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Finite group actions on Lagrangian

Floer theory

Cheol-Hyun Cho and Hansol Hong

We construct finite group actions on Lagrangian Floer theory when
symplectic manifolds have finite group actions and Lagrangian sub-
manifolds have induced group actions. We first define finite group
actions on Novikov-Morse theory. We introduce the notion of a
spin profile as an obstruction class of extending the group ac-
tion on Lagrangian submanifold to the one on its spin structure,
which is a group cohomology class in H2(G;Z/2). For a class of La-
grangian submanifolds which have the same spin profiles, we define
a finite group action on their Fukaya category. In consequence, we
obtain the s-equivariant Fukaya category as well as the s-orbifolded
Fukaya category for each group cohomology class s. We also de-
velop a version with G-equivariant bundles on Lagrangian subman-
ifolds, and explain how character group of G acts on the theory.
As an application, we define an orbifolded Fukaya-Seidel category
of a G-invariant Lefschetz fibration, and also discuss homological
mirror symmetry conjectures with group actions.
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1. Introduction

A group action is one of the most important tool in the study of mathemat-
ical objects. Finite group actions in symplectic geometry appear in various
contexts, such as mirror symmetry, singularity theory, etc. In this paper, we
will construct finite group actions on Lagrangian Floer theory. Lagrangian
Floer homology (developed by Floer[20], Oh[33], Fukaya-Oh-Ohta-Ono [25])
has been a powerful tool, which revolutionized the study of symplectic topol-
ogy. Furthermore, its categorical versions, Fukaya category (Fukaya [21]) and
Fukaya-Seidel category (Seidel [37], [38]), are the main players of homological
mirror symmetry as envisioned by Kontsevich [29].

When a symplectic manifold as well as a Lagrangian submanifold admits
a finite group action, it is indeed quite natural to expect that such an action
exists on Lagrangian Floer theory. But there are several technical difficulties
to define such an action as we will explain below. In the case of Z/2-actions
on exact symplectic manifolds, Seidel has defined Z/2-equivariant Fukaya
categories [37]. Another known case is when a group acts freely on the set of
connected components of a given exact Lagrangian submanifold in an exact
symplectic manifold. In such a case, it is relatively easy to define a group
action, since one can use pull-back data (such as spin structure, perturbation
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data, etc) to make Floer theory compatible with the given group action. Such
construction was proposed by Seidel [38] in his study of mirror symmetry of
quartic surfaces in an exact setting.

Let us now describe our main results. We will first explain the exact
case, and later the case of general closed symplectic manifolds. For an ex-
act symplectic manifold (M,ω), consider a G-invariant exact Lagrangian
submanifold L, which means that a G-action preserves the Lagrangian sub-
manifold. Suppose that L is spin and that its spin structure is G-invariant.
We show that the G-action on L gives rise to a group cohomology class in
H2(G,Z/2), “the spin profile of L”, which is the obstruction to extending
the group action to the spin bundle of L. The main observation is that if
two Lagrangian submanifolds have the same spin profile, then it is possible
to define a group action on the Lagrangian Floer cohomology of the pair in
the exact case.

Thus for each cohomology class s ∈ H2(G,Z/2), an s-equivariant brane
is defined as a G-invariant exact Lagrangian submanifold whose associated
spin profile is s, with a G-invariant grading.

Theorem 1.1 (see Theorem 6.3). Let (M,ω) be an exact symplectic
manifold. For s ∈ H2(G,Z/2), an s-equivariant Fukaya category can be de-
fined as follows. An object of s-equivariant Fukaya category is given by an
s-equivariant brane. Morphism between two s-equivariant branes L�

0, L
�
1 are

given by CF ∗(L�
0, L

�
1), which has a G-action. There are A∞-operations

mk : CF ∗(L�
0, L

�
1)× · · · × CF ∗(L�

k−1, L
�
k) → CF ∗(L�

0, L
�
k), k = 1, 2, . . .

which are compatible with the G-action. i.e. for k = 1, 2, . . .

(1.1) mk(gx1, . . . , gxk) = gmk(x1, . . . , xk).

To be more precise, we should equip each s-equivariant brane with a
G-equivariant flat complex vector bundle as in Section 12. The s-orbifolded
Fukaya category is defined to have the same set of objects as the s-equivariant
Fukaya category, but we take G-invariant parts of morphisms of the s-
equivariant category. Then, the s-orbifolded Fukaya category naturally in-
herits an A∞-structure from the s-equivariant category from (1.1).

As an application, we define both equivariant and orbifolded Fukaya-
Seidel categories of a G-invariant Lefschetz fibration. Namely, for each s ∈
H2(G,Z/2), we define s-equivariant Fukaya-Seidel category of π : M → C

(See Definitions 13.2, 13.3). By taking G-invariant parts on morphisms, and
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the induced A∞-structure, we obtain the s-orbifolded Fukaya-Seidel category
of (π,G).

Let us turn our discussion to the case of a general closed symplectic
manifold (which is not exact) with an effective action of a finite group G.
Consider a Lagrangian submanifold Li (i = 0, 1), which has an induced G-
action. Suppose that Li has a G-invariant spin structure, with a spin pro-
file si ∈ H2(G;Z/2) for i = 0, 1. Fix a base path l0 : [0, 1] → M such that
l0(i) ∈ Li for i = 0, 1. Let Gα be the energy zero subgroup Gα of l0 as in
Definition 7.2.

Theorem 1.2 (see Definition 8.8, Propositions 8.10, 11.5). If s0 =
s1, then the Lagrangian Floer filtered cochain complex of L0, L1 admits a
Gα-action. More generally, filtered A∞-bimodule of the pair (L0, L1) admits
a natural Gα-action.

Proposition 1.3 (see Section 11). Suppose that L0 is connected and
let L1 = φ1

H(L0). Then Gα = G, and we have a G-equivariant filtered A∞-
bimodule quasi-isomorphism

Ω(L)⊗̂Λnov → CF ∗R,l0(L,L1)⊗Λ(L,L1;l0) Λnov.

The method developed in this paper, together with the work of Fukaya
in [23] should define equivariant Fukaya categories in the general case.

More detailed introduction and description are now in order.

1.1. Spin profiles

In this paper, we introduce the notion of a spin profile of a Lagrangian sub-
manifold with a G-action. Such a notion is deeply related to the orientation
of the moduli space of J-holomorphic discs and the G-action on it. Recall
that if a Lagrangian submanifold is spin, a choice of spin structure deter-
mines canonical orientations of the moduli spaces of J-holomorphic discs
(see [25]). Hence, we need to analyze the relation between the group action
on L and that of its spin structure.

We assume that the related spin structure is G-invariant, which means
that for a principal spin bundle P → L, the pull-back bundle g∗P via the
action of g ∈ G is isomorphic to the original bundle P . In fact, the precise
isomorphism between g∗P and P (as in G-equivariant sheaves), which can
be considered as a lift of the g-action to the one on spin bundle, will be
necessary to determine the sign of the g-action on the Floer complex. In
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general, these isomorphisms are not necessarily compatible with each other,
and the G-action on L does not lift to the one on the spin bundle. Hence,
one can not expect that any orientation preserving action of a symplectic
manifold gives rise to an action on its Fukaya category.

A spin profile is defined as the group cohomology class in H2(G,Z/2)
which measures the obstruction to extending the action of G on a manifold
to the one on its spin structure. We show that if spin profiles of two La-
grangian submanifolds coincide, then we are able to define a group action
on Lagrangian Floer theory of a pair (we need to develop G-Novikov theory
additionally for non-exact symplectic manifolds). The main point is that
the exact signs from failures of group actions on spin bundles cancel out for
Lagrangians with the same spin profiles. This means that the equivariant
Fukaya category is defined for each choice of spin profiles in H2(G,Z/2).
Construction of the Z/2-equivariant Fukaya category by Seidel [37], in fact,
corresponds to the non-trivial class in H2(Z/2,Z/2). We explain several
properties of spin profiles, and also the change of spin profiles under the
change of spin structures.

1.2. Equivariant Fukaya categories for exact cases and
G-Lefschetz fibrations

Let (M,ω) be an exact symplectic manifold with an effective action of a
finite group G. We fix a class s ∈ H2(G,Z/2), and consider s-equivariant
branes as explained above. It may happen that some of g-action send L to
g(L) which is disjoint from L, in which case we can take �g∈G,g(L) �=Lg(L) to
be the new G-invariant Lagrangian submanifold. We do not assume that L
is connected in the exact case.

In general, the equivariant Fukaya category of M should also have G-
equivariant Lagrangian immersions to M . In the sequel of this paper [14],
we will investigate extensively such G-equivariant Lagrangian immersions,
and explore the relationship of G×G-equivariant immersions into M ×M
with Chen-Ruan orbifold cohomology of [M/G]. In fact, one should consider
a more general notion of orbifold embeddings [3], but they were shown to
be equivalent to G-equivariant immersions for global quotients in [16], and
hence it is enough to study the latter.

There is another technical issue, which are equivariant transversalities
of the related moduli spaces of holomorphic discs. Namely, we would like to
choose perturbation data equivariantly, so that we have strict G-equivariant
A∞-operations. In the exact case, we follow Seidel [38] to achieve it with aid
of an algebraic machinery. In the general case later, Kuranishi structure (as
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in [24], [25], [23]) will be used, which is in fact a device to achieve this kind
of equivariant transversality.

We construct a version of Donaldson-Fukaya categories (C in Defini-
tion 6.11), and produce a G-action on it from the weak G-action on the re-
lated Floer complex (see [13] for the weak G-actions on Morse complexes).
Then, the homological perturbation type lemma of Seidel (Lemma 4.3 of
[38]) enables us to define the s-equivariant Fukaya category for an exact
symplectic manifold. By taking G-invariant parts on morphism spaces, the
s-orbifolded Fukaya category of [M/G] is obtained. This should be regarded
as a first approximation of orbifold theory, as we should also add bulk de-
formation by twisted sectors as in [18].

As an application, we define the directed equivariant (and the orbifolded)
Fukaya-Seidel category of aG-invariant Lefschetz fibration π : M → C, where
M is equipped with a G-action, and π is G-invariant. In mirror symme-
try, orbifolds and orbifolded Landau-Ginzburg models appear naturally, and
have been actively investigated. Our work provides the necessary framework
to state homological mirror symmetry in these cases by defining appropriate
orbifold Fukaya categories. We only deal with G-invariant Lefschetz fibra-
tions in this paper and leave the case of an orbifolded LG-model which
is not Lefschetz fibration and of a G-equivariant LG-model to the future
investigation.

1.3. G-Novikov theory

For a closed symplectic manifold which is not exact, the Lagrangian Floer
cohomology is the Morse-Novikov homology on path spaces between two
Lagrangian submanifolds. Hence, we need to develop G-Novikov theory.

We first recall G-Morse theory from our previous work [13]. Given a
Morse-Smale function f : M → R on a compact manifold M , one can define
the Morse-Smale-Witten complex (Morse complex for short) by counting
gradient flow lines between critical points of f . If f is G-invariant, we studied
how to define a finite group action on the Morse complex, whose homology of
the G-invariant part is isomorphic to the singular homology of the quotient
orbifold. One of the main observation of [13] is that one should consider not
only the action on critical points, but also on the orientation spaces (defined
from their unstable manifolds).

Now, Morse-Novikov theory (Novikov theory for short) generalizes Morse
theory to the case of a general closed Morse one form η, instead of df .
Novikov theory is a kind of Morse theory associated to a Morse function
on a certain Novikov covering (so that the pull-back of the given closed one
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form becomes exact), together with the action of the group ring of its deck
transformation group.

In this paper, we define finite group actions on Novikov theory. The main
difficulty is that the base point chosen for Novikov theory is not preserved
by the group action. We resolve this issue by introducing the subgroup Gη

of energy zero elements of G, where g ∈ G is said to be energy zero if there
is an energy zero path (with respect to the action functional) from the base
point to its g-action image. And we will construct an action of energy zero
subgroup on the Novikov complex using this energy zero path. Together
with an appropriate orbifold Novikov ring coefficient, taking Gη-invariant
part defines G-Novikov theory

1.4. Group actions in general Lagrangian Floer theory

By using spin profiles and G-Novikov theory, we can define group actions
on Lagrangian Floer cohomology groups for non-exact cases as follows. Let
(M,ω) be a closed symplectic manifold with an effective G-action. Fix s ∈
H2(G,Z/2) and consider a Lagrangian submanifold Li (for i = 0, 1) whose
spin profile is s. For a base path l0 between L0 and L1, take an energy
zero surface wg connecting l0 and g(l0) for g in the energy zero subgroup Gα

(Definition 7.2) as an analogue ofG-Novikov theory. We assume thatG = Gα

for simplicity. For each generator of the Floer complex of a pair (L0, L1), one
can consider its orientation space, which is the determinant bundle of the
associated Cauchy-Riemann operator. This construction already appeared
in [25, 3.7.5], and Seidel also used orientation spaces in exact cases. Then, the
actual group action is defined to be an action on orientation spaces, where
the action image is obtained by gluing the determinant bundles of wg to the
naive g-action image of a generator of the Floer complex (see Definition 8.8).
Here, the Lagrangian bundle data along the boundary ∂wg will be given a
specific spin structure. A cocycle condition of the group action may not be
satisfied, but its obstruction can be precisely measured from Proposition 7.4
to be

(−1)spfL0
(g,h)+spfL1

(g,h).

This guarantees that if the spin profiles of L0 and L1 coincide, cocycle con-
ditions of the group action are satisfied.

In this way, we get a well-defined action of G on the Floer cochain com-
plex CFR,l0(L0, L1) between L0 and L1. With equivariant Kuranishi per-
turbations, we show that the Floer differential as well as the A∞-bimodule
structure on CFR,l0(L0, L1) is compatible with the G-action. Therefore, the
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bimodule structure descends to theG-invariant part of CFR,l0(L0, L1), which
should be interpreted as a morphism space between [L0/G] and [L1/G] in
the Fukaya category of the orbifold [M/G].

Invariance of the Floer cohomologies under G-invariant Hamiltonians
can be proven as well. That is, if L1 is the Hamiltonian deformation of L0

by a G-invariant Hamiltonian function on M , then the assumption Gα = G
always holds and moreover,HF (L0, L0) andHF (L0, L1) areG-equivariantly
isomorphic as HF (L0, L0)-modules.

1.5. Mirror symmetry

For the purpose of mirror symmetry, we need to consider complex flat line
bundles on Lagrangian submanifolds. With G-action, G-equivariant struc-
tures of such bundles should be also taken into account. The constructions
in this paper can be adapted to the cases with G-equivariant line bundles by
following the standard constructions. Such a G-equivariant bundle may be
considered as an orbi-bundle on the orbi-Lagrangian [L/G]. Hence an object
of an orbifolded category FukG(X) is given by a G-invariant Lagrangian (or
a G-equivariant immersion) equipped with a G-equivariant line bundle on
it. Here morphisms of FuksG(X) are obtained by taking the G-invariant part
of morphisms in the G-equivariant category.

Recall that B-branes of mirror symmetry are given by derived categories
of coherent sheaves. When there is a group action, it is natural to work with
G-equivariant sheaves.

Remark 1.4. The standard naming convention for equivariant sheaves are
unfortunately different from ours. Namely, what we call an orbifolded cat-
egory (taking G-invariant parts on morphisms of an equivariant category),
is called an equivariant category for the case of sheaves.

We will see later that if X is given by a Lagrangian torus fiber bundle
equipped with an action of G compatible with bundle structure, then its
dual torus bundle Y naturally admits a G-action. In general, if Y is given
as a SYZ (Strominger-Yau-Zaslow) mirror of X, we conjecture that the
(derived) orbifold category DFukG(X) is equivalent the derived category of
G-equivariant sheaves on Y . When the mirror of X is a Landau-Ginzburg
model W : Y → C, it turns out that W is invariant under the G-action on Y .
We conjecture that homological mirror symmetry is the equivalence between
the G-equivariant matrix factorization category of W and orbifolded Fukaya
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category FukG(X). (see Section 14 for the precise statements including spin
profile data)

Character group of G acts on both sides of mirror by twisting the
equivariant structures on bundles. Namely, given an orbifold bundle (or G-
equivariant bundle) for FukG(X), one can change G-equivariant structure
by multiplying a character. We expect that these actions are compatible with
homological mirror symmetry. We will look into toric cases, and present more
conjectures and examples.

Let us also mention that in a forthcoming work with Siu-Cheong Lau, we
will analyze mirror symmetry phenomena for G-equivariant immersions into
finite group quotients, and construct a localized homological mirror functor
for immersed Lagrangian submanifolds.

Notations and conventions

We will assume throughout the paper that G is a finite group. And G-action
are always assumed to be effective, proper, and orientation preserving, unless
stated otherwise. A submanifold L ⊂ M preserved by the G-action of M is
called G-invariant. Here, the action of g ∈ G sends L to L, but it may not
fix L pointwisely. In fact, if L is a Lagrangian submanifold of M and g fixes
every point of L, then it is easy to see that g fixes a neighborhood of L in
M . Since the action on M is assumed to be effective, such g should be the
identity element of G.

Let R be a field containing Θ, and we will use R = R or C for Floer the-
ory. We use the following R-normalization convention due to Seidel [37, Sec-
tion (12e)]. This is because, roughly speaking, we are only interested in the
signs, rather than magnitudes in orientations spaces. For any 1-dimensional
real vector space Θ, we denote by |Θ|R the 1-dimensional R-vector space
generated by the two orientations of Θ, with the relation that the sum of
two generators is zero. An R-linear isomorphism φ : Θ1 → Θ2 induces a R-
linear isomorphism |Φ|R : |Θ1|R → |Θ2|R, called the R-normalization of Φ.
Normalization will be also used in families, turning real line bundles into
local coefficient systems with fiber R. It can be thought of as passing to the
associated bundle via the homomorphism given by

R× → {±1} ⊂ R×, t → t/|t|.

To simplify notations, we denote also by g ∈ G the diffeomorphism of M
induced by the action of g (sometimes written as Ag). For φ : M → N , we
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denote by φ� the induced map on the fundamental group φ� : π1(M,x0) →
π1(N,φ(x0)). We denote by γ1 � γ2, the concatenation of two paths γ1 and γ2.

2. G-Novikov theory in the easiest case

In this section, we review Novikov theory by considering G-Novikov theory
under the assumption 2.1. In this case, G-Novikov theory is given by an
equivariant version of the standard one. Also, we will review G-Morse theory
from our previous work [13], which is needed for the proper definition of the
group action on a Novikov complex.

Assumption 2.1. There exists a point x0 ∈ M such that g · x0 = x0 for
all g ∈ G.

This assumption enables us to have a natural G-action on the funda-
mental group π1(M,x0). We will fix a base point to be x0, and simply write
π1(M) for π1(M,x0) in this section. Note that the G-action on π1(M) is
compatible with the group operations of π1(M). i.e. the G-action gives a
group homomorphism G → Aut(π1(M)).

2.1. Novikov coverings

For a closed 1-form η on M , we call η a Morse 1-form if the graph of η in
T ∗M is transversal to the zero section. Assume further that η is G-invariant.
η gives rise to a homomorphism Iη : π1(M) → R,

(2.1) Iη(α) =

∫
S1

α∗η,

for α ∈ π1(M). Note that Iη is G-invariant as well, i.e. Iη(g · α) = Iη(α).

Let π : M̃ → M be the covering space associated to the kernel of Iη,

denoted by KerIη. (i.e. for the universal covering M̃uni of M , we have M̃ =

M̃univ/KerIη). We fix a base point x̃0 in M̃ such that π(x̃0) = x0.

Lemma 2.2. There is an induced G-action on M̃ and π : M̃ → M is G-
equivariant.

Proof. Since Iη is G-invariant, KerIη is preserved by g� : π1(M) → π1(M).
Hence for any g ∈ G,

g�(π�π1(M̃)) = g�(KerIη) = KerIη
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Thus, the composition map g ◦ π : M̃ → M has a unique lift g̃ : M̃ → M̃
such that g̃(x̃0) = x̃0. The lemma, then, follows from the standard covering
theory. �

The deck transformation group Γ of the covering M̃ → M is given by
π1(M)/KerIη, and the Novikov ring Λ[η] is a completion of the group algebra
of Γ:

(2.2) Λ[η] =
{∑

aihi

∣∣∣ ai∈R, hi∈Γ, |{i : ai �=0, Iη(hi) < c}|<∞ ∀c∈R
}
,

where R is a commutative ring with unity.

Lemma 2.3. The induced G-action on Γ = π1(M)/KerIη is trivial.

Proof. Since Iη is G-invariant, G acts on Γ = π1(M)/KerIη. However, for
α ∈ π1(M),

Iη ((g · α) � α−) = Iη(g · α)− Iη(α)

= Iη(α)− Iη(α) = 0,

where α−(t) = α(1− t). �

We have two group actions on M̃ , which are the action of deck transforma-
tion group Γ and the induced action of G. The following lemma will play an
important role later.

Lemma 2.4. The Γ-action and the G-action on M̃ commute with each
other. Namely for each g ∈ G, and h ∈ Γ, we have

g̃ ◦ h = h ◦ g̃.

Proof. We first work over the universal cover M̃univ. Note that we can lift
the G-action on M to the G-action on the universal cover M̃univ similar
as in Lemma 2.2. For a deck transformation h of M̃univ, we denote the
corresponding loop in π1(M) by αh.
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The action of g takes the loop αh to the loop g(αh), and we claim that

(2.3) g(αh) = αg̃◦h◦g̃−1

For the expression αg̃◦h◦g̃−1 to make sense, we first check that the com-

position g̃ ◦ h ◦ g̃−1 is a deck transformation of πuniv : M̃univ → M :

πuniv ◦ (g̃ ◦ h ◦ g̃−1) = g ◦ πuniv ◦ h ◦ g̃−1

= g ◦ πuniv ◦ g̃−1

= g ◦ g−1 ◦ πuniv = πuniv.

To prove the claim, it is enough to compare actions of both sides in (2.3)
on the fiber π−1univ(x0) since the covering is regular. Take any point y in the
fiber π−1univ(x0). We consider the path α̃h which is the lift of the loop αh

starting from y. Then, its end point gives

h(y) = α̃h(1).

Hence, g(αh) is a loop based at x0, and we get a corresponding deck trans-

formation, say g(h). Let g̃(αh) be the lift of g(αh) starting from y. Then,

αg(h) = g(αh) sends y to (g̃(αh))(1). To get (2.3), we have to show that

(g̃(αh))(1) = g̃(h(g̃−1(y))).

Let α̃h
′ be the lifting of αh which begins at g̃−1(y) instead of y. g̃(α̃h

′)
is the lifting of g(αh) which starts from y because

g̃(α̃h
′)(0) = g̃ ·

(
g̃−1(y)

)
= y,

and

π ◦
(
g̃(α̃h

′)
)
= g(π ◦ α̃h

′) = g(αh).

Now

(g̃(αh))(1) = g̃(α̃h
′(1)) = g̃(h(g̃−1(y))),

which proves the claim (2.3).
By the previous lemma, g(αh) and αh are the same elements modulo

KerIη. Projecting down (2.3) from M̃univ to M̃ , we obtain for h ∈ Γ that

g̃ ◦ h ◦ g̃−1 = h.

on M̃ . �
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We will give more geometric proof of Lemma 2.4 in Subsection 3.2. The
G-action on Γ induces the trivial G-action on Λ[η] as well.

Note that π∗η is exact by construction. So, we can find a smooth function
f̃ : M̃ → R such that

df̃ = π∗η.

From the transversality assumption on η, f̃ is a Morse function on M̃ .

Lemma 2.5. f̃ is G-invariant.

Proof. Since η is G-invariant and π is G-equivariant, we have for each g ∈ G,

d
(
g̃∗f̃ − f̃

)
= g̃∗df̃ − df̃ = g̃∗(π∗η)− df̃ = π∗(g∗η)− df̃ = π∗η − df̃ = 0.

As we assumed that M is connected, there is a constant cg such that for
all x ∈ M ,

(2.4) cg = f̃(g · x)− f̃(x).

Putting gi · x in the place of x, we get

(2.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cg = f̃(g2 · x)− f̃(g · x)
cg = f̃(g3 · x)− f̃(g2 · x)

...

cg = f̃(x)− f̃(g|g|−1 · x)

since g|g| = 1 where |g| is the order of g ∈ G. By summing up, we have
|g| cg = 0 and, hence cg = 0. We conclude that g∗f̃ = f̃ . In fact, with the

assumption 2.1, we have cg = f̃(g · x0)− f̃(x0) = 0. But the above argument
works without the assumption 2.1. �

Lemma 2.6. The isotropy group Gx̃ is the same as Gx for all x ∈ M .

Proof. It is easy to see that Gx̃ ⊂ Gx. For g ∈ Gx, g · x̃ and x̃ may not be
homotopic (regarding x̃ as a path from x0 to x), but they differ by the
KerIη-action. More precisely x̃ � (gx̃)− ∈ KerIη sends g · x̃ to x̃. �

2.2. Morse theory for global quotients

Before constructing the G-Novikov complex, we briefly recall the construc-
tion of Morse complexes for global quotients from [13] (using the language
of orientation spaces in [37]).
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For the global quotient orbifold [M/G], consider a G-invariant Morse-
Smale function f : M → R, and denote by f : M/G → R, the induced map
on the quotient. G-action sends a critical point of f to another critical point,
but this naive group action on crit(f) is not the right action to consider as
observed in [13].

For the critical point p, consider the unstable manifold W u(p) of the
negative gradient flow of f , and its tangent space TpW

u(p). In [13], we ob-
served that G should act on the determinant bundle of “unstable directions”,
∧top(TpW

u(p)) of each critical point. (We remark that such determinant line
bundles also appear for Morse complexes of Morse-Bott functions.)

Definition 2.7. Orientation space Θ−p at p is defined as

Θ−p := ΛtopTpW
u
f (p).

Without a group action, such additional data are always trivial. However
when there is a group action, Gmay act on orientation spaces in a non-trivial
way. This is a crucial difference, in the sense that the critical point p is fixed
by the Gp-action, but p together with its orientation space may not be fixed
by the Gp-action, as Gp may reverse the orientation of unstable directions
(such a critical point was called non-orientable in [13]). Hence, when we take
the G-invariant part, non-orientable critical points disappear, and rightfully
so since the topology of the sublevel sets of the orbifold does not change at
such a critical point (see [31]). We refer readers to [13] for more details.

Orientation spaces naturally arise also when we consider the assignment
of signs for each isolated gradient flow in the definition of the boundary
operator of Morse complexes. Consider two critical points p and q with Morse
indices i(p) = i(q) + 1. Then, the space M̃(p, q) of gradient flows between p
and q can be identified with

(2.6) M̃(p, q) = W u(p) ∩W s(q),

where W s(q) is the stable manifold of q for −∇f .

In terms of orientations, (2.6) can be written as follows: For u ∈ M̃(p, q),

(2.7) ∧top TuM̃(p, q) ∼= Θ−p ⊗ (Θ−q )
∨,

where (Θ−q )
∨ is the dual space with respect to the canonical pairing (Θ−q )

∨ ⊗
(Θ−q ) → R. In the isomorphism (2.7), two copies of ∧topTM should appear
but cancelled. These copies come from the relation of W s(q) and W u(q), and
from taking the intersection of them in M . (see (12.2) of [37] for the Floer
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theoretic analogue). Therefore, this also explains why orientation spaces
Θ−p ’s are needed to define a G-action.

Here, Θ−p is a one dimensional real vector space, and we will be only
concerned about the sign of the elements of these vector spaces, not the
actual magnitudes when identified with R. Hence, we use the normalization
convention, following [37] as explained in the introduction. We set up the
Morse complex of f as follows.

Definition 2.8. Define

(2.8) Ck(M,f) =
⊕

ind(p)=k

|Θ−p |R

We recall that the differential of the Morse complex can be understood as
follows. The time translation of M̃ gives an element in ∧topTuM̃(p, q), and
from the equality (2.7), this determines an isomorphism cu : Θ−q → (Θ−p ).
We use |c−1u |R to define a boundary map

(2.9) ∂p,q :
∑
u

|c−1u |R : |Θ−p |R → |Θ−q |R.

This is a coordinate-free way of writing the usual boundary operator of the
Morse complex. Namely, a trajectory has an induced orientation from the
transversal intersection W u(p) ∩W s(q) and we assign +1 if it agrees with
the direction of the flow itself (the time translation) and −1 otherwise.

Now, we can consider a naturalG-action on the Morse complex C∗(M, f).
It is not hard to see that the G-action commutes with the Morse differential
in this new setting. Hence, we can take the G-invariant part C∗(M,f)G,
which is the Morse complex for [M/G]. Its homology is isomorphic to the
singular homology of the quotient space of [M/G] with R-coefficients for
R ⊃ Θ. Here Θ is needed since over Z, local Morse data are much more
complicated.

One difficulty of building up G-Morse theory is the equivariant transver-
sality problem. Namely, it is hard to make a generic perturbation of either
the Morse function or the metric so that it becomes both Morse-Smale and
G-invariant. There are two ways to overcome this issue. In [13], we intro-
duced the notion of weak group actions on Morse-complexes, for a generic
Morse-Smale function f , which is not G-invariant. It can be also applied in
this setting, and later we will use this idea to define the equivariant Fukaya
category for an exact symplectic manifold.

Another way is to work with a G-invariant Morse function which is not
necessarily Morse-Smale, and use the multi-valued perturbation scheme such
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as Kuranishi structure([24]). We will use this approach in the general case
of Floer theory to achieve equivariant transversality. We also need Θ ⊂ R
for this method. From now on, we assume that f̃ on M̃ is of Morse-Smale
type, and leave more general case to one of the above two methods.

2.3. Constructions of G-Novikov complexes

We spell out how to set up the G-equivariant Novikov chain complex of η
under Assumption 2.1. We denote by crit(f̃) the set of critical points of f̃ .
We will use the normalization |Θ|R defined in the introduction.

Definition 2.9. We define the Novikov chain complex of M with respect
to η, CN∗(M ; η) as follows: the graded R-vector space CN∗(M ; η) is defined
by

CN∗(M ; η) :=

{∑
i

xp̃i

∣∣∣∣∣xp̃i
∈ |Θ−p̃i

|R satisfying ♦
}
,

where ♦ is the condition that for each c ∈ R, the following set is finite:

{i : xi �= 0, f̃(p̃i) < c}.

The boundary operator δ on CN∗(M ; η) is defined by counting gradient flow

lines of f̃ in M̃ as in G-Morse theory (2.9).

Note that the deck transformation group Γ preserves the set crit(f̃), and
this gives CN∗(M ; η) a Λ[η]-module structure,

(2.10) φ : Λ[η] × CN∗(M ; η) → CN∗(M ; η).

More precisely, consider a generator h of Λ[η]. i.e. an element h of Γ =

π1(M)/KerIη. Then the scalar multiplication of h to p̃ ∈ crit(f̃) is simply
the action image h(p̃). Then, Λ[η]-module structure on CN∗(M ; η) is given as
follows. As Θ−p̃ is defined by ΛtopTp̃W

u
f̃
(p̃) and h sends W u

f̃
(p̃) to W u

f̃
(h(p̃)),

we have an isomorphism (denoted by the same letter)

h : Θ−p̃ → Θ−h(p̃).

Lemma 2.10. We have an induced G-action on CN∗(M ; η), which is Λ[η]-
linear. The differential δ is G-equivariant.



Finite group actions on Lagrangian Floer theory 323

Proof. As f̃ beingG-invariant,G acts on the set crit(f̃). Thus, each g induces
an isomorphism

g : Θ−p̃ → Θ−g(p̃).

as before. Hence, we obtain a G-action on generators of CN∗(M ; η) over Λ[η].

Note that G and Γ actions commute (since their actions on M̃ commute)
and the lemma follows. The proof of G-equivariancy follows from (2.7) and
the definition of δ. �

Definition 2.11. We call the complex CN∗(M ; η) equipped with the above
G-action, the G-equivariant Novikov complex of (M,η). Its G-invariant
part CNG

∗ (M ; η) (which is a Λ[η]-module) is called the Novikov complex
of ([M/G], η) where η is the induced 1-form on [M/G].

Here, the Λ[η]-module structure of CNG
∗ (M ; η) is given by taking the

G-invariant part of (2.10) (recall that the G-action is Λ[η]-linear): φG :
Λη × CNG

∗ (M ; η) → CNG
∗ (M ; η), and the boundary δ is Λ[η]-linear([34]). In

conclusion, we get

HNG
∗ (M,η) := H∗

(
CNG

∗ (M ; η), δ
)
,

which is a module over Λ[η].
What actually happens in taking the G-invariant part is as follows. For a

critical point p̃ of f̃ , consider the isotropy group Gp(= Gp̃). If the Gp-action
on Θ−p̃ is orientation preserving, then this provides a non-trivial element in

the G-invariant part. If some element g of Gp reverses the orientation of Θ−p̃ ,
then exactly the half of Gp reverses the orientations of W

u
f̃
(p̃). Thus the sum

of G-action images of (p̃,Θ−p̃ ) becomes zero by the cancellation, and hence
do not contribute to the G-invariant part of the Novikov complex. We refer
readers to [13] for more details on related phenomenon.

3. General G-Novikov theory

In this section, we construct a G-Novikov complex in the general case with-
out assumption 2.1. The main difficulty is that the construction of covering
spaces (as spaces of homotopy classes of paths from a chosen base point)
is not compatible with the G-action. Indeed, the G-action may move the
chosen base point to another point.

For this, we will introduce the notion of energy zero subgroup Gη, and
define its action on Novikov complexes. If G = Gη, we can define equivariant
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and orbifolded theory from this Gη action. But in the general case that
G �= Gη, we need to use a different Novikov ring, what is called Λorb. In
fact, the most natural way to view it is to consider the orbifold fundamental
group of the global quotient orbifold [M/G] and the orbifold analogue of
the Novikov covering construction. We will explain how Gη, and Λorb arise
in this orbifold setting. Hence, if G �= Gη, we cannot define G-equivariant
theory, but we can define G-orbifolded theory, by taking Gη-invariant parts
of the Novikov complex, with Novikov ring given by Λorb.

3.1. Energy zero subgroups and their actions on Novikov
coverings

We first take a generic point x0 ∈ M such that the isotropy group at x0 of
the G-action is trivial. That is, g · x0 �= x0 for all g �= 1 ∈ G. As the G-action
on M is effective, such x0 always exists. Let η be a G-invariant Morse 1-
form η on M and consider the universal covering space M̃univ and Novikov
covering π : M̃ → M obtained by M̃ = M̃univ/KerIη where Iη(α) =

∫
α∗η

for α ∈ π1(M,x0).
Now, we take the group action into account. Note that the G-action on

M does not induce a G-action on M̃ : consider x̃ ∈ M̃ with π(x̃) = x ∈ M .
Then, x̃ is an equivalent class of paths from x0 to x. The naive G-action
sends x̃ to g(x̃), which is a homotopy class of paths from g · x0 to g · x. This
path is not an element of M̃ since it does not start from x0.

Definition 3.1. A subgroup Gη of G consists of an element g ∈ G such
that there exist a path γg from x0 to g · x0, with∫

γ∗gη = 0.

We call Gη the energy zero subgroup of G for η and a path γg an energy
zero path.

To see that Gη indeed forms a subgroup, consider g, h ∈ Gη with energy
zero paths γg and γh respectively. Then, we can take an energy zero path
for gh ∈ Gη to be the concatenation

γgh = γg � g(γh).

Remark 3.2. A priori, such energy zero paths may not always exist (i.e.
Gη �= G in general). For example, consider G = Z/3-action defined by the
rotation on S1 and dθ a G-invariant 1-form on S1. Then, Gη = {id} �= G.
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By considering the energy zero subgroup Gη, we can define a Gη-action

on the Novikov covering M̃ as below.

Definition 3.3. Given x̃ ∈ M̃ (regarded as a class of paths in M) and
g ∈ Gη with an energy zero path γg, we define the action of g on x̃ as the
concatenation of γg with the naive g-action image of x̃:

(3.1) g · x̃ := γg � g(x̃).

Lemma 3.4. This gives a well-defined Gη-action on M̃ .

Proof. For a different choice of an energy zero path γ′g for g, the concatena-
tion γg � (γ

′
g)− defines a loop in KerIη where γ−(t) = γ(1− t) for a path γ.

Then, two elements γg � (g(x̃)), and γ′g � (g(x̃)) differ by an action of KerIη,

hence the action of Gη on M̃ is well-defined. Also it is easy to check that
g · (h · x̃) = gh · x̃ for g, h ∈ Gη. �
If one tries to define a g-action similarly for an element g ∈ G \Gη (by
taking a path γg from x0 to g(x0)), then it is straightforward to see that the
relation g|g| = id cannot hold for the action of g. Indeed, attaching γg keeps
increasing (or decreasing) the energy.

Now let us closely look into the Gη-action M̃ . From the construction,

the projection π : M̃ → M is a Gη-equivariant map:

π(g · x̃) = g · π(x̃).

The pull-back π∗η is exact by the definition of M̃ and hence we can choose
f̃ : M̃ → R so that df̃ = π∗η as before. We can proceed as in Lemma 2.5 to
obtain

Lemma 3.5. f̃ : M̃ → R is Gη-invariant.

As we assumed that M is connected, we can find interesting properties
of Gη:

Lemma 3.6. Gη is a normal subgroup of G.

Proof. For h ∈ Gη and g ∈ G, we want to show that ghg−1 lies in Gη. So,
we need to find an energy zero path from a base point x to (ghg−1) · x. Set
y = g−1 · x. Then, it suffices to find such a path from y to h · y. Choose any
path δ from y to x and let γh be an energy zero path from x to h · x. Then,
it is easy to check that δ � γh � h(δ)− from y to h · y has energy zero. �
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Lemma 3.7. For any y ∈ M , the isotropy group Gy is a subgroup of Gη.

Proof. We fix y ∈ M , and g ∈ Gy. Since M is connected, we can choose a
path α from x0 to y. Then, g(α) defines a path from g · x0 to g · y(= y).
Then, we get a path from x0 to g · x0 by

γ := α � (g · α)−.

Note that

Iη(γ) = Iη(α) + Iη((g · α)−) = Iη(α)− Iη(α) = 0

Thus, γ has zero energy and realizes g as an element of Gη. This implies
that Gy ⊂ Gη for all y. �

Corollary 3.8. If M has a point, say x1, which is fixed by the whole G-
action, then Gη = G.

Proof. Take y to be x1, and apply Lemma 3.7. �

3.2. Deck transformations and Gη-actions on Novikov complexes

Lemma 3.9. The Gη-action on M̃ commutes with the action of the deck
transformation group Γ = π1(M)/KerIη.

Proof. The proof of Lemma 2.4 (for the case with a G-fixed base point)
extends to this general case. But here, we give a geometric proof of it using
the Gη-action (3.1).

Let h ∈ Γ be represented by a loop αh at x0. If γg realizes g ∈ Gη (i.e.
γg(1) = g · x0 and Iη(γg) = 0), then γg−1 = g−1 · (γg)− realizes g−1. Any

point x̃ in M̃ can be thought of as a (homotopy class of) path from x0
modulo KerIη-action. Then, we have path representations of elements in M̃
as follows:

(a) g · (h · x̃) is represented by the concatenation γg � (g · αh) � (g · x̃).
(b) h · (g · x̃) is represented by the concatenation αh � γg � (g · x̃)
(c) The difference between (a) and (b) is represented by γg � (g · αh) �

(γg)− � (αh)−.
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Figure 1: (a) g · (h · x̃) (b) h · (g · x̃) (c) g · (h · x̃)− h · (g · x̃).

Since η is g-invariant ∫
αh

η +

∫
g·(αh)−

η = 0,

We conclude that (c) has energy zero, or equivalently

g · (h · x̃) = h · (g · x̃).
�

Since the G-action on M is orientation preserving, it is easy to see that
Gη preserves the induced orientation on M̃ . Here is a simple lemma on the

relationship between isotropy groups in M and M̃ analogous to Lemma 2.6

Lemma 3.10. Consider x̃ ∈ M̃ with π(x̃) = x. Then the isotropy group
(Gη)x̃ at x̃ in Gη is given by

(3.2) (Gη)x̃ = Gx ∩Gη = Gx.

Proof. The second equality in (3.2) follows from the lemma 3.7. We only
prove the first equality, here. For g ∈ Gη, we choose an energy zero path γg
from x0 to g · x0 in M . Then, if g ∈ (Gη)x̃, then g · x̃ (which is represented
by γg � g(x̃)) has the same end point as x̃. This means that g is an element
of Gx.

Conversely, if g fixes x, and admits an energy zero path γg, then both
γg � g(x̃) and x̃ is a path from x0 to x in M , and Iη vanishes on γg � g(x̃) �
x̃−. Thus g · x̃ and x̃ differ by an action of KerIη, which proves that g ∈
(Gη)x̃. �
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To define a G-equivariant Novikov complex, let us first assume that
G = Gη, and postpone the study of general case to the next subsection. We
define the Novikov chain complex as in Definition 2.9, and Novikov ring Λ[η]

as in (2.2). By proceeding as before, we obtain

Proposition 3.11. Assume that the induced G(= Gη)-invariant function

f̃ : M̃ → R is of Morse-Smale type. Then, we have an induced G-action
on the Novikov complex (CN∗(M ; η), δ) which is Λ[η]-linear (i.e. G-action
commutes with Λ[η]).

This defines the G-equivariant Novikov complex of (M,η). By taking the
G-invariant part of CN∗(M ; η), we get the chain complex

(CNG
∗ (M ; η), δ),

which should be considered as Novikov homology of the orbifold ([M/G], η)
with respect to the induced 1-form η. This construction agrees with the pre-
vious construction of Novikov complex with a G-fixed point by Corollary 3.8,
and we leave the detailed check as an exercise.

When G �= Gα, proper definition of orbifolded Novikov complex is more
involved as we need to introduce orbifold Novikov ring Λorb

[η] .

3.3. Orbifold Novikov ring Λorb
[η] and orbifold Novikov complex

First, we explain how the energy zero subgroup Gη naturally arises from the
orbifold setting. We give a brief review on the orbifold fundamental group
πorb
1 ([M/G]).

We call a continuous map α : [0, 1] → M a generalized loop based at x0
if α(0) = x0 and α(1) = gα · α(0). i.e. it is a loop up to G-action. Note that
a genuine loop at x0 is obviously a generalized loop. Since x0 is generic, gα
is uniquely determined from α.

Two generalized loops α and β (based at x0) are homotopic if

• α(1) = β(1).

• There is a homotopy H between α and β relative to end points.

We write α ∼ β for such homotopy relation.
Two generalized loops can be multiplied as follows.

(3.3) α · β = α � gα(β).



Finite group actions on Lagrangian Floer theory 329

where � denotes the concatenation of two paths as before.
The set of homotopy classes of generalized loops (based at x0), denoted

by πorb
1 ([M/G], x0), has a group structure induced by (3.3). One can also

show that α−1 = g−1α (α−) gives the inverse of [α], where α−(t) = α(1− t).
We have a group homomorphism e : πorb

1 ([M/G]) → G defined by

e([α]) = gα.

It is easy to see that

Ker e = π1(M,x0).

Thus, we have the following short exact sequence of groups which is
non-split in general.

(3.4) 1 −→ π1(M) −→ πorb
1 ([M/G])

e−→ G −→ 1.

The map e is surjective since we assumed that M is connected.

Lemma 3.12. If M has a point, say x1, which is fixed by the whole G-
action, then orbifold fundamental group can be written as a semi-direct prod-
uct:

πorb
1 ([M/G]) ∼= G� π1(M).

Proof. Recall that the statement of the lemma is equivalent to the existence
of a splitting of the extension (3.4). Thus, we need to find a homomorphism
φ : G → πorb

1 ([M/G]) such that e ◦ φ = id on G. Now, if G fixes x1, we can
construct φ as follows. Take a path γ : [0, 1] → M such that γ(0) = x0 and
γ(1) = x1. For each g ∈ G, g(γ) is a path from g(x0) to x1. Thus, consider
the concatenation of two paths

φ(g) := γ � g(γ−),

which is a generalized loop starting from x0 ending at g(x0). It is easy to
check that φ is a homomorphism, and e ◦ φ = id. �

It is well-known that the most of the covering theory extends to the case
of orbifolds if one considers orbifold fundamental group, orbifold covering
and orbifold universal covering. (see for example Takeuchi [41]). The orb-

ifold universal covering for [M/G] is given by the universal covering M̃univ

of M , with the projection maps M̃univ → M → M/G. And πorb
1 ([M/G]) be-

comes the deck transformation group of M̃univ → M/G, whose action can
be written as follows.
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Definition 3.13. We define the (left) action of πorb
1 ([M/G]) on M̃univ as

the concatenation of paths: for γ ∈ πorb
1 ([M/G]) with γ(1) = gγ(x0), and for

a path x̃ from x0 to x, as an element of M̃univ, we define

γ · x̃ := γ � gγ(x̃).

Recall η is a Morse 1-form on M , which is G-invariant. We denote by η
the induced 1-form on the quotient M/G.

Definition 3.14. We define Iorbη : πorb
1 ([M/G]) → R as follows:

Iorbη (α) :=

∫ 1

0
α∗η for α ∈ πorb

1 ([M/G]).

This defines a group homomorphism since η is G-invariant.
We consider the subgroup KerIorbη , the kernel of Iorbη , which acts on

the orbifold universal covering M̃univ, and consider the quotient orbifold
[M̃univ/KerIorbη ]. An analogue of Novikov covering M̃ → M in section 2
would be the orbifold covering

[M̃univ/KerIorbη ] → [M/G].

But it is cumbersome to work directly with [M̃univ/KerIorbη ]. For example,

KerIorbη is discrete but may not be finite in general. Alternatively, we find

another presentation of the orbifold [M̃univ/KerIorbη ], which is much easier
to understand.

Remark 3.15. Similarly to 3.12, if there exists a G-fixed point, then we
have

KerIorbη ([M/G]) ∼= G�KerIη.

Before we give the actual construction, it may be helpful to first explain
the formalism. Consider the group B acting effectively on a manifold X,
and let A be a normal subgroup of B. Then, A, B, and the quotient group
C = B/A form an exact sequence 1 → A → B → C → 1. Note that the B-
action on X induces the B/A-action on the quotient space X/A because A
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is a normal subgroup. Also the quotient satisfies

(3.5) (X/A)/(B/A) ∼= X/B.

Thus instead of X/B, we will consider X/A and its quotient by the group
C = B/A, and the benefit is that X/A, B/A are simpler than X and B (also
in our case below X/A will be still a manifold).

Now, we put B = KerIorbη , and A = KerIη and consider the following
diagram of subgroups of fundamental groups.

(3.6) 1 �� KerIη

≤
��

�� KerIorbη

≤
��

eη �� Gη

≤
��

�� 1

1 �� π1(M,x0) ��

��

πorb
1 ([M/G])

e ��

��

G ��

��

1

1 �� Γ �� Γorb �� G/Gη
�� 1

Definition 3.16. We define Gη to be the quotient group KerIorbη /KerIη.
Gη can be identified with a subgroup of G via the map

KerIorbη /KerIη → πorb
1 ([M/G])/π1(M) = G.

Hence, we have C = KerIorbη /KerIη in the formalism above. From the di-
agram (3.6), we can correspondingly construct a diagram of covering spaces
as follows:

(3.7) M̃univ
id ��

��

M̃univ

��

M̃ = M̃univ/KerIη
/Gη ��

��

[M̃univ/KerIorbη ]

��
M

/G
�� [M/G]

Here M̃ = M̃univ/KerIη, which is the Novikov covering space considered in
the previous section. From the discussion above, the identity (3.5) becomes

(3.8) [M̃/Gη] ∼= [M̃univ/KerIorbη ].
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Note that M̃ is a manifold (it is a covering of M), and we have a presen-
tation of the orbifold which involves simpler group Gη than KerIorbη . This
provides an explanation of Gη, and should extend to the general orbifold
case.

In the case when G �= Gη, there is a subtle problem with Novikov rings
as examined from now on. The deck transformation group for the Novikov
cover [M̃univ/KerIorbη ] → [M/G] is given by the quotient group

Γorb := πorb
1 ([M/G])/KerIorbη ,

while the deck transformation group for M̃ → M is given by

Γ := π1([M/G])/KerIη.

From the diagram (3.6), we see that the difference of two groups is exactly
given by G/Gη. We write the associated Novikov rings as Λorb

[η] and Λ[η]

respectively as in (2.2). The inclusion Γ → Γorb gives rise to a map Λ[η] →
Λorb
[η] between the (compeletions of) group rings.
The Novikov complex is defined in the following way. From the previ-

ous construction, we have the Novikov complex (CN∗(M ; η), δ) for M̃ with
Novikov coefficients Λ[η] and the Gη-action on it. Now, we can replace the
Novikov coefficients by

(3.9) CN∗(M ; η)⊗Λ[η]
Λorb
[η] ,

which still has a Gη-action.

Definition 3.17. We define the orbifolded Novikov complex of ([M/G], η)
to be

(3.10)
(
CN∗(M ; η)⊗Λ[η]

Λorb
[η]

)Gη

For example, let us consider the case that G-action is free. The following
proposition shows that the complex in Definition 3.17 is the right Novikov
complex for the quotient space of the free action.

Proposition 3.18. If G acts on M freely, then we have Λorb
[η]

∼= Λ[η] and
the following isomorphism of Λ[η]-modules(

CN∗(M ; η)⊗Λ[η]
Λorb
[η]

)Gη ∼= CN∗(M/G; η̄)
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Proof. Since G acts freely on M

(3.11) πorb
1 ([M/G]) ∼= π1(M/G), KerIorbη

∼= KerIη̄.

This gives the desired identification of Λorb
[η] and Λ[η].

Note that the Gη-action on M̃ is also free. One can see from the di-
agram (3.7) that the Novikov covering space of M/G with respect to the

Morse 1-form η is exactly the quotient of M̃ by the free Gη-action. Therefore,(
CN∗(M ; η)⊗Λη

Λorb
η

)Gη is naturally isomorphic to CN∗(M/G; η̄) which is

essentially the Morse chain complex of f̄ : M̃/Gη → R with the Novikov
coefficients. �

3.4. Generalizations

(1) Let us first drop the assumption that M is connected from theorem 3.11.
Denote connected components of M by Mi (1 ≤ i ≤ k). i.e. M = �k

i=1Mi.
Let us call Mi and Mj , G-related if there exist x ∈ Mi and g ∈ G such that
g(x) ∈ Mj . This defines an equivalence relation. We divide the index set
{1, . . . , k} into

{i11, . . . , i1a1
} � · · · � {ij1, . . . , ijaj

}
using this equivalent relation so that connected components Mil1 , . . . ,Milal

are G-related for any l = 1, . . . , j.
To define a group action, we need to make the following assumption.

Assumption 3.19. If we denote by Gab the subgroup of G whose elements
preserve the connected component Miab

, then we require that

(Gab)η = Gab.

Hence, for any g ∈ Gab and x ∈ Miab
, there exists an energy zero path γ

connecting x and g(x).
As an initial step, consider the construction of the Morse-Novikov com-

plex for the subcollection Mil1 , . . . ,Milal
for a fixed l. Now, we choose base

points x0,ilb ∈ Milb so that they lie in a single G-orbit. We can consider
Novikov-Morse theory on each connected component, with base points given
by x0,ilb ’s.

Then, from the assumption, any g-image of x0,ilb for g ∈ G can be con-
nected to one of x0,ilb′ ∈ Milb′ by energy zero path, say γg. Then, we can
define the group action as before. Namely, we concatenate γg to the front
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of the image under the naive group action. Also, one can see that the deck
transformation group of one component is isomorphic (by conjugation) to
that of the other component, hence the resulting Novikov rings can be iden-
tified, which we denote as Λl.

One can take the direct sum of Novikov complexes

(⊕al

s=1CN∗(Mils ; η|Mils
),⊕δ)

so that it admits a natural G-action.
Now, let us illustrate how to add various complexes for different l’s.

For this, we need to introduce the universal Novikov ring to properly com-
pare various Novikov rings of different subcollections. Then, we will take
completed direct sum over all different subcollections to define the Novikov
complex (This is similar to what has been done for Novikov Floer theory
in [25], where the case of several connected components of a path space are
considered).

The universal Novikov ring is defined by

Λ =
{∑

aiT
λi

∣∣∣ ai ∈ R, λi ∈ R, lim
i→∞

λi = ∞
}
,

and the ring homomorphism from Λ[η] → Λ by∑
aihi �→

∑
aiT

Iη(hi).

For each Novikov complex CN∗(Mil1 ; η) with G-action, we can introduce
the new Novikov complex of M as

⊕̂j
l=1CN∗(Mil1 ; η)⊗Λ[η]

Λ

which admits a G-action also.

(2) We have considered a global quotient orbifold [M/G], and have seen

how to set up its Novikov complex by working on M̃ observing Gη-actions.
We can generalize the construction to any effective orbifold if we just use
orbifold terms, but it will not be explicit as in the global quotient case. As
we will not use it in this paper, we briefly outline the construction. Consider
a compact connected oriented orbifold χ with a closed Morse 1-form η on χ.
It is straight forward that η defines a homomorphism from Iη : πorb

1 (χ) → R.
Then, as before its kernel KerIorbη

(
≤ πorb

1 (χ)
)
corresponds to the orbifold

covering π : χ̃ → χ on which π∗η is an exact 1-form. Note that χ̃ is no longer
a smooth manifold, but rather an orbifold.



Finite group actions on Lagrangian Floer theory 335

Consider the deck transformation group Γorb = πorb
1 (χ)/KerIorbη , and

take the (one-sided) completion of the group ring of Γorb to define Λorb
[η] . Let

f : χ̃ → R be a Morse function on the (orbifold) Novikov cover which inte-
grates π∗η. If f is of Morse-Smale type, we apply the construction in [13]
(for general orbifolds) to obtain the orbifold Morse complex of f : χ̃ → R

with Λorb
[η] -coefficients. CN∗(χ̃; η) has a natural Λorb

[η] -module structure and

the boundary operator δ which counts gradient trajectories is Λorb
[η] -linear.

We may call the resulting complex the Novikov complex of (χ, η).

4. Floer-Novikov theory and orientation spaces

We recall the setup of Floer-Novikov theory briefly (following [25]), and also
the notion of orientation spaces as well as some gluing formulas for them,
which are well-known constructions. In the last subsection, we will provide
a detailed explanation on the identification of two orientation spaces arising
from two different Γ-equivalent representatives of a generator of a Floer-
Novikov complex.

4.1. Floer-Novikov theory

Let L0 and L1 be Lagrangian submanifolds of a symplectic manifold (M,ω),
transversally intersecting with each other. Let us assume that both L0 and
L1 are connected, compact, oriented and also spin for simplicity. Consider
the space of paths

Ω(L0, L1) = {l : [0, 1] → M | l(0) ∈ L0, l(1) ∈ L1}.

We denote by Ω(L0, L1; l0) its connected component containing l0 ∈
Ω(L0, L1).

We define an 1-form α on Ω(L0, L1; l0) as follows: for ξ ∈ l∗TM =
TlΩ(L0, L1; l0),

(4.1) α(ξ) =

∫
[0,1]

ω(l′(t), ξ(t))dt.

The 1-form α is closed but not necessarily exact and hence, one needs to
find a suitable Novikov covering for α.

First let us consider the universal covering Ω̃univ(L0, L1; l0) of
Ω(L0, L1; l0). A path in Ω(L0, L1; l0) is a continuous map w : [0, 1]× [0, 1] →
M satisfying w0(t) = l0(t) and ws ∈ Ω(L0, L1; l0) where ws(t) = w(s, t). If
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w1(t) = l(t) for l ∈ Ω(L0, L1; l0), the homotopy class of such w gives a point
in the universal covering space Ω̃univ(L0, L1; l0) lying over l.

Denote by w(s, t) := w(1− s, t). Given two elements (w, l) and (w′, l′)
of Ω(L0, L1; l0), we can glue these to get a loop C := w � w′ in Ω(L0, L1; l0).
So we have a loop

C : S1 × [0, 1] → M

which satisfies the Lagrangian boundary conditions

(4.2) C(s, 0) ∈ L0, C(s, 1) ∈ L1.

We can define its symplectic area Iω(C) =
∫
C ω and Maslov index Iμ(C). The

Maslov index Iμ is defined as usual by the difference of the Maslov indices
of the loops in the Lagrangian Grassmannian, where the loops are obtained
from two boundary components of C after a symplectic trivialization of the
pull-back bundle over C. This gives a homomorphism

(4.3) (Iω, Iμ) : π1(Ω(L0, L1; l0)) → R× Z.

The following definition of the Γ-equivalence between two paths in
Ω(L0, L1; l0) is due to [25].

Definition 4.1. (w, l) and (w′, l) are said to be Γ-equivalent if

Iω(w � w′) = 0 = Iμ(w � w′).

The set of Γ-equivalence classes forms a covering Ω̃(L0, L1; l0) associated
to the the following subgroup of π1(Ω(L0, L1; l0)):

Ker(Iω, Iμ) = KerIω ∩KerIμ.

Hence the deck transformation group Π(L0, L1; l0) of the covering

(4.4) π : Ω̃(L0, L1; l0) → Ω(L0, L1; l0),

is given by the quotient π1(Ω(L0, L1; l0))/Ker(Iω, Iμ).
By the definition of Γ-equivalences, the homomorphisms Iω and Iμ give

rise to

(4.5) (E, μ) : Π(L0, L1; l0) → R× Z

defined by E(g)=Iω(C) and μ(g)=Iμ(C). Here, the element g∈Π(L0, L1; l0)
is represented by a map C : S1 × [0, 1] → M satisfying (4.2) above. Note that
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Π(L0, L1; l0) is an abelian group. Indeed (4.5) gives an injective homomor-
phism onto its image by the definition of Γ-equivalence.

Definition 4.2. We define ΛR
k (L0, L1; l0) as the set of all formal sums∑

h∈Π(L0,L1;l0)
μ(h)=k

ah[h],

such that ah ∈ R and

|{h ∈ Π(L0, L1; l0) |E(g) ≤ C, ah �= 0}| = ∞.

We write

ΛR(L0, L1; l0) =
⊕
k

ΛR
k (L0, L1; l0).

From the construction, π∗α is exact (where π is the covering map in
(4.4)). The Floer action functional A on Ω̃(L0, L1; l0) is defined by

A([w, l]) =

∫
w∗ω

for an element [w, l] in Ω̃(L0, L1; l0). Then, the direct computation shows
that

π∗α = −dA.

i.e. the Floer action functional is a Morse function on the Novikov cover
which integrates −π∗α. In short, Floer-Novikov theory is Morse theory of A
on Ω̃(L0, L1; l0) with Novikov coefficients ΛR(L0, L1; l0). Critical points of A
are given by [w, lp] ∈ Ω̃(L0, L1; l0) where lp is a constant path at p ∈ L0 ∩ L1.

Like in [25], we work with the universal Novikov ring Λnov and its subring
Λ0,nov as coefficient rings for Floer cohomology groups:

Λnov(R) =

{ ∞∑
i=0

aiT
λi | ai ∈ R, λi ∈ R, lim

i→∞
λi = ∞

}
,

Λ0,nov(R) =

{ ∞∑
i=0

aiT
λi ∈ Λnov(R) | λi ∈ R≥0

}
.
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Recall for a single Lagrangian L, the associated Novikov ring is defined by

Λ(L) =

⎧⎨⎩ ∑
β∈Π(L)

aβ [β]

∣∣∣∣∣∣ #{β|aβ �= 0, E(β) < C} is finite for each C

⎫⎬⎭ .

The homomorphism IL : Λ(L) → Λnov given by

(4.6) IL

⎛⎝ ∑
β∈Π(L)

aβ [β]

⎞⎠ =
∑
β

aβT
∫
β
ω

identifies Λ(L) with a subring of the universal Novikov ring. We use the same
identification as (4.6) to transfer Λk(L0, L1; l0) into the universal Novikov
coefficients.

4.2. Orientation spaces for Lagrangian Floer theory

We recall orientation spaces for Lagrangian Floer theory. The Cauchy-
Riemann (CR for short) operators associated to generators of the Floer-
Novikov complex were introduced in [25] for Bott-Morse Lagrangian Floer
theory. The index spaces (Definition 4.3) of these operators will be called
orientation spaces. Such a notion is a key to analyze Fredholm indices, and
orientations of moduli spaces in Lagrangian Floer theory. As so, it is natural
to expect that it plays an important role in understanding group actions on
Lagrangian Floer theory.

We fix a reference path l0, and specify pre-fixed choices of data in what
follows. For the chosen reference path l0 : [0, 1] → M , we write l0(0) = p0 ∈
L0, l0(1) = p1 ∈ L1. Along the chosen reference path, we choose a fixed path
λl0(t �→ λl0(t)), where λl0(t) is an element of oriented Lagrangian subspace
in Tl0(t)M whose end points are given by λl0(0) = Tp0

L0 and λl0(1) = Tp1
L1.

We denote

λ̃l0 :=
⋃

t∈[0,1]
{t} × λl0(t) → [0, 1].

Before we explain additional choices needed to specify spin structure of
the Lagrangian bundle, we recall the definition of the associated CR op-
erator. Consider a critical point [w, lp] ∈ Cr(L0, L1; l0) for p a point in the
Lagrangian intersection L0 ∩ L1. We choose a representative (w, lp) of a Γ-
equivalence class. We want to define the orientation space Θ−(w,lp)

for each
representative.
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The map w produces a path λw,λl0
of Lagrangian subspaces in TM from

TpL1 to TpL1 by concatenating λl0 and Lagrangian paths in top and bottom
edge of ∂w. More precisely, for

(s, t) ∈ ({0} × [0, 1]) ∪ ([0, 1]× {0, 1})
homeo∼= [0, 1],

we get a path λ = λw,λl0
such that,

(4.7) λ(0, t) = λl0(t), λ(i, s) = Tw(i,s)Li for i = 0, 1,

as drawn in Figure 2.

Figure 2: path λw,λ0 .

Since [0, 1]2 is contractible, we can trivialize w∗TM

w∗TM ∼= [0, 1]2 × TpM

so that λ is a path in the oriented Lagrangian Grassmannian of TpM . Put

Z− = {z ∈ C | |z| ≤ 1} ∪ {z ∈ C |Re z ≥ 0, |Im z| ≤ 1}.

For λ = λw,λl0
, one defines a CR operator by

∂̄λ,Z− : W 1,p
λ (Z−;TpM) → Lp(Z−;TpM ⊗ Λ0,1(Z−)),

whose Lagrangian boundary condition comes from λ. Here, W 1,p
λ (Z−;TpM)

is the Banach space of L1,p maps ζ− : Z− → TpM with weighted norms:

1) ζ−(τ, i) ∈ TpLi, where we use z = τ + it
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2) ζ−(z−) ∈ λ(t), where z−(t) = eπi(−1/2+t) ∈ ∂Z−

3)

∫
Z−

eδ|τ |(|∇ζ−|p + |ζ−|p)dτdt < ∞.

It is well known that ∂̄λ,Z− is a Fredholm operator. See [25] for more details.
Finally, one assigns an orientation space to each generator (w, lp) as

follows.

Definition 4.3. The orientation space Θ−(w,lp)
for a pair (w, lp) is defined

as

Θ−(w,lp)
:= det(∂̄λ,Z−) = (∧topCoker ∂̄λ,Z−)

∗ ⊗ ∧topKer ∂̄λ,Z− .

The canonical orientation on the moduli space associated to the CR op-
erators with Lagrangian boundary conditions is determined from the spin
structures of the Lagrangian sub-bundles. Later, we will deal with isomor-
phisms between various orientation spaces, and to find a canonical isomor-
phism, we need to also specify spin structures of the Lagrangian bundles
on the boundary components. Without these, there would be an ambiguity
of signs whenever we try to compare, identify and glue orientation spaces.
Signs are indeed very crucial information (for example different signs for the
group action change the invariant sets).

As in chapter 8 of [25], we fix the following choices of spin data (we
will review the notion of spin structure in section 5.1): We choose and fix
a trivialization σ : [0, 1]× Rn → λ̃l0 , which also provides a trivialization of
Tp0

L0 and Tp1
L1. The latter trivialization σt=i : R

n → Tpi
Li gives an em-

bedding SO(n) into the fiber of PSO(Li) at pi. We choose one of its lifts
ιi : Spin(n) → Pspin(Li) between two possible choices.

The trivialization σ of λ̃l0 also can be lifted, and we make a choice

(4.8) σ̃ : [0, 1]× Spin(n) ∼= Pspin(λl0).

Now, we can use σ̃, ι0, ι1 to glue Pspin(L0), Pspin(λl0), Pspin(L1) at p0 and p1.
Namely, we glue Pspin(Li) and Pspin(λl0), using ιi ◦ σ̃−1 at pi for i = 0, 1.

We emphasize that with these pre-fixed data, we have the canonical
spin structure of λ for the generator (w, lp): for Tw(γ(t))L0 with 0 ≤ t ≤ 1

3 ,

we have Pspin(L0) and for Tw(γ(t))L1 with 2
3 ≤ t ≤ 1, we have Pspin(L1), and

for λl0(t) for
1
3 ≤ t ≤ 2

3 , we have Pspin(λl0). At t =
1
3 (resp. t = 2

3), we glue
Pspin(λl0) and Pspin(L0) (resp. Pspin(L1)) by ι0 ◦ σ̃−1 (resp. ι1 ◦ σ̃−1).

Similarly, we can also construct a canonical spin structure on a loop C
of paths from l0 to itself.
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4.3. Gluing theorems

We need to recall some elementary facts on determinant (index) spaces of
CR operators. See [37, Section (11c)] for more explanations.

First, we consider the gluing of CR operators on Z− and the one on
holomorphic strips, and investigate the relation between orientation spaces
before and after the gluing. Let S1 be given by Z−, and let S2 be a strip
R× [0, 1]. Consider a J-holomorphic strip connecting two intersection points
p and q and the induced Lagrangian sub-bundle data λ′ along ∂S2 = R×
{0, 1}, which give rise to a weighted CR operator ∂̄λ′,S2

.
The standard gluing theorem for the weighted CR operators ∂̄λ,S1

for
S1, and ∂̄λ′,S2

for S2 says that

(4.9) det(∂̄λ,S1
)⊗ det(∂̄λ′,S2

) ∼= det(∂̄λ�λ′,S3
),

where S3 = Z− and by λ�λ′, we mean the Lagrangian sub-bundle data along
∂S3 obtained by concatenating that of R× {1} ⊂ ∂S2 backwards, that of S1,
and that of R× {0} ⊂ S2. (See (a) of Figure 3.)

Hence, the determinant line bundle det(∂̄λ′,S2
) for the holomorphic strip

is obtained as a tensor product (compare with (2.7))

det(∂̄λ,S1
)⊗ det(∂̄λ�λ′,S3

).

Figure 3: (a) Gluing of S1 and S2 (b) Gluing of S4 and S5.

In the discussion below we need another type of gluing result. Let S4

be a disc with a trivial symplectic bundle E4 and a Lagrangian sub-bundle
F4 (which is not necessarily trivial) along ∂S4 and consider S5 = Z− and
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a trivial symplectic bundle E5 and a Lagrangian sub-bundle F5 along ∂S5

which is fixed sub-bundle for {z ∈ Z− | Re (z) ≥ 0} as in (4.2).
Consider boundary marked points y ∈ ∂S4, and z ∈ ∂S5 and an identifi-

cation E4,y
∼= E5,z which identifies F4,y with F5,z. Then determinant spaces

of the associated CR operators satisfy

(4.10) det(∂̄S4
)⊗ det(∂̄S5

) ∼= det(∂̄S6
)⊗ ∧topF5,z,

where S6 = Z− with a Lagrangian sub-bundle data along ∂S6 obtained
by concatenating that of R× {1} ⊂ ∂S5 backwards, that of S4 counter-
clockwise, and that of R× {0} ⊂ S5. (See (b) of Figure 3.) Here, the new
term ∧topF5,z appears because the elements of the kernel of Cauchy-Riemann
problem on S4 and S5 should have the same boundary value in F4,y = F5,z

at y = z.
Later, we will need the following lemma (due to Fukaya-Oh-Ohta-Ono

(spin) and Seidel (pin)).

Lemma 4.4. [25, Theorem 8.1.1],[37, Lemma 11.17] Let ρ be a loop in the
Lagrangian Grassmannian. Then a choice of pin structure determines an
isomorphism

det(∂D,ρ) ∼= ∧topρ(0).

One way to interpret this lemma is to say that the choice of pin structure
gives rise to a canonical orientation of the determinant space (relative to
ρ(0)). This lemma will be used with (4.10) for a Lagrangian loop ρ of ∂S4

so that we have a canonical isomorphism between det(∂̄S5
) and det(∂̄S6

).
Let us briefly review the argument in the case of a Maslov index zero

loop. First consider ρ to be a constant loop. Then, it has a preferred spin
structure (corresponding to the trivial extension to the disc), which we call
a trivial spin structure. Then, the kernel is identified with ρ(0) whereas the
cokernel is trivial (see Proposition 8.1.4 [25]).

If it is equipped with a non-trivial spin structure, then we add the sign
(−1) to this identification (see Theorem 6.4 [12] or Proposition 8.1.16 [25]).

Note that a constant loop along S1 may admit a non-trivial extension
(from π2(U(n)/O(n))) to a disc D2, which induces a nontrivial spin struc-
ture. We thank the referee for pointing this out and the error in the original
manuscript.

For a non-constant ρ of index zero, we consider a homotopy from ρ to a
trivial loop. This homotopy provides a correspondence between spin struc-
ture of ρ and that of the trivial loop. Then, we can extend the identification
det(∂D,ρ) ∼= ∧topρ(0) accordingly.
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4.4. Γ-equivalences and orientation spaces

We have defined the closed 1-form α (4.1) on Ω(L0, L1; l0), and considered
the Novikov covering Ω̃(L0, L1; l0) by using Γ-equivalences on bounding sur-
faces of paths to define action functional A.

We will use orientation spaces Θ−(w,lp)
(see Definition 4.3) as generators of

the Floer complex instead of the Γ-equivalence class [w, lp] itself. Hence, we
need to identify two orientation spaces Θ−(w,lp)

and Θ−(w′,lp) from Γ-equivalent

representatives (w, lp) and (w′, lp).
For this, we have the following lemma, which is well-known and follows

from Proposition 8.8.1 of [25].

Lemma 4.5. Orientation spaces for different representatives of [w, lp] can
be canonically identified, and we may denote it as Θ−[w,lp]

without ambiguity

for each [w, lp] ∈ Cr(L0, L1; l0).

Proof.Pick two different representatives (w′, lp) and (w, lp) in a Γ-equivalence
class [w, lp]. If we regard w and w′ as paths in Ω(L0, L1; l0), w

′ is homotopic
to w′ � w � w. Thus, w′ can be thought of as the concatenation of w′ � w and
w. Let λw′
w be the associated Lagrangian bundle data of w′ � w along the
boundary. Note that by the definition of Γ-equivalences, w′ � w has energy
zero, and μ(λw′
w) = 0.

To relate Θ−(w,lp)
and Θ−(w′,lp), we consider gluing of ∂λw′�w,D2 to ∂λw,Z−

at a point. (See Figure 4.) Here, the domain of the ∂̄-operator associated
with λw′
w is replaced by D2 (instead of a rectangle) to use gluing theorems
in Subsection 4.3 more conveniently.

Figure 4: Gluing of ∂λw′�w,D2 and ∂λw,Z− .
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The index formula (4.10) tells us that

(4.11) det(∂̄λw,Z−)⊗ det(∂λw′�w,D2) ∼= det(∂̄λw′ ,Z−)⊗ ∧topλz

for some z ∈ ∂Z−. From Lemma 4.4 (with the spin structure on λw′
w chosen
as in Subsection 4.2), we have an identification

(4.12) det(∂̄λw′�w,D2) ∼= ∧topλz.

Combining (4.11) and (4.12), we get the canonical identification

det(∂̄λw,Z−)
∼= det(∂̄λw′ ,Z−).

�

Sometimes, the Γ-equivalence is better understood in terms of attaching
a cylinder to the bounding surface. Namely, we may consider a cylinder C
(loop of paths based at l0) so that C � w = w′. Similar proof can be used to
identify two orientation spaces in this sense also.

Now, naive generators of the Floer complex are the critical points of A
which are given by

(4.13) Cr(L0, L1; l0) =
{
[w, lp] ∈ Ω̃(L0, L1; l0)

∣∣∣ p ∈ L0 ∩ L1

}
,

where lp is the constant path at p. If an element c ∈ Π(L0, L1; l0) is repre-
sented by the loop C of π1(Ω(L0, L1; l0)), then the action of Π(L0, L1; l0) on
Cr(L0, L1; l0) is defined by

c · [w, lp] = [C � w, lp].

From this action, one can naturally define a R[Π(L0, L1; l0)]-module which is
generated by elements in Cr(L0, L1; l0). The actual definition of the cochain
complex should also involve the orientation spaces associated to the gener-
ators in (4.13). More precisely, consider the formal sum

r =
∑

μ([w,lp])=k

a[w,lp]x[w,lp]

where a[w,lp] ∈ R and x[w,lp] ∈
∣∣∣Θ−[w,lp]

∣∣∣
R
.
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Let

supp(r) :=
{
[w, lp] ∈ Cr(L0, L1; l0) | a[w,lp]

}
�= 0.

We call the sum r a Floer cochain of degree k if

#(supp(r ∩ {[w, lp] | A([w, lp]) ≤ λ})) < ∞

for any λ ∈ R.
We denote the set of all Floer cochains of degree k by CF k

R(L0, L1; l0)
and we define

(4.14) CF ∗R,l0(L0, L1) :=
⊕
k

CF k
R(L0, L1; l0).

From the Π(L0, L1; l0)-action Cr(L0, L1; l0), we get a natural ΛR(L0, L1; l0)-
module structure of CF ∗R,l0

(L0, L1).

5. Spin profiles

Consider G-invariant Lagrangian submanifolds and suppose further that
they admit G-invariant spin structures. Although spin structures are G-
invariant, group actions on the frame bundles of Lagrangians do not lift in
general to the one on spin bundles. For example, consider a reflection A ∈
O(n), and its lift Ã∈Pin(n). Then, A2=Id, but we have Ã2=(−1)r(r−1)/2e
where r is the rank of Ker(Id+A) [37, Lemma 11.4]. Hence, the Z/2-action
given by A on Rn induces the action on Pin(n) only up to signs, and the
sign error indeed has an important geometric origin. For the general group
actions, we will regard these sign differences as a group cohomology class,
and call them spin profiles.

5.1. Spin structures and spin profiles

Before presenting the definition of spin profiles, we briefly recall basic facts
on spin structures for reader’s convenience.

Let Cl(Rn) be the Clifford algebra. There is a natural embedding Rn →
Cl(Rn) and vectors satisfy the relation v2 = ||v||2e for the unit e ∈ Cl(Rn).
Then, Pin(n) ⊂ Cl(Rn)× is defined as the multiplicative subgroup gener-
ated by Sn−1 ⊂ Rn, and Spin(n) ⊂ Cl(Rn)× the subgroup of Pin(n) whose
elements are given by products of even number of generators in Sn−1. Both
of homomorphisms Pin(n) → O(n) and Spin(n) → SO(n) are induced by
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the twisted adjoint action on Rn, sending w �→ −vwv for each generator
v ∈ Sn−1.

A spin structure on L is a principal Spin(n) bundle π : Pspin(L) → L
which is a fiberwise double cover of the principal orthonormal frame bun-
dle π′ : PSO(L) → L. Let pr : Pspin(L) → PSO(L) be the covering map such
that π = π′ ◦ pr. H1(L;Z/2) acts on the set of isomorphism classes of spin
structures on L and the action is free and transitive. Thus, it is an affine
space modeled on H1(L;Z/2). In fact, Milnor [32] has shown that a spin
structure of a vector bundle on a simplicial complex can be understood as
a trivialization (or stable-trivialization if the rank of the bundle is less than
3) of the vector bundle on the 1-skeleton, which can be extended to the
2-skeleton. Then, the action of H1(L;Z/2) can be interpreted as changing
the trivialization of the vector bundle along the non-trivial loops in the 1-
skeleton. For example, homotopy classes of trivializations of a rank n vector
bundle on [0, 1] (with fixed trivialization at the end points) could differ by a
loop of π1(SO(n)), but trivial and non-trivial loops have different lifts into
Spin(n).

We are particularly interested in the vector bundle on a circle. If the
vector bundle F → S1 is spin, then there are two choices of spin structures.
However, there is no preferred choice unless we know that the vector bundle
F can be extended to F ′ → D2 with ∂D1 = S1. If F has extension, there is
a unique spin structure on F → S1 which extends to F ′ → D2.

Let us first make the following necessary assumption.

Assumption 5.1. Let L be a connected spin (orientable) Lagrangian sub-
manifold with a choice of spin structure and suppose the G-action on L
is orientation preserving. We assume G preserves the isomorphism class of
the given spin structure. i.e. a pulled-back spin structure by g is isomor-
phic to the original one for each g ∈ G. Such spin structures are said to be
G-invariant.

Remark 5.2. We do not consider the case that spin structure is not G-
invariant.

Remark 5.3. Recall that L is said to be relatively spin, if there exist
a class w ∈ H2(M,Z/2) such that the restriction of (w + w2(L)) to L is
zero, and hence there exist a bundle V on 3-skeleton of M , such that (V ⊕
TL)|L becomes spin. Floer homology between two relatively spin Lagrangian
submanifolds can be defined only if they become relatively spin with the
same V .
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With G-actions, we can work with w ∈ H2
G(M,Z/2) so that there exist a

G-bundle V on 3 skeleton of M with (V ⊕ TL)|L being spin and G-invariant.
We leave further details to the readers, and consider the case that L is spin
from now on.

Given a G-action on L, let us denote by Ag : L → L its action Ag(x) =
g · x for g ∈ G and x ∈ L, and let a G-invariant metric be given on M . We
denote the orthonormal frame bundle of L by PSO(L), which has an in-
duced G-action denoted by ASO

g : PSO(L) → PSO(L). In fact, ASO
g provides

an isomorphism

(5.1) (Ag−1)∗PSO(L) → PSO(L).

Let us fix a spin structure of L satisfying the above assumption 5.1.
We would like to lift ASO

g : PSO(L) → PSO(L) to a map Aspin
g between spin

bundles

(5.2) Aspin
g : Pspin(L) → Pspin(L).

Such a lift exists by the assumption 5.1 and the standard covering theory
argument. (5.2) Indeed, an explicit isomorphism of bundles over PSO(n)

Tg : (Ag−1)∗Pspin(L)
∼=→ Pspin(L)

from (5.2) can be viewed as a lift of ASO
g in (5.1). Note that the lift is not

unique, as it can be multiplied by (−1) ∈ Spin(n) to produce another one.
We always choose the lift Aspin

e for the identity element e ∈ G to be the
identity map on Pspin(L).

For g, h ∈ G, we have a natural map given by the composition

(A(gh)−1)∗Pspin(L) = (Ag−1)∗(Ah−1)∗Pspin(L)(5.3)

(Ag−1 )∗Th→ (Ag−1)∗Pspin(L)
Tg→ Pspin(L).

But it does not necessarily equal Tgh, but possibly differs by multplication
of ±1 ∈ Spin(n) if the group action on the frame bundle does not lift to
the one on the spin bundle. Note that this difference ±1 is locally constant
function on x ∈ L.
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Definition 5.4. The function spfL : G×G → Z/2 is defined implicitly by
the relation

(5.4) Tg ◦ (Ag−1)∗Th = (−1)spfL(g,h)Tgh,

where ±1 means the multiplication by ±1 ∈ Spin(n).

If L has several connected components, we make the following assump-
tion which enables us to get a constant spfL, not depending on connected
components. See (ii) of Subsection 5.3 below for more discussions on this
issue.

Assumption 5.5. If L is not connected (but L/G is connected), then we
assume that component-preserving subgroups of G are the same for every
connected components of L and normal in G. We assume further that each
connected component has the same spin profile with respect to the action
of the component-preserving subgroup.

We will show that spfL : G×G → Z/2 defines an second group coho-
mology class which is independent of choices of Tg’s. Thus, for example, if
we have an induced group action on spin bundles, spfL is cohomologous to 0.

Proposition 5.6. spfL defines group cohomology class in H2(G;Z/2), which
we call a spin profile of L. The function spfL depends on the choices of
the lifts Aspin

g , ∀g ∈ G, but the resulting group cohomology class [spfL] is
independent of these choices.

Proof. We first show that spfL is indeed a cocycle for the group cohomology
H∗(G,Z/2).

Let G′ be the set of all liftings of ASO
g for every g ∈ G. Clearly, G′ forms

a group and the map G′ → G sending ±Aspin
g → g is 2 to 1. The kernel

of G′ → G consists of the liftings of the identity, which are ±1 ∈ spin(n).
Therefore we get the following exact sequence of groups

(5.5) 0 → Z/2Z → G′ → G → 1.

The choice of lifts Aspin
g ∈ G′ for each g ∈ G defines a section σ : G → G′

by setting σ(g) = Aspin
g ), which may not be a group homomorphism. Recall

that σ(e) = Aspin
e is assumed to be the identity.

As Z/2Z is abelian, it naturally admits a G-module structure by conju-
gation: for h ∈ Z/2Z we write this conjugation action as hg = σ(g)hσ(g)−1,
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which is independent of the choice of σ. From general theory of group ex-
tension, extensions G′ as in (5.5) are classified by a cohomology class in
H2(G,Z/2Z) given by so called the factor set

[g, h] = σ(g)σ(h)σ(gh)−1.

Since [g, h] : Pspin(L) → Pspin(L) covers the identity from PSO(L) to itself,
it should be either ±1 ∈ spin(n). Thus, the factor set is indeed a map

[ , ] : G×G → Z/2Z

which exactly agrees with spfL in the definition 5.4.
The following lemma is standard, whose proof is omitted. (see [43, Sec-

tion 6.6].)

Lemma 5.7. We have

1) [g, e] = [e, g] = 0 for all g ∈ G,

2) [g, h]f − [fg, h] + [f, gh]− [f, g] = 0 for all f, g, h ∈ G.

Here, we used additive notation for Z/2Z to emphasize that it is abelian.
From the lemma we get a cohomology class [ , ] in H2(G;Z/2Z). Now

we show that the class does not depend on the choice of a section σ. Let
σ′ be another section (which is also regarded as a lifting of each g in G to
an isomorphism Pspin(L) → Pspin(L) covering g : L → L). Then, there exists
β : G → Z/2Z such that

σ′(g) = β(g)σ(g)

for all g ∈ G. The factor set [ , ]′ corresponding to σ′ is

[g, h]′ = β(g)σ(g)β(h)σ(h)σ(gh)−1β(gh)−1

= β(g) + σ(g)β(h)σ(g)−1 + σ(g)σ(h)σ(gh)−1 + β(gh)−1

= [g, h] + β(h)g − β(gh) + β(g).

Therefore, [ , ] and [ , ]′ are cohomologous and give the same cohomology
class [spfL] ∈ H2(G;Z/2Z). �

5.2. Comparison of spfL for two different spin structures on L

Once a G-invariant spin structure (satisfying assumption 5.1) is fixed, the
spin profile of L is uniquely determined as seen in the previous subsection.
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We now analyze the dependence of the spin profiles [spfL] on the choice of
spin structures on L.

Proposition 5.8. Let s and t be two G-invariant spin structures and de-
note the resulting spin profiles by [spfsL] and [spftL], respectively. Then, there
exists an exact sequence

(5.6) H1(L;Z/2Z)G → H2(G;Z/2Z) → H2(πorb
1 [L/G];Z/2)

such that the first map sends the difference of two spin structures s− t ∈
H1(L;Z/2Z)G to the difference of two spin profiles [spfsL]− [spftL].

The proof will occupy the remainder of this subsections. We may assume
that the frame bundle of L has rank greater than 2 via stabilization (taking a
direct sum with a trivial bundle), so that π1 of the fiber is Z/2Z. We can also
extend the group action trivially. Orientation analysis of Lagrangian Floer
theory can be modified suitably as in [25, p.681-682] since the orientation
data from a trivial bundle pair has the canonical orientation.

If L is spin, the fibration SO(n) → PSO(L) → L induces the following
short exact sequence

(5.7) 1 → Z/2Z → π1(PSO(L))
p→ π1(L) → 1.

The inclusion of the fiber induces the first injection π1(SO(n))→π1(PSO(L)).
One can check that this is in fact a central extension.

Let s : π1(L) → π1(PSO(L)) be a homomorphism, which is a section of
p, i.e p ◦ s = id.

Lemma 5.9. A choice of spin structures on L is equivalent to a choice of
a section s of the map p of (5.7).

Proof. If we are given a spin structure Pspin(L) on L, then from the diagram

1 ��

��

π1(Pspin(L))
q ��

π

��

π1(L) ��

=

��

1

1 �� Z/2Z �� π1(PSO(L))
p �� π1(L) �� 1,

s := π ◦ q−1 is a desired section. Note that p ◦ s = p ◦ π ◦ q−1 = q ◦ q−1 = id.
Conversely, suppose there exists a section s : π1(L) → π1(PSO(L)) of

(5.7). Then, the image of s is an index 2 subgroup of π1(PSO(L)), which



Finite group actions on Lagrangian Floer theory 351

determines a 2-fold covering of PSO(L). Denote this covering by Pspin(L)
and let F be a general fiber of Pspin(L) → L.

π1(F ) ��

��

π1(Pspin(L))
q ��

π

��

π1(L) ��

=

��

π0(F )

1 �� Z/2Z �� π1(PSO(L))
p �� π1(L) �� 1

From the construction, q in the diagram above is an isomorphism and hence
π1(F ) = π0(F ) = 1. Then, [42, Theorem 1.4] tells us that Pspin(L) is indeed
a spin structure on L. �

A choice of such a section geometrically means a choice of trivialization
of TL along each based loop in π1(L). If t : π1(L) → π1(PSO(L)) is another
section, then their difference s− t is a group homomorphism from π1(L) to
Z/2Z. i.e an element of

Hom(π1(L),Z/2Z) = Hom(H1(L),Z/2Z) = H1(L;Z/2Z).

Now, the bundle PSO(L) → L is G-equivariant, and hence we can con-
sider an induced map of orbifold fundamental groups

porb : πorb
1 [PSO(L)/G] → πorb

1 [L/G].

Note that porb is surjective. Indeed given any path γ from x0 to g(x0) for
g ∈ G, PSO(L)|γ is a trivial SO(n)-bundle over γ. Thus, if x̃0 is a base point
in PSO(L) lying over x0, we can find a path from x̃0 to gx̃0 which covers γ.

The following lemma is straightforward.

Lemma 5.10. We have the commutative diagram of group homomorphisms
as below.
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1

��

1

��

1

��
1 �� Z/2Z ��

��

Z/2Z ��

��

1 ��

��

1

1 �� π1(PSO(L)) ��

p

��

πorb
1 [PSO(L)/G] ��

porb

��

G ��

=

��

1

1 �� π1(L) ��

��

s

��

πorb
1 [L/G] ��

��

G ��

��

1

1 1 1

Analogously to Lemma 5.9, we show that the splitting of the second
column in the above diagram is equivalent to having a G-action on the spin
bundle induced by the section s of (5.7). In other words, the obstruction to
lift the G-action on PSO(L) to Pspin(L) lies in the second group cohomology
class determining the group extension in the second column.

Lemma 5.11. Fix a spin structure on L which is induced by a section

s : π1(L) → π1(PSO(L))

of (5.7). The G-action on L (and PSO(L)) can be lifted to Pspin(L) if and
only if there exists a section sorb of porb which fits into the following diagram.

π1(L)

s

��

�� πorb
1 [L/G]

sorb

��
π1(PSO(L)) �� πorb

1 [PSO(L)/G]

where horizontal maps come from natural exact sequences

1 → π1(L) → πorb
1 [L/G] → G → 1

and

1 → π1(PSO(L)) → πorb
1 [PSO(L)/G] → G → 1.



Finite group actions on Lagrangian Floer theory 353

Proof. Firstly, suppose there is a section sorb. We consider the universal cover
Ω of PSO(L) which also can be regarded as a covering of [PSO(L)/G]. Since
Ω is simply connected, it is the orbifold universal cover of [PSO(L)/G] and
hence πorb

1 [PSO(L)/G] acts on it. πorb
1 [L/G] and its subgroup π1(L) also act

on Ω via sorb
(
πorb
1 [L/G]

)
≤ πorb

1 [PSO(L)/G] and sorb(π1(L)) = s(π1(L)) ≤
πorb
1 [PSO(L)/G]. We take the quotient of Ω by π1(L)-action so that the

resulting quotient space is exactly the spin bundle Pspin(L) associated to s.
Then, clearly πorb

1 [L/G]/π1(L) ∼= G acts on Pspin(L).
On the other hand, if we have a G-action on Pspin(L) which makes

Pspin(L) → L and Pspin(L) → PSO(L) G-equivariant, then we get a group
homomorphism πorb

1 [Pspin(L)/G] → πorb
1 [L/G] and πorb

1 [Pspin(L)/G] →
πorb
1 [PSO(L)/G]. The first map should be an isomorphism since the only

element possibly contained in the kernel is a loop in the fiber and the fiber
is simply connected. Thus,

(5.8) πorb
1 [L/G]

∼=
��

�� πorb
1 [PSO(L)/G]

πorb
1 [Pspin(L)/G]

��

gives a desired section. �

To prove Proposition 5.8, we need a slightly different commutative dia-
gram, which is obtained from the above. The following lemma is given for
this purpose, whose proof is elementary and omitted.

Lemma 5.12. Let s(π1(L)) be the image of the composition of inclusions
π1(L)

s→ π1(PSOL) → πorb
1 [PSO(L)/G]. If the section s corresponds to the

G-invariant spin structure on L(see Lemma 5.9), then s(π1(L)) is a normal
subgroup of πorb

1 [PSO(L)/G].

Consider the central column of the diagram in Lemma 5.10, and divide
the 2nd and the 3rd rows by s(π1(L)) and π1(L) respectively to obtain the
following diagram
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(5.9) 1

��

1

��

1

��
1 �� 1 ��

��

Z/2Z ��

��

Z/2Z ��

��

1

1 �� s(π1(L)) ��

∼=
��

πorb
1 [PSO(L)/G] ��

porb

��

G′s ��

��

1

1 �� π1(L) ��

��

πorb
1 [L/G] ��

��

G ��

��

1

1 1 1 .

Note that the 2nd column is independent of the choice of spin structure
s. However, the 3rd column depends on the choice of s(π1(L)), and only
makes sense if s is a G-invariant spin structure (so that s(π1(L)) is a normal
subgroup).

Recall that the obstruction to lift G-action to the spin bundle lies in
the existence of a section of porb. The bottom left square diagram of (5.9)
shows that such a section exists at least on the subgroup π1(L) of π

orb
1 [L/G].

Therefore, the obstruction descends to a group extension in the last column.
(See [43, (Ex 6.6.4)].) Therefore, the extension of G in the last column gives
rise to the second cohomology class [spfsL] ∈ H2(G,Z/2), the spin profile of
the spin bundle determined by s. For a different G-invariant spin structure
t : π1(L) → π1(PSO(L)), we get a similar diagram for the extension G′t, and
a possibly different spin profile [spftL] ∈ H2(G,Z/2).

Remark 5.13. The discussion in the first paragraph of the proof of Lemma
(5.11) shows that G′s genuinely acts on Pspin(L), but its quotient G may not.

We recall from [43, (Ex 6.6.4)] that from the 2nd and the 3rd columns
of the diagram (5.9) canonically induce a homomorphism H2(G;Z/2Z) →
H2(πorb

1 [L/G];Z/2) which sends the cohomology class of the extension of
the 3rd column to the one of the 2nd column. It implies that the co-
homology class [spfsL] maps to the extension class of the 2nd column in
H2(πorb

1 [L/G];Z/2) under this induced homomorphism. But, the image of
[spfsL] is independent of the choice of spin structure s. This proves that the
image of [spfsL] and [spftL] coincide under this homomorphism.
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From [43, (6.8.3)], we have the following exact sequence called Lyndon-
Hochschild-Serre spectral sequence from the 3rd row of the diagram (5.9):

H1(L;Z/2Z)G = H1(π1(L);Z/2Z)
G → H2(G;Z/2Z)(5.10)

→ H2(πorb
1 [L/G];Z/2).

Therefore, the difference of two spin profiles [spfsL]− [spftL] which maps to
zero under the last homomorphism, is in the image ofH1(L;Z/2Z)G. As both
s and t are G-invariant spin structures, the difference of two spin structures
s− t lies in H1(L;Z/2Z)G. The first map in (5.10) sends it to the difference
of two spin profiles [spfsL]− [spftL]. This proves the proposition 5.8.

In addition, we explain how s− t associates spfsL and spftL in a more
geometric way. For each g ∈ G, choose a path γg from x0 to g(x0) and a
trivialization of TL|γg

i.e. an orthonormal frame of TL along γg. Then, the
frame gives a path connecting x̃0 and g(x̃0) in PSO(L). The composition

lg,h := h(γg) � γh � γgh ∈ π1(L)

(representing the element [γg][γh][γgh]
−1 in πorb

1 [PSO(L)/G]) is a loop based
at x0 on which a trivialization of TL is fixed. If this trivialization agrees with
t(lg,h), then we define [g, h]t = 1 and [g, h]t = 0 otherwise. [ , ]t is exactly the
factor set representing t in the cohomology. Now, it is not difficult to check
that the factor set corresponding to s is given by

[g, h]s = (s− t)(lg,h) + [g, h]t

where (s− t)(lg,h) is the evaluation of an 1-cocycle s− t ∈ H1(L;Z/2Z)
at lg,h.

5.3. Generalizations

(i) We finish the section with a short discussion on orientation reversing
actions. Suppose that L is oriented, and a half of G-action on L is orientation
reversing. Then, (Ag)

∗TL has opposite orientation compared to TL for an
orientation reversing g.

We recall from [30] the following well-known fact on the correspon-
dence of spin structures on an oriented vector bundle and spin structures
on the vector bundle with the reversed orientation. Let F → B be an ori-
ented vector bundle with transition functions gij on a cover {Ui}i∈I of B.
Choose maps hi : Ui → O(n) \ SO(n), and define the new transition maps
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by hi ◦ gij ◦ h−1j . Then a new vector bundle F op is obtained which is iso-
morphic to F via the maps hi. (This is not an isomorphism between ori-
ented bundles.) Different choices of hi yield isomorphic bundles. Similarly,
by choosing hi : Ui → Pin(n) \ Spin(n), we can find an isomorphism from
spin structures Pspin(F ) to Pspin(F

op). This provides an isomorphism be-
tween sets of spin structures of F and F op.

Back to our case, consider an oriented Lagrangian submanifold L and
its spin structure Pspin(L).

Assumption 5.14. We require that the spin structure (Ag)
∗Pspin(L) (of

Lop) is isomorphic to the given spin structure Pspin(L)(of L) for each orien-
tation reversing g ∈ L in the sense described above.

For each g, we choose an isomorphism

Tg : (Ag−1)∗
(
PspinL

)
→ PspinL.

Then, the spin profile of L is defined by (5.4) as well.

Remark 5.15. Seidel [37] used an isomorphism between pin structures

(Ag)
∗(PpinL⊗ ∧topTL

) ∼= PpinL.

The additional factor ∧topTL is not necessary for us since we only deal with
orientable Lagrangian submanifolds here and hence ∧topTL is a trivial bun-
dle.

(ii) Here, we explain more details on spin profiles when L is not connected
(but a G-orbit). In such a case, we have made Assumption 5.5.

As observed before, spfL is a locally constant function, but not neces-
sarily a constant function when L is not connected, since signs in (5.4) may
also depend on connected components of L. We do not know how to handle
the general case, but we add more arguments under the Assumption 5.5
together with 5.16 below. First of all, from Assumption 5.5 there exists a
normal subgroup G0 of G such that it preserves each connected component
of L, and G/G0 parametrizes the set of components.

Assumption 5.16. The following exact sequence splits

1 → G0 → G → G/G0 → 1.
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For the rest of the paper, we will only deal with disconnected Lagrangian
submanifolds satisfying the above assumption also. So,one can express G as
a semi-direct product G1 �G0 where G1

∼= G/G0. For later use, let φ : G1 →
Aut(G0) determine the semi-direct product G1 �G0. The main advantage
here is that the quotient group G/G0 also can be viewed as a subgroup
of G and hence, acts on L purely by permuting connected components. In
particular, we can label connected components of L by G1(∼= G/G0) ≤ G.

We fix a G0-invariant spin structure on the connected component C0

corresponding to 1 ∈ G1, and pull it back to the component Cα correspond-
ing to α(∈ G1) by α−1. As before we take a lift of G0-action on the spin
bundle on C0 which gives rise to a spin profile spf0 ∈ H2(G0;Z/2). Likewise,
we get a spin profile spfα ∈ H2(G0;Z/2) for each connected component Cα

associated to α = (a, 1) ∈ G1(≤ G). Assumption 5.5 implies that spfα = spf0
for all α ∈ G1.

For g = (g1, g0) ∈ G = G1 �G0 and x = αx0 ∈ Cα, note that the con-
nected component containing g · x is labeled by (g1a, 1). So, Pspin(L)x =
Pspin(L)x0

and Pspin(L)g·x = Pspin(L)(a−1g−1
1 ,1)(g1,g0)·x = Pspin(L)(1,φa(g0))·x0

.
Now we define a map Pspin(L)x → Pspin(L)g·x by the following diagram:

Pspin(L)x �� Pspin(L)g·x

Pspin(L)x0
�� Pspin(L)φa(g0)·x0

where we abbreviate (1, φa(g0)) · x0 to φa(g0) · x0(∈ C0) to emphasize that
the second row only depends on the choice of lift of G0-action to the spin
bundle on C0.

Proposition 5.17. Under Assumption 5.5, the above choice of lifts pro-
duces spfL which does not depend on connected components of L.

Proof. The condition spfα = spf0 implies that spf0 is invariant under the
conjugation action of α on G0. The rest of the proof follows easily by the
direct computation and is omitted. �

Analyzing component-preserving subgroups is subtle in general since this
involves a study of conjugacy relation among subgroups in G. For example,
two component-preserving subgroups G1 and G2 are always conjugate to
each other, but possibly conjugated by more than one element in G. We have
only dealt with the case when G can be decomposed nicely into “component
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preserving” and “permuting” subgroup so that there is no complicated issue
on conjugacy classes. We postpone more general discussion to [14].

6. Equivariant Fukaya categories for exact symplectic
manifolds

The Floer action functionals are single-valued for exact symplectic mani-
folds, and hence Novikov theory is not needed in such cases. Equivariant
Fukaya categories can be constructed in a relatively simple way (than the
general case), and in fact this only requires a choice of a group cohomology
class in H2(G,Z/2). We remark that Seidel defined equivariant Fukaya cat-
egory for G = Z/2, and it corresponds to the non-trivial group cohomology
class H2(Z/2,Z/2) in our language.

In this section, definitions of equivariant Lagrangian branes and equiv-
ariant Fukaya categories for exact symplectic manifolds will be provided.
We will use notations and constructions by Seidel in [37] to which we refer
readers for more details. At the end, we consider G-invariant parts of mor-
phisms in these categories, which defines orbifolded Fukaya categories (or,
its first approximation as we should add the theory of bulk deformation by
twisted sectors).

Let (M,ω) be an exact symplectic manifold with an action of a finite
group G. Suppose that we have a G-invariant quadratic volume form η2 on
M , and a G-invariant almost complex structure JM . Let αM : Gr(TM) →
S1 be a square phase map of η defined by η(v1 ∧ · · · ∧ vn)

2/|η(v1 ∧ · · · ∧ vn)|2
for any basis of V in the Lagrangian Grassmannian Gr(TM).

A Lagrangian brane in the sense of [37] is a triple

L� = (L, α�, P �),

where L is an exact Lagrangian submanifold with a grading α� : L → R sat-
isfying αM (TxL) = exp(2πiα�) and a pin structure P � on it. For simplicity,
we assume that L is oriented, and P � is a spin structure on L.

Let s be a group cohomology class H2(G,Z/2).

Definition 6.1. A triple (L, α�, P �) is called an s-equivariant brane if

1) L is preserved by the G-action on M ;

2) α� is G-invariant;

3) The isomorphism class of P � is G-invariant and has a spin profile s.
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We review each condition. If L is not preserved by G-action, then one can
consider its equivariant family ∪g · L as an equivariant immersion from |G|-
copies of L to M . For simplicity, we require that each intersection g(L) ∩ L
is either empty or equal to L for all g ∈ G.

Condition on G-grading can be met as follows. If L is connected, then
α� ◦ g − α� is a locally constant function. Thus, α� ◦ g − α� = c on L, but
since g|g| = 1 we have c = 0. That is, α is automatically G-invariant. If L
has several connected components, we first fix a grading on one component
which is invariant under the action of the subgroup preserving the given
component, and then define the gradings on other components by the group
action.

As revealed before, a spin structure P � has an associated spin profile. If
it is not equal to s, one may try to change P � to another spin structure and
match the associated spin profile with s making use of the Proposition 5.8.
However, it is not possible in general and (3) is, in fact, a critical condition.

The setup of Floer cochain complexes in [37] briefly goes as follows.
Let (L�

0, L
�
1) be two exact Lagrangian branes such that L0 and L1 intersect

transversely at y ∈ L0 ∩ L1. (In fact, transversal intersection conditions are
not necessary as we are able to choose perturbation data (H01, J01) instead.
We return to this point in a moment.) Then, the pair of linear Lagrangian
branes (k = 0, 1) at y is given by

Λ�
k,y =

(
Λk,y = (TLk)y, α

�
k,y = α�

k(y), P
�
k,y = (P �

k)y
)
.

Their index and orientation space are defined as in [37, (11.25)] and denoted
by

i(y) = i(Λ�
0,y,Λ

�
1,y), o(y) = o(Λ�

0,y,Λ
�
1,y).

Given a regular Floer datum, the graded Floer cochain group is defined as

CF k(L�
0, L

�
1) =

⊕
o(y)=k

|o(y)|R.

(See [37, (12.16)].)

Remark 6.2. If one changes the Pin structure P �
k by multiplying (−1)εke

for k = 0, 1, then the resulting Pin structure is isomorphic to the original one,
but the orientation space o(y) is altered by the multiplication of (−1)ε1+ε2 .



360 C.-H. Cho and H. Hong

A Floer datum in [37] for a pair of objects (L0, L1) consists of

H01 ∈ C∞([0, 1], C∞c (M,R)), J01 ∈ C∞([0, 1],J ),

where J is the space of compatible almost complex structures on M . They
are required to satisfy that φ1(L0) is transverse to L1 where φ1 is the time
one map of the Hamiltonian vector field of H01. Given g ∈ G, one can push
forward the Floer datum to get g(H01), g(J01) in an obvious way

We are now ready to define s-equivariant Fukaya categories (modifying
the construction of Fukaya categories by Seidel).

Definition-Theorem 6.3. Let (M,ω) be an exact symplectic manifolds.
For s ∈ H2(G,Z/2), we define the s-equivariant Fukaya category as follows.
Objects of the s-equivariant Fukaya category are s-equivariant branes. A
morphism between two s-equivariant branes L�

0 and L�
1 is given by

CF ∗(L�
0, L

�
1), on which G acts linearly.

There exist A∞-operations

mk : CF ∗(L�
0, L

�
1)× · · · × CF ∗(L�

k−1, L
�
k) → CF ∗(L�

0, L
�
k), k = 1, 2, . . .

which are compatible with the G-action. i.e. for k = 1, 2, . . .

(6.1) mk(gx1, . . . , gxk) = gmk(x1, . . . , xk).

Remark 6.4. The definition above should include a G-equivariant flat vec-
tor bundle for each s-equivariant brane, but we omit it for simplicity and
postpone it to Section 12.

On the technical level, we should be able to handle the problem of equiv-
ariant transversality involved in the A∞-operations on Fukaya categories.
Assuming transversality for a moment, we show that G-actions on mor-
phisms can be defined canonically if both Lagrangian branes L�

0 and L�
1

have the same spin profile [spfL0
] = [spfL1

] = s ∈ H2(G;Z/2). Then one can
modify one of spfLi

’s to have the strict identity spfL0
= spfL1

by changing

the lifts Aspin
g ’s appropriately. For simplicity, we assume that this is the case

from now on.

Assumption 6.5. We assume that

spfL0
= spfL1

.
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We emphasize that this condition is necessary to define a group action
on the Floer complex.

Lemma 6.6. Consider two s-equivariant branes (L�
0, L

�
1). Suppose there

exists a G-invariant regular Floer datum for these branes. Then, there exists
a natural G-action on the Floer cochain group

⊕
o(y)=k |o(y)|R.

Proof. The equivariance of perturbation data implies that for each g ∈ G,
the pulled-back of each equivariant brane L�

i under the g-action is isomorphic

to L�
i itself for i = 0, 1. Hence, it is easy to see that for the intersections

y ∈ L0 ∩ L1 and y′ := g(y) ∈ g(L0) ∩ g(L1) = L0 ∩ L1,

i(y) = i(y′), o(y) ∼= o(y′).

The precise isomorphism on determinant lines o(y) ∼= o(y′) has to be con-
sidered carefully. Recall that determinant line is defined from a Lagrangian
path λ from TyL0 to TyL1 (from the grading of each Lagrangian) whose spin
structure is determined from the spin structure of each Lagrangian. Since
grading is G-invariant, g-action image of the Lagrangian path λ for o(y) can
be used to define o(y′). Here g(λ) has an induced canonical spin structure
from L0 and L1 (not from the g-action). This defines an isomorphism

og : o(y) → o(y′).

But the (canonical) spin structure for o(y′) from L0 and L1 at y′ can be
compared to the spin structure of o(y) via group action, from the choice of a
lift Tg,Li

: (Ag−1)∗Pi → Pi for each g (i = 0, 1). Since the lifts Tg,Li
for g ∈ G

do not define a group action due to sign error (5.4), the maps {g �→ og | g ∈
G} do not define a group action on

⊕
o(y)=k |o(y)|R, either. Instead, we have

og ◦ oh = (−1)spfL0
(g,h)+spfL1

(g,h)ogh.

However, both L0, L1 have the same spin profile s = spfL0
= spfL1

by the
definition of s-equivariant branes. Hence, the sign error cancels out and the
maps {g �→ og | g ∈ G} define a G-action on the Floer cochain group. �

In what follows, we shall describe how to take care of equivariant trans-
versality issue. Indeed, one can adapt the following algebraic technique in-
troduced by Seidel in the exact case.

Lemma 6.7. [38, Lemma 4.3] Let D be an A∞-category with an action of
a finite group G, and D = H(D), the associated cohomology level category.
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Suppose that we have another graded linear category C with a G-action, and
an equivalence F : D → C, which is G-equivariant. Then, there is an A∞-
category C with H(C) isomorphic to C, which carries an action of G, and
an equivariant A∞-functor F : D → C such that H(F) = F .

Seidel observed that one can make G act freely on the set of objects of
D via introducing additional labels to objects in C with elements of a group
G (possibly making several copies of the same object). Now, it is much
easier for D to become G-equivariant. Then, the homological perturbation
type lemma above is applied to obtain an equivariant A∞-structure on the
category C.

Let us spell out how to use this lemma to construct the A∞-operations
in the s-equivariant Fukaya category without a transversality assumption.
First, we define the A∞-category D and a free G-action on it.

Definition 6.8. An object of D is given by (L�, g) for g ∈ G. Here, L� =
(L, α�, P �) is an s-equivariant brane ofM and (L�, g) denotes an s-equivariant
brane given by (L, α�, (g−1)∗P �). (L and α� are G-invariant as usual.) A mor-
phism between (L�

0, g) and (L�
1, h) is

CF ∗((L�
0, g), (L

�
1, h)).

We fix the perturbation datum (H01,g, J01,g) of ((L
�
0, 1), (L

�
1, g)) for each g ∈

G and use the push forward datum (g(H01,g−1h), g(J01,g−1h)) for an arbitrary

pair ((L�
0, g), (L

�
1, h))

A∞-operations on D are defined in a standard way with aid of similarly
chosen perturbation data for higher operations [37].

Lemma 6.9. A∞-category D admits an action of G.

Proof. On the object level, g ∈ G sends (L�, h) to (L�, gh). The G-action on
the set of objects is obviously free due to the additional index h in (L�, h).
Now we clarify how G acts on the morphism spaces. For simplicity, let us
look at the following g-action

CF ((L�, 1), (L�, h)) → CF ((L�, g), (L�, gh))

and other cases can be dealt in the same way.
Let L0 ∩ L1 transversally intersect at y and denote g(y) ∈ g(L0) ∩

g(L1) = L0 ∩ L1 by y′. Then, we have i(y) = i(y′) from the G-invariant
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gradings. Then, the group action og : o(y) → o(y′) is defined in an obvi-
ous way. Recall that perturbation data for the left and the right hand sides
are (H01,h, J01,h) and (g(H01,h), g(J01,h)) respectively. Moreover since the
spin structure for the brane (L�, k) is defined as the pulled-back one via k,
the g-action is compatible with A∞-operations. Therefore, the map g �→ og
defines a group action on D. No ambiguity arises since g always sends an
object to another. �

Remark 6.10. We do not have to identify (g−1)∗P � and P � for D as they
are now spin structures for different objects (L�, 1) and (L�, g) in D. Thus,
D can actually be enlarged to include equivariant branes with various spin
profiles.

According to Lemma 6.7, it suffices to define a graded linear category
C with a G-action and a G-equivariant equivalence F : D → C in order to
define the s-equivariant Fukaya category. The graded linear category C is a
refined version of Donaldson-Fukaya category in the sense that objects are
given with gradings and pin structures.

Definition 6.11. Fix s ∈ H2(G,Z/2). The linear category C is defined as
follows. Objects of C are s-equivariant branes L�’s. A morphism between L�

0

and L�
1 is given by HF ∗(L�

0, L
�
1). The composition of morphisms is defined

by the triangle product as usual.

Note that morphisms are given by the Floer cohomology groups, rather
than Floer cochain complexes. Our next task is to endow C with a group
action. We carry out the construction of a group action on C, making use of
the idea of weak group actions on chain complexes. It is employed in [13] to
deal with the Morse complex of a non-invariant function on a global quotient
and we, in fact, proved that the weak group action induces a strict group
action on the Morse homology. Here, we need a slight generalization since
the product structure is also required to be compatible with the G-action at
least in a weak sense.

Lemma 6.12. There exist a G-action on the linear category C and a G-
equivariant functor D → C, where D is the cohomology level category of D.

Proof. The sign issue arising from spin profiles can be handled as in
Lemma 6.6, so we will discuss the question on perturbation data only.
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Recall that the well-definedness of Donaldson-Fukaya category uses the
following canonical isomorphisms. Let (H01, J01), (H

′
01, J

′
01) be two pertur-

bation data for a pair (L�
0, L

�
1). From now on, we omit J-terms for notational

simplicity. An one parameter family Hc
01 connecting two such data gives rise

to a continuation map ΦHc
01

from the Lagrangian Floer complex for H01 to
that for H ′

01, which induces a canonical isomorphism between Floer coho-

mology groups HF ∗(L�
0, L

�
1;H01) and HF ∗(L�

0, L
�
1;H

′
01).

Given three perturbation data H01, H
′
01 and H ′′

01, the continuation map
from H01 to H ′′

01 is homotopic to the composition of two continuation maps,
one from H01 to H ′

01 and the other from H ′
01 to H ′′

01. This implies that the
canonical isomorphisms on cohomology groups are compatible with compo-
sitions.

We consider a naive G-action on Floer complex which is a chain map,
and compose it with the continuation map ΦHg

01
from some family Hg

01 from
g(H01) to H01:

Ψg : CF ∗(L�
0, L

�
1;H01)

g→ CF ∗(L�
0, L

�
1; g(H01))

ΦH
g
01→ CF ∗(L�

0, L
�
1;H01).

Then, Ψg is clearly a chain map, and we claim that it defines a weak action

on the chain complex CF ∗(L�
0, L

�
1;H01), in the following sense:

(6.2) Ψg ◦Ψh −Ψgh = σg,h ◦m1 +m1 ◦ σg,h.

The proof of the claim goes as follows. First, one can check that the family
Hg

01 ◦ h−1 defines a continuation homomorphism h ◦ ΦHg
01
◦ h−1 where ΦHg

01

is a continuation defined by Hg
01. Thus,

Ψg ◦Ψh = ΦHg
01
◦ g ◦ ΦHh

01
◦ h

= ΦHg
01
◦ (g ◦ ΦHh

01
◦ g−1) ◦ (gh)

= ΦHg
01
◦ (ΦHh

01◦g−1) ◦ (gh).

The composition ΦHg
01
◦ (ΦHh

01◦g−1) of two continuation homomorphisms is
chain homotopic to the continuation map ΦHgh

01
via homotopy σ̃g,h and we

define σg,h := σ̃g,h ◦ (gh) to obtain the formula (6.2).
This shows that the G-action is well-defined on morphism spaces of the

category C. Now, we show that the composition is compatible with the
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G-action. Naive G-action gives the following commutative diagram:

(6.3) CF (L0, L1;H01)× CF (L1, L2;H1,2)
m2 ��

g

��

CF (L0, L2;Ho2)

g

��
CF (L0, L1; g(H01))× CF (L1, L2; g(H1,2))

mg
2 �� CF (L0, L2; g(H02)).

In order to move back from the second line to the first line, we consider con-
tinuation homomorphisms ΦHg

01
,ΦHg

12
and ΦHg

02
, all of which we denote by

Φ1 for simplicity. It is not hard to show that there exist Φ2 (the second com-
ponent of A∞-homomorphism(functor) between two different perturbation
data) satisfying the following relation:

Φ1m2(x, y) + Φ2(m1(x), y) + (−1)deg
′ xΦ2(x,m1(y))(6.4)

= m2(Φ1(x),Φ1(y)) +m1(Φ2(x, y)).

This shows that the product is well-defined in Donaldson-Fukaya categories
independent of perturbation data, and also implies its compatibility with
the G-action when applied to (g(x), g(y)). The functor from D → C can be
easily constructed using the isomorphisms {Tg}g∈G from the pull-back spin
bundles to the original one. �

7. Energy zero subgroups for non-exact cases

From now on, we drop the exactness assumption and discuss the G-Floer-
Novikov theory of a general symplectic manifold (see Section 4). As observed
in G-Novikov theory, we need to find a subgroup of energy zero elements.
We will call this set Gα of energy zero elements of G, which is an analogue
of Gη in G-Novikov theory in Section 3. For each energy zero element, we
will assign a spin structure on the Lagrangian bundle data associated to
it, using the pre-fixed isomorphisms {Tg}g∈G. The composition of energy
zero elements will reveal the necessity of the condition that two Lagrangian
should have the same spin profiles to define a group action on their Floer
cochain complex.

Let L0 and L1 be G-invariant Lagrangian submanifolds of M , transver-
sally intersecting with each other. Assume that both L0 and L1 are con-
nected, compact, oriented and they admit spin structures which are pre-
served by the G-action in the sense of Assumption 5.1. In case of orientation
reversing action, we assume that both L0 and L1 have orientation reversing
G-actions and work under Assumption 5.14. We set the notations as follows:



366 C.-H. Cho and H. Hong

• Ag,Li
: the action of g ∈ G on Li,

• ASO
g,Li

: the induced action of g on the frame bundle of Li,

• Aspin
g,Li

: the specified lift of ASO
g,Li

on the spin bundle of Li

(or Tg,Li
: (Ag,Li

)∗ Pspin(Li)
∼=→ Pspin(Li) )

for i = 0, 1. The choice of Aspin
g,Li

above gives rise to spin profiles spfLi
of Li,

correspondingly.
We choose a base path l0 of the space of paths Ω(L0, L1) so that g · l0 �=

h · l0 for g �= h. (This is not essential, but simplifies expositions). The naive
G-action on Ω(L0, L1) will be written as g(l)(t) = g(l(t)) for l ∈ Ω(L0, L1).
Consider the connected component Ω(L0, L1; l0) containing l0. Note that
g(l) may not lie in Ω(L0, L1; l0). Hence, we take a subgroup preserving the
connected component as follows.

Definition 7.1. We define the subgroup Gl0 of G as

Gl0 := {g ∈ G | g(l0) ∈ Ω(L0, L1; l0)}.

We will reduce it further to the smaller subgroup, Gα of energy zero
elements in Gl0 . For g ∈ Gl0 , we have a surface connecting l0 and g(l0).
Namely, there exists a surface wg : [0, 1]× [0, 1] → M , such that

wg(0, t) = l0(t)(7.1)

wg(1, t) = g(l0)(t)

wg(s, 0) ∈ L0

wg(s, 1) ∈ L1.

The symplectic area and the Maslov index of w are defined as follows.
The symplectic area of w is simply defined by A(wg, g(l0)) =

∫
w∗gω. For

the Maslov index of w, we construct a loop of Lagrangian subspaces along
wg(∂[0, 1]

2) in a canonical way. Recall that we have the pre-fixed Lagrangian

path λ̃l0 along l0. Then, g(λ̃l0) is a Lagrangian path along g(l0) from Tg(p0)L0

to Tg(p1)L1. (We use the orientation reversal g(λ̃l0)
op if g is orientation re-

versing). Along wg(s, i) for i = 0, 1, we consider Twg(s,i)Li for s ∈ [0, 1]. The
concatenation of the above paths produces a bundle Lwg

on ∂[0, 1]2 which
is a Lagrangian sub-bundle of w∗gTM on [0, 1]2 The Maslov index of Lwg

is
well-defined, and denoted by μ(wg, g(l0)).

We will require wg to have zero symplectic area and zero Maslov index,
but given a general g ∈ Gl0 , such wg may not necessarily exist.
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Definition 7.2. We define

Gα = {g ∈ G | ∃wg with A(wg, g(l0)) = μ(wg, g(l0)) = 0}.

Elements of Gα are called energy zero elements.

Given g ∈ Gα, there can be several choices of wg with zero symplec-
tic area and zero Maslov index. However, all wg’s satisfying A(wg, g(l0)) =
μ(wg, g(l0)) = 0 are Γ-equivalent to each other. (See Definition 4.1 for the
Γ-equivalence relation.)

Lemma 7.3. Gα forms a subgroup of G.

Proof. Let g and h be elements of Gα. Then, there are (wg, g(l0)) and
(wh, h(l0)) whose energies and Maslov indices are both zero. We make a
concatenation

(7.2) wgh := wg � (g(wh)).

Then, (wgh, (gh)(l0)) connects l0 and (gh)(l0) and hence, gh is accompanied
with the path wgh satisfying

A((wgh, (gh)(l0)) = μ(wgh, (gh)(l0)) = 0

since A and μ are invariant under G-action. �

Now, we will associate a canonical spin structure of Lwg
to each wg so

that we can define the action of Gα on the orientation spaces for the gen-
erators of the Floer complex. We will see that there may be an obstruction
on the cocycle condition for the group action due to the difference spin
structures on wg � g(wh) and wgh (Proposition 7.4).

Recall that Lwg
|{0}×[0,1] = λl0 has a preferred trivialization σ : [0, 1]×

Rn → λ̃l0 and that the spin structure Pspin(λl0) for λl0 is fixed by one of its
lifting σ̃ : [0, 1]× Spin(n) ∼= Pspin(λl0) (4.8). Over [0, 1]× {0} (resp. [0, 1]×
{1}) we have Pspin(L0) (resp. Pspin(L1)). Gluing of two spin structures at
(0, i) is done by ιi ◦ σ̃−1 for i = 0, 1 as explained in (4.8). It remains to specify
spin structure of Lwg

along {1} × [0, 1] and how to glue it to Pspin(Li)’s.
Let us assume for a moment that the g-action preserves orientations of

L0 and L1. By g-action, the reference path l0 is mapped to g(l0). Then, the
Lagrangian path g(λ̃l0) over g(l0) from Tg(p0)L0 to Tg(p1)L1 can be trivialized
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by g ◦ σ:
[0, 1]× Rn ∼= g(λ̃l0).

We take (Ag−1)∗
(
Pspin(λ̃l0)

)
as a spin structure Pspin(g(λ̃l0)). From σ̃, we

get an induced isomorphism

(7.3) g̃σ : [0, 1]× Spin(n) ∼= Pspin(g(λ̃l0)).

We need to define an analogue of ιi at g(pi) to identify two spin bun-
dles there. (l0(i) = pi for i = 0, 1.) In fact, Tg,Li

: (Ag−1)∗PspinLi → PspinLi

comes into play to glue Pspin(g(λ̃l0)) with Pspin(Li) at g(pi). Note that
ιi : Spin(n) → Pspin(Li)pi

defines a natural embedding, which we again de-
note by

ιi : Spin(n) → (Ag−1)∗PspinLi|g(pi).

Consider its composition with Tg,Li
:

Tg,Li
◦ ιi : Spin(n) → Pspin(Li)g(pi).

We see that Tg,Li
◦ ιi ◦ (g̃σ)−1 glues Pspin(Li) and Pspin(g(λ̃l0)) at g(pi). (See

Figure 5) Therefore, we have described the canonical spin structure for Lwg
,

which depends on the pre-fixed choice of Tg,Li
.

If g is an orientation reversing action for both L0 and L1, we instead
use the orientation reversal (Ag)∗λ̃

op
l0

= g(λ̃l0)
op along g(l0), whose end points

can be identified with Tg(p0)L0 and Tg(p1)L1. Let σSO : [0, 1]× SO(Rn) → λ̃l0

be the trivialization of the frame bundle of λ̃l0 induced from σ. If (Rn)op

denotes Rn with the opposite orientation, then σSO leads to the trivialization
σop
SO : [0, 1]× SO((Rn)op) → λ̃op

l0
. Take an isomorphism between SO(Rn) and

SO((Rn)op), given by an element O ∈ O(n) \ SO(n).

Figure 5: The canonical spin structure for Lwg
.

From the extension σ̃ : [0, 1]× Spin(Rn)
∼=→ Pspin(λ̃l0), we have σ̃op :

[0, 1]× Spin((Rn)op)
∼=→ Pspin(λ̃

op
l0
) which are isomorphic to the former by



Finite group actions on Lagrangian Floer theory 369

multiplying a lift Õ ∈ Pin(n) \ Spin(n). We also have g̃σop : [0, 1]×
Spin((Rn)op)

∼=→ Pspin(gλ̃
op
l0
). We next take A∗g−1(Pspin(λ̃l0)

op)) as the spin

structure of g(λ̃l0)
op, and glue Pspin(Li) and Pspin(g(λ̃l0)

op) using Tg,Li
◦ ιi ◦

(g̃σ ◦ Õ)−1.
So far, we have described the canonical spin structure associated to the

Lagrangian sub-bundle Lwg
over the boundary of wg. For the cocycle condi-

tion of the group action in the next section, we compare the spin structures of
wg, g(wh) and wgh. Here, we may take wgh = wg � g(wh) as in Lemma 7.3 so
that the Lagrangian sub-bundle over the boundaries of wgh and wg � g(wh)
are exactly the same, but the induced spin structures may be different (other
choices of wgh are related to this one by Γ-equivalence, and so are their ori-
entation spaces).

One way to define a spin structure on the bundle data over wgh is using
Tgh,Li

as above (Figure 5).
Here is a description of a different way to define a spin structure on

wg � g(wh). On wg, we use a spin structure given in Figure 5. Now let us
consider g(wh). We glue the spin structure on the left vertical edge of g(wh)
using Tg,Li

◦ ιi ◦ g̃σ−1 in the same that we glue the right vertical edge of wg

so that the gluing of wg and g(wh) along this edge is well defined. For the
right vertical edge of g(wh), the gluing process involves both Tg,Li

and Th,Li
.

Recall that we have used

(Th,Li
)h(pi)

◦ ιi : Spin(n) → Pspin(Li)h(pi)

for gluing at the right vertical edge of wh where we trivialize Pspin(h(λ̃l0))pi

by h̃σ
−1

.
On the end point gh(pi) of the right vertical edge of g(wh),

(Tg,Li
)gh(pi)

◦
(
(Ag−1)∗Th,Li

)
gh(pi)

◦ ιi : Spin(n) → Pspin(Li)h(pi)

→ Pspin(Li)gh(pi)

is used to glue the spin structure gh(λ̃l0) on this edge with that on the

horizontal edge. Here, gh(λ̃l0)pi
is identified with Spin(n) via g̃hσ

−1
. Spin

structures on horizontal edges are simply come from those on L0 and L1.
Hence, we have two possibly different spin structures on wgh = wg �

g(wh).
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Proposition 7.4. The difference of the canonical orientations of det(∂̄wgh
)

from these two spin structures is given by

(−1)spfL0
(g,h)+spfL1

(g,h).

Proof. To compare two orientations, we consider w(g, h) := wg � g(wh) � wgh

by gluing wg � g(wh) with the reverse of wgh, denoted as wgh. The spin
structures on wg � g(wh) and wgh are glued as follows. Spin structures on
end points gh(pi) of the right vertical edge of g(wh) and the left vertical
edge of wgh at pi can be glued by

Tg,Li
◦ (Ag−1)∗Th,Li

◦ (Tgh,Li
)−1 : Pspin(Li)(

ιi→ Spin(n)
ι−1
i→)Pspin(Li)h(pi)

→ Pspin(Li)gh(pi)

This is equivalent to the obvious gluing of g(wh) and wgh at a point in the

vertical edges over which both spin structures are already trivialized by g̃hσ.
See Figure 6.

Figure 6: The spin structure on w(g, h).

This shows that the difference between two spin structures is the gluing
occurring at gh(pi) for i = 0, 1, which is given by

Tg,Li
◦ (Ag−1)∗Th,Li

◦ (Tgh,Li
)−1
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This is precisely the spin profile spfLi
(g, h) for Li. Therefore, the differ-

ence is given by the product (−1)spfL0
(g,h) · (−1)spfL1

(g,h) and this proves the
proposition. �

Note that if L0 and L1 have the same spin profiles, then the difference
(−1)spfL0

(g,h)+spfL1
(g,h) of two orientations cancel out, which will allow us to

define group actions in the next section.

8. Group actions on Floer-Novikov complexes

In this section, we will defineGα-action (Definition 7.2) on the Floer Novikov
complex of (L0, L1) when spin profiles of L0 and L1 coincide. As before, we
assume that spfL0

= spfL1
holds strictly, which does not harm the generality.

(See the discussion below Assumption 6.5.)
For g ∈ Gα, we will use the bounding surface wg connecting the base

path l0 and g(l0) of zero symplectic area and zero Maslov index. We first
explain the geometric action of Gα on the Novikov cover defined by gluing
wg in an appropriate way. Then, we will see how this action induces that
between orientation spaces associated with generators of the Floer complex.
The orientation analysis for wg made in the previous section will be used
crucially for this.

8.1. Group actions on the Novikov covering Ω̃(L0, L1; l0)

Recall from Subsection 4.1 that we have defined the universal covering space
of the path space Ω(L0, L1; l0) by Ω̃univ(L0, L1; l0), and refined it to get a
smaller covering Ω̃(L0, L1; l0) by introducing Γ-equivalence relation.

The G-action on M gives a naive G-action on path spaces such that

(8.1) g((w, l)) ∈ Ω̃univ(L0, L1; g(l0)), g((w, l)) = (g(w), g(l)),

for (w, l) ∈ Ω̃univ(L0, L1; l0), where g(w)(s, t) := g(w(s, t)). Since this naive
G-action changes the base path from l0 to g(l0), it does not give the correct
G-action for Floer-Novikov complex. Alternatively, we define the Gα-action
on Ω̃(L0, L1; l0) in the following way. For g ∈ Gα, we take an energy zero
path wg satisfying A(wg, g(l0)) = μ(wg, g(l0)) = 0. Then, the Gα-action on

Ω̃(L0, L1; l0) is defined by first taking the naive g-action and then attach-
ing wg.
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Definition 8.1. We define the action of

Gα, Gα × Ω̃(L0, L1; l0) → Ω̃(L0, L1; l0),

by

(8.2) (g, [w, l]) �→ [wg � (g(w)), g(l)] =: g · [w, l].

(See Figure 7.)

Figure 7: Gα-action on Ω̃(L0, L1; l0).

Lemma 8.2. (8.2) provides a well-defined Gα-action on Ω̃(L0, L1; l0)

Proof. One may choose a different w′g with A(w′g, g(l0)) = μ(w′g, g(l0)) = 0
to define g-action, or choose a different representative [w′, l] of [w, l], but
it is elementary to check that these provide the same map (8.2) up to Γ-
equivalence. �

Now, we prove an analogue of Lemma 3.9.

Lemma 8.3. The covering map π : Ω̃(L0, L1; l0) → Ω(L0, L1; l0) is Gα-
equivariant. Moreover the action of Gα and that of deck transformation
group Π(L0, L1; l0) on Ω̃(L0, L1; l0) commute with each other.

Proof. The projection map sends [wg � (g(w)), g(l)] to g(l), hence the first
claim follows.
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Suppose that an element c ∈ Π(L0, L1; l0) is represented by a loop C at
l0 in the path space Ω. Then,

g · c · [w, l] = [wg � (g(C)) � (g(w)), g(l)].

On the other hand,

c · g · [w, l] = [C � wg � (g(w)), g(l)].

Their difference is represented by the cylinder

(8.3) wg � (g(C)) � wg � C.

Note that wg � g(C) � wg and C have the opposite energies, Maslov indices.
Hence (8.3) has vanishing energy and Maslov index, which implies

(8.4) g · c · [w, l] = c · g · [w, l].
�

Recall that the Floer action functional A on Ω̃(L0, L1; l0) is defined by
A([w, l]) =

∫
w∗ω for [w, l] in Ω̃(L0, L1; l0) and, The set Cr(L0, L1; l0) of

critical points of A consists of the pairs [w, lp] where lp is the constant path
with p ∈ L0 ∩ L1. Cr(L0, L1; l0) is invariant under Π(L0, L1; l0).

The following lemma demonstrates that A is compatible with the Gα-
action.

Lemma 8.4. A is invariant under Gα-action on Ω̃(L0, L1; l0), and the
set Cr(L0, L1; l0) is invariant under the action of Gα.

Proof. The Gα-invariance of A follows from the G-invariance of ω and the
definition of Gα-action. In particular, the set of critical points of A is pre-
served by Gα. �

Let p ∈ L0 ∩ L1 and suppose that the constant path lp lies in the com-
ponent Ω(L0, L1; l0). We consider the relation between Gα and the isotropy
group Gp, which is an analogue of Lemma 3.7.

Lemma 8.5. For p ∈ L0 ∩ L1, we have

Gp ⊂ Gα.

In general, if there exists a path from L0 to L1 which is fixed by g ∈ G, then
g belongs to Gα.
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Proof. If g ∈ Gp, then g ∈ Gl0 since it preserves the connected component of

Ω(L0, L1) containing lp. To see that g ∈ Gα, take (u, l) ∈ Ω̃univ(L0, L1; l0),
where u is a bounding surface from l0 to lp. Then, g(u) is a bounding surface
from g(l0) to g(lp) = lp. Setting wg := u � g(u), we get a bounding surface
from l0 to g(l0) which has vanishing energy and Maslov index. The general
case can be proved similarly. �

Definition 8.6. We denote by (Gα)[w,l] the isotropy group at [w, l] ∈
Ω̃(L0, L1; l0) for the Gα-action.

Lemma 8.7. We have

(Gα)[w,lp] = Gp.

Proof. For g ∈ Gp, take wg := w � g(w) as in the proof of lemma 8.5. Observe
that the g-action on [w, lp] is nothing but [wg � g(w), lp]. Since wg � g(w) =
w � g(w) � g(w) which is Γ-equivalent to w, we see that wg fixes the Γ-
equivalent class of [w, lp].

The other direction (Gα)[w,lp] ⊂ Gp is easy to check. �

8.2. Gα-action on the critical points and their orientation spaces

The Gα-action on the orientation spaces are crucial ingredient for defining a
group action on Floer theory of Lagrangian intersections. This signifies that
as in the Morse case, we do not want the group action on the set of critical
points of the Novikov-Floer complex, but rather on the set of the orientation
spaces associated to critical points.

So far, we have considered the Gα-action on the Novikov covering
Ω̃(L0, L1; l0). We next study how this Gα-action induces the action on the
complex CF ∗R,l0

(L0, L1) in (4.14) (generated by orientation spaces). The key
part of the construction is how to define an action on the orientation spaces
associated to critical points.

Recall that the orientation space Θ−[w,lp]
can be assigned to each Γ-

equivalence class [w, lp] ∈ Cr(L0, L1; l0) without ambiguity. We have identi-
fied the orientation spaces for (w′, lp) and (w, lp) in the Γ-equivalence class
using the canonical spin structure on the cylinder C representing the Γ-
equivalence between them (Lemma 4.5).

Now, we define the group action on the orientation space Θ−[w,lp]
associ-

ated to [w, lp] ∈ Cr(L0, L1; l0). It will be soon revealed that the group action
below is only well-defined if the spin profile of L0 and L1 are the same.
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Definition 8.8. Given g ∈ Gα, take wg satisfying

A(wg, g(l0)) = μ(wg, g(l0)) = 0.

Then, the action on Floer complex

Gα × CF ∗R,l0(L0, L1) �→ CF ∗R,l0(L0, L1)

is defined by the linear map ΦΘ
g on generators

(8.5) ΦΘ
g : Θ−[w,lp]

�→ Θ−[wg
g(w),lg(p)]
.

ΦΘ
g is defined as a composition

(8.6) Θ−[w,lp]

AΘ
g−→ Θ−[g(w),lg(p)]

gluing−→ Θ−[wg
g(w),lg(p)]

(See Figure 8.)

Figure 8: Two steps of ΦΘ
g .

We will see in Proposition 8.9 below that the action defined is indepen-
dent of choice of wg. Let us first closely look into each part of the map (8.6).
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We only explain the case when Gα is orientation preserving. One can pro-
ceed similarly for the other case, which we omit.

(1) The first map AΘ
g is the map given by the naive G-action. Namely,

taking g-action to [w, lp] and the associated Lagrangian bundle λw, we
get a generator [g(w), lg(p)] and the Lagrangian bundle λg(w) along ∂Z−.
Then, we consider two Cauchy-Riemann problems on Z− with Lagrangian
boundary conditions given by λw and λg(w) in w∗TM and g(w)∗TM respec-
tively. Note that the naive g-action sends the bundle pair (w∗TM, λw) to
(g(w)∗TM, λg(w)). This induces an action of g between two Cauchy-Riemann
problems (J is G-invariant), and in particular, one can send kernel and cok-
ernel of ∂λw,Z− to those of ∂λg(w),Z− . They define a map AΘ

g from det(∂̄λw,Z−)
to det(∂̄λg(w),Z−) by Definition 4.3.

(2) The second map gluing is needed from G-Novikov theory, since AΘ
g image

gives a path from g(l0) not l0. Hence, we restricted to the subgroup Gα, and
consider the gluing map of determinant spaces. To define this map, we need
to specify the choices of spin structures. For this, we need to define the
spin structure of λg(w) carefully. The desired spin structure of λg(w) should
have the following property. We already have a prescribed spin structure on
λwg

. Hence, if we glue λwg
, with λg(w), we will obtain one spin structure on

the concatenation λwg
g(w). But wg � g(w) also has another spin structure
induced from the spin structures of L0 and L1. We would like to have these
two spin structures being equal to each other.

For this purpose, we define the spin structure of λg(w) as follows. Along
top and bottom edges of Z− we have spin structures induced from Pspin(L1),
and Pspin(L0). Since g(λl0) lies over the circular boundary of Z− for g(w),
it is natural to consider Pspin(g(λl0)) along this region. Then, we glue it to
Pspin(Li) making use of Tg,Li

◦ ιi ◦ g̃σ−1 for i = 0, 1 as before. Observe that
the circular boundary part of Z− has the same spin structure as the right
vertical edge of wg. What we obtain after gluing wg and g(w) is indeed the
canonical spin structure of λwg
g(w) (produced by the spin structure of L0,

L1, Pspin(l0) and ιi ◦ σ−1). This is because contributions Tg,Li
◦ ιi ◦ g̃σ−1

appear twice in the gluing above (once in the spin structure of wg (right
edge) and next in the spin structure of g(w) (left edge)), and hence they
cancel out.

We are now ready to define the second map gluing. gluing is an isomor-
phism

Θ−[g(w),lg(p)]
→ Θ−[wg
g(w),lg(p)]

.
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obtained from the gluing of wg and g(w) at a point using (4.10). To be
specific, we take S4 = D2 (instead of [0, 1]2) and F4 = λwg

, and S5 = Z−
and F5 = λg(w), and S6 = Z− and F6 = λwg
g(w).

Proposition 8.9. The action of Gα on CF ∗R,l0
(L0, L1) is well-defined.

Proof. We first check that the map ΦΘ
g is independent of the choice of an

energy zero path wg for g ∈ Gα. Let wg,1 and wg,2 be two energy zero paths
from l0 to g(l0). If we apply the action of g to [w, lp] (p ∈ L0 ∩ L1) using
these paths, we have two elements [wg,1 � g(w), lg(p)], [wg,2 � g(w), lg(p)] which
are Γ-equivalent to each other. Recall from Lemma 4.5 that the orientation
spaces of these two elements are identified by the cylinder C satisfying

C ∼= wg,2 � g(w) � g(w) � wg,1
∼= wg,2 � wg,1.

Observe that wg,2 � wg,1 is a loop from l0 to itself that gives an Γ-equivalence.
Therefore, we need to compare the canonical structure on it with the spin
structures on wg,2 � wg,1 coming from the gluing of spin structures on wg,i’s.
However, since the spin structures on vertical edges of wg,2 and wg,1 corre-
sponding to g(l0) are exactly the same so that the effects of Tg,Li

cancel out.
Thus, the following diagram commutes

det
(
∂̄wg,1
g(w)

)

(−)
C

��

Θ−[w,lp]

(−)
wg,1

��

(−)
wg,2 ��
det
(
∂̄wg,2
g(w)

)

,

which implies that the action does not depend on the choice of wg.
We next show that the cocycle condition of the group action holds, i.e.,

ΦΘ
g ◦ ΦΘ

h = ΦΘ
gh for g, h ∈ Gα. For this, we take energy zero paths wg, wh

and wgh and apply the actions to [w, lp] to get

[wg � g(wh) � gh(w), lgh(p)] and [wgh � gh(w), lgh(p)].

We may take wgh = wg � g(wh) and other choices are Γ-equivalent to it.
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We have already compared the two possible induced spin structures of
wgh in the last section. Recall from Proposition 7.4 that their difference af-

fects the orientation spaces exactly by the sign (−1)spfL0
(g,h)+spfL1

(g,h), which
is 1 in our case since spfL0

(g, h) = spfL1
(g, h). This completes the proof. �

Lastly, the Gα-action on the Floer cochain complex is the linear exten-
sion of Gα-action on Cr(L0, L1; l0) and this is compatible with what actually
happens in geometry from the identity (8.4). (See Definition 4.2 for the pre-
cise definition of ΛR(L0, L1; l0).)

Proposition 8.10. Gα-action on CF ∗R,l0
(L0, L1) is ΛR(L0, L1; l0)-linear.

8.3. Orbifold Novikov ring

We present an enlarged Novikov ring ΛR
orb(L0, L1; l0) for orbifold Floer co-

homology which is an analogue of Λrob
[η] in Subsection 3.3. Heuristically,

ΛR
orb(L0, L1; l0) contains elements in G \Gα as there exists a path from l0 to

g(l0) for g /∈ Gα which gives rise to a genuine loop of paths between [L0/G]
and [L1/G] which increases (or decreases) the energy non-trivially.

Consider the set of homotopy classes of “generalized” paths in
Ω(L0, L1; l0) which begin at l0 and end at g(l0) for g ∈ G. Then, we take the
quotient of it by the set of classes which can be represented by energy, Maslov
zero paths. (Iω and Iμ are extended to generalized paths in the obvious
way.) Denote this quotient by Π(L0, L1; l0)orb. In particular, Π(L0, L1; l0)orb
contains an element represented by a path w whose end point is g(l0) for
g ∈ G \Gα. There is an exact sequence

1 → Π(L0, L1; l0) → Π(L0, L1; l0)orb → G/Gα → 1

analogously to the third line of the diagram (3.6).

Definition 8.11. Λorb(L0, L1; l0) is defined by the completion of the group
ring of Π(L0, L1; l0)orb over R.

By mimicking the construction in Definition 3.17, the Gα-invariant part
CF ∗R,l0

(L0, L1)
Gα admits a structure of Λorb(L0, L1; l0)-module. Note that
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Λorb(L0, L1; l0) has the Z-grading induced by Iμ and there is a natural in-
clusion ΛR(L0, L1; l0) → ΛR

orb(L0, L1; l0) which fits into the diagram

ΛR(L0, L1; l0) ��

��

Λnov(R)

ΛR
orb(L0, L1; l0)

		

where ΛR
orb(L0, L1; l0) → Λnov is obtained by taking the energy and the

Maslov index. We omit further details as this new coefficient ring will not
be visible if we use the universal Novikov field. From now on, we will only
use Λnov(R) as our coefficient ring.

9. Equivariant transversality

Lagrangian Floer theory is built upon subtle data of J-holomorphic discs
and strips. In order to have good moduli spaces of such maps, an appro-
priate perturbation scheme is required. Furthermore, we need equivariant
transversality for the sake of group actions on Floer theory, and it is dif-
ficult to achieve both equivariance and transversality at once using simple
methods.

We have shown that the algebraic technique due to Seidel can be hired
to overcome this problem in section 6 for exact symplectic manifolds and
Lagrangian submanifolds. Note that the bubbling off of discs does not oc-
cur in this case. Seidel developed a domain-dependent perturbation scheme
for J-holomorphic strips and polygons which gives rise to the desired A∞-
relations.

For the general case, however, disc bubblings do occur and the domain
dependent perturbation is not good enough. Fukaya and Ono [24] intro-
duced an abstract perturbation scheme called Kuranishi structure to achieve
transversality. Fukaya-Oh-Ohta-Ono [25] have developed it further to cover
the construction of the filtered A∞-structures. Note that Kuranishi struc-
ture is, in fact, a tool designed for attaining equivariant transversality more
systematically with help of multi-sections. Hence, adding a finite group ac-
tion to Kuranishi structure is not presumed to cause more difficulty. We will
explain how to achieve equivariant transversality in this setup.
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9.1. Brief review of Kuranishi structure

We refer readers to [24], [25, Appendix A], [28] for the definition and proper-
ties of Kuranishi structure. What we will carry out in this section is roughly
as follows. Suppose a space M admits a Kuranishi structure and a G-action.
We shall show that there is an induced Kuranishi structure on M/G whose
multi-valued perturbation gives rise to G-equivariant multi-sections on M
if chosen suitably.

Let us explain in more detail. First we briefly explain the terms.

Definition 9.1. [25, A1.1] A Kuranishi neighborhood of a point p in a
compact metrizable space X is a quintuple (Vp, Ep,Γp, ψp, sp) such that

1) Vp is a finite dimensional smooth manifold (possibly with boundary or
corner);

2) Ep is a finite dimensional real vector space;

3) Γp is a finite group acting smoothly and effectively on Vp and linearly
on Ep;

4) sp is a Γp-equivariant map Vp → Ep;

5) ψp : s
−1
p (0)/Γp → Up ⊂ X is a homeomorphism to a neighborhood Up

of p ∈ X.

Given a pair of neighborhoods (Vp, Ep,Γp, ψp, sp) and (Vq, Eq,Γq, ψq, sq)
of p ∈ X and q ∈ ψp(s

−1
p (0)/Γp), a coordinate change [25, A1.3] is denoted

as (φ̂pq, , φpq, hpq). Here, hpq : Γq → Γp is an injective homomorphism, and
φpq : Vpq → Vp is an hpq-equivariant smooth embedding from Γq-invariant

open neighborhood Vpq of the origin in Vq to Vp, and φ̂pq is a compatible
equivariant embedding of vector bundles Eq × Vpq → Ep × Vp. These are re-
quired to satisfy additional properties which we omit. Note that a coordinate
change may exist only in one direction.

Definition 9.2. [25, A1.5] A Kuranishi structure on X assigns a Kuranishi
neighborhood (Vp, Ep,Γp, ψp, sp) for each p ∈ X and a coordinate change

(φ̂pq, φpq, hpq) for each q ∈ ψp(s
−1
p (0)/Γp) such that

1) dimVp − rank Ep is independent of p, called virtual dimension of X;
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2) For r ∈ ψq(s
−1
q (0) ∩ Vpq/Γq), q ∈ ψp(s

−1
p (0)/Γp), there exists γpqr ∈ Γp

satisfying

hpq ◦ hqr = γpqr · hpr · γ−1pqr, φpq ◦ φqr = γpqr · φpr, φ̂pq ◦ φ̂qr = γpqr · φ̂pr.

If trying to perturb {sp} to make it transverse to zero section, one needs
to construct perturbations inductively. Since a coordinate change may exist
only in one direction, a clever choice of subcollection of Kuranishi neigh-
borhoods is required. This subcollection should be ordered for inductive
perturbations, and cover X. Such a choice is called a good coordinate sys-
tem. (See [25, A.1.11].) One can always choose a good coordinate system,
whose detailed construction has been given in part II of [28]. The proof goes
by the induction on the dimension of Vp, and in each dimension, one glues
several Kuranishi neighborhoods to obtain bigger Kuranishi neighborhoods
and finally get a good coordinate system. There is a notion of tangent bundle
of a space X with a Kuranishi structure, and also a notion of orientations
on it, which we omit.

We now recall multi-sections of a Kuranishi structure. For (Vp, Ep,Γp,
ψp, sp), consider the product of l copies of Ep, denoted as El

p, and endow
it with the action of symmetric group Sl. Denote the quotient space by
S l(Ep) := El

p/Sl, which has an induced action of Γp. There exists a Γp-
equivariant map

tmm : S l(Ep) → S lm(Ep),

which sends [a1, . . . , al] to

[ a1, . . . , a1︸ ︷︷ ︸
m copies

, . . . , al, . . . , al︸ ︷︷ ︸
m copies

].

Definition 9.3. [25, A1.19] An n-multisection s of π : Ep × Vp → Vp is a
Γp-equivariant map V → Sn(Ep). It is said to be liftable if there exist s̃ =
(s̃1, . . . , s̃n) : Vp → En

p such that its composition with π : En
p → Sn(Ep) is s.

Here s̃ needs not be Γp-equivariant. Each s̃i is called a branch of s.

Liftable multisections will be considered always. Given an n-multi-
section, we obtain an nm-multi-section by composing it with tmm map.
An n-multisection s is equivalent to an m-multisection s′ if their induced
mn-multisections are the same. We identify equivalent multi-sections from
now on. A lifted multisection is said to be transversal to zero if each of its
branches is transversal to the zero section. Compatibilities of multi-sections
can be handled in the same way as in [25] and we omit the details.
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A family of multisections sε is said to converge to a Kuranishi map
s = {sp} as ε → 0 if there exists n such that sε is represented by an n-
multisection snε and snε converges to a representative of s.

Lemma 9.4. [25, A1.23] Suppose that a good coordinate system of the
Kuranishi structure over X is given, and that the Kuranishi structure has a
tangent bundle. Then, there exists a family of multisections {s′p,ε} such that
it converges to {sp}p∈P and s′p,ε’s are transversal to 0 for all ε > 0.

9.2. Kuranishi structure for equivariant transversality

A notion of group actions on a space with Kuranishi structure is introduced
in [25, A1.3].

Definition 9.5. Let X be a space with Kuranishi structure. A homeomor-
phism φ : X → X is called an automorphism of Kuranishi structure if the
following holds: For p ∈ X and p′ = φ(p), there exist Kuranishi neighbor-
hoods (Vp, Ep,Γp, ψp, sp), (Vp′ , Ep′ ,Γp′ , ψp′ , sp′) of p and p′ with a group iso-
morphism ρp : Γp → Γp′ , a ρp-equivariant diffeomorphism φp : Vp → Vp′ and

a ρp-equivariant bundle isomorphism φ̂p which covers φp. They are required

to satisfy sp′ ◦ φp = φ̂p ◦ sp and ψp′ ◦ φp
= φ ◦ ψp for an induced homeomor-

phism φ
p
: s−1p (0)/Γp → s−1p′ (0)/Γp from φp.

These data should be compatible with the coordinate changes of Kuran-
ishi structure as in [25, A1.47].

We write ((ρp, φp, φ̂p), φ) for an automorphism of Kuranishi structure.

An automorphism ((ρp, φp, φ̂p), φ) is said to be conjugate to ((ρ′p, φ
′
p, φ̂

′
p), φ

′)
if φ = φ′ and if there exists γp ∈ Γψ(p) for each p satisfying

ρ′p = γp · ρp · γ−1p , φ′p = γp · φp, φ̂′p = γp · φ̂p.

Definition 9.6. Consider an action of a finite group G on X and suppose
X is compact. It is called an action on a space with Kuranishi structure
if each g ∈ G-action from X to itself lifts to an automorphism φ∗ of the
Kuranishi structure, and the composition g∗ and h∗ is conjugate to (gh)∗.

The following lemma of [25] is essential in our application.

Lemma 9.7. [25, A1.49] If a finite group G acts on a space X with Ku-
ranishi structure, then the quotient space X/G has a Kuranishi structure.
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If X has a tangent bundle and the action preserves it, then the quotient
space has a tangent bundle. If X is oriented and the action preserves the
orientation, then the quotient space has an orientation.

Proof. We only give a brief sketch, here. Let g ∈ G and p ∈ X. We put
Gp = {g ∈ G|g · p = p}. Take a Kuranishi neighborhood of p

(Vp, Ep,Γp, ψp, sp)

such that Vp is Gp-invariant. We want to extend Γp using Gp to obtain
another finite group Γ[p] which acts on Vp. Then, Γ[p] will serve as a local
group for a Kuranishi neighborhood of [p] in X/G. We assume that the Gp-
action on Vp is effective, and otherwise, it can be made effective by adding
a finite dimensional representation to Vp and Ep.

Both Gp and Γp can be considered as a subgroup of the group of dif-
feomorphisms of Vp. The extension Γ[p] is the group generated by these two
subgroups Gp,Γp in Diff (Vp). From Definition 9.6, there exist γg1,g2 ∈ Γp for
g1 and g2 in Gp such that

g1 ◦ g2 = γg1,g2 ◦ (g1g2).

Also from Definition 9.5, we have

g ◦ γ = ρg,p(γ) ◦ g

for g ∈ Gp and γ ∈ Γp. This implies that the extension group Γ[p] satisfies
the following exact sequence

1 → Γp → Γ[p] → Gp → 1.

The Γ[p]-action lifts to an action on Ep × Vp, and ψp : s
−1
p (0)/Γp → X in-

duces ψ[p] : s
−1
p (0)/Γ[p] → X/G. Thus, we get a Kuranishi neighborhood

(Vp, Ep,Γ[p], ψ[p], sp) of [p] ∈ X/G. �
This lemma will be used to find a compatible good coordinate system

and equivariant sections thereof.
First, let us consider a good coordinate system on X given by a partially

ordered set (P,≤), which parametrizes a collection of Kuranishi neighbor-
hoods covering X. (Technically, we require that this system additionally
satisfy properties in [28, Definition 5.3].) Namely, given p ∈ P we have a
corresponding Kuranishi neighborhood (Vp, Ep,Γp, ψp, sp), and partial or-
der describes directions of embeddings.
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We say that a good coordinate system on X is compatible with the
G-action on X if the following holds:

1) For p ∈ P and g ∈ G, there exist p′ ∈ P such that g∗ sends the Kuran-
ishi neighborhood for p to that of p′ (this defines a map g∗ : P → P
such that p′ = g∗(p));

2) The map g∗ preserves the partial order of P.

We owe the following lemma to Kenji Fukaya.

Lemma 9.8. Let X be a space with Kuranishi structure together with a
G-action on it. Then, there exist a good coordinate system compatible with
the G-action on X.

Proof. A good coordinate system is chosen by the induction on the dimen-
sion of Vp and by gluing several Kuranishi neighborhoods (in order to get
a bigger one satisfying desired properties). From the previous lemma, X/G
is also a space with Kuranishi structure, and hence admits a good coordi-
nate system. Then, we glue the corresponding charts in X in the same way
we construct the good coordinate system for X/G. This produces a desired
good coordinate system on X which is compatible with the G-action. �

We now explain how to choose multi-sections. If Ψ is an automorphism
of a space with Kuranishi structure Ψ and s is a multi-section, then we can
pull back s by Ψ in an obvious way. Write the pulled-back multi-section
by Ψ∗s.

Definition 9.9. A multisection s is said to be G-equivariant if for each
g ∈ G the corresponding automorphism of Kuranishi structure g∗ sends s to
itself.

If a multisection s is G-equivariant, the zero set of s admits the obvious
G-action. Equivariant multi-sections can be constructed from a multi-section
for X/G. Virtual fundamental chains obtained in this way admit natural G-
actions, and evaluation maps become G-equivariant as well.

Lemma 9.10. Let X be a space with Kuranishi structure equipped with
G-action and fix a G-compatible good coordinate system. Then the family of
multisection {s′p,ε} in Lemma 9.4 can be chosen to be G-equivariant.
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Proof. This is again done by choosing a multi-section for X/G first. We
examine how to do it in local charts. Let (Vp, Ep,Γ[p], ψ[p], sp) be a Kuran-
ishi neighborhood for [p] ∈ X/G. Given a multi-section sp′,ε : Vp → Sn(Ep)
(which is Γ[p]-equivariant by definition), the same multi-section sp′,ε can be
regarded as a multi-section for the Kuranishi neighborhood (Vp, Ep,Γp, ψp, sp)
of p ∈ X since it is Γp-equivariant also. The Γ[p]-equivariance implies that
the multi-section sp′,ε is Gp-equivariant. �

We finally deal with transversality of evaluation maps from moduli spaces.
We want to choose multi-sections suitably so that evaluation maps become
submersive. Fukaya, Oh, Ohta and Ono [27] defined Lagrangian Floer the-
ory on de Rham model using continuous families of multi-sections, and con-
structed smooth correspondences using such gadgets. It is straightforward
to modify the construction of smooth correspondences by using a continu-
ous family of multi-sections which fits into our G-equivariant setting. Let us
illustrate it for the local chart, and leave details to the reader.

Consider a chart (Vp, Ep,Γp, ψp, sp) from Lemma 9.7 with Γ[p] as before.
Let fp : Vp → M be a submersion. A vector space Wp is chosen to have
sufficiently large dimension so that there exists a surjective bundle map
Sur : Wp × Vp → Ep. The extended space Wp is given the trivial Γ[p]-action.
We put

s(1)p (w, x) = Sur(w, x) + sp(x).

It is no longer Γ[p]-equivariant, so we take (family of) multi-sections

(9.1) sp(w, x) := s(2)p (w, x) = [γ1s
(1)
p (w, x), . . . , γgs

(1)
p (w, x)]

where Γ[p] = {γ1, . . . , γg}. Then, sp is transversal to 0 and the restriction
of fp ◦ πp : Wp × Vp → M to ∪i{(w, x) | sp,i(w, x) = 0} is a submersion. For
g /∈ Gp, we can choose Wp = Wg(p) and make the related construction done
in g-equivariant way.

Recall from [27] that smooth correspondence is defined locally as follows.
Let θp be a compactly supported smooth differential form on Vp, which is
Γp-invariant. We put smooth measure ωp on Wp so that

∫
Wp

ωp = 1. (For

g /∈ Gp, we take ωgp = (g−1)∗ωp.)
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Definition 9.11. We define

((Vp, Ep,Γp, ψp, sp), (Wp, ωp), sp, fp)∗ (θp)(9.2)

:=
1

|Γp|

l∑
j=1

1

l

(
fp ◦ πp|s−1

p,j(0)

)
!
(π∗pθp ∧ ωp)|s−1

p,j(0)

where l is the number of branches of sp. This is a Gp-equivariant map.

We can put various Wp’s compatibly in the good coordinate system by
using almost the same technique as in [27].

10. Group actions on A∞-algebra of a Lagrangian
submanifold

Let L be a (relatively) spin Lagrangian submanifold in a symplectic manifold
(M,ω). The Floer cochain complex between L and itself has a structure of
an A∞-algebra as observed in [25]. If the finite group G acts on M and
preserves L, then we can construct a group action on the A∞-algebra of L
which is compatible with A∞-operations. The construction does not involve
spin profiles and G-Novikov theory. We only need equivariant transversality
in the previous section with a little bit of algebraic manipulation. We will
mainly discuss the latter in this section.

The actual construction of A∞-algebra involves a long sequence of tech-
nical constructions. We do not reproduce the whole steps here, but only
indicate how to adapt constructions in [25] in our setting, omitting most of
the steps which can be done by straightforward modification of theirs. We
remark that the (m1-)cohomology of the A∞-algebra is the Floer cohomol-
ogy HF (L,L), and in particular, spin profiles automatically match. This
provides a explanation on why the spin profile condition is not necessary in
this case. Moreover, we do not have to reduce the G-action to the action
of the energy zero subgroup Gα. The reason behind it will be discussed in
Section 11.

Suppose that a finite group G acts on M effectively, preserving the sym-
plectic form ω, almost complex structure J , a spin Lagrangian submanifold
L and its isomorphism class of spin structure. Hence, G acts on the moduli
spaces of stable J-holomorphic discs bounding L, and the local Kuranishi
model for a stable map is identical under group action.

As long as two spin structures (Ag−1)∗Pspin(L) and Pspin(L) are isomor-
phic, the induced orientations on the moduli spaces of discs are the same,
and the choice of the particular isomorphism Aspin

g do not play a role, here.
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Thus, the following proposition follows from the construction of [25] and
G-Kuranishi structure built in the previous section. Let β ∈ H2(M,L;Z),
and k ≥ 1.

Proposition 10.1. [25, Theorem 2.1.29] The moduli space Mmain
k,l (L, J, β)

of stable J-holomorphic discs with boundary on L with k boundary marked
points (cyclically ordered) and l interior marked points has a Kuranishi
structure with an action of G in the sense of Definition 9.6. We can choose
family of G-equivariant multisections s for which the moduli space has a
virtual fundamental chain of dimension m+ μL(β) + k + 2l − 3.

Let Φβ,k := (ev0, . . . , evk) : Mk+1(L, β) �→ (L)×(k+1) be the boundary
evaluation map. Then, the g-action induces an isomorphism (Ag)∗ :
Mk+1(L, β) → Mk+1(L, β) with commuting diagram

(10.1) Mk+1(L, β)

(Ag)∗
��

Φβ,k �� L× · · · × L

Ag

��
Mk+1(L, β)

Φβ,k �� L× · · · × L

where Ag in the right column is the diagonal action of g.
For convenience, we work on the de Rham model of an A∞-algebra,

whose construction is described in [27]. A de Rham model A∞-algebra has
been extensively used in the toric setting recently, where Lagrangian sub-
manifolds are Tn-orbits. Tn-equivariant evaluation maps are automatically
submersive, and hence was directly used to define the push-forward of dif-
ferential forms.

Consider the de Rham complex Ω(L) of L. A multi-linear map

mk,β :

k︷ ︸︸ ︷
Ω(L)⊗ · · · ⊗ Ω(L) → Ω(L)

is defined as follows:

mk,β(ρ1, . . . , ρk) = (ev0)!(ev1, . . . , evk)
∗(ρ1, . . . , ρk).

where (ev0)! is an integration along fibers if ev0 is a submersion. In general,
it is the G-equivariant smooth correspondence described in the previous
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section. (See the diagram below.)

(10.2) L Mmain
k+1 (L;β)s

ev0

 Φβ,k ��

k︷ ︸︸ ︷
L× · · · × L

We put

mk =
∑
β

Tω(β)mk,β (for k �= 1),

m1(ρ1) = (−1)deg ρ1+n+1dρ1 +
∑
β

Tω(β)m1,β(ρ1).

As shown in [27], {mk}k≥0 defines an A∞-structure on Ω(L). i.e. the family
of operations satisfying

(10.3)
∑

k1+k2=k+1

∑
i

(−1)∗mk1
(ρ1, . . . ,mk2

(ρi, . . . , ρi+k2−1), . . . , ρk) = 0

where ∗ = |ρ1|+ · · ·+ |ρi−1|+ i− 1.
Note that if E and M are manifolds with G-actions, and if f : E → M

is a G-equivariant submersion, then the integration along fiber f! is well-
defined on the cochain level, and is G-equivariant. Therefore, we obtain the
following lemma.

Lemma 10.2. The operations {mk} are G-equivariant in the sense that

(10.4) mk,β(g · ρ1, . . . , g · ρk) = g ·mk,β(ρ1, . . . , ρk).

where g · ρ = (g−1)∗ρ

Due to the problem “running out of Kuranishi neighborhood” [25, Sec-
tion 7.2], one first construct a G-equivariant AN -algebra of the Lagrangian
submanifold L for a large N . Then, the desired A∞-algebra is obtained by
further applying algebraic formalism as follows. (See [25, Theorem 7.2.27]
for more details.)

In what follows, we will use the (tensor) coalgebra language which much
reduces the notational complexity. mk gives rise to the coderivation m̂k, and
d̂ :=
∑∞

k=0 m̂k on the tensor coalgebra TΩ(L). We write x = x1 ⊗ · · · ⊗ xk,
and g(x) = g(x1)⊗ · · · ⊗ g(xk). An A∞-homomorphism f induces a coho-
momorphism f̂ between coalgebras. One can average an A∞-homomorphism
to make it G-equivariant in the following way.
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Lemma 10.3. Let f = {fi} be an A∞ homomorphism between two A∞ al-
gebras C1 and C2 with G-actions. The average f̂avg is defined by

f̂avg(x) :=
1

|G|
∑
g

gf̂(g−1x).

Then, f̂avg gives a G-equivariant A∞ homomorphism.

Proof. f̂avg isG-equivariant by construction. We need to prove that f̂avg ◦ d̂ =

d̂ ◦ f̂avg. From (10.4), d̂ commutes with the g-action. Also, d̂ commutes with

f̂ since f is an A∞-homomorphism. Hence, the lemma follows. �

Remark 10.4. Averaging of A∞-operations of an non-G-equivariant A∞-
algebra does not produce an A∞-algebra.

The lemma below follows immediately.

Lemma 10.5. (ĥ ◦ f̂)avg = ĥavg ◦ f̂ and (̂f ◦ ĥ)avg = f̂ ◦ ĥavg provided that f
is G-equivariant (i.e. f̂avg = f̂).

We introduce the notion of A∞-homotopies in the existence of the group
action. Let (C[1], {mk}) be an A∞-algebra over R on which a finite group
G acts and suppose that each mk is G-equivariant. ([1] means the degree
shifting.) The A∞-homotopy is defined by employing a model of C × [0, 1].
When R ⊃ R, the A∞-algebra C[1]⊗R[t, dt] can be used as a model. (See
[22, Definition 8.37] or [25, Definition 4.29, Lemma 4.2.13] for extended A∞-
operations on C[1]⊗R[t, dt].) A G-action on C[1]⊗R[t, dt] is defined by
giving a trivial G-action on R[t, dt] factor. i.e. the G-action on C[1]⊗R[t, dt]
is R[t, dt]-linear. It is easy to see that A∞ operations on C[1]⊗R[t, dt] are
G-equivariant.

Recall that we have an A∞ homomorphism Evalt=t0 : C[1]⊗R[t, dt] →
C[1] given by

Evalt=t0(P (t) +Q(t)dt) = P (t0).

All other higher components of Evalt=t0 are defined to be zero. Evalt=t0 is
obviously G-equivariant and so is ˆEvalt=t0 .

Definition 10.6. Two (G-equivariant) A∞ homomorphisms φ, φ′ : C → C ′

are said to be (G-)homotopic to each other, if there exists a (G-equivariant)
A∞ homomorphism H : C → C ′ ⊗R[t, dt] such that Evalt=0 ◦H = φ and
Evalt=1 ◦H = φ′.
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Lemma 10.7. Suppose that C and C ′ are both equipped with G-equivariant
A∞ structures and φ : C → C ′ is G-equivariant. If φ and φ′ are homotopic,
then so are φ and φ′avg. Moreover, one can take a G-equivariant homotopy
between φ and φ′avg.

Proof. Let H be a homotopy between φ and φ′. Then, by taking “hat” and
averaging the equations Evalt=0 ◦H = φ and Evalt=1 ◦H = φ′, we get

ˆEvalt=0 ◦ Ĥavg = φ̂ ˆEvalt=1 ◦ Ĥavg = φ̂′avg.

�

We are now ready to state the G-equivariant version of the A∞-Whitehead
theorem.

Theorem 10.8. Let f : C1 → C2 be a G-equivariant weak homotopy equiv-
alence between two filtered A∞ algebras C1 and C2 with G-actions. Then,
there exists a quasi-inverse h : C2 → C1 of f which is also G-equivariant.

Proof. Usual Whitehead theorem for A∞-algebras in [25] produces a quasi-
inverse h̃ of f. By averaging h as in Definition 10.3, we obtain the A∞ ho-
momorphism havg which is G-equivariant. Since f is G-equivariant, we may

apply Lemma 10.5 so that (ĥ ◦ f̂)avg = ĥavg ◦ f̂ and (̂f ◦ ĥ)avg = f̂ ◦ ĥavg. Note

that îdavg = îd. Then, by Lemma 10.7, we get G-equivariant homotopies

ĥavg ◦ f̂ � îdC1
, f̂ ◦ ĥavg � îdC2

.

�

In order to construct A∞-algebra from AN (or An,K-algebra in the filtered
case) the following theorem is essential.

Theorem 10.9. (c.f. [25, Theorem 7.2.72]) Let C1 be a filtered An,K al-
gebra and C2 a filtered An′,K′ algebra with (n,K) < (n′,K ′), both of which
are assumed to be G-equivariant. Let h : C1 → C2 be a G-equivariant filtered
An,K homomorphism which gives rise to a filtered An,K homotopy equiva-
lence.

Then, there exist a G-equivariant filtered An′,K′ algebra structure on
C1 extending the given An,K algebra structure and a G-equivariant filtered
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An′,K′ homotopy equivalence C1 → C2 extending the given filtered An,K ho-
motopy equivalence h.

C
(n′,K′)
1

An′,K′
��
C2

C
(n,K)
1

��

An,K

h:


		

Proof. We just mention how to modify the original proof of [25], which deals
with the obstruction class of extending An,K structure to the next level.
Its G-equivariant version will be explained only for the unfiltered case for
simplicity. Given an AN structure with {mk}Nk=1, the subsequent operation
mN+1 should be defined to satisfy the next A∞-equation

m1 ◦mN+1(x) +mN+1 ◦m1(x)(10.5)

+
∑

k1+k2=N+1

(−1)deg
′ x1mk1

(x1,mk2
(x2),x3) = 0.

Denote the last term of (10.5) by oN+1. One can easily check that oN+1

is a δ-cocycle in the cochain complex

(Hom(BNC[1], C[1]), δ = [m1, ·]).

Thus, it precisely gives the obstruction class for the desired extension. In
addition, if AN algebra is G-equivariant, oN+1 defines a G-equivariant map
from BNC[1] to C[1], and hence lies in the subcomplex (HomG(BNC[1],
C[1]), δ).

Note that G-equivariant AN homotopy equivalence h preserve the ob-
struction class [oN+1], and that the obstruction vanishes if the target of h
has a G-equivariant AN ′ structure with N ′ > N . Therefore, we can choose a
G-equivariant mN+1 which satisfies (10.5) for C1. In a similar manner, the
original construction of [25] can be modified to include the G-equivariance
as above. �

Following the rest of [27], we obtain
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Theorem 10.10. There exist a G-equivariant A∞-algebra Ω(L)⊗̂Λnov of a
spin Lagrangian submanifold L, and its G-invariant part again becomes an
A∞-algebra, which will be called the A∞-algebra of [L/G] in [M/G].

The G-equivariance implies that If ρ1, . . . , ρk are all G-invariant, then
so is mk,β(ρ1, . . . , ρk). Therefore, we obtain an operation

mk,β | :
k︷ ︸︸ ︷

Ω(L)G ⊗ · · · ⊗ Ω(L)G → Ω(L)G

simply by restricting mk,β to the set of G-invariant differential forms on L.
This gives rise to a well-defined A∞-structure on Ω(L)G.

Within this setting, we may define G-bounding cochain as a bounding
cochain which is G-invariant. G-bounding cochains define boundary defor-
mations of A∞-algebra of [L/G].

Remark 10.11. The average of a bounding cochain does not become a
G-bounding cochain.

TheA∞-algebra of [L/G] constructed here is only concerned with smooth
J-holomorphic discs with boundary on L. In order to obtain richer orbifold
theory, one should additionally consider orbi-discs or bulk deformations by
twisted sectors, which are introduced by the first author and Poddar [18] in
the case of toric orbifolds.

11. G-equivariant A∞-bimodule CF ∗
R,l0

(L0, L1)

We consider equivariant A∞-bimodules and consider Lagrangian Floer ho-
mology of a pair. We first review the A∞-bimodule structure briefly. Recall
that a boundary operator δ : CF ∗R,l0

(L0, L1) → CF ∗R,l0
(L0, L1) was defined

in [25] by

(11.1) δ([w, lp]) =
∑

μ([w′,lq])−μ([w,lp])=1

#M(L1, L0; [w, lp], [w
′, lq]) [w

′, lq].

Here, M(L1, L0; [w, lp], [w
′, lq]) is the moduli space of J-holomorphic strips

u such that [w � u, lq] = [w′, lq]. The orientations of these moduli spaces are
already well-studied by [25].

Theorem 11.1. [25, 8.1.14] Suppose that a pair of Lagrangian submani-
folds (L0, L1) is (relatively) spin. Then for any p, q ∈ L0 ∩ L1, the moduli
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space M(L1, L0; [w, lp], [w
′, lq]) of connecting orbits in Lagrangian intersec-

tion Floer cohomology is orientable. Furthermore, orientations on Θ−[w,lp]
and

Θ−[w′,lq] and related spin structures canonically determine the orientation on

M(p, q).

In general, disc bubbling phenomenon produce non-trivial m0 term, and
hence δ2 �= 0. The general algebraic structure one obtains is in fact A∞-
bimodule over A∞-algebras of L0 and L1. Recall that A∞-bimodule M over
A∞-algebras C1, C2 are given by sequence of maps

{nk1,k2
: Bk1

C1 ⊗M ⊗Bk2
C2 → M}k1,k2≥0,

satisfying an A∞-bimodule equation. Such an A∞-bimodule is called G-
equivariant, if G acts on M and Ci linearly and each nk1,k2

satisfies

g · nk1,k2
(a1, . . . , ak1

, ξ, b1, . . . , bk2
)

= nk1,k2
(g · a1, . . . , g · ak1

, g · ξ, g · b1, . . . , g · bk2
).

Now, suppose L0 and L1 admit G-actions inherited from the one on
the ambient symplectic manifold. Assume further that the spin structures
on L0 and Li are G-invariant. i.e. they are isomorphic to their pull-back
under any element of G. Then, the spin bundle on Li gives a spin profile
si ∈ H2(G;Z/2) for i = 0, 1. Assume s0 = s1.

Remark 11.2. Since we will only consider the action of the energy zero
subgroup Gα of G for L0 and L1, the condition s0 = s1 can be weakened to
the agreement of s0 and s1 when restricted to H2(Gα;Z/2).

As studied in Section 9, the union of all moduli spaces M(L1, L0;
[w, lp], [w

′, lq]) with a fixed symplectic energy, has a Kuranishi structure
with a Gα-action. Therefore, δ = n0,0 is Gα-equivariant and the homology
of
(
CF ∗R,l0

(L0, L1), δ
)
admits a natural Gα-action if δ2 = 0.

Definition 11.3. With the setting as above, the Gα-invariant part of the
homology is called the Lagrangian Floer cohomology of the pair ([L0/G],
[L1/G]; l0) and will be written by

HF ∗R,l0([L0/G], [L1/G]).

We take the sum over all possible l0 to define Lagrangian Floer cohomology
of the pair ([L0/G], [L1/G]).
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Remark 11.4. If G �= Gα, we introduced orbifold Novikov ring Λorb
nov in

Subsection 8.3, and explained that Λorb
nov is not visible if we use the universal

Novikov field.

As in the previous section, it is not hard to adapt the construction of [25]
(or [27] for the de Rham version) to define Gα-equivariant A∞-bimodules
for the pair (L0, L1). Again using equivariant Kuranishi perturbations, and
adapting the construction of [25] as in the previous section, one can prove

Proposition 11.5. We have a Gα-equivariant filtered A∞-bimodule
(CF ∗R,l0

(L0, L1), {nk1,k2
}) with n0,0 = δ over Gα-equivariant A∞-algebras of

L0 and L1.

Now, let us consider the case that L1 is obtained by Hamiltonian diffeo-
morphism of L0, i.e. L1 = φ1

H(L0) for a time-dependentG-invariant Hamilto-
nian H. We remark that if H is not G-invariant, the corresponding Hamilto-
nian perturbation together with the group action produces possibly as many
as |G|-copies of Hamiltonian perturbations of L0, which can be considered
as a G-equivariant immersion of Lagrangian submanifolds. We plan to study
such general cases in [14].

Here, we only consider G-invariantH : M × [0, 1] → R such that eachHt

for t ∈ [0, 1] is a G-invariant function. This implies that φ1
H is G-equivariant,

and hence, for example, g-fixed points of M can only move to a g-fixed
points by φ1

H . φ1
H(L0) is, then, preserved by G. Since L0 and φ1

H(L0) are
equivariantly isotopic, one can identify their spin bundles and liftings of
G-actions on spin bundles. Thus, spin profiles of L0 and φ1

H(L0) coincide.
The energy zero subgroup Gα ⊂ G for the pair (L0, φ

1
H(L0)) is particu-

larly simple. Indeed, we will show that Gα becomes the entire group G. We
first choose a candidate for energy zero path for each g ∈ G as follows.

If we define H̃ : M → R by

H̃(x) =

∫
0≤t≤1

(φt
H)∗Ht(x)dt =

∫
0≤t≤1

Ht(φ
t
H(x))dt,

then H̃ is also G-invariant (since φt
H is G-equivariant.) Fix a generic point

x0 in L0 and choose for each g ∈ G a path γg in L0 from x0 to g · x0. We
take a base path l0 from L0 to φ1

H(L0) to be l0(t) := φt
H(x0). Then, the strip

wg : [0, 1]2 → M defined by

wg(t, s) = φt
H(γg(s))



Finite group actions on Lagrangian Floer theory 395

gives a path from l0 to g(l0) in Ω(L0, φ
1
H(L0); l0). We claim that this path

has zero energy.

Lemma 11.6. wg is an energy zero path.

Proof. We have to show that
∫
wg

ω =
∫
[0,1]2 w

∗
gω = 0. Observe that

w∗gω

(
∂

∂t
,
∂

∂s

)
(t,s)

= ω
(
(XHt

)φt
H(γg(s)), (φ

t
H)∗γ

′
g(s)
)

= dHt((φ
t
H)∗γ

′
g(s))φt

H(γg(s))

= d((φt
H)∗Ht)(γ

′
g(s))γg(s)

=
d

ds
(φt

H)∗Ht (γg(s))

Therefore, the energy of wg is given by

A(wg) =

∫
0≤s≤1

∫
0≤t≤1

(
d

ds
(φt

H)∗Ht (γg(s))

)
dtds

=

∫
0≤s≤1

d

ds

(∫
0≤t≤1

(φt
H)∗Ht (γg(s))dt

)
ds

=

∫
0≤s≤1

d

ds

(
H̃(γg(s))

)
ds

= H̃(γg(1))− H̃(γg(0)) = 0

since H̃ is G-invariant and γg(1) = g · γg(0). �
It directly follows from the lemma that

Corollary 11.7. With the setting as above, the energy zero subgroup for a
pair (L0, φ

1
H(L0)) is the entire group G.

Recall that the A∞-algebra is a bimodule over itself. So we can compare
two A∞-bimodules Ω(L0) and CF ∗R,l0

(L0, L1) over A∞ algebra of L0. The
following proposition of [25] can be also proved in a G-equivariant setting
along the same line of their proof, and we omit the details.

Proposition 11.8. Suppose that L0 is connected and let L1 = φ1
H(L0)

as above. Then there is a G-equivariant filtered A∞-bimodule quasi-
isomorphism

(11.2) Ω(L0)⊗̂Λnov → CF ∗R,l0(L0, L1)⊗Λ(L,L1;l0) Λnov.
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In particular, if the G-invariant A∞-algebra of L0 has a non-vanishing
homology, L0 and φ1

H(L0) have a non-trivial intersection for any time-
dependent G-invariant Hamiltonian isotopy φH . One can further construct
bulk-deformed (via twisted sectors) Lagrangian Floer theory of an orbifold
Lagrangian to capture additional intersection results.

We remark that Seidel already observed in Z/2-action of exact case
that such a Lagrangian Piunikhin-Salamon-Schwarz morphism exists and
becomes an isomorphism, as well as Hamiltonian invariance of equivariant
Lagrangian Floer homology. (see the last paragraph of section (14b) of [37]).

12. Equivariant flat vector bundles on G-invariant
Lagrangians

In this section, we explain how to add G-equivariant flat vector bundles to
the theory. In homological mirror symmetry, one needs to consider rank 1 flat
unitary bundles on a Lagrangian submanifold. With a finite group action
on the Lagrangian submanifold, it is natural to introduce G-equivariant
structures on such line bundles. We also observe that we can define a natural
action of a character group Ĝ (which is the dual group G∗ for abelian G) on
both equivariant and orbifolded Fukaya categories by twisting G-equivariant
structures on flat vector bundles. Such character group action comes into
play in G-equivariant homological mirror symmetry, which will be studied
in the next section. We remark that such character group action will be also
discussed in our joint work with Siu-Cheong Lau in preparation.

We will assume that G = Gα for simplicity from now on. We first review
the standard way of including these flat bundles into Lagrangian Floer the-
ory (without group actions). For a unitary bundle Ui on a Lagrangian Li (i =
0, 1), the new Floer complex CFl0((L0, U0), (L1, U1)) is defined by replacing
each generator [w, lp] of CF ∗

C,l0
(L0, L1) with [w, lp]⊗Hom(U0|p, U1|p). The

Floer differential δ in (11.1) is modified by additional contributions from
holonomies. Namely, given λp ∈ Hom(U0|p, U1|p) and a J-holomorphic strip
u which maps [w, lp] to [w�u, lq], we get λq ∈ Hom(U0|q, U1|q) by composing
λp with holonomies around two boundary components of u appropriately.

12.1. Equivariant structures

Consider a trivial complex vector bundle L× Cn → L of rank n where G
acts on L. A G-equivariant structure on this bundle means the choice of
a G-action on Cn, or equivalently the choice of a representation θ : G →
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End(Cn). Such a homomorphism induces the diagonal G-action on L× Cn.
If χ : G → U(1) is a character of G, then one can twist θ by χ and obtain
θχ : G → End(Cn) given by θχ(g) = χ(g)θ(g).

In general, let U → L be a possibly non-trivial vector bundle on L. A
G-equivariant structure on U is given by the choice of an isomorphism

(12.1) θg : U
∼=−→ g∗U

for each g ∈ G, which satisfies the cocycle conditions.

Definition 12.1. The twisting of a G-equivariant structure {θg} by a char-
acter χ : G → U(1) is a G-equivariant structure {θχg } on U defined by

(12.2) θχg = χ(g) · θg.

Here, χ(g) · (−) is defined as a fiberwise complex multiplication on a complex
vector bundle.

This defines a character group action on the set of G-equivariant struc-
tures on a vector bundle on L. Note that for an abelian group G, the set of
G-equivariant structures on a complex trivial line bundle are in one-to-one
correspondence with the dual group G∗ = Ĝ = Hom(G,U(1)).

Let L0 and L1 be two G-invariant Lagrangian submanifolds and choose
G-equivariant flat complex vector bundles (U0, θ

0) and (U1, θ
1) on L0 and

L1, respectively. Here we allow Ui to have rank greater than 1 since an
irreducible representation of G may have a dimension greater than 1. In
particular, we expect that bundles of higher ranks might play a non-trivial
role for non-abelian G.

We define the Floer cochain complex for the pair (L0, U0) and (L1, U1)
similarly as above, but using orientation spaces.

(12.3) CF ((L0, U0), (L1, U1)) :=
⊕
[w,lp]

|Θ−[w,lp]
|C ⊗C Hom(U0|p, U1|p)

The Floer differential for (12.3) is defined in a standard way as explained
above.

Definition 12.2. A G-action on (12.3) is defined as follows: for g ∈ G, a
linear map

g : Hom(U0|p, U1|p) → Hom(U0|g·p, U1|g·p)
is given by φ �→ θ1g(p) ◦ φ ◦ θ0g−1(g · p). The G-action on the first factor of
(12.3) is exactly the same one as in Section 8.
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Now, we consider G-invariant connections on a G-equivariant complex
vector bundle (U, θ) on L:

Definition 12.3. A connection∇ of aG-equivariant complex vector bundle
(U, θ) on L is said to be G-invariant, if the pull-back connection g∗∇ is
isomorphic to ∇ via θg. More precisely,

(12.4) (θg)∗ (E∇)(x,v) = (E∇)(g·x,g·v) .

where E∇ is the horizontal distribution associated to ∇.

We will only consider G-invariant connections from now on. Now, con-
sider the pair (Li, Ui) together with the choice of a G-invariant connection
∇i on Ui for i = 0, 1.

Proposition 12.4. The new Floer differential involving equivariant flat
bundle data is G-equivariant.

Proof. Let u be a holomorphic strip bounding L0 and L1 and let p and q be
its end points. We denote by γi the boundary component of u lying in Li.
(See Figure 9.)

Figure 9: Group actions on line bundles and the Floer differential.

Take an element φp of Hom(U0|p, U1|p) and g of G.
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(i) We first compute δ ◦ g : g sends φp to

θ1g(p) ◦ φp ◦ θ0g−1(g · p) ∈ Hom(U0|g·p, U1|g·p),

and then, the strip g · u sends θ1g(p) ◦ φp ◦ θ0g−1(g · p) to

(12.5) P 1
g·γ1

◦
(
θ1g(p) ◦ φp ◦ θ0g−1(g · p)

)
◦
(
P 0
g·γ0

)−1
where P i

γ means the parallel transport along γ by ∇i for i = 0, 1.

(ii) Secondly, let us compute g ◦ δ : u contributes to δ by sending φp to

P 1
γ1

◦ φp ◦
(
P 0
γ0

)−1
. Now, applying the g-action, we get

(12.6) θ1g(q) ◦
(
P 1
γ1

◦ φp ◦
(
P 0
γ0

)−1) ◦ θ0g−1(g · q).

We have to show that (12.5) and (12.6) represent the same element
in Hom(U0|g·q, U1|g·q). This follows from the G-equivariance of ∇i, which
implies that the G-action on Ui commutes with the parallel transport for
∇i. i.e.

P 1
g·γ1

◦ θ1g(p) = θ1g(q) ◦ P 1
γ1

and

θ0g−1(g · p) ◦
(
P 0
g·γ0

)−1
=
(
P 0
γ0

)−1 ◦ θ0g−1(g · q).

�

Let λ be the action of C∗ on equivariant vector bundles defined by the
fiberwise complex multiplication. Then, λ-action preserves connections in
the sense that λ∗∇ = ∇. Note that the twisting by the character group is es-
sentially given by the complex multiplication (12.2). Therefore, G-invariant
connections still remain G-invariant after twisting equivariant structures on
a bundle.

Remark 12.5. For an abelian G, one may use a homomorphism horb :
πorb
1 ([L/G]) → U(1) to classify equivariant flat line bundles on L and check

the above discussion more rigorously. See the related explanation after Con-
jecture 14.5.

12.2. Equivariant Fukaya categories

We summarize the construction of equivariant Fukaya categories in this
section, and also clarify once again the role of the group action and its
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dual group action. We are considering the case that a finite group G effec-
tively acts on a closed oriented symplectic manifold M . For each spin profile
s ∈ H2(G,Z/2), the equivariant Fukaya category G-Fuks(M) is defined as
follows. An object of G-Fuks(M) is given by a G-invariant Lagrangian sub-
manifold L whose spin profile equals s, together with a G-equivariant flat
unitary bundle U . For each pair (L0, U0), (L1, U1) ∈ Ob(G-Fuks(M)), we
choose a reference path l0 (one in each homotopy class) and we need to
assume that energy zero subgroup Gα equals G always. Then, we define the
morphism to be the (completed) direct sum over l0 of the Floer complex of
the pair (L0, U0), (L1, U1) with respect to l0. There should be G-equivariant
A∞-category operations by extending the construction in this paper to the
one of Fukaya [23].

Remark 12.6. Note that we possibly have several equivariant Fukaya cat-
egories corresponding to spin profiles in H2(G,Z/2)), and each G-invariant
(spin) Lagrangian submanifold L can belong to only one of them correspond-
ing to its spin profile.

Remark 12.7. We may also consider α-twisted G-equivariant vector bun-
dles for α ∈ H2(G,U(1)). These bundles are not G-equivariant, but their
failures of G-cocycle conditions are given by α. We remark that there is a
corresponding notion for sheaves, too (see for example [19]). In fact, from
the expression (12.3), effects of α ∈ H2(G,U(1)) and a spin profile condi-
tion in H2(G,Z/2) on Lagrangian Floer theory can be combined. Hence, it
seems that we can enlarge the equivariant or the orbifolded fukaya category
by including such objects. We leave it for future investigation.

As discussed, G acts on morphisms of the equivariant Fukaya category
G-Fuks(M). By taking G-invariant part of morphisms of G-Fuks(M), we
obtain the orbifolded Fukaya category FuksG(M), which still has an induced
A∞-category structure. In fact, for the definition of orbifolded Fukaya cate-
gory, we do not need assumptions that G = Gα.

Now the character group Ĝ acts on objects of G-Fuks(M) (hence also on
morphisms), by twisting equivariant structures ofG-bundles on Lagrangians.
Therefore, Ĝ acts both on the G-equivariant category and on the orbifolded
Fukaya category. The original Fukaya category of M does not contain the
data of G-equivariant structure of unitary bundles. Hence, one needs to take
the Ĝ-invariant part of equivariant fukaya category G-Fuks(M) to obtain
information about the Fukaya category of M itself.
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13. Fukaya-Seidel category of G-Lefschetz fibrations

There is a well-known Fukaya category associated to a Lefschetz fibration
π : E → S, called the Fukaya-Seidel category of π [39], [40]. If the Lef-
schetz fibration π is G-invariant, i.e. if there is a G-action on E such that
the fibration map π is G-invariant, then we can define the G-equivariant
Fukaya-Seidel category of π and the orbifolded Fukaya-Seidel category of
π̄ : [E/G] → S. These will depend on the choice of a group cohomology class
s in H2(G,Z/2). The construction is more or less an easy modification of
Seidel’s construction.

13.1. Equivariant Fukaya-Seidel categories

First, we review basic ingredients of Fukaya-Seidel categories. (See [37] for
details.) Let π : E → S be an exact Morse fibration where E admits an exact
symplectic form ω and S is isomorphic to D2. We assume that c1(E) = 0 in
order to discuss Z-grading, and assume dimR(E) ≥ 4 to simplify the exposi-
tion. Suppose there exists a ω-preserving G-action on E and π is invariant
under G. Then, the symplectic connection defined by ω is G-invariant, and
hence a parallel transport ρc : Ez → Ew along a curve c : [a, b] → S is a G-
equivariant diffeomorphism.

Let z0 be a regular value of π and M the fiber of π over z0. If {z1, . . . , zn}
∈ S is the set of critical values of π, we choose disjoint paths ci (except at
z0) from z0 to zi for each 1 ≤ i ≤ n. (c1, . . . , cn) are arranged by their cyclic
order at z0. See Figure 10 where we set z0 = −i. There may be several dif-

Figure 10: Configuration of vanishing paths.

ferent critical points over single critical value zi. Denote by a(i) the number
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of critical points over zi. Then, the parallel transport along ci defines a set

of vanishing cycles �a(i)
j=1Vij . Since G acts on these a(i) critical points, G also

acts on the set of vanishing cycles �a(i)
j=1Vij . We do not need to give an order-

ing to the family of vanishing cycles for ci, because they are disjoint from
each other, and hence Floer cohomology groups and Dehn twists between
them are all trivial.

As usual, we also pay attention to the Lefschetz thimbles which will be
denoted by Δij ’s. More precisely, Δij is the union of images of the vanishing
cycle Vij under the parallel transport over ci so that ∂Δij = Vij . Since the
symplectic connection as well as π are G-invariant, the group G acts on the
union of Lefschetz thimbles over each ci, and we immediately obtain the
following lemma.

Lemma 13.1. For each i and g ∈ G, we have g(Δij) = Δik for some k ∈
{1, . . . , a(i)}. Namely, an action of each g ∈ G permutes thimbles over the
given path ci (while some of thimbles can be preserved by g).

Gradings and spin structures on vanishing cycles are defined as follows.
As explained right after Definition 6.1, we can equip Vij ’s with G-invariant
gradings. If dimR(M) ≥ 4, then the vanishing cycles are spheres of dim ≥ 2,
which have canonical spin structures. In case dimR(M) = 2, vanishing cycles
are circles, and we choose a spin structures of each vanishing cycle to be the
one obtained from the restriction of the trivialization of the tangent bundle
of the corresponding Lefschetz thimble.

We remark that an object consists of a single connected component if
G-action preserves Vij , and has several disjoint components otherwise. For
example, if there is only one critical point over the critical value zi, then
the vanishing cycle Vi1 is preserved by the G-action and is an object of the
category as this critical point should be fixed by the whole group G.

Now, we define an equivariant (or an orbifold) version of a directed A∞-
category FS, so called the Fukaya-Seidel category. For each s in H2(G;Z/2),
we will have a category consisting of s-equivariant branes, which are G-
invariant (union of) vanishing cycles with the spin profile s.

Definition 13.2. Consider a G-invariant Lefschetz fibration π : M → C,
and choice of paths {ci} and vanishing cycles {Vij} as before. An object
of both the s-equivariant Fukaya-Seidel category G-FSs(M,π) and orbifold
Fukaya-Seidel category FSs

G(M,π) is given by a G-orbit ∪gg · Vij for each
vanishing cycle Vij for some 1 ≤ i ≤ n, 1 ≤ j ≤ a(i) whose spin profile is s,
together with a G-invariant grading and G-equivariant flat complex vector
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bundle on ∪gg · Vij . We require that this bundle extends to a G-equivariant
flat complex vector bundle on the corresponding thimble. We denote by Vij

the G-orbit of vanishing cycle ∪gg · Vij together with these additional data.
Also, if Vij and Vij′ lie in the same G-orbit, then we identify ∪gg · Vij and
∪gg · Vij′ .

The objects of equivariant and orbifold categories are the same as above,
but their morphisms will be defined differently. We postpone the discussion
of adding G-equivariant flat complex vector bundle to the construction in
Subsection 13.2, and we first explain the construction without them.

We may suppose that all vanishing cycles (and hence, all objects in C)
are transversal to each other by choosing vanishing paths in general positions
(Figure 10). The cyclic order at z0 gives a partial order, on the index i of Vij .

Definition 13.3. We define morphisms between two objects Vi1j1 and Vi2j2

of the s-equivariant category G-FSs(M,π) as follows.
For i1 �= i2,

homG-FSs(Vi1j1 ,Vi2j2)

=

{
CF ∗(Vi1j1 ,Vi2j2) =

⊕
y∈Vi1j1

∩Vi2j2
|o(y)|R k < l

0 k > l

For i1 = i2, and two objects Vi1j1 and Vi2j2 are in fact the same, then we
define

homG-FSs(Vi1j1 ,Vi1j1) = R · (idV1
⊕ · · · idVk

).

For the remaining case, their morphisms are defined to be zero (since they
do not intersect).

Remark 13.4. This A∞-category is not strictly but partially directed in
a sense.

Note that the morphism space admits a G-action. For Vi1j1 �= Vi2j2 , the
G-action on their morphism is exactly the same as in Section 6. If i1 = i2
and two objects Vi1j1 and Vi2j2 are the same, then the G-action on R ·
(idV1

⊕ · · · idVk
) is defined as follows. We first fix orientations of V1, . . . , Vk,

and the construction below depends on this choice. Since V is a G-orbit,
each connected component Vi is mapped to Vj for some j. In such a case,
we define g-action R · idVi

→ R · idVj
to be (±1), where the sign is positive

if the g-action preserves the pre-fixed orientations, and negative otherwise.
This defines G-action on morphism spaces.
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In order to construct G-equivariant A∞-operations on morphisms of G-
FSs(M,π), we may adapt the construction in the previous section. Namely,
we consider a A∞-category D, whose object is (Vij , g) for each i, j and g ∈ G.
Then the set of object of D admits a free G-action, and we can make the
perturbation data G-equivariant. As Seidel mentioned in [39, Remark 6.1],
we do not have to care about the chain complexes underlying HF (Vij ,Vij)
by the (partial) directedness, but only the above case (k0 < · · · < kd) is
needed to be considered. Therefore, the homological perturbation lemma of
Seidel (Lemma 6.7) provides G-equivariant A∞-operations on morphisms of
G-FSs(M,π).

Definition 13.5. For the orbifold Fukaya-Seidel category, morphisms of
FSs

G(M,π) are defined to be the G-invariant part of the corresponding mor-
phisms of G-FSs(M,π), which has an induced A∞-operations.

13.2. Equivariant flat unitary bundles for G-FSs(M,π)

Even though vanishing cycles V give rise to objects of directed A∞-category,
one has to think in terms of respective vanishing thimbles denoted as T ,
which are indeed Lagrangian submanifolds in M . We assume here that G is
abelian in order to simplify the exposition. General cases can be handled as
in Section 12. Note that any irreducible representation of G is 1-dimensional
and hence, it suffices to consider line bundles only.

Consider V := ∪gg · Vij for each i, j and the G-equivariant line bundle
U on V which extends to the one on the corresponding thimble T . Let us
denote it by UT → T , which is necessarily trivial. Thus, UT ∼= T × C and
the G-equivariant structure on UT comes up with χ ∈ Hom(G,C∗).

Suppose that Vi is a vanishing cycles with a G-equivariant line bundle
UTi as above for i = 1, 2. Then, pairs (Vi, U

T
i ) for i = 1, 2 are objects of

G-FSs(M,π) and we want to define their morphism space.
If V1 �= V2 We define their morphism space to be as in section 13 using

o(y) for each intersection points y but with C coefficients. The group action
on the morphism space is twisted by χ1 and χ2. i.e. g : o(y) → o(g · y) is
defined as the original action multiplied by χ1(g)

−1χ2(g). This is a canonical
action on o(y)⊗Hom(UT0 |y, UT1 |y) consistent with (12.3). However, since
UTi |y is canonically isomorphic to C, we may just use o(y) as above.

Let us consider the case V1 = V2 =: V. Denote the connected compo-
nents of V as V1, . . . , Vk associated to critical points x1, . . . , xk. Recall that
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Hom(V,V) ( with R = C) is given by

(13.1) C · (idV1
⊕ · · · ⊕ idVk

).

The G-action on the above morphism space has been already described
in Section 7. When they are equipped with G-equivariant line bundles,
Hom((V, UT1 ), (V, UT2 )) is defined to be the same as (13.1), whose g-action
is given by the previous g-action defined in section 13 with additional mul-
tiplication of χ1(g)

−1χ2(g).
Note that the G-invariant part Hom((V, UT1 ), (V, UT2 ))G is non-trivial if

G-action on the set of connected components of V is free.

14. Some examples of group actions and mirror symmetry

We discuss a few examples of well-known homological mirror symmetry,
but with an additional finite group action. The homological mirror symme-
try (conjectured by Kontsevich) asserts that the derived Fukaya category
of a symplectic manifold (or the derived Fukaya-Seidel category of a LG
model) is equivalent to the derived category of coherent sheaves of the mir-
ror complex manifold (or the matrix factorization category of the mirror LG
model). Strominger-Yau-Zaslow approach explains such a phenomenon as a
correspondence between dual torus fibrations. We will be rather sketchy, as
our motivation is to consider its relationship with group actions.

Consider a Lagrangian torus fibration π : X → B where π−1(b) is regular
torus fiber for b ∈ B̊, and assume that B̊ is simply connected. Suppose that
the mirror is given as a Landau-Ginzburg (LG) model W : Y → C. Here,
Y → B̊ is the dual torus fibration

Y = {(Xb,∇b) : ∇b ∈ Hom(Xb, U(1)), b ∈ B̊}

where Hom(H1(Xb), U(1)) is considered to be the space of flat connections on
the trivial line bundle on Xb. Suppose that the mirror potential W : Y → C

is defined as a Lagrangian Floer potential (see for example [17], [26], [5])

W (Lu,∇u) =
∑

β,μ(β)=2

nβ(Lu) exp

(
−
∫
β
ω

)
hol∇u

(∂β).

Definition 14.1. We say that an action of a finite group G on X is com-
patible with the fibration π if the group action sends torus fibers to torus
fibers.
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We will assume that G acts on X → B in a compatible way from now
on. Thus each g ∈ G sends a fiber Xb into Xb′ for some b′ for each b ∈ B.

Definition 14.2. We define the G-action on Y as

g · (Xb,∇b) = (Xg·b, g∗∇b).

(Here, g∗∇b :=
(
g−1
)∗∇b.)

Note that this G-action could be trivial even if the G-action on X is
effective as we will see in the example of CP 1. For a G-action on X com-
patible with π, we have an induced homomorphism ρ : G → Aut(B). This
gives rise to the following exact sequence

1 → Ker(ρ) → G → G/Ker(ρ) → 1.

We may denote GF = Ker(ρ) and GB = G/Ker(ρ) . The example of CP 1

below is the case when G = GF . But if G = GB, it is clear that G-action
on Y is also effective if that on X is. We will see such an example in the
Section 15, where the G-action on CP 2 rotates the moment triangle B.

It is not hard to show that W becomes G-invariant for the induced
G-action on Y .

Lemma 14.3. W : Y → C is G-invariant.

Proof. It follows from the invariance of the symplectic form ω under the
G-action:

W (Xg·b, g∗∇b) =
∑

β′∈π2(X,Xg·b)
μ(β′)=2

nβ′(Xg·b) exp

(
−
∫
β′
ω

)
holg∗∇b

(∂β′)

=
∑

β∈π2(X,Xb)
μ(β)=2

ng·β(Xg·b) exp

(
−
∫
g·β

ω

)
holg∗∇b

(∂(g · β))

=
∑

β∈π2(X,Xb)
μ(β)=2

nβ(Xb) exp

(
−
∫
β
ω

)
hol∇b

(∂β) = W (Xb,∇b)

�
We denote by s the spin profile of torus fibers Xb for b ∈ B̊. We can

formulate the homological mirror symmetry conjecture in this setting as
follows:
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Conjecture 14.4. There are equivalences of derived categories,

DbFuksG(X) ∼= DbMFG(W )(14.1)

DbFSs
G(Y,W ) ∼= DbCohGX(14.2)

where DbFuksG(X) is the derived s-orbifolded Fukaya category of X defined
in this paper, DbCohG(X) is the derived category of G-equivariant coherent
sheaves on X and MFG(W ) is the G-equivariant matrix factorization cate-
gory of W . The character group Ĝ acts on both sides of (14.1) by twisting
equivariant structures in a compatible way.

In general, for a mirror pair X,Y , one may conjecture the equivalence
of two categories DbFuksG(X) and DbCohG(Y ). Here, note that the right
hand sides do not involve spin profiles. This is because sheaves on the right
hand side are expected to be obtained as certain family version of Floer ho-
mologies, and hence G-action is well-define for them (without spin profiles).
Note also that the right hand side is well-defined even when G acts trivially.

14.1. Fiberwise GF -actions and toric examples

Suppose that an abelian group G = GF acts freely on regular torus fibers.
In particular, the character group G∗ is the dual group of G. Its dual torus
fibration can be understood as follows. Consider

(14.3) 1 → π1(Xb) → πorb
1 ([Xb/G]) → G → 1

and take Hom(−, U(1)) to obtain the following exact sequence:

0 → G∗ = Hom(G,U(1)) → Ỹb := Hom(πorb
1 ([Xb/G]), U(1))(14.4)

→ Yb = Hom(π1(Xb), U(1)).

If Xb/GF is still a (Lagrangian) torus, then the last map Ỹb → Yb is sur-
jective. This follows from the fact that the first and the second term in the
exact sequence (14.3) are isomorphic to Zn and U(1) is divisible.

Let us assume that X/GF → B is again a Lagrangian torus fibration
from now on. This happens for example when X is a toric manifold with the
action of a finite subgroup G = GF of the torus U(1)n ⊂ (C∗)n.

Since πorb
1 ([Xb/G]) = π1(Xb/G), the middle term Ỹb gives the dual torus

fiber of Xb/G, giving rise to the dual torus fibration Ỹ → B̊. From (14.4),
it is easy to see that the dual group G∗ acts on Ỹ and the quotient is
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isomorphic to the mirror manifold Y of X. Let p : Ỹ → Y be the quotient
map via G∗. Indeed G∗ acts on Ỹ freely and p : Ỹ → Y is a covering whose
deck transformation group is precisely G∗ since the first map in (14.4) is
injective.

Let W̃ : Ỹ → C be given by the composition W ◦ p. W̃ is G∗-invariant
by definition. We define W̃ by the composition because smooth holomorphic
discs in [X/G] are in fact obtained from smooth holomorphic discs in X.
(See [18] for more details: we do not consider bulk-deformations by twisted
sectors, here.)

The situation is summarized in the diagram below:

X

G
��



 mirror �� Y
W �� C

[X/G] 


mirror

�� Ỹ

G∗

��

W̃





.

Namely, in this case, taking G-quotient on one side corresponds to taking a
G∗-covering on the other side. We remark that such a phenomenon has been
already observed for the pair of pants case by Abouzaid, Auroux, Efimov,
Katzarkov and Orlov [1].

Now, it is natural to expect that (Ỹ , W̃ ) is the LG mirror of [X/G] in
the sense of SYZ. Moreover, the A-model category for X and the one for its
quotient are expected to have a close relationship.

Conjecture 14.5. In the above setting, we have equivalences of derived
categories

DbFuksG(X) ∼= DbMF (W̃ )

and

DbFuk(X) ∼=
(
DbFuksG(X)

)G∗
.

Here, MFG∗(W̃ ) is the G∗-equivariant matrix factorization category. As

the G∗-action on Ỹ is free, MFG∗(W̃ ) is equivalent to MF (W ) where the

equivalence from MF (W ) to MFG∗(W̃ ) is the pull-back functor by the pro-
jection Ỹ → Y . (This is a special case of Proposition 2.2 in [35].) Hence the
second part of the conjecture follows from the first part of the conjecture.

We can relate the G∗-action on Ỹ with the G∗-action on FuksG(X) in

a geometric way. In view of SYZ, a point in Ỹb corresponds to a torus
fiber [Xb/G] together with a flat line bundle over it, or equivalently a G-
equivariant flat line bundle (U, θ,∇) over Xb. Since G acts freely on Xb, a
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G-equivariant structure on the line bundle U is unique up to isomorphism.
However, if we apply the character group action of χ ∈ G∗ to (U, θ,∇), the
flat structure, or holonomy in an orbifold sense, of [U/G] changes as follows.

Consider a generalized curve γ ∈ πorb
1 ([Xb/G]) with γ(0) = x0 to γ(1) =

g · x0 where x0 is the base point for π1(Xb). After projecting down to [Xb/G],
γ becomes a genuine loop γ̄. Then, the holonomy along the loop γ̄ in [Xb/G]
can be measured by the difference between the parallel transport along γ
and θg, both of which are linear maps from Ux0

and Ug·x0
If (U, θ,∇) is

twisted by an element χ ∈ G∗, then the identification θg of Ux0
and Ug·x0

is
also twisted by χ(g). i.e. Ux0

and Ug·x0
are now identified by χ(g)θg. As a

result, the holonomy around γ̄ in [Xb/G] is changed by χ(g). This explains
the action of G∗ on Ỹb shown in (14.4).

14.2. Example of CP 1

We provide an example which illustrate the phenomenon discussed in the
previous subsection. Equip X := CP 1 with the Z/3-action given by [z0 :
z1] → [ρz0 : z1] where ρ = e2πi/3. It preserves all torus fibers, and hence G =
GF in this example. Associated to this action, we can construct a three-fold
cover Ỹ of the mirror Y := C∗ of X. Identifying Ỹ with C∗, the covering
map is explicitly given by

w ∈ Ỹ �→ z = w3 ∈ Y.

The G∗(∼= Z/3)-action on Ỹ (14.4) sends w to ρw.

Remark 14.6. The variable w indeed comes from orbidiscs bounding torus
fibers in [X/G]. In Figure 11, w = Tω(β)hol∇∂β. See [18] or [15] for more
details.

Then, in terms of a coordinate w on Ỹ , the pulled-back potential W̃ can
be written as

W̃ = w3 +
1

w3
.

(For simplicity, we set the Kähler parameter q to be 1.) Note that W̃ is
invariant under the G∗-action. Consider the Lagrangian brane L supported
on the balanced torus fiber with the trivial holonomy in [X/G]. In [15], it is
shown that the SYZ transformation of L is the following matrix factorization
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Figure 11.

of W̃ .

(14.5) (1− w)

(
1

w3
+

1

w2
+

1

w
− 1− w − w2

)
= w3 +

1

w3
− 2

Notice that 2 is a critical value of W̃ . Now, ρ ∈ G∗ sends L to the Lagrangian
brane supported on the same torus fiber but with the holonomy ρ. In the
mirror, it sends (14.5) to

(1− ρw)

(
1

w3
+

1

ρ2w2
+

1

ρw
− 1− ρw − ρ2w2

)
= w3 +

1

w3
− 2,

where we used ρ3 = 1.
There is aa easy example of a G∗-invariant object in MF (W̃ ), which can

be written down only in terms of w3:

(14.6) (1− w3)

(
1

w3
− 1

)
= w3 +

1

w3
− 2.

Using z = w3, (14.6) is expressed as

(1− z)

(
1

z
− 1

)
= z +

1

z
− 2(= W − 2),
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which was shown to be the mirror matrix factorization of the equator in
CP 1 in [8].

15. CP 2 with a Z/3-action

In this section, we consider the projective plane CP 2 equipped with the
G = Z/3-action which cyclically permutes three homogeneous coordinate of
[z0 : z1 : z2] in CP 2. Note that the torus fibration CP 2 → Δ is compati-
ble with this Z/3-action. The Landau-Ginzburg mirror of CP 2 is given by
{xyz = 1} ⊂ C3 with the superpotential W (x, y, z) = x+ y + z. It is easily
check that the mirror Z/3-action also permutes three variable x, y, and z,
and hence W is invariant under this action. In what follows, we identify the
mirror of CP 2 with (C∗)2 and use W (x, y) = x+ y + 1

xy as the superpoten-
tial.

We will compare Db
Z/3Coh(CP 2) and FSZ/3(W ) in Subsection 15.1,

and compare Z/3-invariant objects in Fuk(CP 2) and Db
sing(W ) in Subsec-

tion 15.2.
Let us first remark on spin profiles and energy zero subgroups. For

Fuk(CP 2), we will consider the Floer homology of a torus fiber with it-
self, and in such a case a choice of spin profile does not affect the group
action. Indeed, spin profiles for invariant Lagrangians involved in this ex-
ample are all zero since H2(Z/3,Z/2) = 0. Also the central fiber has a fixed
point of group action. Thus from Lemma 8.5, we have Gα = G, and we can
define G-actions on Lagrangian Floer homology groups.

15.1. Comparison of Db
Z/3Coh(CP 2) and FSZ/3(W )

The following discussion is based on the computations in [4] except that we
additionally consider the group action.

Before going into details, we briefly recall what equivariant sheaves are.
Let X be a topological space with an action of a finite group G.

Definition 15.1. A G-equivariant structure on a sheaf F on X is a choice
of an isomorphism θg : F ∼= g∗F for each g such that these isomorphisms
satisfy the cocycle condition

(15.1) θgh = h∗θg ◦ θh.

Since (g∗F)x = Fg·x for x ∈ X, the G-equivariant structure on F gives

an isomorphism θg(x) : Fx
∼=−→ Fg·x for each g ∈ G which covers the base
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action.

(15.2) Fx
θg(x) ��

��

Fg·x

��
x � g �� g · x

Fx
θgh(x) ��

θh(x) ��

F(gh)·x

Fh·x

θg(h·x)

��

On the level of stalks, the cocycle condition (15.1) can be understood more
clearly shown in the right side diagram in (15.2).

Denote the category of G-equivariant sheaves by ShG(X) and define

(15.3) CohG(X) := {(F , θ) ∈ ShG(X) : F ∈ Coh(X)}.

We write Db
GCoh(X) for the derived category of (15.3). The original defi-

nition of Db
GCoh(X) is slightly different from the one given here, but it is

known that they are equivalent if G is finite. (See [7].)
(i) We first find generators Db

Z/3Coh(CP 2). Before describing the equivari-
ant version, we recall the following well-known fact.

Proposition 15.2. [6] Let Ω = Ω1 be the cotangent sheaf on CP 2. Then,

(15.4) Ω2(2), Ω1(1), Ω0 = O

forms a full strong exceptional collection in Db(Coh(CP 2)).

Remark 15.3. There is another well-known generators of DbCoh(CP 2),
{O,O(1),O(2)}. See [6] or [4, Theorem 2.12].

It is also known from [6] that

(15.5) RHom(Ω1(1),O) ∼= RHom(Ω2(2),Ω(1)) ∼= C 〈x〉 ⊕ C 〈y〉 ⊕ C 〈z〉 ,

and

(15.6) RHom(Ω2(2),O) ∼= C 〈x ∧ y〉 ⊕ C 〈y ∧ z〉 ⊕ C 〈z ∧ x〉 .

Note that three sheaves in Proposition 15.2 are all Z/3-invariant. We
fix an equivariant structure on each of these sheaves so that the induced
action on morphism spaces (15.5) and (15.6) are given by cyclic permuta-
tion on dx, dy, dz. Let Vi (i = 0, 1, 2) be the irreducible representation of
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Z/3 on which the primitive generator of Z/3 acts by ρi. Then, any Z/3-
equivariant structure on Ω(i) is isomorphic to Ω(i)⊗ Vj for some j. More-
over, for i1, i2, j1, j2 ∈ {0, 1, 2} with i1 ≥ i2,

HomG(Ω
i1(i1)⊗ Vj1 ,Ω

i2(i2)⊗ Vj2)
∼=
(
Hom(Ωi1(i1),Ω

i2(i2))⊗ Vj2−j1
)G

.

(See the proof of [19, Theorem 2.1].) If i1 is strictly greater than i2, then
dimHom(Ωi1(i1),Ω

i2(i2)) = 3 and G permutes its basis (which are chosen
in (15.5) and (15.6)). Therefore, the rank of the right hand side is 1 regardless
of j1 and j2. However, if i1 = i2 = i, then

(15.7) HomG(Ω
i(i)⊗ Vj1 ,Ω

i(i)⊗ Vj2)
∼= V G

j2−j1
∼= Cδj1j2 .

(ii) The mirror Z/3-action fixes three critical points of W ,

p0 = (1, 1), p1 = (ρ, ρ), p2 = (ρ2, ρ2),

where ρ = e2πi/3. They are indeed the only fixed points of this Z/3-action.
We have vanishing cycles V0, V1 and V2 inW−1(0) associated to p0, p1, and p2
respectively. Each Vi is a Z/3-invariant Lagrangian submanifold of W−1(0).
Since the Z/3-action on W−1(0) is free, the action on Vi is topologically
equivalent to the one generated by the 2πi/3-rotation on the circle(∼= Vi)
and in particular, it is orientation preserving. We equip Vi’s with nontrivial
spin structures (which extend to the vanishing thimbles). As mentioned, we
do not need to care about spin profiles as H2(Z/3,Z/2) is zero and therefore,
the group action lifts to the spin bundles.

By projecting to the x-coordinate plane (minus the origin), we see that
each pair of vanishing cycles intersects at three points. We denote them as

V0 ∩ V1 = {x0, y0, z0},
V1 ∩ V2 = {x1, y1, z1},
V0 ∩ V2 = {x̄0, ȳ0, z̄0}.

Since the group action is free on W−1(0), it also freely permutes three points
in Vi ∩ Vj for i �= j ∈ {0, 1, 2}. From [4],

Lemma 15.4. m1 is identically zero.

(For the full computation of the A∞ structure of the Fukaya-Seidel cat-
egory of W , see [4].)
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Now, we consider the equivariant vector bundles on Vi’s. Recall from
Section 12 that such bundles extend to the vanishing thimbles (Δi’s) so
that the equivariant structures are determined by characters in (Z/3)∗ =
Hom(Z/3, U(1))(∼= Z/3). Let χi (i = 0, 1, 2) be the character that sends
the primitive generator of Z/3 to ρi ∈ U(1) (ρ = e2πi/3). Then, the Z/3-
equivariant Fukaya-Seidel category has 9 objects : (Vi, χj), i, j ∈ {0, 1, 2}.

One can easily check that if i1 �= i2, the G-invariant part of

Hom((Vi1 , χj1), (Vi2 , χj2))

is of rank 1 ( regardless of j1 and j2) since the G-action is free. If i1 = i2 but
χj1 �= χj2 , then the Z/3-action on C(∼= C · idVi

) is nontrivial as χ1(g)
−1χ2(g)

�= 1 for some g ∈ Z/3. Therefore, there can not exist any g-invariant element
other than zero. Hence we have

Hom((Vi, χj1), (Vi, χj2))
∼= Cδj1,j2

15.2. Equivariant A-branes in CP 2 and B-branes in its mirror

(i) In CP 2, there are three nontrivial A-branes, the Clifford torus T , together
with three different holonomies, (T, (1, 1)), (T, (ρ, ρ)) and (T, (ρ2, ρ2)), which
are known to have non-vanishing Floer homologies [12]. In fact they are
expected to generate the Fukaya category of CP 2 which has been announced
by Abouzaid, Fukaya, Oh, Ohta and Ono [2].

The central fiber T is preserved by the Z/3-action. As the values of the
(Lagrangian Floer) potential function are distinct for these three A-branes,
Floer homologies between them are not defined, but only Floer homologies
for the same pairs of objects are defined, which turn out to be isomorphic to
the singular cohomology of T (as modules). We work with Z/2-grading, and
hence both the even and the odd degree components of their endomorphism
spaces have rank 2. Let us consider (T, (1, 1)) only, since the other cases are
almost the same. We identify HF (T, T ) with the space of harmonic forms
on T , which is generated by dθ0, dθ1, dθ2 (and their products as well) with
the relation dθ0 + dθ1 + dθ2 = 0. The induced action on T sends dθi to dθi+1

(with i+ 3 = i). One can easily check that 1 and dθ0 ∧ dθ1 is invariant under
this action. However, the G-invariant part of HF (T, T ) does not have any
1-forms since the only 1-form possibly G-invariant is dθ0 + dθ1 + dθ2(= 0).
(ii) Likewise, among three critical value 3, 3ρ, and 3ρ2 of the potential W =
x+ y + 1

xy , we only consider the category Db
sing(W

−1(3)). W−1(3) has a
unique singular point (x, y) = (1, 1), which is nodal. Let F be the skyscraper
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sheaf supported at this point. Note that F is Z/3-invariant. We compute
RHom(F ,F) in the split-closure of Db

sing(W
−1(3)).

After the idempotent completion (taking the split-closure), it is enough
to consider the skyscraper sheaf F = C0 at the origin in SpecA where A :=
C[x, y]/xy. Recall from the previous subsection that the action on nearby
regular fibers (locally identified with T ∗S1) are induced by 2π/3-rotations on
zero sections. Thus, the continuity of the action shows that the corresponding
group action on SpecA (near the origin) is analytically equivalent to the one
given by (x, y) �→ (ρx, ρ−1y). (See Figure 12.)

Figure 12: Z/3-action on SpecA.

Note that we have an exact triangle

Ax⊕Ay → A → C0 → [1]

consisting of Z/3-invariant sheaves and that A is a free module. Therefore,
C0 is isomorphic to Ax⊕Ay in the derived category of singularities. The
even degree part of RHom(Ax⊕Ay,Ax⊕Ay) is, then, given by

(15.8) RHom0(Ax⊕Ay,Ax⊕Ay) = Hom(Ax⊕Ay,Ax⊕Ay) ∼= C2.

(Here, Hom(Ax⊕Ay,Ax⊕Ay) means the space of A-module homomor-
phisms from Ax⊕Ay to itself which do not factor through a free A-module.)

For RHom1(Ax⊕Ay,Ax⊕Ay) = Hom(Ax⊕Ay,Ax⊕Ay[1]), we first
compute Ax[1] and Ay[1]. From the following exact triangle

Ax → A → A/Ax → [1]
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we see that Ax[1] ∼= A/Ax = C[y](= O(y − axis)). Similarly, Ay[1] ∼= C[x].
Therefore,

(15.9) RHom1(Ax⊕Ay,Ax⊕Ay) = Hom(Ax⊕Ay,C[x]⊕ C[y]).

Any morphism in the right hand side should send x to a constant multiple
of 1 ∈ C[x], or it would factor through A. Likewise, the image of y has to be
a multiple of 1 ∈ C[y]. Therefore, RHom1(Ax⊕Ay,Ax⊕Ay) ∼= C2.

Note that all sheaves involved here admit natural Z/3-actions since they
are defined by geometric terms preserved by Z/3 ( e.g. Ax is the ideal sheaf
consisting of regular functions on SpecA which vanish on y-axis). These
actions, of course, can be twisted further by tensoring irreducible represen-
tations of Z/3, but we do not consider them here for simplicity.

All elements in (15.8) are clearly invariant under the induced action on
(15.8) so thatRHom0

Z/3(Ax⊕Ay,Ax⊕Ay) ∼= C2.However,RHom1
Z/3(Ax⊕

Ay,Ax⊕Ay) = 0 since the primitive generator of Z/3 acts on x ∈ Ax and
y ∈ Ay by multiplying ρ, while it keeps both 1 ∈ C[x] and 1 ∈ C[y] invariant.
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Finite group actions on Lagrangian Floer theory 419

[30] R. C. Kirby and L. R. Taylor, Pin structures on Low-dimensional man-
ifolds, LMS Lec. note series 151, Camb. Univ. Press, (1990), 177–242.

[31] E. Lerman and S. Tolman, Hamiltonian torus actions on symplectic
orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), 4201–
4230.

[32] J. Milnor, Spin structures on manifolds, L’Enseignement Mathematique
9 (1963).

[33] Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-
holomorphic discs I, Comm. Pure and Appl. Math. 46 (1993), 949–994
addenda, ibid, 48 (1995), 1299–1302.

[34] K. Ono, Floer-Novikov cohomology and symplectic fixed points, J. Sym-
plectic Geom. 3 (2005), 545–563.

[35] A. Polishchuk and A. Vaintrob, Matrix factorizations and singularity
categories for stacks, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 7,
2609–2642.

[36] I. Satake, On a generalization of the notion of manifold, Proc. Nat.
Acad. Sci. USA 42 (1956), 359–363.

[37] P. Seidel Fukaya Categories and Picard-Lefschetz theory, EMS Zurich
Lect. Adv. Math. (2008).

[38] P. Seidel, Homological mirror symmetry for the quartic surface, Mem-
oirs of the American Mathematical Society 236 (2015), no. 1116,

[39] P. Seidel, Vanishing cycles and mutation, European Congress of Math-
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