adapted metric d̊s2 =

Ω−2ds2 and the adapted coordinate at q ∈ Y . With respect to the transverse-
Reeb exponential gauge (3.12), the r-dependent terms of Dr appear in the
diagonal. To compute the heat kernel of D2

r , it is convenient to work with a
gauge in which the r-dependent terms appear in the off-diagonal.

What follows explains such a gauge and the local expression of the Dirac
operator. The detail of the computation will appear in §A.2. Consider the
gauge transform

(
�
α,

�
β) = exp

(
− i

2
r(z + S(x, y))

)
(α̊, β̊)

where S(x, y) is some r-independent quadratic polynomial in x and y. Basi-
cally, S(x, y) is constructed from the linear term of μ1 in (3.12). The gauge
transform is defined only on the adapted chart. With respect to this gauge,
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the Dirac operator D̊r takes the following form:

pr1(D̊r

�
ψ) = i∂z

�
α− (∂x − i∂y)

�
β +

r

2
(x− iy)

�
β

+

⎛
⎝ 3∑

j=1

bj1∂j
�
β + rb4

�
β + b2

�
β

⎞
⎠ ,

pr2(D̊r

�
ψ) = (∂x + i∂y)

�
α+

r

2
(x+ iy)

�
α− i∂z

�
β

+

⎛
⎝− 3∑

j=1

b̄j1∂j
�
α+ rb̄4

�
α+ b3

�
α− b0

�
β

⎞
⎠ .

where b(·) are smooth functions on the adapted chart. They satisfy

|b0| ≤ c5,

3∑
j=1

|bj1|+ |b2|+ |b3| ≤ c5|x|, |b4| ≤ c5|x|2(4.6)

where |x| = (x2 + y2 + z2)
1

2 . The Dirac operator D̊r is self-adjoint with re-
spect to 1

2a ∧ da, which is Bdx ∧ dy ∧ dz on this adapted chart.
The local expression of Dr can be derived by

Drψ = Ω−2D̊r(Ωψ) = Ω−1D̊rψ +Ω−2c̊l(dΩ)ψ.

Rescale ψ by ψ̃ = (Ω3B)
1

2ψ, and consider the operator

Drψ̃ = (Ω3B)
1

2Dr

(
(Ω3B)−

1

2 ψ̃
)
.(4.7)

With the local expression of D̊r, the local expression of Dr on ψ̃ = (α̃, β̃) is

Ω−1(q)

[
i∂zα̃− (∂x − i∂y)β̃ + r

2(x− iy)β̃

(∂x + i∂y)α̃+ r
2(x+ iy)α̃− i∂zβ̃

]
+ (rg0 + e0)ψ̃ +

3∑
j=1

fj0∂jψ̃

(4.8)

where e0, fj0 and g0 are smooth (2× 2) matrix-valued functions on the
adapted chart. In other words, we treat ψ̃ = (α̃, β̃) ∈ C2 as a column vector,
and those (2× 2) matrices are endomorphisms of C2. These functions, e0,
fj0 and g0, are determined by the contact form a, the metric ds2 and the
connection A0; in particular, none depend on r. Moreover, there exists a
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constant c6 such that

|e0| ≤ c6,

3∑
j=1

|fj0| ≤ c6|x|, |g0| ≤ c6|x|2

where |x| = (x2 + y2 + z2)
1

2 .
Note that Dr is self-adjoint with respect to the Euclidean measure

dx dy dz and the standard Hermitian pairing on (α̃, β̃). The factor (Ω3B)
1

2

is used to normalize the measure, and this factor is usually referred as the
half-density ([4, p.65]).

The first term on the right hand side of (4.8) will be referred as the
principal part of Dr. Let Lr be the square of the principal part of Dr. It is
equal to

pr1(Lrψ̃) = Ω−2
q

(
− ∂2

z α̃+

(
− 4∂ξ∂ξ̄α̃+ rξ̄∂ξ̄α̃

− rξ∂ξα̃+
r

4
|ξ|2α̃

)
− rα̃

)
,

pr2(Lrψ̃) = Ω−2
q

(
− ∂2

z β̃ +

(
− 4∂ξ∂ξ̄β̃ + rξ̄∂ξ̄β̃

− rξ∂ξβ̃ +
r

4
|ξ|2β̃

)
+ rβ̃

)
(4.9)

where Ωq = Ω(q), and ξ is the complex coordinate x+ iy. Let Rr = −D2
r +

Lr be the remainder part of −D2
r . By squaring (4.8), Rr has the following

expression:

Rr = (e2 + rf2 + r2h2) +

3∑
j=1

(ej3 + rgj3)∂j +

3∑
j,k=1

fjk3 ∂j∂k(4.10)

where e, f, g and h’s are (2× 2) matrix-valued functions on the adapted
chart. They do not depend on r, and have the following significance:

|e| ≤ c7, |f| ≤ c7|x|, |g| ≤ c7|x|2, |h| ≤ c7|x|3(4.11)

for all subscripts and superscripts. It is not hard to see that Lr is self-adjoint
with respect to dx dy dz, and thus Rr = −D2

r + Lr is also self-adjoint.
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As a second order elliptic operator for C2 valued functions on R3, the
heat kernel of Lr is given by the Mehler’s formula [4, §4.2]. Let

κr(t; (ξ1, z1), (ξ2, z2))(4.12)

= (4π)−
3

2Ωqt
− 1

2 exp

(
−Ω2

q(z1 − z2)
2

4t

)
r

sinh(Ω−2
q rt)

× exp
(
−r

4
coth(Ω−2

q rt)|ξ1 − ξ2|2 − r

4
(ξ̄1ξ2 − ξ1ξ̄2)

)
.

The function κr is the heat kernel of (4.9) without the last term, −rα̃ or
+rβ̃. It follows that the heat kernel of Lr is

Kr(t; (ξ1, z1), (ξ2, z2)) = κr(t; (ξ1, z1), (ξ2, z2))

[
eΩ

−2
q rt 0

0 e−Ω−2
q rt

]
.(4.13)

4.2.2. Trace of the heat kernel. The first component of hr,q(t; p) at
p = q is canonically identified with a scalar, which is

∑
j e

−λ2
j t|αj(q)|2. The

following theorem studies its asymptotic expansion.

Theorem 4.2. There exists a constant c9 determined by the contact form
a, the conformally adapted metric ds2 and the connection A0 such that:∣∣∣∣∣∣

⎛
⎝∑

j

e−λ2
j t|αj(q)|2

⎞
⎠− 1

4π
3

2

Ω−2
q rt−

1

2

∣∣∣∣∣∣
≤ c9(t

− 1

2 + r
9

2 t4 + t−
3

2 e−
1

2
rt + r

7

2 e
− 1

c9t )

for any r ≥ c9, t ≤ 1 and q ∈ Y .

Proof. (Step 1: the heat equation) Let x, y, z be the adapted coordinate
centered at q. Suppress the subscript q in hr,q for brevity. Let χ0 and χ to

be the standard cut-off functions which depends on |x| = (x2 + y2 + z2)
1

2

such that{
χ0(|x|) = 1 when |x| ≤ 1

128�a,

χ0(|x|) = 0 when |x| ≥ 1
64�a,

{
χ(|x|) = 1 when |x| ≤ 1

32�a,

χ(|x|) = 0 when |x| ≥ 1
16�a.

Consider

h̃r = χ0 hr(Ω
3B)

1

2 .

With respect to the transverse-Reeb exponential gauge twisted by
exp(− i

2r(z + S(x, y))) as in §4.2.1, regard h̃r as a C2 valued functions on
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(0,∞)× R3. Since hr obeys the heat equation, χ0hr satisfies

∂

∂t
(χ0hr) = −χ0D

2
rhr = −D2

r(χ0hr) + (d∗dχ0)hr − 2∇∇χ0
hr.

Multiply it by (Ω3B)
1

2 , and use (4.7) to obtain the heat equation for h̃r:

∂

∂t
h̃r = −D2

rh̃r + (d∗dχ0)hr(Ω
3B)

1

2 − 2(Ω3B)
1

2∇∇χ0
hr,

⇒ ∂

∂t
h̃r + Lrh̃r = χRrh̃r + (d∗dχ0)hr(Ω

3B)
1

2 − 2(Ω3B)
1

2∇∇χ0
hr.(4.14)

With the dummy factor χ, the operator χRr is globally defined on R3. When
t→ 0, the condition (4.5) implies that

lim
t→0

h̃r =

[
Ω
− 3

2
q δ0( · )

0

]
.(4.15)

where δ0 is the Dirac measure at the origin of R3. The measure on R3 is the
standard one, dx dy dz.

(Step 2: parametrix ) For any smooth, C2 valued function ϕ(t;x) on
(0,∞)× R3, define K ∗ ψ to be the following function

(K ∗ ψ)(t;x) =
∫ t

0

∫
R3

Kr(s;x,x1)(χRr(ϕ))(t− s;x1)dx1ds(4.16)

where x = (x, y, z) and dx is the standard measure on R3. Set k̆r(t;x) to be
the following C2 valued function

k̆r(t;x) =
(
Ω
− 3

2
q κr(t;x, 0) exp(Ω

−2
q rt), 0

)
,

and set kr(t;x) to be

k̆r(t;x) +

∫ t

0

∫
R3

Kr(s;x,x1)
(
(d∗dχ0)hrA

1

2 − 2A
1

2∇∇χ0
hr
)
(t− s;x1)dx1ds.

(4.17)

Note that k̆r(t;x) solves
∂
∂t + Lr = 0, and satisfies the initial condition (4.15).
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By virtue of (4.14) and (4.15), the C2 valued function h̃r obeys:

h̃r = kr +K ∗ kr +K ∗ (K ∗ h̃r)(4.18)

= (1 +K∗)(k̆r) +K ∗ (K ∗ h̃r) + (1 +K∗)(kr − k̆r).

It suffices to examine the right hand side at x = 0 to prove the theorem.

(Step 3: Properties of κr) In this step, we explain four ingredients
for estimating the convolution operator K∗. These ingredients follow from
straightforward computations, and the detail can be safely left to the reader.

Here is the first property. For any non-negative integer m, there exists
a constant c′m which is independent of x1,x2 ∈ R3 and r, t > 0 such that

• ∣∣(∂m
x1
κr)(t; 0,x1)

∣∣ ≤ c′m(t−
m

2 + r
m

2 )|κr(t; 0, x1

2 )| where ∂x1
means the

first order derivative in any component of x1;

• |x1|m
∣∣κr(t; 0,x1)

∣∣ ≤ c′m t
m

2 |κr(t; 0, x1

2 )|;
• ∣∣(∂x2

κr)(t;x1,x2)
∣∣ ≤ c′1

(
t−

1

2 + r
1

2 + r|x1|
)∣∣κr(t; x1

2 , x2

2 )
∣∣;

• suppose that f is a function on R3 with |f(x1)− f(x2)| ≤ c10|x1 − x2|
and f(0) = 0, then

∣∣f(x2)(∂
2
x2
κr)(t;x1,x2) + f(x1)(∂x1

∂x2
κr)(t;x1,x2)

∣∣
≤ c10c

′
2

(
(t−

1

2 + r
1

2 )(1 + r|x1|2 + r|x2|2)
+ (r2|x1|3 + r2|x2|3)

) ∣∣∣κr (t; x1

2
,
x

2

)∣∣∣ .
These inequalities are based on the facts that |s|m exp(−s2) ≤ c′m exp(− s2

2 )
and {

1
c11

(rt)−1 ≤ coth(Ω−2
q rt) ≤ c11(rt)

−1 when rt ≤ 1,
1
c11
≤ coth(Ω−2

q rt) ≤ c11 when rt ≥ 1.

What follows is the second property: for any non-negative integers m
and n, there exists a constant c′′m,n > 0 which is independent of x2 ∈ R3 and
r, t > 0 such that

∫ t

0

(∫
R3

s
m−1

2

∣∣κr(s;x1,x2)
∣∣ (t− s)

n−1

2

∣∣κr(t− s; 0,x1)
∣∣dx1

)
ds(4.19)

≤ c′′m,nt
m+n

2

∣∣κr(t; 0, x2

2
)
∣∣.
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The third property is an integral estimate on κre
Ω−2

q rt over R3. There
exists a constant c12 which is independent r, t > 0 such that

∫
R3

∣∣κr(t; 0,x)eΩ−2
q rt
∣∣2dx ≤ c13rt

− 1

2
e2Ω

−2
q rt

sinh(2Ω−2
q rt)

(4.20)

≤ c12(rt
− 1

2 + t−
3

2 ).

One can compare this estimate with Proposition 4.1.
The last property is about the L2-integral of κr away from the origin. For

any non-negative integer m, there exists a constant c′′′m which is independent
of r, t > 0 such that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫
|x|≥ 1

256
�a

∣∣κr(t; 0,x)eΩ−2
q rt
∣∣2dx ≤ c′′′0 (1 + r2t2)e

− 1

c′′′
0

t ,

∫ t

0

∫
|x|≥ 1

256
�a

|x|−m
∣∣κr(t− s;x, 0)eΩ

−2
q r(t−s)

∣∣ ∣∣κr(s; 0,x)eΩ−2
q rs
∣∣dxds

≤ c′′′m(1 + r2t2)e
− 1

c′′′mt .

(4.21)

These two inequalities are based on the fact that |κr(t; 0,x)eΩ−2
q rt| is less

than c14(1 + rt)t−
3

2 exp(− |x|2
8t ).

(Step 4: asymptotics of (1 +K∗)(k̆r)) The value of pr1(k̆r) at x = 0 is

Ω
− 3

2
q κr(t; 0, 0)e

Ω−2
q rt = (4π)−

3

2Ω
− 1

2
q t−

1

2
reΩ

−2
q rt

sinh(Ω−2
q rt)

=
1

4π
3

2

Ω
− 1

2
q rt−

1

2 + (4π)−
3

2Ω
− 1

2
q rt−

1

2
e−Ω−2

q rt

sinh(Ω−2
q rt)

and hence ∣∣∣∣pr1(k̆r)(t; 0)− 1

4π
3

2

Ω
− 1

2
q rt−

1

2

∣∣∣∣ ≤ c17(t
− 3

2 e−
1

2
rt + rt−

1

2 e−
1

2
rt).(4.22)

The value of pr1(K ∗ k̆r) at x = 0 is

∫ t

0

∫
R3

eΩ
−2
q rtκr(t− s;x, 0)(χR(1,1)

r (κr))(s;x, 0) dx ds

where R
(1,1)
r is the (1, 1)-component of Rr. To elaborate, note that all the

terms in (4.10) has “odd degree” leading order term except the e2-term.
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For instance, consider the term rf2. There exist constants c̀1, c̀2, c̀3 and c̀

such that |f(1,1)2 −∑3
j=1 c̀jxj | ≤ c̀|x|2 on the adapted chart. Since

∫
R3

(
κr(t−

s;x, 0)(
∑3

j=1 c̀jxj)κr(s;x, 0)
)
dx = 0,

r

∣∣∣∣
∫ t

0

∫
R3

eΩ
−2
q rtκr(t− s;x, 0)χf

(1,1)
2 κr(s;x, 0) dx ds

∣∣∣∣
≤ r

∫ t

0

∫
R3

(1− χ)

∣∣∣∣∣∣
3∑

j=1

c̀jxj | |κr(t− s;x, 0)eΩ
−2
q r(t−s)

∣∣∣∣∣∣|κr(s;x, 0)eΩ
−2
q rs| dx ds

+ c̀r

∫ t

0

∫
R3

eΩ
−2
q rt|x|2 |κr(t− s;x, 0)| |κr(s;x, 0)| dx ds

≤ c18
(
rt

1

2 (1 + r2t2)e
− 1

c18t + rt2|κr(t; 0, 0)eΩ−2
q rt|) ≤ c19(rt

1

2 + r3t
5

2 )

By this trick and the properties in step 3,

∣∣ pr1(K ∗ k̆r)(t; 0)∣∣(4.23)

≤ c19(t
− 1

2 + r
1

2 + rt
1

2 + r
3

2 t+ r2t
3

2 + r
5

2 t2 + r3t
5

2 )

≤ c20(t
− 1

2 + r3t
5

2 ).

The last inequality is obtained by considering whether rt ≥ 1 or rt ≤ 1.

(Step 5: estimate K ∗ (K ∗ h̃r)) Since Rr is a self-adjoint operator, per-
forming integration by parts leads to the following equation:

(K ∗ (K ∗ h̃r))(t; 0) =
∫ t

0

∫
R3

(Q(s;x2))
T h̃r(t− s;x2) dx2ds,(4.24)

where Q(s;x2) is equal to∫ s

0

∫
R3

(
Rr,x2

(
χ(x2)Kr(s1;x1,x2)

))(
Rr,x1

(
χ(x1)Kr(s− s1; 0,x1)

))
dx1ds1.

Here, T means the transpose of the matrix, and Rr is (4.10) with all the
coefficient functions being complex conjugated.

Let q1(s;x2) be the first column of Q(s;x2). With the first two properties
of step 3, there exists a constant c21 which is independent of x ∈ R3 and
r, s > 0 such that

|q1(s;x2)| ≤ c21(s+ 1 + r4s4)
∣∣∣κr (s; 0, x2

4

)
eΩ

−2
q rs
∣∣∣ .
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By (4.20), ∫
R3

|q1(s;x2)|2dx2 ≤ c22(s+ 1 + r4s4)2(rs−
1

2 + s−
3

2 ).(4.25)

It follows from the Cauchy–Schwarz inequality on (4.24) that

∣∣ pr1(K ∗ (K ∗ h̃r))(t; 0)∣∣ ≤
∫ t

0
||q1(s;x)||L2(R3) ||h̃r(t− s;x)||L2(R3) ds.

Then invoke Proposition 4.1 and (4.25) to conclude that∣∣ pr1(K ∗ (K ∗ h̃r))(t; 0)∣∣(4.26)

≤ c23

∫ t

0
(s+ 1 + r4s4)(r

1

2 s−
1

4 + s−
3

4 )

× (r
1

2 + r
1

2 (t− s)−
1

4 + (t− s)−
3

4 )ds

≤ c24
(
(t

1

2 + t2) + (t−
1

2 + r
9

2 t4)
)
.

(Step 6: estimate (1 +K∗)(kr − k̆r)) After performing integration by
parts on the last term of (4.17) and applying the Cauchy–Schwarz inequality,
| pr1(kr − k̆r)(t; 0)| is less than

c25

∫ t

0

(∫
supp(dχ)

∣∣eΩ−2
q rs(r + ∂x)(κr)(s; 0,x)

∣∣2dx
) 1

2

||χhr(t− s;x)||L2(R3) ds.

According to Proposition 4.1 and the properties in step 3,

| pr1(kr − k̆r)(t; 0)| ≤ c25r
2e

− 1

c25t .(4.27)

With the similar integration by parts argument,

| pr1(K ∗ (kr − k̆r))(t; 0)| ≤ c26r
7

2 e
− 1

c26t .(4.28)

(Step 7 ). All the terms on the right hand side of (4.18) have been esti-
mated. It follows from (4.22), (4.23), (4.26), (4.27) and (4.28) that∣∣∣∣pr1(h̃r)(t; 0)− 1

4π
3

2

Ω
− 1

2
q rt−

1

2

∣∣∣∣ ≤ c27(t
− 1

2 + r
9

2 t4 + t−
3

2 e−
1

2
rt + r

7

2 e
− 1

c27t ).

Since hr,q(t; q) = Ω
− 3

2
q h̃r(t; 0), this completes the proof of Theorem 4.2. �
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5. The spectral flow

For any r ≥ 2, let Er be the following configuration of eigenvalues:

Er =
{
(r, λ) ∈ R

2
∣∣ 1 < r < r, |λ|2 < 1

9
r and λ is an eigenvalue of Dr

}
.

(5.1)

According to [16, §5.1], the set Er consists of continuous, piecewise smooth
curves which have the following properties.

• These curves are mutually disjoint in the sense of counting multiplici-
ties. In particular, suppose that (r, λ) ∈ Er and dimker(Dr − λ I) = k,
then there are exactly k curves passing through (r, λ).

• The boundary of these curves satisfies λ2 = 1
9r or r ∈ {1, r}.

• These curves is parametrized by r.

There is no canonical way to construct these curves, but any method will
suffice. With this understood, we write Er = {(r, λj(r)) | 1 ≤ j ≤ Jr} where
Jr is the total number of curves, and each λj is a continues, piecewise smooth
function defined over a sub-interval of (1, r).

Let t(r) be a positive, monotone decreasing, smooth function of r. A
specific choice of t(r) will be made at the end of §5.1. With such a function,
define an orientation preserving diffeomorphism from R to (−( π

t(r))
1

2 , ( π
t(r))

1

2 )
as follows:

Φr(λ) =

∫ λ

0
e−u2 t(r) du.(5.2)

Its rescaling defines an orientation preserving diffeomorphism from
[−1

3r
1

2 , 13r
1

2 ] to [−1
2 ,

1
2 ]:

Ψr(λ) =
1

2

Φr(λ)

Φr(
1
3r

1

2 )
.(5.3)

We define the Ψ-displacement of Er to be the following:

∫ r

1

dΨr(Er)
dr

dr =

Jr∑
j=1

∫
Dom(λj)

dΨr(λj(r))

dr
dr(5.4)

where Dom(λj) ⊂ (1, r) is the domain of λj(r).
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The Ψ-displacement of Er is closely related to the spectral flow function
fa(r). The behavior of the Ψ-displacement will be studied in detail in §5.1. In
§5.2, we will use the Ψ-displacement to estimate the spectral flow function.
§5.3 is a digression to discuss the effect of using different connections on
det(S).

5.1. The Ψ-displacement

At a differentiable point of λj(r), the integrand of (5.4) is

dΨr(λj)

dr
=

λ′
je

−λ2
j t

2Φr(
1
3r

1

2 )
− Φr(λj)r

− 1

2 e−
1

9
rt

12
(
Φr(

1
3r

1

2 )
)2

+
Φr(λj)

( ∫ 1

3
r

1
2

0 u2e−u2tdu
)− Φr(

1
3r

1

2 )
( ∫ λj

0 u2e−u2tdu
)

2
(
Φr(

1
3r

1

2 )
)2 t′

where prime means taking derivative in r. After integration by parts, the
numerator of the last term is equal to

Φr(λj)

(∫ 1

3
r

1
2

0
u2e−u2tdu

)
− Φr

(
1

3
r

1

2

)(∫ λj

0
u2e−u2tdu

)

=
1

2t
Φr(λj)

(
Φr(

1

3
r

1

2 )− 1

3
r

1

2 e−
1

9
rt
)− 1

2t
Φr(

1

3
r

1

2 )
(
Φr(λj)− λje

−λ2
j t
)

=
1

2t

(
λje

−λ2
j tΦr(

1

3
r

1

2 )− 1

3
r

1

2 e−
1

9
rtΦr(λj)

)
.

With the help of this computation, let

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ̆(r) =
1

2

Jr∑
j=1

∫
Dom(λj)

(
Φr

(
1

3
r

1

2

))−1(
λ′
je

−λ2
j t
)
dr,

Ψ̇(r) =
1

4

Jr∑
j=1

∫
Dom(λj)

(
Φr

(
1

3
r

1

2

))−1

t′t−1
(
λje

−λ2
j t
)
dr,

Ψ̈(r) = − 1

12

Jr∑
j=1

∫
Dom(λj)

(
Φr

(
1

3
r

1

2

))−1

(r−
1

2 + r
1

2 t−1t′)e−
1

9
rtΦr(λj) dr.

(5.5)

Then the Ψ-displacement of Er is equal to Ψ̌(r) + Ψ̇(r) + Ψ̈(r).
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Remark 5.1. The above integrals can be rewritten as

Jr∑
j=1

∫
Dom(λj)

F (λj(r))dr =

∫ r

1

∑
|λj |< 1

3
r

1
2

F (λj)dr.

5.1.1. Asymptotics of Ψ̆(r). The purpose of this subsection is to esti-

mate Ψ̆(r). Before doing that, we have to estimate
(
Φr(

1
3r

1

2 )
)−1

.

Lemma 5.2. For any r ≥ 1 and 0 < t < 1 satisfying rt ≥ 50,

∣∣∣∣∣
(
Φr

(
1

3
r

1

2

))−1

−
(
4

π

) 1

2

t
1

2

∣∣∣∣∣ ≤ 6 r−
1

2 e−
1

9
rt,

and 1
10 t

1

2 ≤ (Φr(
1
3r

1

2 )
)−1 ≤ 10 t

1

2 .

Proof. The quantity Φr(
1
3r

1

2 ) is equal to (π4 )
1

2 t−
1

2

(
1− ( 4π )

1

2

∫∞
1

3
(rt)

1
2
e−v2

dv
)
.

By integration by parts,

∫ ∞

1

3
(rt)

1
2

e−v2

dv =
3

2
(rt)−

1

2 e−
1

9
rt − 1

2

∫ ∞

1

3
(rt)

1
2

v−2e−v2

dv ≤ 3

2
(rt)−

1

2 e−
1

9
rt,

and the first assertion follows. The second assertion is a direct consequence
of the first one. �

The following proposition uses the heat kernel expansion to estimate the
function Ψ̆(r).

Proposition 5.3. There exists a constant c1 determined by the contact
form a, the conformally adapted metric ds2 and the connection A0 with the
following property. Suppose that t(r) satisfies 50r−1 < t(r) < 1 when r ≥ c1.
Then

∣∣∣∣Ψ̆(r)− Ψ̆(c1) +
r2

32π2

∫
Y
a ∧ da

∣∣∣∣ ≤ c1

∫ r

c1

(
(rt)

9

2 + re−
1

20
rt
)
dr

for any r ≥ 2c1. (The function t(r) is abbreviated as t.)
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Proof. By (2.4), the slope of λj(r) is given by

λ′
j(r) =

1

2

∫
Y
Ω−1
q

(|αj(q)|2 − |βj(q)|2
)

where Ωq = Ω(q). It follows that

∑
|λj |< 1

3
r

1
2

(λ′
je

−λ2
j t) =

1

2

∫
Y
Ω−1
q

∑
|λj |< 1

3
r

1
2

e−λ2
j t
(|αj(q)|2 − |βj(q)|2

)
(5.6)

where {ψj = (αj , βj)} is a set of L2-orthonormal eigensections.
By Corollary 3.7 and with the same argument as that for Proposition 4.1,

∑
|λψ|≥ 1

3
r

1
2

e−λ2
ψt ≤

∞∑
k=[ 1

9
r]

te−kt
(
#{λψ | λ2

ψ < k + 1}) ≤ c2t
− 3

2 e−
1

20
rt(5.7)

where the summation is indexed by an orthonormal set of eigensections of
Dr with eigenvalue |λψ| ≥ 1

3r
1

2 . It follows from Theorem 4.2 and (5.7) that∣∣∣∣∣∣∣
1

2

∫
Y
Ω−1
q

⎛
⎜⎝ ∑

|λj |< 1

3
r

1
2

e−λ2
j t|αj(q)|2

⎞
⎟⎠ dq − 1

8π
3

2

rt−
1

2

∫
Y
Ω−3
q

∣∣∣∣∣∣∣(5.8)

≤ c3(t
− 1

2 + r
9

2 t4 + t−
3

2 e−
1

20
rt + r

7

2 e
− 1

c3t ).

Note that the volume form of ds2 is 1
2Ω

3a ∧ da. According to Proposi-
tion 2.2(i),

∫
Y
Ω−1
q

⎛
⎜⎝ ∑

|λj |< 1

3
r

1
2

e−λ2
j t|βj(q)|2

⎞
⎟⎠ ≤ c4r

−1

∫
Y
Ω−1
q

⎛
⎜⎝ ∑

|λj |< 1

3
r

1
2

e−λ2
j t|αj(q)|2

⎞
⎟⎠ .

(5.9)

It follows from (5.6), (5.8) and (5.9) that∣∣∣∣∣∣∣
∑

|λj |≥ 1

3
r

1
2

(λ′
je

−λ2
j t)− rt−

1

2

16π
3

2

∫
Y
a ∧ da

∣∣∣∣∣∣∣
≤ c4(t

− 1

2 + r
9

2 t4 + t−
3

2 e−
1

20
rt + r

7

2 e
− 1

c3t ).
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This inequality and Lemma 5.2 find a constant c5 such that

∣∣∣∣∣∣∣
∑

|λj |≥ 1

3
r

1
2

(
λ′
je

−λ2
j t

2Φr(
1
3r

1

2 )

)
− r

16π2

∫
Y
a ∧ da

∣∣∣∣∣∣∣ ≤ c5
(
(rt)

9

2 + re−
1

20
rt
)
.

for any r ≥ c5 and t ∈ (50r−1, 1). The upper bound has been simplified using
the condition t ≥ 50r−1. Integrating the inequality against dr completes the
proof of the proposition. �

5.1.2. Estimate Ψ̇(r). If we simply consider the magnitude of the in-
tegrand of Ψ̇(r), we can only conclude that Ψ̇(r) is about of order r

3

2 . To
proceed, note that the sign of the integrand of Ψ̇(r) depends on the sign of
λ. It suggests that the cancellation argument may lead to a better estimate.
In the following lemma, the ‘leading order terms’ can be integrated (step 2
below), and cancel with each other (step 4 below). However, this trick relies
on the fact that λ′ = 1

2 +O(r−1), and only works for an adapted metric.

Lemma 5.4. Suppose that ds2 is an adapted metric, namely Ω ≡ 1. There
exist constants c7 and c8 determined by the contact form a, the adapted
metric ds2 and the connection A0 such that the following holds. Suppose
that t(r) satisfies 50r−1 < t(r) < 1 when r ≥ c7. Then, |Ψ̇(r)− Ψ̇(c7)| is less
than

c7

(
1 + sup

c7<r<c7+c8
{|t′′|+ |t′|2}

+ c7r sup
c7<r<r

{
r

5

2 (t−
1

2 |t′′|+ rt−
1

2 |t′|2 + r
1

2 |t′|e− 1

9
rt) + r

3

2 t−
1

2 |t′|}).
when r ≥ 2c7. (The function t(r) is abbreviated as t.)

Proof. (Step 1: rewrite Ψ̇(r)) Let c9 be a constant greater than the constants
of Proposition 2.2 and Corollary 3.3. Since the metric is adapted, (3.3) says
that |λ′

j(r)− 1
2 | ≤ c9r

−1 provided λj(r) is differentiable at r ∈ (c9, r).
Granted what was said, consider the curves in the interior of Er\E4c9 for

any r ≥ 8c9. For each curve λj(r), denote its domain by (rj , r̂j) ⊆ (4c9, r).
Since |λ′

j(r)− 1
2 | ≤ c9r

−1 on the smooth strata and Er is constrained by

λ2 = 1
9r, there exists a constant c10 > 0 such that r̂j − rj ≤ c10r

1

2

j .
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Denote t(rj) by tj and t′(rj) by t′j . Rewrite the integral of 4Ψ̇ along λj(r)
as follows:

∫ r̂j

rj

(
Φr

(
1

3
r

1

2

))−1

t−1t′λje
−λ2

j tdr(5.10)

=

∫ r̂j

rj

(
Φrj

(
1

3
r

1

2

j

))−1

t−1
j t′jλje

−λ2
jtj (2λ′

j)dr

+

∫ r̂j

rj

(
Φrj

(
1

3
r

1

2

j

))−1

t−1
j t′jλje

−λ2
jtj (1− 2λ′

j)dr

+

∫ r̂j

rj

((
Φr

(
1

3
r

1

2

))−1

t−1t′λje
−λ2

j t

−
(
Φrj

(
1

3
r

1

2

j

))−1

t−1
j t′jλje

−λ2
jtj

)
dr.

(Step 2: estimate the integrals) The first integral on the right hand side
of (5.10) can be evaluated, and is equal to

(
Φrj

(
1

3
r

1

2

j

))−1

t−2
j t′j(e

−(λj(rj))2tj − e−(λj(r̂j))2tj ).

With the help of Lemma 5.2, its magnitude is no greater than

10t
− 1

2

j |t′j | |(λj(r̂j))
2 − (λj(rj))

2|.(5.11)

Since |λ′
j(r)− 1

2 | ≤ c9r
−1 and r̂j − rj ≤ c10r

1

2

j , the magnitude of the sec-
ond integral on the right hand side of (5.10) is less than

c11

(
Φrj

(
1

3
r

1

2

j

))−1

t−1
j |t′j |r

− 1

2

j sup
rj<r<r̂j

{|λj(r)|
} ≤ c12t

− 1

2

j |t′j |.(5.12)

The inequality uses Lemma 5.2.
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To estimate the third integral on the right hand side of (5.10), note that∣∣∣∣∣ ddr
((

Φr(
1

3
r

1

2 )

)−1

t−1t′
)∣∣∣∣∣

≤ c13

((
Φ(

1

3
r

1

2 )

)−1 (
t−1|t′′|+ t−2|t′|2 + rt−1|t′|2)

+

(
Φ

(
1

3
r

1

2

))−2

t−1|t′|e− 1

9
rt

)
,

and

|e−λ2
j t − e−λ2

jtj | < λ2
j |t− tj | ≤ c14r

3

2

j sup
rj<r<r̂j

{|t′|}.

Using these estimates and Lemma 5.2, the third integral of (5.10) is less
than

c15r
3

2

j sup
rj<r<r̂j

{
t−

1

2 |t′′|+ t−
3

2 |t′|2 + rt−
1

2 |t′|2 + |t′|e− 1

9
rt
}
.(5.13)

The term t−
3

2 |t′|2 can be absorbed by rt−
1

2 |t′|2 when rt ≥ 50.
It follows that the magnitude of (5.10) is less than

10t
− 1

2

j |t′j | |(λj(r̂j))
2 − (λj(rj))

2|(5.14)

+ c16 sup
rj<r<r̂j

{
r

3

2 (t−
1

2 |t′′|+ rt−
1

2 |t′|2 + |t′|e− 1

9
rt) + t−

1

2 |t′|}.
(Step 3: sum up the estimates) The curves in the interior of Er\E4c1 can

be divided into three parts:

J1 = {j | rj = 4c9}, J2 = {j | 4c9 < rj < r̂j < r}, and J3 = {j | r̂j = r}.

It is clear that the cardinality of J1 is independent of r. Thus, the summation
of (5.14) over J1 is less than

c17
(
1 + sup{|t′′|+ |t′|2 : 4c9 < r < 4c9 + 2c10c

1

2

9 }
)
.(5.15)

(Step 4: sum over J2) For any j ∈ J2, the endpoints of λj(r) satisfy
λ2 = 1

9r, and thus

t
− 1

2

j |t′j |
∣∣(λj(r̂j))

2 − (λj(rj))
2
∣∣ ≤ c10t

− 1

2

j |t′j |r
1

2

j .
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It follows that (5.14) is less than

c18 sup
{
r

3

2 (t−
1

2 |t′′|+ rt−
1

2 |t′|2 + r
1

2 |t′|e− 1

9
rt) + r

1

2 t−
1

2 |t′| : rj < r < r̂j
}
.

It follows from 1
4 < λ′

j(r) <
3
4 that there exists a unique r̊j ∈ (rj , r̂j) such

that λj (̊rj) = 0 for each j ∈ J2 . Moreover, each j ∈ J2 contributes to the
spectral flow count with +1 at r̊j . With this understood, Corollary 3.3(ii)
implies that the cardinality of {j ∈ J2 | k ≤ r̊j < k + 1} is less than c9k. It
follows that the summation of (5.14) over {j ∈ J2 | k ≤ r̊j < k + 1} is less
than

(c9k)c18 sup
|r−k|≤2c10k

1
2

and r<r

{
r

3

2 (t−
1

2 |t′′|+ rt−
1

2 |t′|2 + r
1

2 |t′|e− 1

9
rt) + r

1

2 t−
1

2 |t′}

≤ c19 sup
4c9<r<r

{
r

5

2 (t−
1

2 |t′′|+ rt−
1

2 |t′|2 + r
1

2 |t′|e− 1

9
rt) + r

3

2 t−
1

2 |t′|}.
The inequality is obtained by pushing k into the supremum. By chopping
[4c1, r] into sub-intervals of length about 1, the summation of (5.14) over J2
is less than

c20 r sup
4c9<r<r

{
r

5

2 (t−
1

2 |t′′|+ rt−
1

2 |t′|2 + r
1

2 |t′|e− 1

9
rt) + r

3

2 t−
1

2 |t′|}.(5.16)

(Step 5: sum over J3) For any j ∈ J3, let λj(r) = limr→r λj(r). It is clear

that |λj(r)| ≤ 1
3r

1

2 . Due to the properties of λj(r) explained at the begin-
ning of §5, {λj(r) | j ∈ J3} are exactly all the eigenvalues of Dr between

(−1
3r

1

2 , 13r
1

2 ]. With this understood, Corollary 3.3(i) implies that the cardi-

nality of J3 is less than c9r
3

2 . It follows that the summation of (5.14) over
J3 is less than

c21r
3

2 sup
r−c10

√
r<r<r

{
r

3

2 (t−
1

2 |t′′|+ rt−
1

2 |t′|2 + r
1

2 |t′|e− 1

9
rt) + r

1

2 t−
1

2 |t′|}.(5.17)

(Step 6 ) Combining (5.15), (5.16) and (5.17) completes the proof of the
lemma. �

When the metric is conformally adapted, we simply leave Ψ̇(r) as

1

4

∫ r

1

⎛
⎜⎝Φ

(
1

3
r

1

2

)−1

t′t−1
∑

|λj |< 1

3
r

1
2

(λje
−λ2

j t)

⎞
⎟⎠ dr.(5.18)
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In the sequel of this paper [19], we will focus on certain types of contact
form, and (5.18) will be studied by other methods.

5.1.3. Estimate Ψ̈(r). The integrand of Ψ̈(r) contains a factor of e−
1

9
rt,

which makes it much easier to handle.

Lemma 5.5. There exists a constant c22 determined by the contact form a,
the conformally adapted metric ds2 and the connection A0 with the following
significance. Suppose that t(r) satisfies 50r−1 < t(r) < 1 when r ≥ c22. Then∣∣∣Ψ̈(r)− Ψ̈(c22)

∣∣∣ ≤ c22

∫ r

c22

∣∣r + r2t−1t′
∣∣e− 1

9
rt dr

for any r ≥ 2c22. (The function t(r) is abbreviated as t.)

Proof. According to Corollary 3.3(i),

∑
|λj |< 1

3
r

1
2

(
Φr

(
1

3
r

1

2

))−1

Φr(λj) ≤ c9r
3

2

for any r ≥ c9, and the lemma follows. �
5.1.4. Estimate the Ψ-displacement. We now choose the function t(r),
and specify the asymptotic behavior of the Ψ-displacement as r→∞.

Proposition 5.6. There exists a constant c25 determined by the contact
form a, the conformally adapted metric ds2 and the connection A0 with the
following significance. Let t(r) be a positive, monotone decreasing, smooth
function, which is equal to 20r−1 log r when r≥c25. Then, the Ψ-displacement
associated with t(r) satisfies∣∣∣∣

(∫ r

1

dΨr(Er)
dr

dr

)
− r2

32π2

∫
Y
a ∧ da

∣∣∣∣
≤ c25

⎛
⎜⎝r(log r)

9

2 +

∫ r

c25

⎛
⎜⎝r−

3

2 log r
∑

|λj |< 1

3
r

1
2

(λje
−λ2

j t)

⎞
⎟⎠ dr

⎞
⎟⎠

for any r ≥ 2c25. Moreover, if the metric is adapted (Ω ≡ 1), then∣∣∣∣
(∫ r

1

dΨr(Er)
dr

dr

)
− r2

32π2

∫
Y
a ∧ da

∣∣∣∣ ≤ c25r(log r)
9

2

for any r ≥ 2c25.
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Proof. We first consider the case when the metric is adapted. Let c26 be a
constant greater than the constant given by Proposition 5.3, Lemma 5.4 and
Lemma 5.5. According to Proposition 5.3,∣∣∣∣Ψ̆(r)− Ψ̆(c26)− r2

32π2

∫
Y
a ∧ da

∣∣∣∣ ≤ c27r(log r)
9

2

for any r ≥ 2c26. By Lemma 5.4 and Lemma 5.5,

∣∣Ψ̇(r)− Ψ̇(c26)
∣∣ ≤ c28r(log r)

3

2 ,∣∣Ψ̈(r)− Ψ̈(c26)
∣∣ ≤ c28r

for any r ≥ 2c26. Since the Ψ-displacement at c26 is independent of r, the
second assertion of the proposition follows.

When the metric is only conformally adapted, Proposition 5.3 and
Lemma 5.5 still holds. Instead of Lemma 5.4, we apply Lemma 5.2 and
(5.18) to estimate Ψ̇(r). This completes the proof of the proposition. �

5.2. Estimate the spectral flow

The main purpose of this subsection is to analyze the difference between the
spectral flow function and the Ψ-displacement.

Proposition 5.7. There exists a constant c33 determined by the contact
form a, the conformally adapted metric ds2 and the connection A0 such
that the following holds. Let t(r) be a positive, monotone decreasing, smooth
function, which is equal to 20r−1 log r when r ≥ c33. Then,∣∣∣∣fa(r)−

(∫ r

1

dΨr(Er)
dr

dr

)
− η̇(r)

∣∣∣∣ ≤ c33r

for any r ≥ 2c33. The function η̇(r) is defined by

(
80

π

) 1

2
(
log r

r

) 1

2

⎛
⎝∑

ψ∈V+
r

∫ 1

3
r

1
2

λψ

e−20(r−1 log r)u2

du−
∑
ψ∈V−

r

∫ λψ

− 1

3
r

1
2

e−20(r−1 log r)u2

du

⎞
⎠

where V+
r consists of orthonormal eigensetions of Dr whose eigenvalue be-

longs to (0, 13r
1

2 ), V−
r consists of orthonormal eigensetions of Dr whose eigen-

value belongs to (−1
3r

1

2 , 0), and λψ is the corresponding eigenvalue.
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Proof. (Step 1: fa(r) and the number of curves in Er) Let c34 be a constant
such that 1

10c34 is greater than the constants given by Proposition 2.2 and
Corollary 3.3. For any r ≥ 4c34, consider the curves {λj(r)} in the interior of
Er\Ec34 . For each curve λj(r), denote its domain by (rj , r̂j) ⊆ (c34, r). These
curves can be divided into three parts:

J1 = {j | rj = c34}, J2 = {j | c34 < rj < r̂j < r}, and J3 = {j | r̂j = r}.
Also, let J+

3 ={j ∈ J3 | limr→r λj(r)>0} and J−
3 ={j∈J3 | limr→r λj(r)≤

0}. It is clear that J3 = J+
3 � J−

3 .
Proposition 2.2(ii) implies that 7

20 ≤ λ′ ≤ 9
20 on the smooth strata of

Er\Ec34 . In particular, there are only positive zero crossings for the spectral
flow between c34 and r. Set

Z(c34, r) = {(r, k) ∈ R× N | c34 < r < r, dimkerDr = k}
to be the set of zero crossings between (c34, r). It follows that

−c35 ≤ fa(r)−#{Z(c34, r)} ≤ c34r+ c35.

The c34r in the upper bound comes from the dimension of kerDr, which is
bounded by c34r by Corollary 3.3(i).

According to the properties of λj(r) described at the beginning of §5,
there is an injective map

J : Z(c34, r)→ J1 � J2 � J+
3 such that λJ (r,k)(r) = 0

for any (r, k) ∈ Z(c34, r). The map J may not be unique, but any choice will
suffice. Roughly speaking, J (r, k) is the curve of eigenvalues contributed to
the zero crossing (r, k). Moreover, the map J is almost surjective, possibly
except J1. It follows that∣∣#{Z(c34, r)} −#{J1 � J2 � J+

3 }
∣∣ ≤ c36.

By the triangle inequality,∣∣ fa(r)−#{J1 � J2 � J+
3 }
∣∣ ≤ c37r.(5.19)

(Step 2: count J2 and J3 via the Ψ-displacement) For any j ∈ J2,
the endpoints1 (rj , λj(rj)) and (r̂j , λj(r̂j)) obey λ2 = 1

3r. Due to Proposi-
tion 2.2(ii), λj(rj) < 0 and λj(r̂j) > 0 for any j ∈ J2. It follows that

1To be more precise, λj(rj) = limr→r+j
λj(r) and λj(r̂j) = limr→r̂−j

λj(r).
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Ψrj (λj(rj)) = −1
2 and Ψr̂j (λj(r̂j)) =

1
2 , and hence

∑
j∈J2

∫ r̂j

rj

dΨr(λj(r))

dr
dr = #{J2}.(5.20)

For any j ∈ J+
3 , Ψrj (λj(rj)) = −1

2 and

∫ r

rj

dΨr(λj(r))

dr
dr = Ψr(λj(r))) +

1

2
(5.21)

= 1−
(
Φr

(
1

3
r

1

2

))−1 ∫ 1

3
r

1
2

λj(r)
e−20(r−1 log r)u2

du.

Similarly, for any j ∈ J−
3 , Ψrj (λj(rj)) = −1

2 , and∫ r

rj

dΨr(λj(r))

dr
dr = Ψr(λj(r))) +

1

2
(5.22)

=

(
Φr

(
1

3
r

1

2

))−1 ∫ λj(r)

− 1

3
r

1
2

e−20(r−1 log r)u2

du.

Since 7
20 ≤ λ′ ≤ 9

20 , j ∈ J+
3 �→ λj(r) is a bijection between J+

3 and the spec-

trum of Dr between (0, 13r
1

2 ]. And j ∈ J−
3 �→ λj(r) is a bijection between J−

3

and the spectrum of Dr between (−1
3r

1

2 , 0]. With this understood, summing
up (5.21) over J+

3 and (5.22) over J−
3 gives:

∣∣∣∣∣∣#{J3} −
∑
j∈J+

3

∫ r

rj

dΨr(λj(r))

dr
dr − η̇(r)

∣∣∣∣∣∣ ≤ c38r.(5.23)

The inequality uses Lemma 5.2, Corollary 3.3(i) and the fact that

∫ ∞

0
e−20(r−1 log r)u2

du ≤ c39r
1

2 .

The proposition follows from the triangle inequality on (5.19), (5.20)
and (5.23). �

Theorem 5.8. Suppose that ds2 is an adapted metric, i.e. Ω ≡ 1. There
exists a constant c41 determined by the contact form a, the adapted metric
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ds2 and the connection A0 such that

∣∣∣∣fa(r)− r2

32π2

∫
Y
a ∧ da− η̇(r)

∣∣∣∣ ≤ c41r(log r)
9

2 .

for any r ≥ c41. The function η̇(r) is defined in Theorem 5.7. As a conse-
quence,

∣∣∣∣fa(r)− r2

32π2

∫
Y
a ∧ da

∣∣∣∣ ≤ c41r
3

2 (log r)−
1

2 .

Proof. The first assertion is a direct consequence of Proposition 5.7 and
Proposition 5.6. With the first assertion, it suffices to estimate η̇(r) to prove
the second assertion. By Corollary 3.4,

r−
1

2 (log r)
1

2

∑
ψ∈V+

r

∫ 1

3
r

1
2

λψ

e−20(r−1 log r)u2

du

=
∑
ψ∈V+

r

∫ 1

3
(log r)

1
2

r−
1
2 (log r)

1
2 λψ

e−20s2ds ≤ c42r

[ 1
3
r

1
2 ]∑

k=0

(∫ 1

3
(log r)

1
2

r−
1
2 (log r)

1
2 k

e−20s2ds

)

≤ c42r

(
1

4

√
π

5
+

∫ 1

3
r

1
2

0

∫ 1

3
(log r)

1
2

r−
1
2 (log r)

1
2 k

e−20s2ds dk

)

= c42r

(
1

4

√
π

5
+

∫ 1

3
(log r)

1
2

0

∫ r
1
2 (log r)−

1
2 s

0
e−20s2dk ds

)
≤ c43r

3

2 (log r)−
1

2 .

Clearly, the same estimates holds for the summation over V−
r . This completes

the proof of the theorem. �

This theorem says that the subleading order term of the spectral flow
function is strictly less than O(r

3

2 ). It improves Proposition 5.5 of [16] when
a is a contact form with an adapted metric ds2. Although the improvement
is far from satisfactory, it confirms that the subleading order term is of O(r

3

2 ).
This suggests that η̇(r) should be smaller due to cancellation. In the sequel
of this paper [19], η̇(r) will be shown to be about O(r) for certain types of
contact forms in each isotopy class of contact structures.
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5.3. The base connections

It requires a unitary connection A0 on det(S) to define a Dirac operator on
the spinor bundle S. The main purpose of this subsection is to compare the
spectral flow functions using different connections on det(S).

Proposition 5.9. Suppose that A0 and A1 are two connections on det(S).
Then, there exists a constant c45 determined by the contact form a, the
conformally adapted metric ds2 and the connections A0 and A1 such that∣∣ fa(A0, r)− fa(A1, r)

∣∣ ≤ c45r

for any r ≥ c45.

Proof. Since the spectral flow only depends on the endpoints of the connec-
tion, the difference fa(A1, r)− fa(A0, r) is equal to

(spectral flow from A1 to A0) + (spectral flow from A0 − ira to A1 − ira).

The spectral flow from A1 to A0 is clearly independent of r. Therefore, it
suffices to show that the spectral flow from A0 − ira to A1 − ira is of O(r).

Let D̃t be the Dirac operator associated to (1− t)A0 + tA1 − ira for t ∈
[0, 1]. Suppose that λ(t) is an eigenvalue of D̃t for t ∈ [0, 1], and is continuous,
piecewise smooth in t. By [16, (5.4)],

λ′(t) =
∫
Y

〈
ψt,

1

2
cl(A1 −A0)ψt

〉
(5.24)

provided λ(t) is differentiable at t, where ψt is a unit-normed eigensection
of D̃t with eigenvalue λ(t). It follows that

|λ′(t)| ≤ c46 = 1 +
1

2
sup
Y
|A1 −A0|.(5.25)

We apply Corollary 3.3 to D̃t for any t ∈ [0, 1]. The constant of The-
orem 3.1 depends on the curvature of (1− t)A0 + tA1 and the covariant
derivative of the curvature, and does not blow up for t ∈ [0, 1]. As a result,
there exists a constant c47 determined by a, ds2, A0 and A1 such that the
total number of eigenvalues (counting multiplicity) of D̃t within [−1, 1] is
less than c47r for any r ≥ c47 and any t ∈ [0, 1]. It follows that the spectral
flow from D̃t0 to D̃t0+(1/(2c46)) is less than c47r. Hence, the spectral flow
from A0 − ira to A1 − ira is less than 3c46c47r. It completes the proof of
this proposition. �
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Appendix A.

A.1. The Weitzenböck formula for ∇rψ

The purpose of this subsection is to derive the following formula: suppose
that V is a Hermitian vector bundle with a unitary connection A, then

∇∗
A∇A∇Aψ −∇A∇∗

A∇Aψ = (d∗AFA)ψ −∇Aψ�(2FA +Ricci).(A.1)

for any section ψ of V . When V is a spin-c bundle and A is a fixed connection
perturbed by − i

2ra, (A.1) leads to (3.6).
For simplicity, assume the Riemannian metric on the underlying mani-

fold is flat. Suppose that the connection is A =
∑

j Ajdx
j , then the curvature

is

FA =
1

2

∑
i,j

Fijdx
i ∧ dxj where Fij = ∂iAj − ∂jAi + [Ai,Aj ],

and d∗
A
FA =

∑
i,j(∂jFij + [Aj ,Fij ])dx

i. Note that

ψ;i = ∂iψ + Aiψ where semicolon means covariant derivative ∇A,

ψ;ji − ψ;ij = Fijψ,

ψ;jik − ψ;ijk = (∂kFij + [Ak,Fij ])ψ + Fijψ;k,

ψ;jik − ψ;ikj = (∂kFij + [Ak,Fij ])ψ + Fijψ;k + Fkjψ;i.

It follows that the dxj-component of ∇∗
A
∇A∇Aψ −∇A∇∗

A
∇Aψ is

−
∑
i

ψ;jii +
∑
i

ψ;iij = −
∑
i

(∂iFij + [Ai,Fij ])ψ − 2
∑
i

Fijψ;i.

This proves (A.1) for flat metric.

A.2. Adapted coordinate and transverse-Reeb exponential gauge

The purpose of this subsection is to derive the local expression of the Dirac
equation on the adapted coordinate chart. Suppose that a is a contact form
on Y , and d̊s2 is an adapted metric. Denote the Reeb vector field by v, and
the Levi-Civita connection of d̊s2 by ∇.

Fix a point p ∈ Y . The construction of the adapted chart starts with two
oriented, orthonormal vectors e1 and e2 for ker(a)|p. The choice of e1 and
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e2 is not unique; there is a freedom of SO(2) ∼= S1. We will choose e1 and
e2 to be the eigenvectors of a symmetric map defined from ∇v. This choice
makes it easier to do the local computation.

A.2.1. The choice of the frame. Consider the map N on ker(a)|p de-
fined by

〈N (u1), u2〉 = 〈∇u1
v, J(u2)〉

for any u1, u2 ∈ ker(a)|p. The pairing is the d̊s2 inner product, and J is the
rotation operator on ker(a) defined by da and d̊s2.

Let e1 be a unit-normed vector on ker(a)|p, and let e2 = J(e1). It follows
from d ∗ a = 0 that

〈∇e1v, e1〉+ 〈∇e2v, e2〉 = 0.

It implies that N is a symmetric operator. Choose e1 to be one of the unit-
normed eigenvector of N , and denote its eigenvalue by 1 +N . Namely,

N = 〈N (e1)− e1, e1〉.(A.2)

Another vector e2 is taken to be J(e1). By contracting (e1, e2) with da =
2 ∗ a, we find that

〈∇e1v, e2〉 − 〈∇e2v, e1〉 = 2.

Equivalently, the trace of N is 2. Thus,

−N = 〈N (e2)− e2, e2〉.(A.3)

A.2.2. The adapted coordinate. With e1 and e2 chosen, consider the
adapted coordinate centered at p ∈ Y :

C × I → Y
ϕ0 : ((x, y), 0) �→ expp(xe1 + ye2),
ϕ : ((x, y), z) �→ expϕ0(x,y)(zv).

It follows from the construction that ϕ(x, y, · ) is a integral curve of the
Reeb vector field for any x and y. Therefore, the Reeb vector field v = ∂z.
By (A.2) and (A.3), its covariant derivative at p is

(∇e1v)|p = (1 +N)e2, (∇e2v)|p = (−1 +N)e1.(A.4)

It follows from da = 2 ∗ a that ∇vv vanishes identically.
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Since a(v) = 1 and da(v, · ) = 0, the contact form and its exterior deriva-
tive must be

a = dz + 2a1(x, y)dx+ 2a2(x, y)dy,

da = 2(∂xa2(x, y)− ∂ya1(x, y))dx ∧ dy.
(A.5)

And the volume form is 1
2a ∧ da = B(x, y) dx ∧ dy ∧ dz, where B(x, y) =

∂xa2 − ∂ya1.
To proceed, consider the following frame: parallel transport {e1, e2, v}

along radial geodesics on C0, and then parallel transport along the Reeb
chords. It ends up with an orthonormal frame on C × I, which will be de-
noted by {u1, u2, u3}. We are going to find the transition between {u1, u2, u3}
and {∂z, ∂y, ∂z}.

A.2.3. The Reeb vector field. To express ∂z in terms of {u1, u2, u3},
note that both ∂z = e3 and uj are parallel along the integral curves of v.
Therefore, 〈e3, uj〉 is independent of z, and it suffices to compute these coeffi-
cients on C0. For any (x, y) ∈ C, consider the radial geodesic ϕ0(tx, ty). Let
e3|(tx,ty,0) =

∑
j h

j
3(t)uj , then

dk

dtkh
j
3(t) = 〈(∇ke3)(∂t, . . . , ∂t), uj〉. The Tay-

lor’s theorem and (A.4) imply that

∂z = u3 + y(−1 +N)u1 + x(1 +N)u2 +O(ρ20)uj(A.6)

where ρ0 = (x2 + y2)
1

2 .

A.2.4. The vector fields ∂x and ∂y on the zero slice. Fix (x, y) ∈ C,
and let γ(t, s) = ϕ0(t(x+ s), ty). Denote the variational field ∂

∂s |s=0γ(t, s) by
V (t). It follows from the construction that V (1) = ∂x|(x,y,0). Since V (t) is
a variational field of geodesics, it obeys the Jacobi field equation. With the
initial condition V (0) = 0 and V ′(0) = e1, it follows from the Jacobi equation
that

∂x|(x,y,0) = u1 +O(ρ20)uj .(A.7)

Similarly,

∂y|(x,y,0) = u2 +O(ρ20)uj .

The Jacobi field equation can be used to find all the higher order coefficients,
see [6, chapter 1].
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A.2.5. The vector fields ∂x and ∂y on C × I. Fix ((x, y), z) ∈ C × I,
and let γ̃(t, s) = ϕ(x+ s, y, tz). The variational field Ṽ (t) = ∂

∂s |s=0γ̃(t, s) is

again a Jacobi field. It follows from the construction that Ṽ (1) = ∂x|(x,y,z).
By (A.7), the initial value is

Ṽ (0) = ∂x|(x,y,0) = u1 +O(ρ20)uj .(A.8)

By (A.4), the initial velocity is

Ṽ ′(0) = (∇∂t
J̃(t))|t=0 = (∇J̃(0)∂t) = (∇∂x

ze3)|(x,y,0)(A.9)

= z(1 +N)u2 +O(ρ20)uj .

It follows from the Taylor’s theorem and the Jacobi field equation that

∂x = u1 + z(1 +N)u2 +O(ρ2)uj(A.10)

where ρ = (x2 + y2 + z2)
1

2 . Similarly,

∂y = u2 + z(−1 +N)u1 +O(ρ2)uj .

A.2.6. The contact form. The expansion of ∂x and ∂y can be used to
find out the expansion of a1(x, y) and a2(x, y) in (A.5). The following vector
fields are annihilated by a:

∂x − 〈∂x, ∂z〉∂z = ∂x −
(
y(−1 +N) +O(ρ2)

)
∂z,

∂y − 〈∂y, ∂z〉∂z = ∂y −
(
x(1 +N) +O(ρ2)

)
∂z.

Thus, a = dz + (y(−1 +N) +O(ρ20))dx+ (x(1 +N) +O(ρ20))dy.
The coefficient of volume element B(x, y) is the determinant of the

coefficients of {∂x, ∂y, ∂z} in {u1, u2, u3}. By (A.6) and (A.7), B(x, y) =
1 +O(ρ20).

A.2.7. Trivialization of K−1. Note that u1 and u2 do not necessarily
belong to ker(a). To trivialize the bundle K−1, perform the Gram–Schmidt
process on {v, u1, u2}. Denote the output by {v, e1, e2}. A direct computation
shows that {

e1 = ∂x − y(−1 +N)∂z +O(ρ2)∂j ,

e2 = ∂y − x(1 +N)∂z − 2xN∂x +O(ρ2)∂j .
(A.11)

It is clear that the e1 and e2 coincide with the initial choice at p. The unitary
frame 1√

2
(e1 − ie2) trivialize the bundle K−1 on the adapted chart.
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Let {ω1, ω2, ω3 = a} be the dual coframe of {e1, e2, v}. It follows that{
ω1 = dx+ 2zNdy +O(ρ2)dxj ,

ω2 = dy +O(ρ2)dxj .
(A.12)

Let θji be the Levi-Civita connection in terms of this frame, i.e. ∇ei =∑
j θ

j
i ej . By [18, (2.4)], only θ21 appears in the canonical Dirac operator,

and a direct computation shows that

θ21 = (1 +N)ω3 +O(ρ)ωj .

A.2.8. The base connection. There is a standard technique to write
down the local expression of AE in terms of the (transverse–Reeb) exponen-
tial gauge. It is a variant of the original argument of Uhlenbeck [20], and
the detail will be omitted.

In the transverse-Reeb exponential gauge, the unitary connection AE is
equal to

AE =

(
−1

2
yF12(p)− zF13(p) +O(ρ2)

)
ω1(A.13)

+

(
1

2
xF12(p)− zF23(p) +O(ρ2)

)
ω2

where FAE
(p) =

∑
i<j Fij(p)ω

i ∧ ωj . Note that there is no ω3-component in
this gauge.

A.2.9. The Dirac operator. With the above discussions, the two com-
ponents of the Dirac operator D̊r on ψ̊ = (α̊, β̊) are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pr1(D̊rψ̊) =
r

2
α̊+ i∂zα̊

− 2∂ξβ̊ − i(ξ̄ +Nξ)∂zβ̊ − 2izN∂xβ̊ +O(ρ2)∂j β̊ +O(ρ)β̊,

pr2(D̊rψ̊) = 2∂ξ̄α̊− i(ξ +Nξ̄)∂zα̊− 2izN∂xα̊+O(ρ2)∂jα̊+O(ρ)α̊

−
(r
2
+ 1−N

)
β̊ − i∂zβ̊ +O(ρ)β̊

(A.14)

where ξ is the complex coordinate x+ iy. This supplies the detail for §3.4.1
and §3.4.2.
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A.2.10. Change of gauge. In (A.14), the r-factors appear in the diag-
onal. It is also useful to put the r-factor in the off-diagonal term. Consider
the following change of gauge:

�
α = exp

(
i

2
r(z +Nxy)

)
α̊ and

�
β = exp

(
i

2
r(z +Nxy)

)
β̊.

With respect to this gauge, (A.14) is transformed into the equation in §4.2.1.
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