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How many geodesics join two points on a

contact sub-Riemannian manifold?

A. Lerario and L. Rizzi

We investigate the structure and the topology of the set of geodes-
ics (critical points for the energy functional) between two points on
a contact Carnot group G (or, more generally, corank-one Carnot
groups). Denoting by (x, z) ∈ R2n × R exponential coordinates on
G, we find constants C1, C2 > 0 and R1, R2 such that the number
ν̂(p) of geodesics joining the origin with a generic point p = (x, z)
satisfies:

(1) C1
|z|

‖x‖2
+R1 ≤ ν̂(p) ≤ C2

|z|

‖x‖2
+R2.

We give conditions for p to be joined by a unique geodesic and we
specialize our computations to standard Heisenberg groups, where
C1 = C2 =

8
π
.

The set of geodesics joining the origin with p �= p0, parametrized
with their initial covector, is a topological space Γ(p), that natu-
rally splits as the disjoint union

Γ(p) = Γ0(p) ∪ Γ∞(p),

where Γ0(p) is a finite set of isolated geodesics, while Γ∞(p) con-
tains continuous families of non-isolated geodesics (critical mani-
folds for the energy). We prove an estimate similar to (1) for the
“topology” (i.e. the total Betti number) of Γ(p), with no restriction
on p.
When G is the Heisenberg group, families appear if and only

if p is a vertical nonzero point and each family is generated by
the action of isometries on a given geodesic. Surprisingly, in more
general cases, families of non-isometrically equivalent geodesics do
appear.
If the Carnot group G is the nilpotent approximation of a con-

tact sub-Riemannian manifold M at a point p0, we prove that the
number ν(p) of geodesics in M joining p0 with p can be estimated
from below with ν̂(p). The number ν(p) estimates indeed geodesics
whose image is contained in a coordinate chart around p0 (we call
these “local” geodesics).
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As a corollary we prove the existence of a sequence {pn}n∈N in M
such that:

lim
n→∞

pn = p0 and lim
n→∞

ν(pn) =∞,

i.e. the number of “local” geodesics between two points can be arbi-

trarily large, in sharp contrast with the Riemannian case.
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1. Introduction

If the topology of a Riemannian manifold M is “complicated enough” (for
example if M is closed) a well known theorem of J-P. Serre [15] states that
there are infinitely many geodesics1 between any two points inM . These ge-
odesics have the property of being “global”, in the sense that their existence
is guaranteed by the global topology of the manifold.

At the opposite extreme, if the manifold M is a convex neighbourhood
of a point in a Riemannian manifold, the structure of geodesics resembles
the Euclidean one, and between any two points there is only one geodesic.

1In the spirit of Morse theory, we define Riemannian geodesics as locally length
minimizing curves parametrized by constant speed or, equivalently, critical points
for the energy functional.
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In the contact sub-Riemannian case the global picture is the same as of
the Riemannian case. The study of geodesics that “loop” in the topology of
the manifold was recently done by the first author and F. Boarotto in [6]:
every two points on a compact sub-Riemannian contact manifold are joined
by infinitely many geodesics (the result uses a weak homotopy equivalence
between the space of all curves and the space of horizontal ones). On the op-
posite, our main interest will be in the set of “local” geodesics, i.e. geodesics
between two points whose image is contained in a coordinate chart: here the
sub-Riemannian picture is dramatically different. To mention one example,
the only geodesically convex neighborhood of the origin in the Heisenberg
group (see below) is the entire group, [13].

In this framework we consider a constant-rank distribution D ⊂ TM
with the property that iterated brackets of vector fields on D generate the
tangent space (Hörmander condition). This condition guarantees that any
two points inM can be joined by a Lipschitz continuous curve whose velocity
is a.e. in D (Chow-Rashevskii theorem).

If a smooth scalar product is defined on D, it makes sense to consider,
for any horizontal curve γ, the norm of its velocity and the energy of this
curve is defined by:

J(γ) =
1

2

∫
I
‖γ̇(t)‖2dt.

Sub-Riemannian geodesics between p0 and p are critical points of J con-
strained to have endpoints p0 and p. From now on the word geodesic will
always mean sub-Riemannian geodesic.

Example 1 (Heisenberg). The Heisenberg group H3 is the smooth man-
ifold R3 with coordinates (x1, x2, z) and the distribution:

D = span

{
∂

∂x1
−

x2
2

∂

∂z
,

∂

∂x2
+

x1
2

∂

∂z

}
.

The sub-Riemannian structure is given by declaring the above vector fields
an orthonormal basis.

Let p0 = (0, 0, 0) be the origin. Geodesics are curves whose projection
on the (x1, x2)-plane is an arc of a circle (possibly with infinite radius, i.e.
a segment on a straight line); the signed area swept out on the circle equals
the z-coordinate of the final point p.

If p belongs to the (x1, x2)-plane there is only one geodesic joining it
with the origin (this is precisely the segment trough p0 and p); if p has both
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z

p = (x1, x2, z)

p0

Figure 1: Geodesics in the Heisenberg group.

nonzero components in the (x1, x2) plane and the z axis, the number of
geodesics is finite; finally, if p belongs to the z-axis there are infinitely many
geodesics. In the latter case, given one geodesic, we obtain infinitely many
others (a continuous family) by composing it with a rotation around the
z-axis (see Fig. 1).

In the general sub-Riemannian case a Sard’s like argument for the sub-
Riemannian exponential map guarantees that for the generic choice of the
two points geodesics are isolated, but finiteness is more delicate. The follow-
ing fact is proved in [4, Prop. 7], but to the authors’ knowledge the general
question seems to be an open problem.

Proposition 1. Let M be a step-two Carnot group such that rk(D) >
1
2 dim(M). Then for the generic choice of p0 and p the number of geodesics
between them is finite.

The goal of this paper is to make the above picture quantitative, at least
in the case of contact2 sub-Riemannian manifolds, addressing the following
question:

“How many geodesics join two points on a contact sub-Riemannian man-
ifold?”

A contact sub-Riemannian manifold is the simplest example of nonholo-
nomic geometry. From the point of view of differential geometry it consists

2We stress here that all our results remain true with almost no modification for
more general corank-one sub-Riemannian structure. For simplicity we restrict our
exposition to the contact case.
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of a (2n+ 1)-dimensional, connected manifold M together with a distribu-
tion D ⊂ TM of hyperplanes locally defined as the kernel of a one-form α
(the contact form) such that the restriction dα|D is non-degenerate. The
sub-Riemannian structure is given by assigning a smooth metric on the hy-
perplane distribution. The non-degeneracy condition implies Hörmander’s
condition.

Example 2 (Heisenberg, continuation). The Heisenberg group is a
contact manifold with contact form α = −dz + 1

2 (x1dx2 − x2dx1). As we
will show later:

(2) #{geodesics between the origin and p = (x1, x2, z)} =
8

π

|z|

‖x‖2
+O(1).

In particular when p is “vertical”, p = (0, 0, z) the number of geodesics is
infinite; otherwise it is finite and equals the r.h.s. (the O(1) notation means
“up to a bounded error”).

For any point p0 ∈ M one can consider the so-called nilpotent approxima-
tion of the sub-Riemannian structure at p0. The result of this construction
(that depends only on the germ of the structure at p0) is a sub-Riemannian
manifold Gp0

, and is an example of a Carnot group.
Thm. 7 states that the geodesic count on the Carnot group Gp0

controls
the geodesic count on the original manifold M . For this reason, we start our
analysis with the study of contact Carnot groups, namely Carnot groups
arising as the nilpotent approximation of contact manifolds.

1.1. Contact Carnot groups

A contact Carnot group is a connected, simply connected Lie group G, with
dimG = 2n+ 1, such that its Lie algebra g of left-invariant vector fields
admits a nilpotent stratification of step 2, namely:

g = g1 ⊕ g2, g1, g2 �= {0},

where dim g2 = 1 and

[g1, g1] = g2 and [g1, g2] = [g2, g2] = {0}.
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A scalar product is defined on g1, by declaring a set f1, . . . , f2n ∈ g1 to be a
global orthonormal frame. The group exponential map:

expG : g → G,

associates with v ∈ g the element γ(1), where γ : [0, 1]→ G is the unique
integral line of the vector field defined by v such that γ(0) = 0. Since G
is simply connected and g is nilpotent, expG is a smooth diffeomorphism.
The choice of an orthonormal frame f1, . . . , f2n ∈ g1 and f0 ∈ g2 defines
exponential coordinates (x, z) ∈ R2n × R on G such that p = (x, z) if and
only if

p = expG

(
2n∑
i=1

xifi + zf0

)
.

For any such a choice there exists a skew-symmetric matrix A ∈ so(2n) such
that

[fi, fj ] = Aijf0.

For contact Carnot groups A is non-degenerate. We denote by:

α1 < · · · < αk ∈ R+

the distinct singular values of A and nj their multiplicities. Let xj ∈ R2nj

be the projections of x on the invariant subspaces associated with αj . Ac-
cordingly we write p = (x1, . . . , xk, z).

Example 3. A classical example is the (2n+ 1)-dimensional Heisenberg
group H2n+1. This is the case with k = 1, i.e. a unique singular value α1 = 1
with multiplicity n. In this case, for i = 1, . . . , n

fi :=
∂

∂xi
−
1

2
xi+n

∂

∂z
, fn+i :=

∂

∂xn+i
+
1

2
xi

∂

∂z
, f0 :=

∂

∂z
,

and A is the standard symplectic matrix J =
(

0 �n

−�n 0

)
.

The geodesic count for G can be made quite explicit in term of the
exponential coordinates of p and the singular values of the matrix A. Define
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for this purpose the “counting” function:

ν̂(p) = #{geodesics in a Carnot group between the origin and p},

where, by convention, the “hat” stresses the fact that we refer to a Carnot
group. We have the following estimates for ν̂(p) (see Thms. 23–24). None of
these bounds is trivial: the upper bound because the exponential map is not
proper; the lower bound is in fact even more surprising, as the typical finite-
ness techniques from semialgebraic (semianalytic) geometry only produce
upper bounds (we use indeed a kind of “ergodicity” property argument).

Theorem 2 (The “infinitesimal” bound). Given a contact Carnot
group G, there exist constants C1, C2 > 0 and R1, R2 such that if p = (x, z) ∈
G is a point with all components xj different from zero, then:

(3) C1
|z|

‖x‖2
+R1 ≤ ν̂(p) ≤ C2

|z|

‖x‖2
+R2.

In fact C1, C2 (resp. R1, R2) are homogeneous of degree −1 (resp. 0) in
the singular values α1 < · · · < αk of A and are given by:

C1 =
8

π

α1

α2
k

sin

(
δπ

2

)2

with δ =

⎛
⎝ k∑

j=1

α1

αj

⌊
αj

α1

⌋⎞⎠−1

,(4)

C2 =
8k

π

αk

α2
1

.(5)

Remark 1. For any other choice of f ′
1, . . . , f

′
2n ∈ g1 (orthonormal) and a

complement f ′
0 ∈ g2 there exists a matrix M ∈ O(2n) and a constant c such

that:

fi =

2n∑
j=1

Mijf
′
j , f0 = cf ′

0.

Indeed this new choice defines a new skew-symmetric matrix A′ and also
new exponential coordinates (x′, z′). One can easily check that:

A′ = cM∗AM, x′ =M∗x, z′ = cz.

Since C1, C2 are homogeneous functions of degree −1 in the singular values
of A, the upper and lower bounds (3) are invariant w.r.t. different choices
of exponential coordinates.
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Example 4 (Heisenberg, continuation). In the Heisenberg groupH2n+1

there is only one singular value α = 1, with multiplicity n. By using (3) and
(4)–(5) one obtains:

C1 = C2 =
8

π
,

recovering (2) (that holds true for any Heisenberg group, not just the three-
dimensional one).

An interesting related question is to determine the set of points p such
that ν̂(p) = 1 (as it happens for example if p = (x, 0), i.e. p is horizontal).
In the Heisenberg group:

ν̂(p) = 1 ⇐⇒
|z|

‖x‖2
≤

λ1

4
≈ 1.12335,

where λ1 is the first positive solution of tanλ = λ; in the general case we
have the following.

Proposition 3. Let G be a contact Carnot group and p = (x, z) such that:

|z| <
π

8

(
2α2

1

αk
− αk

)
‖x‖2.

Then there is only one geodesic from p0 to p.

1.2. Critical manifolds

It is interesting to discuss the structure of all geodesics ending at p, including
the case when the point p belongs to a hyperplane coordinate space (i.e.
xj = 0 for some j), which was excluded from Thm. 2. We still exclude the
case p = p0, as for the case of Carnot groups there is only one geodesic: the
trivial one γ(t) ≡ p0.

Sub-Riemannian geodesics starting from p0 are parametrized by their
initial covector η ∈ T ∗

p0
M . The subset Γ(p) of geodesics ending at p has the

subset topology from T ∗
p0
M . We have the following characterization (see

Thm. 22).

Theorem 4 (Topology of critical manifolds). Let G be a contact Carnot
group. The set Γ(p) of geodesics ending at p �= p0 can be decomposed into
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the disjoint union of two closed submanifolds:

Γ(p) = Γ0(p) ∪ Γ∞(p).

The set Γ0(p) is finite and the set Γ∞(p) is homeomorphic to a union of
spheres. Moreover the energy function J is constant on each component
of Γ(p).

Remark 2. The structure of the sets of geodesics whose final point is
vertical, in the general step-two Carnot group of type (k, n) is studied in [4].
Geodesics to p are critical points for the energy functional J : Ωp → R (here
Ωp is the space of all admissible curves to p and J is defined as above); for
the generic vertical p these geodesics appear in families, which are tori of
finite dimension depending on the “multiplicity” of the Lagrange multiplier
(in particular they are never isolated and J is a Morse-Bott function). A
Morse theoretical study proves that:

#{critical manifolds of J with energy less then c} ≤ O(cn−k).

On the other hand the “order of growth” of the topology of Ωc
p = {γ ∈

Ωp | J(γ) ≤ c} (the sublevel set of the energy) is given by (here b(X) denotes
the total Betti number of X):

b(Ωc
p) ≤ O(cn−k−1),

an inequality which is stronger than the classical Morse-Bott prediction
b(Ωc

p) ≤ O(cn−k).

Since geodesics in Γ0(p) are always finite, the preimage of a regular value
of Ê is finite. Geodesics in Γ∞(p) appear in families. Since geodesics are
critical points for the energy functional, we call each connected component
of Γ∞(p) a critical family (or critical manifold). The set Γ∞(p) has the
following description. Given α1, . . . , αk (the singular values of A) define:

g(λ) =
1

8

λ− sinλ(
sin λ

2

)2 ,

and the sets:

Λj =
2π

αj
Z \ {0}, Λ =

k⋃
j=1

Λj and L(λ) = {j |λ ∈ Λj}.
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y = λ
8

λ

y

2π 4π4π 6π 8π

Figure 2: The graph of g.

Thus Λj consists of the poles of λ �→ g(λαj) and the set of indices L(λ) tells
how many of these poles occur at λ (see Fig. 2). With these conventions we
have:

Γ∞(p) �
⋃

λ∈Λp

S2N(λ)−1, N(λ) =
∑

j∈L(λ)

nj ,

where nj is the multiplicity of the singular value αj and

Λp =

⎧⎨
⎩λ ∈ Λ

∣∣∣∣
⎛
⎝z −

∑
xj �=0

αjg(λαj)‖xj‖
2

⎞
⎠λ > 0

⎫⎬
⎭ .

For the generic A all singular values are distinct (k = n) and non-com-
mensurable, thus for every λ ∈ Λp we have #L(λ) = 1, N(λ) = 1 and all
critical manifolds are homeomorphic to circles. If some of the singular val-
ues have multiplicities greater than one, but still are all pairwise non-com-
mensurable, #L(λ) = 1 but we can have critical manifolds of various dimen-
sions.

As we will see, Γ∞(p) is not empty only if some of the coordinates xj
vanish. If Γ∞(p) is not empty, each critical manifold is homeomorphic to a
sphere; here the estimate (3) can be extended to all points p �= p0 if one
adopts a “topological” viewpoint. Denoting by:

β̂(p) = {sum of the Betti numbers of the set of geodesics from 0 to p},
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we have the following generalization of Thm. 2 which bounds the number of
spheres in Γ∞(p) (see Thms. 23–28).

Theorem 5 (The “infinitesimal” bound for the topology). Let G be
a contact Carnot group. There exist constants C ′

1, C
′
2 > 0 and R′

1, R
′
2 such

that for every p = (x, z) ∈ G, with p �= (0, 0):

C ′
1

|z|

‖x‖2
+R′

1 ≤ β̂(p) ≤ C ′
2

|z|

‖x‖2
+R′

2.

As above, C ′
1, C

′
2 (resp. R

′
1, R

′
2) are homogeneous of degree −1 (resp. 0)

in the singular values α1 < · · · < αk of A and are given by:

C ′
1 =

8

π

α1

α2
k

sin

(
δ′π

2

)2

with δ′ =

⎛
⎝∑

xj �=0

α1

αj

⌊
αj

α1

⌋⎞⎠−1

,

C ′
2 =

8k

π

αk

α2
1

;

and in particular again these upper bounds are invariant w.r.t. change of
exponential coordinates.

Fig. 3 compares the contribution to ν̂ and β̂ coming respectively from
Γ0 and Γ∞. In some sense, β̂(p) counts the geodesics “up to families”. Thus
if x �= 0 then geodesics might appear in families, but still the topology of
these families is controlled, in particular the number of disjoint families is
bounded.

Remark 3. On a contact Carnot group there is a well defined family of
“non-homogeneous dilations” δε(x, z) = (εx, ε2z), where ε > 0 (see [1, 5]).
These dilations have the property that if γ is a geodesic between the origin
and p, then δεγ is a geodesic between the origin and δε(p) (the energies
are though different, see Prop. 43 below). In particular both the counting
function and the topology function are constants along the trajectories of δε:

ν̂(δε(p)) = ν̂(p) and β̂(δε(p)) = β̂(p) for all ε > 0.

1.3. Families of geodesics

A simple way to produce families of geodesics (critical manifolds) is to act
on a geodesic γ with sub-Riemannian isometries fixing the endpoints of γ.
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#Γ0 #Γ∞ ν̂

all xj �= 0 |z|
‖x‖2 0 |z|

‖x‖2

some xj = 0 |z|
‖x‖2 ∞ ∞

x = 0 0 ∞ ∞

b(Γ0) b(Γ∞) β̂

all xj �= 0 |z|
‖x‖2 0 |z|

‖x‖2

some xj = 0 |z|
‖x‖2

|z|
‖x‖2

|z|
‖x‖2

x = 0 0 ∞ ∞

Figure 3: The order of the contributions to ν̂ and β̂ coming respectively
from Γ0 and Γ∞ (it is assumed p = (x, z) �= (0, 0)). The “topology” counting
function β̂ is more stable: it behaves as a rational function, whereas ν̂ has
a “delta function” when some xj is zero. Notice that isolated geodesics are
always finite.

Example 5 (Heisenberg, continuation). Let us consider the Heisenberg
group H2n+1. Thus k = 1 and α = 1 (A is the canonical symplectic matrix).
Let p = (0, z) be a vertical point and γ a geodesic from the origin to p. The
group of isometries fixing the origin is isomorphic to:

ISO(H2n+1) � U(n)� Z2.

Each isometry g in the connected component U(n) of the identity fixes
p = (0, z), thus gγ is still a geodesic from the origin to p; such an isome-
try stabilizes the whole γ if it fixes the initial covector. Then, the stabiliser
subgroup of the geodesic γ is ISOγ(H2n+1) � U(n− 1). In this way we pro-
duce a family:

Xγ = U(n)/U(n− 1) � S2n−1,

consisting of distinct geodesics isometrically equivalent to γ. In other words
all geodesics in Xγ are obtained from γ by composition with an isometry
(and they all have the same energy). In this case, it turns out that Xγ is a
connected component of Γ∞(p), i.e. a critical manifold.

Surprisingly this is not the case for more general Carnot groups. In fact,
given a critical manifold X ⊂ Γ∞(p) (one of the above spheres), this need
not be obtained by acting with the stabilizer of p on a fixed geodesic. In
other words, geodesics forming X, although all having the same energy and
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�(λ) 1 2 2 3

S
�(λ)−1
≥0

�

Λ3

Λ2

Λ1

Λ4

4

λ 1 2 3 4 12

Figure 4: Equivalence classes of isometrically non-equivalent families of ge-
odesics for k = 4 commensurable singular values αi = 2π/i for i = 1, 2, 3, 4.
Thus Λi = iZ \ {0}.

endpoints, might be isometrically non-equivalent. They are “deformations”
of each other, but not via isometries.

We say that two geodesics with the same endpoints are isometrically
equivalent if they are obtained one from the other by composition of an
isometry of G. We denote by Γ̄∞(p) the set of equivalence classes of isometri-
cally equivalent geodesics ending at p. For example, a family of isometrically
equivalent geodesics corresponds to just a point in the quotient Γ̄∞(p).

The topology of this set (a quotient of Γ∞(p)) is related with the com-
mensurability of the singular values of A (see Thm. 38).

Theorem 6 (Isometrically equivalent geodesics). Let G be a contact
Carnot group. The set Γ̄∞(p) of equivalence classes of isometrically equiva-
lent geodesics ending at p �= p0 is homeomorphic to:

Γ̄∞(p) �
⋃

λ∈Λp

S
�(λ)−1
≥0 , �(λ) := #L(λ),

where Sm
≥0 = Sm ∩ Rm+1

≥0 is the intersection of the m-sphere with the positive

quadrant in Rm+1.

See Fig. 4. When A is generic, for every λ ∈ Λp ⊆ Λ we have �(λ) = 1
and Γ̄∞ is a discrete set of points, one for each λ ∈ Λp (all the geodesics
in a critical manifold X � S1 are isometrically equivalent to a given one).
Nevertheless, non-trivial manifolds of isometrically non-equivalent geodesics
appear when there are resonances.

1.4. A limiting procedure

We discuss here the main ingredient of our study for contact sub-Riemannian
manifolds: the nilpotent approximation of the structure at a point p0. Be-
cause of the local nature of the problem, we can assume that M = R2n+1
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and the point p0 is the origin. Moreover, the distribution D ⊂ TR2n+1 is
given by:

D = span{f1, . . . , f2n},

where f1, . . . , f2n are bounded vector fields on R2n+1. The sub-Riemannian
structure on D is obtained by declaring these vector fields to be orthonormal
at each point.

We assume that the coordinates (x, z) ∈ R2n × R are adapted to the
distribution at the origin namely, Dp0

= span{∂x1
, . . . , ∂x2n

} (for example we
take canonical Darboux’s coordinates). In the language of sub-Riemannian
geometry these coordinates, at least in the contact (or step 2) case, are also
called privileged. Using these coordinates we define “dilations” δε :M → M
by:

δε(x, z) := (εx, ε2z), ε > 0,

and the nilpotent approximation at p0, another sub-Riemannian structure
on the same base manifold M , given by declaring the following fields:

f̂i := lim
ε→0

εδ 1

ε
∗fi, ∀i = 1, . . . , 2n,

a new orthonormal frame. Thus, the nilpotent approximation at a point
p0 is the “principal part” of the original sub-Riemannian structure in a
neighbourhood of p0 w.r.t. the non-homogeneous dilations δε. Moreover, it
turns out that the nilpotent approximation at any point p0 of a contact
sub-Riemannian manifold is a contact Carnot group.

We introduce the following notation:

ν(p) = #{geodesics joining p0 and p}.

Thus ν(p) will denote the number of local geodesics between p0 and p, i.e.
geodesics in M that are contained in a coordinate chart of p0. Similarly ν̂
denoted the number of geodesics between the origin and p for the nilpotent
approximation. The next theorem relates the geodesic count on the original
structure and on the nilpotent Carnot group structure (see Thm. 44).
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Theorem 7 (Counting in the limit). Let M be a contact sub-Rieman-
nian manifold. For the generic p ∈ M sufficiently close to p0:

ν̂(p) ≤ lim inf
ε→0

ν(δε(p)).

where δε is the non-homogeneous dilation defined in some set of adapted
coordinates in a neighbourhood of p0.

Combining Thm. 7 and Thm. 2 we obtain an estimate for the order of
growth of the number of “local” geodesics between two close points on a
contact manifold (see Thm. 45).

Theorem 8 (The local bound). Let M be a contact manifold and q ∈ M .
Denote by (x, z) Darboux’s coordinates on a neighbourhood U of q. There
exist constants C(q), R(q) such that, for the generic p = (x, z) ∈ U :

lim inf
ε→0

ν(δε(p)) ≥ C(q)
|z|

‖x‖2
+R(q).

A completely new phenomenon in the sub-Riemannian case is the exis-
tence of a sequence of points qn → q with arbitrary large number of local
geodesics between the two (see Thm. 46). Notice that, in general, we can-
not predict the existence of a point p with infinitely many local geodesics
between q and p.

Theorem 9 (Abundance of “local” geodesics). Let M be a contact
sub-Riemannian manifold and q ∈ M . Then there exists a sequence {qn}n∈N
in M such that:

lim
n→∞

qn = q and lim
n→∞

ν(qn) =∞.

2. Preliminaries

We recall some basic facts in sub-Riemannian geometry. We refer to [1,
10, 12, 14] for further details. Let M be a smooth, connected manifold of
dimension n ≥ 3. A sub-Riemannian structure onM is a pair (D, 〈·|·〉) where
D is a smooth vector distribution of constant rank k ≤ n satisfying the
Hörmander condition (i.e. LiexD = TxM , ∀x ∈ M) and 〈·|·〉 is a smooth
Riemannian metric on D. A Lipschitz continuous curve γ : [0, 1]→ M is
admissible (or horizontal) if γ̇(t) ∈ Dγ(t) for a.e. t ∈ [0, 1]. Given a horizontal
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curve γ : [0, 1]→ M , the energy of γ is

J(γ) =

∫
I
‖γ̇(t)‖2dt,

where ‖ · ‖ denotes the norm induced by 〈·|·〉. The pair (D, 〈·|·〉) can be
given, at least locally, by assigning a set of k smooth vector fields that span
D, orthonormal for 〈·|·〉. In this case, the set {f1, . . . , fk} is called a local
orthonormal frame for the sub-Riemannian structure.

Definition 10. A sub-Riemannian manifold is contact if locally there exists
a one form α such that D = kerα, and dα|D is non degenerate (the rank of
D must be even). Admissible curves are called Legendrian.

Definition 11. Let M be a contact manifold. A sub-Riemannian geodesic
is a non-constant Legendrian curve γ : [0, 1]→ M that is locally energy min-
imizer. More precisely, for any t ∈ [0, 1] there exists a sufficiently small in-
terval I ⊆ [0, 1], containing t, such that the restriction γ|I minimizes the
energy between its endpoints.

Any geodesic starting at p0 can be lifted to a Lipschitz curve η : [0, 1]→
T ∗M called sub-Riemannian extremal, as we discuss now. In general, sub-
Riemannian extremals can be normal or abnormal, but abnormal extremals
do not appear in contact or Riemannian structures. For this reason we only
discuss normal extremals.

Definition 12. The Hamiltonian function H ∈ C∞(T ∗M) is

H(η) =
1

2

k∑
i=1

〈η, fi〉
2, ∀η ∈ T ∗M,

where f1, . . . , fk is a local orthonormal frame and 〈η, ·〉 denotes the action
of the covector η on vectors.

Let σ be the canonical symplectic form on T ∗M . With the symbol �a
we denote the Hamiltonian vector field on T ∗M associated with a function
a ∈ C∞(T ∗M). Indeed �a is defined by the formula da = σ(·,�a). Consider the
Hamiltonian vector field �H ∈ Vec(T ∗M).

Definition 13. Non-constant trajectories of the Hamiltonian system η̇ =
�H(η) are normal sub-Riemannian extremals.
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In any structure where abnormal extremals do not exist (such as contact
or Riemannian structures), the next theorem completely characterizes all
geodesics.

Theorem 14. Normal sub-Riemannian geodesics are exactly projections on
M of normal sub-Riemannian extremals. In particular, all normal geodesics
are smooth.

Moreover, any normal sub-Riemannian geodesic can be specified by its
initial covector.

Definition 15. The sub-Riemannian exponential map (with origin p0) E :
T ∗
p0
M → M is

E(η0) := π(e
�H(η0)), ∀η0 ∈ T ∗

p0
M.

where et
�H(η0) denotes the integral curve of �H starting from η0.

Thus all geodesics from p0 are the image through E of the ray t �→ tη.
We denote by Γ(p) = E−1(p) ⊂ T ∗

p0
M the set of geodesics from p0 to p �= p0,

with the subset topology.

2.1. Fibers of the exponential map and geodesics

Notice that the correspondence:

η �→ γη, γη(t) = π(et
�H(η))

defines a continuous map from T ∗
p0
M to the set of admissible curves. If we

endow this set with the W 1,∞-topology and we assume p �= p0, this map
restricts to a homeomorphism between Γ(p) and the set of geodesics to p:
the topologies on Γ(p) as a subset of T ∗

p0
M or as a subset of the space of

admissible curves coincide and the point of view we adopted is not restrictive.
On the other hand, recall that extremals (resp. geodesics) are non-

constant and for these reasons we will always make the assumption p �= p0.
Most of our results are true also for p = p0, but then one should regard Γ(p)
simply as the fiber of E and not as the set of geodesics to p.
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2.2. Contact Carnot groups

A corank 1 Carnot group G is a simply connected Lie group whose Lie
algebra of left-invariant vector fields g admits a nilpotent stratification of
step 2:

g = g1 ⊕ g2, g1, g2 �= {0},

with dim g2 = 1 and

[g1, g1] = g2, and [g1, g2] = [g2, g2] = {0}.

We define a scalar product on g1 by declaring a set f1, . . . , fk ∈ g1 to be
a global orthonormal frame. In particular, D|x = g1|x, for all x ∈ G. The
group exponential map,

expG : g → G,

associates with v ∈ g the element γ(1), where γ : [0, 1]→ G is the unique
integral line of the vector field v such that γ(0) = 0. Since G is simply
connected and g is nilpotent, expG is a smooth diffeomorphism. Thus we
can identify G � Rm with a polynomial product law.

Definition 16. A contact Carnot group is a corank 1 Carnot group that
admits a contact structure with D = g1.

The only non-trivial request is the non-degeneracy of the contact form.
In fact, let G be a contact Carnot group, f1, . . . , f2n ∈ g1 be a global or-
thonormal frame of left-invariant vector fields, and f0 ∈ g2 a generator for
the second layer. Indeed:

[fi, fj ] = Aijf0, ∀i, j = 1, . . . , 2n,

for some constant matrix A ∈ so(2n). Observe that there exists a unique
never-vanishing left invariant one-form α (up to constant scaling) such that
D = kerα. Using the identity dα(X,Y ) = Xα(Y )− Y α(X)− α([X,Y ]) we
obtain:

dα(fi, fj) = −α([fi, fj ]) = Ajiα(f0).

Since α(f0) �= 0 the matrix A is non-degenerate.
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2.3. Normal form of contact Carnot groups

By acting on g1 with an orthogonal transformation, it is always possible to
put A in its canonical form. Such a transformation can be trivially extended
to an automorphism of g, and thus lifts to a group automorphism of G that
preserves the scalar product. Therefore, up to isometries, contact Carnot
groups are parametrised by the possible singular values of non-degenerate
matrices A ∈ so(2n). In the following we describe the possible normal forms
of contact Carnot groups. Consider the triple (k, �n, �α), where:

(i) k ∈ N, with 1 ≤ k ≤ n,

(ii) �n = (n1, . . . , nk) is a partition of n, namely nj ∈ N and
∑k

j=1 nj = n,

(iii) �α = (α1, . . . , αk) with 0 < α1 < . . . < αk.

For a fixed choice of (k, �n, �α), let:

(6) A := diag(α1Jn1
, . . . , αkJnk

) ∈ so(2n), with Jm =

(
0 �m

−�m 0

)
.

In other words, A has k distinct singular values 0 < α1 < · · · < αk, with
multiplicities n1, . . . , nk (half the dimension of the corresponding invariant
subspaces). This gives the normal form of the (2n, 2n+ 1) graded Lie algebra
with parameters (k, �n, �α). As an abstract algebra is given by:

g = g1 ⊕ g2, g1 = span{f1, . . . , f2n}, g2 = span{f0},

with:

[fi, fj ] = Aijf0, i, j = 1, . . . , 2n.

Let G be the unique connected, simply connected Lie group such that g

is its Lie algebra. Define a scalar product on g1 such that f1, . . . , f2n is
an orthonormal frame. Any contact Carnot group is isomorphic to one of
these structures, for a choice of (k, �α, �n). Notice that the normal form is
determined only up to global rescaling of the eigenvalues �α (see [4, Remark
1]).

2.4. Exponential coordinates

The orthonormal basis f1, . . . , f2n and f0 realize the splitting

g = gα1

1 ⊕ · · · ⊕ gαk

1 ⊕ g2,
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with respect to the generalized eigenspaces of A. Accordingly, we identify:

G � R2n1 ⊕ · · · ⊕ R2nk ⊕ R,

through the group exponential map expG : g → G, in such a way that p ∈ G
has exponential coordinates (x1, . . . , xk, z) with xi ∈ R2ni for i = 1, . . . , k
and z ∈ R.

2.5. An explicit representation

An explicit representation of the contact Carnot group with parameters
(k, �α, �n) is given by the sub-Riemannian structure induced by the following
vector fields on R2n+1, with coordinates (x, z) ∈ R2n × R:

fi :=
∂

∂xi
−
1

2

2n∑
j=1

Aijxj
∂

∂z
, f0 :=

∂

∂z
, i = 1, . . . , 2n,

where A is the matrix of Eq. (6) with k singular values �α and multiplicities
�n. For the Heisenberg groups H2n+1 (see Example 3) A is the standard
symplectic matrix.

Lemma 17. The coordinates (x, z) are the exponential coordinates induced
by f1, . . . , f2n, f0.

Proof. Assume that p = (x, z) has exponential coordinates (θ, ρ). This means
that (x, z) = γ(1), where γ(t) = (x(t), z(t)) is the solution of the Cauchy
problem

ẋi(t) = θi, ż(t) = ρ+
1

2

2n∑
i,j=1

xiAijθj , γ(0) = (0, 0).

By the skew-symmetry of A, the solution is x(t) = θt and z(t) = ρt. Then
(x, z) = (θ, ρ). �

3. The fibers of the exponential map for contact

Carnot groups

Let Ê : T ∗
0G → G be the exponential map for the contact Carnot group

whose (nonzero) structure constants for its Lie algebra are given by equa-
tion (6). In the following, we write p ∈ G in exponential coordinates as
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p = (x1, . . . , xk, z), with xj ∈ R2nj and analogously, for η ∈ T ∗
0G, we write

η = (u1, . . . , uk, λ), with uj ∈ R2nj . Thus:

Ê(u1, . . . , uk, λ) = (x1, . . . , xk, z) with xj , uj ∈ R2nj , j = 1, . . . , k.

When convenient, we write p = (x, z) and η = (u, λ), with x, u ∈ R2n and
n =

∑k
j=1 nj .

Proposition 18. With the above notation we have for every j = 1, . . . , k:

xj =

(
sin(λαj)

λαj
�+

cos(λαj)− 1

λαj
J

)
uj ,(7)

z =

k∑
j=1

(
λαj − sin(λαj)

2λ2αj

)
‖uj‖

2.(8)

If λ = 0, then xj = uj for j = 1, . . . , k and z = 0, i.e. Ê(u, 0) = (u, 0).

Proof. We recall that the sub-Riemannian exponential map is given explic-
itly by [2]:

(u, λ) �→

(∫ 1

0
e−λAtudt,−

1

2

∫ 1

0

〈
e−λAtu,A

∫ t

0
e−λAsuds

〉
dt

)
.

We start by considering the horizontal components (we omit the subscript
for J = Jnj

):

xj =

∫ 1

0
e−λαjJtujdt.

If λ = 0, then e−λαjJt = � and xj = uj ; otherwise the expression for xj fol-
lows immediately from writing the integrand matrix as:

(9) e−λαjJt = cos(λαjt)�− sin(λαjt)J.

In fact using (9) we can also evaluate the matrix integral:

(10)

∫ t

0
e−λαjJtdt =

sin(λαjt)

λαj
�+

cos(λαjt)− 1

λαj
J = a(t)�+ b(t)J.
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For the z component, we notice that it can be rewritten as z = u∗Su, where
S is the matrix:

S = −
1

2

∫ 1

0

∫ t

0
eλAtAe−λAsdsdt,

and since A is assumed to be block-diagonal, we obtain:

z =

k∑
j=1

u∗jSjuj with Sj = −
1

2

∫ 1

0
eλαjJtαjJ

∫ t

0
e−λαjJsdsdt.

Notice that if λ = 0 then S = −1
4A and, being skew-symmetric, z = u∗Su =

0. If λ �= 0 the integrand matrix in Sj equals, using (9):

eλαjJtαjJ

∫ t

0
e−λαjJsds(11)

= (αj cos(λαjt)J − αj sin(λαjt)�) (a(t)�+ b(t)J)

= (c(t)�+ d(t)J) (a(t)�+ b(t)J)

= (ac− bd)(t)�+ (ad+ bc)(t)J,

where c(t) = αj cos(λαjt) and d(t) = −αj sin(λαjt). Since
∫
(ad+ bc)J

is skew-symmetric:

u∗jSjuj = u∗j�

(
−
1

2

∫ 1

0
(ac− bd)(t)dt

)
u = −‖uj‖

2 1

2

∫ 1

0
(ac− bd)(t)dt.

Using the explicit expression of a, b, c, d (given by (10) and (11)), we obtain

(ac− bd)(t) = cos(λαjt)−1
λ , whose integral equals:

∫ 1

0

cos(λαjt)− 1

λ
dt =

sin(λαj)− λαj

λ2αj
.

Substituting this into the above formula for u∗jSuj concludes the proof. �

For all j = 1, . . . , k, we define the 2nj × 2nj matrix:

I(λαj) =
sin(λαj)

λαj
�+

cos(λαj)− 1

λαj
J,

where I(0) = �. In this way, equation (7) reads xj = I(αjλ)uj .
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Proposition 19. Assume λαj /∈ 2πZ \ {0}. Then I(λαj) is invertible with
inverse:

I(λαj)
−1 =

λαj

2
cot

(
λαj

2

)
�+

λαj

2
J,

(if λαj = 0 we have I(0)−1 = �). In particular if xj = I(λαj)uj , then:

λαj − sin(λαj)

2λ2αj
‖uj‖

2 =
αj

8

λαj − sin(λαj)

sin
(
λαj

2

) ‖xj‖
2.

Moreover if λαj ∈ 2πZ \ {0}, then xj = 0.

Proof. The determinant if I(λαj) is:

det I(λαj) = 2

(
1− cos(λαj)

λ2α2
j

)
,

and is nonzero if and only if λαj

2π /∈ Z \ 0; in this case the matrix I(λαj)
−1 is

well defined.
For the second part of the statement we write I(λαj)

−1 = c1�+ c2J ,

where c1 =
λαj

2 cot
(
λαj

2

)
and c2 =

λαj

2 . Then, uj = c1xj + c2Jxj and since

xj and Jxj are orthogonal we obtain:

‖uj‖
2 = c21‖xj‖

2 + c22‖Jxj‖
2 = (c21 + c22)‖xj‖

2.

Computing c21 + c22 = (λαj

2
1

sin(λαj/2)
)2, and setting y = λαj we finally obtain:

y − sin y

2y2/αj
‖uj‖

2 =
y − sin y

2y2/αj

(
y

2

1

sin(y/2)

)2

‖xj‖
2 =

αj

8

y − sin y

(sin y
2 )

2
.

The last statement follows immediately by Eq. (7). �

3.1. A relevant function

We introduce the function g : R → R ∪ {∞} defined by:

g(λ) =
1

8

λ− sinλ(
sin λ

2

)2 .

Each pole of g is of order two and lies on 2πZ \ {0} (see Fig. 2 in Sec. 1 and
Fig. 5). The proof of the following proposition is left to the reader.
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2kπ 2(k + 1)πμk λk

λ

y = λ
8

y

Figure 5: Detail of the function g(λ) in the interval Ik = (2kπ, 2kπ + 2π).

Proposition 20. Let k ∈ Z and Ik = (2kπ, 2kπ + 2π). Then:

1. g(λ) = −g(−λ) and g(λ) > 0 if λ > 0;

2. |g| is strictly convex on each interval Ik;

3. if μk is the point of minimum of |g| on Ik, we have g(μk) =
μk

8 <
(2k+1)π

8 ;

4. g(|λ|) > |λ|
8 − π

8 for every λ.

3.2. Decomposition of the fiber

We introduce the notation:

Γ(p) = Ê−1(x, z), p = (x, z).

Since p �= p0, then Γ(p) consists of all geodesics ending at p. Given α1, . . . , αk

we define:

Λj = {poles of λ �→ g(λαj)}, Λ =

k⋃
j=1

Λj and I0 = {j |xj = 0}.

Prop. 19 implies that, if (u, λ) ∈ Γ(p), then:

(12) L(λ) := {j | λ ∈ Λj} ⊆ I0.

Proposition 21 (Characterization of the fiber). Let p = (x, z) ∈ G,
p �= (0, 0). The set Γ(p) consists of the points (u, λ) such that xj = I(λαj)uj
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for every j = 1, . . . , k and:

z =
∑
j /∈I0

αjg(λαj)‖xj‖
2 +

1

2λ

∑
j∈I0

‖uj‖
2.

Proof. The condition on the xj ’s is given by Prop. 18 and it remains to
understand the equation for z in (8). Now we can decompose the summation
in the terms defining z as:

(13) z =
∑
j /∈I0

(
λαj − sin(λαj)

2λ2αj

)
‖uj‖

2 +
∑
j∈I0

(
λαj − sin(λαj)

2λ2αj

)
‖uj‖

2.

If j /∈ I0 then j /∈ L(λ) by (12) and Prop. 19 allows to write:(
λαj − sin(λαj)

2λ2αj

)
‖uj‖

2 =
αj

8

λαj − sin(λαj)

sin
(
λαj

2

) ‖xj‖
2.

On the other hand the sum
∑

j∈I0

(
λαj−sin(λαj)

2λ2αj

)
‖uj‖

2 can be split as:

∑
j∈I0∩L(λ)

(
λαj − sin(λαj)

2λ2αj

)
‖uj‖

2 +
∑

j∈I0∩L(λ)c

(
λαj − sin(λαj)

2λ2αj

)
‖uj‖

2.

The second summation is zero, because for a j /∈ L(λ) the matrix I(λαj)
is invertible and uj = I(λαj)xj = 0. By (12), the index set for the first
summation equals L(λ) itself. Moreover, for each term j ∈ L(λ) we have
λαj ∈ 2πZ \ {0} and, for some kj ∈ Z \ {0}:

λαj − sin(λαj)

2λ2αj
=
2πkj − sin(2πkj)

2λ(2πkj)
=

1

2λ
.

Substituting what we got into (13) we finally obtain:

z =
∑
j /∈I0

αjg(λαj)‖xj‖
2 +

1

2λ

∑
j∈I0

‖uj‖
2.

�

We decompose Γ(p) into two closed disjoint subsets, reflecting its “dis-
crete” and “continuous” part. We set indeed Γ(p) = Γ0(p) ∪ Γ∞(p) where:

Γ0(p) =

⎧⎨
⎩(u, λ) ∈ Γ(p)

∣∣∣∣ ∑
j∈I0

‖uj‖
2 = 0

⎫⎬
⎭ and Γ∞(p) = Γ0(p)

c.
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The next theorem clarifies the subscripts and the terminology “discrete”
and “continuous” part.

Theorem 22. If p �= p0, the set Γ0(p) is finite and Γ∞(p) is a closed set
homeomorphic to:

Γ∞(p) �
⋃

λ∈Λp

S2N(λ)−1, N(λ) =
∑

j∈L(λ)

nj ,

where:

(14) Λp =

⎧⎨
⎩λ ∈ Λ

∣∣∣∣
⎛
⎝z −

∑
j /∈I0

αjg(λαj)‖xj‖
2

⎞
⎠λ > 0

⎫⎬
⎭ .

Moreover the energy function J is constant on each component of Γ(p).

Remark 4. By definition, Γ∞(p) �= ∅ implies I0 �= ∅. Thus, a necessary
condition for occurrence of families of geodesics ending at p = (x, z) is that
some of the components xj must vanish.

Proof. We start noticing that if (u, λ) ∈ Γ0(p) then all the uj ’s are deter-
mined by p and λ. In fact if j /∈ I0 then, by (12), j /∈ L(λ), I(αjλ) is invertible
and uj = I(αjλ)

−1xj ; if j ∈ I0, then the condition
∑

j∈I0
‖uj‖

2 = 0 implies
uj = 0.

Consider now the projection q onto the λ-axis:

q : T ∗
0G → R, (u, λ) �→ λ.

By the above discussion q|Γ0(p) is one-to-one onto its image q(Γ0(p)) and it
is enough to show that this last set is discrete. To this end we notice that
by Prop. 21 if (u, λ) ∈ Γ0(p) then:

(15) z =
∑
j /∈I0

αjg(αjλ)‖xj‖
2.

The set of solutions in λ of this equation coincides with q(Γ0(p)) and is
discrete: (x, z) is fixed, the function g is strictly convex (by Prop. 20) and a
linear combination of strictly convex functions is still strictly convex (on the
domains of definition). Since the set of solutions of (15) has no accumulation
points, q(Γ0(p)) is closed and Γ0(p) = q−1(q(Γ0(p))) is closed as well.
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We prove that Γ0(p) is finite. If x �= 0 the cardinality of Γ0(p) is bounded
by Thm. 23 below; if x = 0 then (15) reduces to z = 0, contradicting the
assumption p �= p0.

Now we turn to Γ∞(p). For each fixed λ ∈ q(Γ∞(p)) consider the fiber
of the projection (the set of pairs (u, λ) ∈ Γ∞(p)). We show that λ ∈ Λp and
that the fiber is a sphere. By Prop. 21, this is the set of u ∈ R2n such that
xj = I(λαj)uj for every j = 1, . . . , k and:

(16)
1

2λ

∑
j∈I0

‖uj‖
2 = z −

∑
j /∈I0

αjg(λαj)‖xj‖
2.

Now, if j /∈ L(λ), then uj is fixed by the value of xj (since I(αjλ) is invert-
ible). For the remaining ones the only constraint comes from Eq. (16). Con-
sider the summation in the l.h.s. Notice that L(λ) ⊆ I0, but if j ∈ I0 ∩ L(λ)c

then uj = 0. Therefore: ∑
j∈I0

‖uj‖
2 =

∑
j∈L(λ)

‖uj‖
2.

In particular, since (u, λ) ∈ Γ∞(p) this implies that L(λ) must be non-empty,
namely λ ∈ Λ. Moreover Eq. (16) reduces to:

(17)
1

2λ

∑
j∈L(λ)

‖uj‖
2 = z −

∑
j /∈I0

αjg(λαj)‖xj‖
2.

The r.h.s. of the above equation has the same sign of λ. Thus λ ∈ Λp and
q−1(λ) is a sphere of dimension 2N(λ)− 1.

Finally q is surjective over Λp. In fact, for any λ ∈ Λp, we choose for
j ∈ L(λ), uj that satisfies (17), and for j /∈ L(λ) we set uj = I(αjλ)

−1xj .
The point (u, λ) ∈ Γ∞(p) by construction.

The image q(Γ∞(p)) is discrete, as it is contained into Λ (and has no ac-
cumulation points, since Λ itself has no accumulation points). Thus q(Γ∞(p))
is closed and Γ∞(p) is closed as well.

Since the energy of a geodesic (u, λ) is given by ‖u‖2/2, it is constant
on each component. �

4. Upper bounds

Let us introduce the following “counting” functions ν̂, β̂ : G → R ∪ {∞}:

ν̂(p) = #Γ(p) and β̂(p) = b (Γ(p)) ,
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where b(X) denotes the sum of the Betti numbers of X (which might as well
be infinite a priori).

Remark 5. The Betti numbers bi(X) of a topological space X are the
ranks of Hi(X,Z) (the homology groups of X) and they measure the num-
ber of “holes” of X, see [9]. For example for a point or a line all bi are
zeroes except b0 = 1; for a sphere Sk they are all zero except b0, bk = 1 (here
k > 1). The sum of the Betti numbers b(X) is sometimes called the homo-
logical complexity and measure how complicated X is from the topological
viewpoint; for example b(Sk) = 2.

If Ê−1(p) is finite, then ν̂(p) = β̂(p); on the other hand if a point p has
infinitely many geodesics arriving on it ν̂(p) =∞ and it could either be that
they are “genuinely” infinite, i.e. also β̂(p) =∞, or they arrange in finitely
many families with controlled topology, i.e. β̂(p) < ∞.

Theorem 23. Let G be a contact Carnot group. Then there exists a con-
stant R2 such that, for every point p = (x, z), with p �= p0:

β̂(p) ≤

(
8k

π

αk

α2
1

)
|z|

‖x‖2
+R2.

R2 is homogeneous of degree 0 in the singular values α1 < · · · < αk of A. In
particular, if x = (x1, . . . , xk) has all components different from zero, then
Γ(p) = Γ0(p) and:

ν̂(p) ≤

(
8k

π

αk

α2
1

)
|z|

‖x‖2
+R2.

Remark 6. Thus, whenever at least one xj is not zero, the topology of
Γ(p) is finite; if z �= 0 and x = 0, then the above formulas are meaningful in

the sense that |z|
0 =∞.

Proof. The decomposition of Thm. 22 implies:

b (Γ(p)) = b (Γ0(p)) + b (Γ∞(p)) .

Let us start with b(Γ0(p)). Since Γ0(p) consists of points, then b(Γ0(p)) =
#Γ0(p) and:

(18) #Γ0(p) = #

⎧⎨
⎩λ

∣∣∣∣ z = ∑
j /∈I0

αjg(λαj)‖xj‖
2

⎫⎬
⎭ .
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We recall that I0 = {j |xj = 0} and distinguish two cases.
1. If I0 = {1, . . . , k} (i.e. x = 0), then Γ0(p) is empty: in fact from (18)

we obtain that also z = 0, contradicting the assumption p �= p0.
2. If I0 � {1, . . . , k} (at least one xj �= 0), then property 4 of Prop. 20

implies:

|z| =

∣∣∣∣∣∣
∑
j /∈I0

αjg(λαj)‖xj‖
2

∣∣∣∣∣∣ > |λ|

8

∑
j /∈I0

α2
j‖xj‖

2 −
π

8

∑
j /∈I0

αj‖xj‖
2,

or, equivalently:

(19) |λ| <
8|z|∑

j /∈I0
α2
j‖xj‖

2
+

π
∑

j /∈I0
αj‖xj‖

2∑
j /∈I0

α2
j‖xj‖

2
≤

8|z|

α2
1‖x‖

2
+

παk

α2
1

=: ρ,

where in the last inequality we have used the fact that ‖x‖2 =
∑

j /∈I0
‖xj‖

2.
The number of solutions of (18) is the number of intersections of the hori-
zontal line w = z with the graph of:

G0(λ) =
∑
j /∈I0

αjg(λαj)‖xj‖
2,

in the (λ,w)-plane, with the restriction |λ| < ρ we found in (19). The func-
tion G0 is itself strictly convex, and the number of points of intersections of
w = z with its graph is:

b (Γ0(p)) ≤ 2#{poles of G0 on the interval (0, ρ)}+ 1.

Since the function G0 has poles exactly on the sets Λj = {λ �= 0 |λαj ∈
2πZ, j /∈ I0}, we obtain:

b(Γ0(p)) ≤ 2
∑
j /∈I0

⌊ραj

2π

⌋
+ 1 ≤ 2

∑
j /∈I0

⌊
4αj |z|

πα2
1‖x‖

2
+

αkαj

2α2
1

⌋
+ 1(20)

≤ (k −#I0)
8

π

αk

α2
1

|z|

‖x‖2
+ r0,

where r0 is a bounded remainder (homogeneous of degree 0 in the singular
values) given by:

r0 = (k −#I0)
α2
k

α2
1

+ 1.
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Let us consider now b(Γ∞(p)). By Thm. 22, Γ∞(p) is a disjoint union of
spheres, one sphere for each point λ ∈ Λp, where:

Λp = {λ ∈ Λ | (z −G0(λ))λ > 0}.

Since the total Betti number of sphere is 2 (independently on the dimension),
we have:

(21) b(Γ∞(p)) = b

⎛
⎝ ⋃

λ∈Λp

S2N(λ)−1

⎞
⎠ = 2#Λp.

We assume z ≥ 0 for simplicity. This implies λ > 0. Moreover, if λ ∈ Λp ⊆ Λ,
then λ must belong to the complement of the set of poles of the function
G0, namely

λ ∈ Λ0 :=
⋃
j∈I0

Λj =
⋃
j∈I0

2π

αj
Z \ {0} ⊆ Λ.

Thus we finally rewrite:

Λp = {λ ∈ Λ0 | λ > 0, z > G0(λ)}.

It only remains to estimate the cardinality of Λp. We distinguish again two
cases.

1. I0 = {1, . . . , k} (i.e. x = 0). By our assumption p �= p0 it follows that
z > 0. Moreover, in this case G0(λ) ≡ 0 and Λ0 = Λ. Therefore Λp = Λ is
infinite and Γ∞(p) consists of infinitely many spheres, thus b(Γ∞(p)) =∞.

2. I0 � {1, . . . , k}. In this case we have to count the λ̄ > 0, such that:

(22) z >
∑
j /∈I0

αjg(λ̄αj)‖xj‖
2, with λ̄ ∈ Λ0.

Arguing exactly as in (19) we obtain that:

|λ̄| <
8|z|

α2
1‖x‖

2
+

παk

α2
1

:= ρ.

Thus the number of λ̄ satisfying (22) is bounded by the (finite) number of
elements λ̄ ∈ Λ0 in the interval (0, ρ) (arguing as in (20)):

∑
j∈I0

⌊ραj

2π

⌋
≤ #I0

4

π

αk

α2
1

|z|

‖x‖2
+
#I0
2

α2
k

α2
1

,
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Combining this with (21) we get:

b (Γ∞(p)) ≤ #I0
8

π

αk

α2
1

|z|

‖x‖2
+ r∞,

where r∞ is a bounded remainder (homogeneous of degree 0 in the singular
values) given by:

r∞ = #I0
α2
k

α2
1

.

Finally, since the union Γ0(p) ∪ Γ∞(p) is disjoint and closed, we obtain:

b (Γ(p)) = b (Γ0(p)) + b (Γ∞(p))(23)

≤ (k −#I0)
8

π

αk

α2
1

|z|

‖x‖2
+#I0

8

π

αk

α2
1

|z|

‖x‖2
+ r0 + r∞

=

(
k
8

π

αk

α2
1

)
|z|

‖x‖2
+R2,

where R2 is a bounded remainder (homogeneous of degree 0 in the singular
values) given by:

R2 = r0 + r∞ = k
α2
k

α2
1

.

Notice that if all xj �= 0, then I0 = ∅ and Γ(p) = Γ0(p), which is finite. �

Remark 7. Eq. (23) splits clearly the contribution to the topology into
two parts:

b (Γ0(p)) ≤ (k −#I0)
8

π

αk

α2
1

|z|

‖x‖2
+ r0,

b (Γ∞(p)) ≤ #I0
8

π

αk

α2
1

|z|

‖x‖2
+ r∞,

where we interpret the r.h.s. with the convention of Remark 6.

Example 6 (Heisenberg, conclusion). The Jacobian of the exponential
map in H3 can be computed explicitly using (7)–(8) (for the general contact
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Figure 6: Qualitative picture of the exponential map for H3. The critical
points are the λ-axes A, the setR (in red) and the setB (in blue). The broken
curve is the section in the (x, z)-plane of the image of the cylinder {‖u‖2 =
c}. The number of geodesics to p is constant on each shaded region (the white
one is where ν̂(p) = 1). When c varies the blue dots on the right figure (the
images of B ∩ {‖u‖2 = c}) “span” all the paraboloids |z| = g(λk)‖x‖

2.

case, see [2, Lemma 38]):

det
(
d(u,λ)Ê

)
= −

‖u‖2(λ sinλ+ 2 cosλ− 2)

λ4
.

Setting to zero the previous equation we find critical points of Ê:

crit(Ê) =
{
‖u‖2 = 0

}︸ ︷︷ ︸
A

∪{λ = 2kπ, k �= 0}︸ ︷︷ ︸
R

∪
{
λ | λ

2 = tan λ
2 , λ �= 0

}︸ ︷︷ ︸
B

.

The critical values are the images of these sets. For convenience of no-
tations we label λk, with k ∈ Z \ {0}, the non-zero solutions of λ

2 = tan λ
2 :

these numbers, in the case of the Heisenberg group, coincide with the min-
ima of the function g and are of the form λk = (2k + 1)π + εk. The critical
values of Ê decompose into the union of the three sets:

Ê(A) = origin, Ê(R) = z-axis, Ê(B) =
{
z = ‖x‖2g(λk) | k ∈ Z \ {0}

}
.

In particular, Ê(B) is a union of paraboloids, and has the following charac-
terization: for x �= 0, we have:

ν̂(p) = #{λ | z = g(λ)‖x‖2}.
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By the properties of g, and assuming z ≥ 0 (resp. z ≤ 0), two new contri-
butions to ν̂(p) appear (or disappear) every time the ratio |z|/‖x‖2 crosses
the values g(λk), for k ≥ 0 (resp. k ≤ 0). Thus the function ν̂(p) “jumps” by
two every time p crosses Ê(B) transversely (see Fig. 6).

5. Lower bounds

According to the decomposition of Sec. 3, for p �= p0 we have the following
splitting:

Γ(p) = Γ0(p) ∪ Γ∞(p),

where Γ0(p) is a finite set and Γ∞(p) is homeomorphic to a disjoint union of
spheres. According to Remark 4, if p = (x, z) is a point with all components
xj �= 0, then Γ∞(p) = ∅ (in particular this is the case for a generic point p).
In this setting we prove the next theorem.

Theorem 24 (The “infinitesimal” lower bound). Given a contact
Carnot group G, there exist constants C1, R1 such that if p = (x, z) ∈ G
has all components xj different from zero, then:

C1
|z|

‖x‖2
+R1 ≤ ν̂(p).

In particular, denoting by α1 and αk the smallest and the largest singular
values of A:

C1 =
8

π

α1

α2
k

sin

(
δπ

2

)2

with δ =

⎛
⎝ k∑

j=1

α1

αj

⌊
αj

α1

⌋⎞⎠−1

.

Moreover, R1 (resp. C1) is homogeneous of degree 0 (resp. −1) in the sin-
gular values α1, . . . , αk.

Proof. When all the xj �= 0, then Γ(p) = Γ0(p). According to Prop. 21, and
recalling that I0 = ∅, the number of geodesics ending at p = (x, z) is com-
puted by:

ν̂(p) = #{λ | z = G(λ)}, G(λ) :=

k∑
j=1

αjg(αjλ)‖xj‖
2.
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� �� �

2nπ
αj

(2n+1)π
αj

yn+1

αj

δπ
αj

aj

aj(1− δ) δπ
αj

Figure 7: The intervals În,j ⊂ In,j .

The idea of the proof is to build a sequence of values λ̂n, growing linearly
with n, such that G(λ̂n) ≤ cn+ d for some constants c and d. By the strict
convexity of G(λ), we have at least one contribution to ν̂(p) for any point
λ̂n of the sequence such that G(λ̂n) < z.

Without loss of generality, we assume z ≥ 0 and then λ ≥ 0. For fixed
0 < δ ≤ 1 and every j = 1, . . . , k define the intervals:

In,j :=

[
2nπ

αj
,
2(n+ 1)π

αj

]
and În,j :=

[
2nπ

αj
+

δπ

αj
,
2(n+ 1)π

αj
−

δπ

αj

]
.

Each interval În,j is contained in In,j and the lengths of these two intervals
are (see Fig. 7):

|In,j | =
2π

αj
=: aj and |În,j | = aj(1− δ).

The singular values 0 < α1 < · · · < αk are ordered, then the intervals In,1,
for n ∈ N are the largest. We also define yn := (2n− δ)π. Notice that yn+1

αj

is the maximum of the interval În,j , and will play an important role in the
proof.

Each function λ �→ g(αjλ) is unbounded in the intervals In,j (it has poles
at the extrema), but it is controlled on all the smaller intervals În,j , as stated
by the next lemma.

Lemma 25. There exist constants c1(δ), d1(δ) such that, for j = 1, . . . , k:

g(αjλ) ≤ c1(δ)n+ d1(δ), ∀λ ∈ În,j .

Proof. By Prop. 20, for all j = 1, . . . , k the functions λ �→ g(αjλ) are strictly
convex on the intervals În,j ⊂ In,j . Each function is clearly unbounded on
In,j but, when restricted on În,j , it achieves its maximum value at the point
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yn+1

αj
(i.e. the maximum of the interval În,j). Therefore, by explicit evaluation,

for all λ ∈ În,j we have:

g(αjλ) ≤ g(yn+1) =
2π

8 sin(δπ/2)2
n+

2π − δπ + sin(δπ)

8 sin(δπ/2)2
= c1(δ)n+ d1(δ).

�

The next lemma implies that, for each n ≥ 0, the large interval In,1 contains
at least one point that belongs to all the smaller intervals Îm1,1, . . . , Îmk,k,
for some m1, . . . ,mk.

Lemma 26. Let Îj =
⋃

m≥0 Îm,j for all j = 1, . . . , k. If 0 < δ ≤ 1 is small
enough then:

∀n ≥ 0 In,1 ∩
k⋂

j=1

Îj �= ∅.

Proof. We argue by contradiction. Assume there exists n ≥ 0 such that for
all λ ∈ In,1 we can find j ∈ {1, . . . , k} with λ /∈ Îj . This implies:

(24) sn :=

∫
In,1

#
{
j | λ ∈ Îj

}
dz ≤ (k − 1)a1.

On the other hand the above integral equals:

sn =

k∑
j=1

|Îj ∩ In,1| ≥ ka1 −
k∑

j=1

2δπ

αj

⌊
αj

α1

⌋

≥ (k − 1)a1 +

⎛
⎝a1 − δ

k∑
j=1

2π

αj

⌊
αj

α1

⌋⎞⎠ .

Recalling that a1 =
2π
α1
, if we choose

(25) 0 < δ <

⎛
⎝ k∑

j=1

α1

αj

⌊
αj

α1

⌋⎞⎠−1

,

we obtain sn > (k − 1)a1, contradicting (24). �

The next lemma builds a sequence λ̂n where the behaviour of G(λ) is con-
trolled.
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Lemma 27. There exists an unbounded, increasing sequence {λ̂n ∈ In}n∈N
and constants ck(δ), dk(δ) such that:

k∑
j=1

g(λ̂nαj) ≤ ck(δ)n+ dk(δ).

Proof. By Lemma (26), for all n ≥ 0 there is a point λ̂n ∈ In,1 ∩ Îm1,1 ∩
Îm2,2 ∩ · · · ∩ Îmk,k, for some m1, . . . ,mk. This sequence is unbounded and
increasing. By construction, m1 = n and

mj ≤

⌊
(n+ 1)αj

α1

⌋
≤

αk

α1
n+ 2

αk

α1
, j = 2, . . . , k.

By the estimates of Lemma 25, we have

k∑
j=1

g(λ̂nαj) ≤
k∑

j=1

(c1(δ)mj + d1(δ))

≤

[
c1(δ)k

αk

α1

]
︸ ︷︷ ︸

ck(δ)

n+

[
2c1(δ)(k − 1)

αk

α1
+ kd1(δ)

]
︸ ︷︷ ︸

dk(δ)

.

�

We are now ready for the computation of the lower bound for ν̂(p). Indeed

(26) ν̂(p) = #{λ | z = G(λ)}, G(λ) :=

k∑
j=1

αjg(λαj)‖xj‖
2.

By Prop. 20, each function λ �→ g(αjλ) is strictly convex in the intervals In,j ,
for n ∈ N, and has poles at the extrema of In,j (excluding λ = 0), i.e. the
discrete set Λj . Then also G(λ) is a strictly convex function in each interval
in which it is defined, with poles at Λ = ∪k

j=1Λj .

Consider the sequence λ̂n of Lemma 27. There are at least 2 solutions
contributing to Eq. (26) for any value λ̂n such that G(λ̂n) < z. This follows
by strict convexity of G in the interval between two successive poles con-
taining λ̂n. The only exception to this rule is when λ̂n belongs to I0,k: in
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this case there is only 1 solution (there is no pole at λ = 0). We have:

G(λ̂n) ≤ αk‖x‖
2

k∑
j=1

g(αj λ̂n) ≤ αk‖x‖
2 [ck(δ)n+ dk(δ)] .

Thus, λ̂0 gives a contribution of 1 to ν̂(p), while each point λ̂n, with n ≥ 1 of
the sequence, such that G(λ̂n) < z, give a contribution of 2 to ν̂(p). Taking
in account all the contributions:

ν̂(p) ≥ 2

⌊
1

ck(δ)

|z|

αk‖x‖2
−

dk(δ)

ck(δ)

⌋
+ 1 ≥

2

αkck(δ)

|z|

‖x‖2
− 2

dk(δ)

ck(δ)
− 1.

Plugging in the constants obtained above, we obtain:

ν̂(p) ≥ C(δ)
|z|

‖x‖2
+R(δ),

with:

C(δ) :=
8

π

α1

α2
k

sin

(
δπ

2

)2

, R(δ) := 4
1− k

k
+

α1

αk

δπ − sin(δπ)− 2π

π
− 1.

Both C(δ) and R(δ) are non-decreasing functions of δ, for 0 < δ ≤ 1, thus
the best estimate is given by the values at the largest δ. According to (25)
this value is:

δM :=

⎛
⎝ k∑

j=1

α1

αj

⌊
αj

α1

⌋⎞⎠−1

.

Notice that C1 := C(δM ) is homogeneous of degree −1 w.r.t. the singular
values α1, . . . , αk, while R1 := R(δM ) is homogeneous of degree 0. �

The previous theorem holds if all the xj are different from zero. When
some of the xj = 0, continuous families might appear, but the topology of
these families is controlled.

Theorem 28 (The “infinitesimal” lower bound for the topology).
Let G be a contact Carnot group. There exist constants R′

1, C
′
1 such that for
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every p = (x, z) ∈ G with p �= p0:

C ′
1

|z|

‖x‖2
+R′

1 ≤ β̂(p).

In particular, denoting by α1 and αk the smallest and the largest singular
values of A:

C ′
1 =

8

π

α1

α2
k

sin

(
δ′π

2

)2

with δ′ =

⎛
⎝∑

j /∈I0

α1

αj

⌊
αj

α1

⌋⎞⎠−1

.

Moreover, R′
1 (resp. C ′

1) is homogeneous of degree 0 (resp. −1) in the sin-
gular values α1, . . . , αk.

Proof. Recall that I0 = {j | xj = 0}. If I0 = ∅, then the statement reduces

to Thm. 28 since Γ(p) = Γ0(p) is finite and ν̂(p) = #Γ(p) = b(Γ(p)) = β̂(p).
Then assume I0 �= ∅. By Thm. 21, Γ(p) = Γ0(p) ∪ Γ∞(p) and:

β̂(p) = b(Γ(p)) ≥ b(Γ0(p)) = #Γ0(p).

In particular Γ0(p) is in one-to-one correspondence with its projection on
the λ component, since all the uj are uniquely determined by the point
p = (x, z) once λ is known. Therefore

#Γ0(p) = #{λ | z = G0(λ)}, G0(λ) :=
∑
j /∈I0

αjg(αjλ)‖xj‖
2.

Now we only have to bound from below the number of solutions of z = G0(λ).
The proof is analogous to the one of Thm. 24, where only the indices j /∈ I0
appear. �

6. Isometries and families of geodesics

6.1. Isometries of the Heisenberg group

Isometries are distance-preserving transformations and, in Carnot groups,
are smooth (see [7]). The set of all sub-Riemannian isometries ISO(G) of
a Carnot group is a Lie group, and any isometry is the composition of a
group automorphism and a group translation (see [8, 11]). Here we consider
the subgroup ISO0(G) of isometries that fix the identity and we denote this
subgroup simply ISO(G).
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Lemma 29. The isometry group of H2n+1 is:

ISO(H2n+1) = {(M, θ) | θ = ±1, MM∗ = �2n, MJM∗ = θJ},

with the action of ISO(H2n+1) on H2n+1 given by:

(M, θ) · (x, z) = (Mx, θz).

Moreover:

ISO(H2n+1) � O(2n) ∩ Sp(2n)� Z2 � U(n)� Z2.

Proof. A diffeomorphism is an isometry of Carnot groups fixing the identity
if and only if is a Lie group isomorphism. In particular, it is induced by
Lie algebra isomorphisms φ : h2n+1 → h2n+1 that are orthogonal transfor-
mations on the first layer. Since φ is a Lie algebra isomorphism, it preserves
the stratification. Then we can write φ = (M, θ) ∈ O(2n)× R, such that

φ(fi) =

2n∑
j=1

Mjifj , φ(f0) = θf0.

The isomorphism condition [φ(fi), φ(fj)] = Jijφ(f0) implies:

MJM∗ = θJ.

It follows that θ2 = 1. Then:

ISO(H2n+1) = {(M, θ) | θ = ±1, MM∗ = �2n, MJM∗ = θJ}.

This Lie algebra isomorphism generates a Lie group isomorphism that, in ex-
ponential coordinates, reads (M, θ) · (x, z) = (Mx, θz). Let ISO(H2n+1)+ �

ISO(H2n+1) be the normal subgroup:

ISO(H2n+1)+ := {(M, 1) | MM∗ = �, MJM∗ = J} � O(2n) ∩ Sp(2n).

Moreover, let K be any matrix such that KJK∗ = −J . Then, let :

H := {(�, 1), (K,−1)} � Z2

be another subgroup of ISO(H2n+1). Any element of ISO(H2n+1) can be
written uniquely as the product mh of an element of m ∈ ISO(H2n+1)+ and
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an element of h ∈ H. Thus the map mh �→ (m,h) is a group isomorphism:

ISO(H2n+1) = ISO(H2n+1)+ �H,

where H acts on ISO(H2n+1)+ with the adjoint action. As we observed
ISO(H2n+1)+ � O(2n) ∩ Sp(2n) and H � Z2, thus

ISO(H2n+1) � O(2n) ∩ Sp(2n)� Z2.

Remark 8. With this identification, the action of ϕ : Z2 → Aut(O(2n) ∩
Sp(2n)) is:

ϕ(1)M =M, ϕ(−1)M = KMK∗,

the product on O(2n) ∩ Sp(2n)� Z2 reads:

(M, θ)(M ′, θ′) = (Mϕ(θ)M ′, θθ′),

and the action of O(2n) ∩ Sp(2n)� Z2 on H2n+1 is:

(M, θ) · (x, z) =

{
(Mx, z) θ = 1,

(MKx,−z) θ = −1.

Finally, to see that O(2n) ∩ Sp(2n) � U(n), write M ∈ GL(2n,R) as
M =

(
A B
C D

)
. Then M ∈ O(2n) ∩ Sp(2n) if and only if:

M =

(
A B
−B A

)
, AA∗ +BB∗ = �n, AB∗ −BA∗ = 0.

Thus the map M �→ A+ iB is the group isomorphism O(2n) ∩ Sp(2n) �
U(n). �

6.1.1. Stabilizers of points. Let p ∈ H2n+1. We restrict our attention
to the connected component ISO(H2n+1)+ that contains the identity. As in
the proof of Lemma 29, we identify:

ISO(H2n+1)+ = U(n).

With this identification, the action ρ : U(n)×H2n+1 → H2n+1 is

ρ(A+ iB, (x, z)) = (Mx, z), M =

(
A B
−B A

)
.

What is the stabilizer subgroup ISOp(H2n+1) ⊆ ISO(H2n+1)+ that fixes p ∈
H2n+1?
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Lemma 30. Let p = (x, z) ∈ H2n+1. Then

ISOp(H2n+1) �

{
U(n) x = 0,

U(n− 1) x �= 0.

Proof. Let A+ iB ∈ U(n). Let p = (x, z) ∈ H2n+1, with x �= 0 and write x =
(v, w) with v, w ∈ Rn. Then

ρ(A+ iB, p) = p ⇐⇒ Mx = x ⇐⇒ (A+ iB)(v − iw) = v − iw.

This means that A+ iB must be a unitary matrix with a prescribed eigen-
vector v − iw with eigenvalue 1. This identifies a copy of U(n− 1) ⊂ U(n)
that fixes p. On the other hand, if x = 0, the point p = (0, z) is fixed for any
element of ISO(H2n+1)+. �

6.1.2. Stabilizers of geodesics. Let γ(t) be the geodesic with initial cov-
ector (u, λ) ∈ T ∗

0H2n+1. What is the subgroup ISOγ(H2n+1) ⊂ ISO(H2n+1)+
that fixes the whole geodesic? Recall that

γ(t) =

(∫ t

0
e−λJτudτ,−

1

2

∫ t

0
〈e−λJτu, J

∫ τ

0
e−λJsuds〉dτ

)
.

Lemma 31. Let (u, λ) ∈ T ∗
0H2n+1 be the initial covector of the geodesic γ.

Then

ISOγ(H2n+1) �

{
U(n) u = 0,

U(n− 1) u �= 0.

Proof. To stabilize γ is equivalent to stabilize its “horizontal” component. In-
deed, let A+ iB ∈ U(n) be an isometry and γ(t) = (x(t), z(t)). Then ρ(A+
iB, (x(t), z(t))) = (x(t), z(t)) if and only if Mx(t) = x(t) for all t. For u �= 0,
take one derivative w.r.t. t at t = 0; we obtain Mu = u, as in the proof of
Lemma 30. This identifies a subgroup U(n− 1) ⊂ U(n). This condition also
implies also Mx(t) = x(t). In fact:

Mx(t) =M

∫ t

0
e−τλJu =

∫ t

0
e−τλJMu = x(t),

where we used the fact that, being an isometry, MJ = JM . Thus, in this
case, ISOγ(H2n+1) = U(n− 1). When u = 0 the geodesic is the trivial one,
and is stabilized by the whole U(n). �
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Remark 9. Notice that in this case u = 0 if and only the geodesic is triv-
ial γ(t) ≡ 0. When u �= 0 two possibilities can occur: 1) x �= 0, in which
case ISOγ(H2n+1) = ISOp(H2n+1) � U(n− 1); 2) x = 0 and the subgroup
ISOγ(H2n+1) � U(n− 1) is properly contained in ISOp(H2n+1) � U(n).

6.1.3. Isometrically equivalent geodesics.

Definition 32. Let γ1, γ2 be geodesics with the same endpoints. We say
that γ1 is isometrically equivalent to γ2 if there exists g ∈ ISO(G) such that
γ1 = gγ2.

Let p ∈ H2n+1, and γ be a normal geodesic such that γ(0) = 0 and γ(1) =
p. By acting with ISOp(H2n+1) we obtain families of isometrically equivalent
by construction. Still, since ISOγ(H2n+1) ⊆ ISOp(H2n+1), we may obtain in
this way non-distinct geodesics. To avoid duplicates, we have to take the
quotient w.r.t. the subgroup ISOγ(H2n+1).

Let Xγ be the set of geodesics isometrically equivalent to a given one
γ. This is a homogeneous space w.r.t. the action of ISOp(H2n+1). From
Lemma 30 and 31 we obtain the structure of Xγ .

Proposition 33. Let γ be a geodesic such that γ(0) = 0 and γ(1) = p, with
initial covector (u, λ) ∈ T ∗

0H2n+1. Then:

Xγ = ISOp(H2n+1)/ ISOγ(H2n+1) �

{
S2n−1 u �= 0, λ ∈ 2πZ \ {0},

1 otherwise.

Proof. If u = 0, then γ(t) = 0 is the trivial geodesic. In this case X0 is just a
point (the trivial geodesic). Then we may assume u �= 0. Let p = (0, z). An
explicit computation leads to

0 =

∫ 1

0
e−τλJu ⇐⇒ λ = 2mπ, m ∈ Z \ {0}.

Then, when λ = 2mπ (and u �= 0), according to Lemma 30 and 31 we have:

ISOp(H2n+1)/ ISOγ(H2n+1) = U(n)/U(n− 1) � S2n−1.

If λ �= 2mπ, then p = (x, z) with x �= 0. According to Lemma 30 and 31
(see also Remark 9) we have ISOp(H2n+1) = ISOγ(H2n+1) = U(n− 1). Thus
their quotient is the trivial group. �
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Remark 10. In fact, in terms of the endpoint, the only possibility for
having a family of isometrically equivalent geodesics ending at p is that
x = 0 zero. In fact, λ = 2mπ and u �= 0 if and only if p = (0, z) with z �= 0.
This means that for non-vertical points p, all the geodesics connecting p with
the origin are not isometrically equivalent, while if p = (0, z) is vertical, for
any geodesic γ connecting p with the origin, we have a family of distinct
geodesics (all with the same energy) diffeomorphic to S2n−1.

6.2. Isometries of contact Carnot groups

Lemma 34. The isometry group of the contact Carnot group G with pa-
rameters (k, �n, �α) is:

ISO(G) = {(M1, . . . ,Mk, θ) | θ = ±1, MiM
∗
i = �2ni

, MiJni
M∗

i = θJni
},

with the action of ISO(G) on G given by:

(M1, . . . ,Mk, θ) · (x1, . . . , xk, z) = (M1x1, . . . ,Mkxk, θz).

Moreover this group is isomorphic to:

ISO(G) � O(2n1) ∩ Sp(2n1)× · · · ×O(2nk) ∩ Sp(2nk)� Z2

� U(n1)× · · · ×U(nk)� Z2.

Proof. The proof is analogous to the one of Lemma 29, after splitting the
equations in the real eigenspaces associated with the eigenvalues of A. �

Remark 11. As above, we restrict to the connected component ISO(G)+.
We identify:

ISO(G)+ = U(n1)× · · · ×U(nk).

With this identification, the action ρ : ISO(G)+ ×G → G is

ρ(A1 + iB1, . . . , Ak + iBk, (x1, . . . , xk, z)) = (M1x1, . . . ,Mkxk, z),

where Aj + iBj ∈ U(nj) for all j = 1, . . . , k and Mj :=
(

Aj Bj

−Bj Aj

)
.

6.2.1. Stabilizers of points. For p ∈ G, let ISOp(G) ⊆ ISO(G)+ its sta-
bilizer.
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Lemma 35. Let p = (x1, . . . , xk, z) ∈ G. Then:

ISOp(G) =

{
U(n1) x1 = 0

U(n1 − 1) x1 �= 0
× · · · ×

{
U(nk) xk = 0

U(nk − 1) xk �= 0
.

Proof. By Remark 11, the isometry (A1 + iB1, . . . , Ak + iBk) ∈ ISO(G)+
fixes p = (x1, . . . , xk, z) if and only if (Aj + iBj)xj = xj for all j = 1, . . . , k.
This means that Aj + iBj ∈ ISO(H2nj+1)+ fixes the point pj := (xj , z) ∈
H2nj+1, for all j = 1, . . . , k. Then :

ISOp(G) = ISOp1
(H2n1+1)× · · · × ISOpk

(H2nk+1),

and the result follows from Lemma 30. �

6.2.2. Stabilizers of geodesics. Let (u, λ) ∈ T ∗
0G. Let γ be the associ-

ated geodesic, such that γ(0) = 0 and p = γ(1). What is the stabilizer sub-
group of the geodesic ISOγ(G) ⊆ ISOp(G)? As usual, set u = (u1, . . . , uk),
with ui ∈ R2ni . Accordingly γ(t) = (x1(t), . . . , xk(t), z(t)), with xi(t) ∈ R2ni .
In particular:

xi(t) =

∫ t

0
e−τλαiJuidτ,

z(t) = −
1

2

k∑
i=1

∫ t

0

〈
e−τλαiJui, αiJ

∫ τ

0
e−sλαiJuids

〉
dτ,

where we suppressed the explicit mention of the dimension of the matrices
Jni

. Notice that u = 0 if and only if the geodesic is the trivial one γ(t) ≡ 0.

Lemma 36. Let (u1, . . . , uk, λ) ∈ T ∗
0G the initial covector of the geodesic

γ. Then:

ISOγ(G) =

{
U(n) u1 = 0

U(n− 1) u1 �= 0
× · · · ×

{
U(n) uk = 0

U(n− 1) uk �= 0
.

Proof. Let (A1 + iB1, . . . , Ak + iBk) ∈ ISO(G)+. According to Remark 11,
this isometry fixes the geodesic (x1(t), . . . , xk(t), z(t)) if and only if

Mjxj(t) = xj(t), Mj =

(
Aj Bj

−Bj Aj

)
, ∀j = 1, . . . , k.
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This implies that Aj + iBj ∈ ISO(H2nj+1)+ fixes the geodesic γj of H2nj+1

associated with the initial covector (uj , αjλ). Then:

ISOγ(G) = ISOγ1
(H2n1+1)× · · · × ISOγk

(H2nk+1),

and the result follows from Lemma 31. �

6.2.3. Isometrically equivalent geodesics. Let γ be a geodesic con-
necting the origin with a point p ∈ G. Let (u1, . . . , uk, λ) be the initial cov-
ector of the geodesic, and let p = (x1, . . . , xk, z) its endpoint. Let Xγ be the
set of geodesic isometrically equivalent to the given one. This is an homoge-
neous space w.r.t. the action of ISOp(G).

Proposition 37. Let G a contact Carnot group with parameters (k, �n, �α).
Let γ be a geodesic in G with initial covector (u1, . . . , uk, λ), such that γ(0) =
0 and γ(1) = p. Then:

(27) Xγ = ISOp(G)/ ISOγ(G) � Xγ1
× · · · ×Xγk

,

where:

Xγi
:=

{
S2ni−1 ui �= 0, αiλ = 2miπ,

1 otherwise,
mi ∈ Z \ {0}.

Proof. By the proofs of Lemma 36 and 35 we have

ISOp(G) = ISOp1
(H2n1+1)× · · · × ISOpk

(H2nk+1),

ISOγ(G) = ISOγ1
(H2n1+1)× · · · × ISOγk

(H2nk+1),

where pi = (xi, z) ∈ H2ni+1 and γi is the normal geodesic in H2ni+1 with
initial covector (ui, αiλ) ∈ T ∗

0H2ni+1, for all i = 1, . . . , k. Since each factor
ISOγi

(H2ni+1) is a subgroup of the corresponding ISOpi
(H2ni+1), the quo-

tient of the direct product of Lie groups factors in the direct product of the
quotients:

k
×
i=1

ISOpi
(H2ni+1)/

k
×
i=1

ISOγi
(H2ni+1) =

k
×
i=1

ISOpi
(H2ni+1)/ ISOγi

(H2ni+1).

Then:

Xγ =
k
×
i=1

Xγi
, Xγi

= ISOpi
(H2ni+1)/ ISOγi

(H2ni+1).
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Recall that the geodesic γi of H2ni+1 is associated with initial covector
(ui, αiλ) by construction. Thus for each factor Xγi

we proceed as in the
proof of Prop. 33 and we obtain the result. �

Example 7. Prop. 37 implies that the for generic geodesic (i.e. with generic
initial covector), the manifold Xγ of distinct isometrically equivalent geo-
desics is trivial.

Example 8. Consider the generic Carnot group G, associated with the
generic choice of A ∈ so(2n). In this case n = k, n1 = · · · = nk = 1 and all
the αi are not commensurable. The only geodesics γ admitting a non-trivial
manifold Xγ of distinct isometrically equivalent geodesics are those with
initial covector (u, λ), such that λ = 2mπ/αi for a unique i ∈ {1, . . . , n}
and m ∈ Z \ {0}. In this case: Xγ � S1. In fact αjλ �= 2mjπ for all j �= i
otherwise some αj would be commensurable with αi. Then there is only one
factor in Eq. (27). Notice that these geodesics have endpoint (x, z), with
z �= 0, xi = 0.

6.3. Families of isometrically non-equivalent geodesics

We ended the previous section discussing families Xγ of isometrically equiv-
alent geodesics connecting two points. These families arose as homogeneous
space w.r.t. the stabilizer ISOp(G) of the final point p = γ(1) of a fixed geo-
desic γ. In this section we adopt a different point of view, and we investigate
how many isometrically non-equivalent geodesics join two points in G.

It may well be that some of the families of Thm. 22 contain geodesics that
are isometrically equivalent, as in Def. 32. This is the case in the Heisenberg
groups H2n+1, where all the families are S1 of equivalent geodesics. Is this
the correct picture for any contact Carnot group? In other words, are the
spheres appearing in Γ∞(p) families of isometrically equivalent geodesics?
In general the answer is no, and the picture is more complicated as shown
in the next theorem.

Theorem 38. Let G be a contact Carnot group. The set Γ̄∞(p) of equiva-
lence classes of isometrically equivalent geodesics ending at p �= p0 is home-
omorphic to the disjoint union:

Γ̄∞(p) �
⋃

λ∈Λp

S
�(λ)−1
≥0 �(λ) := #L(λ),
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where Sn
≥0 = Sn ∩ Rn+1

≥0 is the intersection of the n-sphere with the positive

quadrant in Rn+1 and Λp is defined in (14).

Remark 12. When all the α1, . . . , αk are pair-wise non-commensurable,
then #L(λ) = 1 for all λ ∈ Λp ⊆ Λ and N(λ) = 1. Thus all the “continuous”
families in Γ∞(p) are topologically S1 of isometrically equivalent geodesics.
Nevertheless, for resonant structures (i.e. when some of the αi are com-
mensurable) there exist continuous families of non-isometrically equivalent
geodesics.

Proof. Fix λ̄ ∈ Λp. Without loss of generality, we can assume that L(λ̄) =
{1, . . . , �} for � = #L(λ̄). This implies x1 = · · · = x� = 0 by Prop. 19. From
Lemma 35:

ISOp(G) = U(n1)× · · · ×U(n�)×U(n�+1 − 1)× · · · ×U(nk − 1),

and the action ρ : ISOp(G)×G → G is:

ρ(A1 + iB1, . . . , Ak + iBk, (x1, . . . , xk, z)) = (M1x1, . . . ,Mkxk, z),

with Mi =
(

Aj Bj

−Bj Aj

)
.

In particular ISOp(G) is the subgroup that fixes all the components
x�+1, . . . , xk (with no other restriction on the other components). It is easy
to check that the action on the initial covector (u1, . . . , uk, λ) is exactly the
same. In particular, ISOp(G) is the subgroup that fixes all the components
u�+1, . . . , uk with no other restriction on the other components.

Consider one connected component of Γ∞(p), given by Γ∞(p) ∩ {λ = λ̄}.
As in the proof of Thm. 22, specifically equation (17), and assuming without
loss of generality that L(λ̄) = {1, . . . , �}, we have that

Γ∞(p) ∩ {λ = λ̄} =

⎧⎨
⎩(u1, . . . , u�) ∈ R2�

∣∣∣∣∣ ∑
j∈L(λ̄)

‖uj‖
2 = c(λ̄)

⎫⎬
⎭ � S2N(λ̄)−1,

where c(λ̄) > 0, � = �(λ̄) = #L(λ̄), and N(λ̄) =
∑

j∈L(λ̄) nj . The action of

ISOp(G) on S2N(λ̄)−1 is the action of U(n1)× · · · ×U(n�), namely each copy
of U(nj) acts on each component uj with j ∈ L(λ̄). Thus consider the map:

ξ : S2N(λ̄)−1 → S�−1
≥0 ξ(u1, . . . , u�) := (‖u1‖, . . . , ‖u�‖).
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This map indeed descends to a continuous map on the quotient.

ξ̃ : S2N(λ̄)−1/U(n1)× · · · ×U(n�)→ S�−1
≥0 .

It is bijective (recall that uj ∈ R2nj and the action of U(nj) on R2nj is the
classical action of U(nj) on Cnj , which is transitive on spheres with the same
radius). Being a continuous map from a compact space to a Hausdorff space,
ξ̄ is closed, then is open, thus it is an homemorphism. �

7. Contact sub-Riemannian manifolds

7.1. The nilpotent approximation

Let M be a contact sub-Riemannian manifold and let p0 ∈ M . All our con-
siderations being local, up to restriction to a coordinate neighbourhood U
of p0, we assume that M = R2n+1 and that the sub-Riemannian structure
(D, 〈·|·〉) on M is defined by a set f1, . . . , f2n of global orthonormal vector
fields. Namely

D = span{f1, . . . , f2n}, and 〈fi|fj〉 = δij .

The vector fields f are assumed to be bounded with all derivatives as well.
This will certainly be true if they are the coordinate representation of local
orthonormal fields on a neighbourhood U of p0 of a larger sub-Riemannian
manifold.

Definition 39. Coordinates (x, z) ∈ R2n × R are adapted at p0 if they are
centred at p0 and

Dp0
= span

{
∂

∂x1
, . . . ,

∂

∂x2n

}
.

Example 9. Darboux’s coordinates on a contact manifolds are local coor-
dinates (x, z) ∈ R2n × R such that the contact form has the following form:

α = −dz +
1

2

2n∑
i,j=1

Jijxidxj , where J =

(
0 �n

−�n 0

)
.

In particular, in these coordinates dα =
∑

i<j Jijdxi ∧ dxj . The classical
Darboux’s theorem states that Darboux’s coordinates always exist in a
neighbourhood of any point p0. Since Dp0

= kerα|p0
= span{∂x1

, . . . , ∂x2n
},

Darboux’s coordinates are indeed adapted at p0.
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In these coordinates we define “non-homogeneous dilations” δε :M → M
by:

δε(x, z) = (εx, ε2z), ε > 0,

and the following family of vector fields:

fε
i := εδ 1

ε
∗fi = f̂i + εW ε

i , ε > 0.

The fields f ε
i represent the “blowup” of the original structure in a neigh-

bourhood of p0 through the dilations δε. The nilpotent approximation is
the “principal part” of the original structure w.r.t. this non-homogeneous
blowup.

Definition 40. For all ε > 0, the ε-blowup is the sub-Riemannian structure
(M, f ε) on M defined by declaring f ε

1 , . . . , f
ε
2n a set of global orthonormal

fields. Likewise, the nilpotent approximation (at p0) is the sub-Riemannian
structure (M, f̂) on M defined by declaring f̂1, . . . , f̂2n a set of global or-
thonormal fields.

We call Dε (resp. D̂) the distribution of the ε-blowup (resp. of the nilpo-
tent structure).

Proposition 41. The nilpotent approximation (M, f̂) at p0 of a contact
manifold is a contact Carnot group, with contact form given by

α̂ = lim
ε→0

1

ε2
δ∗εα.

Let f0 be a vector field transversal to D (in the original structure), and let

f̂0 := lim
ε→0

ε2δ 1

ε
∗f0.

Then the Lie algebra g = g1 ⊕ g2 of the contact Carnot group G = (M, f̂) is

g1 = span{f̂1, . . . , f̂2n}, g2 = span{f̂0},

with structural constants given by A ∈ so(2n) such that:

[f̂i, f̂j ] = Aij f̂0, Aij = −
dα(fi, fj)

α(f0)

∣∣∣∣
p0

.
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Proof. We first prove that the nilpotent structure is contact. For ε > 0 let
αε := 1

ε2 δ
∗
εα. Indeed Dε = kerαε. Let (x, z) be the set of adapted coordinates

that define the dilation δε. Then

α =

2n∑
i=1

ξidxi + wdz,

for some smooth functions ξi, w : R2n+1 → R, bounded with all their deriva-
tives. Since Dp0

= kerα|p0
= span{∂x1

, . . . , ∂x2n
} in adapted coordinates we

have the following Taylor expansions

(28) ξi(x, z) =

2n∑
j=1

aijxj + bz +Ri(x, z), w(x, z) = w0 +R0(x, z).

where the remainder terms Ri(x, z) (resp. R0(x, z)) are actually bounded
by polynomials of degree ≥ 2 (resp. ≥ 1) in (x, z). Moreover aij is non-
degenerate since dα|D is non-degenerate and w0 �= 0. A straightforward cal-
culation using the definition of δ∗ε gives

αε =

2n∑
i=1

1

ε
ξi(εx, ε

2z)dxi + w(εx, ε2z)dz.

In particular, using Eq. (28), we notice that αε converges uniformly to α̂:

α̂ = lim
ε→0

αε =

2n∑
i,j=1

aijxjdxi + w0dz.

Indeed α ∧ (dα)n = w0 det(a) �= 0, which implies non-degeneracy of the con-
tact form. Moreover, ker α̂ = span{f̂1, . . . , f̂2n}. In fact, for all i = 1, . . . , 2n,
we have

α̂(f̂i) = lim
ε→0

1

ε2
δ∗εα(εδ 1

ε
∗fi) = lim

ε→0

1

ε
α(fi) = 0.

Now we show that the nilpotent approximation (M, f̂) is a Carnot group.
Consider the fields f1, . . . , f2n defining the original structure, and any field
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f0 transversal to D. Then

(29) [fi, fj ] =

2n∑
k=1

ckijfk + c0ijf0, ∀i, j = 1, . . . , 2n,

for some family of smooth functions c0ij and ckij . Now consider the blowup of

Eq. (29), namely we act on both sides with ε2δ1/ε∗, and we take the limit for
ε → 0. The first term on the r.h.s. vanishes in the limit (due to the factor
ε2), and we obtain

[f̂i, f̂j ] = Aij f̂0.

where Aij := c0ij(p0) is a constant skew-symmetric matrix. Analogously, one
can check that

[f̂i, f̂0] = [f̂0, f̂0] = 0, ∀i = 1, . . . , 2n.

Thus the fields f̂1, . . . , f̂2n and f̂0 define a graded, nilpotent Lie algebra
g = g1 ⊕ g2 with

g1 := span{f̂1, . . . , f̂2n}, g2 = span{f̂0}.

Since M = R2n+1 is simply connected and the Lie algebra of vector fields g
is nilpotent, there exists a unique group structure on M such that g is its
Lie algebra of left-invariant vector fields. The definition of the product law
can be written explicitly in exponential coordinates on G induced by the
fields f̂1, . . . , f̂2n, f̂0 through the Backer-Campbell-Hausdorff formula and is
left to the reader. Thus G := (M, f̂) has the structure of a contact Carnot
group. Finally,

dα(fi, fj) = fi(α(fj))− fj(α(fi))− α([fi, fj ]) = −c0ijα(f0).

Using the relation Aij = c0ij(p0), it is sufficient to evaluate the above formula
at p0 to obtain

Aij = −
dα(fi, fj)

α(f0)

∣∣∣∣
p0

.

Indeed A is not degenerate, as a consequence of the non-degeneracy assump-
tion on dα|D. �
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adapted coordinates
(x, z) ∈ R2n × R

dilations δε
δε(x, z) = (εx, ε2z)

nilpotent approximation
f̂ = lim

ε→0
εδ 1

ε
∗
f

exponential coordinates
(θ, ρ) ∈ R2n × R

change of coordinates (x, z) = (Bθ, θ∗Sθ + cρ)

Figure 8: Adapted coordinates on M define the dilation map δε that, in
turn, defines the nilpotent approximation (M, f̂).

7.2. Adapted vs exponential coordinates

Recall that, at the beginning of this section we put adapted coordinates
(x, z) ∈ R2n × R on M . This choice defined the family of non-homogeneous
dilations δε that, in turn defined the nilpotent approximation (M, f̂) as the
“limit” of the ε-blowup structures. Any choice of a global orthonormal frame
fi and f0 transverse to D for the original structure induces a global orthonor-
mal frame f̂i and f̂0 (transverse to D̂) for the nilpotent approximation, where

f̂i = lim
ε→0

εδ 1

ε
∗fi, f̂0 = lim

ε→0
ε2δ 1

ε
∗f0.

Since G = (M, f̂) is a contact Carnot group, the fields f̂1, . . . , f̂2n and f̂0
induce exponential coordinates (θ, ρ) ∈ R2n × R. Namely a point has coor-
dinates (θ, ρ) if and only if

(x, z) = expG

(
2n∑
i=1

θif̂i + ρf̂0

)
.

The next lemma clarifies the relation between adapted coordinates (x, z)
and exponential coordinates (θ, ρ) on the same base space M = R2n+1.

Lemma 42. Let (x, z) ∈ R2n × R be adapted coordinates for the contact
structure (R2n+1, f), and let (θ, ρ) ∈ R2n × R be exponential coordinates for
the Carnot structure (R2n+1, f̂), induced by some choice of fi, f0 (and con-
sequently f̂i, f̂0). Then the two sets of coordinates are related by

x = Bθ, z = θ∗Sθ + cρ,

where B ∈ GL(2n), c ∈ R \ {0} and S ∈ Mat(2n).
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Proof. For i = 1, . . . , 2n we have, in adapted coordinates:

fi =

2n∑
j=1

Bji(x, z)
∂

∂xj
+ bi(x, z)

∂

∂z
, f0 =

2n∑
j=1

Cj(x, z)
∂

∂xj
+ c(x, z)

∂

∂z
,

for some smooth functions Bij , bi, Cj , c : R
2n+1 → R that satisfy:

(30) bi(0, 0) = 0, detBij(0, 0) �= 0, c(0, 0) �= 0.

By explicit computation we obtain

f̂i =

2n∑
j=1

Bji(0, 0)
∂

∂xj
+

2n∑
j=1

∂bi
∂xj

(0, 0)xj
∂

∂z
, f̂0 = c(0, 0)

∂

∂z
.

By definition of exponential coordinates (see the proof of Lemma 17) we
obtain that

x = Bθ, and z = θ∗Sθ + cρ,

where B is the matrix with components Bij(0, 0), c = c(0, 0) and the matrix
S has components

Sij =
1

2

2n∑
�=1

∂bi
∂x�

(0, 0)B�j(0, 0), B ∈ GL(2n) by (30).

�

The following proposition compares the geometry of the original struc-
ture with the ε-blowup and is left to the reader.

Proposition 43. The composition γ �→ γε = δ 1

ε

γ gives a homeomorphism

between the set of admissible curves for (M, f) and admissible curves for
(M, fε). If γ(0) = 0, γ(1) = p and γ is a geodesic for (M, f), then γε is
a geodesic for (M, fε) with γε(0) = 0, γε(1) = δ 1

ε

(p); the energies of these

curves are related by Jε(γε) = ε−2J(γ).

7.3. Semicontinuity of the counting function

Let Eε, Ê : T ∗
p0
M → M be, respectively, the sub-Riemannian exponential

maps for (M, f ε) and (M, f̂). We define now the counting functions νε, ν̂ :
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M → (0,∞] as:

νε(p) = #E−1
ε (p) and ν̂(p) = #Ê−1(p).

In other words, νε(p) counts the number of geodesics between 0 and p for the
ε-blowup and ν̂(p) for the limit Carnot group. Setting ν = ν1 (the counting
function for the original structure (M, f)), we notice that Prop. 43 implies
indeed:

νε(p) = ν(δε(p)).

In fact given a geodesic γ : I → M for (M, f) between 0 and δε(p), then
δ 1

ε

γ is a geodesic for (M, f ε) with final point δ 1

ε

(γ(1)) = δ 1

ε

(δε(p)) = p (and

vice-versa). The next theorem compares the asymptotics of ν(δε(p)) with
the one of ν̂(p).

Theorem 44 (Counting in the limit). Let M be a contact sub-Rieman-
nian manifold. For the generic p ∈ M sufficiently close to p0:

ν̂(p) ≤ lim inf
ε→0

ν(δε(p)).

where δε is the non-homogeneous dilation defined in some set of adapted
coordinates in a neighbourhood of p0.

Proof. If p is a regular value of Ê, then the fiber if Ê−1(p) is discrete, hence
ν̂(p) is finite by Thm. 22. Consider an open bounded set U ⊂ T ∗

0M , where
bounded means that it is contained in a compact set K, such that:

Ê−1(p) ⊂ U ⊂ K.

We claim that there exists εK > 0 such that p is a regular value of Eε|U
for every ε < εK . If this was not true, then we can find a sequence {εn}n∈N
converging to zero and a sequence {λn}n∈N ⊂ K such that Eεn(λn) = p and
rank(dλn

Eεn) < dim(M). Then, by compactness of K, up to subsequences
we can assume λn → λ̂ with Ê(λ̂) = p, by uniform convergence of Eεn |K
to Ê|K with all derivatives (see [3, Prop. 5.15]). Moreover, by the same
argument, dλn

Eεn → dλ̂Ê and since the set of points where the rank of dÊ is

not maximal is closed, we also have rank(dλ̂Ê) < dim(M), which contradicts

the fact that p was a regular value of Ê.
Consider now the function Ē : U → M (where U = U × [0, εK ]) given by

(u, ε) �→ Eε(u) (where we have set E0 = Ê); the uniform convergence of Eε
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with all derivatives on compact sets implies Ē is smooth (in fact C1 is enough
for us). By the above observation X̄ = Ē−1(p) is a smooth submanifold of
U and its dimension is one. In fact:

(d(u,ε)Ē)(u̇, ε̇) = (duEε)u̇+
∂Ē

∂ε
(u, ε)ε̇, (u̇, ε̇) ∈ T(u,ε)U.

Since p is a regular value of Eε for all ε ∈ [0, εK ], the image of duEε is enough
to generate TpM .

On the other hand, we claim that zero is a regular value for the the
projection π : X̄ → [0, εK ] on the second factor. To prove this, observe that
tangent space to X̄ at (u, 0) is:

T(u,0)X̄ =

{
(u̇, ε̇)

∣∣ (duÊ)u̇+ ∂Ē

∂ε
(u, 0)ε̇ = 0

}
,

and since Ê a submersion at p:

T(u,0)X̄ ∩ ker dπ � TuÊ
−1(p) = {0}.

Thus T(u,0)X̄ must contain some vector (u̇, ε̇) with ε̇ �= 0, i.e. zero is not
critical for π, proving the claim. Then ε′ > 0 small enough also is noncritical
for π; in particular, by Ehresmann’s theorem, π|π−1[0,ε′] is a fibration (U is
contained in a compact set) and:

∀ε < ε′ : Eε|
−1
U (p) � Ê|−1

U (p).

Since νε(p) ≥ #Eε|
−1
U (p) the conclusion follows (see Fig. 9). �

Theorem 45. Let M be a contact manifold and (x, z) be Darboux’s coor-
dinates on a neighbourhood U of q ∈ M . There exist constants C(q), R(q)
such that, for the generic p = (x, z) ∈ U :

lim inf
ε→0

ν(δε(p)) ≥ C(q)
|z|

‖x‖2
+R(q).

Proof. We consider on U the original structure (U, f) and the nilpotent
structure (U, f̂) defined in adapted (e.g. Darboux’s) coordinates (see Fig. 8).
The classical Sard theorem implies that the generic p ∈ U is a regular value
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�

�

�

�

�

�

�

εεK

T ∗
0M

Ê−1(p)
�

Figure 9: Picture of
⋃

ε∈I E
−1
ε (p) ⊂ I × T ∗

0M . Even if εK is small, some
geodesics can still “escape” out ofK. The shaded region denotes [0, εK ]×K.

for Ê : T ∗
q U → U . Then, by Thm. 44,

lim inf
ε→0

ν(δε(p)) ≥ ν̂(p).

Now choose some orthogonal local frame f1, . . . , f2n and f0 transversal to
D for the original structure. This induces exponential coordinates (θ, ρ) on
U (see Sec. 7.2). By Prop. 41, the nilpotent structure (U, f̂) is a contact
Carnot group such that

[f̂i, f̂j ] = Aij f̂0, Aij =
dα(fj , fi)

α(f0)

∣∣∣∣
q

.

The generic point p has exponential coordinates (θ, ρ) with all θj �= 0. Then,
by Thm. 24 we have

ν̂(p) ≥ C1
|ρ|

‖θ‖2
+R1,

where C1 = C1(q) and R1 = R1(q) are computed in the proof of Thm. 24
in terms of the singular values of A. Indeed they depend on the point q
at which we consider the nilpotentization. Darboux’s (adapted) coordinates
(x, z) and exponential coordinates (θ, ρ) are related by the transformation
of Lemma 42 and we obtain the result. �
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Theorem 46. Let M be a contact sub-Riemannian manifold and q ∈ M .
Then there exists a sequence {qm}m∈N in M such that:

lim
m→∞

qm = q and lim
m→∞

ν(qm) =∞.

Proof. In Darboux’s coordinates in a neighbourhood U of q, for everym ∈ N

pick a point pm = (xm, zm) such that: 1) pm is a regular value of Ê and

2) |zm|
‖xm‖2 ≥ m. The existence of such pm is guaranteed by Sard’s Lemma.

Consider now δε(pm).
If pm is regular value for Ê, then ν̂(pm) is finite. Hence one can choose

a fixed Um in the proof of Thm. 45 containing all geodesics arriving at pm,
and thus there exists εm such that

#Ê−1(pm) = #Eε|
−1
Um

≤ ν(δε(pm)), ∀ε ≤ εm.

Notice that we can assume limm→+∞ εm = 0. Setting qm = δεm(pm) yields
the statement. �
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