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1. Introduction

One can reconstruct RP2, the real part of CP2 with respect to the standard
conjugation map, from its image under the standard moment map of CP2.
The real part projects under the moment map of CP2 onto the entire moment
polytope, each point in the interior of the polytope having four preimages,
the points on the interior of the edges on the boundary of the triangle having
two preimages, the points on the vertices having one preimage. By taking four
copies of the moment polytope and gluing them along the edges according
to the prescriptions of the torus action on CP2 (see [1]), one recovers the real
projective plane.

From the Lagrangian submanifold point of view, L = RP2 is an important
example of monotone Lagrangian submanifold in CP2. Monotone means that
there exists a positive constant KL such that

∀u ∈ H2(CP
2, L),

∫
u
ω = KL μL(u),

where μL : H2(CP
2, L) → Z is the Maslov class of L.

The exotic torus of Chekanov and Schlenk (see [7]) is another important
example of monotone Lagrangian submanifold of CP2. The second author
proved in [8] that this torus is Hamiltonian isotopic to a torus described by
Biran and Cornea in [3]. To do so, she Hamiltonian-isotoped both tori to a
so-called modified Chekanov torus Θ̃Ch. This torus has a nice image under
the moment map and can be reconstructed, as the real projective space, out
of copies of this image and gluing patterns. The rules for gluing are of two
types. The first are coming from the definition of the moment map and are
the same as the ones used for the real part. The second are new and we have
managed to interpret them as Lagrangian surgeries of two copies of the real
part intersecting transversely at one isolated point and cleanly (in the sense
of Pozniak [13]) along a circle.

The surgery for two Lagrangian submanifolds intersecting transversely
at a point has been developped by Polterovich in [12] and we have modified
it to keep a toric description of the result of the surgery. The surgery for
two Lagrangian submanifolds intersecting along an isotropic submanifold
not reduced to a point is new and we intend to develop it in full generality
in a future work. We show in our case:

Theorem 1. The Chekanov–Schlenk torus is Hamiltonian isotopic in CP2

to a Lagrangian torus obtained from two copies of RP2 by Lagrangian surg-

eries at a point and along an isotropic circle.
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With our method we can also recover Lagrangian embeddings of some
surfaces in R4 that were constructed by Givental in [9] and that we then
embed in CP2 or CP1 × CP1. The advantage of this construction is that we
have a good control of the monotonicity condition. We knew so far only the
monotone Lagrangian embeddings of tori in CP1 × CP1 and of tori and real
projective planes in CP2. Our method enables us to prove

Theorem 2. There exists a monotone Lagrangian embedding of the con-

nected sum of a surface of genus 2 and a Klein bottle in CP2 and a monotone

Lagrangian embedding of the connected sum of a surface of genus 4 and a

Klein bottle in the product CP1 × CP1.

Note that neither the Klein bottle (see [14]) nor the orientable surface of
genus 2 (see [10]) can be embedded as Lagrangian submanifolds of CP2.

The structure of this article is as follows: in Section 2 we study the gluing
patterns for the modified Chekanov torus and we describe the surgeries we
will use; in Section 3 we give our main construction and study the monotonic-
ity of examples we can get with the surgery at a point; finally, in Section 4,
we use the surgery for an intersection along a circle to describe two monotone
Lagrangian embeddings.

Acknowledgements. We thank Leonardo Macarini for useful conversa-

tions that, in particular, led to the identification of a mistake in an earlier

draft of this paper. We also thank an anonymous referee for a very careful

reading and detailed list of corrections.

2. The local models

2.1. A toric model of the exotic torus of Chekanov and
Schlenk in CP2

There is a well-known monotone torus in CP2 called the Clifford torus which
can be described in homogeneous coordinates as

TCliff =
{[

eiα : eiβ : 1
]∣∣∣α, β ∈ [0, 2π]

}
.

Its image under the moment map of CP2 (corresponding to the normal-
ization of the symplectic form we use in Section 3)

μ : CP2 −→ R2

[z0 : z1 : z2] �−→
(
3 |z0|2∑

|zi|2
, 3 |z1|2∑

|zi|2

)
,
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is the barycenter (1, 1) of the image of CP2, the triangle obtained as the
convex hull of the points (0, 0), (3, 0), (0, 3).

In 2004, Chekanov and Schlenk (see [7]) have studied the torus given in
homogeneous coordinates of CP2:

ΘCS =

{[
1√
2
γ(s)eiθ :

1√
2
γ(s)e−iθ :

√
3

π
− | γ(s) |2

]∣∣∣∣∣ θ, s ∈ [0, 2π]

}

where γ : [0, 2π] −→ C parametrizes a curve enclosing a domain of area 1
lying in the disk centered in the origin and of area 2 + ε of C, in the half-
disk of complex numbers of positive real part (see Figure 1). They have
proved (see [5–7]) that ΘCS is a monotone Lagrangian torus in CP2, non-
displaceable and non-Hamiltonian isotopic to the Clifford torus (therefore
called exotic) in CP2.

By its definition, the Chekanov–Schlenk torus projects under the moment
map μ to a segment lying in the diagonal line of R2. More precisely the image
is {

(x, x) ∈ R
2
∣∣∣x ∈

[π
2
ρ2min,

π

2
ρ2max

]}
where ρmin is the minimum of |γ(s)| and ρmax is the maximum.

There is a description of this exotic torus more adapted to the toric
picture, that enables to reconstruct the torus from its moment map image
as in the case of the real part of CP2.

Such a description can be obtained by considering the modified Chekanov
torus of [8]. This torus is a torus Hamiltonian isotopic to the exotic torus
of Chekanov–Schleck and is defined in homogeneous coordinates (with the
normalizations of [7]) by

Θ̃Ch =

{[
cos(θ)γ(s) : sin(θ)γ(s) :

√
3

π
− | γ(s) |2

] ∣∣∣∣∣ θ, s ∈ [0, 2π]

}
.

The image of the torus under the moment map μ can be parametrised
by

μ(Θ̃Ch) =
{(

π cos2(θ)|γ(s)|2, π sin2(θ)|γ(s)|2) | θ, s ∈ [0, 2π]
}
.

It is a trapezoid sitting inside the polytope of CP2 between the two parallel
lines x+ y = πρ2min and x+ y = πρ2max.

If the curve γ is such that γ(0) = ρmin, γ(π) = ρmax, γ is symmetric with
respect to the real axis, and each point |γ(s)| = ρ(s) has only one preimage
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s ∈ (0, π) (see for example Figure 1), then for s �= 0, π and θ �= 0, π, the point

(1)
(
π cos2(θ)|γ(s)|2, π sin2(θ)|γ(s)|2)

has 8 preimages in the torus.

Recall (see for example [2, 4]) that the image of the moment map for CP2,
or for a general (compact, connected) toric manifold (M,ω) is a convex
polytope P such that the fiber of each point of P is an isotropic torus.
Recall also that we have action-angle coordinates on the preimage M̊ of the
interior P̊ which is the open dense set in M consisting of all the points where
the action of the torus Tn is free. One can describe this set as

M̊ ∼= P̊ × T
n =

{(
x1, . . . , xn, e

iθ1 , . . . , eiθn
)
| x ∈ P̊ , θ ∈ R

n/2πZn
}
,

where (x, θ) are the action-angle coordinates for the symplectic form

ω =
∑

dxj ∧ dθj .

In the case of Θ̃Ch, we parametrise the curve γ above the real axis by

γ(s) = ρ(s)eit(s),

such that t(s) ∈ [0, tmax], tmax < π
2 , t(0) = 0, t(π) = 0.

Then for a fixed s in (0, π) and a fixed θ in (0, π2 ), the eight preimages

of the point (1) in μ(Θ̃Ch) are given in action-angle coordinates by:

Aε,k,� =
(
π cos2(θ)|γ(s)|2, π sin2(θ)|γ(s)|2, εt(s) + π

2
+ kπ, εt(s) +

π

2
+ �π

)
with ε ∈ {−1, 1}, k, � ∈ {0, 1}.

When s goes to 0 or π, t(s) goes to 0 and the points in the torus fiber
converge (moving along the diagonal direction) towards one of the four points(π

2
+ kπ,

π

2
+ �π

)
, k, � ∈ {0, 1},

see Figure 2.
This describes the gluing of the trapezoid along the segments x+ y =

πρ2min and x+ y = πρ2max.
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C
1

10

γ

ρmin

ρmax

tmax

Figure 1: A suitable curve γ.

2.2. The interpretation of the gluing along the segment
x + y = πρ2

min

The gluing along the segment x+ y = πρ2min can be described as the La-
grangian surgery defined in [12] of two Hamiltonian isotopic copies of the
real part RP2 intersecting transversaly at the origin [0 : 0 : 1] (see Section 4.2
for the details).

Let us describe the Lagrangian surgery we will use in the rest of this
article which is a slight modification of [12]. Following Polterovich, one does
the surgery of two transverse Lagrangians in a local chart around an intersec-
tion point. In this chart, one finds an almost-complex structure j such that
locally l1 = jl0 and the local Lagrangian handle is the image of the sphere in
l0 times [−T, T ], for T large under the map (ξ, t) �→ e−tξ + etjξ. One then
connects the handle on its boundaries to the original Lagrangians by some
smoothing.

Because we aim to control the monotonicity condition and keep the stan-
dard local chart in CP2, we explicitely describe the Lagrangian surgery we
will be using, without the use of an auxiliairy almost-complex structure j
in C2.
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0 π/2

π/2

π

π

3π/2

3π/2

2π

2π

A1,0,0 A1,1,0

A1,0,1 A1,1,1

A−1,0,0

Figure 2: The points are at the four corners of each of the dashed squares;
when s goes to 0, the corners of the two squares are identified.

The handle between two Lagrangian linear subspaces of C2. Con-
sider the linear C2 and the two Lagrangian linear subspaces

l0 = R
2

and

l1 =

(
eiα 0
0 eiβ

)
R
2
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the image of l0 by the Hamiltonian diffeomorphism defined by the diagonal
matrix diag(eiα, eiβ) for α and β not a multiple of π.

We define a handle h parametrised by:

h =

{
e−t

(
x0
x1

)
+ et

(
eiαx0
eiβx1

) ∣∣∣∣ t ∈ R

x20 + x21 = 1

}
.

It is asymptotic to l0 when t goes to −∞ and to l1 when t goes to +∞. One
checks that it is a Lagrangian handle when sin(α) = sin(β).

Note that for the same reason, the handle

h′ =

{
e−t

(
x0
x1

)
+ et

(
eiα(−x0)
eiβ(−x1)

) ∣∣∣∣ t ∈ R

x20 + x21 = 1

}
is also a Lagrangian submanifold asymptotic to l0 and l1 and corresponds to
the first handle for the angles (α+ π, β + π).

Note that when sin(α) = − sin(β), one can also define two Lagrangian
handles parametrized by

h =

{
e−t

(
x0
x1

)
+ et

(
eiαx0

eiβ(−x1)

) ∣∣∣∣ t ∈ R

x20 + x21 = 1

}
and

h′ =

{
e−t

(
x0
x1

)
+ et

(
eiα(−x0)
eiβx1

) ∣∣∣∣ t ∈ R

x20 + x21 = 1

}
.

The smoothing. For some (large) T , denote by hT the image of the handle
for t between −T and T :

hT =

{
e−t

(
x0
x1

)
+ et

(
eiαx0
eiβx1

)∣∣∣∣ t ∈ [−T, T ]
x20 + x21 = 1

}
.

Fix a parameter T large. We smooth the handle at the ends of hT as
in [12]. Notice that the original surgery of Polterovich corresponds to the case
when α = β = π

2 and we can obtain any of our handles from Polterovich’s
surgery by applying the linear transformation of C2 = R4 with matrix⎛⎜⎜⎝

1 cos(α) 0 0
0 sin(α) 0 0
0 0 1 cos(β)
0 0 0 sin(β)

⎞⎟⎟⎠ .
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Hence we can smooth the handle at the boundary of hT when α = β = π
2 as

in [12] and then take the image of this smoothing by the linear map above
to get a smoothing in our case.

Note that this surgery lies inside a big ball of radius R, and outside
it, the Lagrangian submanifold obtained is the union of l0 and l1. As the
linear Lagrangians are homogenous with respect to homotheties centered
at the origin of C2, one can use a conformal transformation to make this
Lagrangian surgery happen in a ball B0 of small radius. Equivalently, one
can take the handle to be, not the image of the unit sphere in l0, but of a
smaller one

x20 + x21 = ε21

and the smoothing happening outside a ball of radius ε2 such that the La-
grangian submanifold after surgery identifies with the union of l0 and l1
outside a ball of radius ε for a parameter ε > ε2 > ε1 > 0 small.

Controling the area. Let us study the restriction of this surgery (before
conformal transformation) to one factor C of C2, for instance the first. The
trace of the surgery along this coordinate is given by:

h1T =
{
e−t + eteiα

∣∣ t ∈ [−T, T ]
}

for some large T , followed by some small smoothing between its ends and
the original l0 and l1, together with the symmetric curve about the origin.

Let us compute the area between the original l0 and l1 and one of the
arcs of the surgery, namely the area in grey in Figure 3.

As before, we can deduce this area from the computation of the area
when α = π

2 . In this case, h1T is the arc of hyperbola in the plane given by
the equation xy = 1 so that the area in grey is equal to 2T + 1. This area
is equivalent to 2T when T goes to +∞. Moreover, when T is large, the
smoothing between the original linear Lagrangians and the arc of hyperbola
is very small so that the area is still equivalent to 2T .

The other cases can be obtained from the α = π
2 situation by applying

the linear transformation of the plane C = R2 given by the matrix(
1 cos(α)
0 sin(α)

)
,

so that the area considered above is equivalent to 2 sin(α)T when T goes
to ∞.

In particular, when sin(α) = sin(β), the condition which ensures the
surgery to be Lagrangian, the areas between the original Lagrangians and the
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l0

l1

h1T

Figure 3: The intersection of the handle with the first C-factor of C2.

handle along each coordinate are equivalently the same. For T large enough,
we can (and will) do the smoothing so that the areas along each C-factor are
equal.

Now, given the conformality property of the surgery, we can make this
area as small as we want and equal to some a(ε) (small) if the surgery is
done inside the ball of radius ε.

In a general symplectic manifold. Let L0 and L1 be two Lagrangian
submanifolds of a symplectic manifold W intersecting transversally at a
point x0. One can take a Darboux chart U0 around x0 symplectomorphic
to a ball B0 endowed with the standard symplectic form of C2 such that
under the Darboux map, the two Lagrangians are the intersection of La-
grangian linear subspaces of C2 with the ball. One is then in the linear
situation from above and can perform the surgery in the ball as described
provided the sines of angles between the restriction of the linear Lagrangians
to each factor of C2 are the same (up to sign).

2.3. The interpretation of the gluing along the segment
x + y = πρ2

max

As we shall see in Section 4.2, the gluing along the segment x+ y = πρ2max

can be interpreted as the Lagrangian surgery along a circle of two Hamil-
tonian isotopic copies of the real part RP2 intersecting along a circle in the
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CP1 at infinity

{[z0 : z1 : z2] | z2 = 0} .
This circle is isotropic and, as in the case of the surgery at a point, the

surgery along an isotropic submanifold is a local process that we will now
describe.

The neighbourhood of an isotropic manifold. Let P be a symplectic
manifold of dimension 2n. Let N be an isotropic submanifold of dimension k.
In [15], Weinstein noticed that the tangent bundle of P along N is isomorphic
as symplectic vector bundle over N to

(TN ⊕ TN∗)⊕ SN(N,P ),

where SN(N,P ) = TN⊥/TN is called the symplectic normal bundle of N
in P .

Conversely, one can embed any manifold which is the base of a symplectic
vector bundle as an isotropic submanifold of a symplectic manifold such that
the tangent bundle looks like this:

Theorem 2.1 (The existence theorem, Weinstein [16]). Let N be a

manifold of dimension k and E → N a symplectic vector bundle with fibre

dimension 2(n− k), k ≤ n. Then N can be embedded as an isotropic subman-

ifold of a symplectic manifold P (E) of dimension 2n such that the tangent

bundle of P (E) along N is isomorphic as symplectic vector bundle to the

sum (TN ⊕ TN∗)⊕ E.

This space P (E) is the Whitney sum P (E) = T ∗N ⊕ E as Weinstein
explains in [15]. The symplectic structure on P (E) is not canonical and is
described in [16].

And we have a uniqueness result:

Theorem 2.2 (Weinstein [15]). The isotropic manifold theorem: Let N
be a manifold of dimension k. Then the extensions of N to a 2n-dimensional

symplectic manifold in which N is isotropic are classified, up to local sym-

plectomorphism about N , by the isomorphism classes of 2(n− k)-dimensional

symplectic vector bundles over N .

This means that if N is an isotropic submanifold of a symplectic man-
ifold P , then a neighbourhood of N in P is symplectomorphic to a neigh-
bourhood of the embedding of N in P (E) for E = SN(N,P ).
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We will extend the surgery at an intersection point of two Lagrangian
submanifolds to the surgery of two Lagrangian submanifolds intersecting
cleanly (in the sense of Pozniak [13]) along an isotropic submanifold. In his
thesis, Pozniak proves

Theorem 2.3 (Pozniak [13]). If two Lagrangian submanifolds L0 and L1

of a symplectic manifold P intersect cleanly along N , that is if N = L0 ∩ L1

and for each x ∈ N , TxN = TxL0 ∩ TxL1, then there exists a vector bun-

dle L −→ N such that a neighbourhood of N in P is symplectomorphic to

a neighbourhood of N in T ∗L, L0 being mapped to the zero section of T ∗L
and L1 to the conormal of N in T ∗L.

In this setting, identifying L0 and L1 with their image in T ∗L, one can
see that E = SN(N,T ∗L) is isomorphic to the Whitney sum of the vector
bundles L → N and L∗ → N and that in the Whitney sum P (E) = T ∗N ⊕
E, the Lagrangian L0 is mapped to the zero section in the T ∗N -summand
and to L⊕ {0} in the E-summand and the Lagrangian L1 is mapped to the
zero section in the T ∗N -summand and to {0} ⊕ L∗ in the E-summand, so
that the intersection of L0 and L1 is the sum of the zero-section of T ∗N and
the transverse intersection in each fibre of E of Lx ⊕ {0} with {0} ⊕ L∗

x.
The surgery we will construct in this neighbourhood will also fiber over N ,

be equal to the zero-section in the T ∗N -summand and will resolve the inter-
section in each fiber of E, so that it is enough to define it in the symplectic
normal bundle E.

The bundle surgery. In this paper, the constructions are done only in
real dimension 4 with the clean intersection of two Lagrangians along an
isotropic circle. The symplectic normal bundle E = SN(N,T ∗L) is then a
rank 2 symplectic vector bundle. There exists only one rank 2 symplectic
vector bundle over the circle, the trivial bundle S1 × C. However, the rank 1
Lagrangian subbundle L → N can be the trivial line bundle or the non-
orientable line bundle over the circle. So in real dimension 4 one will be in
one of the following case:

• either E is S1 × C and L → N is S1 × R, the trivial real subbundle;

• or E can be described as [0, 1]× C identifying the fiber at 0 and the
fiber at 1 by multiplication by −1 and L → N is the associated sub-
bundle [0, 1]× R with the same identification.

Now if the restriction of the Lagrangian L1 to E is the associated sub-
bundle with fiber eiαR as it will be the case in our examples, one can perform
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a surgery in dimension 1 parametrized in each fiber as{
e−tx+ eteiαx

∣∣ t ∈ [−T, T ], x ∈ R, x2 = ε21
}

or {
e−tx+ eteiα(−x)

∣∣ t ∈ [−T, T ], x ∈ R, x2 = ε21
}
,

followed by a smoothing at the end.
Now note that in this situation, the restrictions of L0 and L1 are in-

variant by multiplication by −1, so the handles and the smoothing can be
made invariant as well. Therefore, in both cases, the trivial and the non-
trivial symplectic bundle over S1, the change of trivialisation preserves the
construction so that the handle can be defined globally and fibers over S1.

3. Construction of new monotone Lagrangian submanifolds

using the surgery at a point

3.1. A non-orientable monotone Lagrangian in CP2

In the following sections, we explain how to get via a Lagrangian surgery on
two copies of RP2 a monotone Lagrangian connected sum of a Klein bottle
and an orientable surface of genus two in CP2.

3.1.1. The construction. We will take two copies of RP2 in CP2 that
intersect in three points exactly, the three points of CP2 projecting on the
three corners of the image of the moment map. Let us consider:

L0 = { [x0 : x1 : x2] ∈ CP
2
∣∣x0, x1, x2 ∈ R}

and

L1 = { [eiπ3 x0 : e−iπ
3 x1 : x2] ∈ CP

2
∣∣x0, x1, x2 ∈ R}.

These are two copies of RP2 in CP2, L1 being obtained from L0 by a Hamil-
tonian isotopy. Indeed, L1 is the image of L0 under the map given by the
action of the following diagonal matrix on the two first coordinates of the
homogeneous coordinates:

A =

(
ei

π

3 0

0 e−iπ
3

)
.

It is the time-one map of the transformation given by

At =

(
eit

π

3 0

0 e−itπ

3

)
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At ∈ SU(2) and it defines a Hamiltonian diffeomorphism Φt of CP2.
One can check that these two copies of RP2 intersect in the three points

[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0].
We want to perform a Lagrangian surgery at each intersection point as

described in Section 2.2. Let us give the choices of handles we make for the
construction.

At [0 : 0 : 1], the local chart is

[z0 : z1 : z2] �→
(
z0
z2

,
z1
z2

)
,

so that locally, L0 is the real plane

l0 = {(x0, x1)|x0, x1 ∈ R}

and L1 is

l1 = {(eiπ3 x0, e−iπ
3 x1)|x0, x1 ∈ R}.

We are in the case when sin(π3 ) = − sin(−π
3 ), so that we need the modified

version of the handle to do the Lagrangian surgery. We will use the one
defined by the smoothing of:{

e−t

(
x0
x1

)
+ et

(
ei

π

3 x0
e−iπ

3 (−x1)

)∣∣∣∣ t ∈ R

x20 + x21 = ε21

}
.

At [0 : 1 : 0], the local chart is

[z0 : z1 : z2] �→
(
z0
z1

,
z2
z1

)
,

so that locally, L0 is the real plane

l0 = {(x0, x2)|x0, x1 ∈ R}

and L1 is

l1 = {(ei 2π3 x0, ei
π

3 x2)|x0, x2 ∈ R}.
As sin(2π/3) = sin(π/3), we can use the first description of the handle to
define the Lagrangian surgery:{

e−t

(
x0
x2

)
+ et

(
ei

2π

3 x0
ei

π

3 x2

)∣∣∣∣ t ∈ R

x20 + x22 = ε21

}
.
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At [1 : 0 : 0], the local chart is

[z0 : z1 : z2] �→
(
z1
z0

,
z2
z0

)
,

so that locally, L0 is the real plane

l0 = {(x1, x2)|x1, x2 ∈ R}

and L1 is

l1 = {(e−i 2π
3 x1, e

−iπ
3 x2)|x1, x2 ∈ R}.

As sin(−2π/3) = sin(−π/3), we can also use the first description of the han-
dle to do the Lagrangian surgery. But for the monotonicity condition to be
satisfied in Section 3.1.2, we will use instead the smoothing of the h′-handle:{

e−t

(
x1
x2

)
+ et

(
e−i 2π

3 (−x1)

e−iπ
3 (−x2)

)∣∣∣∣ t ∈ R

x21 + x22 = ε21

}
.

After these surgeries, the projection of the Lagrangian L we constructed
will be contained in the polytope obtained from the polytope of CP2 by
cutting the three vertices as in Figure 4.

3

3

ε21

ε21 3− ε21

3− ε21

Figure 4: The image of L under the moment map is contained in and
smoothly approximates the shaded polytope.

The choice of these copies of RP2 and these surgeries is motivated by
the monotonicity condition we aim to prove for this construction in the next
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section. Let us describe the restriction of the surgery along the coordinate-
CP1s, that is the projective lines which are the preimages of the edges on
the boundary of the moment polytope and can be defined by the vanishing
of one of the homogeneous coordinates. We will describe the case of

{[z0 : z1 : z2] | z0 = 0},

the other coordinate-CP1s being similar.
Along the sphere z0 = 0, L0 and L1 are two circles intersecting transver-

sally at the north and the south pole. Locally in the chart C at [0 : 0 : 1],
we have L0 on the real axis and L1 on the axis e−iπ

3 R. In this chart, the
intersection of the chosen surgery with {z0 = 0} consists in two curves (see
Figure 5-left): inside a ball centered at the origin and of area ε they lie in
two opposite "quadrants" defined by these two axes, that is in the quadrants
making an angle of 2π

3 .

L0

L1

L

L0

L1

L

Figure 5: The surgery along z0 = 0 in the chart at [0 : 0 : 1] (on the left) and
in the chart at [0 : 1 : 0] (right).

Locally at [0 : 1 : 0] we have a similar picture but with curves in the
quadrants making an angle of π

3 (see Figure 5-right).
Away from the small neighbourhoods where we do the surgery, namely

on the part where we glue the two charts, the restriction of L is the restric-
tion of L0 and L1 to this complex projective line. One sees then that the
restriction of L to this CP1 is one circle joining L0 and L1 through the two
handles constructed at each intersection point and looking like the seam of
a tennis ball (see Figure 6).

If we had chosen the first handle we described in Section 2.2 at [0 : 0 : 1],
the restriction of L to z0 = 0 would have been the union of two circles.

Actually, the choice of handles we made is such that in each of the other
coordinate-CP1s (namely z1 = 0 and z2 = 0), the restriction of L is one circle
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L0L1

Figure 6: The intersection of the surgery with {z0 = 0}.

joining L0 and L1 through the two handles constructed at each intersection
point at the poles of CP1. Indeed, in the case of two circles in the intersec-
tion with a coordinate-CP1, one cannot expect to satisfy the monotonicity
condition. Note however that as the two intersecting Lagrangians L0 and L1

are not orientable, it follows from [12, Proposition 2] that the topology of
the Lagrangian we obtain after surgeries does not depend on the choice of
handles.

3.1.2. Monotonicity. Let us normalize the symplectic form on CP2 such
that the area of a projective line is 3:∫

CP1

ω = 3.

With this normalization, CP2 is monotone with monotonicity constant 1:

∀v ∈ H2(CP
2),

∫
v
ω = c1(TCP

2)(v)

and any monotone Lagrangian submanifold L will have monotonicity con-
stant equal to half the monotonicity constant of CP2 (see [11]), namely 1

2 :

∀u ∈ H2(CP
2, L),

∫
u
ω =

1

2
μL(u),
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where μL is the Maslov class of L.

Theorem 3.1. The construction of Section 3.1.1 produces a monotone La-

grangian embedding of the connected sum of a Klein bottle and a compact

orientable surface of genus 2 in CP2.

Proof. Topologically, the surgery at a point between two copies of the real
projective plane gives the connected sum of these two spaces, namely a Klein
bottle. Then attaching a 2-dimensional handle corresponds to a connected
sum with a torus, so that the Lagrangian submanifold constructed in 3.1.1
is diffeomorphic to the connected sum

L ∼= RP
2#RP

2#T
2#T

2 ∼= K#Σ2

where K is a Klein bottle and Σ2 is a compact orientable surface of genus 2.
We know that H2(CP

2, L) ∼= H2(CP
2)⊕H1(L) as H2(L) = 0. Let us ex-

amine the monotonicity condition on each factor of this direct sum.
On the factor H2(CP

2), we already have the monotonicity condition from
the one on CP2 so that we only need to verify the monotonicity condition on
the disks representing generators of H1(L). This means also that for a given
generator of H1(L), it is enough to satisfy the monotonicity condition for one
choice of disk with boundary this generator, as the symplectic invariants for
another disc with the same boundary will differ by the invariants coming from
a sphere (the sphere obtained by gluing the two disks along their boundary)
where the condition is already verified.

Now H1(L) = Z5 ⊕ Z/2 can be generated by the two loops generating
the first homology group of each copy of RP2, the three loops inside each
handle generating the homology of the handle and three loops "between" the
handles (see Figure 7).

Any loop siting in one of the original copies of RP2, L0 or L1, satisfies
the monotonicity condition because L0 and L1 are monotone.

As a representative of a generator of the homology of the handle, one
can take the circle on one of the extremities of the handle lying on one of the
copies of the Lagrangian RP2, say for example L0. More explicitely, one may
take the image of the circle {(x0, x1), x20 + x21 = ε2}, for ε > ε1 small, in the
chart around an intersection point of L0 and L1. We take a disc in CP2 with
boundary this circle in L and compute the symplectic invariants of that disc.
One can for example choose the disc in L0 which was cut out from L0 to
built L. But as the disc is Lagrangian, the two invariants, area and Maslov
class, vanish on this disc.
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RP2
RP2

Figure 7: Three loops between the handles.

One is left with checking the monotonicity condition on the circles be-
tween handles. One can prove that the monotonicity condition is satisfied
on the three circles drawing the tennis ball seam on the coordinate-CP1s
we described at the end of the previous section and the discs they bound
on these CP1. Unfortunately these circles are not in our set of generators
for H1(L), since their homology class is 2 times the loop between the cor-
responding handles depicted in Figure 7. But we can use for the generators
loops which partially follow these seams. Let us describe a loop γ we can
choose between the handles created at [0 : 0 : 1] and [0 : 1 : 0] and a disk it
bounds. Two other loops between handles can be constructed in a similar
way.

The loop γ is almost entirely lying in the coordinate CP1 of homogeneous
equation z0 = 0. See Figure 8.

It is based at a point where L coincides with L0, for example the point a
of local coordinates (z0, z1) = (0, ε) in the local chart at [0 : 0 : 1]. From this
point, follow the handle at [0 : 0 : 1] along the path parametrized by

{(0, e−tε1 + ete−iπ
3 (−ε1))}
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a b

c d

e

Figure 8: The loop γ.

(we include here the smoothing by considering we can locally take the param-
etrization of the handle for t varying from −∞ to +∞) till the point b
of local coordinates (z0, z2) = (0, e−iπ

3 ε). Then follow L1 ∩ {z0 = 0} "up"
towards [0 : 1 : 0] till the point c of local coordinates (z0, z2) = (0, ei

π

3 (−ε))
in the local chart at [0 : 1 : 0]. Next, γ goes back to L0 through the handle
at [0 : 1 : 0], following "backwards" the path parametrized by

(0, e−t(−ε1) + etei
π

3 (−ε1))

in local coordinates in the chart at [0 : 1 : 0] till it reaches the point d of
local coordinates (0,−ε) in the chart at [0 : 0 : 1]. The path then follows
L0 ∩ {z0 = 0} "down" to [0 : 0 : 1] till the point e of local coordinates (0,−ε)
in the chart at [0 : 0 : 1]. Now we close the loop γ with a path contained
in L0 ∩ L but leaving the coordinate-CP1 {z0 = 0} by following the half
circle parametrized in the chart at [0 : 0 : 1] by

{(−ε sin(t),−ε cos(t))| t ∈ [0;π]}.

This loop encloses a disk u in CP2 which can be described as the union of
the portion of sphere {z0 = 0} lying between L0 and L1 in the sector making
a π

3 -angle and delimited by γ in the "north", the portion of the same sphere
in the 2π

3 -sector between γ and the segment in L0 (but not L) of coordinates
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in the chart at [0 : 0 : 1]

[e; a] = {(0, z2)| z2 ∈ [−ε, ε]},

and the half disk in L0 enclosed by this segment [e; a] and γ (the part of the
disk u in {z0 = 0} and the half disk are glued along the segment [e; a]).

This disk u and the similar ones we can build between the other handles
together with the disks considered before generate H2(CP

2, L), so that the
monotonicity of L will follow from the next two lemmas which compute the
area and the Maslov class of u. �

Lemma 3.2. The disk u has area
1

2
.

Proof. We will compute the area of u by adding the area of the three portions
we described above.

As we noticed in Section 2.2, we can make the Lagrangian surgery such
that the areas between the restrictions to each C-factor of C2 of the original
Lagrangians and the handles are small and equal. We do the surgeries as
in Section 2.2 so that these areas are equal to a(ε) small at each of the
intersection points.

The area of the first portion is then the area of the π
3 -sector, namely

one sixth of the total area of the sphere, minus the area lost at the handle,
namely a(ε). The area in the other sector of the coordinate projective line
is the area gained through the handle, that is a(ε). The contribution of the
portions of the disk in the coordinate sphere is thus 1

2 . The contribution
of the half-disk in L0 is zero as this half-disk lies totally in a Lagrangian
submanifold. �

Lemma 3.3. The disk u has Maslov class 1.

Proof. The first crucial remark is that the disk u is lying entirely in the chart
at [0 : 0 : 1], so that the tangent bundle of CP2 is already trivialized along
the disk when we work in this chart. Now, to compute the Maslov class of
this disk, we will write the loop in the Lagrangian Grassmannian we have
along the boundary γ as the action of a loop A(t) of matrices in U(2) on the
reference linear Lagrangian space R2 of C2. The Maslov class μ(u) is then
the degree of the square of the determinant of A seen as a map from S1 to S1.

To describe this action, we will decompose the action along the different
portions of the loop we considered above. The loop γ is the concatenation of
the paths γ1 from a to b, γ2 from b to c, ... and, γ5 from e to a. On each of
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these paths, we will decompose the action of U(2) so that the Maslov class
of u can be written as the product of these different paths of matrices.

At the point a, we are in L0 ∩ L, with L0 a linear Lagrangian in the
chart, so that the submanifold identifies with its tangent space, namely R2,
our reference linear Lagrangian subspace.

Between the points b and c, we stay on L1, the tangent space is identically
equal to the linear Lagrangian subspace l1 = {(eiπ3 x0, e−iπ

3 x1)|x0, x1 ∈ R} so
that A(t) is the identity along γ2 and this portion has no contribution to the
degree.

Similarly, along γ4 and γ5, we stay on the same linear Lagrangian (ei-
ther l1 or l0) so that the matrix A(t) is again the identity along these portions
of γ.

We are left to compute the contributions of the handles to the Maslov
class.

Computing the contribution of the handle at [0 : 0 : 1] along γ1 is straight-
forward because we have the parametrization of the handle explicitely writ-
ten in this chart, namely{

e−t

(
x0
x1

)
+ et

(
ei

π

3 x0
e−iπ

3 (−x1)

)∣∣∣∣ t ∈ R

x20 + x21 = ε21

}
.

Then the tangent spaces to that handle along the points in {z0 = 0} can be
parametrized by{

e−t

(
X0

−ε1T

)
+ et

(
ei

π

3 X0

e−iπ
3 (−ε1)T

)∣∣∣∣t, T,X0 ∈ R

}
.

For t going to −∞, the tangent space is asymptotic to R2 for which we
can take the canonical basis {(1, 0), (0, 1)}. Through the handle, the vectors
(X0,−ε1T ) = (1, 0) and (X0,−ε1T ) = (0, 1) are mapped to (X0,−ε1T ) =
(ei

π

3 , 0) and (X0,−ε1T ) = (0, e−iπ
3 ), a basis of l1 through a path of matrices

homotopic to

A1(s) =

(
e−isπ

3

0 eis
π

3

)
for s going from s = 0 to s = 1. The determinant of A1 being identically
equal to 1, this part of γ will not contribute to the degree.

The contribution of the handle at [0 : 1 : 0] can also be computed thanks
to the explicit parametrization of the handle, but we have first to write it in
the chart at [0 : 0 : 1] for our computation. In that chart, the handle is now
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parametrized by{(
e−tx0 + etei

2π

3 x0

e−tx2 + etei
π

3 x2
,

1

e−tx2 + etei
π

3 x2

)∣∣∣∣∣ t ∈ R

x20 + x22 = ε21

}
,

so that the tangent spaces are described by{(
e−tX0 + etei

2π

3 X0

e−tx2 + etei
π

3 x2
,−−e−tx2T + etei

π

3 x2T

(e−tx2 + etei
π

3 x2)2

)∣∣∣∣∣ t, T,X0 ∈ R

x2 = −ε1

}
.

When t tends to −∞, the handle is indeed asymptotic to l0 and when t
tends to +∞, the handle is asymptotic to l1 = {(eiπ3 x0, e−iπ

3 x1)|x0, x1 ∈
R}. The canonical basis {(1, 0), (0, 1)} is mapped through the handle to
{(eiπ3 , 0), (0,−e−iπ

3 )}. The action on the first coordinate can be homotopic
to the path in U(1) s ∈ [0, 1] �→ eis

π

3 or to s ∈ [0, 1] �→ e−is 5π

3 . But for t = 0
at the middle of the handle, one can check via the formula that the image of
the vector (1, 0) is positively proportional to the vector (ei

π

6 , 0) so that the
path is

s ∈ [0, 1] �→ eis
π

3 .

For the second coordinate, in a similar manner one can act either by a path
homotopic to s ∈ [0, 1] �→ eis

2π

3 or to s ∈ [0, 1] �→ e−is 4π

3 . For t = 0 at the
middle of the handle, one can check via the formula that the image of the
vector (0, 1) is positively proportional to the vector (0,−ei

π

3 ) so that the
path is

s ∈ [0, 1] �→ e−is 4π

3 .

The contribution of the handle along {z0 = 0} from l0 to l1 is thus homotopic
to

s ∈ [0, 1] �→
(

eis
π

3

0 e−is 4π

3

)
.

But along γ3 we move from L1 to L0 so that the matrix of the action of U(2)
along this portion of the boundary is homotopic to

s ∈ [0, 1] �→
(

e−isπ

3

0 e+4isπ

3

)
,

whose determinant squared is equal to

[0, 1] −→ S1

s �−→ e2isπ
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which is of degree 1. In conclusion, the Maslov class of u being the sum of
all the contributions of the portions of the loop γ is equal to 1. �

3.2. A monotone K#Σ4 in CP1
× CP1

In this section, we explain the construction of a monotone Lagrangian em-
bedding of the connected sum of a Klein bottle and a surface of genus 4 in
the product CP1 × CP1.

Let us normalize the symplectic form on CP1 × CP1 such that the area
of a projective line is 2: ∫

CP1

ω = 2.

With this normalisation, CP1 × CP1 is monotone with monotonicity con-
stant 1:

∀v ∈ H2(CP
1 × CP

1),

∫
v
ω = c1(T (CP

1 × CP
1))(v),

and any monotone Lagrangian submanifold L will have a monotonicity con-
stant equal to 1

2 :

∀u ∈ H2(CP
1 × CP

1, L),

∫
u
ω =

1

2
μL(u).

To construct a monotone K#Σ4 in CP1 × CP1, we take two Hamiltonian
isotopic copies of the real part of CP1 × CP1, i.e. two Lagrangian tori, that
intersect in four points and perform a suitable Lagrangian surgery at these
four points.

The image of the resulting Lagrangian L under the moment map will
be contained in the original moment polytope of the ambient symplectic
manifold choped at its four corners (see Figure 9).

In view of the monotonicity condition, we have here two possible choices
for the copies of the real part and corresponding surgeries.

One choice is to take one copy of the real part to be

L0 = {([x0 : x1], [u0 : u1]) ∈ CP
1 × CP

1
∣∣x0, x1, u0, u1 ∈ R}

and the second one its "rotation" by i:

L1 = {([eiπ2 x0 : x1], [ei
π

2 u0 : u1]) ∈ CP
1 × CP

1
∣∣x0, x1, u0, u1 ∈ R}.
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2

2

ε21

ε21 2− ε21

2− ε21

Figure 9: The image of L under the moment map is contained in and
smoothly approximates the shaded polytope.

They intersect each other in the four points

([0 : 1], [0 : 1]), ([1 : 0], [0 : 1]), ([0 : 1], [1 : 0]), ([1 : 0], [1 : 0]),

the preimage of the four corners under the standard moment map. Then
choose the following handles at the intersection points:

• at ([0 : 1], [0 : 1]), l0 = {(x0, u0)|x0, u0 ∈ R}, l1 = {(ix0, iu0)|x0, u0 ∈
R}, and we insert the handle:{

e−t

(
x0
u0

)
+ et

(
ix0
iu0

)∣∣∣∣ t ∈ R

x20 + u20 = ε1

}
,

• at ([1 : 0], [0 : 1]), l0 = {(x1, u0)|x1, u0 ∈ R}, l1 = {(−ix1, iu0)|x1, u0 ∈
R}, and we insert the handle:{

e−t

(
x1
u0

)
+ et

( −i(−x1)
iu0

)∣∣∣∣ t ∈ R

x21 + u20 = ε1

}
,

• at ([0 : 1], [1 : 0]), l0 = {(x0, u1)|x0, u1 ∈ R}, l1 = {(ix0,−iu1)|x0, u1 ∈
R}, and we insert the handle:{

e−t

(
x0
u1

)
+ et

(
ix0

−i(−u1)

)∣∣∣∣ t ∈ R

x20 + u21 = ε1

}
,
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• at ([1 : 0], [1 : 0]), l0={(x1, u1)|x1, u1∈R}, l1={(−ix1,−iu1)|x1, u1∈
R}, and we insert the handle:{

e−t

(
x1
u1

)
+ et

( −i(−x1)
−i(−u1)

)∣∣∣∣ t ∈ R

x21 + u21 = ε1

}
,

so that the intersection of the Lagrangian obtained by surgery with any of
the CP1 which are preimages of the edges on the boundary of the moment
polytope is one circle of the shape of the tennis ball seam as before.

As in the previous section, one cannot take this circle to check the mono-
tonicity of the surface as it goes around the handle twice, but we can con-
struct similar loops going only once around the handle and check that they
satisfy the monotonicity condition.

Alternatively, one can choose the surgeries such that the intersection of
the Lagrangian after surgery with each coordinate-CP1 is a union of two
circles. To ensure monotonicity in this case, we need each circle to enclose
an area slightly bigger than the one we get with the choice of L1 above.

We will take the same Lagrangian L0 and for L1 the following Hamilto-
nian isotopic copy:

L1 =
{(

[ei(
π

2
+δ)x0 : x1], [e

i(π

2
+δ)u0 : u1]

)
∈ CP

1 × CP
1
∣∣∣x0, x1, u0, u1 ∈ R

}
,

for a small positive parameter δ that will be fixed later. They intersect each
another again in the four corners of the moment polytope of CP1 × CP1.

In each chart around the intersection points, we are making the following
choices:

• at ([0 : 1], [0 : 1]), L0 and L1 are the linear subspaces l0 = {(x0, u0) |
x0, u0 ∈ R}, l1 = {(ei(π

2
+δ)x0, e

i(π

2
+δ)u0)|x0, u0 ∈ R}, and we insert the

handle:{
e−t

(
x0
u0

)
+ et

(
ei(

π

2
+δ)x0

ei(
π

2
+δ)u0

)∣∣∣∣∣ t ∈ R

x20 + u20 = ε1

}
;

• at ([1 : 0], [0 : 1]), L0 and L1 are the linear subspaces l0 = {(x1, u0) |
x1, u0 ∈ R}, l1 = {(e−i(π

2
+δ)x1, e

i(π

2
+δ)u0)|x1, u0 ∈ R}, and we insert

the handle:{
e−t

(
x1
u0

)
+ et

(
e−i(π

2
+δ)x1

ei(
π

2
+δ)(−u0)

)∣∣∣∣∣ t ∈ R

x21 + u20 = ε1

}
;
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• at ([0 : 1], [1 : 0]), L0 and L1 are the linear subspaces l0 = {(x0, u1) |
x0, u1 ∈ R}, l1 = {(ei(π

2
+δ)x0, e

−i(π

2
+δ)u1)|x0, u1 ∈ R}, and we insert

the handle:{
e−t

(
x0
u1

)
+ et

(
ei(

π

2
+δ)(−x0)

e−i(π

2
+δ)u1

)∣∣∣∣∣ t ∈ R

x20 + u21 = ε1

}
;

• at ([1 : 0], [1 : 0]), L0 and L1 are the linear subspaces l0 = {(x1, u1) |
x1, u1 ∈ R}, l1 = {(e−i(π

2
+δ)x1, e

−i(π

2
+δ)u1)|x1, u1 ∈ R}, and we insert

the handle:{
e−t

(
x1
u1

)
+ et

(
e−i(π

2
+δ)(−x1)

e−i(π

2
+δ)(−u1)

)∣∣∣∣∣ t ∈ R

x21 + u21 = ε1

}
.

Theorem 3.4. The construction produces a monotone Lagrangian embed-

ding of a compact surface K#Σ4 in CP1 × CP1 for an appropriate choice

of δ.

Proof. Note that even though the two Lagrangian submanifolds L0 and L1

are oriented (they are tori), one can check that given an orientation of the
two tori, two of these handles do not preserve the orientation (this cannot
be avoided, it is related to the fact that the signs of the intersection points
cancel in pairs for any choice of orientation). Therefore, we get through these
four surgeries a non-orientable Lagrangian which is the connected sum of the
two initial tori with one torus and two Klein bottles. It is diffeomorphic to

L ∼= K#Σ4.

Following the remarks from Section 2.2, we can do the surgery in each
corner of the moment map such that the areas between the handle and
the initial Lagrangians are small and equal along each CP1 preimage of the
boundary of the moment polytope. With the choice of handles we made
above, the intersection of L with each coordinate-CP1 consists of two circles
lying in the sectors of the coordinate sphere making an angle π

2 + δ.
We will pick one of these circles and the disk u it encloses in one of the

π
2 + δ-sectors. The area of this disk is equal to the difference of the area of
one sector and 2a(ε):

1

2
+

δ

π
− 2a(ε).

We can now fix δ (i.e. take δ = 2πa(ε)) such that the area of u is equal to 1
2 .
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We now compute that the Maslov class of u is equal to 1. Let us take u
in the projective line of homogeneous equation z0 = 0 in the homogeneous
coordinates ([z0 : z1], [w0 : w1]) of CP1 × CP1. In a similar way as in Sec-
tion 3.1.2, we trivialize the tangent bundle of CP1 × CP1 over u by consider-
ing u in the chart of ([0 : 1], [0 : 1]). As before, one can decompose the loop
along its boundary in four paths: two paths lying on the restriction of the
initial Lagrangians to this chart and two paths inside the handles. For the
first type of paths, as the restrictions of L0 and L1 are linear in the chart,
they will not contribute to the Maslov class. The handle at ([0 : 1], [0 : 1]) is
contributing with a path from L0 to L1 homotopic to

s ∈ [0, 1] �→
(

eis(
π

2
+δ)

0 e−is(π

2
−δ)

)
.

The handle at ([1 : 0], [0 : 1]) is contributing with a path from L0 to L1

homotopic to

s ∈ [0, 1] �→
(

e−is(π

2
−δ)

0 eis(
3π

2
+δ)

)
,

so that the Maslov class of u is the degree of

s ∈ [0, 1] �→ e−is4δeis(2π+4δ)

that is equal to 1.
This is enough for checking the monotonicity of this Lagrangian K#Σ4

in CP1 × CP1 as the relative homology group H2(CP
1 × CP1,K#Σ4) is gen-

erated by disks with boundary either on L0 or L1 (which satisfy the mono-
tonicity condition as L0 and L1 are monotone) and the disks considered
above in the CP1’s. �

4. Construction of monotone Lagrangian submanifolds using

the local model along an isotropic circle

4.1. Case of two copies of a torus intersecting along two circles
in CP1

× CP1

Let P = CP1 × CP1 with the product symplectic form normalized as before.
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Let us consider the two following Hamiltonian isotopic copies of the real
part of P :

L0 = {([x0 : x1], [u0 : u1]) ∈ CP
1 × CP

1
∣∣x0, x1, u0, u1 ∈ R}

and

L1 = {([eiπ2 x0 : x1], [u0 : u1]) ∈ CP
1 × CP

1
∣∣x0, x1, u0, u1 ∈ R}.

The two Lagrangians L0 and L1 intersect exactly along two isotropic
circles:

L0 ∩ L1 = {[0 : 1]} × RP
1 ∪ {[1 : 0]} × RP

1.

Let us study the neighbourhood of N = {[0 : 1]} × RP1 in P . The cir-
cle N can be covered by the following two charts of CP1 × CP1:

φ0 : U0 = {[z0 : z1] | z1 �= 0} × {[w0 : w1] | w0 �= 0} −→ C⊕ C

([z0 : z1], [w0 : w1]) �−→
(
z0
z1
, w1

w0

)
and

φ1 : U1 = {[z0 : z1] | z1 �= 0} × {[w0 : w1] | w1 �= 0} −→ C⊕ C

([z0 : z1], [w0 : w1]) �−→
(
z0
z1
, w0

w1

)
so that T (CP1 × CP1)|N can be trivialised along N0 = N ∩ U0 and N1 =
N ∩ U1 as

T (CP1 × CP
1)|Nj

∼= Nj × (C⊕ C),

where the first summand is just C = T[0:1]CP
1. In these trivialisations,

TN|Nj

∼= Nj × ({0} ⊕ R)

and we have

TN⊥
|Nj

∼= Nj × (C⊕ R)

so that

SN(N,CP1 × CP
1)|Nj

= TN⊥/TN|Nj

∼= Nj × C,

and the change of trivialisation from N0 × C to N1 × C in a fibre of a
point ([0 : 1], [c : d]) of N0 ∩N1 is the identity as the fibre at each point
is C = T[0:1]CP

1. We are in the case where the symplectic normal bundle is
the trivial complex line bundle over N .

Now, in the trivialisations, the restriction of the initial Lagrangians
to SN(N,CP1 × CP1)|Nj

are:
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• for L0: Nj × R,

• for L1: Nj × ei
π

2 R,

with the identity as change of trivialisation so that the restrictions of L0

and L1 are globally products N × R and N × ei
π

2 R respectively.
As we saw in Section 2.3, this means that the fibrewise surgery with fixed

parameter ε globalizes to a bundle surgery over N .
The same construction can be done along the other intersection cir-

cle N ′ = {[1 : 0]} × RP1.
Let us describe now the choice of surgeries we make to produce a mono-

tone Lagrangian. In the symplectic normal bundle of N , for any fiber C of a
point p ∈ N we choose the surgery{

e−tx0 + etei
π

2 x0
∣∣x0 ∈ R, x20 = ε21

}
.

For the other intersection circle N ′, the symplectic normal bundle is again
trivial and the restriction of L0 and L1 are N ′ × R and N ′ × e−iπ

2 R respec-
tively, and we choose the following handle :{

e−tx1 + etei
π

2 (−x1)
∣∣x1 ∈ R, x21 = ε21

}
.

The Lagrangian constructed via these surgeries fibers over N (and N ′)
as both handles and the Lagrangians L0 and L1 do, the projection being the
restriction of the projection of the product onto its second factor:

pr2 : CP
1 × CP

1 −→ CP
1.

It actually lies in the CP1-bundle over N , given by restricting pr2 to CP1 ×
RP1. In a fiber CP1 of this fibration, with our choice of surgery, the restriction
of L is one circle in the tennis ball seam shape cutting the fiber into two disks
of equal area 1. As through this fibration we see that the Lagrangian is just
a product of N and the tennis ball seam, the Maslov class of any of these
disks of area 1 is the Maslov class of the tennis ball seam in the fiber CP1,
that is 2.

This shows that the Lagrangian we constructed is a torus and that it is
monotone.

Unfortunately, this torus is not new, it is Hamiltonian isotopic to the
real part of CP1 × CP1. For the isotopy we could just take the extension of
the exact Lagrangian isotopy that isotopes in each fiber of pr2 the tennis
ball seam on the real line RP1. We have proved:
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Theorem 4.1. The Lagrangian bundle surgery construction above produces

a monotone Lagrangian embedding of a torus L in CP1 × CP1 which is

Hamiltonian isotopic to the real part of CP1 × CP1 and projects under the

moment map to a smooth interior approximation of the shaded polytope in

Figure 10.

2

2

ε21 2− ε21

Figure 10: The image of L under the moment map is contained in and
smoothly approximates the shaded polytope.

4.2. Recovering the Chekanov–Schlenk torus : Case of two copies
of RP2 intersecting in a point and along a circle in CP2

We detail here how our method produces a torus Hamiltonian isotopic to the
model torus we started with, i.e. the exotic torus of Chekanov and Schlenk.

Theorem 4.2. With a Lagrangian surgery at a point and a Lagrangian

surgery along a circle of two copies of RP2 one can construct a monotone

Lagrangian embedding of the torus in CP2 that projects through the moment

map to a smooth interior approximation of the shaded polytope in Figure 11.
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3

3

ε21

ε21 3− ε21

3− ε21

Figure 11: The image of the torus under the moment map is contained in
and smoothly approximates the shaded polytope.

Proof. Let us consider the following two Hamiltonian isotopic copies of RP2

in CP2:

L0 = { [x0 : x1 : x2] ∈ CP
2
∣∣x0, x1, x2 ∈ R}

and

L1 = { [eiαx0 : eiαx1 : x2] ∈ CP
2
∣∣x0, x1, x2 ∈ R},

for some α ∈ (0, π). The two Lagrangians L0 and L1 intersect exactly at the
point [0 : 0 : 1] and along the isotropic circle

N = {[x0 : x1 : 0] | (x0, x1) ∈ R
2 \ {(0, 0)}}.

We will make a Lagrangian bundle surgery along the isotropic circle and
a simple Lagrangian surgery at the point [0 : 0 : 1].

Let us first understand the neighbourhood of N in CP2. The circle N
can be covered by the following two charts of CP2:

φ0 : U0 = {[z0 : z1 : z2] | z0 �= 0} −→ C⊕ C

[z0 : z1 : z2] �−→
(
z1
z0
, z2z0

)
and

φ1 : U1 = {[z0 : z1 : z2] | z1 �= 0} −→ C⊕ C

[z0 : z1 : z2] �−→
(
z0
z1
, z2z1

)
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so that TCP2
|N can be trivialised along N0 = N ∩ U0 and N1 = N ∩ U1 as

TCP2
|Nj

∼= Nj × (C⊕ C).

In these trivialisations,

TN|Nj

∼= Nj × (R⊕ {0})

and we have

TN⊥
|Nj

∼= Nj × (R⊕ C)

so that

SN(N,CP2)|Nj
= TN⊥/TN|Nj

∼= Nj × C,

and the change of trivialisation from N0 × C to N1 × C in a fibre over a
point [a : b : 0] of N0 ∩N1 is ([a : b : 0], Z) �→ ([a : b : 0], abZ). As the intersec-
tion N0 ∩N1 retracts onto {[1 : 1 : 0], [−1 : 1 : 0]}, we have only two changes
of trivialisation to consider: in [1 : 1 : 0] it is the identity, and in [−1 : 1 : 0]
it is minus the identity.

Now, in the trivialisations, the trace of the initial Lagrangians in
SN(N,CP2)|Nj

are:

• for L0: Nj × R,

• for L1: Nj × e−iαR,

with the same change of trivialization as before.
One can then make a Lagrangian surgery in each fibre C, and it globalizes

to a Lagrangian subbundle over N in the symplectic normal bundle.
We next do a surgery at the transverse intersection point [0 : 0 : 1], so

that we get an embedded Lagrangian submanifold out of the surgeries on L0

and L1.
We show that for some choices of handles and of α, this Lagrangian

submanifold is monotone. Take α = 2π
3 + δ, for δ > 0 a small parameter to

be determined later. We choose the bundle surgery that in each fiber C over
a point of N it is parametrized by{

e−tx2 + ete−iαx2

∣∣∣∣ t ∈ R

x2 ∈ R, x22 = ε21

}
,

followed by a symmetric smoothing.
In the chart at the transverse intersection point [0 : 0 : 1], the two

Lagrangians are the linear Lagrangian subspaces l0 = R2 and l1 =
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{(eiαx0, eiαx1)|x0, x1 ∈ R} and we choose the handle{
e−t

(
x0
x1

)
+ et

(
eiαx0
eiαx1

)∣∣∣∣ t ∈ R

x20 + x21 = ε21

}
.

After surgery, the restriction to the coordinate-CP1s of homogeneous
equations z0 = 0 (resp. z1 = 0) of the Lagrangian we constructed is the union
of two circles enclosing disks of area

1 +
δ

2π
− 2a(ε).

One checks with the same method as before that the Maslov class of these
disks is equal to 2. Then we choose δ such that the area of each of these
disks is 1. This is enough to check monotonicity since this Lagrangian is a
circle subbundle over N in the normal bundle of {z2 = 0}, and hence a torus.
Let us denote it by Θsurg. We have checked the monotonicity condition on
just one generator of the relative second homology group, the monotonicity
on a second generator is immediate as it can be represented by a disk with
boundary on L0 or L1 for which this condition is satisfied. �

Theorem 4.3. The Lagrangian torus Θsurg is Hamiltonian isotopic to the

modified Chekanov torus in CP2 and consequently also to the Chekanov–

Schlenk exotic torus.

Proof. We use the strategy of [8] and prove that the torus obtained by surgery
is invariant under the same Hamiltonian action (called ρCh in [8]) as the
modified Chekanov torus.

The modified Chekanov torus is invariant under the Hamiltonian circle
action ρCh defined on CP2 by applying the following matrix to the homoge-
neous coordinates: ⎛⎝ cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

⎞⎠ ,

where θ ∈ R/2πZ.
This circle action preserves L0, L1, N and [0 : 0 : 1].
In the chart around [0 : 0 : 1], it restricts on a ball in C2 to the action

defined by the rotation matrix(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

In particular,
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• it preserves the handle of the local surgery at the point [0 : 0 : 1],

• one can ask the smoothing to be invariant under the action, so that
the entire surgery is preserved,

• the action commutes with the homotheties defining the conformal trans-
formation.

Moreover, L0 is the orbit under this action restricted to the projective line
of homogeneous equation z0 = 0 and even to {[0 : x1 : x2] ∈ CP2 | x1, x2 ∈
R, x1 ≥ 0}. Similarly, L1 is the orbit under this action of {[0 : eiαx1 : x2] ∈
CP2 | x1, x2 ∈ R, x1 ≥ 0}, and the handle is the orbit of one of its branches
intersected with z0 = 0, for instance of {[0 : e−tx1 + eteiαx1 : x2] ∈ CP2 |
x1, x2 ∈ R, x1 = +ε1}.

One can describe the handle in homogeneous coordinates as

{[x0 : x1 : e−tx2 + ete−iαx2] ∈ CP
2 | x0, x1 ∈ R, x22 = ε21}

and see that it is preserved by the circle action ρCh. In fact, it is the orbit
of one of its branches in z0 = 0, for instance

{[0 : x1 : e
−tx2 + ete−iαx2] ∈ CP

2 | x0, x1 ∈ R, x2 = +ε1}.

We can also take a smoothing that is preserved by the circle action and the
orbit under the circle action of the smoothing in z0 = 0.

This shows that the torus Θsurg is the orbit under the circle action ρCh

of one of the two circles that constitute its intersection with z0 = 0. Actu-
ally, as the third homogeneous coordinate in the handle never vanishes, the
torus Θsurg lies in the complement of z2 = 0, that is the ball of capacity 3
around [0 : 0 : 1], and is also in this ball the orbit under the circle action
of the circle lying in its intersection with the half plane of equations z0 = 0
and �e(z0) ≥ 0.

As this circle is by construction of area 1, one can isotope it inside this
half-plane to the curve γ used to define Θ̃Ch. This isotopy composed with
the Hamiltonian circle action gives an exact Lagrangian isotopy between the
two tori that can be extended to a Hamiltonian isotopy of CP2 as in [8]. �
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