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Strict orbifold atlases and weighted

branched manifolds

Dusa McDuff

This note revisits some of the ideas in [M1] on orbifolds and
branched manifolds, showing how the constructions can be sim-
plified by using a version of the Kuranishi atlases developed by
McDuff–Wehrheim. We first show that every orbifold has such an
atlas, and then use it to obtain an explicit model for the non-
singular resolution of an oriented orbifold Y (which is a weighted
nonsingular groupoid with the same fundamental class as Y ) and
for the Euler class of an oriented orbibundle. In this approach,
instead of appearing as the zero set of a multivalued section, the
Euler class is the zero set of a single-valued section of the pull-
back bundle over the resolution, and hence has the structure of a
weighted branched manifold in which the weights and branching
are canonically defined by the atlas.
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1. Introduction

A strict orbifold atlas is a special case of the Kuranishi atlases developed in
[MW1, MW2, MW3] by McDuff–Wehrheim to provide a framework for the
construction of the virtual moduli cycle in Gromov–Witten theory. When
specialized to the orbifold case (i.e. all obstruction spaces are trivial), such
an atlas encapsulates the structure of an étale proper (ep for short) groupoid
in a way that is well adapted to certain constructions, for example that of
the Euler class of an orbibundle. Although in this note we restrict atten-
tion to the finite dimensional case, our results about abstract orbifolds and
their representing groupoids (such as the construction of orbifold atlases,
groupoid completions and reductions) apply in any setting in which there is
an adequate topological and analytical framework. In particular, as outlined
in Remark 4.10 one should be able to use these ideas in the polyfold context
of Hofer–Wysocki–Zehnder [HWZ] to describe the zero set of a transverse
perturbation of the canonical section of a Fredholm bundle as a weighted
branched manifold.

The first section defines the notion of a strict orbifold atlas, and gives
examples showing how the structure hidden in the morphisms of a groupoid
is made explicit in the atlas. Such an atlas K determines an ep category BK,
which is not a groupoid because its morphisms are not all invertible. Our
main results are:

• Proposition 2.3: The category BK has a unique completion to a groupoid
with the same space of objects and realization, and hence determines a
unique orbifold structure on the realization |BK| ∼= Y .

• Proposition 3.3: Conversely, every paracompact orbifold is the realization
of a strict orbifold atlas, that is unique up to commensurability.

In §4, we first use the atlas to construct the nonsingular resolution of an orb-
ifold. This is a weighted étale groupoid with at most one morphism between
any two objects, that also has a weighting function. Thus its realization
is a weighted branched manifold, that, if compact and oriented, carries a
fundamental class. (See Remark 4.7 for a discussion of further cobordism in-
variants of weighted branched manifolds.) We then construct the Euler class
of an oriented orbibundle over a compact oriented base using a single-valued
section of the pullback of the bundle over a resolution rather than the more
customary multi-valued section.



Strict orbifold atlases and weighted branched manifolds 509

1.1. Definition and examples

As in Adem–Leida–Ruan [ALR] and Moerdijk [Mo] we take a naive approach
to orbifolds, since that suffices for our current purposes. considering them
as equivalence classes of groupoids rather than as stacks or 2-categories
as in Lerman [L10]. Thus, we define orbifolds via the concept of ep (étale
proper) groupoid G. This is a topological category whose spaces of objects
ObjG and morphisms MorG are smooth manifolds1 of some fixed dimension
d, such that

• all structural maps (i.e. source s, target t, identity, composition and
inverse) are étale (i.e. local diffeomorphisms); and

• the map s× t : MorG → ObjG ×ObjG given by taking a morphism to
its source and target is proper (i.e. the inverse image of a compact set
is compact).

The realization |G| of G is the quotient of the space of objects by the
equivalence relation given by the morphisms: thus x ∼ y ⇔ MorG(x, y) �= ∅.
We denote the quotient map by πG : ObjG → |G|. Note that, when (as here)
the domains are locally compact, the properness condition implies that |G|
is Hausdorff. We say that G is

• effective if the only connected components of MorG on which the
source map s equals the target map t consist entirely of identity mor-
phisms;

• nonsingular if MorG(x, y) contains at most one element for all x, y ∈
ObjG;

• oriented if both manifolds ObjG and MorG carry an orientation that
is preserved by all structural maps.

For example, if a finite group Γ acts smoothly on a smooth manifold U
then naively one thinks of the quotient U/Γ as an orbifold. In this situation
we define the ep groupoid G(U,Γ) to have

ObjG = U, MorG = U × Γ, (s× t)(u, γ) = (γ−1u, u),

with the obvious identity, inverse and composition maps. There is a map
f : U → Y (the analog of the footprint map for a Kuranishi chart) that

1 Manifolds are always assumed to be paracompact.
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induces a homeomorphism f : |G| = U/Γ → Y . More generally, we make the
following definitions.

Definition 1.1. An orbifold structure on a paracompact Hausdorff space
Y is a pair (G, f) consisting of an ep (étale proper) groupoidG together with
a map f : ObjG → Y that factors through a homeomorphism |f | : |G| → Y .
A refinement of (G, f) is an orbifold structure (G′′, f ′′) on Y together
with a functor F : (G′′, f ′′) → (G, f) such that

• F is étale (i.e. the induced maps on objects and morphism spaces are
local diffeomorphisms);

• F is full and faithful, i.e. F∗ : MorG′′(x, y) → MorG
(
F (x), F (y)

)
is an

isomorphism for all x, y ∈ ObjG′′ ;

• f ′′ = f ◦ F .

Two orbifold structures (G, f) and (G′, f ′) are said to be Morita equiv-
alent if they have a common refinement, i.e. if there is a third structure
(G′′, f ′′) on Y and functors F : G′′ → G, F ′ : G′′ → G′ as above. An orb-
ifold is a paracompact Hausdorff space Y equipped with an equivalence class
of orbifold structures. We say that Y is oriented if for each representing
groupoid G the spaces ObjG and MorG have orientations that are preserved
by all structure maps and by the functors F : G → G′ considered above.

Definition 1.2. A local chart (U,Γ, ψ) on a topological space Y is a
triple consisting of a connected open subset U ⊂ Rd, a finite group Γ that
acts by diffeomorphisms of U and a map ψ : U → Y that factors through
a homeomorphism from the quotient U := U/Γ onto an open subset F of Y
called the footprint.

If Y is an orbifold, then in addition we require this chart (in this case also
called a local uniformizer) to determine the smooth structure of Y over F
in the sense that for one (and hence any) orbifold structure (G, f) on Y each
x ∈ f−1(F ) has a neighbourhood V ⊂ f−1(F ) that is locally diffeomorphic
to (U,Γ). More precisely, if Γx

G := MorG(x, x), resp. Γx, is the stabilizer of

x in G, resp. Γ, then f lifts to a map f̃ : V → U that is an embedding (i.e.
a diffeomorphism onto its image) and is such that

• f̃ is equivariant with respect to some isomorphism Γx
G

∼=→ Γx ⊂ Γ and

• the induced map V/Γx
G
→ U/Γ is a homeomorphism to its image;
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• if Y is oriented, then we also require U to be oriented compatibly with
all the above maps.

It is well known that every orbifold Y has a locally finite covering family
of such charts

(
Ui,Γi, ψi

)
i∈A; i.e. we have Y =

⋃
i∈A ψi(Ui) and

⋂
i∈I ψi(Ui) �=

∅ =⇒ |I| < ∞. Indeed, given any representing groupoid (G, f) Robbin–
Salamon [RS, Lemma 2.10] construct a covering family from G in the sense
that each Ui is a subset of ObjG such that the full subcategory of G with
objects Ui is isomorphic to the category G(Ui,Γi) defined above. Although,
in this situation the covering family in some sense generates the groupoid
G, there could be many components in ObjG and MorG that we know very
little about. We might ask: what is the minimal extra structure needed to
determine the orbifold structure on Y ?

We will see that the following notion gives a simple answer to this ques-
tion.

Definition 1.3. A strict orbifold atlas K =
(
KI , ρIJ

)
I⊂J∈IY

on a para-
compact Hausdorff space Y consists of the following data:

(i) a locally finite open cover (Fi)i∈A of Y , with associated set IY :=
{
I ⊂

A : FI :=
⋂

i∈IFi �= ∅};
(ii) a collection

(
WI ,ΓI , ψI

)
I∈IY

of local charts where ΓI :=
∏

i∈I Γi with
footprints ψI(WI) = FI such that when |I| > 1 the group ΓI�{i} acts
freely on WI for each i ∈ I; and

(iii) a family of smooth local diffeomorphisms (or covering maps)

ρIJ : WJ → WIJ := (ψI)
−1(FJ) ⊂ WI , I ⊂ J, I, J ∈ IY ,

satisfying the following conditions for all I ⊂ J, I, J ∈ IY :
(a) ρJJ = id;
(b) if I � J then ρIJ is equivariant with respect to the projection ρΓIJ :

ΓJ → ΓI , and is given by the composite of the quotient of WJ by the
free action of ΓJ�I with a ΓI -equivariant diffeomorphism WJ/ΓJ�I

→
WIJ ⊂ WI ;

(c) ψI ◦ ρIJ = ψJ , and ρIJ ◦ ρJK = ρIK for all I ⊂ J ⊂ K.

The charts of this atlas K are the tuples
(
KI := (WI ,ΓI , ψI)

)
I∈IY

with
footprints (FI)I∈IY

and footprint maps ψI , and the coordinate
changes are induced by the covering maps ρIJ .

It is often useful to think of the charts (Ki := K{i})i∈A as the basic
charts, while the KI with |I| > 1 are transition charts that define how
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the basic charts fit together. For short, we will often call an atlas with the
above properties an orbifold atlas. 2

Remark 1.4. (i) It is not hard to check that the projections (ρIJ , ρ
Γ
IJ) :

WJ → WIJ (which are called group coverings in [MW3, §2.1]) induce iso-

morphisms on the stabilizer subgroups, i.e. if x = ρIJ(y) then ρΓIJ : Γy
J

∼=→ Γx
I .

(ii) By slight abuse of language, we often call the group ΓI the isotropy
group of the chartKI , even though in general it does not equal the stabilizer
subgroup Γx

I of any point x ∈ WI . Although one could insist that the basic
charts (Wi,Γi, ψi) are minimal in the sense that Γi = Γx

i for some x ∈ Wi,
this property is not preserved by arbitrary restrictions to Γi-invariant subsets
of Wi and also, because the groups ΓJ�I act freely, will usually not hold for
the transition charts. One can think of ΓI as the automorphism group (or
stabilizer) of the footprint map ψI : WI → Y in an appropriately defined
category of “stacky” maps (W,ψ) from manifolds W to the orbifold Y .

As we show in Proposition 2.3 below, the above notion of atlas on the
topological space Y is sufficient to give a complete description of its structure
as an orbifold. In particular, as in [MW3, Definition 2.3.5], each such atlas
K defines a category BK with ObjBK =

⊔
I∈IY

WI and morphisms MorBK =⊔
I⊂J,I,J∈IY

WJ × ΓI , with source and target given by 3

(1.1) IY × IY ×WJ × ΓI � (I, J, y, γ) ∈ MorBK

(
(I, γ−1ρIJ(y)), (J, y)

)
.

Composition is defined by

(1.2)
(
I, J, y, γ

) ◦ (
J,K, z, δ

)
:=

(
I,K, z, ρΓIJ(δ)γ

)
if δ−1ρJK(z) = y.

The realization |BK| of the category BK is defined to be the quotient
ObjBK/∼, where ∼ is the equivalence relation on objects generated by set-
ting x ∼ y whenever Mor(x, y) �= ∅. The following lemma is a special case of
[MW1, Lemma 2.3.7]. Its proof is elementary.

2 We warn the reader that an orbifold atlas (or good atlas) is customarily defined
to be a covering family of charts that satisfy a somewhat different compatibility
condition on overlaps; see for example [ALR, MP, M1].

3 In hindsight, it might have been more natural to consider the tuple (I, J, y, γ)
as a morphism with source (J, y) rather than (I, γ−1ρIJ(y)) since the only way to
obtain a smooth parametrization of the morphisms tromWI toWJ is to parametrize
them by the points in WJ . However we will follow the conventions in the papers
[MW1, MW2, MW3]. Note also that below we write compositions in the categorical
ordering.
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Lemma 1.5. The category BK is well defined; in particular, composition
is associative. It is étale and proper. Moreover, the footprint maps ψI induce
a homeomorphism |ψ| : |BK| → Y .

Example 1.6. (Manifolds) Every manifold4 Y is the realization of the
étale proper (ep) category Op(Y ) with objects equal to the disjoint union⊔

α∈A Uα of all open subsets of Y and morphisms given by inclusion. Thus
if ια : Uα → Y is the inclusion and we order the elements of A by the inverse
inclusion relation so that α ≤ β =⇒ im (ια) ⊃ im (ιβ), then MorOp(Y ) =⊔

α≤β Uβ with source and target given by

(α, β, x) : (α, ι−1
α ◦ ιβ(x)) �→ (β, x), α ≤ β, x ∈ Uβ .

Every locally finite open covering (Wi)i∈A of Y defines an atlas on Y with
trivial isotropy groups ΓI whose corresponding category BK is a full subcat-
egory of Op(Y ). However, Definition 1.3 also allows for atlases on Y with
nontrivial isotropy groups ΓI . The condition for Y to be a manifold is that all
stabilizer subgroups Γx

I := {γ ∈ ΓI | γ(x) = x} of the points x ∈ WI are triv-
ial; in other words, each group ΓI must act freely on WI so that the footprint
maps ψI : WI → Y are local homeomorphisms. Since ΓI :=

∏
i∈I Γi, the as-

sumptions on the covering maps ρIJ imply that this will hold for all charts
provided that it holds for the basic charts.

Example 1.7. (i) A first nontrivial example is a “football” Y = S2 with
two basic charts (W1,Γ1 = Z2, ψ1), (W2,Γ2 = Z3, ψ2) that parametrize neigh-
bourhoods ψi(Wi) = Fi ⊂ S2 of the northern resp. southern hemisphere with
isotropy of order 2 resp. 3 at the north resp. south pole. The restrictions of
the basic charts to the annulus F12 := F1 ∩ F2 have domains given by the
annuli Wi(12) := ψ−1

i (F12) that each support a free action of the relevant
group Γi. There is no direct functor between these restrictions because the
coverings W1(12) → F12 and W2(12) → F12 are incompatible. However, they
can be related by a common free covering, namely the pullback defined by
the diagram

(1.3) W12

��

�� W1(12)

ψ1

��
W2(12)

ψ2 �� Y.

4 assumed paracompact



514 Dusa McDuff

Thus W12 := {(x, y) ∈ W1(12) ×W2(12) |ψ1(x) = ψ2(y)} with group Γ12 :=
Γ1 × Γ2 = Z2 × Z3. The corresponding footprint map ψ12 : W12 → F12

is the 6-fold covering of the annulus, and the coordinate changes from
(Wi,Γi, ψi)|F12

to (W12,Γ12, ψ12) are the coverings W12 → Wi(12) in the di-
agram. Therefore the category BK in this example has index set IY =
{1, 2, 12}, objects the disjoint union

⊔
I∈IY

WI , and morphisms(⊔
I∈IY

WI × ΓI

)
∪
(⊔

i=1,2W12 × Γi

)
,

where for i = 1, 2 the elements in W12 × Γi represent the morphisms from
Wi to W12.
(ii) The “simplest” groupoid G with |G| = Y would have objects W1 �W2

and the following morphisms:

• morphisms from Wi to itself parametrized by Wi × Γi;

• morphisms from W1 to W2 parametrized by W12 with

s× t : W12 → W1(12) ×W2(12), x �→ (
ρ1(12)(x), ρ2(12)(x)

)
;

• another copy of W12 representing the inverses of these morphisms.

The fact that this groupoid has such a simple description is a consequence
of the existence of the pullback diagram (1.3). However, even in this case it
is not so easy to give an explicit formula for the composition Mor(W1,W2) ◦
Mor(W2,W1) → Mor(W1,W1) = W1 × Γ1, which is necessary if one wants
to describe a groupoid rather than a category. In the atlas, the space W12 is
considered as another component of the object space, which firstly allows us
to order the components WI of the object space so that we need not consider
all morphisms but only those fromWI toWJ with I ⊂ J , and secondly allows
us to replace the space of direct morphisms from W1 to W2 by the space of
morphisms from �iWi to W12, thus decomposing the morphisms from W1

to W2 into constituents that are easier to describe.

The simple construction in Example 1.7 does not work for arbitrary
orbifolds since the (set theoretic) pullback W12 considered above will not be
a smooth manifold if any point in ψ1(W1) ∩ ψ2(W2) has nontrivial stabilizer.
However, it turns out that there is a very simple substitute construction for
the domain of the transition chart. Namely, if the charts (Wi,Γi) inject into
a groupoid representative for Y then we can take W12 to be the morphisms
in this groupoid from W1 to W2; see the proof of Proposition 3.3. This
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morphism space is the “stacky” analog of the fiber product; see Pardon [P,
§2.1.2], who also observes that this can be used to construct orbifold atlases.

Remark 1.8. (Variations on the definition) In certain geometric sit-
uations, such as the case of products discussed in Example 1.9 below, it is
natural to generalize the definition of atlas 5 to allow for the possibility that
the indices i ∈ A associated to the footprints Fi and groups Γi of the basic
covering family of Y do not all correspond to local uniformizers of Y , though
there are enough charts with footprints equal to intersections FI to cover Y .

Thus we define a generalized orbifold atlas to consist of a locally
finite open cover {Fi}i∈A of Y , a family of finite groups (Γi)i∈A, and a
subset IY ⊂ P∗(A) of the set of finite nonempty subsets of A satisfying the
following conditions:

• I ∈ IY =⇒ FI :=
⋂

i∈I Fi �= ∅;
• if I ∈ IY and I ⊂ J then J ∈ IY if and only if FJ �= ∅;
• ⋃

I∈IY
FI = Y ;

• for each I ∈ IY there is a local chart (WI ,ΓI , ψI) with group ΓI :=∏
i∈I Γi and footprint FI ;

• the family of charts (WI ,ΓI , ψI)I∈IY
also satisfy conditions (ii), (iii) in

the Definition 1.3 of an orbifold atlas.

Pardon’s notion of an implicit atlas is yet more general, since he does not
insist that the domains of his charts are manifolds. As he explains in [P,
Remarks 2.1.3, 2.1.4], his definitions are in some respects simpler. However,
we need an explicit description of the étale category BK in order to be able
to perform certain geometric constructions, such as the construction of a
perturbation section in [MW2, §7.3], or the nonsingular resolution below.

Example 1.9. (Products) Consider the product Y = Y1 × Y2 of two orb-
ifolds, where Yα is equipped with the atlas Kα = (Wα

I ,Γ
α
I , ψ

α
I )I∈IYα

with
basic charts indexed by the elements of Aα. Then the family of product
charts (

W 1
I1 ×W 2

I2 ,Γ
1
I1 × Γ2

I2 , ψ
1
I1 × ψ2

I2

)
, (I1, I2) ∈ IY1

× IY2

5 The requirements below are similar to, but simpler than, the conditions in [M2]
for a “semi-additive atlas”: there we also had to take into consideration additivity
requirements for the obstruction spaces.
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is a generalized atlas indexed by IY ⊂ P∗(A1 �A2), where IY := {(I1, I2) :
Iα ∈ IYα

}. Here we take A to be the disjoint union A1 �A2, denoting the
elements in A1 by pairs (i, ∅) for i ∈ A1 and those of A2 by (∅, j) for j ∈ A2.
If we write the elements of P∗(A) as pairs (I1, I2), where Iα ∈ P(Aα) are not
both empty, then IY consists of pairs (I1, I2) where neither set Iα is empty.
On the other hand, we can define footprints corresponding to all nonempty
subsets of A as follows: define

Fi,∅ := F 1
i × Y2, i ∈ A1 and F∅j := Y1 × F 2

j , j ∈ A2,

and then set FI1,I2 = F 1
I1
× F 2

I2
=

⋂
i∈I1 Fi,∅ ∩

⋂
j∈I2 F

2
∅,j Similarly, we can

define Γi,∅ := Γ1
i ,Γ∅,j := Γ2

j , and then define the other ΓI1,I2 as products of
these groups.

In Pardon’s approach, one can include a “chart” that is indexed by the
empty set, namely (W∅ := Y,Γ∅ = id, ψ∅ = idY ), and then include product
charts of the form Y1 × (WJ ,ΓJ , ψJ) as part of the atlas.

See Example 3.6 for a description of some atlases on noneffective orb-
ifolds.

2. Groupoid completions

Although BK is not a groupoid since some of the nonidentity maps are
not invertible, we now show that this category has a canonical groupoid
completion GK. (This justifies our language since it implies that any para-
compact Hausdorff space Y with an orbifold atlas is in fact an orbifold.)

Definition 2.1. Let M be an étale proper category with objects
⊔

I∈I WI

and realization Y := ObjM/∼ such that

• for each I ∈ I the full subcategory of M with objects WI can be iden-
tified with the group quotient (WI ,ΓI) for some group ΓI ;

• for each I ∈ I the realization map πM : ObjM → Y induces a homeo-
morphism WI/ΓI

→ FI ⊂ Y , where FI is an open subset of Y .

Then we say that an ep groupoid G is a groupoid completion of M if
there is an injective functor ι : M → G that induces a bijection on objects,
an isomorpyhism on stabilizer subgroups, and a homeomorphism on the
realizations Y = |M| → |G|.
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Thus for each component WI of ObjM the groupoid completion (if it
exists) has the same morphisms from WI to WI but (unless M is already
a groupoid) will have more morphisms between the different components of
ObjM that are obtained by adding inverses and composites. Before giving
the general construction for G, we consider the following simple example.

Example 2.2. Consider an atlas on the orbifold Y consisting of a single
point with stabilizer group S with basic charts labelled by {1, . . . , N} so that
IY is the set of all subsets of {1, . . . , N}. Each group Γi acts transitively on
Wi, so that we can identifyWi

∼= Γi/Si
, where Si is the stabilizer of some point

xi ∈ Wi and Γi acts on the quotientWi by multiplication on the left γ · aSi =
γaSi. Similarly for each I, the group ΓI =

∏
i∈I Γi acts transitively on WI

and we can identify WI := ΓI/SI
where SI = StabΓI

(xI). The equivariant

covering map (ρiI , ρ
Γ
iI) identifies the stabilizer of the point xI ∈ WI with the

stabilizer of its image ρiI(xI) ∈ Wi. Therefore the subgroups SI ⊂ ΓI can be
canonically identified provided that we can choose a family of base points
xI ∈ WI that are consistent in the sense that ρIJ(xJ) = xI for all I ⊂ J .
This is possible because IY has a maximal element Imax = {1, . . . , N}. Thus,
we can fix xmax ∈ WImax

and then define xI := ρI(Imax)(xmax) for all I ∈ IY
so that ρIJ(xJ) = xI for all I ⊂ J . This gives consistent identifications of
S := SImax

with SI := StabΓI
(xI) for all I. In particular, we identify S with

the subgroup StabΓi
(xi) ⊂ ΓI for all i so that we may write WI := ΓI/S,

where S acts diagonally on ΓI by (γi1 , . . . , γik) �→ (γi1s, . . . , γiks). Thus the
category BS corresponding to this atlas has the following description:

ObjBS
=

⊔
I⊂IY

WI = ΓI/S , MorBS
=

⊔
I⊂J,I,J∈IY

Mor(WI ,WJ) = ΓJ/S × ΓI ,

where, with γI := (γiI)i∈I ∈ ΓI , γIS := {(γiIs)i∈I : s ∈ S} ∈ ΓI/S, and abbre-
viating the projections ρIJ by restrictions denoted for example as γJ |I , we
have

s× t : ΓJ/S × ΓI → ΓI/S × ΓJ/S,

(γJS, δI) �→
(
δ−1
I ρIJ(γJ)S, γJS

)
=:

(
δ−1
I γJ |IS, γJS

)
,

and, when I ⊂ J ⊂ K,

mS

(
(γJS, δI), (γKS, δJ)

)
=

(
γKS, δJ |I δI

)
if γJS = δ−1

J γK |JS.

As preparation for the general case, let us check that BS has a groupoid
completion GS . If S = id then this is straightforward. The category Bid
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has objects
⊔

I∈IY
ΓI and at most one morphism between any two points.

Because the groupoid completion of Bid (if it exists) has the same stabilizer
subgroups as Bid, the category Gid must have a single morphism between
any pair of points with the same image in Y , and hence between each pair
of objects. But it is easy to construct such a groupoid. We take

MorGid
=

⊔
I,J∈IY

ΓI × ΓJ , s× t(γI , γJ) = (γI , γJ) ∈ ObjGid
×ObjGid

,

with composition given by

(2.1) mid : (ΓI × ΓJ)×ΓJ
(ΓJ × ΓK) → ΓI × ΓK ,

(
(x, y), (y, z)

) �→ (x, z).

More generally, the group S acts on Gid by multiplication on the right;
i.e. each s ∈ S gives a functor Fs : Gid → Gid that acts on objects by γ �→
γs inducing isomorphisms Mor(x, y) → Mor(xs, ys). Since Fs ◦ Ft = Fts for
s, t ∈ S there is a well defined quotient category Gid/S with objects

⊔
I
ΓI/S

and morphisms
⊔

I,J
ΓI×ΓJ/S. We claim that this quotient category Gid/S can

be identified with the groupoid completion GS of BS .
To prove this, consider the functor FS : Bid → BS given on objects by

the quotient maps ΓI �→ ΓI/S =: WI , and on morphisms (which are only de-
fined when I ⊂ J) by

FS : MorBid
(ΓI ,ΓJ) → MorBS

(WI ,WJ), ΓI × ΓJ → ΓJ/S × ΓI(2.2)

(γI , γJ) �→
(
γJS, (γJ |I (γI)−1)

)
.

Then FS commutes with the target map, and commutes with the source
map because FS ◦ s(γI , γJ) = γIS while

s ◦ FS(γI , γJ) = s
(
γJS, γJ |I (γI)

−1
)

=
(
γJ |I(γI)−1

)−1
γJ |IS = γIS.

Further, mS ◦ (FS × FS) = FS ◦mid because when I ⊂ J ⊂ K

mS ◦ (FS × FS)
(
(γI , γJ), (γJ , γK)

)
= mS

(
(γJS, γJ |I γ−1

I ), (γKS, γK |J γ−1
J )

)
= (γKS, γK |I γ−1

I ) = FS(γI , γK).

Finally notice that FS ◦ Fs = FS for all s ∈ S because γiJs(γ
i
Is)

−1 =
γiJ(γ

i
I)

−1 ∈ ΓI when i ∈ I, s ∈ S. Therefore FS descends to the quotient
Bid/S (considered as a submonoid of Gid/S), inducing an isomorphism from
this quotient Bid/S to BS . We therefore obtain from its inverse an inclusion
BS → Gid/S that exhibits Gid/S as the groupoid completion of BS .
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Proposition 2.3. Let K =
(
WI ,ΓI , ρIJ

)
I⊂J,I,J∈IK

be an orbifold atlas as
above. Then the category BK has a canonical completion to an ep groupoid
GK with the same objects and realization as BK and morphisms

MorGK =
⊔

I,J∈IY :I∪J∈IY

MorGK(WI ,WJ),

MorGK(WI ,WJ) := WI∪J × ΓI∩J ,

where Γ∅ := id, and with the following structural maps.

(i) The source and target maps s× t : WI∪J × ΓI∩J → WI ×WJ are

(s× t)
(
z, γ

)
=

((
I, γ−1ρI(I∪J)(z)

)
,
(
J, ρJ(I∪J)(z)

))
.

(ii) Composition is given by

m : MorGK(WI ,WJ) t ×s MorGK(WJ ,WK) → MorGK(WI ,WK),(
(z, γ), (w, δ)

) �→ (v′, α δIJKγIJK) ∈ WI∪K × ΓI∩K , v′ := ρI∪K,I∪J∪K(v),

where γIJK , δIJK are the images of γ ∈ ΓI∩J , δ ∈ ΓJ∩K under projec-
tion to ΓI∩J∩K and (v, α) ∈ WI∪J∪K × Γ(I∩K)�J is the unique pair such
that

ρI∪J,I∪J∪K(v) = γ−1
IJ�Kα δz, ρJ∪K,I∪J∪K(v) = γ−1

IJ�Kw,

where γIJ�K := γγ−1
IJK ∈ Γ(I∩J)�K .

(iii) The inverse is given by

ι : MorGK(WI ,WJ) → MorGK(WJ ,WI),
(
z, γ

) �→ (γ−1z, γ−1).

Proof. When I ⊂ J ⊂ K the above formulas for MorGK(WI ,WJ) and the
composition in (ii) agree with the previous definitions for BK. We must
extend this definition to all pairs I, J with FI ∩ FJ �= ∅ (or equivalently
I ∪ J ∈ IY ) so as to be consistent with the footprint maps and the local
group actions. In particular, in order to see that the inclusion BK → GK
induces a homeomorphism |BK|

∼=→ |GK| we require

(*) ∃ a morphism from x ∈ WI to y ∈ WJ in G iff (I, x) ∼ (J, y) in ObjBK
iff ψI(x) = ψJ(y) ∈ FI∪J := FI ∩ FJ ;

To see that the morphisms as described above satisfy (*) note first that
MorG(x, y) �= ∅ implies that x, y have the same image in Y . Conversely,
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suppose given x ∈ WI , y ∈ WJ with I �⊂ J and such that ψI(x) = ψJ(y).
Since ρJ(I∪J) : WI∪J → WJ(I∪J) := ψ−1(FI∪J) is surjective and factors out
by the free action of ΓI�J we may choose z ∈ WI∪J so that ρJ(I∪J)(z) = y.
Then ρI(I∪J)(z) lies in the ΓI -orbit of x because ψI∪J(z) = ψI(x), so that
by replacing z by δz for some δ ∈ ΓI�J we may arrange that ρI(I∪J)(z) lies
in the ΓI∩J -orbit of x, where ΓI∩J := id if I ∩ J = ∅. Therefore there is a
pair (z, γ) ∈ (WI∪J ,ΓI∩J) with ρI(I∪J)(z) = γx, ρJ(I∪J)(z) = y. Thus, if we
define Mor(WI ,WJ) := WI∪J × ΓI∩J with source and target maps as in (i),
condition (*) is satisfied.

The next step is to check that composition as given by (ii) is well defined.
To this end, observe that for any triple I, J,K with I ∪ J ∪K ∈ IY , the
square in the commutative diagram

(2.3) WI∪J∪K
ρI∪J•

��

ρJ∪K• �� WJ∪K
ρJ∪(I∩K)•

��
WI∪J

ρJ∪(I∩K)•�� WJ∪(I∩K)
ρJ• �� WJ ,

expresses WI∪J∪K as a fiber product over WJ∪(I∩K) = W(I∪J)∩(J∪K), where
to simplify notation we write ρI• := ρIJ : WJ → WI . (This holds because the
projection ρI• is a principal Γ•�I -bundle.) Hence any pair in WI∪J ×WJ∪K
has a unique lift to WI∪J∪K provided that its components have the same
image in WJ∪(I∩K).

Now consider the composite (w, δ) ◦ (z, γ) : WI → WK . The identity
s(w, δ) = t(z, γ) implies that ρJ(I∪J)(z) = δ−1ρJ(J∪K)(w), so that the el-

ements γ−1
IJ�Kδ z ∈ WI∪J and γ−1

IJ�K w ∈ WJ∪K have the same image in
WJ . Hence, because ρJ• : WJ∪(I∩K) → WJ quotients out by a free action
of Γ(I∩K)�J , the properties of the above diagram imply there is a unique
α ∈ Γ(I∩K)�J such that

ρJ(I∪J)(αγ−1
IJ�Kδ z)=ρJ(J∪K)(γ

−1
IJ�K w), where γIJ�K :=ρΓ(I∩J�K)(I∩J)(γ).

(Notice here that α ∈ ΓK commutes with γIJ�K ∈ Γ(I∩J)�K though it may
not commute with δ.) Thus v ∈ WI∪J∪K is uniquely defined by the given
conditions.

It remains to check that the morphism
(
v′, α(δγ)IJK

) ∈ W(I∪K)(I∩K) has
source s(z, γ) and target t(w, δ). But

t(v′, α(δγ)IJK) = ρK(I∪K)(v
′) = ρK(I∪J∪K)(v)

= ρK(J∪K)(γ
−1
I∪J�Kw) = ρK(J∪K)(w) = t(w, δ),



Strict orbifold atlases and weighted branched manifolds 521

because γIJ�K ∈ ΓJ�K has no component in ΓK . Similarly,

s(v′, α(δγ)IJK) = ρI(I∪K)((α(δγ)IJK)−1v′)
= (α(δγ)IJK)−1ρI(I∪J∪K)(v)

= (δγ)IJK)−1α−1ρI(I∪J)(αγ−1
IJ�Kδz)

= (δγ)IJK)−1α−1αγ−1
IJ�KδIJKρI(I∪J)(z)

= γ−1
IJK γ−1

IJ�K δ−1
IJK δIJK ρI(I∪J)(z)

= γ−1ρI(I∪J)(z) = s(z, γ),

where we have used the fact that ρI(I∪J)(δz) = δIJKρI(I∪J)(z) because δ ∈
ΓJ∩K so that δδ−1

IJK ∈ ker ρΓI(I∪J), and the fact that γIJ�K ∈ ΓI�K and
δIJK ∈ ΓK commute.

Thus the formula for m in (ii) is well defined and compatible with source
and target maps. Moreover, m is a local diffeomorphism. It is also easy
to check that m is compatible with the formula for the inverse given in
(iii). Indeed, if (z, γ) ∈ Mor(WI ,WJ) it is immediate that s× t(z, γ) = t×
s(γ−1z, γ−1) = t× s

(
ι(z, γ)

)
. Further,

m
(
(z, γ), (γ−1z, γ−1)

)
= (v′, δ′γ′)

where γ′ = γ−1, δ′ = δ = γ, and v′ = ρI(I∪J)(v) with v ∈ WI∪J defined by
the requirement that ρ(I∪J)(I∪J)(v) = γ−1z so that v = γ−1z and v′ = s(z, γ).
Thus the compositem

(
(z, γ), (γ−1z, γ−1)

)
=

(
s(z, γ), id

)
is the identity mor-

phism at s(z, γ).
To prove that m is associative,6 it suffices to show that, for each y ∈ Y ,

m restricts to an associative multiplication on the full subcategory Gy of
GK with objects

⊔
I∈Iy

ψ−1
I (y), where Iy := {I ∈ IY | y ∈ FI}. Since ΓI

acts transitively on ψ−1
I (y) for each I, this is precisely the case considered

in Example 2.2. Hence it will suffice to show that the above composition
operation is the image of composition in the category Gid. To this end,
choose a compatible set of base points

(
x• = xI ∈ ψ−1

I (y)
)
I
∈ Iy and define

HI : ΓI → ψ−1
I (y), γI �→ γI(x•),

HIJ : MorGid
(ΓI ,ΓJ)→MorGy

(ψ−1
I (y), ψ−1

J (y)), (γI , γJ) �→(γ′I∪Jx•, δ
′
I∩J)

where δ′I∩J(γI |I∩J) = γJ |I∩J and γ′I∪J ∈ ΓI∪J is the unique element whose
projection γ′I∪J |I to ΓI is δI∩JγI and whose projection γ′I∪J |J to ΓJ is γJ .

6 An alternative argument, valid in the case where the group actions are effective,
is given in [M2].
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The restriction to Gy of the diagram (2.3) that is used to define the com-
posite m takes the form

ΓI∪J∪K(x•)

ΓK�(I∪J)

��

ΓI�(J∪K) �� ΓJ∪K(x•)

ΓK�(I∩K)

��
ΓI∪J(x•)

ΓI�(I∩K)�� ΓJ∪(I∩K)(x•)
Γ(I∩K)�J�� ΓJ(x•),

where each arrow is labelled by the group that acts freely on its fibers. But
this is the image under H• of a corresponding diagram for the groups Γ• that
can be used in precisely the same way to define the composite in Gid. This
was previously written in the simple form mid

(
(γI , γJ), (γJ , γK)

)
= (γI , γK),

but, with H(γI , γJ) = (γ′I∪J , δ
′
I∩J) and H(γJ , γK) = (γ′′J∪K , δ′′I∩K) satisfying

the identities

γ′I∪J |I = δ′I∩JγI , γ′I∪J |J = γJ , γ′′J∪K |J = δ′′J∩KγJ , γ′′J∪K |K = γK ,

one can check that there is a unique element α ∈ ΓI∪J∪K with components
given by

α|I = (δ′I∩J
−1

γJ)|I , α|J = (δ′′J∩K
−1

γK)|J , α|K = γK

that plays the role of the element v in the definition of m in (ii). Using
this, it is straightforward to check that the multiplications correspond under
H•. It follows that m is associative, which completes the definition of the
groupoid GK. �

3. Existence of atlases

We now show that every orbifold has an orbifold atlas that is unique up to
the following notion of commensurability.

Definition 3.1. Let K, K′′ be orbifold atlases on Y . We say that K is a
subatlas of K′′ if there is an injective étale functor ι : BK → BK′′ such that
|ψ| = |ψ′′| ◦ |ι| : |BK| → Y . Two orbifold atlases K,K′ on Y are directly
commensurate if they are subatlases of a common atlas K′′. They are
commensurate there is a sequence of atlases K =: K1, . . . ,K� := K′ such
that any consecutive pair Ki,Ki+1 are directly commensurate.

Remark 3.2. (i) It is not hard to see that commensurate atlases are cobor-
dant, i.e. there is an orbifold atlas on the product [0, 1]× Y that restricts to
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K on {0} × Y and to K′ on {1} × Y . (For precise definitions, and a proof see
[MW2, §6.2].) If we assume that all atlases (or, equivalently, their groupoid
completions) have compatible orientations, we may conclude that any pair
of atlases that are oriented commensurate have the same fundamental class;
cf. [M1] and §4 below.

(ii) It is likely that commensurate atlases are directly commensurate, i.e.
that the relation of direct commensurability is transitive; however we have
not attempted to prove this since we are most interested in the cobordism
relation.

Here is our main result.

Proposition 3.3. Every paracompact orbifold Y has an orbifold atlas K
whose associated groupoid GK is an orbifold structure on Y . Moreover, there
is a bijective correspondence between commensurability classes of such at-
lases and Morita equivalence classes of ep groupoids.

Proof. Let G be an ep groupoid with footprint map f : ObjG → Y . Our first
aim is to construct an atlas K on Y together with a functor F : BK → G
that covers the identity map on Y and hence extends to an equivalence from
the groupoid completion GK to G.

By Moerdijk [Mo], each point in Y is the image of a group quotient that
embeds into G. Therefore since Y is paracompact we can find a locally finite
set of basic charts Ki :=

(
Wi,Γi, ψi

)
i∈A on Y whose footprints (Fi)i∈A cover

Y , together with smooth maps

σ :
⊔

iWi ↪→ ObjG, σ̃ :
⊔

iWi × Γi ↪→ MorG,

where σ|Wi
is a diffeomorphism to its image, that are compatible in the sense

that the following diagrams commute:

Wi × Γi

s×t

��

σ̃i �� MorG

s×t
��

Wi ×Wi
σi �� ObjG ×ObjG,

Wi

ψi

��

σi �� ObjG

f
��

Y
id �� Y.

We claim that there is an atlas K with these basic charts whose footprint
maps ψI extend f ◦ σ :

⊔
iWi → Y . This atlas depends on the choice of

a total order on A. To begin the construction, we define WI where |I| = 2.
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Since A is ordered, any set I ∈ IY with |I| = 2 may be written as I := {i0, i1}
with i0 < i1. Consider the set

WI := W{i0,i1} := MorG(σ(Wi0), σ(Wi1)) := (sG × tG)−1
(
σ(Wi0)× σ(Wi1)

)
of morphisms in G from σ(Wi0) to σ(Wi1), where to avoid confusion the
source and target maps in G are denoted sG, tG. Then WI is the inverse
image of an open subset of ObjG ×ObjG, hence open in MorG, and thus a
smooth manifold. Since the points in f−1(FI) ∩ σ(Wi0) are identified with
points in f−1(FI) ∩ σ(Wi1) by morphisms in G, the restrictions of sG, tG to
WI have images

sG(WI) = f−1(FI) ∩ σ(Wi0), tG(WI) = f−1(FI) ∩ σ(Wi1).

Moreover, for any x ∈ sG(WI) and α ∈ MorG(x, y) ∈ WI , we have

s−1
G (x) ∩WI

∼= MorG
(
tG(α), σ(Wi1)

) ∼= Γi1 ,

where the second isomorphism holds because by assumption f ◦ σi1 = ψi1 :
Wi1 �→ Fi1 is the composite of the quotient map Wi1 → Wi1/Γi1

with a home-

omorphism. Rephrasing this in terms of the action of the group ΓI := Γi1 ×
Γi0 on α ∈ WI by

(γi1 , γi0) · α = σ̃(γi1) ◦ α ◦ σ̃(γ−1
i0

),

one finds that Γi1 acts freely on WI and that the source map sG : WI →
σ(Wi0) induces a diffeomorphism WI/Γi1

→ σ(Wi0) ∩ f−1(FI). Similarly, Γi0

acts freely, and the target map tG : WI → σ(Wi1) induces a diffeomorphism
WI/Γi0

→ σ(Wi1) ∩ f−1(FI). Since the footprint map for the chart Wi factors

out by the action of Γi, the same is true for this transition chart: in other
words the footprint map

ψI : WI → Y, α �→ f
(
sG(α)

)
= f

(
tG(α)

)
induces a homeomorphism WI/ΓI

∼=→ FI . ThereforeWI satisfies all the require-
ments of a sum of two charts.

To define the transition chart for general I ∈ IY , enumerate the elements
of I as i0 < i1 < · · · < ik, where k + 1 := |I| ≥ 2 and define WI to be the set
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of composable k-tuples of morphisms (αik , · · · , αi1), where

(3.1) αi� ∈ MorG
(
σ(Wi�−1

), σ(Wi�)
)
.

If H := (i1, · · · , ik), then WI is the fiber product WH sG×tG Wi1i0 . Since the
maps sG : Wi1i0 → Wi0 , tG : Wi1i0 → Wi1 are étale and so locally submer-
sive, it follows by induction on |I| that WI is a smooth manifold. Moreover,
it supports an action of ΓI given by

γ · (αik , · · · , αi1) = (αik , · · · , αi�+1
σ̃(γ)−1, σ̃(γ)αi� , · · · , αi1), γ ∈ Γi� .

For any H � I the subgroup ΓI�H acts freely, and the quotient can be
identified with WH by means of the appropriate partial compositions and
forgetful maps. More precisely, if I = (i0, · · · , ik) ⊃ H = (in0

, · · · , in�
) then

ρHI(αik , · · · , αi1)

=

{
(αin�

◦ · · · ◦ αin�−1+1
, · · · , αin2

◦ · · · ◦ αin1+1
), if � ≥ 1

sG(αip+1) = tG(αip) if � = 0, p := n0

For example if H = {1, 3, 6} ⊂ I = {0, 1, 2, 3, 4, 5, 6, 7} then

ρHI : (α7, · · · , α1) = (α6 ◦ α5 ◦ α4, α3 ◦ α2),

ρ{3}I : (α7, · · · , α1) = s(α4) = t(α3).

It is clear from this description that ρHJ = ρHI ◦ ρIJ whenever H ⊂ I ⊂ J .
Further the footprint map ψI : WI → Y can be written as

ψI

(
(αik , · · · , αi1)

)
= f

(
σ ◦ sG(αip)

)
= f

(
σ ◦ tG(αip)

)
, ∀ 1 ≤ p ≤ k.

This defines the atlas K.
We define the functor FK : BK → G on objects by

(3.2)

WI → ObjG,

{
x �→ σ(x), if I = {i0}, x ∈ Wi0 ,

(αik , · · · , αi1) �→ tG(αik) ∈ σ(Wik) if |I| > 1.

Recall from (1.2) that the morphisms in BK are given by
⊔

I⊂J WJ × ΓI

where

(I, J, y, γ) :
(
I, γ−1ρIJ(y)

) �→ (J, y).
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If ik = j� then we define FK : WJ × ΓI → MorG to be given by the initial
inclusion σ̃. More precisely, we define

FK
(
(αj� , · · · , αj1), (γj� , · · · , γi0)

)
= σ̃(t(αj�), γj�)

∈ MorG
(
σ̃(γ−1

j�
) t(αj�), t(αj�)

)
,

where t denotes the target map in BK. Similarly, if ik = jp < j� define

FK
(
(αj� , · · · , αj1), (γik , · · · , γi0)

)
= (αj� ◦ · · · ◦ αjp+1

)

∈ MorG
(
t(αjp), t(αj�)

)
.

It is immediate that FK is a functor that extends to an equivalence from the
groupoid extension GK of BK to G.

This shows that every orbifold has an atlas of the required type. To
see that this atlas is unique up to commensurability, note first that any two
atlases constructed in this way from the same groupoid are directly commen-
surate. More generally, suppose given groupoid structures (G, f), (G′, f ′) on
Y with common refinement

F : (G′′, f ′′) → (G, f), F ′ : (G′′, f ′′) → (G′, f ′),

where F :ObjG′′ →ObjG and F ′ :ObjG′′ →ObjG are local diffeomorphisms.
Choose an atlas K′′ on G′′ with basic charts

(
(W ′′

i ,Γi)i∈A) where for each
i the group Γi is the stabilizer subgroup of some point xi ∈ W ′′

i . Then, for
each 1 ≤ i ≤ N , the map F : W ′′

i → Wi := F (W ′′
i ) ⊂ ObjG is injective be-

cause F induces an isomorphism Γi := MorG′′(xi, xi) → MorG(F (xi), F (xi))
and an injection on the quotient W ′′

i /Γi
→ Y . Therefore the basic charts(

(W ′′
i ,Γi)i∈A) are pushed forward diffeomorphically by F to a family of basic

charts
(
(Wi,Γi)i∈A) in G. Further, it is immediate from the construction of

the corresponding atlases K′′ and K from the categories G′′ and G that F
induces an isomorphism between them. Hence all atlases on Y that are con-
structed from G or from G′ are commensurate to this atlas that is pushed
forward from G′′, and hence they all belong to the same commensurability
class.

Conversely, we must show that if K,K′ are commensurate, the groupoids
GK and GK′ are equivalent. It suffices to consider the case when K,K′ are
directly commensurate. But then they are contained in a common atlas
K′′ on Y that defines a groupoid GK′′ that contains both GK and GK′ as
subgroupoids with the same realization Y . Thus the inclusions GK → GK′′

and GK′ → GK′′ are equivalences. This completes the proof. �
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Remark 3.4. The above construction for the atlas K depends on a choice
of ordering of the basic charts (Ki)i∈A. If we change this order, for exam-
ple, by interchanging the order of 1 and 2, then it is not hard to show
that the resulting atlas K′ is isomorphic to K, but not in a way com-
patible with the functor FK : BK → G defined in (3.2). Indeed, each at-
las K,K′ has the same basic charts, so that FK = F ′

K′ = σ on each Wi.
Moreover, the transition charts KI ,K

′
I contain precisely the same tuples

as long as {1, 2} �⊂ I. However, W12 = MorG(W1,W2) with FK(W12) ⊂ W2

while W ′
12 := MorG(W2,W1) with F ′

K′(W12) ⊂ W1. The only natural map
S12 : W12 → W ′

12 takes the morphism α ∈ MorG(W1,W2) to α−1 ∈
MorG(W2,W1) ⊂ MorGK . In fact for any I we may define a map S : ObjBK →
ObjB′

K
by setting

• SI = id : WI → W ′
I if {1, 2} �⊂ I;

• SI : WI → W ′
I , (αik , . . . , αi3 , α2, α1) �→ (αik , . . . , αi3 , α2 ◦ α1, α

−1
1 ) if I =

(1, 2, i3, . . . ), where α1 ∈ Mor(W1,W2), α2 ∈ Mor(W2,Wi3) as in (3.1)

We leave it to the interested reader to check that this is ΓI -equivariant,
and that it extends to a functorial isomorphism of the groupoid completions

GK
∼=→ GK′ .

Remark 3.5. The construction in Proposition 3.3 is reminiscent of that
given in [M1, §4] for the resolution of an orbifold. However, the two construc-
tions have different aims: here we want to build a simple model for Y = |G|,
while there we wanted to construct a nonsingular “resolution”, i.e. a corre-
sponding weighted branched manifold with the same fundamental class. We
explain below how our current methods simplify the construction of such a
resolution.

Example 3.6. (Noneffective orbifold structures on S2.) Consider
an orbifold structure G on Y = S2 that locally has the form R2/Γ where
Γ := Z/2Z acts trivially. These are classified by the topological type of the
corresponding classifying space BG (see [ALR]), which is a bundle over S2

with fiber BZ2 = K(Z/2, 1). Hence there are two such orbifolds, the trivial
orbifold which has an atlas Ktriv with a single chart (S2,Z2, ψ = id) and one
other. They can be distinguished either by an element in H2(S2,Z2) ∼= Z2

or by the fact that in the trivial case the bundle BG → S2 has a section.
One can see both these kinds of twisting from suitable atlases.

For example, consider an atlas with two basic charts with footprints
equal to discs (Fi)i=1,2 that intersect in an annulus F12. If each has the trivial
action of Γi = Z2, we may identify the domains Wi with Fi via the footprint
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maps ψi, and hence identify the covering maps ρi,12 : W12 → Wi,12 ⊂ Wi

with the footprint map ψ12 : W12 → F12. If ψ12 is the nontrivial 2-fold cov-
ering of the annulus, one can easily see that the boundary map π2(S

2) →
π1(BGK) of the fibration BGK → S2 is nonzero, so that this atlas describes
the nontrivial orbifold.

On the other hand, suppose we choose an atlas whose footprints FI are
all contractible. Then WI is a union of 2|I|−1 copies of FI that are permuted
by the action of ΓI , with the diagonal subgroup acting trivially. For example,
the basic charts have Wi

∼= Fi, the charts with |I| = 2 have WI equal to two
copies of FI that are permuted by the actions of Γi, i ∈ I, while the charts
with with |J | = 3 have WJ equal to 4 copies of FJ . From this information, we
can build a Čech cocycle representative (αJ : FJ → Z2)|J |=3 for an element of
H2(S2,Z2) by choosing one component W 0

I of WI for each |I| = 2, and then
defining αJ := 0 if there is a component W 0

J of WJ such that ρIJ(W
0
J ) =

W 0
I for all I ⊂ J, |I| = 2, and setting αJ := 1 otherwise. Notice that this

information captures the structure of the triple intersections since there
are only two possibilities: if J = {j1, j2, j3}, then, because the groups ΓJ�jk

act freely on WJ for k = 1, 2, 3, there is precisely one component of WJ

that projects to W 0
J�ik

for k = 1, 2 and it either does or does not map to
W 0

J�i3
. If we suppose in addition that all fourfold intersections are empty,

then (αJ) is a cocycle. Moreover, it represents the trivial cohomology class
if and only if one can choose a family of components W 0

I of the domains
that are compatible with the projections ρIJ and hence form the space of
objects of a nonsingular7 subgroupoid G0

K of GK with realization S2. Since
the classifying space of such a subgroupoid G0

K would provide a section of
the bundle BGK → S2, the triviality of the cocycle implies that the atlas
defines the trivial orbifold structure on S2 Conversely one can check that
if the groupoid GK defines the trivial structure then it has a nonsingular
subgroupoid with realization S2: indeed, since such subgroupoids can be
pulled back and pushed forward by equivalences, any groupoid that is Morita
equivalent to the trivial groupoid GKtriv contains such a subatlas. Thus the
cocycle described above does classify these orbifold structures.

In the above discussion we assumed for simplicity that all fourfold in-
tersections are empty. However, it is not hard to check that (αJ) is always
a cocycle so that the above argument goes through for any cover of S2.
For this, we must show that, for every K with |K| = 4, an even number of
the four terms αK�jk are zero. To this end, consider K = {1, 2, 3, 4} and
suppose that α123 = 0. Let W 0

123 be the component of W123 that projects to

7 i.e. there is at most one morphism between any two objects
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W 0
12,W

0
13,W

0
23 and letW 0

1234 be the unique component ofW1234 that projects
to W 0

123 and W 0
14. If in addition it projects to W 0

k4 for k = 2 or k = 3 then
its image in W1k4 projects to W 0

1k,W
0
14,W

0
k4 so that α1k4 = 0. But if W 0

1234

projects to neither of W 0
24,W

0
34 then its image γ4W

0
1234 under the nontrivial

element γ4 ∈ Γ4 projects to W 0
23,W

0
24, and W 0

34 so that α234 = 0. Therefore,
at least two of the αK�jk vanish. On the other hand if three of them vanish,
say α123, α124, α134, then the component W 0

1234 defined above must project
to W 0

K�k for k = 2, 3, 4 and hence project to all W 0
ij for i, j ∈ {1, 2, 3, 4}.

Therefore we may take W 0
234 equal to its image in W234; in other words

α234 = 0 as well.

4. Applications

We give two applications of our methods, first showing how the zero set
construction in [MW3] gives a simple way to construct a nonsingular resolu-
tion of an orbifold, and second using this to construct a weighted branched
manifold that represents the Euler class of an orbibundle.

We begin by defining the notion of a resolution of an ep groupoid
G. This is obtained from a groupoid by first passing to a suitable Morita
equivalent groupoid by pulling back via an open cover of the objects (a
process called reduction) and then discarding some of its morphisms. The
idea is to obtain a “simpler” groupoid that still has the same fundamental
class; the groupoid is simpler in the sense that all stabilizers are trivial,
however, because it is not proper, one must control its branching as explained
below.

First recall that the realization of an ep groupoid G carries a weighting
function ΛG : |G| → Q+ with values in the positive rational numbers Q+,
given by: ΛG(y) =

1
|Γy| , where |Γy| is the order of the stabilizer subgroup Γy

at one (and hence any) preimage of y in ObjG. If G is oriented and compact,
the set of points |G|∗ where |Γy| is locally constant is open and dense, with
complement of codimension ≥ 2, and hence carries a fundamental class that
can be represented by the singular cycle obtained by triangulating |G|∗,
giving each top dimensional simplex σ the weight ΛG(y), y ∈ σ. (For more
details, see [MP, M1].)

Roughly speaking, a resolution of an oriented compact ep groupoid G
is a tuple (V,ΛV , F ) consisting of

- an oriented nonsingular étale groupoid V (more precisely a wnb
groupoid) whose realization carries a weighting function ΛV : |V|H →
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Q+ where |V|H is the maximal Hausdorff quotient of |V| (defined be-
low), together with

- an orientation preserving functor F : V → G that induces a surjection
|F | : |V|H → |G| and is such that F∗(ΛV ) = ΛG, where the pushforward
F∗(ΛV ) : |G| → Q+ is given by F∗(ΛV ) =

∑
x∈F−1(y) ΛG(y).

As in [M1], one can define the notion of the fundamental class of (V,ΛV , F ),
and show that under these circumstances F pushes this fundamental class
forward to that of G.

To make the above precise, we must define a wnb groupoid. Because
these are in general not proper, the realization |G| may not be Hausdorff,
and we write |G|H for its maximal Hausdorff quotient. Thus |G|H is
a Hausdorff quotient of |G| that satisfies the following universal property:
any continuous map from |G| to a Hausdorff space Y factors though the
projection |G| → |G|H. (The existence of such a quotient for any topological
space is proved in [M1, Lemma 3.1]; see [MW3, Appendix] for a more detailed
argument.) There are natural maps:

πG : ObjG → |G|, πH
|G| : |G| −→ |G|H, πH

G := πH
|G| ◦ πG : ObjG → |G|H.

Moreover, for U ⊂ ObjG we write |U | := πG(U) ⊂ |G| and |U |H := πH(U) ⊂
|G|H. The branch locus of G is defined to be the subset of |G|H consisting
of points with more than one preimage in |G|.

Definition 4.1. A weighted nonsingular branched groupoid (or wnb
groupoid for short) of dimension d is a pair (G,ΛG) consisting of an ori-
ented, nonsingular étale groupoid G of dimension d, together with a ra-
tional weighting function ΛG : |G|H → Q+ := Q ∩ (0,∞) that satisfies the
following compatibility conditions. For each p ∈ |G|H there is an open neigh-
bourhood N ⊂ |G|H of p, a collection U1, . . . , U� of disjoint open subsets of
(πH

G)−1(N) ⊂ ObjG (called local branches), and a set of positive rational
weights m1, . . . ,m� such that the following holds:

(Covering) (πH
|G|)

−1(N) = |U1| ∪ · · · ∪ |U�| ⊂ |G|;
(Local Regularity) for each i = 1, . . . , � the projection πH

G|Ui
: Ui → |G|H

is a homeomorphism onto a relatively closed subset of N ;

(Weighting) for all q ∈ N , the number ΛG(q) is the sum of the weights of
the local branches whose image contains q:

ΛG(q) =
∑

i:q∈|Ui|H
mi.
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Further we define a weighted branched manifold of dimension d
to be a pair (Z,ΛZ) consisting of a topological space Z together with
a function ΛZ : Z → Q+ and an equivalence class8 of wnb d-dimensional
groupoids (G,ΛG) and homeomorphisms f : |G|H → Z that induce the func-
tion ΛZ = ΛG ◦ f−1. Analogous definitions of a wnb cobordism groupoid
(always assumed to be compact and have collared boundaries) and of a
weighted branched cobordism are spelled out in [MW3, Appendix]. We say
that two compact weighted branched manifolds (∂αZ,Λα)α=0,1 are cobor-
dant if they form the oriented boundary of a weighted branched cobordism.

Example 4.2. (i) A compact weighted branched manifold of dimension
0 consists of a finite set of points Z = {p1, . . . , pk}, each with a positive
rational weight m(pi) ∈ Q+ and orientation o(pi) ∈ {±}.
(ii) The prototypical example of a 1-dimensional weighted branched cobor-
dism (|G|H,Λ) has Obj(G) = I � I ′ equal to two copies of the interval
I = I ′ = [0, 1] with nonidentity morphisms from x ∈ I to x ∈ I ′ for x ∈ [0, 12)
and their inverses, where we suppose that I is oriented in the standard way.
Then the realization and its Hausdorff quotient are

|G| = I � I ′/{(I, x) ∼ (I ′, x) iff x ∈ [0, 12)
},

|G|H = I � I ′/{(I, x) ∼ (I ′, x) iff x ∈ [0, 12 ]
},

and the branch locus is a single point Br(G) =
{
[I, 12 ] = [I ′, 12 ]

} ⊂ |G|H. The
choice of weights m,m′ > 0 on the two local branches I and I ′ determines
the weighting function Λ : |G|H → (0,∞) as

Λ([I, x]) =

{
m+m′ if x ∈ [0, 12 ],

m if x ∈ (12 , 1],

Λ([I ′, x]) =

{
m+m′ if x ∈ [0, 12 ],

m′ if x ∈ (12 , 1].

(iii) It is not hard to see that a wnb groupoid Z :=
(
(pi),m, o

)
of dimension

0 is cobordant either to the empty groupoid (if λ :=
∑

i o(pi)m(pi) = 0) or

8 The precise notion of equivalence is given in [M1, Definition 3.12]. In particular
it ensures that the induced function ΛZ := ΛG ◦ f−1 the dimension of ObjG and
the pushforward of the fundamental class are the same for equivalent structures
(G,ΛG, f). However, it does not preserve the local branching structure of Z.
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to a groupoid with one point p, weightm(p) := |λ| and orientation o(p) given
by the sign of λ. Indeed suppose that

λ+ :=
∑

i:o(pi)=+

m(pi) > λ− :=
∑

i:o(pi)=−
m(pi).

Then one can first build a cobordism as in (ii) from Z to a groupoid with
two points, p+ with label (λ+,+) and p− with label (λ−,−), then split
p+ into two labelled points (q1, λ

+ − λ−,+), (q2, λ
−,+) and then “cancel”

(q2, λ
−,+) with (p−, λ−,−) by joining them with an arc. The other cases are

similar. Thus in dimension 0 the only cobordism invariant of a wnb groupoid
is the total weight

∑
o(pi)m(pi).

Before constructing the resolution we need one further notion. We re-
strict to the compact case for simplicity.

Definition 4.3. Let (Fi)i=1,...,N be an open covering of a space Y , and for
I ⊂ {1, . . . , N} denote FI :=

⋂
i∈I Fi. A collection of open sets (QI)I⊂{1,...,N}

is called a cover reduction of (Fi) if

• QI is a precompact subset of FI for all I, written QI � FI ;

• ⋃
I QI = Y ;

• QI ∩QJ �= ∅ =⇒ (
I ⊂ J or I ⊂ J

)
.

It is well known that every finite open cover of a normal topological space
has a cover reduction: see for example [MW1, Lemma 5.3.1] for a proof.

Let K be a strict orbifold atlas on a compact oriented orbifold Y with
footprint covering (Fi)i=1,...,N and charts indexed by IY , and let BK be the
corresponding category with groupoid completion GK. Choose a reduction
(QI)I∈IY

of the footprint cover, and define9

VI := ψ−1
I (QI) � WI , ṼIJ := VJ ∩ ψ−1

J (QI) � WJ , ∀I ⊂ J.

Definition 4.4. The resulting collection of sets V := (VI)I∈IY
is called a

reduction of the atlas.

9 We write ṼIJ here to emphasize that, in distinction to the set WIJ = WI ∩
ψ−1
I (FJ) ⊂ WI , we have ṼIJ ⊂ VJ . This notation is consistent with [MW3, M2].

Note also that ṼJJ = VJ .
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Given a reduction V, consider the subgroupoid VK ⊂ GK with

(4.1) ObjVK :=
⊔

I∈IY

VI , MorVK :=
⊔

I,J∈IY

MorVK(VI , VJ),

where

• if I ⊂ J then

MorVK(VI , VJ) =
⋃

∅�=K⊂I

(ṼKJ ∩ ṼIJ)× ΓI�K ⊂ MorGK(VI , VJ)

• if I ⊃ J then MorVK(VI , VJ) = {μ−1 : μ ∈ MorVK(VJ , VI)}.
• MorVK(VI , VJ) = ∅ otherwise.

Note that VK is not a full subcategory of GK: for example, we do not in-
clude all the morphisms VJ × ΓJ from VJ to VJ but (besides the identities)
just those with source (and hence target) in one of the sets ṼIJ , I �= J, and
over these points we include only the action of the subgroup ΓJ�I , which by
definition of an atlas, is free. This is the key reason why VK is nonsingular.
Another way of understanding VK is to see that its morphisms are gener-
ated by the projections ρIJ : ṼIJ → VI . When I � J , each x ∈ ρIJ(ṼIJ) has
preimage ρ−1

IJ (x) consisting of the free orbit ΓJ�I(x̃) for x̃ ∈ ρ−1
IJ (x) ⊂ ṼIJ ,

and we recover the action (J, γ−1x̃) �→ (J, x̃) of ΓJ�I on ṼIJ as the set of
composites

(J, J, x̃, γ) = (I, J, γ−1x̃, id)−1 ◦ (I, J, x̃, id),
(J, γ−1x̃) �→ (

I, ρIJ(γ
−1x̃)

)
=

(
I, ρIJ(x̃)

) �→ (J, x̃).

where we use the notation in (1.1), and in particular categorical order for
composites.

Here is the main result about the groupoid VK from [MW3, Thm. 3.2.8].

Proposition 4.5. For each orbifold atlas K on Y , the following statements
hold.

i) The groupoid VK is well defined, in particular its set of morphisms is
closed under composition and taking the inverse.

ii) Its maximal Hausdorff quotient |VK|H is the realization of the étale
groupoid VH

K obtained from VK by closing its space of morphisms in
MorGV , where GV is the full subcategory of GK with objects V :=

⊔
I VI .
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iii) VK may be given the structure of a wnb groupoid with weighting function
given at y ∈ πH

VK(VJ) by

ΛV (y) =
n(y)

|ΓJ | , n(y) = #{x ∈ VJ | πH
VK(x) = y}.

Further, for y ∈ πH
VK(VJ) the inverse image VJ ∩ (πH

VK)
−1(y) is a free

ΓJ�Iy -orbit, where Iy := min{I ⊂ J | y ∈ πH
VK

(VI)}.
iv) The inclusion VK → GK|V extends to an inclusion ιVH

K
: VH

K → GK|V .
Moreover the pushforward of ΛV by |ψ| ◦ |ιVH

K
| : |VK|H = |VH

K | → Y
is ΛY .

Proof. We sketch the proof very briefly; [M2, §3.4] gives more detail, while
the full proof is in [MW3, §3.2]. The first claim is not hard to prove from
the remarks after the definition of VK. To prove (ii) it suffices to check that
the closure of MorVK in MorGK defines a set of morphisms that is closed
under composition. This holds for much the same reason as (i) because, as
is easily seen, one can close MorVK by adding in morphisms of the following
type from VI to VJ :⋃

F�I

(
ṼIJ ∩ FrVJ

(ṼFJ)
)× ΓI�F ⊂ VJ × ΓI ,

where FrV (A) := clV (A)�A and clV (A) is given by the closure of A in V .
Informally one can think of the sets VJ as the branches of VK each weighted
by 1

|ΓJ | . However, they do not inject into |VK| (and hence into |VK|H) —
rather they are wrapped around themselves by partial actions of the groups
ΓJ�I . One can check that the branch locus is the image in |VK|H of the sets
FrVJ

(ṼIJ) for I � J . The statements in (iii) then follow easily. Note that
although the functor ιVH

K
: VH

K → GK|V is injective, its image is not usually
a full subcategory, so that the induced map on realizations is not injective
in general. �

Example 4.6. (i) Consider the “football” discussed in Example 1.7, with
reduction V given by two discs V1 � W1, V2 � W2 with disjoint images Qi in
X, together with an open annulus V12 � W12. For j = 1, 2 the sets Ṽj(12) ⊂
V12 are disjoint open annuli that project into Vj by a covering map of degree
3 for j = 1 (that quotients out by Γ(12)�1 = Γ2 = Z3) and degree 2 for j = 2.
Then ObjVK = V1 � V2 � V12. For j = 1, 2 the category VK has the following
morphisms (besides identities);
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• morphisms Vj → V12 given by the projection ρj,12 : Ṽj(12) → Vj , together
with their inverses;

• morphisms V12 → V12 given by the action of Z3 = Γ(12)�1 on Ṽ1(12),

resp. of Z2 = Γ(12)�2 on Ṽ2(12).

To obtain VH
K we add the morphisms given by the action of Γ(12)�1 on

the boundary FrV12
(Ṽ1(12)) ⊂ V12�Ṽ1(12) and the action of Γ(12)�2 on

FrV12
(Ṽ2(12)) ⊂ V12�Ṽ2(12). The weighting function Λ is given by:

Λ(p) = 1
2 if p ∈ Q1 = πH

V(V1) ∪ πH
V(Ṽ1(12))

= 1
3 if p ∈ Q2 = πH

V(V2) ∪ πH
V(Ṽ2(12))

= 1
6 if p ∈ Q12�(Q1 ∪Q2) = πH

V(V12�Ṽ1(12) ∪ Ṽ2(12))

Notice that for j = 1, 2 the weighting function does not change along the
boundary of the intersection Q1 ∩ ∂Q12, i.e. there is no branching there,
while it does change along the internal boundaries Q12 ∩ ∂Qi in the middle
annulus Q12. Also, the pushforward of ΛV by the map |ιVH | : |VH| → |BK

∣∣
V |

takes the value 1 except at the poles N,S:

|ιVH |∗(ΛV )(q) :=
∑

p∈|ιZH |−1(q)

ΛV(p) = 1, ∀q ∈ Y�{N,S}.

(ii) In Example 3.6 we considered the two different orbifold structures on
S2 with noneffective group Z2, constructing atlases with two basic charts
whose footprints intersect in an annulus F12. They may be distinguished by
the domain W12, which is either connected (the nontrivial case) or discon-
nected. Let us choose the footprint reduction so that Q12 is a connected
annulus. Then because we define V12 to be the full inverse image of Q12 un-
der the footprint map, it is disconnected exactly if W12 is. Therefore the two
resulting weighted branched manifolds (Z,ΛZ), which have two-fold branch-
ing along Q12 ∩ ∂Qi as in (i), may be distinguished by the set of points in
the realization Z = |VK|H with weight 1

4 : this set is either connected (the
nontrivial case) or disconnected.

Observe that each of these weighted branched manifolds is weighted
branched cobordant to S2 with the constant weight function 1

2 . In other
words, the difference between these two orbifold structures is not preserved
when we consider cobordism classes of resolutions. To see this, notice that in
each case we may add morphisms to the groupoid VK so that it still remains
nonsingular but has realization S2 instead of a branched manifold: to do this
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we simply add one morphism between any two points (I, x), (J, y) ∈ ObjVK
that have the same image under the composite map ObjVK → ObjGK →
|GK| = S2 but different images in |VK|. (Because VK is nonsingular there
is no ambiguity about how to define composites.) One can check that this
new groupoid V′

K is weighted cobordant to VK by a cobordism groupoid C
obtained by adding the morphisms [0, 12)×

(
MorV′

K�MorVK

)
to the prod-

uct groupoid [0, 1]×VK (which has objects [0, 1]×ObjVK and morphisms
[0, 1]×MorVK). The Hausdorff realization of this cobordism is the union of
S2 × [0, 12 ] with weighting function 1

2 , together with (12 , 1]× Z with weight-
ing function λZ ◦ prZ , where as above Z := |VK|H.
Remark 4.7. Because any two choices of cover reductions are cobordant
(see [MW1, Lemma 5.3.4]), one can easily show that if two orbifold at-
lases K0,K1 on Y are commensurate then any two resolutions VK0

,VK1
that

are constructed as above are themselves weighted branched cobordant. As
Example 4.6 (ii) shows, inequivalent atlases may have cobordant resolu-
tions. On the other hand, the Pontryagin numbers are invariants of weighted
branched cobordism. To see this, note that each wnb groupoid (G,ΛG) has a
tangent bundle TG that is an étale groupoid which (after appropriate tam-
ing) also has a natural structure as a wnb groupoid.10 Hence one can use
Chern–Weil theory to construct top-dimensional differential forms that rep-
resent products of Pontryagin classes, and then integrate them over the fun-
damental class of (G,ΛG) to obtain the Pontryagin numbers. More generally,
one could consider the bordism groups of maps from a weighted branched
manifold into a space Y . See [CMS, Example 9.23] for a related discussion.
(The notion of weighted branched manifold in [CMS] is closely related to
ours, but not precisely the same.)

Computing the Euler class. By definition, an oriented orbibundle pr :
E → X with fiber E0 over a smooth oriented compact orbifold X is the
realization of a smooth functor pr : E → X between oriented ep groupoids
such that the induced map π0 : ObjE → ObjX on objects is a locally trivial
vector bundle with fiber E0. In this situation, the orbifolds E = |E|, X = |X|
have compatible local uniformizers. In other words, we may choose a covering
of X by local charts

(
(Wi,Γi, ψ

X
i )

)
i=1,...,N

with footprints Fi ⊂ X so that

10 The issue here is that the Hausdorff completion |TG|H should also form a
bundle over |G|H, which is the case when the branch locus is sufficiently well be-
haved. Such questions are discussed at length in [M1, §3], where it is shown that
“tame” wnb groupoids support partitions of unity, and, if compact, support a well
defined notion of the integral of a top dimensional differential form.
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the action of Γi lifts to the pullback (ψX
i )∗(E|Fi

) and ((ψX
i )∗(E|Fi

),Γi, ψ
E
i )

(where ψE
i lifts ψX

i ) is a local uniformizer for E. By Proposition 3.3 we
may extend this family of basic charts to an orbifold atlas KX on X with
charts

(
(WI ,ΓI , ψ

X
I )

)
I∈IX

and footprint cover (Fi)i. The orbifold E has

a corresponding atlas KE with charts
(
(E|WI

,ΓI , ψ
E
I )

)
I∈IX

and footprint

cover (E|Fi
)i ⊂ E, where for simplicity we denote the pullback (ψX

I )∗(E|FI
)

of E to WI simply by E|WI
.

By Proposition 2.3 the categories

BX := BKX
, BE := BKE

,

corresponding to these orbifold atlases have completions to ep groupoids
GE ,GX . It follows from the construction that the projection pr induces
a functor pr : GE → GX that restricts on the object spaces to the bundle
projection

⊔
I E|WI

→ ⊔
I WI .

By [M1, Proposition 4.19],11 one way to define the Euler class of π :
E → X is to consider a “nonsingular resolution” of the groupoid GX , pull
the bundle E → X back to this resolution and then push forward to X
the (weighted) zero set of a section ν of this bundle that is transverse to 0
(written ν � 0). As we explained above, we can take the resolution of GX to
be the wnb groupoid VX formed as in Proposition 4.5 from a reduction of
GX . The pullback of pr : GE → GX by ιV : VX → GX is the corresponding
wnb groupoid with objects

⊔
I E|VI

. Let ν : VX → EX be a section of this
bundle. This is given by a compatible family of sections

(4.2) νI : VI → E|VI
, νJ |˜VIJ

= νI ◦ ρXIJ .

If ν � 0, there is a full subcategory Zν
X of VX whose objects ν−1

I (0) ⊂ VI

form a closed d-dimensional submanifold ObjZν
X

of ObjVX
of codimension

equal to the fiber dimension of E. It is not hard to check that this has the
structure of a wnb groupoid Zν

X with the induced weighting function ΛZ

equal to the restriction of ΛV to the image of the inclusion |Zν
X |H → |VX |H.

The following is a version of results proved in [M1, §3]; see also [M2,
§5.2].

11 This result concerns the effective case, but applies equally well to the nonef-
fective case because each groupoid has an effective quotient; see [ALR, Def 2.33].
However, in [M1] we took the fundamental class of G to be that of its effective
quotient, while here we use the more correct version that also takes into account
the order of the group that acts noneffectively.
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Lemma 4.8. Let E→X be an oriented orbibundle and d :=dimX−dimE.
Then the cobordism class of the wnb groupoid (Zν

X ,ΛZ) constructed above is
independent of choices, as is the image in Hd(X;Q) of the pushforward of
its fundamental class .

Example 4.9. Consider the football X considered in Example 1.7 with
reduction as in Example 4.6. Its tangent bundle TX has a correspond-
ing atlas with charts (TWI ,ΓI , ψ

TX
I ) and reduction TV with domains TVI .

Trivialize the bundle TV12 → V12 by choosing a nonvanishing Γ12-invariant
section ν2. This descends to a nonvanishing section of TVi|Vi(12)

(where

Vi(12) := ρi(12)(Ṽi(12))). Since each Vi is a disc, for each i, this section ex-
tends to a section νi : Vi → TVi with precisely one zero, which has weight
1

|Γi| Hence the Euler class is represented by the zero dimensional branched

manifold that is represented by two points, one with weight 1
2 and one with

weight 1
3 .

Remark 4.10. This abstract method should also apply to the infinite di-
mensional orbibundles of polyfold theory [HWZ]. Here one has an orbibun-
dle whose base and total space are sc-Banach manifolds. Since the moduli
space X of J-holomorphic stable maps is compact, one can define atlases
BKX

,BKE
as above that are finite (i.e. have finitely many basic charts) and

such that |BKX
| is a neighbourhood of X. In particular, the projection is

the realization of a functor π : BKE
→ BKX

that restricts on each chart to a
bundle π : EI → UI with infinite dimensional base and fibers on which the
finite group ΓI :=

∏
i∈I Γi acts. We are also given a canonical smooth sec-

tion s := (sI) where each sI : UI → EI is a ΓI -equivariant Fredholm operator
such that the realization |s−1(0)| of the zero set is canonically identified with
X. We can choose a subgroupoid VKX

of GKX
as in (4.1). Then polyfold

Fredholm theory implies that there are single valued sections ν of the pull-
back bundle such that s|V + ν � 0. The resulting zero set Zν has domains
that are d-dimensional manifolds, where d is the Fredholm index of s, and
just as above is a nonsingular étale groupoid whose realization has a natural
weighting function. The proof sketched above (and given in detail in [MW3])
that Zν is a weighted branched manifold relies on the existence of a similar
structure of the ambient groupoid VKX

. In the polyfold setup, VKX
is in-

finite dimensional. Hence, in order to complete the proof that the zero set
is a weighted branched manifold of dimension d one would have to carefully
check the properties of the local branching structure of the zero set. How-
ever, since this is entirely controlled by the behavior of the group actions,
this should pose no problem, hence giving a simple model for the virtual
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cycles constructed in polyfold theory. We hope to return to this question in
the future.
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