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Local trace formulae for commuting

Hamiltonians in Toeplitz quantization

Roberto Paoletti

Let (M,J, ω) be a quantizable compact Kähler manifold, with
quantizing Hermitian line bundle (A, h), and associated Hardy
space H(X), where X is the unit circle bundle. Given a collec-
tion of r Poisson commuting quantizable Hamiltonian functions
fj on M , there is an induced Abelian unitary action on H(X),
generated by certain Toeplitz operators naturally induced by the
fj ’s. As a multi-dimensional analogue of the usual Weyl law and
trace formula, we consider the problem of describing the asymp-
totic clustering of the joint eigenvalues of these Toeplitz operators
along a given ray, and locally on M the asymptotic concentration
of the corresponding joint eigenfunctions. This problem naturally
leads to a ‘directional local trace formula’, involving scaling asymp-
totics in the neighborhood of certain special loci in M . Under na-
tural transversality assumption, we obtain asymptotic expansions
related to the local geometry of the Hamiltonian action and flow.
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1. Introduction

This paper is concerned with certain asymptotic expansions related to the
singularities of a distributional trace, which is associated to the joint quan-
tization of a family of pairwise commuting Hamiltonians in Toeplitz quanti-
zation. The emphasis will be on the local manifestation of these expansions,
where locality is referred to the phase space of the the classical system, and
to its relation to the underlying symplectic geometry and dynamics. Before
stating the relevant results, we need to describe at some length the general
picture in which we are working.

1.1. Quantization and distributional traces

1.1.1. Berezin-Toeplitz quantization in the Hardy space scheme.
Let (M,J, ω) be a d-dimensional compact Kähler manifold, endowed with
the symplectic volume form dVM =: ω∧d/d!

The symplectic manifold (M, 2ω) may be viewed as a model for a classi-
cal phase space. To any f ∈ C∞(M), the symplectic structure 2ω associates
a Hamiltonian vector field υf ∈ X(M), and the latter generates a Hamilto-
nian flow φM

s : M →M (s ∈ R).

Definition 1.1. The Hamiltonian f ∈ C∞(M) is compatible (with the
Kähler structure (ω, J) of M) if φM

τ is holomorphic for every τ ∈ R.

Albeit very special, compatible Hamiltonians are a very important and
natural object of study; for instance, they are closely related to holomorphic
Lie group actions on complex projective manifolds. 1

The following definition is standard in geometric quantization:

Definition 1.2. The Kähler manifold (M,J, ω) is quantizable if there exists
a positive Hermitian homolomorphic line bundle (A, h) on M , such that the
unique compatible covariant derivative ∇ on A has curvature Θ = −2i ω.

It is well-known that the spaces H0
(
M,A⊗k

)
of global holomorphic

sections of powers of A, endowed with their natural Hilbert space structures,
play the role of a ‘quantum counterpart’ of (M, 2ω) at Planck’s constant � =
1/k, k = 1, 2, . . .. Hardy space formalism provides a convenient repackaging
of this picture, in which sections can be viewed as functions, and all values
of � can be treated collectively, as we now recall.

1Compatible Hamiltonians are also called quantizable in the literature [CGR].
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Let A∨ be the dual line bundle to A, with the induced Hermitian metric,
and let X ⊆ A∨ be the unit circle bundle, with projection π : X →M and
connection 1-form α ∈ Ω1(X). Then (X,α) is a contact manifold, with vol-
ume form dVX =: (α/2π) ∧ π∗(dVM ). We shall denote by ∂θ the generator
of the structure S1-action on X.

The tangent bundle of X splits as an invariant direct sum

(1) TX = V ⊕H,

where V = ker(dπ), the vertical tangent bundle, is the rank-1 sub-bundle
generated by ∂θ, and H = ker(α) is the horizontal tangent bundle. The com-
plex structure J naturally lifts to a complex structure JH on the horizontal
tangent bundle of X, and JH is a CR structure on X.

For any real-valued f ∈ C∞(M), there is a natural lift of υf to a contact
vector field υ̃f ∈ X(X), given by

(2) υ̃f =: υ�f − f ∂θ,

where υ�f is the α-horizontal lift of υf
2. Thus υ̃f generates a contact flow

φX
s : X → X on (X,α). This flow preserves the splitting (1); in addition, it

preserves the CR structure JH precisely when f is compatible.
The following is standard terminology (see [BtSj], [BtG], [Z] and [BSZ]):

Definition 1.3. The Hardy space H(X) ⊆ L2(X) of X consists of the
boundary values of L2-summable holomorphic functions on the unit disc
bundle of A∨. The Szegö projector of X is the L2-orthogonal projector
Π : L2(X)→ H(X); its distributional kernel Π ∈ D′(X ×X) is called the
Szegö kernel of X.

As is well-known, there is a natural unitary isomorphism

H(X) ∼= H(M,A) =:
⊕
�≥0

H0
(
M,A⊗�

)
,

where
⊕

is the Hilbert space direct sum. The subspace of H(X) correspond-
ing to H0

(
M,A⊗�

)
is precisely the 	-th equivariant piece H(X)� ⊆ H(X)

for the structure S1-action [Z], [BSZ].
By pull-back, the flow φX

s yields a 1-parameter family of unitary auto-
morphisms U(s) = Uf (s) =:

(
φX−s

)∗
: L2(X)→ L2(X) (s ∈ R). Furthermore,

2Modifying f by an additive constant will leave υf unchanged, but alter υ̃f .
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f is compatible if and only if φX
s preserves the CR structure of X, and this is

equivalent toH(X) being U(s)-invariant for every s. Therefore, a compatible
f induces a 1-parameter family of unitary automorphisms

(3) U(s) = Uf (s) : H(X)→ H(X).

The family U(s) is a quantization of the Hamiltonian flow φM
s ; the quanti-

zation of the classical Hamiltonian f should be a self-adjoint operator acting
on H(X), and in Berezin-Toeplitz quantization this is given by a Toeplitz
operator. In the Hardy space picture, following [BtG], these are defined as
follows.

Definition 1.4. A k-th order Toeplitz operator on X is a composition
T =: Π ◦Q ◦Π, where Q is a k-th order pseudo-differential operator; T is
viewed as a possibly unbounded linear operator on H(X).

By the theory of [BtG], Toeplitz operators have a well-defined principal
symbol. Let

Σ =:
{
(x, rαx) : x ∈ X, r > 0

} ⊆ T ∗X \ (0).

be the closed symplectic cone sprayed by α.

Definition 1.5. If T is a k-th order Toeplitz operator on X, its principal
symbol sT : Σ→ C is the k-th order homogeneous function on Σ given by
the restriction of the principal symbol of Q (sT is independent of the choice
of Q in the definition of T ).

For instance, given f ∈ C∞(M) real valued, let Mf : L2(X)→ L2(X) be
the self-adjoint operator given by multiplication by f ◦ π. Then Tf =: Π ◦
Mf ◦Π is an invariant zeroth order Toeplitz operator, viewed as a
self-adjoint endomorphism of H(X). Its principal symbol is sTf

(x, r αx) =:
f
(
π(x)

)
. Composing Tf with the ‘number operator’ D = −i ∂θ turns it into

a first order operator T ′
f , with principal symbol sT ′

f
(x, r αx) = r f

(
π(x)

)
.

When f is compatible, there is another first-order Toeplitz operator asso-
ciated to it, that captures more explicitly the associated dynamics. Namely,
υ̃f is a skew-Hermitian operator on L2(X) and leaves H(X) invariant; there-
fore, the restriction

(4) Tf =: i υ̃f |H(X) : H(X)→ H(X)
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is a first-order (formally) self-adjoint Toeplitz operator; its principal symbol
is again sTf

(x, r αx) = r f
(
π(x)

)
. Then Tf generates U(·), i.e. U(s) = eisTf .

1.1.2. Distributional traces of Toeplitz operators. Geometric quan-
tization aims to relate the asymptotic properties of a quantized system to
the underlying classical dynamics and geometry. These properties may be of
either global or local nature on (M, 2ω). For instance, the spectral asymp-
totics of a Toeplitz operator yield information of a global nature, while the
asymptotic concentration of its eigenfunctions is a local result. Local prop-
erties can be turned into global ones by integration.

In particular, suppose that f > 0. Then Tf has eigenvalues on H(X)

λ1 ≤ λ2 ≤ · · · ,

repeated according to multiplicity, with λj ↑ +∞; there is a complete or-
thonormal system (ej) of H(X) formed by corresponding eigenvectors.

The distributional kernels of Tf and U(s) may be represented in terms
of these spectral data3:

(5) Tf (x, y) =
∑
j

λj ej(x) · ej(y), U(s, x, y) =
∑
j

eisλj ej(x) · ej(y),

where x, y ∈ X and s ∈ R.
The distributional trace

tr(U) =:
∑
j

eiλjs : χ = χ(s) →
∑
j

χ̂(−λj)

is then a well-defined distribution on the real line, and its singularities are
concentrated on the set of periods of the contact flow φX [BtG]. The trace
formula in loc. cit. describes the singularity at each period (for Toeplitz
operators related to general symplectic cones). In particular, by a Tauberian
argument the estimate of the ‘big’ singularity at the origin yields a Weyl
law for the counting function of the λj ’s

4.
In the present Berezin-Toeplitz context, local version of these results

(i.e., local Weyl laws and local trace formulae) where obtained in [P2], [P3],
[P5], [P6].

3We shall not distinguish notationally an operator from its distributional kernel.
4For pseudodifferential operators, corresponding results had appeared in [H1] and

[DG]
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1.1.3. Commuting Hamiltonians and Abelian contact actions. We
aim to generalize these results to a collection of Poisson commuting compa-
tible Hamiltonians f1, . . . , fr ∈ C∞(M), meaning that {fk, fl} = 0 for k, l =
1, . . . , r, where { , } is the usual Poisson Lie bracket of C∞(M). Let us write
υk for υfk , and similarly for υ̃k. Then [υk, υl] = 0 on M .

In addition, under the previous hypothesis, for every j, k = 1, . . . , r, we
have on X

[υ̃j , υ̃k] = [υj , υk]
� − {fj , fk} ∂θ = 0.

Therefore, we obtain commuting self-adjoint first order Toeplitz operators
Tk, given by the restriction to H(X) of i υ̃k, k = 1, . . . , r.

For instance, suppose that an 	-dimensional compact torus T acts on M
in a holomorphic and Hamiltonian manner, and let Φ : M → Lie(T)∨ be the
moment map to the Lie coalgebra of T. If vj ∈ Lie(T), j = 1, . . . , r, then
the functions fj =: 〈Φ,vj〉 are compatible and Poisson commute.

Let φM
j,s : M →M and φX

j,s : X → X be the Hamiltonian and contact
flows associated to each fj (s ∈ R). Thus

(6) φM
k,s ◦ φM

l,s′ = φM
l,s′ ◦ φM

k,s and φX
k,s ◦ φX

l,s′ = φX
l,s′ ◦ φX

k,s,

for all k, l = 1, . . . , r and s, s′ ∈ R.
Let us define φM : Rr ×M →M by

φM (s, ·) = φM
s =: φM

1,s1 ◦ · · ·φM
r,sr : M →M (s = (sj) ∈ R

r);

in view of (6), this is an holomorphic action. It is furthermore Hamiltonian,
with moment map

(7) Φ = (f1, . . . , fr)
t : M → (Rr)∨ ∼= R

r,

where the latter isomorphism is by means of the standard scalar product.
In the same manner, we obtain a contact action φX : Rr ×X → X, given

by

φX(s, ·) = φX
s =: φX

1,s1 ◦ · · ·φX
r,sr : X → X (s = (sj) ∈ R

r),

which lifts φM in a natural manner. Pulling-back, we have the unitary re-
presentations of R

Uj(s) =:
(
φX
j,−s

)∗
: H(X)→ H(X),
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which may be combined into a unitary representation U : Rr ×H(X)→
H(X), given by

(8) U(s) = U(s, ·) =: U1(s1) ◦ · · · ◦ Ur(sr) =
(
φX
−s

)∗
: H(X)→ H(X).

1.1.4. The joint spectrum and the associated trace. Each Tk is
S1-invariant, and therefore preserves the finite-dimensional S1-equivariant
pieces H(X)�, l = 0, 1, 2, . . .; the spectrum of Tk is the union over 	 ∈ N of
the finite spectra of its restrictions to the H(X)�’s.

Furthermore, there is a complete orthonormal system (ej) of H(X) com-
posed of joint eigenvectors of the Tk’s. That is, for each j = 1, 2, . . . and
k = 1, . . . , r we have

Tk(ej) = λkj ej ,

where Λj =: (λ1j , . . . , λrj)
t ∈ Rr is a joint eigenvalue of the Tk’s.

We see in particular that for every j we have

U(s)(ej) = U1(s1) ◦ · · · ◦ Ur(sr)(ej)(9)

= ei (λ1j s1+···+λrj sr) ej = ei 〈Λj ,s〉 ej .

In general, a given joint eigenvalue β ∈ Rr of the commuting system
T =: (Tk) needn’t have finite multiplicity: it may happen that β = Λj for
infinitely many j’s. Nonetheless, as in the case r = 1, infinite multiplicities
do not occur if 0 �∈ Φ(M) because in this case Λj →∞ (Lemma 2.1).

If 0 �∈ Φ(M), therefore, the Λj ’s drift to infinity and (just to fix ideas)
may be ordered lexicographically in a non-decreasing sequence Λ1 ≤ Λ2 ≤
· · · , where each joint eigenvalue appears repeated according to its multi-
plicity. For each s = (sj) ∈ Rr, we obtain a first order self-adjoint Toeplitz
operator of the form

〈T, s〉 =:

r∑
k=1

sk Tk,

with eigenvalues 〈Λj , s〉 =
∑r

k=1 λkjsk relative to the eigenvectors ej . Clearly,
〈T, s〉 is the restriction to H(X) of i υ̃Φs , where

(10) υ̃Φs = υ�Φs − Φs ∂θ,

and Φs =: 〈Φ, s〉 =∑r
k=1 sk fk, and its Schwartz kernel is

〈T, s〉(x, y) =
+∞∑
j=1

〈Λj , s〉 ej(x) · ej(y) (x, y ∈ X, s ∈ R
r).
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Similarly, we see from (9) that

(11) U(s, x, y) =

+∞∑
j=1

ei〈Λj ,s〉 ej(x) · ej(y) = ei〈T,s〉(x, y).

Then the distributional trace

(12) tr(U) =:
∑
j

ei〈Λj ,·〉

is a well-defined temperate distribution on Rr, whose singularities encapsu-
late asymptotic information on the distribution of the Λj ’s.

As in the 1-dimensional case, the singular support of tr(U) is contained
in the set of periods of φX ,

(13) Per(φX) =:
{
s ∈ R

r : ∃x ∈ X such that φX
s (x) = x

}
;

however, unlike the case r = 1, Per(φX) needn’t consist of isolated points
for r ≥ 2.

So let us fix a period s0 ∈ Per(φX) and a covector β ∈ (Rr)∨ of unit
length. As a measure of the singularity of tr(U) at s0 in the direction β, we
can consider the asymptotics for λ→∞ of the Fourier transform

F(χs0 · tr(U)
)
(λβ) =

〈
tr(U), χs0 e

−iλ 〈β,·〉
〉
,(14)

where χs0 is a bump function supported in a small neighborhood of s0.
We shall take χs0(·) =: χ(· − s0), where χ ∈ C∞0 (Rr) is a bump function
vanishing for ‖s‖ ≥ ε. We then obtain for (14):

F(χs0 · tr(U)
)
(λβ) =

∑
j

〈
ei〈Λj ,·〉, χs0 e

−iλ 〈β,·〉
〉

(15)

= e−i λ〈β,s0〉∑
j

ei 〈Λj ,s0〉 χ̂(λβ − Λj).

In particular, for s0 = 0 (15) reduces to

(16) F(χ · tr(U))(λβ) =
∑
j

χ̂(λβ − Λj),

which, for λ→ +∞, detects the rate at which the Λj ’s asymptotically ac-
cumulate in the neighborhood of the ray R+ β.
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On the other hand, (15) may be expressed as the genuine trace of the
smoothing operator

(17) Sχ(λβ, s0) =:

∫
Rr

χs0(s) e
−iλ·〈β,s〉 U(s) ds.

In other words, if Sχ(λβ, s0, ·, ·) ∈ C∞(X ×X) denotes the Schwartz kernel
of Sχ(λβ, s0), then

(18) Sχ(λβ, s0, x, y) =
∑
j

e−i 〈λβ−Λj ,s0〉 χ̂(λβ − Λj) ej(x) · ej(y)

and

(19) F(χs0 · tr(U)
)
(λβ) =

∫
X
Sχ(λβ, s0, x, x) dVX(x).

It is suggestive to view Sχ(λβ,0) as a ‘smoothed spectral projector’, corre-
sponding to a cluster of joint eigenvalues traveling to infinity along the ray
R+β.

Here we shall analyze the local asymptotics of Sχ(λβ, s0, ·, ·). Although
our methods apply with minor changes to the general case, to simplify the
exposition we shall restrict our treatment to the on-diagonal asymptotics
(which is the one relevant to trace applications). For instance, for s0 = 0 we
obtain

(20) Sχ(λβ,0, x, x) =
∑
j

χ̂(λβ − Λj)
∣∣ej(x)∣∣2,

which detects the asymptotic distribution of the ‘probability amplitudes’ of
the eigenfunctions corresponding to joint eigenvalues asymptotically cluster-
ing along the axis R+ β.

1.1.5. Moment map directional transversality. Before stating our
results, we need to introduce some further pieces of notation and definitions.

Notation 1.1. We shall view Rr as an Abelian Lie group, with Lie algebra
T0R

r ∼= Rr itself, and coalgebra (Rr)∨, which we shall identify with Rr by
means of the standard scalar product. Since it will be convenient to distin-
guish the various roles of Rr in our arguments, we shall write t =: T0R

r, and
write the moment map (7) as Φ = (fk) : M → t∨. We shall generally denote
elements of Rr, viewed as group elements, by s0, s, . . ., elements of t, viewed
as tangent vectors at the origin, by ξ, η, . . ., and the general element of t∨

as β.
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Definition 1.6. Any ξ ∈ t induces in a standard manner vector fields

ξM ∈ X(M) and ξX ∈ X(X)

on M and X, respectively. For any m ∈M and x ∈ X, we then have evalu-
ation maps valm : t→ TmM and valx : t→ TxX, given by

valm : ξ → ξM (m) and valx : ξ → ξX(x),

respectively.

Remark 1.1. Let (e1, . . . , er) be the canonical basis of t = Rr. In intrinsic
notation, Φ =

∑
j fj e

∗
j , where (e∗j ) is the dual basis. We have, in particular,

ejM = υj , Φ
ej = 〈Φ, ej〉 = fj , ejX = υ̃j . More generally, for any ξ ∈ t, ξM is

the Hamiltonian vector field associated to Φξ =: 〈Φ, ξ〉, and ξX its contact
lift according to (2):

ξX = ξ�M − Φξ ∂θ.

Definition 1.7. Suppose β ∈ t∨, β �= 0. We shall set Mβ =: Φ−1
(
R+ β

)
and Xβ =: π−1(Mβ).

Our local analysis requires that Φ : M → (Rr)∨ ∼= Rr be transverse to
R+ β. Thus Mβ is an invariant compact submanifold of M of codimension
r − 1.

Remark 1.2. When φM descends to an action of the torus Tr = Rr/Zr,
Mβ is also connected (§2.1 of [P4]).

Remark 1.3. This transversality assumption is equivalent to the contact
action φX : Rr ×X → X being locally free on Xβ . In turn, this is also equiv-
alent to the following condition: for any m ∈Mβ , the restriction of valm to
ker

(
Φ(m)

) ⊆ t is injective (§2.2 of [P4]; see §2.1.3 below).

Definition 1.8. Assume that Φ : M → t∨ is transverse to R+ β, for some
β ∈ t∨ of unit norm. Then, in view of Remark 1.3, for anym ∈Mβ the vector
subspace kerΦ(m) ⊆ t inherits two Euclidean structures

〈·, ·〉0, 〈·, ·〉1 : kerΦ(m)× kerΦ(m)→ R,

where the former is the restriction of the Euclidean product of t, and the
latter is the pull-back of the Euclidean product on TmM under valm. Let
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K = (vl) be any orthonormal basis of kerΦ(m) with respect to 〈·, ·〉0, and
let D(m) = D(m,K) be the representative matrix of 〈·, ·〉1 with respect to
K, i.e.

D(m)kl = 〈vk, vl〉1 = gm
(
vkM (m), vlM (m)

)
,

where g is the Riemannian metric on M . Then detD(m) > 0 is independent
of the choice of K, and we can define a C∞ function D : Mβ → R+ by setting

D(m) =:
√

detD(m).

1.1.6. Periods and singularities. Let us adopt the short-hand ms =:
φM−s(m) and xs =: φX−s(x) (m ∈M, x ∈ X, s ∈ Rr).

Definition 1.9. For any s ∈ Rr, let us denote by

M(s) =: Fix
(
φM
s

)
= {m ∈M : m = ms}

and

X(s) =: Fix
(
φX
s

)
= {x ∈ X : x = xs}

the fixed loci of φM
s : M →M and φX

s : X → X, respectively.

Remark 1.4. In general X(s) is the inverse image in X of the union of
some connected components of M(s) (but perhaps not all of them).

Definition 1.10. The period sets of φM and φX are, respectively,

Per
(
φM

)
=: {s ∈ R

r : M(s) �= ∅}

and

Per
(
φX
)
=: {s ∈ R

r : X(s) �= ∅} .
If s ∈ Per

(
φX
)
, we shall set

Xβ(s) =: Xβ ∩X(s).

Clearly, Per
(
φX
) ⊆ Per

(
φM

)
, and the inclusion is generally strict. We

then have (see §2.1.1 and §2.2.2 below):

Proposition 1.1. If x ∈ X, let us set mx =: π(x). Then the wave front set
of tr(U) ∈ D′ (Rr) is

WF
(
tr(U)

)
=
{(

s, rΦ(mx)
)
: s ∈ Per(φX), x ∈ X(s), r > 0

}
.
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Corollary 1.1. The singular support of tr(U) is

SS
(
tr(U)

)
= Per(φX).

1.1.7. Heisenberg local coordinates. Finally, our local scaling asymp-
totics are expressed in terms of a system γx of Heisenberg local coordinates
(HLCS) on X centered at x ∈ X. We shall refer to [SZ] for a precise defini-
tion and a complete discussion of Heisenberg local coordinates (HLC), and
simply list some of their salient properties.

A HLCS centered at x ∈ X is commonly represented in additive nota-
tion,

γx : (−π, π)×B2d(0, δ)→ X, (θ,v) → x+ (θ,v),

where B2d(0, δ) ⊆ R2d is the open ball of center the origin and radius δ. We
then have:

1) the standard S1-action is expressed by a translation in θ;

2) v ∈ B2d(0, δ) → mx + v =: π
(
x+ (θ,v)

)
(θ being irrelevant) is a sys-

tem of local coordinates on M centered at mx;

3) γx induces a unitary isomorphism TxX ∼= R⊕ R2d, compatible with
the decomposition of TxX = Vx ⊕Hx as an orthogonal direct sum of
the vertical and horizontal tangent space.

4) HLC can be locally and smoothly deformed with the base point x: for
any x ∈ X, there exist an open neighborhood x ∈ X ′ ⊆ X and a C∞
map

γ : X ′ × (−π, π)×B2d(0, δ)→ X,

such that γy(θ,v) =: γ(y, θ,v) is a system of HLC centered at y, for
each y ∈ X ′.

One often writes x+ v for x+ (0,v).
In a HLCS, the universal nature of near-diagonal scaling asymptotics of

certain kernels variously related to the Szegö kernel, such as the ones studied
in this paper, is particularly transparent. In particular, these asymptotics
generally involve a universal exponent, given by a quadratic function on
R2d × R2d, that we shall now define (following [BSZ] and [SZ]).
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Definition 1.11. Let us define ψ2 : R
2d × R2d → R by setting

ψ2(v,w) =: −i ω0(v,w)− 1

2
‖v −w‖2,

where ω0 is the standard symplectic structure, and ‖ · ‖ is the standard
Euclidean norm.

Notation 1.2. Given x ∈ Xβ(s0), and a choice of a HLC system centered
at x, we shall let A = Amx

be the corresponding unitary (i.e., symplectic and
orthogonal) matrix representing dxφ

X−s0 : Tmx
M → Tmx

M . Then, since the
action is holomorphic and Abelian,AJmx

= Jmx
A andAξM (mx) = ξM (mx)

for every ξ ∈ t. Therefore, we also have AJm
(
ξM (mx)

)
= Jm

(
ξM (mx)

)
.

1.2. The statements

Our main result on the singularities of tr(U) can be viewed euphemistically
as a ‘directional local trace formula’. Before we state it, let us collect here
all of our assumptions:

General Hypothesis: In the previous general setting, let us assume:

1) f1, . . . , fr : M → R are C∞, Poisson commuting, and compatible with
the Kähler structure (ω, J) (Definition 1.1);

2) If Φ =: (f1, . . . , fr)
t : M → t∨, then 0 �∈ Φ(M) ⊆ t∨;

3) s0 ∈ Per
(
φX
)
;

4) χ : Rr → R is C∞ and compactly supported in a ball of center the
origin and sufficiently small radius ε > 0 (although it’s unnecessary,
we may assume that χ, χ̂ ≥ 0);

5) χs0(·) =: χ(· − s0) in (17);

6) β ∈ t∨ has unit norm, and β ∈ R+ · Φ(mx) for some x ∈ X(s0) (recall
that mx = π(x)).

7) Φ is transverse to R+ · β.

Remark 1.5. As we have remarked, Condition 2 ensures that Λj →∞ in
Rr, so that every joint eigenvalue has finite multiplicity (Lemma 2.1).
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Theorem 1.1. Assume that the General Hypothesis holds, and choose

D > 0, δ ∈ (0, 1/2) .

Then, as λ→ +∞, uniformly for

(21) distX
(
y,Xβ(s0)

) ≥ Dλδ−1/2,

(Definition 1.10) we have

Sχ(λβ, s0, y, y) = O
(
λ−∞) .

Notice that the previous condition may be rewritten

distM

(
my, π

(
Xβ(s0)

)) ≥ Dλδ−1/2,

where my =: π(y), and that π
(
Xβ(s0)

)
is a union of connected components

of Mβ(s0).
Theorem 1.1 shows that the asymptotics of Sχ(λβ, s0, y, y) concentrate

in a shrinking neighborhood of Xβ(s0); this leads to considering appropriate
scaling asymptotic near Xβ(s0), as we shall now make precise.

It will be proved in §2.1.5 that Xβ(s0) is a submanifold of X, and its
normal space at any x ∈ Xβ(s0) splits naturally as an orthogonal direct sum

(22) Nx

(
Xβ(s0)

) ∼= ker
(
dmx

φM
s0 −idTmxM

)⊥⊕⊥[Jmx
◦ valmx

(
kerΦ(mx)

)]
;

here Tmx
M and its subspaces are viewed as vector subspaces of TxX, by

identifying Tmx
M with the horizontal tangent space Hx ⊂ TxX.

In addition, as recalled in §1.1.7, in the neighborhood of any x0 ∈ Xβ(s0)
we can find a smoothly varying family of HLCS’s. Thus, locally near x0, any
z ∈ X within a distance Dλδ−1/2 from Xβ(s0) can be written z = x+ v,
for unique x ∈ Xβ(s0) and v ∈ Nx

(
Xβ(s0)

)
, with ‖v‖ ≤ D′ λδ−1/2 for some

D′ > 0 (we may take D′ = D + ε′ for any ε′ > 0). In turn, in view of the
previous direct sum decomposition we can also write

(23) v = w + n

where

(24) w ∈ ker
(
dmx

φM
s − idTmxM

)⊥
and n = Jmx

(
ξM (mx)

)
with ξ ∈ kerΦ(m); here both w and ξ are also uniquely determined, and
both have norms O

(
λδ−1/2

)
.
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In order to obtain the desired scaling asymptotics in a shrinking neigh-
borhood of Xβ(s0), we shall replace the local parametrization y = x+ v by
its rescaled version

yλ =: x+ v/
√
λ,

where now ‖v‖ = O
(
λδ
)
.

Theorem 1.2. Assume that the General Hypothesis holds, and choose ar-
bitrary constants

D > 0, δ ∈ (0, 1/6).

Then, uniformly in x ∈ Xβ(s0) and v = w + n ∈ Nx

(
Xβ(s0)

)
as in (23)

and (24) with ‖v‖ ≤ Dλδ, the following asymptotic expansion holds:

Sχ(λβ, s0, yλ, yλ) ∼ 2
r+1

2 π

‖Φ(mx)‖ ·
(

λ

π ‖Φ(mx)‖
)d+ 1−r

2

(25)

× e−i λ 〈β,s0〉

D(m)
e[ψ2(Aw,w)−2 ‖n‖2]/‖Φ(mx)‖

×
∑
�≥0

λ−�/2R�(x;n,w),

where ψ2 is as in Definition 1.11, A is defined in Notation 1.2 in §1.1.7,
and R�(x; ·, ·) is a polynomial of degree ≤ 3	, and parity (−1)�. We have
R0 = χ(0).

Notice that, with w and n as in (24), we have for some constant a > 0

� (ψ2(Aw,w)− 2 ‖n‖2) = −1

2
‖Aw −w‖2 − 2 ‖n‖2

≤ −a (‖w‖2 + ‖n‖2) ;
therefore (25) describes, in rescaled coordinates, an exponential decrease of
Sχ(λβ, s0, yλ, yλ) along normal directions to Xβ(s0).

Inserting the local asymptotics in Theorem 1.2 in (19) we obtain a global
asymptotic expansion for F(χs0 · tr(U)

)
(λβ). Before stating this, we need

to introduce a further Poincaré type invariant. Given m ∈M(s0), let

κm,s0 : Nm

(
M(s0)

)→ Nm

(
M(s0)

)
be the restriction of idTmM − dmφM−s0 . Then κm,s0 is an automorphism, and
its determinant

(26) k(m, s0) =: det
(
κm,s0

)
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is locally constant on M(s0).

Definition 1.12. Let Mβ(s0)j , 1 ≤ j ≤ b, where b = b(β, s0), denote the
connected components of π

(
Xβ(s0)

)
; these are some of the connected compo-

nents of Mβ(s0), but perhaps not all of them. We shall denote by cj(s0) ∈ C

the constant value of k(m, s0) on Mβ(s0)j . Also, let cj (respectively, fj =:
d− cj) be the complex codimension (respectively, complex dimension) of of
M(s0) in M along Mβ(s0)j , that is, the complex codimension (respectively,
dimension) in M of the unique connected component of M(s0) containing
Mβ(s0)j .

Corollary 1.2. Under the same assumptions as in Theorem 1.2, and with
the notation (14), we have

F(χs0 · tr(U)
)
(λβ) =

b∑
j=1

Fj

(
χs0 · tr(U)

)
(λβ),

where each summand admits an asymptotic expansion

Fj

(
χs0 · tr(U)

)
(λβ) ∼ 2π

cj(s0)
e−i λ 〈β,s0〉

(
λ

π

)fj+1−r

·
∑
k≥0

λ−k Ujk(s0, β),

with the leading order term given by

Uj0(s0, β) =: χ(0) ·
∫
Mβ(s0)j

1

‖Φ(m)‖fj+2−r

1

D(m)
dVMβ(s0)j (m).

Here dVMβ(s0)j is the Riemannian volume density on Mβ(s0)j .

Remark 1.6. For the case r = 1, see [P3].

Acknowledgments. I am endebted to the referee for suggesting some im-
provements in presentation.

2. Preliminaries

2.1. The moment map

In the following, let φM : Rr ×M →M be an Hamiltonian and holomorphic
action, with moment map Φ = (f1, . . . , fr)

t : M → Rr, such that 0 �∈ Φ(M).
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2.1.1. Λj → ∞ and tr(U) as a temperate distribution. Our first
remark is that under the given assumption the joint eigenvalues Λj drift to
infinity in Rr as j → +∞:

Lemma 2.1. Given that 0 �∈ Φ(M), we have Λj →∞ as j → +∞.

Proof of Lemma 2.1. The self-adjoint first order Toeplitz operator Tk has
eigenvalue λkj ∈ R on ej . Therefore, the second order Toeplitz operator T2

k ≥
0 has eigenvalue λ2

jk on ej ; its principal symbol is

σT2
k

(
(x, rαx)

)
= σTk

(
(x, rαx)

)2
= r2 fk(mx)

2.

Let us define

(27) ‖T‖ =:

(
r∑

k=1

T2
k

)1/2

.

Then ‖T‖ is a first order Toeplitz operator, with eigenvalue ‖Λj‖ on ej ;
by the theory of [BtG] and the corresponding results for pseudodifferential
operators [Se], [Sh], its principal symbol is

σ‖T‖(x, rαx) = r

(
r∑

k=1

f(mx)
2

)1/2

= r ‖Φ(mx)‖ > 0.

It follows that ‖Λj‖ → +∞ as j → +∞ [BtG]. �

Corollary 2.1. Given that 0 �∈ Φ(M), every joint eigenvalue has finite
multiplicity.

Thus there exists j0 such that Λj �= 0 for j ≥ j0. We can strengthen the
previous statement as follows:

Lemma 2.2. If a > 0 is sufficiently large, then∑
j≥j0

‖Λj‖−a < +∞.

Proof of Lemma 2.2. Let ‖T‖ be as in (27). We can assume that ‖T‖ is the
restriction to H(X) of a first-order self-adjoint pseudodifferential operator
Q, with everywhere positive principal symbol, and commuting with Π [BtG].
If η1 ≤ η2 ≤ · · · is the sequence of the eigenvalues of Q, repeated according
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to multiplicity, we then have ηl > 0 for l ≥ l1 for some appropriate l1 � 0,
and ∑

l≥l1

η−a
l < +∞

for every a� 0 (Theorem 12.2 of [GrSj]). Since the ‖Λj‖’s are the eigen-
values of the restriction of Q to H(X), they form a subsequence of the ηl’s,
and the statement follows. �

Corollary 2.2.
∑

j δ−Λj
and

tr(U) =
∑
j

ei〈Λj ,·〉 = F
⎛⎝∑

j

δ−Λj

⎞⎠
are temperate distribution on Rr.

2.1.2. An intrinsic vector field. For every m ∈M there is a unique
Ξ(m) ∈ t such that Ξ(m) ∈ kerΦ(m)⊥, ‖Ξ(m)‖ = 1 (with respect to the
standard Euclidean product), and

〈Φ(m),Ξ(m)〉 = ‖Φ(m)‖.

Equivalently, if η(m) ∈ t corresponds to Φ(m) ∈ t∨ under the isomorphism
t ∼= t∨ induced by the standard Euclidean product, then

Ξ(m) = η(m)/‖η(m)‖ = η(m)/‖Φ(m)‖.

We thus obtain a C∞ map m ∈M → Ξ(m) ∈ t, taking value in the unit
sphere, and a vector field V ∈ X(M) on M , intrinsically associated to Φ,
given by

V (m) =: Ξ(m)M (m) (m ∈M),

in the notation of Definition 1.6.
Furthermore, given ν ∈ t and m ∈M we have a unique orthogonal de-

composition

(28) ν = ν ′(m) + a(ν,m) Ξ(m),

where ν ′(m) ∈ kerΦ(m), and a(ν,m) = 〈ν,Ξ(m)〉t.
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2.1.3. Transversality . Given that Φ(m) �= 0 for every m ∈M , we ob-
tain a C∞ map to the unit sphere:

Φu =:
1

‖Φ‖ Φ : M → Sr−1 ⊆ t∨ ∼= R
r.

If β ∈ Sr−1 ⊆ t∨ (the unit sphere), we have set Mβ =: Φ−1(R+ β) e
Xβ =: π−1(Mβ). Clearly, Mβ = Φ−1

u (β).

Lemma 2.3. Consider β ∈ t∨ of unit norm. Under the previous assump-
tions, the following conditions are equivalent:

1) Φ is transverse to R+ β;

2) φX is locally free on Xβ, that is, the stabilizer subgroup in Rr of any
x ∈ Xβ is discrete;

3) for any x ∈ Xβ, valx : t→ TxX, ξ → ξX(x), is injective;

4) for any m ∈Mβ, the restriction of the evaluation, valm : kerΦ(m)→
TmM , is injective;

5) β is a regular value of Φu.

The first four points follow from the discussion in §2.2 of [P4], and the
latter is straightforward.

Corollary 2.3. Given that Φ is transverse to R+ · β, there is a φX-invariant
tubular neighborhood X ′ ⊆ X of Xβ on which φX is locally free.

Corollary 2.4. Given that M is compact and that 0 �∈ Φ(M), if β ∈ t∨ has
unit norm and Φ is transverse to R+ · β, then there exists a constant C > 0
such that for all m ∈M we have

distt∨
(
R+ · Φ(m), β

) ≥ C distM (m,Mβ).

Corollary 2.5. Under the assumptions of Corollary 2.4, there exists a con-
stant C > 0 such that for all m ∈M and t > 0 we have∥∥tΦ(m)− β

∥∥ ≥ C distM (m,Mβ)

where ‖ · ‖ is the standard Euclidean norm on t∨ ∼= Rr.
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2.1.4. Transversality and locally isolated periods. We are interested
in the diagonal asymptotics of (18), and as we shall see these are non trivial
only in the vicinity of Xβ(s0).

In general, periods of φX needn’t be isolated; nonetheless, under the
previous transversality assumptions, s0 is indeed an isolated period in a
neighborhood of Xβ(s0). Let us formalize this point by giving first a defini-
tion.

Definition 2.1. Suppose μ : G× P → P is a C∞ action of a Lie group G on
a manifold P , and let P ′ ⊆ P be a G-invariant open subset. For any g ∈ G,
let P (g) ⊆ P be the fixed locus of μg : P → P . We shall say that g0 ∈ G
is an isolated period of μ on P ′ if P (g0) ∩ P ′ �= ∅ and there exists an open
neighborhood G′ ⊆ G of g0 such that P (g) ∩ P ′ = ∅ for all g ∈ G′ \ {g0}. If
p ∈ P (g0), we shall say that g0 is a locally isolated period at p if it is an
isolated period on P ′ for some open μ-invariant neighborhood P ′ of p.

Proposition 2.1. Let G be an Abelian Lie group, (P,ϕ) a Riemannian
manifold, and μ : G× P → P a C∞ action of G on P as a group of Rie-
mannian isometries. Suppose that p0 ∈ P and that μ is locally free at p0
(i.e., ξP (p0) �= 0 ∈ Tp0

P , for all ξ ∈ g with ξ �= 0, where g is the Lie algebra
of G). Consider g0 ∈ G with μg0(p0) = p0; then g0 is a locally isolated period
of μ at p0.

The statement is quite straightforward when the action is proper. In
fact, the hypothesis implies that the stabilizer subgroup St(p0) ⊆ G of p0 is
discrete, whence there exists an open neighborhood G′ ⊆ G of g0, such that
G′ ∩ St(p0) = {g0}. On the other hand, since the action is proper there exists
an invariant open neighborhood P ′ ⊆ P such that St(p) ⊆ St(p0) for every
p′ ∈ P ′ (see e.g. Appendix B of [GKK]), and this implies the statement. The
claim follows, therefore, whenever φX descends to an action of the compact
torus Tr = Rr/Zr. Since we do not wish to impose this condition, we give a
general proof.

Proof of Proposition 2.1. Let dP and dG denote the dimensions of P and
G, respectively. Let us fix some Euclidean scalar product on g, and let
Bg(0, δ) ⊆ g be the ball centered at the origin and of radius δ > 0. To abridge
notation, let us set g · p =: μ(g, p).

Then for sufficiently small δ the map

γ : Bg(0, δ) −→ P, ξ → eξ · p0
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is a diffeomorphism onto its image; here ξ → eξ is of course the exponential
map on G.

Thus Q(δ) =: γ
(
Bg(0, δ)

) ⊆ P is a smooth dG-dimensional submanifold
passing through p0. Let N ⊆ TP |Q be Riemannian normal bundle to Q
and let N(ε) ⊆ N be the ε-neighborhood of the zero section for some ε > 0
sufficiently small. Also, let N(δ, ε) be the pull-back of N(ε) to Bg(0, δ). Thus,
perhaps after passing to smaller values of δ and ε if necessary, the normal
exponential map provides a smooth map

γ̃ : N(δ, ε) −→ P, (ξ,n) → expP
(
eξ · p0,n

)
,

where expP is the exponential map of P , defined on some open neighborhood
of the zero section in TP .

Then, again perhaps after passing to smaller ε, δ if necessary, γ̃ is a dif-
feomorphism onto its image R(δ, ε), which is an open tubular neighborhood
of Q(δ).

Now let R′ = R(δ′, ε′) be similarly constructed, but with suitably smaller
δ′, ε′>0. Consider r=expP

(
eξ · p0,n

)∈R′, and g=g0 e
η with η∈Bg(0, δ

′),
and suppose r ∈ P (g). Then, because G is Abelian and acts as a group of
Riemannian isometries we have

g · r = g0 e
η · expP

(
eξ · p0,n

)
= expP

(
eξ+η · p0, deξ·p0

μg0 eη(n)
)

= r = expP

(
eξ · p0,n

)
.

This forces however eξ+η · p0 = eξ · p0, whence η = 0 and so g = g0. Thus g0
is an isolated period of μ on R′.

Now let R′′ =: G ·R′ be the μ-saturation of R′. Since G is Abelian,
if r′′ ∈ R′′ and r′′ = g · r′ for some r′ ∈ R′, then r′ and r′′ have the same
stabilizer. Therefore, R′′ is an invariant open neighborhood of p0, and g0 is
an isolated period of μ on R′′. �

Corollary 2.6. Under the assumptions of Corollary 2.3, there is a φX-
invariant neighborhood X ′ of Xβ(s0) on which s0 is an isolated period.

Proof of Corollary 2.6. By Corollary 2.3 and Proposition 2.1, every x ∈
Xβ(s0) has an invariant neighborhood X ′

x on which s0 is an isolated pe-
riod. By compactness of Xβ(s0), we may find finitely many such neighbor-
hoods, say X ′

1, . . . , X
′
k, whose union X ′ contains Xβ(s0), and such that s0
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is the only period of φX on X ′
j contained in BRr(s0, δj) for some δj > 0.

Then X ′ is invariant and s0 is the only period on X ′ in BRr(s0, δ), where
δ = min(δj). �

2.1.5. Transversality and fixed loci. Since φM
s : M →M is holomor-

phic and symplectic, M(s) is a (compact) complex submanifold of M (Def-
inition 1.9), and its tangent space at any m ∈M(s) is

(29) TmM(s) = ker
(
dmφM

s − idTmM

)
,

a complex subspace of TmM .
In particular, since Rr is an Abelian Lie group we have for any ξ ∈ t and

m ∈M(s) that

(30) ξM (m), Jm
(
ξM (m)

) ∈ ker
(
dmφM

s − idTmM

)
.

On the other hand, if β ∈ t∨, β �= 0 and Φ is transverse to R+ · β, then
Mβ is a (real) compact submanifold of M , of codimension r − 1; for any
m ∈Mβ , by the discussion in [P4] the normal bundle Nm(Mβ) to Mβ at m
is given by

(31) Nm(Mβ) = Jm ◦ valm
(
kerΦ(m)

) ⊆ TmM.

Since Xβ is a union of connected components of π−1(Mβ), its normal
space Nx(Xβ) at any x ∈ Xβ is the horizontal lift of the normal space
Nmx

(Mβ), where mx = π(x). In view of Remark 1.1, this is

(32) Nx(Xβ) = Nmx
(Mβ)

� = valx
(
kerΦ(mx)

)
.

Lemma 2.4. Suppose as above that Φ : M → t is transverse to R+ · β.
Then for any s ∈ Rr the following holds:

1) M(s) and Mβ are transverse submanifolds of M ;

2) for any m ∈Mβ(s) =: M(s) ∩Mβ, the normal bundle to Mβ(s) at m
is the orthogonal direct sum

Nm

(
Mβ(s)

)
= ker

(
dmφM

s − idTmM

)⊥ ⊕⊥ [Jm ◦ valm( kerΦ(m)
)]
.

Proof of Lemma 2.4. We need to show that TmM = TmM(s) + TmMβ for
any m ∈M(s) ∩Mβ , and this is equivalent to NmM(s) ∩NmMβ = (0). In
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view of (29), (30) and (31), this is

NmM(s) ∩NmMβ = ker
(
dmφM

s − idTmM

)⊥ ∩ Jm ◦ valm
(
kerΦ(m)

)
⊆ ker

(
dmφM

s − idTmM

)⊥ ∩ ker
(
dmφM

s − idTmM

)
= (0).

Therefore, M(s, β) is a submanifold of M , and at any m ∈M(s, β)
we have TmM(s, β) = TmM(s) ∩ TmM(β). Thus the normal bundle is
NmM(s, β) = NmM(s) +NmM(β), and the inclusion above also shows that
this is an orthogonal direct sum. �

2.2. U and the singularities of its trace

2.2.1. U as a complex FIO. In the present compatible setting, the ope-
rator U(s) in (9) has a simple expression in terms of φX

s and the Szegö pro-
jector Π. Namely, let (ej) be a complete orthonormal system of H(X), so
that

Π(x, y) =
∑
j

ej(x) · ej(y).

Then the distributional kernel (11) of U(s) =
(
φX−s

)∗ ◦Π may also be ex-
pressed as

(33) U(s, x, y) =
∑
j

ej
(
φX
−s(x)

) · ej(y) = Π
(
φX
−s(x), y

)
.

Therefore, since the singular support of Π is the diagonal [F], the singular
support of U(s) is the graph of φX−s.

In addition, by [BtSj] near the diagonal we have a microlocal description
of Π as an FIO with complex phase, of the form

(34) Π(x, y) ∼
∫ +∞

0
eitψ(x,y) s(t, x, y) dt,

where �ψ ≥ 0, and s(t, x, y) ∼∑
j≥0 t

d−j sj(x, y) (see also the discussions in

[Z], [SZ]). Thus, near the graph of φX−s we have with xs =: φX−s(x)

(35) U(s, x, y) ∼
∫ +∞

0
eitψ(xs,y) s(t, xs, y) dt.
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Remark 2.1. With ψ as in (34), one has d(x,x)ψ = (αx,−αx) for any x ∈
X, and more generally for any ϑ ∈ R

d(eiϑ x,x)ψ =
(
eiϑ αeiϑ x, −eiϑ αx

)
.

Remark 2.2. As shown in §3 of [SZ], in a system of HLC centered at
x ∈ X, the phase t ψ satisfies the following expansion:

t ψ
(
x+ (θ,v), x+w

)
= it

[
1− eiθ

]
− it ψ2(v,w) eiθ + tR3(v,w) eiθ,

where ψ2 is as in Definition 1.11, while R3 : R
2d × R2d → C is C∞ and van-

ishes to third order at the origin.

The description of Π as an FIO in (34), in view of Corollary 1.3 of [BtSj]
and Remark 2.1 above, implies, as is well-known, that the wave front of Π
is

WF(Π) =
{(

(x, x), r (αx,−αx)
)
: r > 0, x ∈ X

} ⊆ T ∗(X ×X).

It follows that the wave front of U(s) is

(36) WF
(
U(s)

)
=
{(

(xs, x), r (αxs
,−αx)

)
: r > 0, x ∈ X

} ⊆ T ∗(X ×X).

We can view U as an operator C∞ (Rr ×X)→ C∞(X), with distribu-
tional kernel U ∈ D(Rr ×X ×X ×X); given (35) and Remark 2.1, its wave
front is

WF(U) =
{(

(s, x, xs), r
(
Φ(mx), αx, −αxs

, )
)

:(37)

s ∈ R
r, x ∈ X, r > 0

}
,

where mx =: π(x); we have used that α is φX -invariant.

2.2.2. Functorial description of tr(U). Since we have chosen a volume
form on X, there are naturally induced volume forms (whence densities and
half-densities) on Rr ×X and Rr ×X ×X; in terms of the latter, we may
extend the pull-back operation of functions under C∞ maps involving these
manifolds to C∞ densities. Similarly, the push-forward operation, which by
duality is naturally defined on densities under proper C∞ maps, extends
with the given choices to C∞ functions. In addition, these functorial oper-
ations may be extended continuously to generalized densities, as far as the
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appropriate conditions involving wave fronts are met ([H2], [D]). The iden-
tification between functions, densities and half-densities will be left implicit
in the following.

Let us then consider the diagonal map Δ : R×X→R×X×X, (s, x) →
(s, x, x). In view of (37) and the condition Φ(m) �= 0 ∀m ∈M , the pull-back

Δ∗(U) =
+∞∑
j=1

ei〈Λj ,s〉 ej(x) · ej(x) ∈ D′ (Rr ×X)

is well-defined; by (37) and the functorial properties of wave fronts (see [H2]
and [D]), it has wave front

WF (Δ∗(U)) =
{(

(s, x), r
(
Φ(mx), 0)

)
:(38)

s ∈ R
r, x ∈ Fix

(
φX
s

)
, r > 0

}
.

where Fix
(
φX
s

)
= {x ∈ X : x = xs}.

Moreover, since the projection p : Rr ×X → X is proper, the push-
forward p∗ (Δ∗(U)) ∈ D′ (Rr) is also well-defined, and by orthonormality of
the ej ’s we have

p∗ (Δ∗(U)) =
+∞∑
j=1

ei〈Λj ,s〉 = tr(U).

In addition, given (38) its wave front is

WF
(
tr(U)

)
=
{(

s, rΦ(mx)
)

: s ∈ R
r, x ∈ Fix

(
φX
s

)
, r > 0

}
(39)

=
⋃
s∈Rr

{s} ×WF
(
tr(U)

)
s
,

where for each s ∈ Rr we have set

WF
(
tr(U)

)
s
=:

⋃
x∈Fix(φX

s )

R+ · Φ(mx) =
⋃

x∈Fix(φX
s )

R+ · Φu(mx).

This proves Proposition 1.1 and Corollary 1.1.
We are interested in estimating the asymptotics of (15). In view of the

above we have:
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Corollary 2.7. Under the previous assumptions, suppose

(s0, β0) ∈ T ∗ (Rr) \WF
(
tr(U)

)
, ‖β0‖ = 1.

Then there exists ε > 0 such that for every χ ∈ C∞0
(
Br(0, ε)

)
we have〈

tr(U), χs0 e
−iλ 〈β,·〉

〉
= O

(
λ−∞)

uniformly in β ∈ Rr with ‖β‖ = 1, ‖β − β0‖ < ε.

Here Br(0, ε) ⊆ Rr is the open ball of center the origin and radius ε,
while χs0(s) = χ(s− s0).

2.2.3. The smoothing operator. As in the case r = 1, the operators
U(s) may be averaged with a weight of rapid decrease to obtain a smoothing
operator.

Lemma 2.5. For any χ ∈ S (Rr), the operator

Sχ =:

∫
Rr

χ(s)U(s) ds

is smoothing, and its kernel Sχ(·, ·) ∈ C∞(X ×X) is given by

(40) Sχ(x, y) =
∑
j

χ̂(−Λj) ej(x) · ej(y).

The following is an adaptation of an argument in §12 of [GrSj].

Proof of Lemma 2.5. Let Q be as in the proof of Lemma 2.2. Since the
ej ’s are orthonormal eigenfunctions of Q, with eigenvalues ‖Λj‖, a standard
argument based on the Sobolev inequalities shows that for some fixed j0 and
all j ≥ j0 we have

‖ej‖Ck ≤ Ck ‖Λj‖k+2d+1.

Since χ̂ ∈ S (Rr), for any N > 0 there exists CN > 0 such that for all j ≥ j0
we have

|χ̂(−Λj)| ≤ C ′
N ‖Λj‖−N .

Thus Lemma 2.2 implies that (40) converges in C∞(X ×X). Given this, that
(40) is indeed the distributional kernel of Sχ follows by first applying it to
finite linear combinations of the ej ’s, and then using a density argument. �
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3. Proof of Theorem 1.1

3.1. Concentration near Xβ(s0)

3.1.1. Concentration near X(s0). We shall first prove that
Sχ(λβ, s0, y, y) = O (λ−∞), unless y belongs to a small tubular neighbor-
hood of X(s0); this will allow us to represent Π as an FIO with complex
phase, without changing the asymptotics.

We have by (17) and (33):

(41) Sχ(λβ, s0, y, y) =

∫
Rr

χs0(s) e
−iλ 〈β,s〉Π(ys, y) ds.

where ys = φX−s(y).
On the support of χs0 , ‖s− s0‖ < ε. Hence for some C1 > 0 we have

uniformly in y ∈ X:

(42) dist (ys0 , ys) ≤ C1 ε.

On the other hand, there exist constants C3 ≥ C2 > 0 such that for every
ε > 0 one has

(43) C3 distX
(
y,X(s0)

) ≥ dist (ys0 , y) ≥ C2 distX
(
y,X(s0)

)
.

Indeed, since φX is an action by isometries, at any x ∈ X(s0) we have

Tx

(
X(s0)

)
= ker

(
dxφ

X
s0 − idTxX

)
;

hence, there exist constants C ′
3 ≥ C ′

2 > 0 such that

C ′
3 ‖n‖ ≥

∥∥dxφX
s0(n)− n

∥∥ ≥ C ′
2 ‖n‖,

whenever n ∈ Tx

(
X(s0)

)⊥ ⊆ TxX. Then (43) follows by writing, in a tubu-
lar neighborhood of X(s0), y = x+ n in a smoothly varying HLC system
centered at x, and letting, say, C3 = 2C ′

2, C2 = C ′
2/2.

Let then be Z1 ⊆ X be the locus where distX
(
y,X(s0)

) ≥ 2 (C1/C2) ε.
If y ∈ Z1, then

dist (ys, y) ≥ dist (ys0 , y)− dist (ys0 , ys)(44)

≥ 2C1 ε− C1ε ≥ C1 ε.
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As the singular support of Π(·, ·) ∈ D′(X ×X) is the diagonal in X ×X,
it follows from (44) that the function

γ : (s, y) ∈ R
r × Z1 → χs0(s)Π (ys, y)

is well-defined and C∞, and therefore its Fourier transform in s,

γ̂y(β
′) =:

∫
Rr

χs0(s) e
−i〈β′,s〉Π

(
φX
−s(y), y

)
ds

decreases rapidly for β′ →∞, uniformly in y ∈ Z1.
Setting β′ = λβ, with β of unit norm, we have proved:

Lemma 3.1. Sχ(λβ, s0, y, y) = O (λ−∞) uniformly in y ∈ Z1.

3.1.2. Sχ as an oscillatory integral. By virtue of Lemma 3.1, in the
following we can assume

distX
(
y,X(s0)

) ≤ 2 (C1/C2) ε,

whence for χs0(s) �= 0 we have

distX (ys, y) ≤ distX (ys, ys0) + distX (ys0 , y)

≤ C1 ε+ 2 (C1C3/C2) ε = D0 ε,

for some constant D0 > 0. In this range, as in (34) and (35) we can represent
Π as an FIO (any smoothing remainder term contributing negligibly to the
asymptotics, as above).

Thus we can rewrite (41) as

Sχ(λβ, s0, y, y) ∼
∫ +∞

0

∫
Rr

χs0(s) e
i[t ψ(ys,y)−λ 〈β,s〉] s(t, ys, y) ds dt(45)

= λ

∫ +∞

0

∫
Rr

χs0(s) e
iλΨβ(y,t,s) s(λ t, ys, y) ds dt,

where we have performed the change of variables t → λ t, and set

(46) Ψβ(y, t, s) =: t ψ(ys, x)− 〈β, s〉.

ForD�0, let �=�D : R→R≥0 be C∞, identically equal to 1 on [1/D,D],
and supported in [1/(2D), 2D].
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Lemma 3.2. If 1� ε > 0 and D � 0, only a rapidly decreasing contri-
bution to the asymptotics of (45) is lost, if the integrand is multiplied by
�(t).

In particular, as far as the asymptotics are concerned, we may assume
without loss that integration in t is compactly supported in [1/(2D), 2D].

Proof of Lemma 3.2. Let A =: max{‖Φ(m)‖ : m ∈M}, a =: min{‖Φ(m)‖ :
m ∈M}. Then A ≥ a > 0.

Suppose first that y ∈ X(s0). Since d(y,y)ψ = (αy,−αy) [BtSj], in view
of (10) we have with m = my

∂sψ(ys, y)|s0 = Φ(my),

whence A ≥ ∥∥∂sψ(ys, y)|s0∥∥ ≥ a.
Therefore, by continuity if ε > 0 is sufficiently small and ‖s′ − s0‖ < ε,

distX
(
y,X(s0)

) ≤ 2 (C1/C2) ε as we are assuming then

2A ≥ ‖∂sψ(ys, y)|s′‖ ≥ a/2.

Consequently, in the same range we have

∥∥∂sΨβ |s′
∥∥ = ‖tΦ(my)− β‖ ≥ min

{
1

2
ta− 1, 1− 2 tA

}
.

Thus, if say t ≥ 6/a then

∥∥∂sΨβ |s′
∥∥ ≥ 1

2

(
t

2
+

3

a

)
a− 1 =

t

4
+

1

2
.

Similarly, if 0 < t < 1/(3A), then

∥∥∂sΨβ |s′
∥∥ ≥ 1− 2tA ≥ 1/3.

In either case, iterated integration by parts in s (which is legitimate in
view of the cut-off χs0), shows that the corresponding contribution to the
asymptotics is O (λ−∞). The details are left to the reader. �
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We have therefore

Sχ(λβ,s0, y, y)(47)

∼ λ

∫ 2D

1/(2D)

∫
Rr

eiλΨβ(y,t,s) χs0(s) �(t) s(λ t, ys, y) ds dt,

where now integration is compactly supported in (t, s).

3.1.3. Localization near Xβ(s0). We have already shown that (41) is
rapidly decreasing outside a tubular neighborhood of X(s0) of radius D1 ε.
The following Lemma will show that in fact there is no loss in further restrict-
ing our analysis to an ‘oblate’ tubular neighborhood Zε(s0, β) of Xβ(s0).
As we shall see later, this result is instrumental to proving a considerably
sharper asymptotic confinement property.

Lemma 3.3. If D2 � 0, (41) is rapidly decreasing uniformly for

distX
(
y,X(s0)

) ≤ D1 ε and distX
(
y,Xβ

) ≥ D2 ε.

Proof of Lemma 3.3. Suppose first that y ∈ X(s0) and distX
(
y,Xβ

) ≥ D2 ε
for some D2 > 0. Then∥∥∂sΨβ(y, t, s0)

∥∥ =
∥∥tΦ(my)− β

∥∥ ≥ C D2 ε,

where C > 0 is as in Corollary 2.5.
Suppose now that ‖s′ − s0‖ < ε (as will be the case for χs0(s

′) �= 0), and
distX

(
y,X(s0)

) ≤ D1 ε. Pick x ∈ X(s0) with distX(y, x) ≤ D1 ε. Then, for
some appropriate A1 > 0 we have∥∥∂sΨβ(y, t, s

′)
∥∥ ≥ ∥∥∂sΨβ(x, t, s0, )

∥∥−A1

(‖s′ − s0‖+ distX(y, x)
)

≥ [
C D2 −A1

(
1 +D1

)]
ε.

Again, the claim follows by iterated integration by parts in ds. �
In particular, since φX is locally free on Xβ , perhaps after passing to a

smaller neighborhood we may assume without loss that it is locally free on
Zε(s0, β).

3.2. Asymptotic concentration in w and τM

3.2.1. A local parametrization of Zε(s0, β) by HLC. We have al-
ready remarked that Xβ(s0) is an S1-bundle over the union of some con-
nected components of Mβ(s0), which is the transverse intersection of M(s0)



Local trace formulae for commuting Hamiltonians 219

and Mβ (Lemma 2.4). We can then use a smoothly varying system of
HLC centered at x ∈ X(s0, β) to locally parametrize points y ∈ Zε(s0, β)
as y = x+ v, where and v ∈ Nmx

(
Mβ(s0)

)
have norms bounded linearly in

ε (§2.1.5); in general, this is possible only locally along Xβ(s0).
In turn, by Lemma 2.4 we can uniquely decompose v as an orthogonal

direct sum v = w + Jm
(
ξM (m)

)
, where w ∈ ker

(
dmφM

s − idTmM

)⊥
and ξ ∈

kerΦ(m). In addition, since s ∼ s0, we can write s = s0 + τ , where τ , a small
displacement in Rr, is thought of as an element of t. Here ‖w‖, ‖ξ‖, ‖τ‖ ≤
D ε for some appropriate constant D. In this notation, Theorem 1.1 is equiv-
alent to the statement that Sχ(λβ, s0, y, y) is rapidly decreasing as λ→∞,
unless max{‖w‖, ‖ξ‖} = O

(
λδ−1/2

)
.

In this section, we shall establish Theorem 1.2 ‘in the w-direction’, and
establish that locus where ‖τM (m)‖ ≥ C λδ−1/2 contributes negligly to the
asymptotics of (41).

3.2.2. The bound on w coming ∂tΨβ.

Proposition 3.1. There exists a constant a > 0 such that, perhaps after
passing to a smaller ε > 0, the following holds. Suppose x ∈ Xβ(s0),

(48) y = y(x,w, ξ) = x+
(
w + Jm

(
ξM (m)

)) ∈ Zε(s0, β),

and s = s0 + τ . Then we have

distX
(
ys, y

)2 ≥ distM
(
π(y)s, π(y)

)2 ≥ a
(‖w‖2 + ‖τM (mx)‖2

)
.

Before delving into the proof, let us introduce a piece of notation. We
shall let Rj be a general C∞ function defined on some open neighborhood of
the origin in a Euclidean space, and vanishing to j-th order at the origin; Rj

is allowed to vary from line to line. Furthermore, let A be as in Notation 1.2
in §1.1.7.

Proof of Proposition 3.1. The first inequality is obvious, since the projection
π : X →M is a Riemannian submersion and interwines φX and φM , so let
us focus on the second.

Consider the system of adapted local coordinates on M centered at mx,
underlying the given HLC system on X centered at x [SZ]. Adapted local
coordinates needn’t be holomorphic, and induce a unitary isomorphism Cd ∼=
Tmx

M . It is unnecessary but convenient to assume that they are given by
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geodesic coordinates centered at mx. By construction,

(49) π(y) = mx +
(
w + Jm

(
ξM (mx)

))
.

Since φX
s0 is a Riemannian isometry fixing mx,

π(y)s0 = mx + dxφ
X
−s0

(
w + Jm

(
ξM (mx)

))
= mx +A

(
w + Jm

(
ξM (mx)

))
= mx +

(
Aw + Jm

(
ξM (mx)

))
,

where A = Ax is as above. Thus, since s = s0 + τ ,

π(y)s =
(
π(y)s0)τ(50)

= mx +
(
Aw + Jm

(
ξM (mx)

)− τM (mx) + 〈τ,R1(w, ξ, τ)〉
)
.

Now, since adapted local coordinates are isometric at the origin, perhaps
after restricting the domain of definition we may assume that

(51) 2 ‖v1 − v2‖ ≥ distM
(
mx + v1,mx + v2) ≥ 1

2
‖v1 − v2‖.

Thus we see from (49), (50) and (51) that for some appropriate constant
a > 0

distM
(
π(y)s, π(y)

)2 ≥ 1

2 +O(ε)

[‖Aw −w‖2 + ‖τM (mx)‖2
]

≥ a
(‖w‖2 + ‖τM (mx)‖2

)
,

since A− I is invertible on ker (A− I)⊥. �

Corollary 3.1. Let y = y(x,w, ξ) be as in (48). Then for any fixed D, δ >
0 uniformly for ‖w‖ ≥ Dλδ−1/2 we have

Sχ(λβ, s0, y, y) = O
(
λ−∞) .

Proof of Corollary 3.1. In view of (46), we have

∂tΨβ(y, t, s) = ψ(ys, y).

Thus, |∂tΨβ(y, s)| ≥ |�ψ(ys, y)|. On the other hand, by Corollary 1.3 of
[BtSj] for some D′ > 0 we have

�ψ(ys, y) ≥ D′ distX(ys, y)
2.
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Therefore, given Proposition 3.1 and recalling that HLC are isometric at the
origin,

(52)
∣∣∂tΨβ(y, t, s)

∣∣ = |ψ(ys, y)| ≥ |�ψ(ys, y)| ≥ b ‖w‖2

for some constant b > 0. For ‖w‖ ≥ Dλδ−1/2, therefore, we get∣∣∂tΨβ(y, t, s)
∣∣ ≥ bD λ2 δ−1.

Hence iterated integration by parts in t introduces at each step a factor
λ1−2 δ λ−1 = λ−2 δ. �

The same argument proves the following:

Corollary 3.2. For any fixed D > 0, the locus where ‖τM (mx)‖ ≥ Dλδ−1/2

contributes negligibly to the asymptotics of Sχ(λβ, s0, y, y).

Thus without loss we may assume from now on that for some fixedD > 0

(53) ‖w‖ ≤ Dλδ−1/2,

and restrict our analysis of the oscillatory integral (47) to the locus

(54)
{
τ ∈ t : ‖τM (mx)‖ ≤ Dλδ−1/2

}
.

More precisely, we have

Corollary 3.3. Only a rapidly decreasing contribution to the asymptotics
of Sχ(λβ, s0, y, y) is lost, if the integrand is multiplied by a rescaled cut-off
function of the form ρ

(
λ1/2−δ τM (mx)

)
, where ρ is compactly supported in

a neighborhood of the origin, and identically equal to 1 sufficiently close to
0 ∈ Rr.

Let us set sτ =: s0 + τ for brevity. Then we get

Sχ(λβ, s0, y, y) ∼ λ

∫ 2D

1/(2D)

∫
t

eiλΨβ(y,t,sτ ) ρ
(
λ1/2−δ τM (mx)

)
(55)

× χ(τ) �(t) s(λ t, ysτ , z) dτ dt.

However, the latter asymptotic equality does not yet allow us to reduce to
the case ‖τ‖ ≤ Dλδ−1/2, because the evaluation map τ → τM (mx) needn’t
be injective.



222 Roberto Paoletti

3.2.3. Domain concentration in τ coming from distX(ys, y) and
∂tΨβ. With sτ = s0 + τ as above, and a constant D > 0, let us set

Bλ(y) =:
{
τ ∈ t : distX(ysτ , y) ≥ Dλδ−1/2

}
.

The same argument used in the proof of Corollary 3.1 implies the fol-
lowing

Corollary 3.4. The locus Bλ(y) contributes negligibly to the asymptotics
of Sχ(λβ, s0, y, y)

Using first Lemma 3.2 of [P5] and then Corollary 2.2 of [P4], with the
given choice of geodesic adapted coordinates centered at mx we get

ysτ = φX
−τ−s0

(
x+

(
w + Jm

(
ξM (mx)

))(56)

= φX
−τ ◦ φX

−s0

(
x+

(
w + Jmx

(
ξM (mx)

))
= φX

−τ

(
x+

(
R3(w, ξ), Aw + Jm

(
ξM (mx)

))
= x+

(
〈Φ(mx), τ〉+ ωmx

(
τM (mx), Aw + Jmx

(
ξM (mx)

)
+R3(τ,w, ξ),

Aw + Jmx

(
ξM (mx)

)− τM (mx) +R2(τ,w, ξ)
)

= x+
(
〈Φ(mx), τ〉+ gmx

(
τM (mx), ξM (mx)

)
+R3(τ,w, ξ),

Aw + Jm
(
ξM (mx)

)− τM (mx) +R2(τ,w, ξ)
)
,

where A is again as in §1.1.7. We have used that τM (mx) and Aw live in
orthogonal complex subspaces (with respect to the Hermitian structure of
Tmx

M), and therefore are symplectically orthogonal as well.
Since HLC are isometric at the origin, perhaps after restricting the do-

main of definition we have

2
∥∥(θ1 − θ2,v1 − v2)

∥∥ ≥ distX
(
x+ (θ1,v1), x+ (θ2,v2)

)
(57)

≥ 1

2

∥∥(θ1 − θ2,v1 − v2)
∥∥

=
1

2

√
(θ1 − θ2)2 + ‖v1 − v2‖2.
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Thus we see from (56) that, with y as in (48),

(58) distX(ysτ , y) ≥
1

2

∣∣∣〈Φ(mx), τ〉+ gmx

(
τM (mx), ξM (mx)

)∣∣∣+R3(τ,w, ξ).

By virtue of Corollary 3.4, we obtain the following:

Lemma 3.4. Let y = y(x,w, ξ) be as in (48). Given a constant E > 0, the
locus of those τ ∈ t such that∣∣∣〈Φ(mx), τ〉+ gmx

(
τM (mx), ξM (mx)

)∣∣∣+R3(τ,w, ξ) ≥ E λδ−1/2,

contributes negligibly to the asymptotics of Sχ(λβ, s0, y, y).

We conclude that there is no loss of generality in further restricting
integration in dτ in (55) to the locus in t where

(59)
∣∣∣〈Φ(mx), τ〉+ gmx

(
τM (mx), ξM (mx)

)∣∣∣+R3(τ,w, ξ) < E λδ−1/2.

This may be accomplished C∞-wise by redefining ρ if necessary (but with
same type of scaling), and will be left implicit in the following.

3.2.4. Domain concentration coming from ∂τψβ. Since Ψβ is com-
plex valued, ∂τΨβ(y, t, sτ ) ∈ t∨ ⊗ C (recall that sτ = s0 + τ). Let us now
define

A′
λ(y) =:

{
(t, τ) : ‖∂τΨβ(y, t, sτ )‖ < 2Dλδ−1/2

}
,(60)

A′′
λ(y) =:

{
(t, τ) : ‖∂τΨβ(y, t, sτ )‖ > Dλδ−1/2

}
.

Then {A′
λ(y, τ), A

′′
λ(y, τ)} is an open cover of t, and we may find a par-

tition of unity subordinate to it, {ςλ, 1− ςλ} of the form

ςλ(t, τ) =: ς
(
λ1/2−δ ∂τΨβ(y, t, sτ )

)
,

for an appropriate bump function ς ∈ C∞0 (t∨ ⊗ C), supported in an open
ball of radius 2D centered at the origin 0 ∈ t, and identically equal to 1
within distance D from the origin. We can then rewrite (55) as

(61) Sχ(λβ, s0, y, y) = Sχ(λβ, s0, y, y)
′ + Sχ(λβ, s0, y, y)

′′,

where Sχ(λβ, s0, y, y)
′ and Sχ(λβ, s0, y, y)

′′ are given by (55), but with the
integrand multiplied by ςλ(τ) and 1− ςλ(τ), respectively.
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Proposition 3.2. Sχ(λβ, s0, y, y)
′′ = O (λ−∞) for λ→∞.

Proof of Proposition 3.2. Let us define

Z(∂τΨβ , y) =:
{
τ ∈ t : ∂τΨβ(y, sτ ) = 0

}
.

Let (Xj) be the standard linar coordinates on t ∼= Rr. On t \ Z(∂τΨβ , y), we
may consider the differential operator

L =:
1∑r

j=1

∣∣∂Xj
Ψβ(y, sτ )

∣∣2 ∑
j

∂Xj
Ψβ(y, sτ ) ∂Xj

.

Then L(Ψβ) = 1, and so L
(
eiλΨβ

)
= iλ eiλΨβ . Let us also define

ρλ(τ) =: ρ
(
λ1/2−δ τM (mx)

) (
1− ςλ(τ)

)
(τ ∈ t),

Aλ(y, τ, t) =: ρλ(τ) �(t)χ(τ) s(λ t, ysτ , y).

Then we obtain

Sχ(λβ, s0, y, y)
′′

(62)

∼ λ

∫ 2D

1/(2D)

∫
t

eiλΨβ(y,t,sτ )Aλ(y, τ, t) dτ dt

= −i
∫ 2D

1/(2D)

∫
t

L
(
eiλΨβ(y,t,sτ )

)
Aλ(y, τ, t) dτ dt

= i
∑
j

∫ 2D

1/(2D)

∫
t

eiλΨβ(y,t,sτ )∂Xj

(
∂Xj

Ψβ(y, sτ )∑
l

∣∣∂Xl
Ψβ(y, sτ )

∣∣2 Aλ(y, τ, t)

)
dτ dt

= −i
∑
j

∫ 2D

1/(2D)

∫
t

eiλΨβ(y,t,sτ )P
(Aλ(y, τ, t)

)
dτ dt,

where P = Lt is the transpose operator, given by

P (h) =: −
r∑

j=1

∂Xj

(
∂Xj

Ψβ(y, sτ )∑
l

∣∣∂Xl
Ψβ(y, sτ )

∣∣2 · h
)
.

Using the asymptotic expansion of s(λ t, zs0+τ , z), one sees that the integrand
on the last line of (62) is bounded by Ck λ

d+1−2δ.
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Iterating the integration by parts in τ , as above, we obtain for any k ≥ 1

Sχ(λβ, s0, y, y)
′′(63)

∼ (−i)k λ1−k

∫ 2D

1/(2D)

∫
t

Lk
(
eiλΨβ(y,t,sτ )

)
Aλ(y, τ, t)

)
dτ dt

= (−i)k λ1−k

∫ 2D

1/(2D)

∫
t

eiλΨβ(y,t,sτ ) P k
(Aλ(y, τ, t)

)
dτ dt,

One can then check inductively the following:

Lemma 3.5. Let us set Vj =: ∂Xj
Ψβ(y, sτ ), and V = (Vj). Then, for any

k ≥ 1, P k
(Aλ(τ, t)

)
is a linear combination of terms of the form

Pa

(
V, V

)
‖V ‖2b λc(1/2−δ)Bλ(τ, t),

where Pa is a homogeneous polynomial of degree a, with coefficients depend-
ing on the derivatives of V , and a, b, c ∈ N, 2b− a+ c ≤ 2k; also, |Bλ| ≤
C ′
a,b,c λ

d for λ� 0.

The bound on Bλ follows from the asymptotic expansion for the amplitude
s of Π in (34).

On the other hand, in view of the definition of A′′
λ(y) in (60), on the

support of 1− ςλ(τ) each summand in Lemma 3.5 satisfies an estimate of
the form∣∣∣∣Pa(V )

‖V ‖2b λc(1/2−δ)Bλ(τ, t)

∣∣∣∣ ≤ Ca,b,c
‖V ‖a
‖V ‖2b λ

d+c(1/2−δ)

= Ca,b,c
1

‖V ‖2b−a
λd+c(1/2−δ) ≤ Da,b,c λ

d+k(1−2δ)

as λ→ +∞. Inserting this in (63), we obtain an upper bound of the form
Ck λ

d+1−2kδ. This completes the proof of the Proposition. �

We conclude from (61) and Proposition 3.2 that

Sχ(λβ, s0, y, y) ∼ Sχ(λβ, s0, y, y)
′(64)

∼ λ

∫ 2D

1/(2D)

∫
t

eiλΨβ(y,t,sτ ) Bλ(y, τ, t) dτ dt
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where now

(65) Bλ(y, τ, t) =: ρ
(
λ1/2−δ τM (mx)

)
ςλ(t, τ) �(t)χ(τ) s(λ t, ysτ , y).

The domain of integration in (64) is then A′
λ(y).

3.2.5. The reduction in τ and the bound in ξ. We shall now combine
(54), (59) and the domain reduction obtained in (64), always assuming (53).

Since τ → τX(x) is injective whenever x ∈ Xβ , we have ‖τX(x)‖ ≥ a ‖τ‖
for some constant a = aβ > 0, depending only on β.

On the other hand, in HLC centered at x we have

‖τX(x)‖ =
∥∥∥(〈Φ(mx), τ〉,−τM (mx)

)∥∥∥.
On the domain of integration of (55), we are in the range (54); therefore,

(66)
∣∣〈Φ(mx), τ〉

∣∣ ≥ a ‖τ‖+O
(
λδ−1/2

)
.

On the other hand, we are now assuming that on the same domain (59)
also holds; combining (66) with (59), we conclude that on the domain of in-
tegration of (55), further reduced according to (59), we have for appropriate
constants D1, D

′
1 > 0:

E λδ−1/2 ≥
∣∣∣(〈Φ(mx), τ〉+ gm

(
τM (mx), ξM (mx)

)
+R3(τ,w, ξ)

∣∣∣
≥ D1 ‖τ‖+R3(τ,w, ξ) +O

(
λδ−1/2

)
≥ D′

1 ‖τ‖+R3(ξ) +O
(
λδ−1/2

)
.

We have used that ‖τ‖ � Rj(τ) for j = 2, 3 e ‖τ‖ < ε, ε small. Therefore we
obtain the following:

Lemma 3.6. In the domain of integration of (55), and with the reduction
(59) implicit, for some constant D5 > 0 we have

‖τ‖ ≤ D5 ‖ξ‖3 +O
(
λδ−1/2

)
.
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On the other hand, in view of (51), given (53) and (54) we have

distM
(
π(y)s, π(y)

) ≤ 4Dλδ−1/2.

Given that π : X →M is a Riemannian submersion with fibers the S1-orbits
in X, there exists ϑ = ϑ(y, s) ∈ (−π, π] such that

distX

(
ys, e

iϑ y
)
≤ 4Dλδ−1/2.

In view of Remark 2.1, identifying dψ with its local coordinate expression,

d(ys,y)ψ = d(eiϑ y,y)ψ +O
(
λδ−1/2

)
(67)

=
(
eiϑ αeiϑ y, −eiϑ αy

)
+O

(
λδ−1/2

)
=
(
eiϑ αy, −eiϑ αy

)
+O

(
λδ−1/2

)
,

where on the last line we have used that α is S1-invariant, and therefore it
does not depend on the θ-coordinate in a HLC system (recall that in HLC
the S1-action on X is expressed by a translation in the angular coordinate).

Given ξ ∈ kerΦ(m), let us introduce the linear functional on t

Lm(ξ) : τ → gm
(
τM (m), ξM (m)

)
.

Given (67) and (56), we see from (46) that

∂τΨβ(y, t, sτ ) = eiϑ
(
tΦ(mx) + Lm(ξ)

)
− β +R2(τ, ξ) +O

(
λδ−1/2

)
=
[
eiϑ tΦ(mx)− β

]
+ eiϑ Lmx

(ξ) +R2(τ, ξ) +O
(
λδ−1/2

)
.

Lemma 3.7. In the range of the present discussion,∥∥∂τΨβ(y, t, sτ )
∥∥ ≥ b ‖ξ‖+R2(τ) +O

(
λδ−1/2

)
for some constant b > 0.

Proof of Lemma 3.7. We have

eiϑ tΦ(m)− β = eiϑ tΦ(m)− Φu(m) ∈ spanC
{
Φ(m)

} ⊆ t∨ ⊗ C,

while every non-zero element of

Lm =:
{
Lm(ξ) : ξ ∈ kerΦ(m)

}
⊗ C ⊆ t∨ ⊗ C
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is non-vanishing on kerΦ(m), as the evaluation map valm : t→ TmM is
injective on kerΦ(m); in particular Lm(ξ)(ξ) = ‖ξM (m)‖2 > 0 for any ξ ∈
kerΦ(m), ξ �= 0. Hence ξ ∈ kerΦ(m) → Lm(ξ) ∈ Lm is an isomorphism, and

Lm ∩ span{Φ(m)} = (0);

this implies for some constants a1, a2 > 0 and every ξ, t∥∥∥Lm(ξ) +
(
eiϑ tΦ(m)− β

)∥∥∥ ≥ a1

(
‖Lm(ξ)‖+

∥∥∥eiϑ tΦ(m)− β
∥∥∥) ≥ a2 ‖ξ‖.

To complete the proof, we need only remark that ‖ξ‖ � R2(ξ), R1(τ)R1(ξ),
since τ and ξ are bounded linearly in ε, and ε is assumed very small. �

On the domain of integration A′
λ(y), we then obtain

(68) ‖ξ‖+R2(τ) = O
(
λδ−1/2

)
=⇒ ‖ξ‖ ≤ A ‖τ‖2 +O

(
λδ−1/2

)
.

Pairing (68) with the bound in Lemma 3.6, we obtain first that that in
the domain of integration of (64) we have

(69) ‖τ‖ ≤ C ′ λδ−1/2, ‖ξ‖ ≤ C ′′ λδ−1/2

for appropriate constants C ′, C ′′ > 0.

3.2.6. Proof of Theorem 1.1. Summing up, we have established that
for every δ ∈ (0, 1/2) and any given positive constant aδ > 0 there exists
bδ > 0 such that Sχ(λβ, s0, y, y) = O (λ−∞) with y = y(x,w, ξ) as in (48), if
‖w‖ ≥ aδ λ

δ−1/2 or ‖ξ‖ ≥ bδ λ
δ−1/2 for λ� 0. Let us now choose an arbitrary

constant a > 0 and suppose that max
{‖w‖, ‖ξ‖} ≥ a λδ−1/2. Choose δ′ ∈

(0, δ). Then for λ� 0 we have

max
{‖w‖, ‖ξ‖} ≥ a λδ−1/2 > max{aδ′ , bδ′}λδ′−1/2.

We conclude the following:

Corollary 3.5. For any positive constant a > 0, we have Sχ(λβ, s0, y, y) =
O (λ−∞) with y = y(x,w, ξ), uniformly in (w, ξ) satisfying max

{‖w‖, ‖ξ‖}
≥ a λδ−1/2 for λ� 0.
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Proof of Theorem 1.1. If (21) holds with y = y(x,w, ξ), then in view of (57)
we need to have

max{‖w‖, ‖ξ‖} ≥ 1√
2

√
‖w‖2 + ‖ξ‖2 ≥ 1

2
√
2
distX(y, x) ≥ D

2
√
2
λδ−1/2.

Thus the statement of the Theorem follows from Corollary 3.5. �

4. Proof of Theorem 1.2 and Corollary 1.2

Before delving into the proof, let us note that in the course of the proof
of Theorem 1.1 we have established the following: in (64) only a negligible
contribution to the asymptotics is lost, if integration in τ is restricted to a
neighborhood of origin of radius C ′ λδ−1/2, for some C ′ > 0 (see (69)). Hence
we may rewrite (64) as follows:

(70) Sχ(λβ, s0, y, y) ∼ λ

∫ 2D

1/(2D)

∫
t

eiλΨβ(y,t,sτ ) Cλ(y, τ, t) dτ dt

where now

(71) Cλ(y, τ, t) =: γ
(
λ1/2−δ τ

)
�(t)χ(τ) s(λ t, ysτ , y),

with γ ∈ C∞0 (t) compactly supported and identically equal to one on an
appropriate neighborhood of the origin. In view of (46), we can further
rewrite (70) as follows:

(72) Sχ(λβ, s0, y, y) ∼ λ e−i λ 〈β,s0〉
∫ 2D

1/(2D)

∫
t

eiλΥβ(y,t,τ) Cλ(y, τ, t) dτ dt,

where

(73) Υβ(y, t, τ) =: t ψ(ysτ , y)− 〈β, τ〉;

here ysτ is given by (56).

Proof of Theorem 1.2. Let us set, in the notation of §1.1.7 and with v as
in (23),

(74) sλ =: s0 +
1√
λ
τ ∈ R

r, yλ = x+
1√
λ
v ∈ X, yλ,sλ =: φX

−sλ(yλ) ∈ X,
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mλ =: mx +
1√
λ
v = π(yλ) ∈M,

mλ,sλ =: φM
−sλ(mλ) = π(yλ,sλ) ∈M.

(75)

With the change of integration variable τ → τ/
√
λ, (72) may be rewrit-

ten

Sχ(λβ, s0, yλ, yλ)(76)

∼ λ1− r

2 e−i λ 〈β,s0〉
∫ 2D

1/(2D)

∫
t

eiλΥβ(yλ,t,τ/
√
λ)Dλ (y, τ, t) dτ dt,

where

Dλ (y, τ, t) =: Cλ
(
yλ,

1√
λ
τ, t

)
(77)

= γ
(
λ−δ τ

)
�(t)χ(λ−1/2 τ) s(λ t, yλ,sλ , yλ),

and integration in dτ is now over an expanding ball in t centered at the
origin and radius O

(
λδ
)
.

Let us compute the phase in (76). We have by (73)

(78) Υβ

(
yλ, t,

τ√
λ

)
= t ψ (yλ,sλ , yλ)−

1√
λ
〈β, τ〉.

Now let us apply (56) with τ , w, and ξ rescaled by 1/
√
λ. We obtain

yλ,sλ = φX
− τ√

λ
−s0(yλ)(79)

= x+

(
1√
λ
〈Φ(mx), τ〉+ 1

λ
gmx

(
τM (mx), ξM (mx)

)
+R3

(
τ√
λ
,
w√
λ
,

ξ√
λ

)
,

1√
λ

(
Aw + Jmx

(
ξM (mx)

)− τM (mx)
)

+R2

(
τ√
λ
,
w√
λ
,

ξ√
λ

))
= x+

(
Θλ, Vλ

)
,
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where Θλ = Θλ(x,w, ξ, τ) and Vλ = Vλ(x,w, ξ, τ) are defined by the previ-
ous equality. In view of Remark 2.2, (79) implies

t ψ (yλ,sλ , yλ)(80)

= t ψ

(
x+

(
Θλ, Vλ

)
, x+

1√
λ

[
w + Jmx

(
ξM (mx)

)])
= it

[
1− eiΘλ

]− it ψ2

(
Vλ,

1√
λ

[
w + Jmx

(
ξM (mx)

)])
eiΘλ

+ tR3

(
Vλ,

1√
λ

[
w + Jmx

(
ξM (mx)

)])
eiΘλ

= it
[
1− eiΘλ

]
− it

λ
ψ2

(
Aw + Jm

(
ξM (mx)

)− τM (mx),w + Jmx

(
ξM (mx)

))
eiΘ

+ tR3

(
τ√
λ
,
w√
λ
,

ξ√
λ

)
eiΘλ

(recall that R3 is a generic C∞ function vanishing to third order at the origin,
and is allowed to vary from line to line). Inserting (80) in (78), we get with
some computations

iλΥβ

(
yλ, t,

τ√
λ

)
(81)

= i
√
λ
〈
tΦ(mx)− β, τ

〉
+ t

[
i gmx

(
ξM (mx), τM (mx)

)− 1

2
〈Φ(mx), τ〉2

+ ψ2

(
J
(
ξM (mx)

)
+Aw − τM (mx), J

(
ξM (mx)

)
+w

)]
+ λ tR3

(
τ√
λ
,
w√
λ
,

ξ√
λ

)
.

We have

ψ2

(
J
(
ξM (mx)

)
+Aw − τM (mx), J

(
ξM (mx)

)
+w

)
= ψ2(Aw,w) + i gmx

(
ξM (mx), τM (mx)

)− 1

2

∥∥τM (mx)
∥∥2.
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In particular, on the domain of integration and in the range of the The-
orem we have for some c > 0

�
(
iλΥβ

(
zλ, t, τ/

√
λ
))
≤ − t

2
‖Aw −w‖2

− t

2

(
〈Φ(mx), τ〉2 +

∥∥τM (mx)
∥∥2)

+ �
(
λR3

(
τ√
λ
,
w√
λ
,

ξ√
λ

))
≤ −c (‖w‖2 + ‖τ‖2)+O

(
λ3δ−1/2

)
= −c (‖w‖2 + ‖τ‖2)+ o(1)

since by assumption 0 < δ < 1/6.
Let Ξ(m) ∈ t be as in §2.1.2, so that we have an orthogonal direct sum

(82) t = span
(
Ξ(mx)

)⊕ ker
(
Φ(mx)

)
.

For any τ ∈ t, we can write, for unique u ∈ R and η ∈ kerΦ(mx),

(83) τ = τ(u, η) =: uΞ(mx) + η.

Recalling that β = Φu(m) = Φ(m)/‖Φ(m)‖, (81) may be rewritten as
follows:

iλΥβ

(
zλ, t, τ/

√
λ
)
= i

√
λΓx(t, u) + t Ex

(
ξ, τ(u, η),w

)
(84)

+ λ tR3

(
τ√
λ
,
w√
λ
,

ξ√
λ

)
,

where

Γx(t, u) =:
(‖Φ(mx)‖ t− 1

)
u,(85)

Ex
(
ξ, τ(u, η),w

)
=: ψ2(Aw,w)− 1

2
‖Φ(mx)‖2 u2

+ 2i gmx

(
ξM (mx), τ(u, η)M (mx)

)
− 1

2

∥∥τ(u, η)M (mx)
∥∥2.

In view of (82) and (83), we can write the integral over t as an iterated
integral: ∫

t

dτ =

∫
kerΦ(mx)

dη

∫ +∞

−∞
du.



Local trace formulae for commuting Hamiltonians 233

We shall then rewrite (76) in the following form:

(86) Sχ(λβ, s0, yλ, yλ) ∼ λ1− r

2 e−i λ 〈β,s0〉
∫
kerΦ(mx)

Iλ(x, η,w, ξ) dη,

where the inner integral

Iλ(x, η,w, ξ)(87)

=:

∫ 2D

1/(2D)

∫ +∞

−∞
ei
√
λΓ(t,u) et E et λR3 · Dλ (y, τ, t) du dt

is an oscillatory integral in
√
λ, with the quadratic phase Γ and an amplitude

compactly supported in an expanding ball of center the origin and radius
O
(
λδ
)
.

Combining the asymptotic expansion of the symbol s in (34), which
yields

s
(
λ t, x′, x′′

) ∼ λd td
∑
j≥0

λ−j t−j sj
(
x′, x′′

)
,

with the Taylor expansion of the individual factors in the amplitude of (87)
in the rescaled variables, we get an asymptotic expansion of the integrand
in (87) in descending powers of λ−1/2:

ei
√
λΓx(t,u) et Ex et R3 · Dλ (y, τ, t)(88)

∼ ei
√
λΓ(t,u) et E · λd

∑
j,l≥0

λ−j−l/2 td−j Pj,l(ξ,w, u, η),

where Pj,l is a homogeneous polynomial of degree ≤ 3l (dependence on x
is omitted). Indeed, λδ appears in (77) only in the rescaling of the bump
function γ, which is identically equal to one on a neighborhood of the origin
(and thus has vanishing derivatives to all orders at the origin). 5

Remark 4.1. We have in particular P0,0(x, x) = π−d, and in addition in
view of (77) and the exponent λR3 one concludes that Pj,l has parity (−1)�.

The remainder at step (j0, l0) is bounded by

λ−j0−(1+l0)/2Rj0,l0 (ξ,w, u, η) e−a (‖w‖2+‖η‖2+u2),

where again Rj0,l0 is a polynomial of degree l0.

5The degree of Pj,l is bounded by 3l rather than l because of the exponent
λR3(τ/

√
λ,w/

√
λ, ξ/

√
λ)).
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Given that ‖ξ‖ = O
(
λδ
)
, the previous expression is bounded above by

Cj0,l0 λ
−j0−(1+l0)/2+3l0δ = Cj0,l0 λ

−j0−1/2−3l0 (1/6−δ);

since on the other hand integration in the inner integral is over a domain
of the form

(
1/(2D), 2D

)× (−c λδ, c λδ
)
, the expansion may be integrated

term by term. Thus we get

(89) Iλ(x, η,w, ξ) ∼
∑
j,l≥0

λd−j−l/2 Iλ(x, η,w, ξ)j,l,

where

Iλ(x, η,w, ξ)j,l(90)

=:

∫ 2D

1/(2D)

∫ +∞

−∞
ei
√
λΓx(t,u) et Ex · td−j Pj,l(ξ,w, u, η) du dt.

It is immediate from (85) that Γ has a unique stationary point

P0 = (t0, u0) =:

(
1

‖Φ(mx)‖ , 0
)
,

where it vanishes; the Hessian matrix at the critical point is

HP0
(Γ) =

[
0 ‖Φ(mx)‖

‖Φ(mx)‖ 0

]
,

with determinant and signature

det
(
HP0

(Γ)
)
= −‖Φ(mx)‖2, sgn

(
HP0

(Γ)
)
= 0.

Therefore, the Hessian operator is given by

(91) LΓ =:
i

‖Φ(mx)‖
∂2

∂t∂u
.

Furthermore, iterated integration by parts in (t, u) shows that only a
bounded neighborhood of the critical point contributes non-negligibly to
the asymptotics of I(η,w, ξ)j,l. More precisely, let β ∈ C∞0

(
R2
)
be a bump

function identically equal to 1 in a neighborhood of (t0, u0). Then we can
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split (90) as

(92) I(η,w, ξ)j,l = I(η,w, ξ)′j,l + I(η,w, ξ)′′j,l,

where I(η,w, ξ)′j,l, I(η,w, ξ)′′j,l are given by (90), but with the integrand
multiplied by β(t, u) and 1− β(t, u), respectively. Integration by parts in
(t, u) in I(η,w, ξ)′′j,l as in the standard proof of the stationary phase Lemma
is legitimate, because the integrand is compactly supported away from the
critical point (and, at any rate, bounded by a decaying exponential in u); on
the other hand at each iteration a factor λ−1/2 is introduced, and integration
is over a domain of diameter O

(
λδ
)
, and we conclude that I(η,w, ξ)′′j,l =

O (λ−∞).
Applying the Stationary Phase Lemma to I(η,w, ξ)′j,l, we obtain an

asymptotic expansion in (89) of the form

λd−j−l/2 I(η,w, ξ)j,l(93)

∼ 2π

‖Φ(mx)‖ · λ
d−1/2−j−l/2

×
∑
a≥0

λ−a/2 1

a!
La
Γ

(
td−j et Ex · Pj,l(ξ,w, u, η)

)∣∣∣
t=t0,u=u0

.

Given (85) and (91), we conclude that

(94) La
Γ

(
et Ex

)
= Qa(x, t, u; ξ,w, η) et Ex ,

where Qa(x, t, u; ξ,w, η) is a polynomial in (ξ,w, η), of degree ≤ 3a. It fol-
lows that

(95) La
Γ

(
td−j et Ex · Pj,l(ξ,w, u, η)

)
= Rj,l,a(x, t; ξ,w, u, η) et Ex ,

where Rj,l,a is a polynomial in (ξ,w, u, η), of degree ≤ 3(a+ l).

Remark 4.2. By (91), we have

La
Γ =

(
i

‖Φ(mx)‖
)a ∂2a

∂ta∂ua
.

Application of ∂a/∂ta in (95) doesn’t change the parity of the argument
in (ξ,w, u, η), as Ex is homogeneous of degree 2 (see (85)). On the other
hand, for the same reason ∂a/∂ua changes the parity by a factor (−1)a.
Since by Remark 4.1 Pj,l(ξ,w, u, η) has parity (−1)l, we conclude that
Rj,l,a(x, t; ξ,w, u, η) has parity (−1)l+a.
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Returning to (87), we end up with an asymptotic expansion

I(η,w, ξ) ∼ 2π

‖Φ(mx)‖ ·
(

λ

π ‖Φ(mx)‖
)d

λ−1/2(96)

× exp

(
1

‖Φ(mx)‖ Ax(ξ,w, η)

) ∑
�≥0

λ−�/2 P�(x; ξ,w, η),

where P� is a polynomial of degree ≤ 3	 in (ξ,w, η), and parity (−1)�; in
particular P0 = χ(0). Also,

Ax(ξ,w, η) = Ex
(
ξ, η,w

)
(97)

= ψ2(Aw,w) + 2i gm

(
ξM (mx), ηM (mx)

)
− 1

2

∥∥ηM (mx)
∥∥2.

Thus,

�(Ax(ξ,w, η)
) ≤ −a (‖w‖2 + ‖η‖2)

for some a > 0. On the other hand, since ‖ξ‖, ‖η‖, ‖w‖ = O
(
λδ
)
, we obtain

on the domain of integration∣∣∣λ−�/2 P�(x; ξ,w, η)
∣∣∣ ≤ C� λ

−�/2+3δ� = C� λ
−3�(1/6−δ),

and a similar bound for the remainder; since the domain of integration is
again a ball centered at the origin of radius O

(
λδ
)
, that the expansion can

again be integrated term by term in dη.
We conclude that (86) may be rewritten as an asymptotic expansion

Sχ(λβ, s0, yλ, yλ) ∼ 2π

‖Φ(mx)‖ ·
(

λ

π ‖Φ(mx)‖
)d

λ
1−r

2 e−i λ 〈β,s0〉(98)

× eψ2(Aw,w)/‖Φ(mx)‖ ·
∑
�≥0

λ−�/2 I�(x;w, ξ),

where for 	 = 0, 1, . . . we have set

I�(x;w, ξ) =:

∫
kerΦ(mx)

P�(x; ξ,w, η)(99)

× e
1

‖Φ(m)‖

[
2i gm

(
ξM (mx),ηM (mx)

)
− 1

2
‖ηM (mx)‖2

]
dη;

here dη is the Lebesgue measure on kerΦ(mx) ⊆ t, when the latter subspace
is identified with Rr−1 by means of an orthonormal basis.
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To compute the latter Gaussian integral, let us choose orthonormal ba-
sis K for kerΦ(mx) and D for the subspace V (mx) =: valmx

(
kerΦ(mx)

) ⊆
Tmx

M , and let C be the (r − 1)× (r − 1) invertible matrix representing the
isomorphism kerΦ(mx)→ V (mx) induced by valmx

with respect to these
basis. If uξ, uη ∈ Rr−1 are the coordinate vectors of ξ, η ∈ kerΦ(mx) with
respect to K, we have

gm
(
ξM (mx), ηM (mx)

)
= ut

ξ C
tC uη,

so that the matrix D and the function D in Definition 1.8 are given by
D = CtC and D(mx) = | det(C)|, respectively.

On the other hand, the basis K provides a unitary isomorphism Rr−1 ∼=
kerΦ(mx), and we can convert the integral in dη over kerΦ(mx) into an
integral in du over Rr−1:

∫
kerΦ(mx)

dη →
∫
Rr−1

du.

With the change of variables a = a(u) =: Cu/
√‖Φ(mx)‖, we can rewrite

(99) as follows:

I�(x,w, ξ)

=

∫
Rr−1

P�(x; ξ,w,u) exp

(
1

‖Φ(mx)‖
[
2i 〈C uξ, C u〉 − 1

2

∥∥C u
∥∥2]) du

=
‖Φ(mx)‖(r−1)/2

| det(C)|

×
∫
Rr−1

Q�(x; ξ,w,a) exp

([
i

〈
2Cuξ√‖Φ(mx)‖

,a

〉
− 1

2

∥∥a∥∥2]) da;

here Q�(x; ·, ·, ·) is obtained from P�(x; ·, ·, ·) by the change of variable u =
u(a), and is therefore a polynomial of degree ≤ 3	, and parity (−1)�.

Now the latter integral may be interpreted as the application of a dif-
ferential polynomial Q̃�(x; ξ,w, Dξ) inDξ = −i∂ξ of collective degree ≤ 3	 in
(ξ,w, Dξ) to the exponential exp

(−‖a‖2/2), evaluated at 2Cuξ/
√‖Φ(mx)‖.

More explicitly,
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I�(x,w, ξ)(100)

=
1

D(mx)
(2π ‖Φ(mx)‖)(r−1)/2 Q̃�(x; ξ,w, Dξ)

(
exp

(
−2 ‖Cuξ‖2
‖Φ(m)‖

))
=

1

D(mx)
(2π ‖Φ(mx)‖)(r−1)/2R�(x; ξ,w) · exp

(
−2 ‖ξM (mx)‖2

‖Φ(m)‖
)
;

here again R�(x; ·, ·) is a polynomial of degree ≤ 3	 and degree (−1)�, and
R0 = χ(0). The norm of ξM (mx) in the latter line is of course computed in
Tmx

M .
Inserting (100) in (98) we end up with the asymptotic expansion

Sχ(λβ, s0, yλ, yλ) ∼ 2
r+1

2 π

‖Φ(mx)‖ ·
(

λ

π ‖Φ(mx)‖
)d+ 1−r

2

(101)

× e−i λ 〈β,s0〉

D(mx)
e[ψ2(Aw,w)−2 ‖ξM (mx)‖2]/‖Φ(mx)‖

×
∑
�≥0

λ−�/2R�(x; ξ,w).

Since (101) coincides with (25) with n = Jmx

(
ξM (mx)

)
, this completes

the proof of Theorem 1.2. �

Proof of Corollary 1.2. To ease the exposition, let us pretend that Mβ(s0)
is connected; otherwise we merely need to repeat the argument over each
connected component.

Let us write as above y in the neighborhood of Xβ(s0) as y = x+ v,
where x ∈ Xβ(s0) and v ∈ Nx

(
Xβ(s0)

)
is in (23). Thus we are assuming

a moving system of HLC, which is in general only possible locally along
Xβ(s0). So to make the argument complete we should introduce an open
cover of Xβ(s0) and a partition of unity subordinate to it, but we shall leave
this implicit to ease the exposition. By the given choice of HLC, we can
unitarily identify

Nx

(
Xβ(s0)

) ∼= Nmx

(
M(s0)

)⊕Nmx
(Mβ) ∼= C

c ⊕ R
r−1,

where c is the complex codimension of M(s0) in M .
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We have, by (19) and Theorem 1.1,

F(χs0 · tr(U)
)
(λβ) =

∫
X
Sχ(λβ, s0, y, y) dVX(y)(102)

∼
∫
Xβ(s0)

Fs0

(
λβ, x) dVXβ(s0)(x),

where

Fs0

(
λβ, x) =:

∫
Rr−1

∫
Cc

Sχ
(
λβ, s0, x+ (w + n), x+ (w + n)

)
(103)

× �′
(
λ1/2−δ w

)
�′′
(
λ1/2−δ n

)
dw dn;

here �′ ∈ C∞0 (Cc) and �′′ ∈ C∞0
(
Rr−1

)
are bump functions identically equal

to 1 on a neighborhood of the origin. In turn, applying the rescaling w →
w/
√
λ and n → n/

√
λ, we can rewrite (103) as follows:

(104) Fs0

(
λβ, x) = λ−c+ 1−r

2 Fs0

(
λβ, x),

where

Fs0

(
λβ, x) =:

∫
Rr−1

∫
Cc

Sχ
(
λβ, s0, x+

(
w√
λ
+

n

λ

)
, x+

(
w√
λ
+

n

λ

))
× �′

(
λ−δ w

)
�′′
(
λ−δ n

)
dw dn;

Here integration is over a ball centered at the origin and radius O
(
λδ
)
,

and the integrand is given by (101) with n in place of Jm
(
ξM (mx)

)
. It thus

follows that Fs0

(
λβ, x) is given by an asymptotic expansion in descending

powers of λ1/2. In addition, since R� has parity (−1)�, only even 	’s give
a non-vanishing contribution; therefore, the resulting integrated asymptotic
expansion is really in descending powers of λ.

More explicitly, we get

Fs0(λβ, x) ∼ 2
r+1

2 π

‖Φ(mx)‖ ·
(

λ

π ‖Φ(mx)‖
)d+ 1−r

2 e−i λ 〈β,s0〉

D(mx)
(105)

×
∑
k≥0

λ−k Ls0,k

(
λβ, x

)
,

where

Ls0,k

(
λβ, x) =:

∫
Rr−1

∫
Cc

Sk(x;n,w)e[ψ2(Aw,w)−2 ‖n‖2]/‖Φ(mx)‖ dw dn;
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here Sk(x;n,w) =: R2k(x; ξ,w) with n = Jmx

(
ξM (mx)

)
, so S0(x;n,w) =

χ(0).
Let us compute the leading order term in (105). To this end, let A′ be the

unitary c× c matrix representing the restriction of dmx
φM−s0 to the normal

bundle Nmx

(
M(s0)

) ∼= Cc with respect to a complex orthonormal basis. We
have

Ls0,0 = χ(0) ·
∫
Rr−1

∫
Cd

e[ψ2(Aw,w)−2 ‖ξM (mx)‖2]/‖Φ(mx)‖ dw dn(106)

= χ(0) ·
(∫

Cd

eψ2(Aw,w)/‖Φ(mx)‖ dw
)

×
(∫

Rr−1

e−2 ‖n‖2/‖Φ(mx)‖ dn

)
= χ(0) · ‖Φ(mx)‖

r−1

2
+c

×
(∫

Cc

eψ2(A′u,u) du

)
·
(∫

Rr−1

e−2 ‖a‖2

da

)
= χ(0) · ‖Φ(mx)‖

r−1

2
+c πc

det(Ic −A′)
·
(π
2

) r−1

2

(see (64) of [P1]). Inserting (106) in (105), we obtain

Fs0(λβ, x) ∼ λ−c+ 1−r

2
2

r+1

2 π

‖Φ(mx)‖ ·
(

λ

π ‖Φ(mx)‖
)d+ 1−r

2 e−i λ 〈β,s0〉

D(mx)
(107)

× χ(0) · ‖Φ(mx)‖
r−1

2
+c πc

det(Ic −A′)
·
(
2

π

) 1−r

2

×
∑
k≥0

λ−k Uk(β, x)

=
2π

‖Φ(mx)‖
e−i λ 〈β,s0〉

D(mx)

(
λ

‖Φ(mx)‖π
)d+1−r−c

× 1

det(Ic −A′)
·
∑
k≥0

λ−k Uk(s0, β, x)

where U0(β, x) = χ(0). Clearly det(Ic −A′) = c(s0). Therefore, using (107)
in (102) we obtain

F(χs0 · tr(U)
)
(λβ) ∼ 2π

c(s0)
e−i λ 〈β,s0〉

(
λ

π

)d+1−r−c

·
∑
k≥0

λ−k Uk(s0, β),
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with the leading order coefficient being given by

Uk(s0, β) =: χ(0) ·
∫
Xβ(s0)

1

‖Φ(mx)‖d+2−r−c

1

D(mx)
dVXβ(s0)(x).

�

5. Notational Appendix

For the reader’s convenience, we collect here some of the notation going into
the arguments and asymptotic expansions.

1) (M,J, 2ω): the Hodge manifold playing the role of ‘phase space’.

2) υf : the Hamiltonian vector field associated to f ∈ C∞(M).

3) φM
S : M →M (S ∈ R): the Hamiltonian flow of υf (dependence on f

is understood).

4) (A, h): the positive Hermitian homolomorphic line bundle quantizing
(M, 2ω), with dual A∨.

5) X ⊆ A∨: the unit circle bundle.

6) α: the contact form on X.

7) dVM and dVX : the naturally induced volume forms on M and X,
respectively.

8) v�: the horizontal lift (for α) of a tangent vector toM ; ∂θ: the generator
of the circle action on X (see (2) and (32)).

9) υ̃f =: υ�f − f ∂θ: the contact vector field onX associated to f ∈ C∞(M)
(see (2)).

10) φX
s : X → X (s ∈ R): the contact flow generated by υ̃f .

11) H(X) ⊆ L2(X): the Hardy space of X (Definition 1.3).

12) Π : L2(X)→ L2(X): the Szegö kernel of X (Definition 1.3).

13) tψ(x, y) and s(t, x, y): the phase and amplitude in the description of
Π as an FIO after [BtSj] (see (34)).

14) U(s) = Uf (s) : H(X)→ H(X) (s ∈ R): the 1-parameter family of uni-
tary automorphisms induced by a compatible f ∈ C∞(M) (see (3)).
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15) Tf =: i υ̃f |H(X) : H(X)→ H(X): the self-adjoint Toeplitz operator as-
sociated to the contact vector field of a compatible Hamiltonian f , with
principal symbol sTf

(x, r αx) = r f
(
π(x)

)
(see (4)).

16) tr(U): the distributional trace of U (§1.1.2).
17) υk and υ̃k: the commuting Hamiltonian and contact vector fields asso-

ciated to Poisson commuting compatible Hamiltonians fk, k = 1, . . . , r
(§1.1.3).

18) φM
s : M →M and φX

s : X → X (s ∈ Rr): the Hamiltonian and contact
actions of Rr on M and X, respectively, generated by the fk’s.

19) Tk: the Toeplitz operator induced by restriction of i υ̃k; T =: (Tk), the
corresponding commuting system of Toeplitz operators.

20) Λj = (λkj): the j-th joint eigenvalue of T = (Tk), with joint eigenfunc-
tion ej (see §1.1.4).

21) t =: T0R
r, t∨ its dual (see Notation 1.1).

22) ξM and ξX : the vector fields on M and X, respectively, induced by
ξ ∈ t (Definition 1.6).

23) valm : t→ TmM and valx : t→ TxX: the evaluation maps ξ → ξM (m)
and ξ → ξX(x), respectively (Definition 1.6).

24) Φ : M → t∨: the moment map associated to the Hamiltonian action of
Rr generated by the fj ’s (see (7) and Notation 1.1 in §1.1.5).

25) Ξ : M → t: the normalized ‘dual map’ to Φ (§2.1.2).
26) U(s) : H(X)→ H(X) (s ∈ Rr): the unitary representation of Rr asso-

ciated to the compatible and commuting fj ’s (see (8)).

27) tr(U): the distributional trace of U (see (12)).

28) Per(φM ) and Per(φX): the set of periods of φM and φX , respectively
(see (13) and Definition 1.10).

29) M(s) and X(s): the fixed loci of φM
s and φX

s , respectively (Defini-
tion 1.9).

30) β ∈ (Rr)∨: a general covector of unit norm at the origin of Rr (see (14)
and Definition 1.8).

31) Mβ =: π−1(R+ · β), Xβ =: (Φ ◦ π)−1(R+ · β) (see Definition 1.7);
N(Mβ) and N(Xβ): their normal bundles (see (22), (32), and §2.1.5).



Local trace formulae for commuting Hamiltonians 243

32) Mβ(s) =: Mβ ∩M(s), Xβ(s) =: Xβ ∩M(s) (Definition 1.10).

33) N
(
Xβ(s0)

)
: the normal bundle of Xβ(s0) (see (22)).

34) dVMβ(s0)j : the Riemannian volume density on the j-th connected com-
ponent Mβ(s0)j of Mβ(s0) (Corollary 1.2).

35) fj : the complex dimension of ofM(s0) alongMβ(s0)j (Definition 1.12).

36) cj(s0): the Poincaré type invariant along Mβ(s0)j (Definition 1.12).

37) F : the Fourier transform on Rr (see (14)).

38) χ: a bump function on Rr supported near the origin; χs0(·) =: χ(· − s0)
its translate (see (14)); χ̂ its Fourier transform.

39) Sχ(λβ, s0): the smoothing operator obtained by averaging U(s) with
weight χs0(s) e

−iλ·〈β,s〉 (see (17)).

40) D(m): the invariant relating the two naturally induced Euclidean struc-
tures on kerΦ(m) when m ∈Mβ (Definition 1.8).

41) x+ (θ,v): the additive notation for Heisenberg local coordinates
(§1.1.7).

42) ψ2(v,w): the universal exponent from [SZ] governing Szegö kernel scal-
ing asymptotics (Definition 1.11).

43) A = Amx
: the unitary matrix representing dxφ

X−s0 : Tmx
M → Tmx

M ,
given a choice of a HLC system centered at x ∈ Xβ(s0) (Notation 1.2
in §1.1.7).
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Classics, Birkhäuser Springer, New York, 2011.

[DG] J. J. Duistermaat and V. Guillemin, The spectrum of positive el-
liptic operators and periodic bicharacteristics, Invent. Math. 29
(1975), no. 1, 39–79.

[F] C. Fefferman, The Bergman kernel and biholomorphic mappings of
pseudoconvex domains, Invent. Math. 26 (1974), 1–65.
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