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Equivalences of coisotropic submanifolds
Florian Schätz and Marco Zambon

We study the role that Hamiltonian and symplectic diffeomor-
phisms play in the deformation problem of coisotropic submani-
folds. We prove that the action by Hamiltonian diffeomorphisms
corresponds to the gauge-action of the L∞-algebra of Oh and Park.
Moreover we introduce the notion of extended gauge-equivalence
and show that in the case of Oh and Park’s L∞-algebra one recov-
ers the action of symplectic isotopies on coisotropic submanifolds.
Finally, we consider the transversally integrable case in detail.
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Introduction

Coisotropic submanifolds form an important class of sub-objects in sym-
plectic and Poisson geometry. They naturally generalize Lagrangian subman-
ifolds, play an important role in the theory of constraints and also appear in
theoretical physics in the form of “branes”, i.e. boundary conditions of sigma
models [1, 7].
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In this note we consider coisotropic deformations inside a symplectic
manifold. The nearby deformations of a Lagrangian submanifold L are well-
understood: by Weinstein’s normal form theorem, one can replace the am-
bient symplectic manifold by the cotangent bundle T ∗L. The graph of a
1-form α is Lagrangian if and only if α is closed. If one identifies closed 1-
forms which are related through an Hamiltonian isotopy, one arrives at the
first de Rham cohomology group H1(L,R) of L as the appropriate moduli
space of nearby Lagrangian deformations.

The generalization of these statements to coisotropic submanifolds is
not obvious, since the space of coisotropic deformations is not linear and
not even modelled on a topological vector space, see [12, 20]. However, the
general pattern of deformation theory teaches us that every deformation
problem1 should be captured by differential graded Lie algebras or their
homotopical cousins, known as L∞-algebras. That this is indeed the case
was established by Oh and Park in [12]. To be more precise, Oh and Park
constructed an L∞-algebra that controls the formal deformation problem for
coisotropic submanifolds. In the special case of a Lagrangian submanifold L,
their construction recovers the de Rham complex of L.

In [16], we studied convergence issues arising in the framework of [12].
One finds that the Maurer-Cartan equation, which replaces the condition
of being closed from the Lagrangian case, is always convergent, and that it
converges to zero if and only if one is dealing with a coisotropic deformation.2

Having established a firmer link to actual geometric deformations, it is
natural to turn attention to the geometric symmetries that are present in
the problem. In particular, one might wonder how the actions of Hamilto-
nian and symplectic isotopies on the space of coisotropic deformations can
be understood. A natural symmetry acting on Maurer-Cartan elements of
Oh and Park’s L∞-algebra are the inner automorphisms, known as gauge-
transformations. Our main result is that these agree with the action by
Hamiltonian isotopies, while the action by symplectic isotopies agrees with
certain extended gauge-equivalences, which we specify below.

In Section 3 we deal with Hamiltonian isotopies. It turns out that the
gauge-transformations of Oh and Park’s L∞-algebra correspond to certain
special Hamiltonian isotopies. The remaining problem is to show that any
Hamiltonian isotopy can be reduced to such a special one. This is parallel to

1... in characteristic zero...
2For an alternative treatment of the coisotropic deformation problem in terms of

a Maurer-Cartan equation, see [14].



Equivalences of coisotropic submanifolds 109

the Lagrangian situation: there the main task is also to show that an arbi-
trary Hamiltonian isotopy can be reduced to a function f on the Lagrangian
submanifold, which acts on the space of closed 1-forms (whose graphs we are
interested in) simply by α �→ α+ df . We establish the appropriate general-
ization in Theorem 3.21, Subsection 3.5. As a consequence, we identify

{coisotropic submanifolds}
Hamiltonian isotopies

∼= {Maurer-Cartan elements}
gauge-equivalences

,

which is the content of Theorem 3.22. For an alternative treatment within
the BFV-formalism we refer to the article [15] by the first named author.

Section 4 is concerned with symplectic isotopies. Given a Lagrangian
submanifold, any of its Lagrangian deformations is related to the original
submanifold by a symplectomorphism, so we do not obtain an interesting
moduli space. In the general coisotropic case the situation is much more
complicated and we do obtain another reasonable equivalence relation on the
space of deformations by considering symplectic isotopies. In order to fit this
into the algebraic framework, we review the construction of Oh and Park’s
L∞-algebra [12][2] using Voronov’s derived bracket construction [18, 19].

We show that every L∞-algebra which arises through Voronov’s con-
struction comes along with additional automorphisms. As a consequence,
we obtain more ways to identify Maurer-Cartan elements. We refer to this
extended equivalence relation as extended gauge-equivalence. The content of
Theorem 4.18, Subsection 4.4 is that if one applies this construction to Oh
and Park’s L∞-algebra, one precisely recovers the action of symplectic iso-
topies on the space of coisotropic deformations. As a consequence, we obtain
the identification

{coisotropic submanifolds}
symplectic isotopies

∼= {Maurer-Cartan elements}
extended gauge-equivalences

,

see Theorem 4.19.
In Section 5, we consider coisotropic submanifolds which are transversally

integrable. This regularity condition allows one to make some of the previous
constructions more explicit. In particular, one can give a formula for nearby
coisotropic deformations which are obtained by an Hamiltonian or symplectic
isotopy from the original coisotropic submanifold, see Proposition 5.12.

In Appendix A we discuss the extension of our results to fibrewise entire
Poisson structures. In [16] it was shown that the coisotropic deformation
problem for those Poisson structures is also controlled by an L∞-algebra.
Most of the results established in the bulk of the paper carry over to the case
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of fibrewise entire Poisson structures. We explain the necessary modifications
in the appendix.

Organization of the paper. In Section 1 we recall background material
on coisotropic submanifolds. In Section 2 we review the results about de-
formations of coisotropic submanifolds which are relevant in the subsequent
discussion. In particular, we introduce Oh and Park’s L∞-algebra and review
the relation between its Maurer-Cartan elements and the deformation prob-
lem. In Section 3 we discuss Hamiltonian isotopies, while in Section 4 we deal
with symplectic isotopies. In Section 5, we consider the case of transversally
integrable submanifolds. Finally, Appendix A describes the extension of our
results to fibrewise entire Poisson structures.

Comparison with the literature. While we were completing this note,
a preprint by Lê, Oh, Tortorella and Vitagliano appeared [10]. It consid-
ers coisotropic deformations in the very general setting of abstract Jacobi
manifolds, which include Poisson and symplectic manifolds as special cases.
There is an overlap between the results presented there in [10, Subsection
4.4] - once specialized to the symplectic case - and one of the main sec-
tions of the present note, namely Section 3. In particular, Thm. 3.21 (i.e.
the equivalence of Hamiltonian equivalence and gauge-equivalence, under a
compactness assumption) corresponds to [10, Corollary 4.24]. Notice that in
the latter the assumption on the compactness of the coisotropic submanifold
is omitted.

Acknowledgements. M.Z. thanks Luca Vitagliano and Alberto Martín
Zamora for useful conversations. In particular, the proof of Lemma 3.14 was
communicated to us by Luca Vitagliano. Moreover we thank Hông Vân Lê
for useful comments on a draft-version of this note. Last but not least we
thank the referee for the helpful suggestions which improved the manuscript.
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and ICMAT Severo Ochoa SEV-2011-0087 (Spain), Pesquisador Visitante
Especial grant 88881.030367/2013-01 (CAPES/Brazil) and IAP Dygest (Bel-
gium).

1. (Pre-)Symplectic geometry

We summarize background information about coisotropic submanifolds
and associated structures.
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Remark 1.1. Throughout this paper, (M,ω) will denote a symplectic man-
ifold. Let C be a submanifold of M and E → C a vector subbundle of TM |C .
The symplectic orthogonal E⊥ to E is the vector bundle whose fibre over
x ∈ C is

E⊥
x := {e ∈ TxM such that ∀v ∈ Ex we have ωx(e, v) = 0}.

Another way to characterize E⊥ is as the pre-image of the annihilator E◦ of
E under the sharp-map

ω� : TM → T ∗M, v �→ ω(v,−).

Definition 1.2. A submanifold C of (M,ω) is coisotropic if the symplectic
orthogonal TC⊥ to TC is contained in TC.

Remark 1.3. An alternative way to express the coisotropicity of C is in
terms of the Poisson bivector field Π associated to ω, defined by the require-
ment that Π� : T ∗M → TM, ξ �→ Π(ξ,−) equals −(ω�)−1. Let X •(M) de-
note the space of multivector-fields on M , i.e. sections of ∧TM . There is a
natural projection map

P : χ•(M) → Γ(∧(TM |C/TC)),

which is given by restricting multivector-fields to C, followed by composition
with the natural projection ∧TM |C → ∧(TM |C/TC). The submanifold C is
coisotropic if and only if the Poisson bivector field Π lies in the kernel of P .

Definition 1.4. A two-form η on C that is closed and whose rank is con-
stant is called a pre-symplectic structure.

Lemma 1.5. Let C be a coisotropic submanifold of (M,ω). The pull-back
of ω to C along the inclusion ι : C ↪→ M is a closed two-form of constant
rank 2 dimC − dimM . We denote this pre-symplectic structure by ωC .

Remark 1.6.

1) Let η be any pre-symplectic structure on C. The closedness of η implies
that the kernel of η� : TC → T ∗C is an involutive subbundle of TC.
Hence C is equipped with a foliation, called the characteristic foliation
of η.

2) We now consider the case of the pre-symplectic structure ωC associated
to a coisotropic submanifold C of (M,ω). We always denote the kernel
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of ωC by K(= TC⊥) and the corresponding characteristic foliation by
F in this situation. Moreover, observe that, in this situation, the vector
bundle morphism

TM |C ω�
�� T ∗M |C �� (TC⊥)∗

is surjective and has kernel TC. Hence we obtain an isomorphism be-
tween the normal bundle TM |C/TC and K∗.

Remark 1.7. We saw that every coisotropic submanifold comes along with
a pre-symplectic structure. An important observation is that this can be
reversed: every pre-symplectic structure can be realized as the pre-symplectic
structure associated to a coisotropic submanifold. Moreover, this realization
is essentially unique. We start with a pre-symplectic structure η on a manifold
C. Let K be the kernel of η� and G a complement to K. The choice of G yields
an inclusion j : K∗ ↪→ T ∗C. Recall that T ∗C carries a canonical symplectic
structure ωT ∗C . We now combine η and ωT ∗C into the two-form

Ω := π∗ωC + j∗ωT ∗C .

on K∗, where π denotes the projection map K∗ → C.
The two-form Ω restricts to η on C and is symplectic on a tubular neigh-

borhood U of the zero section C ⊂ K∗. We refer to (U,Ω) as the local sym-
plectic model associated to the the pre-symplectic manifold (C, η).

The local symplectic model depends on the choice of complement G to
K, but choosing different complements will lead to local symplectic models
which are symplectomorphic in neighborhoods of C, and one can choose a
symplectomorphism that restricts to the identity on C. Hence we will speak
of the local symplectic model of (C, η).

The following theorem of Gotay [5] asserts that actually every symplectic
manifold (M,ω) into which C embeds as a coisotropic submanifold, such that
ωC = η, looks like the local symplectic model in a neighborhood of C:

Theorem 1.8 (Gotay [5]). Let C be a coisotropic submanifold of a sym-
plectic manifold (M,ω). There is a symplectomorphism ψ between a tubular
neighborhood of C inside M and a tubular neighborhood of C inside its local
symplectic model (U,Ω). Moreover, ψ can be chosen such that the restriction
of ψ to C is the identity.
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Throughout the rest of the paper we fix a local symplectic model (U,Ω)
of the coisotropic submanifold C. Since the local symplectic model is a neigh-
borhood of the zero section in a vector bundle E → C, it comes equipped
with an embedding of the zero section C in U , with coisotropic image, as well
as with a surjective submersion π : U → C. Recall that E is isomorphic to
K∗, the dual to the kernel of the pre-symplectic structure ωC . To avoid un-
necessary confusion about signs, we also assume that U was chosen invariant
with respect to fibrewise multiplication by −1.

Summarizing, the setting we assume in the rest of the paper is:

(M,ω) is a symplectic manifold,
C is a coisotropic submanifolds with induced presymplectic form ωC ,

(U,Ω) is the local symplectic model,
where U is a neighborhood of the zero section in a vector bundle

E → C.

2. Deformations of coisotropic submanifolds

We set up the problem of deforming a given coisotropic submanifold
and review some relevant results, setting the stage for the subsequent de-
velopment. In particular, the precise relationship between the deformation
problem and the L∞[1]-algebra of Oh and Park [12, 16] is recalled.

2.1. The deformation problem

It is natural to wonder how the “space of coisotropic submanifolds close
to C” looks like, i.e. we ask

Which deformations of C are coisotropic submanifolds of (U,Ω)?

Definition 2.1. The space of coisotropic sections of U is

DefU (C) := {s ∈ Γ(U) : the graph of s is coisotropic inside (U,Ω)}.

We now translate the above question into:

How can one describe the set DefU (C)?

Theorem 2.9 in Subsection 2.3 provides an answer to this question.
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2.2. Infinitesimal deformations

We discuss the infinitesimal version of the space DefU (C), which turns
out to be closely related to the foliated de Rham complex.

Remark 2.2. Recall from Section 1 that the kernel K of the pre-symplectic
structure ωC on C is involutive, and that the associated foliation F of C is
called the characteristic foliation. One has the following foliated version of
the de Rham complex:

ΩF(C) := Γ(∧K∗),

(dFω)(s0, . . . , sk) :=

k∑
i=0

(−1)isi(ω(s0, . . . , si−1, ŝi, si+1, . . . sk)

+
∑
i<j

(−1)i+jω([si, sj ], s1, . . . , ŝi, . . . , ŝj , . . . sk).

In Remark 1.6, we obtained a vector bundle isomorphism

E = TM |C/TC → K∗,

by restricting ω�. This yields an isomorphism Γ(∧E) ∼= Γ(∧K∗) = ΩF(C).
The foliated de Rham operator dF then corresponds to the operator

ξ �→ P ([Π, ξ]),

where ξ ∈ Γ(∧E) is interpreted as a vertical multivector-field that is constant
along the fibres of E, and [·, ·] is the Schouten-Nijenhuis bracket, see [16,
Proof of Prop 3.5] for more details.

Remark 2.3. We will show that the formal tangent space to DefU (C) can
be identified with the space of dF-closed foliated one-forms on C. To this
end, we rewrite the condition for a section s of U to be coisotropic in a more
algebraic way. First, every section s ∈ Γ(U) yields a diffeomorphism

ψ−s : E → E, (x, e) �→ (x, e− sx),

which maps graph(s) to the zero section C ⊂ E.
The graph of s is coisotropic with respect to Ω if and only if the zero

section is coisotropic with respect to (ψ−s)∗Π, where Π denotes the Pois-
son bivector field corresponding to Ω. As discussed in Section 1, the latter
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statement can be expressed by saying that (ψ−s)∗Π lies in the kernel of the
projection map

(1) P : X •(E) → Γ(∧E),

given by restriction to C, composed with the projection ∧TE|C → ∧E.
Hence, if we define μ to be the map

μ : Γ(U) → Γ(∧2E), s �→ P ((ψ−s)∗Π),

a section s will be coisotropic if and only if it is mapped to zero under μ.
The map μ seems non-local since it involves the symplectic form away

from C. However, the symplectic structure Ω of the local symplectic model
(U,Ω) is determined by ωC . We will return to this point in Subsection 2.3,
where we see that the equation μ(−s) = 0 can in fact be recovered as the
Maurer-Cartan equation of an L∞-algebra whose structure maps are multi-
differential operators on C.

Proposition 2.4. Let st be a smooth one-parameter family of sections of
U which starts at the zero section s0 = 0. Then

∂

∂t
|t=0μ(st) = −dF

(
∂

∂t
|t=0st

)

under the identification E ∼= K∗.

Proof. Consider the one-parameter family of diffeomorphisms ψ−st : E → E.
The corresponding time-dependent vector field is Yt := − ∂

∂tst, a vertical vec-
tor field which is constant on each fibre of E. Using this and the defini-
tion of μ, we see that ∂

∂t |t=0μ(st) equals the image under the projection
P : χ•(E) → Γ(∧E) of L ∂

∂t
|t=0stΠ = −[Π, ∂

∂t |t=0st]. By Remark 2.2 this is
exactly the formula for the image of ∂

∂t |t=0st under dF, if we apply the iden-
tification E ∼= K∗. �

Corollary 2.5. Let st be a smooth one-parameter family of coisotropic sec-
tions of E with s0 = 0. Then ∂

∂t |t=0st is closed with respect to dF.

Proof. We have μ(st) = 0 for all t by Remark 2.3, hence the statement follows
from Proposition 2.4. �

Remark 2.6. Proposition 2.4 identifies the space of closed elements of
Ω1

F(C) with the formal tangent space to DefU (C) at C, where the formal
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tangent space is defined as the space of solutions to the linearized equation.
We point out that it is known that not all cohomology classes of H1

F(C) can
be realized through one-parameter families of deformations, see [12, 20].

2.3. Oh and Park’s L∞[1]-algebra

We recall the L∞[1]-algebra associated to C [2, 12].3

Definition 2.7. An L∞[1]-algebra is a Z-graded vector space W , equipped
with a collection of graded symmetric brackets (λk : W

⊗k −→ W )k≥1 of de-
gree 1 which satisfy a collection of quadratic relations [8], called higher Jacobi
identities.

The Maurer-Cartan series of a degree zero element β ∈ W is the
infinite sum

MC(β) :=
∑
k≥1

1

k!
λk(β

⊗k).

We say that β is a Maurer-Cartan element if its Maurer-Cartan series con-
verges to zero4. We denote the set of all Maurer-Cartan elements of W by
MC(W ).

Remark 2.8. In order to describe the L∞[1]-algebra associated to the
coisotropic submanifold C of (U,Ω) as explicitly as possible, we consider
the Poisson structure Π associated to Ω. As explained in Section 1, the
coisotropicity of C is equivalent to P (Π) = 0, where

P : χ•(E) → Γ(∧E)

is as in Equation (1).
As shown in [12] and [2], the space Γ(∧E)[1] is equipped with a canonical

L∞[1]-algebra structure. We denote the structure maps of this L∞[1]-algebra

3The reader is referred to [10, Appendix D] for a proof that the construction from
[12] coincides with the one from [2], specialized to the symplectic case.

4...with respect to a suitable topology. For the specific examples of L∞[1]-algebras
with which we will be concerned later on, we will make this precise.
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by
λk : Γ(∧E)[1]⊗k → Γ(∧E)[1].

The evaluation of λk on s⊗ · · · ⊗ s for s ∈ Γ(E) yields

(2) λk(s, . . . , s) := P
(
[[. . . [Π, s], s] . . . ], s]

)
,

where s is interpreted as a fibrewise constant vertical vector-field on E. Hence
the Maurer-Cartan series of s reads MC(s) = P (e[·,s]Π).

The following result, which is — partly in an implicit manner — con-
tained in [12], is essentially [16, Thm. 2.8]. It relies on the fact that the
Poisson bivector field associated to Ω is analytic in the fibre direction, which
is true thanks to [16, Cor. 2.7]. In [16], such bivector fields are called fi-
brewise entire and most of the subsequent discussion carries over to such
Poisson bivector fields. We refer the interested reader to Appendix A for
more details.

Theorem 2.9. Consider the L∞[1]-algebra Γ(∧E)[1] associated to the co-
isotropic submanifold C. For any s ∈ Γ(E) such that graph(s) is contained
in (U,Ω), the Maurer-Cartan series MC(−s) is pointwise convergent. Fur-
thermore, for any such s the following two statements are equivalent:

1) graph(s) is a coisotropic submanifold of (U,Ω).

2) The Maurer-Cartan series MC(−s) converges to zero (in the sense of
pointwise convergence).

Remark 2.10. In other words, if we restrict attention to those sections
whose graphs lie inside U , the map s �→ −s restricts to a bijection between
the set of coisotropic sections

DefU (C) := {s ∈ Γ(U) : the graph of s is coisotropic inside (U,Ω)}

from Subsection 2.1, and

MCU (Γ(∧E)[1]) := {Maurer-Cartan elements of
Γ(∧E)[1] whose graph lies in U}.

Notice that the first structure map λ1 of the L∞[1]-algebra Γ(∧E)[1]
coincides with the foliated de Rham differential dF under the isomorphism
Γ(∧E) ∼= ΩF(C). We could — a posteriori — use this fact to recover the
infinitesimal description of DefU (C) which we obtained in Subsection 2.2.
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3. Hamiltonian diffeomorphisms

In this section we investigate the action of Hamiltonian diffeomorphisms
on the space of coisotropic submanifolds. More precisely, we provide a de-
scription of the induced equivalence relation on the space of coisotropic sec-
tions. As the main result, we show that for compact coisotropic subman-
ifolds this equivalence relation coincides with the gauge-equivalence in Oh
and Park’s L∞[1]-algebra. This result was obtained independently by Lê,
Oh, Tortorella and Vitagliano in [10, Corollary 4.24].

3.1. The deformation problem

Recall that by Definition 2.1 a section s of π : U → C is called coisotropic
if graph(s) is a coisotropic submanifold of (U,Ω), and that we denote the set
of all such sections by DefU (C).

Definition 3.1. Two coisotropic sections s0 and s1 are called Hamiltonian
equivalent if there is a family of coisotropic sections st, agreeing with the
given ones at t = 0 and t = 1, and an isotopy of Hamiltonian diffeomorphisms
φt such that φt maps the graph of s0 to the graph of st for all t ∈ [0, 1].

Remark 3.2. To be more precise, we assume that we are given a locally
defined Hamiltonian isotopy, i.e. a family of diffeomorphisms between open
subsets of U , generated by a family of locally defined Hamiltonian vector
fields, which maps graph(s0) onto graph(st).

It is straight-forward to check that Hamiltonian equivalence actually de-
fines an equivalence relations on the set DefE(C), which we denote by ∼Ham.
We refer the interested reader to [15, Lemma 1] for a proof of this fact. It is
natural to wonder about the equivalence classes of ∼Ham, so we define:

Definition 3.3. The Hamiltonian moduli space of coisotropic sec-
tions is the set

MHam
U (C) := DefU (C)/ ∼Ham .

We ask:

How can one describe the set MHam
U (C)?

Theorem 3.22 of Subsection 3.5 provides an answer in terms of the L∞[1]-
algebra of Oh and Park.
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3.2. Infinitesimal moduli

We discuss the infinitesimal version of MHam
U (C). In particular, we argue

that the formal tangent space to MHam
U (C) at the equivalence class of the

zero-section C is given by the first foliated cohomology H1
F(C), with F the

characteristic foliation of the pre-symplectic structure on C. The results of
this subsection can be recovered — via specialization to the symplectic case
— from the results obtained by Lê and Oh, [9, Subsection 6.3], who stud-
ied deformations of coisotropic submanifolds in locally conformal symplectic
manifolds.

Remark 3.4. Let (st)t∈[0,1] be a family of coisotropic sections that starts
at the zero-section. In Subsection 2.2 we saw that ∂st

∂t |t=0 ∈ Γ(E) lies in the
kernel of the complex (Γ(∧E), P ([Π,−])) and that the latter is isomorphic
to the foliated de Rham complex (ΩF(C), dF).

Proposition 3.5. Suppose that (st)t∈[0,1] is a family of coisotropic sections
that starts at the zero-section and is trivial under Hamiltonian equivalence,
i.e. there is an Hamiltonian isotopy φt such that the graph of st coincides
with the image of the zero section under φt.

Then the cohomology class of ∂st
∂t |t=0 in H1

F(C) is trivial.

Proof. Suppose that φt is generated by the family of Hamiltonian vector
fields XHt

. We can write ∂st
∂t |t=0 as P (XH0

) = P ([Π, H0]) (see Lemma 3.13
later on). We observe that the latter expression equals P ([Π, H0|C ]), because
Π�|C maps the co-normal bundle to the tangent bundle TC, whose sections
lie in the kernel of P . As a consequence, the cohomology class of ∂st

∂t |t=0

equals the cohomology class of P ([Π, H0|C ]), which is trivial. Now apply
the isomorphism between Γ(∧E) and the foliated de Rham complex from
Remark 2.3. �

Remark 3.6. For every f ∈ C∞(C), let φt be the flow of the Hamilto-
nian vector field Xπ∗f , and (st)t∈[0,ε) the family of coisotropic sections deter-
mined by graph(st) = φt(C). Then the proof of Proposition 3.5 shows that
∂st
∂t |t=0 corresponds to dFf under the isomorphism Γ(E) ∼= Ω1

F(C). Hence we
can refine Proposition 3.5 as follows: the formal tangent space of the set
of coisotropic sections which are trivial under Hamiltonian equivalence is
precisely Ω1

F,exact(C).
This and Remark 2.6 imply that the formal tangent space at zero to

MHam
U (C) is H1

F(C). In the special case of C Lagrangian, this reduces to the
first de Rham cohomology H1(C) of C, as expected.
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3.3. Gauge-equivalence

Remark 3.7. Convergence issues aside, every L∞[1]-algebra W comes along
with a (singular) foliation on its set of Maurer-Cartan elements MC(W ). On
W0, the elements of degree 0, there is a distribution generated by vector
fields Vγ associated to elements γ of degree −1. At the point β ∈ W0, the
vector field Vγ reads

λ1(γ) + λ2(γ, β) +
1

2!
λ3(γ, β, β) +

1

3!
λ4(γ, β, β, β) + · · · .

The vector fields Vγ are tangent to MC(W ) and they form an involutive dis-
tribution there, hence we obtain a canonical equivalence relations on MC(W ):

Definition 3.8. Two Maurer-Cartan elements β0 and β1 of an L∞[1]-algebra
W are gauge-equivalent if there is a one-parameter family γt of degree −1
elements of W and a one-parameter family βt of degree zero elements of W ,
agreeing with the given ones at t = 0 and t = 1, such that

∂

∂t
βt = λ1(γt) + λ2(γt, βt) +

1

2!
λ3(γt, βt, βt) +

1

3!
λ4(γt, βt, βt, βt) + · · ·

We presuppose that W is equipped with a suitable topology and that the
right-hand side of the above equation converges.

We apply this to the L∞[1]-algebra structure on Γ(∧E)[1] from Subsec-
tion 2.3. We are interested in MCU (Γ(∧E)[1]), the Maurer-Cartan elements of
Γ(∧E)[1] whose graphs lie in U (see Remark 2.10). We define an equivalence
relation on MCU (Γ(∧E)[1]) as in Def. 3.8, but additionally requiring that
the one-parameter family of degree zero elements βt consists of sections of U
(rather than E). We use the bijection DefU (C) ∼= MCU (Γ(∧E)[1]), s �→ −s
described in Remark 2.10 to transport the above equivalence relation to
DefU (C):

Definition 3.9. Two coisotropic sections s0 and s1 are called gauge-
equivalent, s0 ∼gauge s1, if −s0 and −s1 are equivalent elements (in the
sense above) of MCU (Γ(∧E)[1]).

Remark 3.10. We make the equivalence relation ∼gauge more explicit. Two
elements s0 and s1 in DefU (C) are declared gauge-equivalent if there is a
smooth one-parameter family st in Γ(U), coinciding with s0 and s1 at the
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endpoints, such that

∂

∂t
(−st) = P ([Π, π∗ft]) + P ([[Π, π∗ft],−st])

+
1

2!
P ([[[Π, π∗ft],−st],−st]) + · · ·

= P (e[·,−st]Xπ∗ft).

Here −st is interpreted as a family of fibrewise constant vertical vector field
and ft is a one-parameter family of smooth functions on C. Observe that
the latter can be seen as a one-parameter family of degree −1 elements
of the L∞[1]-algebra Γ(∧E)[1]. To rewrite the condition in more geometric
terms, recall that for s ∈ Γ(E), ψs is the diffeomorphism of E that consists
of fibrewise addition with s. Moreover, let pvs be the projection of TE|graph(s)
onto the vertical part of TE along Tgraph(s).

We now compute

P (e[·,−st]Xπ∗ft) = P
(
(ψ−st)∗Xπ∗ft

)
= pv0

(
(ψ−st)∗(Xπ∗ft |graph(st))

)
= (ψ−st)∗

(
pvst(Xπ∗ft |graph(st))

)
= pvst(Xπ∗ft |graph(st)).

We use [16, Prop. 1.15] in the first equality5, which applies since the vector
field Xπ∗ft is fibrewise entire in the terminology of [16]. In the last equality we
used the fact that ψ−st maps graph(st) to the zero section C and preserves
the fibres of the projection π : U → C.

After reversing the signs in front of ft, this shows:

Proposition 3.11. Elements s0 and s1 of DefU (C) are gauge-equivalent if
and only if there is a one-parameter family st ∈ Γ(U), agreeing with s0 and
s1 at the endpoints, and a one-parameter family ft ∈ C∞(C) such that

(3)
∂

∂t
st = pvst(Xπ∗ft |graph(st))

holds for all t ∈ [0, 1].

3.4. Technical Lemmata

We establish some technical lemmata that we use subsequently to relate
various notions of equivalence between coisotropic sections.

5[16, Prop. 1.15] is stated for bivector fields, but it carries over immediately to
the case of vector fields.
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Remark 3.12. Throughout this subsection, A denotes a vector bundle over
a smooth manifold M . Given a section s of A and a point y ∈ graph(s), we
have a splitting TyA = Vy ⊕ Tygraph(s) of the tangent space to A at y, where
V := ker(dπ) is the vertical bundle. We will denote by pvs the projection
TyA → Vy with kernel Tygraph(s).

Lemma 3.13. Let Xt be a one-parameter family of vector fields on A, and
φt its flow. Moreover, let st be a one-parameter family of sections of A such
that

graph(st) = φt(graph(s0))

holds for all t ∈ [0, 1].
Then st satisfies the equation

∂

∂t
st = pvstXt, ∀t ∈ [0, 1],

which we see as an equality of sections of V |graph(st).

Proof. If we define ψt to be the isotopy of M given by π ◦ φt ◦ s0, we have

st = φt ◦ s0 ◦ (ψt)
−1 : M → A.

Evaluating at x ∈ M and taking the time derivative we obtain

∂

∂t
(st(x)) = Xt|st(x) + (φt)∗(s0)∗

∂

∂t
((ψt)

−1(x)).

We finish noticing that the last summand is tangent to φt(graph(s0)) =
graph(st), and that ∂

∂t(st(x)) lies in Vst(x). �

The following Lemma, whose (geometric) proof was communicated to us
by Luca Vitagliano, is a converse to Lemma 3.13.

Lemma 3.14. Let Xt be a one-parameter family of vector fields on A, and
φt its flow, assumed to exist for all t ∈ [0, 1]. Suppose st is a one-parameter
family of sections of A that satisfies

(4)
∂

∂t
st = pvstXt, ∀t ∈ [0, 1].

Then the family of submanifolds graph(st) coincides with φt(graph(s0)) for
all t ∈ [0, 1].
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Proof. We work on the vector bundle A× [0, 1] → M × [0, 1], and denote by
t the standard coordinate on the [0, 1]-factor. Define ŝ ∈ Γ(A× [0, 1]) by

ŝ(x, t) = (st(x), t)

and the vector field X̂ on A× [0, 1] by

X̂|(y,t) = (Xt)|y + ∂

∂t
.

Notice that the flow ϕt of X̂ takes (y, 0) to (φt(y), t) for all y ∈ A.
The key observation is that the vector field X̂ is tangent to the subman-

ifold graph(ŝ). To this end we compute

d

dt
ŝ(x, t) =

d

dt
st(x) +

∂

∂t
= (Xt)|st(x) − v +

∂

∂t
= X̂|(st(x),t) − v

for some vector v ∈ Tst(x)(graph(st)), making use of equation (4) in the sec-
ond equality. This implies that X̂|(st(x),t) = d

dt ŝ(x, t) + v is the sum of two
vectors tangent to graph(ŝ).

Hence the flow ϕt of X̂ maps graph(ŝ|M×{0}) = graph(s0)× {0} to
graph(ŝ|M×{t}) = graph(st)× {t}. On the other hand, we saw above that
ϕt maps graph(s0)× {0} to φt(graph(s0))× {t}. �

In Lemma 3.14 we assume that the flow of Xt is defined on the interval
[0, 1]. We now show that this assumption can be replaced by asking that the
base M of the vector bundle be compact.

Lemma 3.15. Let π : A → M be a vector bundle over a compact base M .
Let Xt be a one-parameter family of vector fields on A and st a one-parameter
family of sections of A that satisfies

∂

∂t
st = pvstXt, ∀t ∈ [0, 1].

Then the flow lines of Xt starting at graph(s0) exist for t ∈ [0, 1] and the
equality

graph(st) = φt(graph(s0))

holds.

Proof. Fix an auxiliary fibre metric on A. We let K ⊂ A be the compact
subset given by all vectors of length less than or equal to l + δ for some
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δ > 0, where

l := max
x∈M, t∈[0,1]

(||st(x)||).

Let ϕ be a function on A with compact support, and so that ϕ|K ≡
1. Then (ϕXt)t∈[0,1] is a time-dependent vector field whose integral curves
are defined for all times. Let T be the maximal element of [0, 1] such that
graph(st) = φt(graph(s0)) holds for all t ∈ [0, T ]. Suppose T < 1. There is
ε > 0 such that φt(graph(s0)) ⊂ K for all t ∈ [0, T + ε]. But since the one-
parameter families Xt and ϕXt agree on K, we see as in Lemma 3.14 that
graph(st) = φt(graph(s0)) actually holds for all t ∈ [0,min{1, T + ε}], which
is a contradiction. �

Remark 3.16. The compactness assumption in Lemma 3.15 can not be
omitted, as the following counter-example shows. Take a non-compact man-
ifold M , a vector field X on M whose flow is not defined on the whole of
[0, 1]. Take the trivial bundle A := M × [0, 1] and let Xt be the horizontal
lift of X to A. Moreover, let graph(st) be M × {0}. Notice that ∂

∂tst and
pvstXt agree, since they both vanish identically.

3.5. Hamiltonian equivalence = gauge-equivalence

Our aim is to compare the two equivalence relations ∼gauge and ∼Ham on
DefU (E). As an intermediate notion we introduce:

Definition 3.17. One can restrict Hamiltonian equivalence ∼Ham by only
allowing Hamiltonian flows generated by functions of the type π∗f , with
f ∈ C∞(C). We call the resulting equivalence relation base Hamiltonian
equivalence and denote it by ∼bHam.

Proposition 3.18. The following chain of implications holds between the
three equivalence relations on DefU (C):

base Hamiltonian equivalence ∼bHam

(1)

��
Hamiltonian equivalence ∼Ham

(2)

��
gauge-equivalence ∼gauge .
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Proof. Implication (1) is clear, so we pass on to implication (2). Let st be a
smooth family of coisotropic sections of U and suppose that Ht is a smooth
family of functions on U such that the Hamiltonian flow φHt

t of Ht maps
graph(s0) to graph(st). By Lemma 3.13, this implies that the equation

∂

∂t
st = pvstXHt

,

holds for all t ∈ [0, 1]. Define ft ∈ C∞(C) to be Ht ◦ st.
Observe that pvst(XHt

−Xπ∗ft) is zero since Ht − π∗ft vanishes on
graph(st) and consequently XHt−π∗ft = XHt

−Xπ∗ff gets mapped to
Tgraph(st) under Π�, since graph(st) is coisotropic. We conclude that the
equation

∂

∂t
st = pvstXHt

= pvst(Xπ∗ft)

holds. By Proposition 3.11 we have that s0 and s1 are gauge-equivalent as
claimed. �

Under the assumption that C is compact, we can “close the circle” of the
implications of Proposition 3.18:

Proposition 3.19. Suppose C is compact coisotropic submanifold. Then
the following implication holds for the local symplectic model of C:

gauge-equivalence ∼gauge

��
base Hamiltonian equivalence ∼bHam .

Proof. Suppose that s0 and s1 of DefU (C) are gauge-equivalent. This means
that there is a one-parameter family st in DefU (C) and a one-parameter
family of functions ft on C such that

∂

∂t
st = pvstXπ∗ft

holds for all t ∈ [0, 1].
The compactness of C allows us to apply Lemma 3.15, which states that

the flow φt of Xπ∗ft exists for all t ∈ [0, 1] and indeed maps graph(s0) to
graph(st). �

Remark 3.20. When C is a Lagrangian submanifold, Hamiltonian equiv-
alence implies base Hamiltonian equivalence without any compactness as-
sumption: this follows from Proposition 3.18 and Proposition 3.19, noticing
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that in the latter in the Lagrangian case no compactness is necessary, for
Xπ∗ft is a vertical vector field on U ⊂ T ∗C. In particular, if (φt)t∈[0,1] is an
isotopy by Hamiltonian diffeomorphisms mapping the zero section C to sec-
tions of U for all t ∈ [0, 1], then φ1(C) is the graph of an exact 1-form on C.
This is in agreement with [11, Proposition 9.33].

Combining Proposition 3.18 and Proposition 3.19 we arrive at the main
result of this section:

Theorem 3.21. Let C be a compact coisotropic submanifold with local sym-
plectic model (U,Ω). The equivalence relations on

DefU (C) := {s ∈ Γ(U) : s is coisotropic}

given by

• Hamiltonian equivalence ∼Ham (Definition 3.1) and

• gauge-equivalence ∼gauge (Definition 3.9, see also Proposition 3.11)

coincide.

As a consequence we obtain the following result:

Theorem 3.22. Let C be a compact coisotropic submanifold with local sym-
plectic model (U,Ω). The bijection

DefU (C) ∼= MCU (Γ(∧E)[1])

descends to a bijection

MHam
U (C) := DefU (C)/ ∼Ham

∼= MCU (Γ(∧E)[1])/ ∼gauge .

Remark 3.23.

1) One could use Theorem 3.22 to rederive the infinitesimal description
of MHam

U (C) from Subsection 3.2 by linearizing the Maurer-Cartan
equation and the gauge-equivalence.

2) A description of MHam
U (C) similar to Theorem 3.22 was obtained in

[15]. There the differential graded Lie algebra associated to the BFV-
complex was used to encode deformations of C and the action of Hamil-
tonian diffeomorphisms. The BFV-complex has the advantage that it
works for arbitrary Poisson structures, unlike the L∞[1]-algebra from
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[12] and [2]. The drawbacks of the approach relying on the BFV-
complex is that one needs to single out the geometrically relevant
Maurer-Cartan elements by hand and is forced to deal with symmetries
of symmetries.

4. Symplectomorphisms

Next we consider the action of symplectomorphisms on the space of
coisotropic sections, which we encode by an equivalence relation ∼Sym on
the space of coisotropic sections DefU (C). In the search for an interpretation
of ∼Sym in terms of Oh and Park’s L∞[1]-algebra, we are led to reconsider
Voronov’s derived bracket construction [18, 19].

4.1. The deformation problem

Let C be a coisotropic submanifold with local symplectic model (U,Ω).

Definition 4.1. Two coisotropic sections s0 and s1 of U are called sym-
plectic equivalent, s0 ∼Sym s1 if there is a family of coisotropic sections
st ∈ Γ(U), agreeing with the given ones at t = 0 and t = 1, and an isotopy
of local symplectomorphisms φt such that φt maps graph(s0) to graph(st)
for all t ∈ [0, 1].

Remark 4.2. As for Hamiltonian equivalence, it is straight-forward to
check that ∼Sym is in fact an equivalence relation. We define the symplectic
moduli space of coisotropic sections to be the set

MSym
U (C) := DefU (C)/ ∼Sym .

Our aim is to answer

How can one describe the set MSym
U (C)?

which we will achieve in Theorem 4.19 of Subsection 4.4.

4.2. Infinitesimal moduli

We first consider the infinitesimal counterpart of MSym
U (C). We argue

— see Remark 4.6 — that the formal tangent space to MSym
U (C) at the

equivalence class of the zero-section C is given by the cokernel of a certain
map r : H1(C) → H1

F(C).
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Remark 4.3.

1) Recall that every coisotropic submanifold C comes equipped with a pre-
symplectic structure ωC , whose kernel K is an involutive distribution.
The corresponding foliation of C is denoted by F. Restriction to K
yields a chain map

r : Ω(C) → ΩF(C)

between the ordinary and the foliated de Rham complex of C.

2) As we observed in Subsection 2.2, ΩF(C) is isomorphic to Γ(∧E),
equipped with the differential P ([Π, ·]), where P is the projection from
multivector-fields on E onto Γ(∧E).

Lemma 4.4. Let C be a coisotropic submanifold of (E,ω) with inclusion
map ι. Given β ∈ Ω1(E), denote by Xβ the unique vector field on E which
satisfies

iXβ
ω = β.

Then the triangle

β ∈�

��

Ω1(E)

��

r◦ι∗

��
P (Xβ) ∈ Γ(E) ∼=

�� Ω1
F(C).

commutes.

Proof. The identification E ∼= K∗ from Section 1, which is used in the bottom
map of the above diagram, maps e ∈ Ex to ω�(e)|Kx

. We have

ω�(P (Xβ))|K = ω�(Xβ)|K = β|K ,

where in the first equality we used that ω(v,−) vanishes on K for all v ∈ TC.
This proves the desired commutativity. �

The following proposition is a special instance of Lemma 6.7 in [9, Sub-
section 6.3.], where the more general case of locally conformal symplectic
manifolds is treated. In its formulation we make use of the above isomor-
phism in order to view ∂st

∂t |t=0 ∈ Γ(E) as an element of Ω1
F(C).
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Proposition 4.5. Suppose that (st)t∈[0,1] is a family of coisotropic sections
that starts at the zero-section and is trivial under symplectic equivalence, i.e.
there is a symplectic isotopy φt such that the image of the zero section under
φt coincides with the graph of st.

Then the cohomology class of ∂st
∂t |t=0 in H1

F(C) lies in the image of r :
H1(C) → H1

F(C).

Proof. Suppose that φt is the symplectic isotopy generated by the family
of vector fields Xt. Since φt is symplectic, βt := iXt

ω is a family of closed
one-forms. By Lemma 3.13, we can write ∂st

∂t |t=0 as P (X0). By the previous
lemma, this equals the image of β0 under r ◦ ι∗. In particular, the cohomology
class of ∂st

∂t |t=0 coincides with the cohomology class (r ◦ ι∗)[β0], hence lies in
the image of r : H1(C) → H1

F(C). �

Remark 4.6. Proposition 4.5 is an analogue of Proposition 3.5, where we
showed that if a family (st)t∈[0,1] is trivial under Hamiltonian equivalence
then the cohomology class of ∂st

∂t |t=0 is zero.
One can strengthen Proposition 4.5 by observing that, by the same proof,

every element in the image of the map r : Ω1
closed(C) → Ω1

F,closed(C) is of
the form ∂st

∂t |t=0, where (st)t∈[0,ε) arises through the action of a symplectic
isotopy on the zero-section. Indeed, for every γ ∈ Ω1

closed(C) one considers
the symplectic isotopy generated by the vector field (ω�)−1(π∗γ).

In full analogy to Remark 3.6, this together with Remark 2.6 shows that
the formal tangent space at zero to MSym

U (C) is

(5) Ω1
F,closed/r(Ω

1
closed(C)) ∼= H1

F(C)/r(H1(C)),

that is, the cokernel of r : H1(C) → H1
F(C). The isomorphism is obtained

by quotienting both terms on the left-hand side by Ω1
F,exact and by using

the following linear algebra statement for the denominator: if f : V1 → V2

is a linear map and W1,W2 are subspaces such that f(W1) = W2, then
f(V1)/W2 = Im([f ] : V1/W1 → V2/W2).

We note that if C is Lagrangian we have H1
F(C) = H1(C) and r is the

identity, so its cokernel is trivial, as expected.
Notice also, by the above and Remark 3.6, that the formal tangent

space at zero of MSym
U (C) is a quotient of the formal tangent space to

MHam
U (C), and that they agree iff r : H1(C) → H1

F(C) is the zero map. This
happens for instance if H1(C) = 0, in which cases it is clear a priori that
MSym

U (C) = MHam
U (C), for all symplectic vector fields on U are Hamilto-

nian. In Example 4.24 below we display an example in which r is not the
zero map.
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4.3. The extended formal picture

We explain now how to interpret the equivalence relation ∼Sym from the
point of view of Oh and Park’s L∞[1]-algebra structure on Γ(∧E)[1].

To this aim, we first need to briefly recall Voronov’s derived bracket
construction [18, 19].

Remark 4.7 (on Voronov’s derived brackets).

1) Let L be a graded Lie algebra, a an abelian subalgebra and P : L → a
a projection whose kernel is a Lie subalgebra. Furthermore, suppose
X is a Maurer-Cartan element of L, i.e. X ∈ L1 satisfying [X,X] = 0,
such that P (X) = 0. In [18], Voronov showed that the derived brackets

λk(a1 ⊗ · · · ⊗ ak) := P ([· · · [[X, a1], a1] · · · , ak])

equip a with the structure of an L∞[1]-algebra.

2) Observe that X gives rise to a coboundary operator −[X, ·] on L, which
makes L into a differential graded Lie algebra. This differential graded
Lie algebra structure on L, the L∞[1]-algebra structure on a described
above, and additional structure maps λi (i ≥ 1) combine into an L∞[1]-
algebra structure on L[1]⊕ a, see [18, 19]. The additional structure
maps take values in a and are given by

λk+1(l[1]⊗ a1 ⊗ · · · ⊗ ak) := P ([· · · [[l, a1], a2] · · · , ak]),

where l ∈ L and k ≥ 0, a1, . . . , ak ∈ a. Notice that for k = 0 we obtain
λ1(l[1]) = P (l).

Since a is a L∞[1]-subalgebra of L[1]⊕ a, the inclusion β �→ (0, β) iden-
tifies Maurer-Cartan elements of a with those Maurer-Cartan elements of
L[1]⊕ a which lie in {0} ⊕ a. We use this identification to obtain a new
equivalence relation on MC(a). To this aim, we need to modify L[1]⊕ a
slighty to guarantee that the set of Maurer-Cartan elements in {0} ⊕ a is
preserved by the gauge-action:

Lemma 4.8. Let Z(X) ⊂ L be the graded Lie subalgebra of elements σ
which commute with X.

1) Z(X)[1]⊕ a ⊂ L[1]⊕ a is an L∞[1]-subalgebra.
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2) The gauge-equivalence in Z(X)[1]⊕ a preserves the set of Maurer-
Cartan elements in {0} ⊕ a ⊂ L[1]⊕ a.

Proof. The first claim reduces to the fact that Z(X) is a graded Lie subal-
gebra of L.

Concerning the second claim, we consider the effect of the gauge-action
on first component of L[1]⊕ a. We find

d

dt
lt = [X,σt] + [lt, σt],

where σt is a family of elements in L0 and lt in L1. Now if we require σt to
lie in Z(X), the term [X,σt] is zero and we recover the usual adjoint action
of L0 on L1, for which the origin is clearly a fixed point. �

Remark 4.9. The restriction to Maurer-Cartan elements in {0} ⊕ a of the
gauge-equivalence of Z(X)[1]⊕ a can be alternatively described as follows:
It is straight-forward to check that if L′ is any graded Lie subalgebra of
L closed under [X, ·], then L′[1]⊕ a is closed w.r.t. all the multibrackets of
the L∞[1]-algebra L[1]⊕ a. We apply this to L′ = Z0(X), the degree zero
component of Z(X), to obtain an L∞[1]-algebra Z0(X)[1]⊕ a. Notice that
MC(Z0(X)[1]⊕ a) = MC({0} ⊕ a), simply because Z0(X)[1] is concentrated
in degree −1 while Maurer-Cartan elements have degree zero. Hence the
gauge-equivalence of Z0(X)[1]⊕ a on its Maurer-Cartan elements agrees with
the the restriction of the gauge-equivalence appearing in Lemma 4.8.

This result prompts us to give the following definition

Definition 4.10. Two Maurer-Cartan elements β0 and β1 of a are called
extended gauge-equivalent, written β0 ∼ext−gauge β1, if there is a one-
parameter family σt of degree 0 elements of L which commute with X and
a one-parameter family βt of elements of a0, agreeing with the given ones at
t = 0 and t = 1, such that

∂

∂t
βt = P (σt) + P ([σt, βt]) +

1

2!
P ([[σt, βt], βt]) +

1

3!
P ([[[σt, βt], βt], βt]) + · · ·

holds for all t ∈ [0, 1].

We note that in the above definition we only allow gauge-equivalences
generated by elements coming from the component L[1], which seems more
restrictive than considering arbitrary gauge-equivalences in Z(X)[1]⊕ a.
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However, observe that families of elements of the form [X, γt], for γt ∈ a−1,
automatically commute with X and hence give rise to extended gauge-
equivalences. If we substitute such a family [X, γt] for σt in the above formula,
we obtain

∂

∂t
βt = P ([X, γt]) + P ([[X, γt], βt])

+
1

2!
P ([[[X, γt], βt], βt]) +

1

3!
P ([[[[X, γt], βt], βt], βt]) + · · · .

This expression coincides with the defining formula of an (ordinary) gauge-
equivalence between the Maurer-Cartan elements β0 and β1, see Defini-
tion 3.8 in Subsection 3.3. Hence ∼ext−gauge from Definition 4.10 really coin-
cides with the gauge-equivalence inherited from Z(X)[1]⊕ a and we further-
more see that ordinary gauge-equivalence implies extended gauge-equivalence.

Remark 4.11. One can obtain every L∞[1]-algebra from the derived bracket
construction, see [18, Example 4.1] and [4, Appendix A.3] for details: Let W
be a graded vector space and denote its graded symmetric coalgebra by
SW := ⊕i≥0S

iW , where SiW can be described as the fixed point set of the
i-fold tensor algebra T iW on W under the even action of the symmetric
group Σi. The deconcatenation map Δ : TW → TW ⊗ TW given by

Δ(x1 ⊗ · · · ⊗ xn) := 1⊗ (x1 ⊗ · · · ⊗ xn)

+

n−1∑
i=1

(x1 ⊗ · · · ⊗ xi)⊗ (xi+1 ⊗ · · · ⊗ xn)

+ (x1 ⊗ · · · ⊗ xn)⊗ 1

restricts to SW and defines a cocommutative coassociative coproduct there.
As essentially observed by Stasheff in [17], an L∞[1]-algebra structure on
W is the same as a degree 1 coderivation D of the coalgebra SW that
annihilates 1 ∈ R ⊂ SW and squares to zero, i.e. an endomorphism D of
SW that satisfies

Δ ◦D = (D ⊗ id + id⊗D) ◦Δ, D(1) = 0, and D ◦D = 0.

This means that an L∞[1]-algebra structure on W corresponds to a Maurer-
Cartan element D in the graded Lie algebra of coderivations Coder(SW ),
equipped with the commutator bracket.

One can reinterpret this construction in terms of the higher derived
bracket construction as follows: For L we take Coder(SW ) and as the abelian
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subalgebra we take W , which sits inside Coder(SW ) ∼= Hom(SW,W ) as
those homomorphisms which map 1 to an element of W and everything else
to 0. The projection map P : Coder(SW ) ∼= Hom(SW,W ) → W is evalua-
tion at 1 ∈ R = S0W and the Maurer-Cartan element X is the coderivation
D. The corresponding derived brackets just return the L∞[1]-algebra struc-
ture on W .

To see what extended gauge-equivalence means in this case, let σt ∈
Coder(SW ) be a family of coderivation of degree 0 which commutes with D.
The extended gauge-action on Maurer-Cartan elements βt of W reads

d

dt
βt = prW

(
σt + σt(βt) +

1

2
σt(βt ⊗ βt) + · · ·

)
,

where prW denotes the projection SW → W .
Suppose we can integrate this family of coderivations to a family of auto-

morphisms Φt of the coalgebra SW . By construction, Φt will commute with
D as well and act on Maurer-Cartan elements of W by

prW

(
Φt

(
1 + β +

1

2
β ⊗ β +

1

3!
β ⊗ β ⊗ β + · · ·

))
.

This formula can by verified by checking that differentiation yields the for-
mula for the extended gauge-action from above.

In short, extended gauge-equivalence in the case at hand amounts to the
action of those automorphisms of the L∞[1]-algebra structure D which are
connected to the identity.

We now return to the equivalence relation ∼Sym on the space of co-
isotropic deformations. If one applies Voronov’s derived bracket construction
(see Remark 4.7) to the data

• L = (χ•(E)[1], [−,−]),

• a = Γ(∧E)[1]

• P : L → a the projection as before,

• X = Π ∈ χ2(E) the Poisson bivector field corresponding to ω,

one recovers Oh and Park’s L∞[1]-algebra structure on Γ(∧E)[1] from Sub-
section 2.3.

By Lemma 4.8, its Maurer-Cartan elements are endowed with a second
equivalence relation, arising from the degree 0-elements of χ•(E)[1] that com-
mute with the Poisson bivector field. These are exactly the symplectic vector
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fields. Lemma 4.8 prompts us to repeat the definition of gauge-equivalence
from Subsection 3.3, with the Hamiltonian vector fields Xπ∗ft replaced with
any family of symplectic vector fields. However, in order to maintain the link
to geometry, we restrict ourselves to symplectic vector fields on E which are
firbre-wise entire.

Definition 4.12. Let (U,Ω) be a local symplectic model for the coisotropic
submanifold C.

Two elements s0 and s1 of DefU (C) are extended gauge-equivalent,
s0 ∼ext−gauge s1, if there is a one-parameter family st ∈ Γ(U), agreeing with
s0 and s1 at the endpoints, and a family of symplectic, firbre-wise entire
vector fields Xt on U such that

∂

∂t
(−st) = P (e[·,−st]Xt)

holds for all t ∈ [0, 1].

Remark 4.13. We denote the induced equivalence relation on DefU (C) by
∼ext−gauge. The proof of Proposition 3.11 goes through mutatis mutandis and
we obtain:

Proposition 4.14. Elements s0 and s1 of DefU (C) are extended gauge-
equivalent if and only if there is a one-parameter family st ∈ Γ(U), agreeing
with s0 and s1 at the endpoints, and a one-parameter family Xt of symplectic
and firbre-wise entire vector fields on U such that

∂

∂t
st = pvst(Xt|graph(st))

holds for all t ∈ [0, 1].

4.4. Symplectic equivalence = extended gauge-equivalence

Our aim is to compare the two equivalence relations ∼ext−gauge and ∼Sym

on DefU (E).

Remark 4.15. The following two results are proved in parallel to Proposi-
tion 3.18 and Proposition 3.19. The key point is the following: if we are given
a section s of U whose graph is coisotropic, and a closed 1-form β on E, the
vector fields (ω�)−1(π∗s∗β) and (ω�)−1(β) have the same vertical projection
onto E|graph(s) along Tgraph(s). As in the proofs of Proposition 3.18 and
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Propositions 3.19, this fact allows one to replace any family of symplectic
isotopies by a family of symplectic isotopies generated by firbre-wise entire
symplectic vector fields.

Proposition 4.16. The following implication holds between the equivalence
relations on DefU (C):

symplectic equivalence ∼Sym

��
extended gauge-equivalence ∼ext−gauge .

Under the assumption that C is compact, we can reverse the implications
of Proposition 4.16:

Proposition 4.17. Suppose C is compact coisotropic submanifold. Then
the following implication holds for the local symplectic model of C:

extended gauge-equivalence ∼ext−gauge

��
symplectic equivalence ∼Sym .

Combining the two previous propositions, we obtain the main result of
this section:

Theorem 4.18. Let C be a compact coisotropic submanifold with local sym-
plectic model (U,Ω). The equivalence relations on

DefU (C) := {s ∈ Γ(E) : s is coisotropic and graph(s) ⊂ U}

given by

• symplectic equivalence ∼Sym (Definition 4.1) and

• extended gauge-equivalence ∼ext−gauge (Definition 4.12, see also Propo-
sition 4.14)

coincide.

As a consequence we have:
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Theorem 4.19. Let C be a compact coisotropic submanifold with local sym-
plectic model (U,Ω). The bijection

DefU (C) ∼= MCU (Γ(∧E)[1])

descends to a bijection

MSym
U (C) := DefU (C)/ ∼Sym

∼= MCU (Γ(∧E)[1])/ ∼ext−gauge .

4.5. Comparison with Hamiltonian equivalence

In this note we considered both Hamiltonian equivalence (Definition 3.1)
and symplectic equivalence (Definition 4.1) of coisotropic submanifolds. Here
we summarize some results of Ruan [13] about the relation between these
two kinds of equivalence. Ruan considers a restricted class of coisotropic
submanifolds, which he calls integral.

Definition 4.20. A coisotropic submanifold C is integral if the leaves of
its characteristic foliation F are all compact and the set of leaves S admits
a smooth structure such that the natural map C → S is a submersion. (In
other words: C → S is a smooth fibre bundle with compact fibres.)

Remark 4.21.

1) As Ruan noticed in [13], being integral is not preserved under small
deformations inside the space of coisotropic submanifolds. In the fol-
lowing, we restrict attention to the space of coisotropic sections which
are integral, and denote them by Def intU (C).

2) Recall that every fibre bundle p : C → S with compact fibres S inherits
a local system H, given by the fibrewise cohomology, i.e.

Hs := H•(p−1(s),R),

equipped with the Gauss-Manin connection. The cohomology H•(S,H)
is the second sheet of the Leray-Serre spectral sequence associated to
p : C → S, which converges to the cohomology of C. We will focus on
H1

s := H1(p−1(s),R). Observe that the differential d2 of the second
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sheet gives a natural linear map

d2 : H
0(S,H1) → H2(S,H0).

Notice that the former group is the space of global, flat sections of the
vector bundle H1 over S. Since the fibres of p are connected, the latter
group is just H2(S,R).

In [13, Theorem 1] Ruan establishes the following result:

Theorem 4.22. Let C be an integral coisotropic submanifold.

1) There is an open embedding

Def intU (C)/ ∼Ham↪→ H0(S,H1).

2) The image of the equivalence class of C with respect to symplectic
equivalence ∼Sym under the map Def intU (C) → Def intU (C)/ ∼Ham is given
nearby C as the kernel of d2 : H0(S,H1) → H2(S,R).

Below we reproduce an example from [13]:

Example 4.23. Consider the unit sphere C = S3 in R
4, with the canonical

symplectic form. The characteristic leaves of S3 are circles, and p : S3 →
S = S2 is the Hopf fibration. H1 is a trivial rank 1 vector bundle over S2, so
H0(S,H1) ∼= R, one generator being represented by a connection 1-form on
the Hopf fibration. The map H0(S,H1) → H2(S,R) ∼= R is an isomorphism,
reflecting the fact that the connection is not flat.

Hence, by Theorem 4.22, not all nearby integral coisotropic deformations
of S3 are related to C by a symplectomorphism, for instance all spheres
of radius r for r �= 1 are not. But those which are, are actually equivalent
to C by a Hamiltonian diffeomorphism. The latter statement follows, since
H1(C) = 0 implies that all symplectic vector fields in a tubular neighborhood
of C are Hamiltonian.

Another example is:

Example 4.24. Consider the 3-torus C = T
3, which “coordinates” θ1, θ2, θ3,

as the zero section of (T3 × R, dθ1 ∧ dθ2 + dθ3 ∧ dx4), where x4 is the stan-
dard coordinate on R. The characteristic leaves are again circles, and p : T3 →
S = T

2 is the trivial fibration. Again, H1 is a trivial rank 1 vector bun-
dle, so H0(S,H1) ∼= R, one generator being represented by dθ3. The map
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H0(S,H1) ∼= R → H2(S,R) ∼= R is the zero map, reflecting the fact that dθ3
is a closed 1-form.

We conclude that all nearby integral coisotropic deformations of C are
related to C by a symplectomorphism, but not all of them are related to C by
a Hamiltonian diffeomorphism. For instance, the 3-tori given by {x4 = c} for
constants c �= 0 are not. Notice that the latter statement is in accordance with
the fact that MSym

U (C) �= MHam
U (C), which is a consequence of Remark 4.6

since the map r : H1(C) → H1
F(C) has one-dimensional image.

5. The transversally integrable case

In this section we consider coisotropic submanifolds C that admit a fo-
liation that is complementary to the characteristic foliation:

Definition 5.1. A coisotropic submanifold C of (M,ω) is called transver-
sally integrable if the kernel K of the pre-symplectic structure ωC admits
a complementary subbundle G which is involutive.

Remark 5.2. A transversally integrable coisotropic submanifold C comes
equipped with two foliations: the characteristic foliation F, given by the
maximal leaves of K, and another foliation, given by the maximal leaves of
G. Since K is the kernel of the pre-symplectic structure on C, the leaves of
G ∼= TC/K inherit a symplectic structure.

The assumption of transversal integrability leads to many simplifications.
We recover a result by Oh and Park [12] that says that the L∞[1]-algebra
associated to a transversally integrable C is a differential graded Lie algebra
(Proposition 5.3). Moreover, we give a formula for the coisotropic section
generated by moving the zero section by a basic Hamiltonian flow (Proposi-
tion 5.12).

5.1. Oh and Park’s L∞[1]-algebra

Let C be a coisotropic submanifold and (U,Ω) be the local symplectic
model of C as in Section 1. As seen there, the normal model is a neighborhood
of the zero section in a vector bundle E → C, so it comes equipped with a
surjective submersion π : U → C.

The following proposition was already proven in [12, Equation (9.17)]
(see also Theorem 9.3 there). We provide an alternative proof here.
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Proposition 5.3. Let C be a coisotropic submanifold, and assume there
exists an involutive complement G to K = ker(ωC). Then the L∞[1]-algebra
structure on Γ(∧E)[1], E = K∗, associated to C as in Subsection 2.3 corre-
sponds6 to a differential graded Lie algebra.

Proof. The structure maps λr of the L∞[1]-algebra from Subsection 2.3 are
derivations in each argument. Consequently they can be evaluated locally.
Moreover, the derivation property and a degree-count using the fact that Π
is a bivector field show that it suffices to evaluate them on tuples of the form

(f, g, s1, . . . , sr−2), (f, s1, . . . , sr−1) and (s1, . . . , sr)

with f, g ∈ C∞(C) and si ∈ Γ(E), seen as vertical vector fields on E, in order
to determine them completely.

We now compute the multibracket λk of Oh and Park’s L∞[1]-algebra
structure on Γ(∧E)[1] in local coordinates. As we already noticed, the leaves
of the involutive subbundle G complementary to K are symplectic. Choose
coordinates q1, . . . , qn−k, y1, . . . , y2k on C adapted to the foliations integrat-
ing K and G, respectively. That is, K is spanned by the ∂

∂q ’s and G is
spanned by the ∂

∂y ’s. Add conjugate coordinates p1, . . . , pn−k, u1, . . . , u2k to
obtain a coordinate system on T ∗C. The subbundle G◦ ⊂ T ∗C is locally
given by {u1 = · · · = u2k = 0}. Hence the symplectic form on E = K∗ ∼= G◦

(see Section 1) reads

(6) Ω =

n−k∑
i=1

dqi ∧ dpi + π∗ωC .

Notice that, in coordinates, ωC has the form
∑

hjldyj ∧ dyl for some func-
tions hjl on C. Notice further that Ω (and therefore the Poisson bivector field
Π obtained by inverting Ω) are invariant under all of the vertical vector fields
∂

∂p1
, . . . , ∂

∂pn−k
. The structure maps λr are determined by their evaluation on

tuples of the form

(
f, g,

∂

∂qi1
, . . . ,

∂

∂qir−2

)
,

(
f,

∂

∂qi1
, . . . ,

∂

∂qir−1

)
and

(
∂

∂qi1
, . . . ,

∂

∂qir

)
.

6That is, the L∞-algebra obtained after applying the degree shift operator [−1]
is a differential graded Lie algebra, i.e. the structure maps λk vanish for k > 2.
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Consider the term on the right-hand side of Equation (2) in Subsec-
tion 2.3 before applying the projection P , that is,

[[. . . [Π,−],−] . . . ],−].

As we argued above, it suffices to evaluate this expression on tuples consisting
of functions on C and vertical vector fields ∂

∂qi
. Since π∗f and Ω is invariant

under any of the vertical vector fields, ∂
∂qi

, the structure map λr vanish
whenever we evaluate it on a tuple that contains a ∂

∂qi
. Hence, only λ1 and

λ2 can be non-zero. �

Remark 5.4.

1) The non-trivial structure maps of the differential graded Lie algebra as-
sociated to a transversally integrable coisotropic submanifold are given
by

λ1(f) = P (Xπ∗f ) and λ2(f, g) = −{f, g}G,
the fact that λ1 and λ2 annihilate the coordinate vector fields ∂

∂q as-
sociated to adapted coordinates on C, and the derivation rule. Here,
{·, ·}G denotes the leafwise Poisson structure associated to the sym-
plectic foliation integrating G.7

2) The L∞[1]-algebra we associated to a coisotropic submanifold C de-
pends on the choice of a tubular neighborhood U , as well as on the
choice of a subbundle G complementary to the kernel K of the pre-
symplectic structure. Theorem 4.3 of [3] asserts that different choices
of these data lead to isomorphic L∞[1]-algebras. Consequently Propo-
sition 5.3 guarantees that in case an involutive transversal distribution
exists, every L∞[1]-algebra associated to C is isomorphic to a differen-
tial graded Lie algebra.

5.2. Hamiltonian equivalences

We want to be more explicit about lifting constructions from a coisotropic
submanifold C to its local symplectic model (U,Ω). To this end, the concept
of a partial Ehresmann connection will be of great importance.

7The additional minus sign in λ2 is a consequence of the fact that we work in
Γ(∧E)[1], i.e. that we shift all the degrees down be one. In particular, functions
have degree −1 after this shift.
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Definition 5.5. Let K be an involutive distribution on C. Suppose π :
U → C is a surjective submersion. A partial Ehresmann connection on
U is a choice of a complementary subbundle G to K and a subbundle G� of
TU such that the differential of dxπ at x ∈ U maps G�

x isomorphically onto
Gπ(x).

Remark 5.6. We notice that the last condition implies that G� is comple-
mentary to (dπ)−1(K).

Lemma 5.7. Let C be a coisotropic submanifold with local symplectic model
(U,Ω). Suppose G is the subbundle complementary to the kernel K of the
pre-symplectic form ωC which was chosen in the construction of (U,Ω).

1) The subbundles (dπ)−1G and V = ker(dπ) of TU are symplectically
orthogonal to each other.

2) The bundle

G� := ((dπ)−1(K))⊥

defines a partial Ehresmann connection on U .

Proof. We take ξ ∈ ker(dxπ) and v ∈ (dxπ)
−1(G). Plugging the two vectors

into the symplectic form ω yields

Ωx(ξ, v) = ωC(dπ(ξ), dπ(v)) + ωT ∗C(dxj(ξ), dxj(v)) = 0.

Since the ranks of the two subbundles add up to the rank of TU , the first
claim follows.

Concerning (2), the inclusion ker(dxπ) ⊂ (dxπ)
−1(K) implies

((dxπ)
−1(K))⊥ ⊂ (ker(dxπ))

⊥ = (dxπ)
−1(G),

i.e. G� maps indeed onto G under dπ. To check that the map is an iso-
morphism, it suffices to check that the dimensions match, which is straight-
forward. �

Remark 5.8. The partial Ehresmann connection G� was first considered
in [12], see Equation (6.3) there. Observe that G� is usually not linear, i.e.
not compatible with the linear structure on E ⊃ U .

A partial Ehresmann connection G� is called flat if it is an involutive
subbundle of TU . This condition can be restated as follows: G� gives rise to
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a map
Γ(G) → X (U), X �→ Xhor,

where Xhor is uniquely determined by the condition dxπ(X
hor|x) = Xπ(x)

for all x ∈ U . Flatness of G� is equivalent to the requirements that G is
involutive and that the map X �→ Xhor is compatible with the Lie bracket
of vector fields.

Proposition 5.9. Let C be a coisotropic submanifold that is transversally
integrable, with G an involutive transversal distribution. Let (U,Ω) be the
corresponding local symplectic model.

1) The partial connection G� on U ⊂ E is linear and flat.

2) For all f ∈ C∞(C), we have

Xπ∗f = P (Xπ∗f ) + (XG
f )hor

where:
(i) P (Xπ∗f ) ∈ Γ(E) is seen as a vertical vector field on U ⊂ E, con-

stant along the fibres,
(ii) XG

f denotes the leafwise Hamiltonian vector field of f with respect
to the symplectic foliation integrating G and

(iii) (XG
f )hor denotes the horizontal lift of XG

f with respect to the partial
Ehresmann connection G�.

Proof. Choose coordinates y1, . . . , y2k, q1, . . . , qn−k, p1, . . . , pn−k on U as in
the proof of Proposition 5.3.

(1) Equation (6) shows that at every point x ∈ U , Ωx is the sum of two
symplectic forms, one defined on the subspace spanned by the ∂

∂p and ∂
∂q ’s,

the other one defined on the subspace spanned by the ∂
∂y ’s. As ((dπ)−1E)◦

is spanned by the dy’s, we obtain

(7) G� = span

{
∂

∂y1
, . . . ,

∂

∂y2k

}
.

In other words, in the trivialization of the vector bundle E = K∗ given by
the chosen coordinates, G� is a trivial partial connection.

From this we deduce that the parallel transport with respect to G� along
paths contained in a leaf of G is given by linear isomorphisms between the fi-
bres of E, showing that the partial connection G� is linear. Second, the linear
partial connection G� is flat, since the distribution G� is clearly involutive.
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(2) In the above coordinates, by Equation (6), we have

Xπ∗f = [Π, π∗f ] =
∑
i

∂f

∂qi

∂

∂pi
+ (XG

f )hor,

where for the horizontal component we used (7). Its vertical component is
invariant under each of the vertical vector fields ∂

∂p1
, . . . , ∂

∂pn−k
, therefore it

agrees with the vertical component at π(x) ∈ C, which is P (Xπ∗f ). �

Remark 5.10. Our next aim is to explicitly describe the sections of E which
are Hamiltonian equivalent to the zero section ι : C → E. If C is compact,
we can replace Hamiltonian equivalence by base Hamiltonian equivalence,
see Definition 3.17 and Propositions 3.18 and 3.19. Recall that this means
that we have to consider the time one flow of a time-dependent vector field
Xπ∗ft where ft ∈ C∞(C). Such vector fields are not vertical in general, hence
solving explicitly the ODE to find their flow is not easy. We are able to do
so when G is involutive, making use of the following result:

Lemma 5.11. Let A → M be a vector bundle with a linear connection ∇.
Let (Xt)t∈[0,1] be a one-parameter family of vector fields on M , and (αt)t∈[0,1]
a one-parameter family of sections of A. Consider the one-parameter family
of vector fields on A given by

αt + (Xt)
hor

where αt is viewed as a vertical vector field which is constant along the fibres
of A, and (Xt)

hor is the horizontal lift of Xt with respect to the connection
∇. The integral curve of αt + (Xt)

hor starting at q ∈ C is given by

s(t) =

∫ t

0

γ(t)
γ(τ) \\ [ατ |γ(τ)]dτ ∈ Aγ(t),

where \\ denotes the parallel transport with respect to ∇ along the curve
γ(t) := ψt(q), and ψt : C → C the flow of Xt.

Proof. We have s = A ◦Δ, where Δ: [0, 1] → [0, 1]2 is the diagonal map and

A(r, t) :=

∫ r

0

γ(t)
γ(τ) \\ [ατ |γ(τ)]dτ.
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Hence ∂
∂t |t0s(t) = ∂

∂t |t0A(t, t0) + ∂
∂t |t0A(t0, t) can be written as the sum of

two terms, for all t0 ∈ [0, 1]. The first one is the vertical vector

∂

∂t

∣∣∣∣
t0

∫ t

0

γ(t0)
γ(τ) \\ [ατ |γ(τ)]dτ = αt0 |γ(t0),

as can be seen noticing that the integrand is a curve in Aγ(t0), parametrized
by s, and applying the fundamental theorem of calculus.

For the second term, we claim that

(8)
∂

∂t

∣∣∣∣
t0

∫ t0

0

γ(t)
γ(τ) \\ [ατ |γ(τ)]dτ = (Xt0)

hor|s(t0).

Notice that the integral on the left-hand side of Equation (8) is an element
of the fibre of V over γ(t), hence applying ∂

∂t |t0 we obtain an element of
Ts(t0)A that projects to ∂

∂t |t0γ(t) = Xt0 |γ(t0) under π. We now argue that the
left-hand side of Equation (8) is a horizontal lift, which would conclude the
statement. Let r, t ∈ [0, 1]. Under the identification Aγ(r)

∼= Aγ(t) given by
the parallel transport γ(t)

γ(r) \\ , the elements γ(r)
γ(τ) \\ [ατ |γ(τ)] and γ(t)

γ(τ) \\ [ατ |γ(τ)]
agree for every τ . The same holds for the integral from τ = 0 to τ = t0 of
these elements, since parallel transport is a linear isomorphism. Hence the
integral on the left-hand side of (8), as t varies, defines a parallel section
of A over γ. Therefore, applying ∂

∂t |t0 to it yields an horizontal element of
Ts(t0)A. �

Proposition 5.12. Let C be a compact coisotropic submanifold that is
transversally integrable, with G an involutive transversal distribution. Let
(U,Ω) be the corresponding local symplectic model. Take a one-parameter
family (ft)t∈[0,1] ∈ C∞(C), and denote by Φ the time-1 flow of the time-
dependent vector field (Xπ∗ft)t∈[0,1]. Then Φ(C) is the graph of the following
section of U ⊂ E:

p �→
∫ 1

0

σ(1)
σ(t) \\ [P (Xπ∗ft)|σ(t)]dt

where \\ denotes the parallel transport with respect to the partial connection
G� along the curve σ(t) := ψt((ψ1)

−1p), for ψt : C → C the flow of XG
ft

.

Proof. By Proposition 5.9, G� is a partial linear connection on U ⊂ E, and
Xπ∗ft = P (Xπ∗ft) + (XG

ft
)hor. We note that, in particular, this vector field

covers XG
ft

, which is tangent to the leaves of G. Fix p ∈ C, and let L ⊂ C be
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the leaf of G through p. Consider the vector bundle E|L → L, equipped with
the linear connection obtained by restricting G�. We apply Lemma 5.11 to
the one-parameter family of vector fields (XG

ft
)|L and to the one-parameter

family of sections P (Xπ∗ft)|L. Choosing the point q so that ψ1(q) = p and
setting t = 1 finishes the proof. �

Remark 5.13.

1) We observe that Propositions 5.9 and 5.12 continue to hold for sym-
plectomorphisms, i.e. one obtains explicit formulae for the symplectic
vector field associated to a closed 1-form obtained via pull-back from
the base C, as well as for the image of C under the flow of such a vector
field.

2) When C is Lagrangian, U is open in the cotangent bundle T ∗C, hence
Xπ∗ft is a (constant) vertical vector field and P (Xπ∗ft) = dft. Further
G = {0}, so the curve σ through p is constant. Therefore we recover
the well-known result that Φ(C) is the graph of the exact one-form
d(
∫ 1
0 ftdt).

We exemplify the above discussion in the case of C hypersurface, i.e. of
co-dimension 1. While all smooth deformations of a co-dimension 1 subman-
ifold are automatically coisotropic, it turns out that the equivalence problem
is non-trivial.

Example 5.14. Fix a codimension 1 compact submanifold C of (M,ω),
which we assume to be oriented. The annihilator TC◦ ∼= K is a trivial line
bundle, so there is α ∈ Ω1(C) such that G := ker(α) satisfies G⊕ E = TC.
As usual K is the characteristic distribution of C, i.e., K := ker(ωC). We
assume that dα = 0, which in particular implies that G is involutive. By [11,
Exercise 3.36] a tubular neighborhood of C in M is symplectomorphic to

(U,Ω) := (C × I, π∗ωC − du ∧ π∗α),

where I is an open interval containing 0, u the standard coordinate on I, and
π : C × I → C is the projection. In the following we denote by ξ̂ the unique
vector field on C lying in K such that α(ξ̂) = 1.

Take a one-parameter family ft ∈ C∞(C), and denote by Φ the time-1
flow of the vector field (Xπ∗ft)t∈[0,1]. Then Φ(C) is the graph of

s : C → R, s(p) = −
∫ 1

0
ξ̂(ft)|ψt((ψ1)−1p)dt
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where ψτ : C → C is the flow of (XG
ft
)t∈[0,1]. This follows from Prop. 5.12,

since Xπ∗f = −ξ̂(ft)
∂
∂u +XG

f at points of C, and G� is the trivial partial
connection by Equation (7).

Appendix A. Fibrewise entire Poisson structures

In the body of the paper we worked with symplectic structures, but most
of the results extend to fibrewise entire Poisson structures, as defined in [16].
More precisely, we assume the following set-up in this appendix:

U is a tubular neighborhood of the zero section in a vector bundle
E → C,

Π is a fibrewise entire Poisson structure on U , such that the zero
section C is coisotropic.

Apart from the symplectic case, an interesting example is when E is the
dual of a Lie algebroid (A, ρ, [·, ·]) and Π the canonical Poisson structure de-
fined there. As described in [6, Remark 4.5], one can furthermore enhance this
example as follows: given a Lie subalgebroid B ↪→ A, its fibrewise annihila-
tor B◦ ⊂ E is a coisotropic submanifold. If the Lie algebroid structure varies
in an analytic fashion along the normal bundle to the base of B, one can
find a tubular neighborhood of B◦ ⊂ E such that π becomes fibrewise entire.

The results obtained in Sections 2 and 3 continue to hold if one replaces
the Lie algebroid K = kerωC , which is no longer defined, with (TC)◦ = E∗,
the Lie algebroid associated to the coisotropic submanifold C of (U,Π). Con-
sequently, one has to replace the foliated de Rham complex ΩF(C) with the
complex (Γ(∧E), P ([Π,−]). Many of the proofs in the main body of the arti-
cle are already formulated in this setting, and some of them actually simplify
in the fibrewise entire Poisson case (for instance Corrollary 3.5).

Concerning Section 4, we replace “symplectomorphisms” in Def. 4.1 by
“Poisson diffeomorphisms”, and denote the resulting moduli space by
MPois

U (C). The description of the tangent space at zero to this moduli space
is now characterized in terms of Lie algebroid cohomology, as we explain in
the next remark:
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Remark A.1. The tangent space at zero to MPois
U (C) is isomorphic to the

quotient

(A.1)
{s ∈ Γ(E) : P ([Π, s]) = 0}

{P (Y ) : Y is a Poisson vector field on U} .

Indeed the numerator is the formal tangent space to DefU (C) by the
proof of Proposition 2.4. For the denominator, we argue as follows: if Yt is
a one-parameter family of Poisson vector fields on U , and st ∈ Γ(U) is such
that the graph of st is the image of the zero section under the time-t flow of
Yt, then ∂st

∂t |t=0 = P (Y0) by Lemma 3.13, and notice that this argument can
be reversed.

We can describe (A.1) as the cokernel of a certain map in cohomology,
by finding the analog of Equation (5) that holds in the Poisson case. We
have a map

P : χ•(U) = Γ(∧T ∗U) → Γ(∧E)

between the complexes of “forms” for the Lie algebroid T ∗U on one side (the
cotangent Lie algebroid of the Poisson manifold (U,Π)) and the Lie algebroid
E = (TC)◦ on the other (the Lie algebroid of the coisotropic submanifold C).
The differentials are preserved, since for all Y ∈ χ•(U) we have P [Π, Y ] =
P [Π, PY ], as a consequence of the relation P [x, y] = P [Px, y] + P [x, Py]
that holds in the general setting of Voronov’s derived brackets. Another
way to see this is to notice that P is the cochain map associated to a Lie
algebroid morphism, namely the inclusion of (TC)◦ in T ∗U .

Hence we obtain a map in cohomology

P : HLA(T
∗U) = HΠ(U) → HLA((TC)◦)

between the Lie algebroid cohomology of T ∗U (i.e. the Poisson cohomology
of (U,Π)) and the Lie algebroid cohomology of (TC)◦. Its cokernel agrees
with (A.1) by a linear algebra argument as in Remark 4.6, which uses the
fact that for any function F on U we have P [Π, F ] = P [Π, F |C ].

Let us finally point out the place where the case of fibrewise entire Poisson
structures deviates most seriously from the symplectic case: it is no longer
obvious that Poisson vector fields can be replaced by fibrewise entire ones.
Therefore we cannot establish Proposition 4.16, and consequently neither
Theorem 4.18 nor Theorem 4.19 carry over.
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