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Strings, fermions and the topology of

curves on annuli

Daniel V. Mathews

In previous work with Schoenfeld, we considered a string-type
chain complex of curves on surfaces, with differential given by re-
solving crossings, and computed the homology of this complex for
discs.

In this paper we consider the corresponding “string homology”
of annuli. We find this homology has a rich algebraic structure
which can be described, in various senses, as fermionic. While for
discs we found that an isomorphism between string homology and
the sutured Floer homology of a related 3-manifold, in the case
of annuli we find the relationship is more complex, with string
homology containing further higher-order structure.
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1. Introduction

1.1. Overview

This paper considers basic objects of classical topology — namely, curves
on surfaces — and some rich algebraic structure that arises from the simple
operation of resolving their crossings. It is a continuation of previous work
of the author with Schoenfeld [19].

A marked surface (Σ, F ) is a compact oriented surface Σ with non-empty
boundary, together with a set F of marked points, which are signed points
on ∂Σ. A string diagram on (Σ, F ) is a collection of oriented curves up to
homotopy on Σ, including both closed curves (“closed strings”) and arcs
(“open strings”), with endpoints given by F .

In [19], we introduced a vector space ĈS(Σ, F ) generated by string di-
agrams on (Σ, F ) (up to homotopy). We defined a differential operator ∂
on these vector spaces: given a string diagram s with transverse intersec-
tions, its differential ∂s is the sum, over all intersection points, of the string
diagram obtained by resolving that intersection as in Figure 1.

Figure 1: Resolution of a crossing.

In [19] we showed that we obtained chain complexes and explicitly com-

puted the resulting “string homology” ĤS(Σ, F ) in the case where Σ is a
disc D2.

In this paper, we extend our results to annuli. In a certain sense, we
are able to calculate “string homology” explicitly in all but one case. We
find that the resulting algebraic structure is much more intricate in the
annular than in the disc case. As the title suggests, this algebraic structure
is curiously “fermionic”, in a sense that we can make precise.

We found in [19] a close connection between our “string homology” for
D2, and Floer-theoretic invariants such as sutured Floer homology and em-
bedded contact homology for D2 × S1. We will show here that the “string
homology” of an annulus A is a more elaborate object than sutured Floer
homology of A× S1, though still clearly closely related. This paper focuses
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on computations of “string homology” of annuli and lays a basis for further
work examining connections to, and possible extensions of, Floer theory.

In this introduction, we give a brief overview of our results and an indi-
cation of their connections to other work. Throughout this paper, A denotes
an annulus and Σ denotes a general compact oriented surface with nonempty
boundary. We always work over Z2 coefficients.

1.2. Alternating marked surfaces

A marked surface is alternating if its marked points alternate in sign around
each boundary component. In [19] we showed that “string homology” is
trivial for many non-alternating marked surfaces, and in particular for any
non-alternating marked disc.

In this paper we show that this result carries over to annuli.

Theorem 1.1. Let (A, F ) be a weakly marked annulus which is not alter-

nating. Then ĤS(A, F ) = 0.

The proof, which appears in Section 5, uses some techniques from our
previous work [19], and also some new ideas. After this result, we only need
consider alternating (A, F ).

The alternating case is important because a marked alternating surface,
also known as a sutured background ([14, 15], see also [23]), naturally forms
a boundary condition for a set of sutures on a surface. The study of sutures
goes back at least to work of Gabai on 3-manifolds and foliations [3]; sutures
also play a crucial role as dividing sets in contact geometry [4, 8, 9] and
sutured 3-manifolds are the subject matter of sutured Floer homology (SFH)
[12]. In our previous work we have shown that sutures on surfaces can be
used to give insight into contact categories [13].

Moreover, previous work of ourselves and Honda–Kazez–Matić [10, 13–
18] has shown that SFH of products (Σ× S1, F × S1) is isomorphic, or
at least closely related to (depending on the context) a vector space based
on sets of sutures, modulo bypass triples — triples of sutures which are
related by the natural contact-geometric operation of bypass surgery. This
vector space is the Grothendieck group of the contact category of (Σ, F ) (as
defined by Honda [7]). As discussed in [19], such triples naturally arise in
our “string homology” as boundaries. Thus our “string homology” should
be strongly related to sutured Floer homology via the construction of the
“sutures modulo bypass triples” Grothendieck group. In [19] we showed a
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direct isomorphism when Σ is a disc, so that our elementary “string homol-
ogy”, based on nothing more than curves and their crossings, is equivalent
to a Floer-theoretic invariant based on symplectic and contact geometry and
holomorphic curves.

In this paper, as discussed below in Section 1.6, we show that “string
homology” is a richer and more complicated structure than the contact
Grothendieck group or sutured Floer homology (even with twisted coeffi-
cients) of (Σ× S1, F × S1), in the case of annuli.

1.3. No marked points and homology of fermions

After Theorem 1.1, we only need consider alternating marked surfaces —
hence with an even number of marked points on each boundary component.
We can write F2m,2n for an alternating set of marked points with 2m and
2n points on the two boundary components of the annulus A. We find a
great deal of interesting — and not yet fully understood — structure in
ĤS(A, F2m,2n).

In cases where F contains a small number of points, we can compute
ĤS(A, F ) explicitly; when F is larger, we can still give some description.

First, consider the case of no marked points: F0,0 = ∅. (In [19] we re-
quired marked surfaces to have marked points on each boundary compo-
nent; in this paper we relax this requirement and allow the case of an empty
marked point set.) In this case, we show that ĤS(A, ∅) has the structure
of a (commutative) Z2-algebra, with multiplication corresponding to jux-
taposition of curves. A string which runs k times around the core of the
annulus is denoted xk, and its homology class (if it exists) in ĤS(A, ∅) by
x̄k. Throughout we will denote by z̄ the homology class of an element z.

Theorem 1.2. The homology ĤS(A, ∅) is generated as a Z2-algebra by the
homology classes x̄k of xk, over all odd integers k, subject to the relation
that each x̄2k = 0. That is,

ĤS(A, ∅) = Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

.

In other words, ĤS(A, ∅) has the structure of a polynomial algebra over
Z2, in infinitely many commuting variables x̄2j+1, such that each variable
satisfies x̄22j+1 = 0.

This algebra is “fermionic” in two senses:
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1) Only curves with “odd spin” x2j+1 survive in homology: curves which
proceed around the annulus an even number of times are not cycles.

2) Even for the “odd spin” curves x2j+1, which do represent homology
classes, their square is zero, x̄22j+1 = 0. Two such curves cause a “pair
annihilation” and give zero in homology. Thus there is a “Pauli exclu-
sion principle” for these curves.

This “fermionic polynomial” algebra, which we denote H(X ) as explained
in Section 2.3, is central to all further calculations. This is partly because
of the technicalities of the algebra, but can be seen explicitly for example
in the following proposition, which will be proved (in greater generality) in
Section 2.4.

Proposition 1.3. For any n ≥ 0, ĤS(A, F0,2n) is an H(X )-module.

The computation of ĤS(A, ∅) is rather involved and occupies Section 3
of this paper. Along the way we see an analogy to “decay chains” of particles,
with corresponding “decay” and “fusion” operators (Sections 3.3 and 3.4)
and Weyl algebra representations (Section 3.5).

1.4. Further homology computations: Two and four marked
points

We then proceed to annuli with the next smallest set of alternating marked
points, namely two marked points, both on the same boundary component,
(A, F0,2). From Proposition 1.3, this is a H(X )-module, i.e. a module over a
polynomial ring in infinitely many variables x̄2j+1 where each x̄22j+1 = 0.

A string diagram on (A, F0,2) contains a single open string between the
two points of F0,2, as well as some (possibly none) closed strings.

Theorem 1.4. The homology ĤS(A, F0,2), as an H(X )-module, is given
by

ĤS(A, F0,2) ∼= x̄1H(X )⊕ x̄−1H(X )

∼= x̄1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

⊕ x̄−1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

).
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More precise statements are given in Proposition 4.12 and Theorem 4.14.
Thus ĤS(A, F0,2) is naturally a non-free rank-2 module over the “fermionic”
polynomial ring H(X ), and “fermionic” behaviour persists in this case.

As we will see, the two summands correspond to whether the open string
in a string diagram on (A, F0,2) runs around the annulus in a positive or
negative direction. In this way, to continue with loose physical analogies,
“open strings with different chirality do not interact”. These computations
occupy Sections 4.3 and 4.4 of this paper.

Next we consider annuli with four marked points, two on each boundary
component (A, F2,2). This is the most difficult case we consider. While we
do not have an explicit generators-and-relations description of homology in
this case, we can detail a significant amount of structure. The computations
occupy the longest section of the paper, Section 6.

We summarise some of our description of ĤS(A, F2,2) as follows.

Theorem 1.5.

1) The chain complex ĈS(A, F2,2) naturally splits into two summands

ĈS(A, F2,2) ∼= (A⊗X ⊗ B)⊕ (C ⊗ X ⊗D),

corresponding respectively to “insular” string diagrams in which the
open strings begin and end at the same boundary component, and
“traversing” string diagrams in which the open strings run between
distinct boundary components. The first summand is a subcomplex,
indeed a differential X -module; the second is not.

2) The subcomplex A⊗X ⊗ B naturally splits as a direct sum of four
further subcomplexes (also differential X -submodules), corresponding
to the direction of open strings:

A⊗X ⊗ B ∼= (A+ ⊕A−)⊗X ⊗ (B+ ⊕ B−)
∼= (A+ ⊗X ⊗ B+)⊕ (A+ ⊗X ⊗ B−)
⊕ (A− ⊗X ⊗ B+)⊕ (A− ⊗X ⊗ B−).

The homology of each subcomplex A± ⊗X ⊗ B± is naturally an H(X )-
module; they are non-free H(X )-modules of rank ∞, 1, 1,∞ respec-
tively.

3) The summand A⊗X ⊗ B contains cycles which are not boundaries in

ĈS(A, F2,2), and which are not homologous to elements of C ⊗ X ⊗D.



Strings, fermions and the topology of curves on annuli 427

4) The summand C ⊗ X ⊗D contains cycles which are not boundaries in

ĈS(A, F2,2), and which are not homologous to elements of A⊗X ⊗ B.

The algebraic objects A,A±,B,B±, C,D,X will be defined in due course.
Broadly, these objects keep track of various topological classes of curves in
string diagrams on (A, F2,2). The last two parts of the theorem show that

both the “insular A–B sector” and “traversing C–D sector” of ĤS(A, F2,2)
contribute nontrivially to homology. We shall give such homology classes
explicitly.

Note also that, even though ĤS(A, F2,2) is not an H(X )-module, the
“A–B sector” is, and the “fermionic” structure of a module over “fermionic
polynomials” H(X ) appears once more.

Part (i) is established in Section 6.1, as is the decomposition of part
(ii). The calculations of the H(A± ⊗X ⊗ B±) are involved and occupy Sec-
tions 6.3 to 6.6, where precise results are obtained in Theorems 6.12 and 6.19.
Parts (iii) and (iv) are shown in Section 6.7, where we also develop several
tools for analysing the full complex.

1.5. Adding more marked points: creation operators
and doubling

As we do not have an explicit description of ĤS(A, F2,2), we cannot ex-

pect an explicit description of ĤS(A, F2m,2n) for larger (2m, 2n). However,
we can do the next best thing: we can give a complete description of all
ĤS(A, F2m,2n) either explicitly with generators and relations, or in terms of

ĤS(A, F2,2).
Indeed, once we have 2 marked points on a boundary component, as we

add more marked points to that boundary component, we can describe the
effect on ĤS explicitly. To this end we will define creation and annihilation
operators, as used in [13, 14, 19], in Section 7.1.

Theorem 1.6. Let (Σ, F ) be an alternating marked surface and suppose
F ′ is an alternating marking obtained from F by adding two marked points
on a boundary component already containing marked points. Then

ĤS(Σ, F ′) ∼= (Z2 ⊕ Z2)⊗Z2
ĤS(Σ, F )

In Section 7.2 we give explicit isomorphisms on string homology; a pre-
cise statement is Theorem 7.1
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Repeated use of the above theorem gives a description of these vector
spaces for general alternating (A, F2m,2n), as follows. The precise formula-
tions are Propositions 7.3 and 7.4.

Theorem 1.7.

1) If n ≥ 0 then

ĤS(A, F0,2n+2) ∼= (Z2 ⊕ Z2)
⊗n ⊗Z2

(x̄1H(X )⊕ x̄−1H(X )) .

2) If m,n ≥ 0 then

ĤS(A, F2m+2,2n+2) ∼= (Z2 ⊕ Z2)
⊗(m+n) ⊗Z2

ĤS(A, F2,2).

1.6. Relations to Floer-theoretic invariants

As mentioned in Section 1.2, there are reasons to expect a connection be-
tween the “string homology” discussed in this paper, and Floer-theoretic
invariants such as sutured Floer homology and embedded contact homology,
as well as a contact-topological invariant, namely the Grothendieck group
of the contact category, consisting of “sutures modulo bypass triples”.

In [19] we showed that for an alternating marked disc (D2, F ), our

“string homology” ĤS(D2, F ), the Grothendieck group of “sutures mod-
ulo bypasses”, and the sutured Floer homology of (D2 × S1, F × S1) are
naturally isomorphic:

ĤS(D2, F ) ∼= ̂CSsut(D2,F )
̂Byp(D2,F )

∼= SFH(D2 × S1, F × S1)

String homology Sutures mod bypasses Sutured Floer homology

The computations of this paper, outlined in this introduction, show that
such a direct isomorphism no longer exists for annuli, and the relationship
is more complex.

For instance, suppose, following [20, 21], we regard the annulus with no
marked points (A, ∅) as corresponding to the sutured 3-manifold (A× S1,Γ),
where Γ consists of a pair of sutures of the form C × {·}, oppositely oriented,
on each boundary component C × S1 of A× S1. Then in fact the sutured
manifold (A× S1,Γ) is homeomorphic to (A× S1, F2,2 × S1) and computa-
tions of [11] or [10] give SFH(A× S1,Γ) ∼= Z

4
2. With Z or twisted coefficients

SFH(A× S1,Γ) is a free Z or Z[q, q−1]-module of rank 4 [18]. But on the

other hand, ĤS(A, ∅) = H(X ) is the “fermionic polynomial algebra”, which
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has infinite rank as a vector space or algebra over Z2.

ĤS(A, ∅) = H(X ) ∼= Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

There is a basis of sutured Floer homology in this case consisting of contact
elements of contact structures with dividing sets given by the string diagrams
1, x1, x−1, x1x−1. In some sense, then, one can view SFH as a first-order
approximation to ĤS(A, ∅), with higher order structure from the “higher

spin” strings x̄±3 and above. Setting all x̄±3, x̄±5, . . . to 0, ĤS(A, ∅) reduces
to SFH(A× S1,Γ) with Z2 coefficients.

Similarly, if we consider the annulus with two marked points on a single
boundary component (A, F0,2), the corresponding sutured manifold (A×
S1,Γ) is a basic slice [8], which has SFH isomorphic to Z

4
2 [11]. But again

our computation of ĤS is a far richer structure,

ĤS(A, F0,2) ∼= x̄1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

⊕ x̄−1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

.

Again setting all x̄3, x̄5, . . . to 0 reduces this homology to Z
4
2 in a manner

which appears to be consistent with contact elements generating SFH.
Finally, (A, F2,2) has corresponding sutured manifold (A× S1, F2,2 × S1)

which has SFH free of rank 4 (with Z2, Z or twisted Z[q, q−1] coefficients),

as computed in [10, 15, 17]. But ĤS(A, F2,2) is more complicated. Although
we cannot compute the homology explicitly, in Section 6.7 we construct a
homomorphism Φ from ĤS(A, F2,2) onto Z

4
2, with nonzero kernel.

The constructions of this paper, therefore, give an algebraic object with
an elementary definition, based on curves on surfaces and their intersections,
but which may contain strictly more information than Floer-theoretic invari-
ants of corresponding 3-manifolds. The above remarks suggest that some
subspace, or quotient, of ĤS(Σ, F ) may be isomorphic to the corresponding
sutured Floer homology, or Grothendieck group of “sutures modulo bypass
triples”. They also suggest potential “higher order structure” which may be
found in sutured Floer homology, or the equivalent Floer-theoretic invariant
of embedded contact homology, or contact categories.

On a different note, as remarked in our previous work [19], the construc-
tion of our differential is strongly reminiscent of the work of Goldman [5]
and Turaev [22]. Goldman defined a Lie bracket on the abelian group Zπ̂
freely generated by homotopy classes of loops on a surface — the bracket
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resolves crossings between two loops, much like our differential. From this
bracket, now known as the Goldman bracket, he defined a Lie algebra homo-
morphism to the space of smooth real-valued functions on the Teichmüller
space of the surface (and more generally to spaces of flat G-connections).
Under this map the Goldman bracket corresponds to the Poisson bracket
on real-valued functions with respect to the Weil-Petersson symplectic form
on Teichmüller space. Turaev went further and defined a cobracket on the
same abelian group Zπ̂, defined by resolving self-intersections of a loop.
This cobracket, now known as the Turaev cobracket, gives Zπ̂ a Lie bialge-
bra structure and we obtain a Poisson algebra homomorphism to the space
of smooth real-valued functions on Teichmüller space.

Our differential, taking a string diagram and resolving its crossings —
both intersections between distinct strings and self-intersections of each
string — thus incorporates both the Goldman bracket and Turaev cobracket.

A similar combination of both Lie bialgebra operations also arises in the
symplectic field theory of Eliashberg–Givental–Hofer [2]. Cieliebak–Latschev
in [1] studied symplectic field theory with Lagrangian boundary conditions,

and found that the master equation of symplectic field theory eF
←−
H+ −−→

H−eF = 0 is generalised in the Lagrangian boundary case to the equation

eF
←−
H+ −−→

H−eF = (∂ +Δ+ �∇)eL,

where ∇ and Δ are essentially the Goldman bracket and Turaev cobracket
respectively. In other words, our differential resembles boundary phenom-
ena in symplectic field theory. As discussed in [19], the relationships known
to exist between symplectic field theory, embedded contact homology, and
Heegaard Floer homology suggest that none of these similarities is a coinci-
dence.

For now, however, we leave the pursuit of these connections to subse-
quent work, and for the remainder of this paper concentrate on the calcu-
lations of various ĤS(A, F ), hoping that the above considerations provide
sufficient motivation to follow them.

1.7. Structure of this paper

We will proceed by first establishing some preliminaries and definitions, in
Section 2. Much of this section recalls [19] but there is some significant
generalisation of basic notions and re-working of definitions in the present
context. For instance, our notion of marked surface in Section 2.1 allows
boundary components without marked points. Also in Section 2.2 we define
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the chain complex ĈS(Σ, F ) as a quotient by contractible loops. And in
Sections 2.3 and 2.4 we discuss additional algebraic structure.

In Section 3 we consider the annulus (A, F0,0 = ∅) with no marked points,
and calculate the resulting homology. The computation is rather long and
involves a decomposition over odd integers (Section 3.2), a notion of “decay”
and “fusion” operators (Sections 3.3–3.4), and Weyl algebra representations
(Section 3.5).

In Section 4 we turn to annuli with two marked points. There are two
cases to consider. In Sections 4.1–4.2 we consider the case of one marked
point on each boundary component; this is the remaining case we need,
in Section 5, to prove homology is zero for non-alternating annuli. Then
in Sections 4.3–4.4 we consider two marked points on a single boundary
component.

Section 6 is by far the longest and most difficult part of the paper; it con-
sists of computations relating to ĤS(A, F2,2). In Sections 6.1–6.2 we describe
the chain complex and differential. Then in Sections 6.3–6.6 we present a
long argument to calculate the homology of the “insular” part of the chain
complex. Finally in Section 6.7 we consider the full homology ĤS(A, F2,2),
make some general statements, and develop some tools to analyse it, includ-
ing homomorphisms to and from a simpler chain complex E based on string
diagrams on a disc, and diagonal sum sequences.

Finally, in Section 7 we consider adding further marked points, defin-
ing creation operators (Section 7.1) and analysing their effect on ĤS (Sec-

tion 7.2), before giving results for ĤS(A, F0,2n+2) and ĤS(A, F2m+2,2n+2)
(Section 7.3).

I would like to thank the referee for a long list of useful comments and
suggestions.

2. Preliminaries and definitions

2.1. Marked surfaces and string diagrams

Here, as elsewhere, Σ denotes a compact oriented surface with nonempty
boundary.

Definition 2.1.

1) A (weak) marking F on Σ is a set of 2n distinct points on ∂Σ, where
n ≥ 0, with n points Fin labelled “in” and n points Fout labelled “out”.
The pair (Σ, F ) is called a (weakly) marked surface.
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2) A strong marking F on Σ is a weak marking with at least one point
on each component of Σ. The pair (Σ, F ) is called a strongly marked
surface.

Note F = Fin � Fout. The points of F are marked points ; the sign of a
marked point is “in” or “out” accordingly as it lies in Fin or Fout. Note that
a weakly marked surface may have no marked points at all. However we
always require Σ to have nonempty boundary.

In [19], we only considered strong markings and strongly marked sur-
faces, referring to them as “markings” and “marked surfaces”. However in
this paper we use the adjectives “strong” and “weak” to distinguish the
two types of markings. When applied without an adjective, by a marking or
marked surface we mean a weak one.

Definition 2.2. A marking (strong or weak) is called alternating if for each
component of ∂Σ, the points of F are alternately labelled (in, out, ..., in,
out).

In the weak case, a boundary component with no marked points is al-
ternating (“the null alternation”). The empty marking F = ∅ is always an
alternating weak marking.

An alternating marking (strong or weak) has an even number of points
on each boundary component. An alternating strong marking has at least 2
points on each boundary component.

An alternating strong marking forms a natural boundary condition for
sutures, as discussed in [14, 17]; see also [23]. Sutures can be regarded as
dividing sets on a convex surface in a contact 3-manifold [4]. A boundary
component C of Σ is regarded as Legendrian, with Thurston-Bennequin
number −1

2 |C ∩ F | [8]. However in this paper we only consider sutures in
passing.

Definition 2.3. Let (Σ, F ) be a (weakly) marked surface. A string diagram
s on (Σ, F ) is an immersed oriented compact 1-manifold in Σ such that
∂s = F , as signed 0-manifolds, with all self-intersections in the interior of Σ.

The components of a string diagram are called strings ; arc components
are called open strings, and closed curve components are called closed strings.

By ∂s = F as signed 0-manifolds, we mean that strings point in and out
of Σ at Fin and Fout respectively. Clearly each open string runs from a point
of Fin to a point of Fout.



Strings, fermions and the topology of curves on annuli 433

The condition that all self-intersections occur in the interior of Σ avoids
unnecessary technicalities. In particular it ensures that precisely one arc
of s begins (resp. ends) at each point of Fin (resp. Fout). Generically a
string diagram is in general position, i.e. contains only transverse double
self-intersections.

Note compactness implies that a string diagram only has finitely many
strings. (In [19] we did not require string diagrams to be compact; but once
contractible curves on a disc are ruled out, compactness follows for free.
Here we require compactness explicitly.)

In [19] we defined several notions of homotopy for string diagrams; in this
paper we consider only homotopy per se (not regular homotopy, spin homo-
topy, or ambient isotopy). Two string diagrams s0, s1 on a (weakly) marked
surface (Σ, F ) are homotopic if there is a homotopy relative to endpoints
from s0 to s1. Such a homotopy may introduce or remove self-intersections
in the string diagram, it need not be through immersions, and it may change
the writhe of strings. Although strictly speaking the string diagram is an
explicit immersion of a disjoint union of copies of S1 and [0, 1] into (Σ, F ),
we abuse notation and identify this immersion with its image in Σ.

←→

←→ ←→

←→ ←→

Figure 2: String Reidemeister moves.

As discussed in [19, sec. 2B], any string diagram is homotopic to one in
general position, and any two homotopic string diagrams in general posi-
tion are related by a sequence of ambient isotopies and string Reidemeister
moves, as shown in Figure 2. These are similar to the usual Reidemeister
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moves, but the orientation on a string diagram means that there are two
distinct versions of type II and III moves.

It is useful to consider various sets of string diagrams on a (weakly)
marked surface (Σ, F ).

Definition 2.4.

1) Let S(Σ, F ) denote the set of homotopy classes of string diagrams on
(Σ, F ).

2) Let SO(Σ, F ) denote the set of homotopy classes of string diagrams
containing only open strings.

3) Let SC(Σ, F ) denote the set of homotopy classes of string diagrams
containing a contractible closed curve.

2.2. The chain complex

Following [19] we define a chain complex (ĈS(Σ, F ), ∂) out of homotopy
classes of string diagrams. It is described in terms of free vector spaces over
the sets of Definition 2.4. For any set S, denote by Z2〈S〉 the free Z2 vector
space on S, i.e. with basis S.

Definition 2.5. Let (Σ, F ) be a (weakly) marked surface. The Z2-vector

space ĈS(Σ, F ) is

ĈS(Σ, F ) =
Z2〈S(Σ, F )〉
Z2〈SC(Σ, F )〉 .

As SC(Σ, F ) ⊆ S(Σ, F ), we have a well-defined quotient Z2-vector space.

A basis of ĈS(Σ, F ) is given by homotopy classes of string diagrams on
(Σ, F ) which contain no contractible closed curves. (In fact in [19] we defined

ĈS(Σ, F ) this way.) Our definition of ĈS(Σ, F ) as a quotient makes clear
that any string diagram s on (Σ, F ) can (by taking its homotopy class) be

regarded as an element of ĈS(Σ, F ); that element is zero precisely when s
contains a contractible closed curve. (In [19] we had to enforce this condition
by fiat.)

Reasons for setting contractible closed curves to zero are given in [19].
Briefly: the triviality of contractible closed curves is consistent with the
nature of overtwisted discs in contact topology; moreover we find that we
may allow contractible curves, but at the cost of restricting to spin homotopy
classes, obtaining a different vector space CS∞(Σ, F ). (In this paper, as we
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do not consider spin homotopy, we do not consider CS∞(Σ, F ) either. We
can however note that CS∞ may be defined for weakly marked surfaces.)

We next define the differential on ĈS(Σ, F ). Let s be a string diagram
on a marked surface (Σ, F ). Assuming s is generic, all intersection points of
s are transverse double crossings; let x be such an intersection point. As the
curves of s are oriented, there is a string diagram rx(s) obtained by resolving
s at x, as shown in Figure 1.

Definition 2.6. Let s be a string diagram. Then

∂s =
∑

x crossing of s

rx(s).

In [19] we showed that ∂ is well-defined on homotopy classes of string
diagrams without contractible loops; the same argument shows that ∂ gives
a well-defined operator

∂ : ĈS(Σ, F ) −→ ĈS(Σ, F ).

We briefly recall the arguments of [19, sec. 4A] and refer there for details.
We must show that if s, s′ are homotopic string diagrams then the string dia-
grams in ∂s and ∂s′are equal, up to homotopy (i.e. in Z2〈S(Σ, F )〉), modulo
string diagrams containing contractible curves (i.e. modulo Z2〈SC(Σ, F )〉).
It is clear that if s, s′ are ambient isotopic, then the terms in ∂s, ∂s′ are
also ambient isotopic, so the well-definition of ∂ amounts to showing that ∂
respects the string Reidemeister moves. If s, s′ are related by a type I string
Reidemeister move, so that s′ has an extra crossing and an extra loop, then
∂s, ∂s′ are sums of homotopic diagrams, except that ∂s′ contains one extra
string diagram, which contains a contractible curve, hence which is zero in
ĈS(Σ, F ), so that ∂s = ∂s′. Figures 10 and 11 of [19] show that, if s, s′ are
related by a type 2 or 3 string Reidemeister move, then ∂s, ∂s′ are sums of
homotopic diagrams. In all cases then ∂s = ∂s′, and ∂ is well defined.

Moreover, ∂2 = 0; the argument in [19, sec. 3E] for strongly marked
surfaces extends without change to the weak case. The string diagrams in
∂2s are those obtained by resolving two crossings x and y of a string diagram
s; but x and y may be resolved in either order, so terms of ∂2s come in pairs
and mod 2 the result is 0.

Thus for any (weakly) marked surface (Σ, F ) we have a chain complex

(ĈS(Σ, F ), ∂).
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Definition 2.7. Let (Σ, F ) be a weakly marked surface. The string homol-
ogy of (Σ, F ) is

ĤS(Σ, F ) =
ker ∂

Im ∂
.

Clearly ĤS(Σ, F ) is a Z2-vector space.

2.3. Algebraic structure

All of the above essentially appears in [19], apart from the extension to
weakly marked surfaces. In this section we introduce some multiplicative
structures on the various vector spaces involved, making them into modules
and/or algebras. This material has not appeared before, so far as we are
aware.

For a (weakly) marked surface with no marked points, ĈS(Σ, ∅) is nat-
urally a ring, which we denote X (Σ). Multiplication in this ring is given
by disjoint union of string diagrams, which necessarily only contain closed
strings. For a general (weakly) marked surface, ĈS(Σ, F ) is a free X (Σ)-
module, with basis given by SO(Σ, F ), string diagrams containing only open
strings. We can describe these structures formally in terms of the fundamen-
tal group and/or loop space of Σ.

Consider the free homotopy classes of closed loops on Σ; these correspond
to the connected components π0(ΛΣ) of the free loop space ΛΣ. When Σ
is connected, these also correspond to conjugacy classes Conjπ1(Σ) of the
fundamental group π1(Σ).

We define the algebra X̃ (Σ) to be the symmetric Z2-algebra on the set
π0(ΛΣ). That is, X̃ (Σ) = Z2[π0(ΛΣ)]. Elements of X̃ (Σ) can be regarded as
polynomials in “variables” given by free homotopy classes of closed curves
on Σ. As a Z2-vector space, X̃ (Σ) has basis given by free homotopy classes
of closed multicurves on Σ. Multiplication in X̃ (Σ) corresponds to disjoint
union of (free homotopy classes of) multicurves. When Σ is connected,
X̃ (Σ) ∼= Z2[Conjπ1(Σ)].

The ring X̃ (Σ) has an ideal π0(Σ)X̃ (Σ) generated by the homotopy
classes of closed contractible curves on Σ. (There is one such homotopy
class for each connected component of Σ.) The ideal π0(Σ)X̃ (Σ) is a free Z2-
vector subspace of X̃ (Σ) with basis SC(Σ, ∅), the homotopy classes of closed
multicurves containing a contractible closed curve. When Σ is connected,
this ideal is isomorphic to {1}Z2[Conjπ1(Σ)] ⊂ Z2[Conjπ1(Σ)].

The algebra X (Σ) is then the quotient of X̃ (Σ) by this ideal.
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Definition 2.8. The Z2-algebra X (Σ) is

X (Σ) =
X̃ (Σ)

π0(Σ)X̃ (Σ)
=

Z2[π0(ΛΣ)]

π0(Σ)Z2[π0(ΛΣ)]
.

As a Z2-algebra, X (Σ) is freely generated by free homotopy classes of
non-contractible closed curves on Σ; contractible curves have been set to
zero. As a Z2-vector space, X (Σ) has basis given by free homotopy classes of
closed multicurves on Σ with no contractible components. This means that
despite our algebraic circumvolutions, X (Σ) is just isomorphic to ĈS(Σ, ∅)
as a Z2-vector space; indeed it endows ĈS(Σ, ∅) with the structure of a
Z2-algebra.

ĈS(Σ, ∅) ∼= X (Σ).

Turning to a general (possibly nonempty) marking F , it is useful to

consider a vector space, like ĈS, but using SO(Σ, F ) (Definition 2.4) rather
than S(Σ, F ).

Definition 2.9. For a (weakly) marked surface (Σ, F ), the vector space

ĈS
O
(Σ, F ) is the subspace of ĈS(Σ, F ) generated by homotopy classes of

string diagrams with no closed curves.

ĈS
O
(Σ, F ) =

Z2〈SO(Σ, F )〉
Z2〈SC(Σ, F ) ∩ SO(Σ, F )〉 = Z2〈SO(Σ, F )〉

(Note SC(Σ, F ) ∩ SO(Σ, F ) = ∅, giving the equalities above; having no

closed curves implies no contractible closed curves!) Thus, ĈS
O
(Σ, F ) is

freely generated as a Z2 vector space by string diagrams with open strings
only.

Now suppose we have a (homotopy class of) string diagram s without

contractible curves, so s is a generator of ĈS(Σ, F ). We can decompose s into
its open and closed string components. Precisely, there exists a (free homo-
topy class of) closed multicurve without contractible components x ∈ X (Σ),

and a (homotopy class of) open string diagram sO ∈ ĈS
O
(Σ, F ), such that s

is the union of the curves of x and sO. Moreover this x and sO are unique. In
keeping with the notion that multiplication corresponds to disjoint union of
string diagrams, we may write s = xsO. Moreover, this notation is compati-
ble with the multiplication in X (Σ): if x = x1x2 for x1, x2 ∈ X (Σ), we have

xsO = (x1x2)s
O = x1(x2s

O). Thus, ĈS(Σ, F ) naturally has the structure of
an X (Σ)-module; indeed it is a free X (Σ)-module with basis SO(Σ, F ). As
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ĈS
O
(Σ, F ) is freely generated by SO(Σ, F ), we immediately have the fol-

lowing result.

Lemma 2.10. For any (weakly) marked surface (Σ, F ),

ĈS(Σ, F ) ∼= X (Σ)⊗Z2
ĈS

O
(Σ, F ). �

In this paper we only need to take Σ = A. In this case π0(ΛA) ∼= π1(A) ∼=
Conjπ1(A) ∼= Z, as the fundamental group is abelian. For any integer n, let
us write xn for the free homotopy class of a closed curve in A which runs n
times around the core of the annulus, i.e. corresponding to n ∈ Z ∼= π1(A).
So X̃ (A) = Z2[. . . , x−2, x−1, x0, x1, x2, . . .] is the free polynomial algebra in
xn, over all integers n.

The only homotopy class of closed curve on A which is contractible is
x0, corresponding to 0 ∈ Z ∼= π1(A). So X (A) is the quotient of X̃ (A) by
the principal ideal generated by x0; this corresponds to setting x0 = 0. As a
Z2-algebra, we thus have

X (A) ∼= Z2[. . . , x−2, x−1, x1, x2, . . .],

i.e. the free polynomial algebra in the infinitely many indeterminates xn,
over all integers n �= 0. This ring occurs so frequently in the sequel that we
simply write X for X (A).

Applying the above to A, we immediately have the following, for integers
m,n ≥ 0.

ĈS(A, ∅) ∼= X ∼= Z2[. . . , x−2, x−1, x1, x2, . . .]

ĈS(A, F2m,2n) ∼= X ⊗Z2
ĈS

O
(A, F2m,2n)

∼= Z2[. . . , x−2, x−1, x1, x2, . . .]⊗Z2
ĈS

O
(A,F2m,2n).

2.4. Goldman bracket, Leibniz rule and differential algebra

For a marked surface with no marked points (Σ, ∅), we have seen that

ĈS(Σ, ∅) ∼= X (Σ) is naturally both a ring, and a chain complex. Thus it
appears to be a differential algebra (indeed, a differential graded algebra
with respect to an intersection grading). However, in general the differential
does not obey the Leibniz rule. We now explain why.

Suppose we have two closed curves on Σ, with homotopy classes x, y ∈
X (Σ) ∼= ĈS(Σ, ∅). Then xy is the disjoint union of these two curves, and
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∂(xy) is obtained by resolving the intersection points of xy. These inter-
section points may be of three types: (i) self-intersections of x; (ii) self-
intersections of y; and (iii) intersections of x with y. Resolving the inter-
sections of the first and second types gives (∂x)y and x(∂y) respectively.
So the Leibniz rule ∂(xy) = (∂x)y + x(∂y) holds if and only if there are no
intersections of the third type, i.e. x and y are disjoint, or at least their
resolutions cancel mod 2.

Thus X (Σ) ∼= ĈS(Σ, ∅) is a differential algebra if any closed curve in
Σ can be homotoped to be separate from any other; this occurs precisely
when Σ is a union of discs and annuli. In this case the homology H(X (Σ)) ∼=
ĤS(Σ, ∅) has the structure of a Z2-algebra.

The deviation of ∂ from obeying the Leibniz rule is thus measured by
the intersection of distinct closed curves. To this end we recall the Goldman
bracket [5], which is in fact part of the original motivation for our differential.

Definition 2.11. Let s, s′ be two immersed oriented curves on Σ intersect-
ing transversely. Their Goldman bracket is given by resolving the crossings
of s and s′:

[s, s′] =
∑

x∈s∩s′
rx(ss

′).

The proofs of Lemmas 4.1 and 4.2 of [19] apply immediately to show that
the bracket is well-defined, and the homotopy class of the result depends
only on the homotopy class of s and s′. Note that the Goldman bracket
applies to any immersed oriented curves, not just closed curves, and is in
fact well-defined on multicurves.

Restricting to closed multicurves, the Goldman bracket gives an opera-
tion

[·, ·] : X (Σ)⊗X (Σ) −→ X (Σ).

Working over Z2, the Goldman bracket is both antisymmetric and sym-
metric. We have the following identity, for any multicurves x and y.

(2.1) ∂(xy) = (∂x)y + x(∂y) + [x, y]

This equation expresses precisely that the Goldman bracket is an obstruction
to ∂ satisfying the Leibniz rule.

Turning to nonempty markings F , we have seen that ĈS(Σ, F ) ∼= X (Σ)⊗
ĈS

O
(Σ, F ) is a free X (Σ)-module. We may write a (homotopy class of)

string diagram s on (Σ, F ) as xsO, where x ∈ X (Σ) is a (homotopy class of)
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closed multicurve and sO ∈ SO(Σ, F ). We have

(2.2) ∂(xsO) = (∂x)sO + x(∂sO) + [x, sO],

where ∂x denotes the differential in X (Σ). Thus, if the Leibniz rule is satis-
fied, then [x, sO] = 0 for every closed curve x and every open string diagram
sO on (Σ, F ). This implies that for connected (Σ, F ) we have Σ a disc, or
Σ = A and all points of F are on the same boundary component of A. In
fact in these cases X (Σ) is a differential algebra, and the Leibniz rule is

satisfied, so that ĈS(Σ, F ) is a differential X (Σ)-module. It follows that the

homology ĤS(Σ, F ) is an H(X (Σ))-module.
When Σ = A, we denote the alternating marking points consisting of

2m, 2n ≥ 0 points on the respective boundary components by F2m,2n. We
then have the following.

Proposition 2.12. The above construction gives ĈS(A, F2m,2n) the struc-
ture of a differential X -module if and only if m = 0 or n = 0. In these cases
ĤS(A, F2m,2n) is an H(X )-module. �

This proves Proposition 1.3.
In the next section we compute H(X ).

3. Strings on annuli with no marked points

We now turn our attention to the marked surface (A, ∅). From Section 2.3
above, we have, as a Z2-algebra

ĈS(A, ∅) ∼= X ∼= Z2[. . . , x−2, x−1, x1, x2, . . .].

3.1. Description of the differential

We first compute the differential. As discussed in Section 2.4, the Gold-
man bracket vanishes on (A, ∅) so the Leibniz rule is satisfied and X is a
differential algebra.

Lemma 3.1. The differential ∂ on ĈS(A, ∅) satisfies the following proper-
ties.

1) For each integer k �= 0,

∂x2k = x2k.
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2) For each integer k,

∂x2k+1 = 0.

These two properties together with the Leibniz rule define ∂ completely.
As ∂ is Z2-linear, it suffices to define it on (homotopy classes of) string
diagrams. Individual strings are dealt with by (i) and (ii) above, and where
there are several curves, they are resolved individually via the Leibniz rule.

Proof. Consider a closed string of homotopy class n > 0, represented by xn ∈
X . We may draw this loop so that it has n− 1 self-intersections. Resolving
any of these crossings splits the loop into two loops whose homotopy classes
are positive and sum to n; thus we have

∂xn =

n−1∑
i=1

xixn−i.

When n is odd, the number of terms in this sum is even, and terms cancel in
pairs mod 2, so ∂xn = 0. When n is even, n = 2k, we have an odd number
of terms, and again terms cancel in pairs, except for the “middle” term x2k.
A similar argument calculates ∂xn when n < 0. �

Thus, computing ĤS(A, ∅) amounts to computing the homology of the
polynomial algebra X ∼= Z2[. . . , x−2, x−1, x1, x2, . . .] with respect to the dif-
ferential ∂ defined by ∂x2k = x2k, ∂x2k+1 = 0 and the Leibniz rule.

This description of ∂ alone is enough to understand some aspects of the
“fermionic” nature of ĤS(A, ∅). Firstly, as ∂x2k+1 = 0, but ∂x2k �= 0, only
“odd-spin” strings have homology classes. And secondly, since ∂x2k = x2j ,

in homology we have x2j = 0; so a loop which appears twice disappears in
homology — reminiscent of the Pauli exclusion principle.

3.2. Tensor decomposition over odd integers

Our computation of ĤS(A, ∅) is based on a tensor decomposition of the

complex ĈS(A, ∅). We can partition the nonzero integers into subsets Zj ,
for each odd integer j, as follows:

Zj = {j, 2j, 4j, . . .} = {j · 2k : 0 ≤ k ∈ Z}.

Obviously any nonzero integer can be written uniquely as j · 2k where j ∈ Z

is odd and 0 ≤ k ∈ Z, so

Z\{0} =
⊔

j odd

Zj .
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Now X is a free Z2-algebra on the xn over n ∈ Z\{0}. Hence we can
define, for each odd j,

Xj = Z2[{xn : n ∈ Zj}] = Z2[xj , x2j , x4j , . . .].

That is, Xj is the polynomial algebra in the xn, over all n ∈ Zj . Correspond-
ing to the decomposition of Z\{0} into the Zj , we have a tensor decompo-
sition of the Z2-vector space X :

X =
⊗
j odd

Xj .

Further, since the differential acts on generators by x2k �→ x2k and x2k+1 �→ 0,
each Xj is a subcomplex of X ; indeed, each Xj is a differential sub-algebra
of X . Since ∂ obeys the Leibniz rule, we in fact have a tensor decomposition
of chain complexes and differential algebras:

(X , ∂) ∼=
⊗
j odd

(Xj , ∂).

Moreover, the Xj are all isomorphic differential algebras. We will define
a standard differential algebra Y and show each Xj is isomorphic to Y.

Definition 3.2. The differential algebra Y is the polynomial algebra
Z2[y0, y1, . . .] in infinitely many indeterminates yi, over all integers i ≥ 0.
The differential on Y is defined by the Leibniz rule and

∂yi =

{
y2i−1 i ≥ 1

0 i = 0.

Thus, the differential on Y sends each indeterminate yi “down” to yi−1,
squared; and sends the “lowest” indeterminate y0 to 0. Similarly, the differ-
ential on Xj sends each indeterminate xj·2k “down” to xj·2k−1 , squared, and
sends xj �→ 0. The following lemma is then immediate.

Lemma 3.3. For any odd j, xj·2k �→ yk induces an isomorphism of differ-
ential algebras Xj

∼= Y. �

The computation ofH(X ) ∼= ĤS(A, ∅) is now essentially reduced to com-
puting the homology H(Y) of Y. In the next Sections 3.3–3.5 we compute
H(Y) by decomposing Y in various ways.
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3.3. Homology as decay chain

For some intuition in computing H(Y), we can think of the indeterminates
yk of Y as describing “particles”, and the differential as describing a “binary
decay cascade”

· · · �→ yk �→ yk−1 �→ · · · �→ y1 �→ y0 �→ 0,

where each particle decays into two of the subsequent particle, ∂yk = y2k−1.
The differential gives the possible decays of a collection of particles.

As a Z2-vector space, Y is free with basis the monomials ye00 ye11 · · · yen−1

n−1 ,
over all positive integers n and all n-tuples (e0, e1, . . . , en−1) of non-negative
integers. As a shorthand we can write e = (e0, e1, . . . , en−1) as the vector of
exponents and ye = ye00 · · · yen−1

n−1 .
We decompose the differential ∂ into “decay” operators αk, which send

xk �→ x2k−1.

Definition 3.4. For each positive integer k, the k’th decay operator αk :
Y −→ Y is defined by linearity, the Leibniz rule and

αkyk = y2k−1, αkyi = 0 for i �= k.

We define α0 = 0.

The differential ∂ on Y is then the sum of the αk, ∂ =
∑

k≥0 αk.
We next investigate the αk more closely. For k ≥ 1, the effect of αk on

a monomial yeii is given by

αk

(
yekk
)
= eky

2
k−1y

ek−1
k , αk (y

ei
i ) = 0 for i �= k,

and on a general monomial ye is given by

αky
e = αk

(
n−1∏
i=0

yeii

)
=

⎛⎝∏
i �=k

yeii

⎞⎠αk

(
yekk
)
=

⎛⎝∏
i �=k

yeii

⎞⎠ eky
2
k−1y

ek−1
k

= eky
e0
0 · · · yek−1+2

k−1 yek−1k · · · yen−1

n−1

Abusing notation, we can write this as

αky
e = eky

2
k−1y

−1
k ye.

Even though y−1k is obviously not in the polynomial ring Y, we note that
if yk appears with exponent ek = 0 then the factor of ek results in 0; and
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otherwise ek ≥ 1, so that y−1k ye is a monomial in Y. The exponent of yk
is reduced by one, and the exponent of yk−1 is increased by two. We will
repeat this abusive, but well-defined, notation throughout the paper as an
efficient shorthand. Thus αk is multiplication by eky

2
k−1y

−1
k when the result

is a monomial, and zero otherwise.

Lemma 3.5. For all k, α2
k = 0.

Proof. Obviously α2
0 = 0 since α0 = 0, so assume k ≥ 1. On a monomial ye,

α2
k is either zero, or multiplication by eky

2
k−1y

−1
k and then (ek − 1)y2k−1y

−1
k ,

resulting in a monomial. In this case

α2
ky

e = ek(ek − 1)y4k−1y
−2
k ye.

Mod 2 we have ek(ek − 1) = 0, giving the desired result. �
We can also consider two distinct αi, αj . It is not difficult to show they

commute.

Lemma 3.6. Let 0 ≤ i < j be integers. Then αiαj = αjαi.

Proof. When i = 0 we have αi = 0 so the result trivially holds; we thus
assume i > 0. We can check directly on a monomial ye = ye00 · · · yen−1

n−1 that

αiαjy
e = αjαiy

e = eiejy
2
i−1y

−1
i y2j−1y

−1
j ye. �

Although we already knew that ∂2 = 0, we can now see it alternatively
as follows:

∂2 =

⎛⎝∑
i≥0

αi

⎞⎠2

=
∑
i≥0

α2
i +

∑
0≤i<j

αiαj + αjαi.

The first sum is zero since each α2
i = 0, and the second sum is zero since

αi, αj commute.

3.4. Fusion operators

In order to compute the homology of Y and each Yn, we will define some
“fusion operators” α∗k, which partly undo, or are “adjoint” to, the decay
operators αk. A decay operator sends yk �→ y2k−1; a fusion puts the two
yk−1’s back together into a yk, sending y2k−1 �→ yk.



Strings, fermions and the topology of curves on annuli 445

Definition 3.7. For an integer k ≥ 1 the kth fusion operator α∗k : Y −→ Y
is defined on a monomial ye = ye00 · · · yen−1

n−1 by

α∗ky
e =

{
0 ek−1 ≤ 1

ye00 · · · yek−1−2
k−1 yek+1

k . . . y
en−1

n−1 = y−2k−1yky
e ek−1 ≥ 2

and extended Z2-linearly over Y. We define α∗0 = 0.

That is, α∗k is multiplication by y−2k−1yk, when this gives a polynomial,
and is zero otherwise.

The following proposition describes how α∗i interacts with the decay
operators.

Proposition 3.8. If i �= j then α∗i and αj commute, i.e. [α∗i , αj ] = 0.
On the other hand, for any i ≥ 0, the commutator of α∗i and αi is

[αi, α
∗
i ] =

{
1 ei−1 ≥ 2 or ei odd

0 ei−1 ≤ 1 and ei even

The distinction between “ei−1 ≥ 2 or ei odd”, and “ei−1 ≤ 1 and ei even”
is clearly mutually exclusive and covers all possibilities. Though it may seem
to be an obscure distinction, it will be crucial to our computation of homol-
ogy.

Proof. First, α∗iαi sends yeii via αi to eiy
ei−1
i y2i−1, and then to eiy

ei
i ; this

holds even when we multiply by other powers of other variables yj , which
gives

α∗iαi = ei.

Next, αiα
∗
i will map to zero, if ei−1 ≤ 1; if ei−1 ≥ 2 then it sends y

ei−1

i−1 y
ei
i

via α∗i to y
ei−1−2
i−1 yei+1

i , and then via αi to (ei + 1)y
ei−1

i−1 y
ei
i . This holds even

when we multiply by other variables, giving

αiα
∗
i =

{
0 ei−1 ≤ 1

ei + 1 ei−1 ≥ 2
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Hence we have

[αi, α
∗
i ]y

e = (αiα
∗
i − α∗iαi)y

e =

{
eiy

e ei−1 ≤ 1

ye ei−1 ≥ 2

=

{
ye ei−1 ≥ 2 or ei odd

0 ei−1 ≤ 1 and ei even

Next we consider the commutativity of α∗i and αj , where i �= j. When
either of i or j is zero, we have α∗i or αj = 0, so we assume i, j ≥ 1.

Note α∗i only affects the variables yi and yi−1, while αj affects the vari-
ables yj and yj−1. If |i− j| ≥ 2 then these four variables are disjoint. So we
have

α∗iαjy
e = αjα

∗
i y

e =

{
0 ei−1 ≤ 1

ejy
−2
i−1y

1
i y

2
j−1y

−1
j ye ei−1 ≥ 2

In particular,

[α∗i , αj ] = α∗iαj − αjα
∗
i = 0.

This only leaves the case where i, j differ by 1, and we consider the two
cases separately: (i) α∗i and αi−1; and (ii) α∗i and αi+1.

1) Consider the effect of α∗iαi−1 on a monomial ye. We first compute
αi−1ye = ei−1y2i−2y

−1
i−1y

e, which has exponent of yi−1 equal to ei−1 − 1.
If ei−1 ≤ 2 then applying α∗i to this gives 0; if ei−1 ≥ 3 then it gives
ei−1y2i−2y

−3
i−1yiy

e. That is,

α∗iαi−1ye =

{
0 ei−1 ≤ 2

ei−1y2i−2y
−3
i−1yiy

e ei−1 ≥ 3

Now consider the effect of αi−1α∗i on ye. We compute α∗i y
e is zero

if ei−1 ≤ 1, and if ei−1 ≥ 2 then α∗i y
e = y−2i−1yiy

e. Applying αi−1 to

this then gives (ei−1 − 2)y2i−2y
−3
i−1yiy

e. Since ei−1 − 2 = ei−1 mod 2,
we have

αi−1α∗i y
e =

{
0 ei−1 ≤ 1

ei−1y2i−2y
−3
i−1yiy

e ei−1 ≥ 2
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Putting these together gives

[α∗i , αi−1]ye = (α∗iαi−1 − αi−1α∗i )y
e

=

⎧⎨⎩
0 ei−1 ≤ 1

2y2i−2y
−3
i−1yiy

e = 0 ei−1 = 2
0 ei−1 ≥ 3

⎫⎬⎭ = 0

2) Consider the effect of α∗iαi+1 on ye. We compute αi+1y
e = ei+1y

2
i y
−1
i+1y

e.
Applying α∗i to this, when ei−1 ≤ 1 we obtain 0; when ei−1 ≥ 2 we ob-
tain ei+1y

−2
i−1y

3
i y
−1
i+1y

e, so

α∗iαi+1y
e =

{
0 ei−1 ≤ 1

ei+1y
−2
i−1y

3
i y
−1
i+1y

e ei−1 ≥ 2

Now consider the effect of αi+1α
∗
i on ye. We have α∗i y

e is zero when
ei−1 ≤ 1, and when ei−1 ≥ 2 it is y−2i−1yiy

e. Applying αi+1 to this gives

ei+1y
−2
i−1y

3
i y
−1
i+1y

e. Thus

αi+1α
∗
i y

e =

{
0 ei−1 ≤ 1

ei+1y
−2
i−1y

3
i y
−1
i+1y

e ei−1 ≥ 2

The results for the operations are the same in any order, and so we conclude

[α∗i , αi+1] = 0. �

3.5. A hierarchy of Weyl algebra representations

We now extend the distinction in the calculation of [αi, α
∗
i ] to define a hierar-

chy of levels of monomials ye in Y, depending on the values of the exponents
e0, e1, . . .. The idea is as follows:

• Level 0 consists of monomials on which [α1, α
∗
1] acts as 1 (rather than

0). This means e0 ≥ 2 or e1 is odd.

• Level 1 consists of monomials on which [α1, α
∗
1] = 0 and [α2, α

∗
2] = 1.

This means that e0 ≤ 1 and e1 is even and (e1 ≥ 2 or e2 is odd).

• Continuing in this fashion, level i of the hierarchy, for positive inte-
ger i, consists of monomials on which [α1, α

∗
1] = · · · = [αi, α

∗
i ] = 0 but

[αi+1, α
∗
i+1] = 1. This means that e0 ≤ 1, e1 = e2 = · · · = ei−1 = 0, ei

is even, and (ei ≥ 2 or ei+1 is odd).
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• Level ∞ of the hierarchy consists of the remaining monomials, namely
those such that e0 ≤ 1 and e1 = e2 = · · · = 0. These are just the mono-
mials 1 and y0.

More formally, we define levels Y i of Y as follows. They are Z2-vector
subspaces but not sub-algebras; they are not closed under multiplication.

Definition 3.9. The level i subspace Y i of Y ∼= Z2[y0, y1, . . .], for an integer
i ≥ 0 or i = ∞, is defined as follows.

• Y0 is the subspace generated by monomials ye such that e0 ≥ 2 or e1
is odd.

• For an integer i ≥ 1, Y i is the subspace generated by monomials ye

such that e0 ≤ 1, ej = 0 for all integers j with 1 ≤ j ≤ i− 1, ei is
even, and (ei ≥ 2 or ei+1 is odd).

• Y∞ is the subspace generated by {1, y0}.

(Note that in the definition of Y1 the condition on j is vacuous.)

Lemma 3.10. Every monomial in Y lies in precisely one Y i, so

Y =

∞⊕
i=0

Y i

(where the direct sum includes i = ∞).

Proof. Let ye be a monomial. By Proposition 3.8, [α1, α
∗
1] = 1 on ye if and

only if ye ∈ Y0. Similarly, [α1, α
∗
1] = · · · = [αi, α

∗
i ] = 0 and [αi+1, α

∗
i+1] = 1

on a monomial ye if and only if e0 ≤ 1, e1 = · · · = ei−1 = 0, ei is even, and
(ei ≥ 2 or ei+1 is odd), i.e. ye ∈ Y i. And finally, all [αi, α

∗
i ] = 0 on ye if and

only if e0 ≤ 1 and all other ei = 0, so ye ∈ Y∞. Clearly for given ye, exactly
one of these conditions applies, so ye lies in precisely one Y i. �

We note that each Y i can be regarded as a Weyl algebra representa-
tion. Recall that the Weyl algebra (over Z2) on n variables is the Z2-algebra
freely generated by commuting variables x1, . . . , xn and partial derivatives
∂

∂x1
, . . . , ∂

∂xn
, so that they obey commutation relations [xi, xj ] = [ ∂

∂xi
, ∂
∂xj

] =

0 and [xi,
∂

∂xj
] = δij , the Kronecker delta. The operators αi, α

∗
i we have de-

fined satisfy [αi, αj ] = [α∗i , α
∗
j ] = 0 and [αi, α

∗
j ] = 0 when i �= j. The algebra

of these operators is thus very close to the Weyl algebra. We do not have
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[αi, α
∗
i ] = 1 on Y in general, but on Y i we have [αi, α

∗
i ] = 1. (When j > i,

on Y i the commutator [αj , α
∗
j ] is sometimes 1 and sometimes 0.)

Thus each Y i carries a representation of the 1-variable Weyl algebra gen-
erated by αi, α

∗
i . As we will see, this relation will provide a chain homotopy

demonstrating trivial homology.
This hierarchy of subspaces behave in a “triangular” way with respect

to the decay operators αj .

Lemma 3.11. If j ≤ i then

αjY i = 0.

This includes the case i = ∞; any integer is less than ∞.

Proof. When j = 0 the statement is clear, since α0 = 0; we thus only need
consider αj with j ≥ 1. The result holds when i = 0, since then j = 0. So we
may assume i ≥ 1.

Consider Y i for i ≥ 1. If 1 ≤ j < i, then the statement follows immedi-
ately from the fact that each monomial generating Y i has ej = 0. For j = i,
the statement follows from the fact that each monomial generating Y i has
ei even.

Finally consider i = ∞, i.e. Y∞. For any j ≥ 1, the statement follows
since each generating monomial has ej = 0. �

In fact, in the case i = ∞, there are only the two monomials 1, y0 to
consider, and it is clear that every αj annihilates these.

We have just seen that αjY i = 0 when j ≤ i. When j > i the result of
applying αj to a monomial in Y i will not usually be zero, but it does lie in
Y i. We will then be able to show that the subspaces Y i are subcomplexes
of Y.

Lemma 3.12. Applying any decay operator to a monomial results in zero,
or a monomial of the same level. In particular, for any i ≥ 0 or i = ∞ and
any integer j ≥ 0,

αjY i ⊆ Y i.

Proof. Since we know that αjY i = 0 when j ≤ i, it suffices to check the
cases j > i. When i = ∞ there are no j > i to check, so we only need check
integers i ≥ 0. We consider the cases i = 0 and i ≥ 1 separately.

First consider Y0, and a monomial generator ye satisfying e0 ≥ 2 or e1
odd. Then α1y

e is zero, if e1 is even; and if e1 is odd then α1y
e = y−11 y20y

e.
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Thus the result will either be zero or have e0 ≥ 2, and hence will be a level 0
monomial. Next, α2y

e, if nonzero, will be equal to e2y
−1
2 y21y

e. If the exponent
e0 ≥ 2, then after applying α2, the exponent of y0 remains greater than or
equal to 2. If e1 is odd, then after applying α2, the exponent of y1 is increased
by 2 and remains odd. Either way, α2y

e is a level 0 monomial. For j ≥ 3,
αjy

e either produces zero or only changes the exponents of yj and yj−1,
neither of which is e0 or e1; hence the result remains a level 0 monomial.

Now consider Y i, for i ≥ 1, generated by ye satisfying e0 ≤ 1, e1 = · · · =
ei−1 = 0, ei even, and (ei ≥ 2 or ei+1 odd); we consider the effect of αj

for j ≥ i+ 1. The value of αi+1y
e, if nonzero, is ei+1y

−1
i+1y

2
i y

e. The only
exponents that change are those of yi and yi+1; ei is increased by 2, so
remains even, and becomes ≥ 2. Thus the result is a level i monomial. The
effect of αi+2 on ye, if nonzero, is ei+2y

2
i+1y

−1
i+2y

e, so the only exponents that
change are those of yi+1 and yi+2; ei+1 is increased by 2, so if it was odd
it remains odd; hence the result is a level i monomial. The effect of αj ,
for j ≥ i+ 3, on ye, if nonzero, only affects exponents of yk with k ≥ i+ 2,
hence not those in the defining condition for Y i, and so results in a level i
monomial. �

As the differential ∂ =
∑

k≥0 αk is the sum of the decay operators, we
now have the following.

Corollary 3.13. As chain complexes,

(Y, ∂) = (Y0, ∂)⊕ (Y1, ∂)⊕ · · · ⊕ (Y∞, ∂). �

We now note that the commutation relations between the fusion and
decay operators αi, α

∗
j in Proposition 3.8 can be used to provide chain ho-

motopies on these chain complexes.
On Y0 we have [α1, α

∗
1] = 1, and [αj , α

∗
1] = 0 for j ≥ 2. It follows that,

on Y0,

[∂, α∗1] =
∞∑
j=0

[αj , α
∗
1] = [α1, α

∗
1] = 1.

The resulting equation ∂α∗1 + α∗1∂ = 1 says that α∗1 is a chain homotopy from
1 to 0, so that the homology of the complex is zero, H∗(Y0, ∂) = 0.

Similarly, on each Y i, for i ≥ 1, we have [αi+1, α
∗
i+1] = 1, and hence

[∂, α∗i+1] =

n−1∑
j=0

[αj , α
∗
i+1] = [αi+1, α

∗
i+1] = 1,
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so that ∂α∗i+1 + α∗i+1∂ = 1, giving a chain homotopy from 1 to 0 and demon-
strating that H∗(Y i, α) = 0.

On Y∞, we have that every αj = 0, so ∂ = 0 and hence H∗(Y∞, ∂) =
Y∞. This Y∞ is rather small, generated by 1 and y0.

We have now computed the homology of each summand of (Y, ∂), hence
of Y. As Y is a differential Z2-algebra (even though the Y i are not), the
homology H(Y) is a Z2-algebra. Denoting the homology class of y ∈ Y by
ȳ, we have the following.

Theorem 3.14. The homology of (Y, ∂), as a Z2-algebra, is

H(Y) =
Z2[ȳ0]

(ȳ20)
.

Proof. The only summand Y i of Y with nontrivial homology is Y∞, which is
2-dimensional over Z2 with basis {1, y0} and trivial differential. So as a Z2-
vector space,H(Y) has basis {1̄, ȳ0}. As an algebra,H(Y) must be generated
by ȳ0, inheriting multiplication from Y. Since y20 = ∂y1, in homology we have
ȳ20 = 0, and as an algebra the homology is as claimed. �

3.6. Putting the chain complexes back together

We now return to the original chain complex ĈS(A, ∅) ∼= X , and reassemble
it from the various Xj . We have the tensor decomposition of differential
algebras X ∼=⊗

j Xj , and each Xj
∼= Y under an isomorphism which takes

the “decay chain” of Y

yk �→ yk−1 �→ · · · �→ y1 �→ y0 �→ 0

to the corresponding “decay chain” of Xj

xj·2k �→ xj·2k−1 �→ · · · �→ x2j �→ xj �→ 0.

We will keep track of how some structure in the Xj translates back
into the original X . In particular, each operator αk on each Xj translates
to a corresponding operator α(j,k) on X . As αk has the effect of sending
yk �→ y2k−1, the corresponding operator α(j,k) has the effect of sending yj·2k �→
y2j·2k−1 , for each j and k. Similarly we can define α∗(j,k) to be the operator on
X corresponding to the operator α∗k on Xj .
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Definition 3.15. For each odd integer j and each positive integer k, the
following operators X −→ X are defined on monomials as follows, and ex-
tended over X by linearity.

1) The operator α(j,k) is defined by Z2-linearity, the Leibniz rule, and

α(j,k)xj·2k = x2j·2k−1 , α(j,k)xi = 0 for i �= j · 2k.

2) The operator α∗(j,k) is defined on a monomial xe =
∏

i∈Z\{0} x
ei
i by

α∗(j,k)x
e =

{
0 ej·2k−1 ≤ 1

x−2j·2k−1xj·2k ej·2k−1 ≥ 2

We then have

∂ =
∑
j odd

∞∑
k=1

α(j,k).

Since α(j,k) and α∗(j,k) mainly affect xi where i = j · 2k or j · 2k−1, we can
also write

α(j,k) = αj·2k , α∗(j,k) = α∗j·2k .

With this notation, we have an αi defined on X for each even integer i. (In
Section 4.1, we will see a natural definition for odd i, when F is nonempty.)

The commutation relations on the operators αk, α
∗
k on each Xj also trans-

late directly into commutation relations on the α(j,k) and α∗(j,k). From Propo-

sition 3.8 we have [α∗k, αl] = 0 when k �= l, and [αk, α
∗
k] = 1 or 0 accordingly

as (ek−1 ≥ 2 or ek is odd) or (ek−1 ≤ 1 and ek is even). In X , we see that
α(j,k) and α∗(j,k) only affect those xi where i = j · 2k or j · 2k−1; thus we
obtain the following lemma.

Lemma 3.16. Let j, j′ be odd integers and k, k′ positive integers.

1) For j �= j′ or k �= k′ we have

[α(j,k), α
∗
(j′,k′)] = 0.

2) For a monomial xe ∈ X ,

[α(j,k), α
∗
(j,k)] =

{
1 ej·2k−1 ≥ 2 or ej·2k odd

0 ej·2k−1 ≤ 1 and ej·2k even �
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3.7. Computing the total homology

We have found that the homology Y is generated as a Z2-algebra by ȳ0, the
homology class of y0, with the relation ȳ20 = 0. Correspondingly, for each odd
integer j, the homology of Xj is generated as a Z2-algebra by the homology
class x̄j of xj , whose square is zero.

H(Xj) =
Z2[x̄j ]

(x̄2j )

Calculating the homology of ĈS(A, ∅) ∼= X now amounts to an appli-
cation of the Künneth theorem. As usual, write x̄j for the homology class
of xj .

Theorem 3.17. As a Z2-algebra, H(X ) is generated by the homology
classes x̄j of xj over all odd j, where each x̄2j = 0.

ĤS(A, ∅) = H(X ) =
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

Note that the theorem just asserts that the H(X ) = H(
⊗Xj) is the

tensor product of the H(Xj):⊗
j odd

H(Xj) =
⊗
j odd

Z2[x̄j ]

(x̄2j )
=

Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

.

For the purposes of the proof, we will define a differential algebra X≤N ,
for any odd positive integer N : it is the tensor product of the Xj with
|j| ≤ N ,

X≤N = X−N ⊗ · · · ⊗ X−3 ⊗X−1 ⊗X1 ⊗X3 ⊗ · · · ⊗ XN =

N⊗
j=−N

Xj .

Note that X is the direct limit of the X≤N :

X≤1 ⊂ X≤3 ⊂ · · · ⊂ X with

∞⋃
N=1

X≤N = X .

Proof. We repeatedly apply the Künneth theorem (for instance as in The-
orem V.2.1 of [6]), which implies the following statement: if A,B are chain
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complexes over Z2, then H(A⊗B) ∼= H(A)⊗H(B). (Any chain complex
over Z2 is a Z2-module, hence Z2-vector space, hence free, hence projective,
hence flat; and its homology is also a Z2-vector space, so Tor(H(A), H(B)) =
0, and hence the map H(A)⊗H(B) −→ H(A⊗B) is an isomorphism.)

Applying the Künneth theorem to X−N , . . . ,X−1,X1, . . . ,XN gives im-
mediately

H
(X≤N) = H

⎛⎝ N⊗
j=−N

Xj

⎞⎠ ∼=
N⊗

j=−N
H (Xj)

∼= Z2[x̄−N , . . . , x̄−1, x̄1, . . . , x̄N ]

(x̄2−N , . . . , x̄2−1, x̄21, . . . , x̄2N )
.

Now homology commutes with direct limits, and so the homology of X
is the direct limit of the homologies of the X≤N , hence is as claimed. �

Thus, the string homology of (A, ∅) is generated by the homology classes
of closed curves xj which run an odd number j of times around the core
of A. As a Z2-module, this homology is generated by collections of closed
curves with distinct odd homotopy classes. The multiplicative structure on
ĤS(A, ∅) can be regarded as arising from disjoint union of curves; or, equiv-
alently, by gluing two string diagrams in distinct annuli together by gluing
the annuli together along their boundaries.

In any case, we have proved Theorem 1.2.
It will be useful in the sequel to make various definitions based on various

types of monomials and polynomials in the xi and x̄i that arise in X and
H(X ). To this end we make the following definitions.

Definition 3.18.

1) A fermionic monomial is an element of X of of the form xj1 · · ·xjk
where j1, . . . , jk are all odd and pairwise distinct.

2) A (positively) clean monomial is a fermionic monomial not contain-
ing x1.

3) A negatively clean monomial is a fermionic monomial not contain-
ing x−1.

4) A totally clean monomial is a fermionic monomial not containing x1
or x−1.
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5) A fermionic polynomial (resp. positively clean, negatively clean, to-
tally clean polynomial) is a finite sum of fermionic monomials (resp.
positively clean, negatively clean, totally clean monomials).

Thus, for instance, a positively clean polynomial is a polynomial in {xj :
j odd, j �= 1}, linear in each xj . When we refer to a clean monomial or
polynomial, by default we mean a positively clean one. The polynomials are
“fermionic” in the sense that only odd variables (“particles”) appear, and
that each variable (“particle”) can only appear once in each monomial, so
obeys a “Pauli exclusion principle”.

Note that any fermionic polynomial p ∈ X satisfies ∂p = 0 (hence also
any positively or negatively or totally clean polynomial). Thus we may speak
of fermionic, positive and negatively and totally clean polynomials in H(X )
as those represented by such polynomials in X . Here the variables have the
further “fermionic” property that x̄2j = 0.

Our computations show that H(X ) is a free Z2-module with basis the
fermionic monomials, and every homology class has a unique fermionic poly-
nomial representative in X . The result in H(X ) of multiplying two fermionic
monomials is their usual product, if that product is another fermionic mono-
mial; otherwise some variable appears twice, and since x̄2j = 0, the product
in H(X ) is zero.

The Z2-submodule of H(X ) generated by (positively) clean monomials
is in fact a subring; its elements are precisely the (positively) clean poly-
nomials. Similarly there are subrings of negatively clean and totally clean
polynomials.

Definition 3.19. The subring of

⎧⎨⎩
(positively) clean
negatively clean
totally clean

⎫⎬⎭ polynomials in

H(X ) is denoted

⎧⎨⎩
H(X ) �=1

H(X ) �=−1
H(X ) �=−1,1

⎫⎬⎭.

Explicitly,

H(X ) �=1 =
Z2[. . . , x̄−3, x̄−1, x̄3, x̄5, . . .]
(. . . , x̄2−3, x̄2−1, x̄23, x̄25, . . .)

,

H(X ) �=−1 =
Z2[. . . , x̄−5, x̄−3, x̄1, x̄3, . . .]
(. . . , x̄2−5, x̄2−3, x̄21, x̄23, . . .)

,

H(X ) �=−1,1 =
Z2[. . . , x̄−5, x̄−3, x̄3, x̄5, . . .]
(. . . , x̄2−5, x̄2−3, x̄23, x̄25, . . .)

.
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4. Strings on annuli with two marked points

We next turn to marked annuli (A, F ) where |F | = 2, so that |Fin| = |Fout| =
1. A nonzero string diagram s in ĈS(A, F ) consists of a single open string
from Fin to Fout, and some number (possibly zero) of closed curves, each
running some nonzero number of times around the annulus. We again write
xn for the (homotopy class of the) closed curve which runs n times around
the annulus.

There are two cases: F either consists of one marked point on each
boundary component; or both marked points are on a single boundary com-
ponent. We write F = F1,1 and F = F0,2 accordingly. We consider the first
case in Sections 4.1 to 4.2; and the second case in Sections 4.3 to 4.4.

4.1. Annuli with one marked point on each boundary

When F = F1,1 consists of one point on each boundary component, the arc
connecting these two points runs from one boundary component to the other.
There are infinitely many such homotopy classes (relative to endpoints) of
such arcs, each corresponding to running some number of times around the
annulus. We denote (the homotopy classes of) these curves cn, for n ∈ Z, as

shown in Figure 3; they form a Z2-basis for ĈS
O
(A, F1,1).

c−1 c0 c1

Figure 3: Open strings on (A, F1,1).

It will be useful later to write C for the free Z2-module on {cn : n ∈ Z}.
So C = ĈS

O
(A, F1,1).

From Lemma 2.10 we have ĈS(A, F1,1) ∼= X ⊗Z2
ĈS

O
(A, F1,1) = X ⊗Z2

C. Thus ĈS(A, F1,1) is a free X -module with basis the cn. As a Z2-module,
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ĈS(A, F1,1) is free with basis given by elements

cnxk1
xk2

· · ·xkm
,

where n ∈ Z and k1, . . . , km ∈ Z\{0}. We can also use the exponential no-
tation

cnx
e = cn

∏
i∈Z\{0}

xeii

where each ei ≥ 0 and only finitely many ei are nonzero.
We now describe the differential on ĈS(A, F1,1) ∼= X ⊗ C; as the Gold-

man bracket is nonzero, ∂ does not obey the Leibniz rule and we have
(Equation 2.2)

∂(cnx
e) = (∂cn)x

e + cn(∂x
e) + [cn, x

e].

Here ∂xe is as in X . Just as in the case F = ∅, after a homotopy the
closed strings can be made pairwise disjoint, with each xi having |i| − 1
self-intersection points. The arc cn can be drawn without self-intersections,
intersecting each closed curve xi precisely |i| times. Thus ∂cn = 0. When we
resolve a crossing between a cn and xi, we obtain the open string cn+i; there
are |i| such crossings, so (mod 2) [cn, xi] = icn+i.

In general, resolving all the crossings between cn and a closed multicurve
xe, we obtain (using our standard abusive notation) the Goldman bracket
as

[cn, x
e] =

∑
i∈Z\{0}

ei[cn, xi]x
−1
i xe =

∑
i∈Z\{0}

ieicn+ix
−1
i xe,

since each xi occurs ei times, and resolving a crossing between cn and an xi
leaves the closed multicurve x−1i xe remaining.

Thus, on a string diagram s = cnx
e, the differential is given as follows.

(4.1) ∂s = ∂ (cnx
e) = cn (∂x

e) +
∑

i∈Z\{0}
ieicn+ix

−1
i xe

Recall Definition 3.15 of the operators α(j,k) on X , for each odd j and
each positive integer k, which sends xj·2k �→ x2j·2k−1 ; recall that sum of all the
α(j,k) is the differential on X . These operators extend naturally over X ⊗ C,
sending each cnx

e �→ cnα(j,k)x
e. Applied to s, they give the first term of

Equation 4.1.
We alternatively wrote α(j,k) = αj·2k , for odd integers j and positive

integers k; with this notation, there is an αi for every nonzero even integer
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i. On the other hand, the terms in the second sum of Equation 4.1 are only
nonzero when i is odd, as there is a factor of i (mod 2), corresponding to the
number of intersections between the arc cn and a closed curve in homotopy
class i. Hence it is natural to extend the definition of the αi to odd i to
produce the second term of Equation 4.1.

Definition 4.1. For each odd j, define αj = α(j,0) on monomials (extended
by linearity) as

α(j,0) (cnx
e) = ejcn+jx

−1
j xe.

Equation 4.1 then becomes

∂s =
∑
j odd

∞∑
k=1

α(j,k)s+
∑
j odd

α(j,0)s =
∑
j odd

∞∑
k=0

α(i,j)s =
∑

i∈Z\{0}
αis,

so we have a compact description of the chain complex as

ĈS(A, F1,1) = X ⊗ C, ∂ =
∑

i∈Z\{0}
αi.

We compute its homology in the next section.

4.2. Source operators

Returning to our particle analogy, the operation of α(j,k) for positive k,
which sends xj·2k �→ x2j·2k−1 , can be seen as a “decay”. The new operator
α(j,0) corresponds to a “decay” xj �→ c·+j . We can regard this as the “end
of a decay chain”

xj·2k �→ xj·2k−1 �→ · · · �→ x2j �→ xj �→ c·,

where the cn terms are “sinks” or “ground states” into which the xi are
finally absorbed.

The fusion operators α∗(j,k) = α∗j·2k on X , for positive k, reverse this decay

process and send x2j·2k−1 �→ xj·2k . These operators extend to X ⊗ C, sending
cnx

e �→ cnα
∗
(j,k)x

e. Note an α∗j·2k = α∗i is defined for all nonzero even i.
We can now extend this definition to α∗i for odd i, reversing the “sinking”

of an xi particle into a cn. Instead, α
∗
i will “create” an xi out of a cn “source”

by sending cn �→ cn−ixi.
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Definition 4.2. For each odd j, define α∗j = α∗(j,0) on monomials (extended

by linearity) as

α∗j (cnx
e) = cn−jxjxe.

We now investigate the commutativity of the various α(j,k) and α∗(j,k). For
k > 0 these were given in Lemma 3.16 and it remains to find commutators
involving k = 0; we give these now.

Lemma 4.3. For any odd integer i and any non-negative integers j, k,

[α(i,0), α
∗
(j,k)] = δi,jδk,0

[α(j,k), α
∗
(i,0)] = δi,jδk,0

(Each δ here is a Kronecker delta.)

Proof. We first show that α(i,0), α
∗
(j,k) commute when i �= j.

α(i,0)α
∗
(j,k)cnx

e = α(i,0)

{
0 ej·2k−1 ≤ 1

cnx
−2
j·2k−1xj·2kxe ej·2k−1 ≥ 2

=

{
0 ej·2k−1 ≤ 1

eicn+ix
−1
i x−2j·2k−1xj·2kxe ej·2k−1 ≥ 2.

α∗(j,k)α(i,0)cnx
e = α∗(j,k)eicn+ix

−1
i xe

=

{
0 ej·2k−1 ≤ 1

eicn+ix
−2
j·2k−1xj·2kx−1i xe ej·2k−1 ≥ 2

It is similar to check that α∗(i,0) and α(j,k) commute when i �= j.
We next consider the commutativity of α(i,0) and α∗(i,k)where k �= 0.

α(i,0)α
∗
(i,k)cnx

e = α(i,0)

{
0 ei·2k−1 ≤ 1

cnx
−2
i·2k−1xi·2kxe ei·2k−1 ≥ 2

=

{
0 ei·2k−1 ≤ 1

eicn+ix
−1
i x−2i·2k−1xi·2kxe ei·2k−1 ≥ 2

α∗(i,k)α(i,0)cnx
e = α∗(i,k)eicn+ix

−1
i xe

=

{
0 ei·2k−1 ≤ 1

eicn+ix
−2
i·2k−1xi·2kx−1i xe ei·2k−1 ≥ 2
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Hence α(i,0) and α∗(i,k) commute for k �= 0. It is similar to check that α∗(i,0)
and α(i,k) commute for k �= 0.

Finally we consider the commutativity of α(i,0) and α∗(i,0).

α(i,0)α
∗
(i,0)cnx

e = α(i,0) (cn−ixixe) = (ei + 1) cnx
e

α∗(i,0)α(i,0)cnx
e = α∗(i,0)

(
eicn+ix

−1
i xe

)
= eicnx

e

�
As the differential is the sum of the α(j,k), the commutator of α∗(i,0) with

∂ is now easily given.

Proposition 4.4. For any odd integer i,

[∂, α∗(i,0)] = 1.

Proof.

[
∂, α∗(i,0)

]
=

⎡⎣∑
(j,k)

α(j,k), α
∗
(i,0)

⎤⎦ =
∑
(j,k)

[
α(j,k), α

∗
(i,0)

]
=
∑
(j,k)

δj,iδk,0 = 1.

�
Thus any α∗(i,0) satisfies

∂α∗(i,0) + α∗(i,0)∂ = 1,

and hence is a chain homotopy from 1 to 0. We immediately obtain the
homology of the complex.

Theorem 4.5.

ĤS(A, F1,1) = 0. �

This is as it should be, since (A, F1,1) is not alternating, so does not
correspond to any sutured manifold, and SFH does not exist.

4.3. Annuli with two marked points on single boundary

We now turn to (A, F ) where both marked points lie on the same boundary
component, F = F0,2. An open string runs between the two marked points.
With the marked points drawn as in Figure 4, the arc runs an integer and
a half n+ 1

2 times around the annulus and we denote its homotopy class by
an+ 1

2
, for n ∈ Z, as shown.

It will be useful later to make definitions as follows.
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a− 3

2
a− 1

2
a 1

2
a 3

2

Figure 4: Open strings on (A, F0,2).

Definition 4.6. Let A = ĈS
O
(A, F0,2) be the free Z2-module with basis

{an+ 1

2
: n ∈ Z}.

Let A+ be the free Z2-module on {an+ 1

2
: n ∈ Z≥0}, and A− the free

Z2-module on {an− 1

2
: n ∈ Z≤0}.

Lemma 2.10 gives ĈS(A, F0,2) ∼= A⊗Z2
X the structure of a free X -

module with basis the an. A generator s of ĈS(A, F0,2), i.e. string diagram
(up to homotopy) without contractible closed curves, consists of a single an,
together with some (possibly none) closed curves xi, so can be written as
anx

e.
We have A = A+ ⊕A−, and moreover

(4.2) ĈS(A, F0,2) ∼= (A+ ⊗Z2
X )⊕ (A− ⊗Z2

X ) .

As in previous cases, a string diagram on (A, F0,2) can be drawn so that
all the closed curves xi are disjoint from each other. We can also draw any an
disjoint from all closed strings. This being so, the Goldman bracket vanishes,
the differential obeys the Leibniz rule, ĈS(A, F0,2) ∼= A⊗X is a differential

X -module, and ĤS(A, F0,2) is a H(X )-module, as discussed in Section 2.4.
As such, ∂ is determined by its action on X , A and the Leibniz rule.

We thus consider ∂an. We can draw an as in Figure 4 so that it has
|n| − 1

2 self-intersections, and resolving each such intersection splits an into
an arc ai, where i has the same sign as n and |i| < |n|, and a closed curve
xj where i+ j = n.

Thus

. . . , ∂a− 3

2
= a− 1

2
x−1, ∂a− 1

2
= ∂a 1

2
= 0,

∂a 3

2
= a 1

2
x1, ∂a 5

2
= a 3

2
x1 + a 1

2
x2, . . .
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and in general we have, for a positive integer n,

∂an− 1

2
=

n−1∑
i=1

ai− 1

2
xn−i, ∂a−n+ 1

2
=

n−1∑
i=1

a−i+ 1

2
x−n+i,

which can also be written, for any n, as

∂an =
∑

i+j=n, ij>0

aixj .

For a general string diagram s = anx
e we have, by the Leibniz rule,

∂s = (∂an)x
e + an (∂x

e) =
∑

i+j=n, ij>0

aixjx
e + an (∂x

e) ,

with ∂xe given by the differential on X .
A general element of ĈS(A, F ) ∼= A⊗X can be written as a sum

f =
∑

n∈Z+ 1

2

anpn,

with finitely many nonzero terms, where pn ∈ X is a polynomial in {xn :
n ∈ Z\{0}}.

We may split f into terms involving an with positive and negative n
respectively, i.e. according to the decomposition (4.2). Then f = f+ + f−
where

f+ =

∞∑
n=1

an− 1

2
pn− 1

2
, f− =

∞∑
n=1

a−n+ 1

2
p−n+ 1

2

Note that each ∂an only includes terms with am, where m has the same
sign as n. Thus the decomposition (4.2) is in fact a direct sum of chain
complexes and differential X -modules, and we have

ĤS(A, F0,2) = H(A+ ⊗X )⊕H(A− ⊗X ).

Moreover the X -linear maps defined by an ↔ a−n give mutually inverse
chain maps A+ ⊗X ↔ A− ⊗X , so the two summands are isomorphic. In
the next section we compute H(A+ ⊗X ) and hence ĤS(A, F0,2).

4.4. Computing homology by simplifying cycles

The main idea of our computation of H(A+ ⊗X ) is to successively sim-
plify cycles of A+ ⊗X , showing that a cycle is homologous to an element of
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smaller “degree” in the an+ 1

2
. This technique will also be employed subse-

quently, in a more involved way, to compute homology in (A, F2,2).
Throughout this section we use the notions of fermionic and (positively)

clean polynomials from Definition 3.18.

Definition 4.7. A general element f of A+ ⊗X has the form

f = a 1

2
p 1

2
+ a 3

2
p 3

2
+ · · ·+ an+ 1

2
pn+ 1

2
,

where each pi+ 1

2
∈ X , for some positive integer n such that pn+ 1

2
�= 0. This

n is the degree of f .
We write O(am) to denote an element of A+ ⊗X of degree ≤ m.

Note that as ∂an only involves terms with aj with 1
2 ≤ j ≤ n− 1, ∂

lowers degree by at least 1.

Lemma 4.8. If f ∈ A+ ⊗X satisfies f = O(an), ∂f = 0 and n ≥ 3
2 , then

f = ∂g +O(an−1) for some g ∈ A+ ⊗X .

Proof. Let the an and an−1 terms of f be anpn and an−1pn−1 respectively,
so

f = anpn + an−1pn−1 +O(an−2).

(If n = 3/2 then O(an−2) = 0.) We examine the highest order terms of ∂f ,
namely the an and an−1 terms.

∂f = (∂an)pn + an(∂pn) + (∂an−1)pn−1 + an−1(∂pn−1) +O(an−2)
= (an−1x1 +O(an−2)) pn + an∂pn +O(an−2)pn−1
+ an−1∂pn−1 +O(an−2)

= an∂pn + an−1 (x1pn + ∂pn−1) +O(an−2)

Now as ∂f = 0, then the polynomials which are coefficients of each ai must
be zero. Considering the coefficients of an and an−1 then gives

∂pn = 0, x1pn = ∂pn−1.

Thus pn is a cycle in X but x1pn is a boundary. From our computation of
H(X ), we know pn = r + ∂u, where r, u ∈ X and r is a fermionic polynomial.
We can further decompose r as s+ x1t, where x1 does not occur in s or
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t, i.e. s, t are clean polynomials. (Note ∂r = ∂s = ∂t = 0.) We then have
pn = s+ x1t+ ∂u so

∂pn−1 = x1pn = x1s+ x21t+ x1∂u = x1s+ ∂(x2t+ x1u)

Thus x1s is a boundary in X . But as s is clean, x1s is fermionic; so if s �= 0
then x1s is nonzero in H(X ). Thus s = 0 and we have

pn = x1t+ ∂u so f = an (x1t+ ∂u) + an−1pn−1 +O(an−2).

Now we note that there is an element whose differential has the same an
term:

∂(an+1t+ anu) = an (x1t+ ∂u) + an−1 (x2t+ x1u) +O(an−2).

(Here we used ∂t = 0.) It follows that

f = an (x1t+ ∂u) + an−1pn−1 +O(an−2)
= ∂(an+1t+ anu) + an−1(pn−1 + x2t+ x1u) +O(an−2)

so f = ∂g +O(an−1) where g = an+1t+ anu, as desired. �
Successively applying this lemma, we may reduce any cycle f ∈ A+ ⊗X

to a homologous cycle of degree 1/2, so f = ∂g + a 1

2
p where g ∈ A+ ⊗X

and p ∈ X . And we may use our knowledge of H(X ) to say a little more.

Proposition 4.9. Suppose f ∈ A+ ⊗X satisfies ∂f = 0. Then f = ∂g +
a 1

2
p where g ∈ A+ ⊗X and p ∈ X is a clean polynomial.

Proof. From above we have f = ∂g0 + a 1

2
p0 with g0 ∈ A+ ⊗X and p0 ∈ X .

Differentiating gives 0 = ∂f = a 1

2
∂p0. Thus ∂p0 = 0, so p0 represents a ho-

mology class in X , and hence, up to a boundary, is a fermionic polynomial.
Thus p0 = q + ∂r where q, r ∈ X and q is fermionic. We can further split q
into terms which contain x1 and those which do not: q = p+ x1u, where p, u
are clean polynomials. (Note ∂q = ∂p = ∂u = 0.) We then have

f + ∂g0 = a 1

2
p0 = a 1

2
(q + ∂r) = a 1

2
(p+ x1u+ ∂r) = a 1

2
p+ ∂(a 3

2
u+ a 1

2
r).

(Here we have used the fact that ∂(a 3

2
u) = (∂a 3

2
)u = a 1

2
x1u.) Thus f has

the desired form, with g = g0 + a 3

2
u+ a 1

2
r. �

Roughly then, the homology of A+ ⊗X behaves something like {a 1

2
} ⊗

X , and indeed rather like X . We will in fact give a chain mapA+ ⊗X −→ X .
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Definition 4.10. The map Φ : A+ ⊗X −→ X sends an− 1

2
p �→ xnp, for each

positive integer n and p ∈ X , and extends linearly over A+ ⊗X .

The map Φ is in fact an X -module homomorphism; we now show it is a
chain map, hence a homomorphism of differential X -modules and descends
to homology as an H(X )-module homomorphism.

Lemma 4.11. The map Φ commutes with ∂.

Geometrically, Φ “closes off” the endpoints of an− 1

2
by gluing an annu-

lus to the boundary of A, joining the two marked points by an arc which
turns an− 1

2
into xn. This lemma is an instance of a more general result

about gluing string diagrams together, along the lines of the maps associ-
ated to “decorated morphisms” in [17]; but in this paper we need only this
statement.

Essentially this lemma holds because the rule ∂an− 1

2
=
∑n−1

i=1 ai− 1

2
xn−i

becomes, after applying Φ, the rule ∂xn =
∑n−1

i=1 xixn−i.

Proof. Using linearity and the Leibniz rule, it is sufficient to check that
Φ∂an− 1

2
= ∂Φan− 1

2
, for n ∈ Z>0:

Φ∂an− 1

2
= Φ

n−1∑
i=1

ai− 1

2
xn−i =

n−1∑
i=1

xixn−i = ∂xn = ∂Φan− 1

2
.

�

As in Section 3.7, we write f̄ for the homology class of f ∈ A+ ⊗X . We
have seen in Proposition 4.9 that a cycle f ∈ A+ ⊗X is homologous to some
a 1

2
p where p is a clean polynomial. Thus Φf̄ = Φa 1

2
p = x̄1p̄. It follows that

on homology, Φ has image in x̄1H(X ).

Proposition 4.12. The map Φ : H(A+ ⊗X ) −→ H(X ) is an isomorphism
onto x̄1H(X ).

Proof. We have shown �Φ ⊆ x̄1H(X ). For the reverse inclusion, take x̄1p̄ ∈
x̄1H(X ), where p is a fermionic polynomial. Splitting p into terms with
and without x1, we may write p = x1q + r, where q, r ∈ X are both clean
polynomials. Then x̄1p̄ = x̄21q̄ + x̄1r̄ = x̄1r̄ as x̄21 = 0 in homology.

Thus, any element of x̄1H(X ) is of the form x̄1r̄ where r is a clean
polynomial. Such an element is certainly in the image of Φ, as Φ(a 1

2
r) = x1r.

Thus �Φ = x̄1H(X ).
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To see Φ is injective, take a homology class f̄ ∈ kerΦ. By Proposition 4.9
we have f̄ = ā 1

2
p̄ where p ∈ X is a clean polynomial. Then 0 = Φf̄ = x̄1p̄.

But as p is clean, x1p is fermionic, hence nonzero in homology unless p = 0.
Thus f̄ = 0 and Φ is injective. �

This result allows us to strengthen Proposition 4.9. There we showed
any cycle in A+ ⊗X is homologous to an element a 1

2
p, where p ∈ X is a

clean polynomial. We can now show this p is unique: if a 1

2
p and a 1

2
p′ are

homologous, then x1p and x1p
′ are homologous in X , so x̄1(p̄− p̄′) = 0 in

H(X ). It follows that p̄ = p̄′ and hence p = p′.

Proposition 4.13. Suppose f ∈ A+ ⊗X satisfies ∂f = 0. Then f = a 1

2
p+

∂g, where g ∈ A+ ⊗X and p ∈ X is a unique clean polynomial. �

By Proposition 4.12 we now have H(A+ ⊗X ) ∼= x̄1H(X ); as Φ is an
H(X )-module homomorphism, this is an isomorphism ofH(X )-modules. Re-
placing A+, an, xn with A−, a−n, x−n we similarly obtain an H(X )-module
isomorphism H(A− ⊗X ) ∼= x̄−1H(X ).

Theorem 4.14. There are isomorphisms of H(X )-modules

H(A+ ⊗X ) ∼= x̄1H(X ) = x̄1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .),

H(A− ⊗X ) ∼= x̄−1H(X ) = x̄−1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

.

An explicit isomorphism is given by ā± 1

2
p̄ �→ x̄±1p̄. �

Since ĈS(Σ, F ) is the direct sum of the A± ⊗X , we have now proved
Theorem 1.4 and have an H(X )-module isomorphism

ĤS(Σ, F ) ∼= x̄1H(X )⊕ x̄−1H(X ) = (x̄1, x̄−1)
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

.

5. Non-alternating annuli

In this section we prove Theorem 1.1 that for any non-alternating weakly
marked annulus (A, F ), its string homology is zero. In [19] we proved such a
result for discs; and as we will see, the methods used there apply immediately
here, for all cases except one, with which we have already dealt.
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In Section 5 of [19] we introduced a switching operation W on a string
diagram s on a disc; we now define it more generally. Let (Σ, F ) be a weakly
marked surface. Suppose that there are two distinct consecutive points p, q
of F , on the same boundary component of Σ, of the same sign; suppose
p, q ∈ Fin (resp. Fout). The switching operation W alters s near p and q, so
that the strand which began (resp. ended) at p now begins (resp. ends) at
q; and the strand which began (resp. ended) at q now begins (resp. ends)
at p. In the process we introduce precisely one new crossing. The switching
operation extends linearly to a Z2-linear map W : ĈS(Σ, F ) −→ ĈS(Σ, F ).
See Figure 5.

p

q W

p

q

Figure 5: Switching operation.

Resolving crossings in Ws we obtain ∂Ws = s+W∂s, as shown in Fig-
ure 6. So ∂W +W∂ = 1, and W is a chain homotopy between the chain
maps 1 and 0 on ĈS(Σ, F ).

∂ s = s + ∂s

∂Ws = s + W∂s

Figure 6: The switching operation W is a chain homotopy.

Clearly a similar argument applies if the two adjacent points p, q lie in
Fout rather than Fin. We immediately obtain the following result.

Proposition 5.1 ([19]). If (Σ, F ) is a weakly marked surface such that
some boundary component of Σ contains two adjacent distinct points of F
of the same sign, then ĤS(Σ, F ) = 0. �
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Proof of Theorem 1.1. Let (A, F ) be a non-alternating weakly marked an-
nulus. If F has two distinct consecutive points of the same sign on some
boundary component of A, then by Proposition 5.1 ĤS(A, F ) = 0; so now
assume this is not the case. Then each boundary component either con-
tains an even number of points of F alternating in sign, or contains a single
point of F . As F is not alternating, the only possibility is F = F1,1, and
each boundary component of A contains precisely one point of F . But by
Theorem 4.5 ĤS(A, F1,1) = 0. �

6. Annuli with two marked points on both boundaries

We now turn to (A, F2,2), the annulus with two alternating marked points
on each boundary component. As noted in the introduction, this is the most
difficult case, and our results are partial.

Before plunging into calculations, we recall that we will later be able to
compute the string homology of any annulus ĤS(A, F2m+2,2n+2) in terms of

ĤS(A, F2,2): specifically (Proposition 7.4),

ĤS(A, F2m+2,2n+2) ∼= (Z2 ⊕ Z2)
⊗(m+n) ⊗Z2

ĤS(A, F2,2).

In fact, if ĤS(A, F2,2) can be computed, so can the string homology of any
weakly marked annulus. This provides some motivation for the sometimes
rather technical algebra which follows in this section.

6.1. Description and decomposition of the chain complex

Denote the two components of ∂Σ by C0 and C1. Let Fi = F ∩ Ci and
Fi,in = Fin ∩ Ci, Fi,out = Fout ∩ Ci so |F0| = |F1| = 2 and |F0,in| = |F0,out| =
|F1,in| = |F1,out| = 1. We will draw annuli so that C0 is the “outside” and C1

the “inside”. We will draw marked points with F0,in, F1,out at the bottom
and F0,out, F1,in at the top. See Figure 7

Homotopy classes of closed curves on A are again denoted by xn. Homo-
topy classes of open strings on (A, F2,2) can be classified as follows.

Definition 6.1.

1) An open string which begins and ends on the same Fi is called insular.
a) An insular string joining the two points of F0 runs n+ 1

2 times
around the core of the annulus, for some n ∈ Z. We denote the
homotopy class of this curve by an+ 1

2
.
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F0,in

F1,out

F1,in

F0,out

C1 C0

Figure 7: Boundary components and marked points on (A, F2,2).

Let A,A+,A− be free Z2-modules on {an : n ∈ Z+ 1
2}, and the

positive and negative subsets thereof respectively.
b) An insular string which joins the two points of F1 also runs n+ 1

2
times around the core of the annulus for some n ∈ Z, and we denote
its homotopy class by bn+ 1

2
.

Let B,B+,B− be free Z2-modules on {bn : n ∈ Z+ 1
2}, and the

positive and negative subsets thereof respectively.

2) An open string which begins on Fi and ends on Fj for i �= j is called
traversing.
a) A traversing string which joins F1,in to F0,out runs n times around

the core of the annulus, for some n ∈ Z, and we denote its homotopy
class by cn.
Let C be the free Z2-module on {cn : n ∈ Z}.

b) A traversing string which joins F0,in to F1,out runs n times around
the core of the annulus, for some n ∈ Z, and we denote its homotopy
class by dn.
Let D be the free Z2-module on {dn : n ∈ Z}.

Note the definition of an+ 1

2
andA,A± follows the notation of Section 4.3,

and the an are as shown in Figure 4. The B,B± are defined in a similar vein.
The cn follow the notation of Section 4.1, and are as shown in Figure 3. The
dn are defined similarly. Some further examples are shown in Figure 8.
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a 1

2
b 1

2
c0d1 c1d−1 a 1

2
b 1

2
x−1

Figure 8: Some string diagrams on (A, F2,2).

The two open strings in a string diagram on (A, F2,2) are either both
insular or both traversing; we call the string diagram insular or traversing
accordingly.

The (homotopy classes of) purely open string diagrams on (A, F2,2)
are thus precisely given by aibj and cmdn, over all i, j ∈ Z+ 1

2 and m,n ∈
Z. Thus ĈS

O
(A, F2,2) ∼= (A⊗Z2

B)⊕ (C ⊗Z2
D). Note that monomials from

A,B, C or D alone do not describe string diagrams: we require an am to-
gether with a bn, or a cm together with a dn, to provide the required open
strings. By Lemma 2.10 then

ĈS(A, F2,2) ∼= X ⊗ ((A⊗ B)⊕ (C ⊗ D))
∼= (A⊗X ⊗ B)⊕ (C ⊗ X ⊗D)

where all tensor products are over Z2. In particular, an insular string diagram
up to homotopy on (A, F2,2) can be written as aibjx

e, and a traversing string
diagram as cmdnx

e, .
For the purposes of algebraic computations, it can be useful to think of

elements of C ⊗ X ⊗D as elements of X spaced on a Z× Z lattice: a general
element of C ⊗ X ⊗D can be given in the form

∑
m,n cmdnpm,n, where each

pi,j ∈ X , and we can think of the pm,n at the point (i, j) ∈ Z× Z. Similarly,
we can think of elements of A⊗X ⊗ B, given in the form

∑
i,j aibjpi,j , as

elements of X spaced on a (Z+ 1
2)× (Z+ 1

2) lattice, placing pi,j at (i, j).

6.2. Description of differential

Consider an insular string diagram, of homotopy class s = aibjx
e. By a ho-

motopy relative to endpoints, we can separate the strings, i.e. make the
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strings pairwise disjoint. Thus on A⊗X ⊗ B, the Goldman bracket van-
ishes and the differential obeys the Leibniz rule.

Since the open strings ai arose previously in considering (A, F0,2), ∂ai is
as described in Section 4.3: for any n ∈ Z+ 1

2 we have

∂ai =
∑

k+l=i, kl>0

akxl.

The calculation of ∂bj is similar; indeed bj is obtained from aj by a symmetry
of the annulus, and there is an isomorphism of X -modules, A⊗X ∼= B ⊗ X
induced by aj ↔ bj , which commutes with ∂.

∂bn =
∑

i+j=n, ij>0

bixj .

By the Leibniz rule then we have, for a general insular string diagram
s = aibjx

e,

∂s = (∂ai) bjx
e + ai (∂bj)x

e + aibj (∂x
e)

=
∑

k+l=i, kl>0

akbjxlx
e +

∑
k+l=j, kl>0

aibkxlx
e + aibj(∂x

e),

where ∂xe is given by the differential on X .
Note that the differential maps A⊗X ⊗ B into itself, so it is a subcom-

plex of ĈS(A, F2,2); as the Leibniz rule is satisfied,A⊗X ⊗ B is a differential

X -module and the homology ĤS(A⊗X ⊗ B) is an H(X )-module.
Now consider a traversing string diagram, of homotopy class s = cidjx

e =
cidj

∏
k∈Z\{0} x

ek
k . The situation here is more complicated than the insular

case. The ci and dj sometimes intersect each other and always intersect
each xk, so the Goldman bracket does not vanish and the Leibniz rule is not
obeyed.

After a homotopy relative to endpoints, we may draw the string diagram
so that all the curves intersect minimally. Then ci has no self-intersections;
nor does dj ; and the intersection points are precisely as follows.

1) Each xk has self-intersections; resolving them gives ∂xk.

2) Each xk intersects ci in |k| points; resolving them gives [ci, xk].

3) Each xk intersects dj in |k| points; resolving them gives [dj , xk].

4) The open strings ci and dj intersect in |i+ j| points; resolving them
gives [ci, dj ].
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To see that |ci ∩ dj | = |i+ j|, first note that |c0 ∩ dj | = |j| for any integer j.
Then note that under a Dehn twist on the annulus, ci �→ ci±1 and dj �→ dj∓1;
hence some number of Dehn twists takes cidj �→ c0dj+i, so |ci ∩ dj | = |c0 ∩
di+j | = |i+ j|.

For a general string diagram with homotopy class cidjx
e, we can then

write

∂ (cidjx
e) = cidj(∂x

e) +
∑
k∈Z

ek[ci, xk]djx
−1
k xe

+
∑
k∈Z

ekci[dj , xk]x
−1
k xe + [ci, dj ]x

e,

where the four terms correspond to the four types of intersections listed
above. It remains to compute the Goldman brackets in the above.

Resolving an intersection point of ci and xk, we obtain an open string
running from F1,in to F0,out, hence one of the cn. As ci, xk respectively run
i, k times around the annulus, we obtain ci+k. Resolving all |k| such crossings
(mod 2) gives

[ci, xk] = kci+k.

Similarly, resolving the |k| intersections of xk and dj gives

[dj , xk] = kdj+k.

As for [ci, dj ], we have the following lemma.

Lemma 6.2. Resolving an intersection between ci and dj produces a string
diagram of the form ai′bj′, where i′, j′ both have the same sign as i+ j,
and i′ + j′ = i+ j. There are |i+ j| diagrams of this form and each appears
precisely once as we resolve the |i+ j| crossings between ci and dj. That is,

[ci, dj ] =

⎧⎪⎨⎪⎩
a 1

2
bi+j− 1

2
+ a 3

2
bi+j− 3

2
+ · · ·+ ai+j− 1

2
b 1

2
i+ j > 0

0 i+ j = 0
a− 1

2
bi+j+ 1

2
+ a− 3

2
bi+j+ 3

2
+ · · ·+ ai+j+ 1

2
b− 1

2
i+ j < 0

⎫⎪⎬⎪⎭
=

∑
k+l=i+j, kl>0

akbl

The expressions arising as [ci, dj ] appear frequently in the sequel; we call
them sn.
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Definition 6.3. For an integer n, let sn ∈ A⊗ X ⊗ B be

sn =

⎧⎪⎨⎪⎩
a 1

2
bn− 1

2
+ a 3

2
bn− 3

2
+ · · ·+ an− 1

2
b 1

2
n > 0

0 n = 0
a− 1

2
bn+ 1

2
+ a− 3

2
bn+ 3

2
+ · · ·+ an+ 1

2
b− 1

2
n < 0

⎫⎪⎬⎪⎭ =
∑

k+l=n, kl>0

akbl

Note sn contains precisely |n| nonzero terms in the sum; if we regard
elements

∑
i,j aibjpi,j of A⊗X ⊗ B as polynomials pi,j ∈ X placed at (i, j)

on the lattice (Z+ 1
2)× (Z+ 1

2), then sn consists of 1s placed along the
“diagonal” i+ j = n, at points (i, j) where i, j have the same sign as n.
That is,

. . . , s−1 = a− 1

2
b− 1

2
, s0 = 0, s1 = a 1

2
b 1

2
, s2 = a 1

2
b 3

2
+ a 3

2
b 1

2
, . . .

Thus Lemma 6.2, which we now prove, states that

[ci, dj ] = si+j .

Proof. A general pair of open strings ci, dj can be taken by some Dehn
twists to the pair c0, di+j , and so it suffices to consider the open strings c0
and dj . Resolving the |j| crossings between them gives the |j| diagrams ambn
in sj . �

We have now explicitly computed the differential on ĈS(A, F2,2) ∼= (A⊗
X ⊗ B)⊕ (C ⊗ X ⊗D).

Proposition 6.4. The differential ∂ on ĈS(A, F ) is given by

∂ (aibjx
e) = (∂ai)bjx

e + ai(∂bj)x
e + aibj(∂x

e)

=
∑

i′+k′=i, i′k′>0

ai′bjxk′xe +
∑

j′+k′=j, j′k′>0

aibj′xk′xe + aibj(∂x
e)

∂ (cidjx
e) = cidj(∂x

e) + si+jx
e +

∑
k∈Z

kek (ci+kdj + cidj+k)x
−1
k xe.

�

We next turn to the homology of ĈS(Σ, F ). In Sections 6.3–6.6 we com-
pute the homology of the subcomplex A⊗X ⊗ B; in Section 6.7 we consider
the homology of the entire complex.

6.3. Homology of insular string diagrams I: simplifying cycles

We focus on the subcomplex A⊗X ⊗ B of ĈS(Σ, F ), generated by insular
string diagrams.
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We have defined A±,B± so that A = A+ ⊕A− and B = B+ ⊕ B−. From
Proposition 6.4, ∂(aibjx

e) is a sum of terms ai′bj′x
e′ where i, i′ have the

same sign, and j, j′ have the same sign. Thus A⊗X ⊗ B splits as a direct
sum of four differential X -submodules:

A⊗X ⊗ B = (A+ ⊗X ⊗ B+)⊕ (A+ ⊗X ⊗ B−)
⊕ (A− ⊗X ⊗ B+)⊕ (A− ⊗X ⊗ B−) .

We will deal with these submodules separately. We shall find that the mod-
ules A± ⊗X ⊗ B± behave rather differently from the modules A± ⊗X ⊗
B∓.

We will first compute the homology of A+ ⊗X ⊗ B+. The argument is
quite long and takes up to the end of Section 6.5. The method is similar to
Section 4.4, simplifying cycles to have lower “degree”.

Definition 6.5. A general element f of A+ ⊗X ⊗ B has the form

f = a 1

2
p 1

2
+ a 3

2
p 3

2
+ · · ·+ an+ 1

2
pn+ 1

2
,

where each pi+ 1

2
∈ X ⊗ B, and pn+ 1

2
�= 0. The a-degree of f is n+ 1

2 .

We write O(am) to denote an element of A+ ⊗X ⊗ B of a-degree ≤ m.

(We could equally define a b-degree; however we will not need it.) Note
that this definition applies to both A+ ⊗X ⊗ B+ and A+ ⊗X ⊗ B−.

Each pi ∈ X ⊗ B+ is a “polynomial” in the bj and xk, with each term
containing precisely one bj factor. By the Leibniz rule, for an f of degree
n− 1

2 we can write

f =

n∑
i=1

ai− 1

2
pi− 1

2
so ∂f =

n∑
i=1

(
∂ai− 1

2

)
pi− 1

2
+ ai− 1

2

(
∂pi− 1

2

)
.

The key to the computation of H(A+ ⊗X ⊗ B+) is the following lemma.
Analogously to Lemma 4.8, it shows how to simplify a given cycle f ∈ A+ ⊗
X ⊗ B+ to a homologous one of smaller a-degree. Recall Definition 6.3 of sn.
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Lemma 6.6. Suppose f ∈ A+ ⊗X ⊗ B+ has a-degree n− 1
2 and satisfies

∂f = 0. Then

f =
(
a 1

2
b 1

2

)
q1 +

(
a 1

2
b 3

2
+ a 3

2
b 1

2

)
q2 + · · ·

+
(
a 1

2
bn− 1

2
+ a 3

2
bn−1 + · · ·+ an− 1

2
b 1

2

)
qn + ∂g

= s1q1 + s2q2 + · · ·+ snqn + ∂g,

for some g = O(an− 1

2
) ∈ A+ ⊗X ⊗ B+ and qj ∈ X , for 1 ≤ j ≤ n, where

each qj is a clean polynomial.

Before commencing the proof, recall our computation of H(A+ ⊗X ).
We have

H(A+ ⊗X ) ∼= x̄1H(X ) = x̄1
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

,

with the isomorphism induced at the chain level by an− 1

2
xe �→ xnx

e. In par-

ticular (Proposition 4.9), if f ∈ A+ ⊗X has ∂f = 0, then f = a 1

2
p+ ∂g,

where g ∈ A+ ⊗X and p is a clean polynomial.
The chain complex B+ ⊗X is isomorphic to A+ ⊗X via bi �→ ai. Then,

similarly, H(B+ ⊗X ) ∼= x̄1H(X ). Moreover, if f ∈ B+ ⊗X and ∂f = 0 then
f = b 1

2
p+ ∂g, where g ∈ B+ ⊗X and p ∈ X is a clean polynomial.

As a preliminary, we demonstrate Lemma 6.6 when n− 1
2 = 1

2 , i.e. n = 1.
In this case f = a 1

2
p 1

2
with p 1

2
∈ X ⊗ B+, so 0 = ∂f = a 1

2
∂p 1

2
. Hence p 1

2
∈

B+ ⊗X satisfies ∂p 1

2
= 0, so the previous paragraph gives p 1

2
= b 1

2
q1 + ∂r,

where q1 is a clean polynomial. We then have

f = a 1

2
p 1

2
= a 1

2
b 1

2
q1 + a 1

2
∂r = s1q1 + ∂

(
a 1

2
r
)

as desired. The result for general n, though technically complicated, is based
on a repetition of this argument.

Proof. As f has a-degree n− 1
2 ,

f = an− 1

2
pn− 1

2
+ an− 3

2
pn− 3

2
+ · · ·+ a 1

2
p 1

2
where each pi ∈ X ⊗ B+.

Differentiating f gives

∂f = an− 1

2

(
∂pn− 1

2

)
+
(
∂an− 1

2

)
pn− 1

2
+ an− 3

2

(
∂pn− 3

2

)
++O(an− 5

2
)

= an− 1

2

(
∂pn− 1

2

)
+ an− 3

2

(
x1pn− 1

2
+ ∂pn− 3

2

)
+O(an− 5

2
).
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As ∂f = 0, we have

∂pn− 1

2
= 0 and x1pn− 1

2
= ∂pn− 3

2
.

Using Proposition 4.9 on pn− 1

2
∈ B+ ⊗X , we have pn− 1

2
= b 1

2
qn + ∂r, where

qn is a clean polynomial, and r ∈ B+ ⊗X . We then have

f = an− 1

2
b 1

2
qn + an− 1

2
∂r + an− 3

2
pn− 3

2
+ · · ·+ a 1

2
p 1

2
.

Noting that ∂
(
an− 1

2
r
)
= an− 1

2
∂r +O(an− 3

2
) produces a term an− 1

2
∂r as in

the above, we have

f = an− 1

2
b 1

2
qn + ∂

(
an− 1

2
r
)
+O(an− 3

2
)

= an− 1

2
b 1

2
qn + fn−1 + ∂gn−1,

where fn−1, gn−1 ∈ A+ ⊗X ⊗ B+, fn−1 = O(an− 3

2
) and gn−1 = an− 1

2
r =

O(an− 1

2
). (When n = 1, this is just the preliminary demonstration given

above.)
We claim now that, for each integer i with 0 ≤ i ≤ n− 1, we can write

f = an− 1

2
b 1

2
qn + an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ an−i− 1

2

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)
+ fn−i−1 + ∂gn−i−1

=

i∑
k=0

an−k− 1

2

k∑
l=0

bl+ 1

2
qn−k+l + fn−i−1 + ∂gn−i−1,

where qn, qn−1, . . . qn−i ∈ X are clean polynomials, and fn−i−1, gn−i−1 ∈
A+ ⊗X ⊗ B+, where fn−i−1 = O(an−i− 3

2
) and gn−i−1 = O(an− 1

2
). We have

just shown this claim for i = 0. So suppose that the claim holds for a par-
ticular value of i, where 0 ≤ i ≤ n− 2; we shall show it holds for i+ 1.

Let then f be given as claimed. Consider differentiating f ; we have ∂f =
0; moreover, differentiating the last two terms gives ∂ (fn−i−1 + ∂gn−i−1) =
O
(
an−i− 3

2

)
. From the other terms of f , we then obtain

∂

⎛⎝ an− 1

2
b 1

2
qn + an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ an−i− 1

2

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

) ⎞⎠
= O(an−i− 3

2
).
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We thus consider the terms of a-degree n− i− 3
2 in ∂f . Note that in any

differential ∂(aibjqk), there is a unique term with a-degree al− 1

2
, for a posi-

tive integer l < i, namely albjqkxi−l. Further, since by assumption fn−i−1 =
O
(
an−i− 3

2

)
, let fn−i−1 = an−i− 3

2
pn−i− 3

2
+O(an−i− 5

2
) where pn−i− 3

2
∈ B+ ⊗

X . We obtain

0 = ∂f = an−i− 3

2

[
xi+1b 1

2
qn + xi

(
b 3

2
qn + b 1

2
qn−1

)
+ xi−1

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·

+ x1

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)
+ ∂pn−i− 3

2

]
+O(an−i− 5

2
).

The coefficient of an−i− 3

2
must be zero, hence

∂pn−i− 3

2
= xi+1b 1

2
qn + xi

(
b 3

2
qn + b 1

2
qn−1

)
+ xi−1

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ x1

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)
=
(
b 1

2
xi+1 + b 3

2
xi + · · ·+ bi+ 1

2
x1

)
qn

+
(
b 1

2
xi + b 3

2
xi−1 + · · ·+ bi− 1

2
x1

)
qn−1 + · · ·+

(
b 1

2
x1

)
qn−i

=
(
∂bi+ 3

2

)
qn +

(
∂bi+ 1

2

)
qn−1 + · · ·+

(
∂b 3

2

)
qn−i

= ∂
(
bi+ 3

2
qn + bi+ 1

2
qn−1 + · · ·+ b 3

2
qn−i

)
In the second line we regrouped; in the third line used the formula for ∂bj ;
and in the last line used ∂qj = 0, which follows from our assumptions on
the qj .

Thus we have a cycle pn−i− 3

2
+ bi+ 3

2
qn + bi+ 1

2
qn−1 + · · ·+ b 3

2
qn−i in B+ ⊗

X , and by Proposition 4.9 this is homologous to b 1

2
qn−i−1, where qn−i−1 is

a clean polynomial. This gives

pn−i− 3

2
= bi+ 3

2
qn + bi+ 1

2
qn−1 + · · ·+ b 3

2
qn−i + b 1

2
qn−i−1 + ∂r,

for some r ∈ B+ ⊗X .
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Returning to f and substituting this expression for pn−i− 3

2
, we have

f = an− 1

2
b 1

2
qn + an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ an−i− 1

2

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)
+ an−i− 3

2

(
bi+ 3

2
qn + bi+ 1

2
qn−1 + · · ·+ b 3

2
qn−i + b 1

2
qn−i−1 + ∂r

)
+O(an−i− 5

2
) + ∂gn−i−1

Finally, using an−i− 3

2
∂r = ∂

(
an−i− 3

2
r
)
+O(an−i− 5

2
), we have

f = an− 1

2
b 1

2
qn + an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ an−i− 1

2

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 1

2
qn−i

)
+ an−i− 3

2

(
bi+ 3

2
qn + bi+ 1

2
qn−1 + · · ·+ b 3

2
qn−i + b 1

2
qn−i−1

)
+ fn−i−2 + ∂gn−i−2

where fn−i−2 = O(an−i− 5

2
), and gn−i−2 = an−i− 3

2
r + gn−i−1 = O(an− 1

2
).

This puts f in the desired form for i+ 1, proving the claim.
Now consider the claim with i = n− 1. It says that

f = an− 1

2
b 1

2
qn + an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ a 1

2

(
bn− 1

2
qn + bn− 3

2
qn−1 + · · ·+ b 1

2
q1

)
+ f0 + ∂g0,

where f0 = O(a− 1

2
), hence f0 = 0, and g0 = O(an− 1

2
). Writing g = g0 this

rearranges as

f = snqn + sn−1qn−1 + · · ·+ s1q1 + ∂g

as desired. �

This technical lemma shows that any cycle in A+ ⊗X ⊗ B+ is homolo-
gous to an element in the standard form s1q1 + · · ·+ snqn. It is clear that,
since ∂si = ∂qi = 0, any element of this form is a cycle. We will next show
that such representatives are unique, proving an analogy of Proposition 4.13.
This will give us an explicit description of H(A+ ⊗X ⊗ B+).

For this uniqueness result, however, we work in a truncated complex,
and then take a direct limit.
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6.4. Homology of insular string diagrams II: truncated complex

We now restrict to those elements of A+ ⊗X ⊗ B+ which have bounded a-
degree. (We could equally well truncate with respect to b-degree, but we do
not need it.)

Definition 6.7. Let N be a positive integer. The Z2-module A<N
+ is the

submodule of A generated by an with 0 < n < N .

Note A<N
+ has Z2-rank N , with basis {a 1

2
, a 3

2
, . . . , aN− 1

2
}. Our strategy

is to consider the homology in the ascending sequence

A<1
+ ⊗X ⊗ B+ ⊂ A<2

+ ⊗X ⊗ B+ ⊂ · · · ,

whose direct limit is A+ ⊗X ⊗ B+. As the differential on A+ ⊗X ⊗ B+

lowers a-degree (or keeps it constant, Proposition 6.4), this is an ascending
sequence of subcomplexes. As homology commutes with direct limits, we will
obtain the homology of A+ ⊗X ⊗ B+ as the direct limit of the H(A<N

+ ⊗
X ⊗ B+).

We first restate Lemma 6.6 in the truncated case.

Lemma 6.8. Suppose f ∈ A<n
+ ⊗X ⊗ B+ and satisfies ∂f = 0. Then

f = s1q1 + s2q2 + · · ·+ snqn + ∂g,

for some g ∈ A<n
+ ⊗X ⊗ B+ and qj ∈ X , for 1 ≤ j ≤ n, where each qj is a

clean polynomial.

(Note that s1, s2, . . . , sn are precisely the si which lie in A<n
+ ⊗X ⊗ B+.)

Proof. Let the given f have a-degree m− 1
2 , for some integer m, 1 ≤ m ≤ n.

Lemma 6.6 shows how to write f in the form s1q1 + · · ·+ smqm + ∂g, where
the si and qi have the desired form, and g ∈ A+ ⊗X ⊗ B+ has a-degree
≤ m− 1

2 ≤ n− 1
2 , hence g ∈ A<n

+ ⊗X ⊗ B+. �

Thus every homology class of A<n
+ ⊗X ⊗ B+ has a representative in the

“standard form” s1q1 + · · ·+ snqn, where each qi is a clean polynomial (pos-
sibly zero). Since ∂si = ∂qi = 0, every such element is a cycle and represents
some homology class. In fact we will show that such “standard form” repre-
sentatives are unique, giving the description of homology stated in the next
proposition.
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Proposition 6.9. Let n be a positive integer. As a Z2-module, H(A<n
+ ⊗

X ⊗ B+) is freely generated by the elements s̄iq̄, over all integers i satisfying
1 ≤ i ≤ n, and all clean monomials q̄ in H(X ).

(While each homology class has a representative consisting of si times
clean polynomials, it is the si times clean monomials which form a Z2-basis.)

The previous lemma shows that the s̄iq̄ in the proposition generate
H(A<m

+ ⊗X ⊗ B+); it remains to show that the s̄iq̄ are linearly indepen-
dent. Equivalently, it remains to show that the only “standard form” ele-
ment which is a boundary is zero. Thus the proposition is reduced to the
following lemma.

Lemma 6.10. Let n ∈ Z>0, and suppose q1, . . . , qn ∈ X are clean polyno-
mials such that

s1q1 + s2q2 + · · ·+ snqn = ∂r

for some r ∈ A<n
+ ⊗X ⊗ B+. Then q1 = q2 = · · · = qn = 0.

Proof. Let f = s1q1 + · · ·+ snqn. As r ∈ A<n
+ ⊗X ⊗ B+, we can write

r = an− 1

2
rn + an− 3

2
rn−1 + an− 5

2
rn−2 + · · ·+ a 3

2
r2 + a 1

2
r1,

where each r1, r2, . . . , rn ∈ B+ ⊗X . Differentiating gives

∂r = an− 1

2
(∂rn) + an− 3

2
(x1rn + ∂rn−1) + an− 5

2
(x2rn + x1rn−1 + ∂rn−2)

+ · · ·+ an−i− 1

2
(xirn + xi−1rn−1 + · · ·+ x1rn−i+1 + ∂rn−i) + · · ·

+ a 1

2
(xn−1rn + xn−2rn−1 + · · ·+ x1r2 + ∂r1)

On the other hand, we can write out the terms of f by a-degree as follows.

f = an− 1

2

(
b 1

2
qn

)
+ an− 3

2

(
b 3

2
qn + b 1

2
qn−1

)
+ an− 5

2

(
b 5

2
qn + b 3

2
qn−1 + b 1

2
qn−2

)
+ · · ·+ an−i− 1

2

(
bi+ 1

2
qn + bi− 1

2
qn−1 + · · ·+ b 3

2
qn−i+1 + b 1

2
qn−i

)
+ · · ·

+ a 1

2

(
bn− 1

2
qn + bn− 3

2
qn−1 + · · ·+ b 3

2
q2 + b 1

2
q1

)
Equating coefficients of an− 1

2
in f = ∂r gives

b 1

2
qn = ∂rn,

so that b 1

2
qn is a boundary in B+ ⊗X . But by our computation of H(A+ ⊗

X ) ∼= H(B+ ⊗X ) of Section 4.4 (specifically Proposition 4.13) then qn = 0.
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Equating coefficients of an− 3

2
then gives

(6.1) b 1

2
qn−1 = x1rn + ∂rn−1.

We note that x1(∂rn) = ∂(x1rn) = ∂(∂rn−1 + b 1

2
qn−1) = 0 (as ∂b 1

2
=

∂qn−1 = 0), so rn is a cycle in B+ ⊗X . Writing rn homologous to its stan-
dard form, we have

rn = b 1

2
tn + ∂un,

where tn ∈ X is a clean polynomial, and un ∈ B+ ⊗X . Substituting this
expression into (6.1) gives

b 1

2
qn−1 = b 1

2
x1tn + x1∂un + ∂rn−1 = ∂

(
b 3

2
tn + x1un + rn−1

)
,

so b 1

2
qn−1 is a boundary. Applying Proposition 4.13 again we have qn−1 = 0.

Returning to Equation (6.1), we now have

∂rn−1 = x1rn = x1

(
b 1

2
tn + ∂un

)
= ∂

(
b 3

2
tn + x1un

)
so that rn−1 + b 3

2
tn + x1un is a cycle, hence homologous to a standard form

element

rn−1 + b 3

2
tn + x1un = b 1

2
tn−1 + ∂un−1,

where tn−1 ∈ X is a clean polynomial and un ∈ B+ ⊗X .
We claim now inductively that qn = qn−1 = · · · = qn−i+1 = 0, for all 1 ≤

i ≤ n. We also claim that each of rn, rn−1, . . . , rn−i+1 satisfies

rn = b 1

2
tn + ∂un

rn−1 = b 3

2
tn + b 1

2
tn−1 + x1un + ∂un−1

rn−2 = b 5

2
tn + b 3

2
tn−1 + b 1

2
tn−2 + x2un + x1un−1 + ∂un−2

· · ·
rn−i+1 = bi− 1

2
tn + bi− 3

2
tn−1 + · · ·+ b 3

2
tn−i+2 + b 1

2
tn−i+1

+ xi−1un + xi−2un−1 + · · ·+ x2un−i+3 + x1un−i+2 + ∂un−i+1,

where each of tn, tn−1, . . . , tn−i+1 ∈ X is a clean polynomial, and each of
un, un−1, . . . , un−i+1 ∈ B+ ⊗X . We have these claims for for i = 1, 2; now
suppose they are true for i with 2 ≤ i ≤ n, and we show they are true for
i+ 1.
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Equating coefficients of an−i− 1

2
in f = ∂r, and noting qn = · · · =

qn−i+1 = 0, we obtain

b 1

2
qn−i = xirn + xi−1rn−1 + · · ·+ x2rn−i+2 + x1rn−i+1 + ∂rn−i.

Then, as we have each of rn, . . . , rn−i+1 in terms of t’s and u’s, we have

b 1

2
qn−i = xi

(
b 1

2
tn + ∂un

)
+ xi−1

(
b 3

2
tn + b 1

2
tn−1 + x1un + ∂un−1

)
+ · · ·+ x1

(
bi− 1

2
tn + bi− 3

2
tn−1 + · · ·+ b 3

2
tn−i+2 + b 1

2
tn−i+1

+ xi−1un + xi−2un−1 + · · ·+ x2un−i+3 + x1un−i+2 + ∂un−i+1

)
+ ∂rn−i.

We may regroup according to the tn terms:

b 1

2
qn−i =

(
b 1

2
xi + b 3

2
xi−1 + · · ·+ bi− 3

2
x2 + bi− 1

2
x1

)
tn

+
(
b 1

2
xi−1 + b 3

2
xi−2 + · · ·+ bi− 5

2
x2 + bi− 3

2
x1

)
tn−1

+ · · ·+
(
b 1

2
x2 + b 3

2
x1

)
tn−i+2 +

(
b 1

2
x1

)
tn−i+1

+ (xi−1x1 + xi−2x2 + · · ·+ x2xi−2 + x1xi−1)un
+ (xi−2x1 + · · ·+ x1xi−2)un−1
+ · · ·+ (x2x1 + x1x2)un−i+3 + (x1x1)un−i+2

+ xi∂un + xi−1∂un−1 + · · ·+ x2∂un−i+2 + x1∂un−i+1 + ∂rn−i

We now recognise this as a boundary:

b 1

2
qn−i = ∂

(
bi+ 1

2
tn + bi− 1

2
tn−1 + · · ·+ b 3

2
tn−i+1

+ xiun + xi−1un−1 + · · ·+ x3un−i+3

+ x2un−i+2 + x1un−i+1 + rn−i
)
.

Thus qn−i = 0. Moreover we obtain a cycle, whose homology class has a
standard form:

bi+ 1

2
tn + bi− 1

2
tn−1 + · · ·+ b 3

2
tn−i+1 + xiun

+ xi−1un−1 + · · ·+ x2un−i+2 + x1un−i+1 + rn−i = b 1

2
tn−i + ∂un−i,
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for some clean polynomial tn−i ∈ X and some un−i ∈ B+ ⊗X . Rearranging
this gives

rn−i = bi+ 1

2
tn + · · ·++b 3

2
tn−i+1 + b 1

2
tn−i + xiun + · · ·+ x1un−i+1 + ∂un−i.

Thus the claims are proved for i+ 1; by induction they are true for all i up
to n. With i = n then we have qn = qn−1 = · · · = q1 = 0 as desired. �

Now we can complete the proof of Proposition 6.9, obtaining a descrip-
tion of H(A<n

+ ⊗X ⊗ B+).

Proof of Proposition 6.9. By Lemma 6.8, any cycle f in A<n
+ ⊗X ⊗ B+ is

homologous to one of the form s1q1 + · · · snqn, where qi are clean polynomi-
als. Conversely, as ∂si = ∂qi = 0 every element of the form s1q1 + · · ·+ snqn
is a cycle. Moreover, Lemma 6.10 says that any boundary of the form s1q1 +
· · ·+ snqn must be zero. HenceH(A<n

+ ⊗X ⊗ B+) has the basis claimed. �

6.5. Homology of insular string diagrams III: direct limit and
module structure

We have now done the hard work in computing the homology of A+ ⊗X ⊗
B+, the subcomplex of ĈS(A, F ) consisting of insular string diagrams.

Proposition 6.11. As a Z2-module, H(A+ ⊗X ⊗ B+) is freely generated
by the elements s̄iq̄, over all positive integers i and all clean monomials q̄.

Proof. The chain complex A+ ⊗X ⊗ B+ is the direct limit of the A<n
+ ⊗

X ⊗ B+, and direct limits commute with homology. Thus H(A+ ⊗X ⊗ B+)
is the direct limit of the H(A<n

+ ⊗X ⊗ B+). Proposition 6.9 then gives the
result. �

Thus, as Z2-modules at least,

H(A+ ⊗X ⊗ B+) =
Z2[. . . , x̄−3, x̄−1, x̄3, x̄5, . . .]
(. . . , x̄2−3, x̄2−1, x̄23, x̄25, . . .)

〈s1, s2, . . .〉(6.2)

= H(X ) �=1〈s1, s2, . . .〉.

Note the absence of x̄1; recall Definition 3.19 of H(X ) �=1.
We would like to explain the module structure in H(A+ ⊗X ⊗ B+), as

well as the anomalous behaviour of x̄1. We have seen that A+ ⊗X ⊗ B+ is



484 Daniel V. Mathews

a differential X -module, so H(A+ ⊗X ⊗ B+) is an H(X )-module; and we
computed H(X ) in Theorem 3.17 as

Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
(. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .)

,

Moreover, as H(X ) �=1 is a subring of H(X ), H(A+ ⊗X ⊗ B+) has the struc-
ture of a H(X ) �=1-module.

The following theorem gives a complete description of the various module
structures of H(A+ ⊗X ⊗ B+).

Theorem 6.12. The homology H(A+ ⊗X ⊗ B+), is:

1) a free Z2-module with basis s̄iq̄, over all positive integers i and clean
monomials q̄;

2) a free H(X ) �=1-module with basis s̄i, over all positive integers i;

3) an H(X )-module generated by the elements s̄i, over all positive integers
i, where for any odd integer j �= 1, x̄j acts by polynomial multiplication,
and x̄1 acts by

x̄1s̄n = x̄3s̄n−2 + x̄5s̄n−4 + · · · =
∑

j≥3 odd,
j+k=n+1

x̄j s̄k =

�n−1

2
∑

k=1

x̄2k+1s̄n−2k.

The last two equalities above are just ways of rewriting the sum. These
sums are linear combinations of clean monomials times s̄i, so are in standard
form. Thus, the action of s̄1 is as shown below:

x̄1s̄1 = 0, x̄1s̄2 = 0, x̄1s̄3 = x̄3s̄1, x̄1s̄4 = x̄3s̄2,

x̄1s̄5 = x̄3s̄3 + x̄5s̄1, x̄1s̄6 = x̄3s̄4 + x̄5s̄2, . . .

Proof. The first statement is Proposition 6.11.
For the other statements, note that the H(X )-module structure on

H(A+ ⊗X ⊗ B+) is inherited from the X -module structure on A+ ⊗X ⊗
B+; multiplication by xj on A+ ⊗X ⊗ B+ becomes multiplication by x̄j in
H(A+ ⊗X ⊗ B+). The multiplication by each x̄j , for j odd and j �= 1, is
clear enough, since multiplication by xj sends each clean monomial either
to another clean monomial, or to a monomial with an x2j factor, which be-
comes zero in H(X ). Thus H(A+ ⊗X ⊗ B+) is a free H(X ) �=1-module with
basis {si}∞i=1, as claimed (and as Equation (6.2) suggests).
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It remains to prove the statement on the action of x̄1. Consider the
element h ∈ A+ ⊗X ⊗ B+ consisting of every second term in sn+1 as shown:

h = a 1

2
bn+ 1

2
+ a 5

2
bn− 3

2
+ a 9

2
bn− 7

2
+ · · · =

∑
pos.

a 1

2
+2mbn+ 1

2
−2m.

This h consists of every second term in sn+1; the “pos” in the sum indicates
to sum over integers m such that the indices are positive, i.e.12 + 2m > 0
and n+ 1

2 − 2m > 0.
When we take ∂ of h, we obtain a sum of terms of the form ai+ 1

2
bj+ 1

2
xk,

where i, j, k are positive integers, and i+ j + k = n.
Now for each pair i, j of positive integers with i+ j ≤ n− 1, the term

ai+ 1

2
bj+ 1

2
xn−i−j appears in the differential of two terms of sn+1, namely

ai+ 1

2
bn+ 1

2
−i and an+ 1

2
−jbj . These two terms may or may not appear in h.

However, if (i+ 1
2)− (n+ 1

2 − j) = i+ j − n is even, then they either both
appear, or both do not appear, in h. And if i+ j − n is odd, then precisely
one of them appears. Since i+ j − n ≡ k mod 2, we see that ∂h is precisely a
sum of these ai+ 1

2
bj+ 1

2
xk where k is odd, and i, j, k are positive integers, with

i+ j + k = n. These are precisely the terms appearing in x1sn + x3sn−2 +
x5sn−4 + · · · . We conclude that

∂h = x1sn + x3sn−2 + x5sn−4 + · · · ,

giving the desired result upon passing to homology. �

6.6. Homology of insular string diagrams IV:
completing the calculation

We have now computed the homology of A+ ⊗X ⊗ B+. But recall from
Section 6.3 that this is just one of four summands of A⊗X ⊗ B:

A⊗X ⊗ B ∼= (A+ ⊗X ⊗ B+)⊕ (A+ ⊗X ⊗ B−)
⊕ (A− ⊗X ⊗ B+)⊕ (A− ⊗X ⊗ B−) ,

whereA±,B± are freely generated by the ai, bj with i, j positive and negative
respectively.

After dealing with A+ ⊗X ⊗ B+ the other three summands are easier.
In fact, the homology of A− ⊗X ⊗ B− is now immediately isomorphic to
A+ ⊗X ⊗ B+.
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Proposition 6.13. The map ι : A⊗X ⊗ B −→ A⊗X ⊗ B defined by ai �→
a−i, bj �→ b−j, xk �→ x−k and extended linearly, gives isomorphisms of chain
complexes

A+ ⊗X ⊗ B+
∼= A− ⊗X ⊗ B−, A+ ⊗X ⊗ B− ∼= A− ⊗X ⊗ B+.

Proof. It is clear that ι is an isomorphism of Z2-modules, and is an invo-
lution sending A+ ⊗X ⊗ B+ ↔ A− ⊗X ⊗ B− and A+ ⊗X ⊗ B− ↔ A− ⊗
X ⊗ B+; we check it commutes with ∂.

We first consider ι on A+: explicitly, for a non-negative integer n,

ι∂an+ 1

2
= ι

∑
i,j>0,i+j=n

ai+ 1

2
xj =

∑
i,j>0,i+j=n

a−i− 1

2
x−j

=
∑

i,j<0,i+j=−n
ai− 1

2
xj = ∂a−n− 1

2
= ∂ιan+ 1

2
.

By a similar calculation we have ι∂ = ∂ι on A−,B+,B−. We also have, by
a similar argument, ι∂xk = ∂ιxe for monomials xe ∈ X . By the Leibniz rule
then ι commutes with ∂ on A⊗X ⊗ B. Thus ι gives an involution on ho-
mology which induces the desired isomorphisms. �

Thus, our description of H(A+ ⊗X ⊗ B+) in Theorem 6.12 is also a de-
scription of H(A− ⊗X ⊗ B−), upon exchanging each ai, bj , xk with a−i, b−j ,
x−k. It is a free Z2-module with basis s̄iq̄, over all negative integers i and neg-
atively clean monomials q. It is also a free H(X ) �=−1-module (recall Defini-
tion 3.19) with basis s̄i, over all negative integers i. And it is finally a H(X )-
module generated by the elements s̄i, over all negative integers i, where for
any odd negative integer j ≤ −1, x̄j acts by polynomial multiplication, and
x̄−1 acts on s̄−n, for −n < 0, by x̄−1s̄−n = x̄−3s̄−n+2 + x̄−5s̄−n+4 + · · · .

It remains to consider A+ ⊗X ⊗ B−; from above, A− ⊗X ⊗ B+ is sim-
ilar. This complex behaves more simply than A+ ⊗X ⊗ B+. In particular,
the presence of both positive and negative indices in aibj allows us to sim-
plify cycles into a considerably more straightforward standard form, more
like A+ ⊗X (Section 4.4) than A+ ⊗X ⊗ B+. As in previous computations,
the first and main step is a technical lemma (similar to Lemma 4.8) which,
given a cycle in A+ ⊗X ⊗ B−, reduces it modulo a boundary to one of lower
a-degree. (Note that Definition 6.5 of a-degree applies to A+ ⊗X ⊗ B−.)

We start with a an element f ∈ A+ ⊗X ⊗ B− of a-degree n− 1
2 , so

f = a 1

2
p 1

2
+ a 3

2
p 3

2
+ · · ·+ an− 1

2
pn− 1

2
=

n∑
i=1

ai− 1

2
pi− 1

2
,
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where each p1, . . . , pn ∈ B− ⊗X . The reduction is as follows.

Lemma 6.14. If f ∈ A+ ⊗X ⊗ B− has a-degree n− 1
2 ≥ 3

2 and satisfies
∂f = 0, then f = ∂g +O(an− 3

2
) for some g ∈ A+ ⊗X ⊗ B−.

Proof. Let f = an− 1

2
pn− 1

2
+ an− 3

2
pn− 3

2
+O(an− 5

2
), where pn− 1

2
, pn− 3

2
∈ B− ⊗

X . Then

0 = ∂f = an− 1

2
∂pn− 1

2
+ an− 3

2

(
x1pn− 1

2
+ ∂pn− 3

2

)
+O(an− 5

2
)

Equating coefficients of an− 1

2
and an− 3

2
gives

∂pn− 1

2
= 0, x1pn− 1

2
= ∂pn− 3

2
.

Thus pn− 1

2
is a cycle in B− ⊗X and x1pn− 1

2
is a boundary. As remarked

in Section 6.2, B ⊗ X ∼= A⊗X as differential X -modules, and indeed B− ⊗
X ∼= A+ ⊗X under the isomorphism bixk ↔ a−ix−k. So by Proposition 4.9
applied to B− ⊗X , ∂pn− 1

2
= 0 implies

pn− 1

2
= b− 1

2
q + ∂r

where q ∈ X is a negatively clean polynomial and r ∈ B− ⊗X .
We claim that q is divisible by x1. To see this, split q into terms which

do and do not contain x1, i.e. q = t+ x1u where t, u are totally clean poly-
nomials (Definition 3.18). Then we have

x1pn− 1

2
= b− 1

2
x1 (t+ x1u) + x1∂r = b− 1

2
x1t+ ∂

(
b− 1

2
x2u+ x1r

)
,

expressing x1pn− 1

2
in standard form, which by Proposition 4.13 is unique.

As x1pn− 1

2
is a boundary we must have b− 1

2
x1t = 0, so t = 0. Hence q = x1u

and q is indeed divisible by x1.
From q = x1u, we now have pn− 1

2
= b− 1

2
x1u+ ∂r. This gives our original

f as

f = an− 1

2

(
b− 1

2
x1u+ ∂r

)
+O(an− 3

2
) = an− 1

2
b− 1

2
x1u+ an− 1

2
∂r +O

(
an− 3

2

)
.

Now note ∂
(
an+ 1

2
b− 1

2
u
)
= an− 1

2
b− 1

2
x1u+O(an− 3

2
) (here we used ∂b− 1

2
=

∂u = 0) and ∂
(
an− 1

2
r
)
= an− 1

2
∂r +O(an− 3

2
). Thus we have

f = ∂
(
an+ 1

2
b− 1

2
u+ an− 1

2
r
)
+O

(
an− 3

2

)
,
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giving the desired form for f , with g = an+ 1

2
b− 1

2
u+ an− 1

2
r. �

Repeated use of this result allows us to reduce any cycle f ∈ A+ ⊗X ⊗
B− to one of a-degree 1

2 , so

f = a 1

2
p′ + ∂g′,

where p′ ∈ B− ⊗X and g′ ∈ A+ ⊗X ⊗ B−. We can then simplify further,
“reducing” (actually, increasing) the b-degree of p′. Since f is a cycle, 0 =
∂f = a 1

2
∂p′, so ∂p′ = 0. But now p′ ∈ B− ⊗X is a cycle, and Proposition 4.13

puts p′ in a standard form,

p′ = b− 1

2
q + ∂g′′,

where q is a negatively clean polynomial, and g′′ ∈ B− ⊗X . We then have
f in the form

f = a 1

2
b− 1

2
q + a 1

2
∂g′′ + ∂g′ = a 1

2
b− 1

2
q + ∂g′′′,

where g′′′ = a 1

2
g′′ + g′ ∈ A+ ⊗X ⊗ B−. The following proposition further

improves f , removing factors of x1 and providing a standard form for cycles
in A+ ⊗X ⊗ B−.

Proposition 6.15. Suppose f ∈ A+ ⊗X ⊗ B− satisfies ∂f = 0. Then

f = a 1

2
b− 1

2
p+ ∂g,

where p ∈ X is a totally clean polynomial, and g ∈ A+ ⊗X ⊗ B−.

Proof. From above, we have f = a 1

2
b− 1

2
q + ∂g′′′, where q ∈ X is negatively

clean and g′′′ ∈ A+ ⊗X ⊗ B−. We may separate the terms of q which do
and do not contain x1, to write q = p+ x1u, where p, u are totally clean. We
then have

f = a 1

2
b− 1

2
p+ a 1

2
b− 1

2
x1u+ ∂g′′′ = a 1

2
b− 1

2
p+ ∂

(
a 3

2
b− 1

2
u+ g′′′

)
so, taking g = a 3

2
b− 1

2
u+ g′′′, we have the desired result. �

Thus, every cycle in A+ ⊗X ⊗ B− is homologous to the standard form
a 1

2
b− 1

2
p, with p totally clean. We can easily check that each such a 1

2
b− 1

2
p is a

cycle. Thus every homology class in H(A+ ⊗X ⊗ B−) has a representative
of the form a 1

2
b− 1

2
p, and every a 1

2
b− 1

2
p represents some homology class. We
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will show that these representatives are unique. We will do this by use of a
map to the simpler chain complex X .

Definition 6.16. The map Ψ : A+ ⊗X ⊗ B− −→ X is defined by

ai− 1

2
b−j+ 1

2
p �→ xipx−j ,

for positive integers i, j and p ∈ X , and extended by Z2-linearity.

Geometrically, Ψ corresponds to gluing annuli to each boundary of the
annulus (A, F2,2) with string diagrams closing off ai− 1

2
and b−j+ 1

2
into closed

curves xi, x−j respectively. This gives a map ĈS(A, F2,2) −→ ĈS(A, ∅).
Since there are no crossings in the glued-on annuli, Ψ is a chain map. We
can also prove the result we need on the subcomplex A+ ⊗X ⊗ B− purely
algebraically.

Lemma 6.17. The map Ψ is a chain map: Ψ∂ = ∂Ψ.

Proof. It suffices to show that the result holds on generators ai− 1

2
b−j+ 1

2
p,

where i, j are positive integers and p ∈ X . We have

Ψ∂
(
ai− 1

2
b−j+ 1

2
p
)

= Ψ
[(

∂ai− 1

2

)
b−j+ 1

2
p+ ai− 1

2

(
∂b−j+ 1

2

)
p+ ai− 1

2
b−j+ 1

2
(∂p)

]
= Ψ

[(
i−1∑
k=1

ak− 1

2
xi−k

)
b−j+ 1

2
p+ai− 1

2

(
j−1∑
k=1

b−k+ 1

2
x−j+k

)
p+ai− 1

2
b−j+ 1

2
(∂p)

]

=

(
i−1∑
k=1

xkxi−k

)
x−jp+ xi

(
j−1∑
k=1

x−kx−j+k

)
p+ xix−j (∂p)

= (∂xi)x−jp+ xi (∂x−j) p+ xix−j (∂p)

= ∂ (xix−jp) = ∂Ψ
(
ai− 1

2
b−j+ 1

2
p
)
.

�

Thus, Ψ gives a map on homology, which by abuse of notation we also
call Ψ.

Proposition 6.18. The map Ψ : H(A+ ⊗X ⊗ B−) −→ H(X ) is injective
and has image x̄1x̄−1H(X ).
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Proof. By Proposition 6.15, a nonzero homology class in H(A+ ⊗X ⊗ B−)
has a representative of the form a 1

2
b− 1

2
p, where p �= 0 is totally clean.

Under Ψ this homology class ā 1

2
b̄− 1

2
p̄maps to x̄1x̄−1p̄, which is a fermionic

polynomial, hence nonzero in H(X ). Thus Ψ is injective. Moreover any ele-
ment x̄1x̄−1p̄ ∈ x̄1x̄−1H(X ) is the image of ā 1

2
b̄− 1

2
p̄. �

In fact, Ψ is actually an X -module homomorphism and gives an H(X )-
module homomorphism on homology. Thus we obtain an an explicit descrip-
tion of the homology as an H(X )-module.

Theorem 6.19. The homology H(A+ ⊗X ⊗ B−) is isomorphic to
x̄−1x̄1H(X ) as an H(X )-module via Ψ. Every homology class has a unique
representative of the form a 1

2
b− 1

2
p, where p ∈ X is totally clean. �

Thus H(A+ ⊗X ⊗ B−) is a free H(X ) �=−1,1-module (Definition 3.19)
with basis 1 (isomorphic to H(X )−1,1 as a module over itself). As a Z2-
module, H(A+ ⊗X ⊗ B−) is free with basis ā 1

2
b̄− 1

2
q̄, over all totally clean

monomials q̄. That is,

H(A+ ⊗X ⊗ B−) = ā 1

2
b̄− 1

2
H(X ) �=−1,1

∼= H(X ) �=−1,1 ∼= x̄−1x̄1H(X )

∼= x̄1x̄−1
Z2[. . . , x−3, x−1, x1, x3, . . .](
. . . , x2−3, x2−1, x21, x23, . . .

)
Using the isomorphism A+ ⊗X ⊗ B− ∼= A− ⊗X ⊗ B+ we immediately

also have the homology of A− ⊗X ⊗ B+: it is isomorphic to x̄−1x̄1H(X ) as
an H(X )-module; every homology class has a unique representative a− 1

2
b 1

2
p,

where p ∈ X is totally clean; and as a Z2-module it is free with basis ā− 1

2
b 1

2
q̄

over all totally clean monomials q̄.
We have now computed the homology of A⊗X ⊗ B. To summarise, we

have the decomposition into subcomplexes

A⊗X ⊗ B ∼= (A+ ⊗X ⊗ B+)⊕ (A+ ⊗X ⊗ B−)
⊕ (A− ⊗X ⊗ B+)⊕ (A− ⊗X ⊗ B−) .

and we have now computed the homology of each subcomplex explicitly
(specifically, in Theorems 6.12 and 6.19). Over Z2 they have bases, respec-
tively

1) H(A+ ⊗X ⊗ B+): basis s̄iq̄, over all positive integers i and positively
clean monomials q̄;
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2) H(A+ ⊗X ⊗ B−): basis ā 1

2
b̄− 1

2
q̄, over all totally clean monomials q̄;

3) H(A− ⊗X ⊗ B+): basis ā− 1

2
b̄ 1

2
q̄, over all totally clean monomials q̄.

4) H(A− ⊗X ⊗ B−): basis s̄iq̄, over all negative integers i and negatively
clean monomials q̄.

Over H(X ), these modules are non-free, with rank ∞, 1, 1,∞ respectively.
We have now proved parts (i) and (ii) of Theorem 1.5.

6.7. Properties of full string homology

Let us now return to the sutured background (A, F2,2), and its full chain
complex

ĈS(A, F2,2) ∼= (A⊗X ⊗ B)⊕ (C ⊗ X ⊗D) .

Though we cannot give a description of this full homology, we can give some
partial results regarding this full complex.

In particular, we will define a chain complex E over Z2, motivated by
considering string diagrams on the disc with 6 alternating marked points,
glued into (A, F2,2). This chain complex is straightforward to define and its
homology is easy to compute. We will define chain maps

E ĈS(A, F2,2)

Ψ

Φ

and use properties of Φ and Ψ to understand ĤS(A, F2,2).
We will show that Φ ◦Ψ = 1, so that Ψ is injective and Φ is surjective.

However, these maps are not isomorphisms; we will show Ψ is not surjective
and Φ is not injective. Thus H(E) can be regarded as a proper Z2-submodule

(or quotient) of ĤS(A, F2,2). This is in contrast to results in sutured Floer
homology, where gluing theorems of Juhász [12] and Honda–Kazez–Matić
[10] show such a gluing would give an isomorphism.

To define E , consider a disc with 6 alternating marked points. Up to
homotopy there are precisely 6 string diagrams without contractible loops
on the disc, which we label as A+, A−, B, T0, T1, U as shown in Figure 9.
Drawing the disc as a rectangle as shown, and gluing left and right sides
together, we respectively obtain string diagrams a 1

2
b− 1

2
, a− 1

2
b 1

2
, a 1

2
b 1

2
x−1,

c0d0, c−1d1 and c0d1x−1 on (A, F2,2).
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A+ A− B

T0 T1 U

Figure 9: Diagrams motivating E .

Definition 6.20. The Z2-module E is freely generated by {A+, A−, B,
T0, T1, U}, and ∂ : E −→ E is defined on generators and extended linearly
as

∂A+ = ∂A− = ∂B = ∂T0 = ∂T1 = 0,
∂U = B + T0 + T1.

Definition 6.21. The map Ψ : E −→ ĈS(A, F2,2) is defined on generators,
extended linearly, by

A+ �→ a 1

2
b− 1

2
, A− �→ a− 1

2
b 1

2
, B �→ a 1

2
b 1

2
x−1

T0 �→ c0d0, T1 �→ c−1d1, U = c0d1x−1.

It’s clear that ∂2 = 0 on E , so E is a chain complex. Its homology is
easily computed: H(E) ∼= Z

4
2, with free basis given by the homology classes

of A+, A−, T0 and T1.

Lemma 6.22. Ψ is a chain map.

Proof. We check explicitly on generators. Since ∂A+ = ∂A− = ∂B = ∂T0 =
∂T1 = 0, for these generators it is sufficient to check that Ψ maps them
to cycles, which is clear. For the remaining generator U we have ∂ΨU =
∂(c0d1x−1) = c0d0 + c−1d1 + a 1

2
b 1

2
x−1 = Ψ(T0 + T1 +B) = Ψ∂U . �

The key to making deductions about ĤS(A, F2,2) is to have a homomor-

phism in the other direction Φ : ĈS(A, F2,2) −→ E , which we now define. We

define Φ on the Z2-basis of ĈS(A, F2,2), which consists of elements of the
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form aibjx
e and ckdlx

e, over all i, j ∈ Z+ 1
2 , all k, l ∈ Z and all monomials

xe ∈ X .

Definition 6.23. The map Φ : ĈS(Σ, F2,2) −→ E is defined on generators
and extended linearly by

Φa 1

2
b− 1

2
= A+

Φa− 1

2
b 1

2
= A−

Φaibjx−i−j = B for all i, j of the same sign

Φaibjp = 0 for any i, j and monomial p not covered by the previous

cases

Φc2nd−2n = T0 for all integers n

Φc2n−1d1−2n = T1 for all integers n

Φcidjx−i−j = U for all pairs of integers (i, j) such that i+ j is odd

Φcidjp = 0 for any i, j and monomial p not covered by the previous

cases.

It is clear from the definition that Φ and Ψ are partial inverses:

(6.3) Φ ◦Ψ = 1.

In order to prove that Φ is a chain map, we develop some lemmas. The
first lemma is about two elements cidjp and ci+ndj−np in the same diagonal.

Lemma 6.24. Suppose i, j ∈ Z such that i+ j �= 0, and p ∈ X is any mono-
mial. Then for any n ∈ Z,

Φ ((cidj + ci+ndj−n) p) = 0.

Proof. If i+ j is even or p �= x−i−j then Φcidjp = Φci+ndj−np = 0 and the
result holds. Otherwise i+ j �= 0 and p = x−i−j , in which case Φcidjp =
Φci+ndj−np = U , so Φ(cidjp+ ci+ndj−np) = 0. �

The second lemma concerns Φ applied to sn, which (Definition 6.3) is a
linear combination of the aibj along the diagonal i+ j = n.

Lemma 6.25. Let n be an integer, and p ∈ X a monomial. Then

Φ (snp) =

{
B n odd and p = x−n
0 otherwise.



494 Daniel V. Mathews

Proof. The element snp is the sum of all aibjp, over i, j with the same sign as
n and i+ j = n. If p �= x−n = x−i−j , then the image under Φ of each aibjp
is zero, giving the result.

We may now assume p = x−n = x−i−j . In this case each aibjp maps to
B under Φ. There are |n| such terms, so Φ(snp) is 0 if n is even, and B if n
is odd. �

The third lemma shows that Φ∂ = 0 for many elements.

Lemma 6.26. For any i, j and any monomial p ∈ X :

1) Φ∂ (aibjp) = 0.

2) Φ (cidj(∂p)) = 0

Proof. First consider ∂(aibjp) = (∂ai)bjp+ ai(∂bj)p+ aibj(∂p). Every term
in ∂ai or ∂bj contains a factor akxl where k, l are of the same sign; and hence
very term of (∂ai)bjp or ai(∂bj)p also contains a factor akxl where k, l are
of the same sign. On all such terms Φ = 0.

Thus it remains to show Φ(aibj(∂p)) = Φ(cidj(∂p)) = 0. Now any term
of ∂p (if there is any such term) is a product of at least two xk. Thus every
term of aibj(∂p) or cidj(∂p) has at least two xk factors, and on any such
term Φ = 0. �

Proposition 6.27. Φ is a chain map.

Proof. We check on the Z2-basis of ĈS(Σ, F2,2) that ∂Φ = Φ∂.
First, take aibjp where p is a monomial. By Lemma 6.26, we have

Φ∂ (aibjp) = 0. And Φ(aibjp) is either A+, A− or B, all of which map to 0
under ∂.

Next, take cidjp, where p is a monomial. We have Φ(cidjp) is either T0, T1

U or 0, depending on i, j and p. However ∂T0 = ∂T1 = 0. So ∂Φ(cidjp) is
nonzero precisely when Φ(cidjp) = U , in which case i+ j is odd, p = x−i−j
and ∂Φ(cidjp) = T0 + T1 +B. Thus, we must show Φ∂(cidjp) is nonzero
precisely when i+ j is odd and p = x−i−j , in which case Φ∂(cidjp) = T0 +
T1 +B.

So, consider ∂(cidjp). Let p = xe =
∏

k∈Z\{0} x
ek
k . Then

∂ (cidjp) = cidj(∂p) + si+jp+
∑

k∈Z\{0}
kek (ci+kdj + cidj+k)x

−1
k p.

Applying Φ to this expression, the first term maps to 0 by Lemma 6.26,
and the second term, by Lemma 6.25, maps to B when i+ j is odd and
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p = x−i−j , otherwise maps to 0. So it remains to show that

Φ

⎛⎝ ∑
k∈Z\{0}

kek (ci+kdj + cidj+k)x
−1
k p

⎞⎠
=

{
T0 + T1 i+ j odd and p = x−i−j
0 otherwise.

Now by Lemma 6.24, when k �= −i− j, we have Φ((ci+kdj + cidj+k)q) = 0
for any monomial q. Thus we only need consider the terms with k = −i− j.
In this case the expression above reduces (mod 2) to

(i+ j)e−i−j Φ
(
(c−jdj + cid−i)x−1−i−jp

)
.

If i+ j is even then we obtain 0 mod 2, so we may assume i+ j is odd.
By definition, Φ(cld−lq) = 0 for any integer l and any monomial q �= 1; so
we may assume p = x−i−j . Then e−i−j = 1 so the above expression becomes
Φ(c−jdj + cid−i). With i+ j odd, one of i, j is even and other is odd, so
Φ(c−jdj + cid−i) = T0 + T1 as desired. �

As a chain map, Φ descends to homology and we obtain a map
ĤS(A, F2,2) −→ H(E), also denoted Φ. Thus Φ and Ψ are partial inverses
on homology, Φ ◦Ψ = 1. In particular, Ψ is injective and Φ is surjective on
homology.

We can now use injectivity of Ψ to find certain distinct elements in
ĤS(A, F2,2)

Proposition 6.28. The elements

āib̄j x̄−i−j , c̄nd̄−n,

for any i, j ∈ Z+ 1
2 of the same sign, and any n ∈ Z, are nonzero in

ĤS(A, F2,2). The elements

c̄0d̄0, c̄1d̄−1, c̄0d̄0 + c̄1d̄−1 = ā 1

2
b̄ 1

2
x̄−1, ā 1

2
b̄− 1

2
, ā− 1

2
b̄ 1

2
,

are all distinct nonzero elements of ĤS(A, F2,2).

Proof. We first verify that the corresponding elements of ĈS(A, F2,2) are
cycles, hence represent homology classes; and ∂(c1d0x−1) = c0d0 + c1d−1 +
a 1

2
b 1

2
x−1 explains the claimed equality.
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Under Φ, aibjx−i−j �→ B for any i, j of the same sign, and cnd−n �→ T0

or T1 depending on the parity of n. As the homology classes of B, T0, T1 are
all nonzero in H(E), the homology classes of aibjx−i−j and cnd−n must be

nonzero in ĤS(A, F2,2).
Under the injective map Ψ, the elements T0, T1, T0 + T1, A+, A−, which

represent distinct nonzero homology classes of E , map to the second list of
elements of ĤS(A, F2,2), which must therefore be nonzero and distinct. �

We will now show that Φ and Ψ are not isomorphisms.

Lemma 6.29. For any totally clean monomial q other than 1, ā 1

2
b̄− 1

2
q̄ and

ā− 1

2
b̄ 1

2
q̄ are both nonzero in ĤS(A, F2,2) but map to zero under Φ.

Hence Φ is not injective on homology, and so Ψ is not surjective on
homology.

Proof. Elements of the form a 1

2
b− 1

2
q and a− 1

2
b 1

2
q are clearly cycles in

ĈS(A, F2,2), and by definition Φ sends these elements to zero; we only need
show that they are not boundaries.

The differential in ĈS(A, F2,2) of a term cmdnx
e, a generator of C ⊗ X ⊗

D, only involves terms of the form cm′dn′xe
′
and aibjx

e with i, j of the same
sign. So there is a decomposition of chain complexes

ĈS(A, F2,2) ∼= [A+ ⊗X ⊗ B−]⊕ [A− ⊗X ⊗ B+]

⊕ [X ⊗ ((A+ ⊗ B+)⊕ (A− ⊗ B−)⊕ (C ⊗ D))] .

Thus H(A+⊗X⊗B−) and H(A−⊗X⊗B+) are summands of ĤS(A, F2,2).
Their Z2-basis elements are ā 1

2
b̄− 1

2
q̄ and ā− 1

2
b̄ 1

2
q̄, over totally clean mono-

mials q̄, which are hence nonzero in ĤS(A, F2,2). �

In fact, we have proved more. The argument above shows that the el-
ements a 1

2
b− 1

2
q and a− 1

2
b 1

2
q are cycles in A⊗X ⊗ B ⊂ ĈS(A, F2,2) which

are not boundaries in ĈS(A, F2,2), and because of the decomposition of

ĈS(A, F2,2), they are not homologous to elements of C ⊗ X ⊗D. This proves
Theorem 1.5(iii).

We will also find a cycle in C ⊗ X ⊗D which is not a boundary in
ĈS(A, F2,2), and which is not homologous to an element of A⊗X ⊗ B.
Such an element is given in the next proposition.
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Proposition 6.30. For any m ∈ Z, the element cmd−m ∈ C ⊗ X ⊗D ⊂
ĈS(A, F2,2) is a cycle, but not a boundary, and is not homologous to any
element of A⊗X ⊗ B.

To prove this, we introduce chain maps σn : ĈS(A, F2,2) −→ X called
diagonal sums, because they involve the “diagonals” cidj over i, j such that
i+ j is constant. In particular, σn takes the sum of the coefficients in X
along the diagonal i+ j = n of the “(ci, dj)-lattice”.

Definition 6.31. Given n ∈ Z and f ∈ ĈS(A, F2,2) with C ⊗ X ⊗D com-
ponent

∑
(i,j)∈Z×Z

cidjpi,j , where each pi,j ∈ X , the n’th diagonal sum map

σn : ĈS(A, F2,2) −→ X is defined by

σnf =
∑

i+j=n

pi,j ∈ X .

The diagonal sum sequence of f is the sequence (σnf)n∈Z.

Clearly σn is a Z2-module homomorphism; we now show it is a chain
map.

Lemma 6.32. For each n, σn∂ = ∂σn.

Proof. Each term cidjpi,j of f contributes pi,j to the diagonal sum σi+j . Now
∂f has C ⊗ X ⊗D component given by cidj∂pi,j , plus some terms (possibly
none) of the form (ci+kdj + cidj+k)x

−1
k pi,j . The term cidj∂pi,j contributes

∂pi,j to the (i+ j)’th diagonal sum of ∂f . Any terms of the form (ci+kdj +
cidj+k)x

−1
k pi,j give the same coefficient x−1k pi,j occurring in two locations

(i+ k, j), (i, j + k) on the same diagonal. Hence they cancel and contribute
zero to the diagonal sums of ∂f . Terms of the form aibjp contribute neither
to σnf nor σn∂f . So the diagonal sum sequence of ∂f is (∂σn)n∈Z as desired.

�
It follows that, for any f ∈ ĈS(A, F2,2), ∂f has diagonal sum sequence

(∂σnf)n∈Z. Hence if f is a cycle (resp. boundary) in ĈS(A, F2,2), then ev-
ery σnf is a cycle (resp. boundary) in X . However, diagonal sum sequences
cannot distinguish all homology classes apart: for instance, c0d0 + c−1d1 is
a cycle with zero diagonal sequence, but has nonzero homology by Proposi-
tion 6.28.

Proof of Proposition 6.30. Direct computation shows that cmd−m is a cycle.
For any m, cmd−m has diagonal sum σ0 = 1, which is not a boundary in X ,
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hence cmd−m is not a boundary in ĈS(A, F2,2). If cmd−m were homologous to
some element f ∈ A⊗ X ⊗ B then cmd−m − f would be a boundary, hence
σ0(cmd−m − f) = 1 would be a boundary in X , but it is not. The result
follows. �

This proves Theorem 1.5(iv).

In fact the above argument shows that any cycle f ∈ ĈS(A, F2,2) with
a diagonal sum σnf being a cycle, but not a boundary, in X , has a nonzero
homology class in ĤS(A, F2,2). For example,

c0d0x3 + (c2d0 + c1d1 + c0d2)x1 + a 7

2
b 1

2
+ a 3

2
b 5

2

is a cycle with nonzero homology class in ĤS(A, F2,2). It also maps to zero
under Φ, giving an alternative proof that Φ is not injective.

7. Adding marked points

We now show how to extend our results to weakly marked annuli with more
fixed points. Having proved Theorem 1.1 in Section 5, we restrict our atten-
tion to alternating weakly marked annuli.

We will show how, in favourable circumstances, we can add marked
points to a boundary component, and keep track of the effect on ĤS. In
fact our main result in this regard (Theorem 7.1) applies not just to annuli,
but to general alternating weakly marked surfaces.

We will show that once there are two marked points on a boundary
component C of an alternating weakly marked surface (Σ, F ), we can add
two more marked points to C (keeping the points alternating), and the effect
on string homology is to tensor (over Z2) with Z

2
2. In fact the results to show

this essentially appeared in our previous paper [19], although in that paper
the result was stated only for discs.

To this end, we recall the constructions and results of Sections 7–8 of
[19], but in a more general context. In Section 7.1 we will recall the notions
of creation and annihilation operators defined there. Then in Section 7.2 we
will use them to prove the main proposition in this section, and in Section
7.3 deduce results for annuli.
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7.1. Creation and annihilation operators

Let (Σ, F ) be an alternating weakly marked surface. Let C be a boundary
component of Σ which contains at least one (hence at least two) marked
points.

Suppose we add two new adjacent marked points fin, fout on C, labelled
“in” and “out” respectively, to obtain a new alternating weakly marked sur-
face (Σ, F ′). A creation operator ĈS(Σ, F ) −→ ĈS(Σ, F ′) takes a (homo-
topy class of) string diagram and inserts an extra boundary-parallel open
string from fin to fout, not intersecting itself or any other strings. Since
there are pre-existing points of F on C, the homotopy class of this newly
“created” boundary-parallel string is unique.

(Note that if F has no marked points on C, then there are two choices
for the new non-intersecting boundary-parallel open string from fin to fout,
proceeding around C in either direction. The requirement of marked points
on C is essential for a well-defined creation operator.)

Similarly, suppose (Σ, F ) contains at least four points on the bound-
ary component C, and let (Σ, F ′) be an alternating weakly marked surface
obtained from F by removing two adjacent marked points fin ∈ Fin ∩ C,
fout ∈ Fout ∩ C. An annihilation operator ĈS(Σ, F ) −→ ĈS(Σ, F ′) takes a
(homotopy class of) string diagram and joins the strings previously ending
at fin, fout, without introducing any new intersections of strings. The other
points of F on C constrain the homotopy class of the new string diagram
to be unique. The “annihilation” closes off the strings at fin, fout by a small
arc.

(Note again that if |F ∩ C| = 2, then there are two choices for the new
arc, proceeding either direction around C. Again, marked points on C are
essential for a well-defined annihilation operator.)

Suppose one of the “in” marked points on F ∩ C is chosen as a basepoint
f0 ∈ Fin ∩ C. Then we consider two specific creation operators on (Σ, F ),
creating new strings in two sites adjacent to the basepoint, which we call
a∗−, a∗+; and we consider two specific annihilation operators, annihilating
strings at the two possible sites including the basepoint. These operators
are defined explicitly in Figure 10. After creating or annihilating we choose
a new basepoint in the resulting diagram, adjacent to the original location.
Basepoints are shown with a dot. (We use the orientation on Σ to orient C
and obtain well-defined maps.)

Thus, given an alternating weakly marked surface (Σ, F ), once we chose
a boundary component C with at least two marked points, and a basepoint
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a∗+

a+

a∗−

a−

Figure 10: Creation/annihilation operators. We only show the boundary
component C of (Σ, F ); Σ in general has more topology than shown.

f0 ∈ Fin ∩ C, we have two well-defined creation operators

a∗± : ĈS(Σ, F ) −→ ĈS(Σ, F ′),

where F ′ is obtained from F by adding two adjacent marked points on C,
and (Σ, F ′) has a well-defined basepoint in F ′in ∩ C.

Similarly, given an alternating weakly marked (Σ, F ), once we choose a
boundary component C with at least four marked points, and a basepoint
f0 ∈ Fin ∩ C, we have two well-defined annihilation operators

a± : ĈS(Σ, F ) −→ ĈS(Σ, F ′),

where F ′ is obtained from F by deleting two marked points on C, and (Σ, F ′)
has a well-defined basepoint in F ′in ∩ C.

Thus, starting from an alternating weakly marked (Σ, F ) and a choice
of basepoint as above, we can compose a∗±, a± operators, applied to the
resulting chain complexes, as long as our basepoint continues to share its
boundary component with a sufficient number of marked points.

The four maps a∗±, a± satisfy various relations, including the following.

a−a∗− = a+a
∗
+ = 1, a−a∗+ = a+a

∗
− = 0
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Identity maps arise as a “±-creation” followed by “±-annihilation” result
in a string diagram homotopic to the original; and zeroes arise as a “±-
creation” followed by “∓-annihilation” produce a closed contractible string.

As neither creation nor annihilation operators create any new crossings
in a string diagram, they commute with the differential and hence give maps
on homology, also denoted a∗±, a±. The above identities also hold on homol-
ogy. In particular, creation operators are injective on both the chain level
and on homology.

7.2. Effect of creation on string homology

We now use the creation and annihilation operators described above to give
an explicit result about string homology. When we add two marked points to
F to obtain F ′, with creation operators as described above, it turns out we
can describe ĤS(Σ, F ′) rather simply and explicitly in terms of ĤS(Σ, F ).

Theorem 7.1. Let (Σ, F ) be an alternating weakly marked surface, and C
a boundary component of Σ with F ∩ C �= ∅. Let f0 ∈ Fin ∩ C be a basepoint,
and (Σ, F ′) an alternating weakly marked surface obtained from (Σ, F ) by
adding two marked points on C. Let a∗± be the corresponding creation oper-
ators. Then (as a Z2-module)

ĤS(Σ, F ′) = a∗+ĤS(Σ, F )⊕ a∗−ĤS(Σ, F )

∼= ĤS(Σ, F )⊕ ĤS(Σ, F )

∼= (Z2 ⊕ Z2)⊗Z2
ĤS(Σ, F ).

To prove this theorem, we need the following “crossed wires lemma”.
On discs, it is stated as Lemma 8.4 of [19]; the same methods establish the
result in our more general setting.

Lemma 7.2. Let Σ, F, F ′ and a∗± be as above. Suppose x ∈ ĈS(Σ, F ′) sat-
isfies ∂x = 0. Then there exist y, z ∈ ĈS(Σ, F ) and u ∈ ĈS(Σ, F ′) such that

∂y = ∂z = 0 and x = a∗−y + a∗+z + ∂u. �

Proof of Theorem 7.1. The ideas of the proof are contained in [19]. Take x̄ ∈
ĤS(Σ, F ′), represented by x ∈ ĈS(Σ, F ′). Then ∂x = 0, so by the crossed

wires lemma we have y, z ∈ ĈS(Σ, F ) and u ∈ ĈS(Σ, F ′) such that x =
a∗−y + a∗+z + ∂u. In homology then we have x̄ = a∗−ȳ + a∗+z̄. Thus

a∗−ĤS(Σ, F ) and a∗+ĤS(Σ, F ) span ĤS(Σ, F ′).
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Now suppose we have an element t in the intersection a∗+ĤS(Σ, F ) ∩
a∗−ĤS(Σ, F ). So there exist p, q ∈ ĤS(Σ, F ) such that

t = a∗−p = a∗+q.

Now applying a− and a+ respectively, we obtain

a−t = p = 0 and a+t = 0 = q.

Here we have used the relations a−a∗− = a+a
∗
+ = 1 and a−a∗+ = a+a

∗− = 0.

Since p = q = 0 we have t = 0, so a∗+ĤS(Σ, F ) ∩ a∗−ĤS(Σ, F ) = 0 and we
have the first direct sum claimed. As creation operators are injective, we have
the first claimed isomorphism, and the final isomorphism then follows. �

We have now proved Theorem 1.6.
It follows from this proposition that if {vi : i ∈ I} is a basis for ĤS(Σ, F ),

then all a∗−vi, a∗+vi are distinct and {a∗−vi, a∗+vi : i ∈ I} forms a basis for

ĤS(Σ, F ′).

7.3. Results for annuli with more marked points

For present purposes, we only need Theorem 7.1 in so far as it relates to an-
nuli. We can use it to immediately deduce the string homology of (A, F0,2n+2)
from that of (A, F0,2); and to deduce the string homology of (A, F2m+2,2n+2)
from that of (A, F2,2).

We will need to apply creation operators a∗± repeatedly. Following nota-
tion of [13], for any word w on the symbols {−,+}, we define a∗w to be the cor-
responding composition of a∗− and a∗+. Thus for instance a∗−++ = a∗−a∗+a∗+.
We denote the set of such words of length n by {−,+}n.

First consider (A, F0,2n+2), which by Proposition 1.3 is anH(X )-module.
When n = 0 we have (Theorem 1.4), as an H(X )-module,

ĤS(A, F0,2) = H(A⊗X ) = x̄1H(X )⊕ x̄−1H(X )

where

H(X ) =
Z2[. . . , x̄−3, x̄−1, x̄1, x̄3, . . .]
. . . , x̄2−3, x̄2−1, x̄21, x̄23, . . .

.

We note that, on an annulus (A, F0,2n+2), a creation operator is compatible
with the differential X -module structure: each creation operator inserts an
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arc and commutes with inserting closed curves, without introducing any new
intersections. Thus the operators

a∗± : ĈS(A, F0,2n+2) −→ ĈS(A, F0,2n+4)

are in fact differential X -module homomorphisms.
Repeatedly applying Proposition 7.1 gives the following.

Proposition 7.3. Let n ≥ 0. Then as H(X )-module,

ĤS(A, F0,2n+2) =
⊕

w∈{−,+}n
a∗wĤS(A, F0,2)

=
⊕

w∈{−,+}n
a∗w (x̄1H(X )⊕ x̄−1H(X ))

∼= (x̄1H(X )⊕ x̄−1H(X ))⊕2
n

∼= (Z2 ⊕ Z2)
⊗n ⊗Z2

ĤS(A, F0,2).

Proof. As a Z2-module, the first equality follows immediately from repeat-
edly applying Proposition 7.1. The second equality then follows from The-
orem 1.4. As each a∗± is injective, so too is each a∗w, so each a∗w(x̄1H(X )⊕
x̄−1H(X )) ∼= x̄1H(X )⊕ x̄−1H(X ), giving direct sum in the third isomor-
phism. As (Z2 ⊕ Z2)

⊗n is a free Z2-module of rank 2n, we then have the
final isomorphism.

The operators a∗± are compatible with the X -module structure on each

ĈS(A, F0,2n), so we have isomorphisms of of H(X )-modules. �
Next consider alternating marked annuli of the form (A, F2m+2,2n+2).

Although the computation of ĤS(A, F2,2) in the foregoing presents various
difficulties and we have not completed it, we know explicitly how to go from
(A, F2,2) to a higher number of marked points. Recall that ĈS(A, F2,2) is not

an X -module, so ĤS(A, F2,2) is only a Z2-module, not an H(X )-module.
To increase the number of marked points on both boundary components

of A, we consider creation operators on each boundary. Choosing a basepoint
on each boundary component we obtain creation operators

a0∗± : ĈS(A, F2m+2,2n+2) −→ ĈS(A, F2m+4,2n+4),

a1∗± : ĈS(A, F2m+2,2n+2) −→ ĈS(A, F2m+2,2n+4).

Applying Proposition 7.1 repeatedly to both boundary components gives
the following.
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Proposition 7.4. Let m,n ≥ 0. Then as a Z2-module,

ĤS(A, F2m+2,2n+2) =
⊕

w0∈{−,+}m

⊕
w1∈{−,+}n

a0∗w0
a1∗w1

ĤS(A, F2,2)

∼=
(
ĤS(A, F2,2)

)⊕2m+n

∼= (Z2 ⊕ Z2)
⊗(m+n) ⊗Z2

ĤS(A, F2,2)

Proof. The first equality follows immediately from applying Proposition 7.1
m times to one boundary component and n times to the other. The next
isomorphism follows since creation operators are injective and the set of
pairs of creation operators (w0, w1) with w0 ∈ {−,+}m and w1 ∈ {−,+}n
has cardinality 2m+n. The final isomorphism follows since (Z2 ⊕ Z2)

⊗(m+n)

is free over Z2 of rank 2m+n. �
Having proved Propositions 7.3 and 7.4, we have proved Theorem 1.7.
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