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An absolute grading on Heegaard Floer

homology by homotopy classes of

oriented 2-plane fields

Yang Huang and Vinicius G. B. Ramos

For a closed oriented 3-manifold Y , we define an absolute grad-
ing on the Heegaard Floer homology groups of Y by homotopy
classes of oriented 2-plane fields. We show that this absolute grad-
ing refines the relative one and that it is compatible with the maps
induced by cobordisms. We also prove that if ξ is a contact struc-
ture on Y , then the grading of the contact invariant c(ξ) is the
homotopy class of ξ.
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1. Introduction

For a closed oriented 3-manifold Y , Ozsváth and Szabó [16] defined a col-
lection of invariants of Y , the Heegaard Floer homology groups HF ◦(Y ),

where HF ◦(Y ) denotes either ĤF (Y ), HF+(Y ), HF−(Y ), or HF∞(Y ).
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They showed that HF ◦(Y ) splits into a direct sum by Spinc structures

HF ◦(Y ) =
⊕

s∈Spinc(Y )

HF ◦(Y, s).

For each s ∈ Spinc(Y ), they also defined a relative grading on HF ◦(Y, s),
that takes values in Z/d(c1(s)), where d(c1(s)) is the divisibility of c1(s) ∈
H2(Y ;Z), that is, d(c1(s))Z = 〈c1(s), H2(Y )〉.

Moreover given a 4-dimensional compact oriented cobordism W : Y0 →
Y1, i.e. ∂W = −Y0 ∪ Y1 as oriented manifolds, and given a Spinc structure t
on W , there is a natural map FW,t : HF ◦(Y0, t|Y0

)→ HF ◦(Y1, t|Y1
) defined

by Ozsváth-Szabó [19].
It has been shown that Heegaard Floer homology is isomorphic to two

other homology theories: Seiberg-Witten Floer homology [10] and embedded
contact homology (ECH) [5, 7, 8]. For a proof of the existence of these iso-
morphisms, see [1, 11, 21]. It is known that both ECH [6] and Seiberg-Witten
Floer homology [10] are absolutely graded by homotopy classes of oriented
2-plane fields, but no such absolute grading had been defined for Heegaard
Floer homology. In this paper, we construct such an absolute grading for
Heegaard Floer homology, which is compatible with the relative grading
and cobordism maps discussed above.

We will now fix some notation that will be used in this paper. Let
(Σ,α,β, z) be a Heegaard diagram of Y . Here Σ is a genus g surface,
α = (α1, . . . , αg) and β = (β1, . . . , βg) are collections of disjoint circles on
Σ and the basepoint z is a point on Σ in the complement of α1 ∪ · · · ∪ αg ∪
β1 ∪ · · · ∪ βg. We also require that α and β are linearly independent sets in
H1(Y ) and that αi and βj intersect transversely for every i and j. We con-
sider the tori Tα = α1 × · · · × αg and Tβ = β1 × · · · × βg in the symmetric

product Symg(Σ). Recall that the Heegaard Floer chain complex ĈF (Y ) is
the free abelian group generated by the intersection points x ∈ Tα ∩ Tβ . If
x and y are intersection points in the same Spinc structure, we denote by
gr(x,y) their relative grading, as defined in [16].

We denote by P(Y ) the set of homotopy classes of oriented 2-plane fields
on Y . Each homotopy class of oriented 2-plane fields belongs to a Spinc

structure, as we will explain in Section 2. Therefore P(Y ) splits by Spinc

structures as

P(Y ) =
∐

s∈Spinc(Y )

P(Y, s).
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It turns out that P(Y, s) is an affine space over Z/d(c1(s)). For each Spinc

structure s, we will construct an absolute grading g̃r on ĈF (Y, s) with values
in P(Y, s).

For a contact structure ξ on Y , Ozsváth-Szabó [17] defined the contact

invariant c(ξ) ∈ ĤF (−Y ). In [16], Ozsváth-Szabó showed that a Heegaard
move induces an isomorphism on Heegaard Floer homology.

Consider a compact oriented cobordism W : Y0 → Y1. Let ξ0 and ξ1 be
oriented 2-plane fields on Y0 and Y1 respectively. We say that ξ0 ∼W ξ1 if
there exists an almost complex structure J on W such that [ξ0] = [TY0 ∩
J(TY0)] and [ξ1] = [TY1 ∩ J(TY1)] as homotopy classes of oriented 2-plane
fields.

We can now state the main theorem of this paper.

Theorem 1.1. For every Heegaard diagram (Σ,α,β, z) of Y , there exists
a canonical function g̃r : Tα ∩ Tβ → P(Y ) such that:

(a) If x,y ∈ Tα ∩ Tβ are in the same Spinc structure s, then g̃r(x) and
g̃r(y) belong to P(Y, s) and g̃r(x)− g̃r(y) = gr(x,y) ∈ Z/d(c1(s)). In
particular, g̃r extends to the set of homogeneous elements of ĈF (Y ).

(b) Let ξ be a contact structure on Y , and let c(ξ) ∈ ĤF (−Y ) be the con-
tact invariant. Then g̃r(c(ξ)) = [ξ] as homotopy classes of oriented 2-
plane fields.

(c) This absolute grading is invariant under the isomorphisms induced by

Heegaard moves and hence it induces an absolute grading on ĤF (Y )
which is independent of the Heegaard diagram.

(d) Let W : Y0 → Y1 be a compact, oriented cobordism, and let t be a

Spinc structure on W . Then the induced map FW,t : ĤF (Y0, t|Y0
)→

ĤF (Y1, t|Y1
) respects the grading in the sense that g̃r(x) ∼W g̃r(y) for

any homogeneous element x ∈ ĤF (Y0, t|Y0
) and any y ∈ ĤF (Y1, t|Y1

),
which is a homogeneous summand of FW,t(x).

Remark 1.2. Theorem 1.1(a) implies that we have the following decom-
position by degrees:

(1.0.1) ĈF (Y ; s) =
⊕

ρ∈P(Y,s)
ĈF ρ(Y ; s).

Here ĈF ρ(Y ; s) is the Z-module generated by all x ∈ Tα ∩ Tβ with
g̃r(x) = ρ.
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Remark 1.3. The generators of HF∞(Y ) are of the form [x, i], where
x ∈ Tα ∩ Tβ and i ∈ Z. We recall that Z acts on P(Y ), since P(Y, s) is
an affine space over Z/d(c1(s)). So we can define an absolute grading on
HF∞(Y ), and hence on HF−(Y ) and HF+(Y ), by g̃r([x, i]) = g̃r(x) + 2i,
for a homogeneous element x. It is easy to see that Theorem 1.1 implies that
(a),(c) and (d) also hold for HF∞(Y ), HF−(Y ) and HF+(Y ).

Remark 1.4. Using the absolute grading function g̃r constructed in The-
orem 1.1, one can recover the absolute Q-grading for HF ◦(Y, s) defined by
Ozsváth-Szabó when c1(s) ∈ H2(Y ;Z) is a torsion class. See Corollary 4.3
for details.

We can also generalize the absolute grading function g̃r to the twisted
Heegaard Floer homology groups defined by Ozsváth-Szabó [15]. Recall that
the twisted Heegaard Floer homology group HF (Y, s) is the homology of the
twisted Heegaard Floer chain complex CF (Y ; s)⊗ Z[H1(Y ;Z)], where the
(infinity version) differential is defined by

∂∞[x, i] =
∑

y∈Tα∩Tβ

⎛⎝ ∑
φ∈π2(x,y)

#M(φ)eA(φ)[y, i− nz(φ)]

⎞⎠
where A : π2(x,y)→ H1(Y ;Z) is a surjective, additive assignment. See [15]
for more details. Now we define the twisted absolute grading function by
simply ignoring the twisted coefficient as follows:

g̃rtw : Z[H1(Y ;Z)](Tα ∩ Tβ)→ P(Y )(1.0.2)

eξx 
→ g̃r(x),

where ξ ∈ H1(Y ;Z) and we write Z[H1(Y ;Z)] multiplicatively.1 Using an
obvious twisted version of Theorem 1.1(b), we will prove the following corol-
laries in Section 3.

Let FY denote the set of homotopy classes (as 2-plane fields) of contact
structures on Y which are weakly fillable.

Corollary 1.5 (Kronheimer-Mrowka [9]). FY is finite.

1The twisted absolute grading defined here does not refine the relative Z-grading
within each Spinc structure defined in [15]. A slightly more sophisticated construc-
tion of the twisted grading is needed to recover the relative Z-grading. But since
we do not need this refinement in this paper, we do not include the details here.
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Corollary 1.6. If Y is an L-space, then |FY | ≤ |H1(Y ;Z)|.

Corollary 1.7 (Lisca [13]). If Y admits a metric of constant positive
curvature, then |FY | ≤ |H1(Y ;Z)|.

Remark 1.8. Corollary 1.5 and Corollary 1.7 are previously proved using
the relationship between Seiberg-Witten theory and contact topology.

Remark 1.9. In fact the assertion in Corollary 1.5 holds for the set of
homotopy classes of 2-plane fields which support a tight contact structure
by the work of Colin-Giroux-Honda [2]. But our result does not imply this
generalization. In particular we do not have an upper bound on |F(Y )| for
tight contact structures.

The paper is organized as follows. In Section 2, we construct the ab-
solute grading on ĈF , which refines the relative grading defined in [16].
That proves part (a) of the Theorem. In Section 3, we compute the absolute
grading of the contact invariant and show that it is the homotopy class of
the contact structure, which proves part (b) of the Theorem. This fact is
known, by construction, for the absolute grading in ECH [6]. In Section 4,
we prove part (d) at the chain level, showing that g̃r is natural under cobor-
dism maps, as stated in Theorem 4.1. This was shown for Seiberg-Witten
Floer homology by Kronheimer-Mrowka [10]. In Section 5, we prove that g̃r
is preserved under Heegaard moves, see Theorem 5.1. That means that the
decomposition (1.0.1) is preserved under Heegaard moves and therefore it
also holds in the homology level. That implies that part (c) also holds in
homology.

Acknowledgements. We would like to thank Ko Honda and Michael Hutch-
ings for suggesting this problem to us and for providing guidance throughout
the course of this project. We also thank Tye Lidman for pointing out ap-
plications of the absolute grading of the contact invariant to us. This work
started during our visit to the Mathematical Sciences Research Institute in
2009-2010, where an excellent environment for math research was provided.
The second author was partially supported by NSF grant DMS-0806037.

2. The absolute grading

Let Y be an oriented closed 3-manifold and let P(Y ) denote the set of ho-
motopy classes of oriented 2-plane fields on Y . Let us first recall that there
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is a surjection ψ : P(Y )→ Spinc(Y ). Also, for a fixed Spinc structure s,
we can endow ψ−1(s) = P(Y, s) with the structure of an affine space over
Z/d(c1(s)), where d(c1(s)) is the divisibility of the first Chern class of s. So,
given ξ, η ∈ P(Y ) mapping to the same Spinc structure s, there is a well-
defined difference ξ − η ∈ Z/d(c1(s)). One way of seeing this affine space
structure is by using the Pontryagin-Thom construction, as follows. Each
ξ ∈ P(Y ) corresponds to a unique homotopy class of nonvanishing vector
fields, which we denote by [vξ]. Fixing a representative vξ and a trivializa-
tion of TY , and after a normalization, we can think of vξ as a map Y → S2.
The preimage of a regular value of this map gives a link and the preimage of
the tangent plane to this regular point under the derivative map determines
a framing of this link. We recall that two framed links LO, L1 ⊂ Y are called
framed cobordant, if there exists a framed surface S ⊂ Y × [0, 1], whose
boundary is −LO × {0} ∪ L1 × {1} and such that the framing restricted to
the boundary coincides with the initial framings on L0 and L1. It follows
from Pontryagin-Thom theory that two nonvanishing vector fields are ho-
motopic if and only if the respective framed links are framed cobordant. If
ξ, η map to the same Spinc structure, then the respective links are cobordant
and the difference of framings is ξ − η ∈ Z/d(c1(s)). The sign convention we
are using here is that a left-handed twist increases a framing by +1.

Now let (Σ,α,β, z) be a Heegaard diagram representing Y , where α =

(α1, . . . , αg) and β = (β1, . . . , βg). Recall that the generators of ĈF (Y ) are
the intersection points of the tori Tα and Tβ in Symg(Σ). Our goal in this
section is to construct a canonical map Tα ∩ Tβ → P(Y ) that refines the
relative grading, which we denote by gr, and the map that assigns a Spinc

structure to a generator, which we denote by sz : Tα ∩ Tβ → Spinc(Y ). For
the definitions of these maps, see [16].

Theorem 2.1. There is a canonical map g̃r : Tα ∩ Tβ → P(Y ), such that
if x,y ∈ Tα ∩ Tβ are such that sz(x) = sz(y) = s, then

g̃r(x)− g̃r(y) = gr(x,y) ∈ Z/d(c1(s)).

2.1. The construction

We fix a self-indexing Morse function f : Y → R compatible with (Σ,α,β).
Let x ∈ Tα ∩ Tβ . Then x corresponds to g points x1, . . . , xg on Σ, which give
rise to flow lines γx1

, . . . , γxg
connecting the index 1 critical points to the

index 2 critical points. The basepoint z determines a flow line γ0 from the
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index 0 critical point to the index 3 critical point. We can choose a gradient-
like vector field v, tubular neighborhoods N(γxi

) of γxi
and diffeomorphisms

N(γxi
) ∼= B3 such that, under these diffeomorphisms, v|N(γxi

) : B
3 → R3 is

given by v(x, y, z) = (x,−y, 1− 2z2), for i 
= 0 and v|N(γ0) : B
3 → R3 is given

by v(x, y, z) = (2xz, 2yz, 1− 2z2). Figure 1(a) shows two cross-sections of
v|N(γxi

), for i 
= 0. Figure 1(b) shows v|N(γ0) on any plane passing through
the origin containing the z-axis. Outside the union of the neighborhoods
N(γxi

), v is a nonvanishing vector field. We will define a nonvanishing con-
tinuous vector field wx on Y that coincides with v in the complement of the
neighborhoods N(γxi

).

xz-plane yz-plane

(a) (b)

Figure 1.

For i 
= 0, on ∂N(γxi
) ∼= ∂B3, we note that

v(x, y, z) = (x,−y, 1− 2z2) = (x,−y, 2x2 + 2y2 − 1).

We define wx = (x,−y, 2x2 + 2y2 − 1) in N(γi), see Fig 2(a). This is a
nonzero vector field in N(γxi

) that coincides with v on ∂N(γxi
). Also, on

∂N(γ0), we see that

v(x, y, z) = (−2xz,−2yz, 1− 2z2) = (−2xz,−2yz, 2x2 + 2y2 − 1).

This new vector field is still zero on the circle C = {(x, y, z) | x2 + y2 =
1/2, z = 0}. A vertical section of it in B3 is shown in Figure 2(b). So we
define wx in N(γ0) by

wx(x, y, z) = (−2xz,−2yz, 2x2 + 2y2 − 1) + φ(x, y, z)(y,−x, 0),

where φ is a bump function around C (i.e. φ = 1 on C and φ = 0 in the
complement of a small neighborhood of C). Therefore wx is a nonvanishing
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vector field on Y that equals v outside the union of the neighborhoods
N(γxi

). We can perturb wx to a smooth vector field. Finally we define g̃r(x)
to be the homotopy class of the orthogonal complement of wx. We note that
g̃r(x) is independent of the chosen neighborhoods.

xz-plane yz-plane

(a) (b)

Figure 2.

Remark 2.2. We could use the gradient vector field itself instead of some
other gradient-like vector field to define the absolute grading, but it would
be harder to write down the formulas for the canonical modification of the
gradient vector field in the neighborhoods of the flow lines. Nevertheless, we
would obtain the same homotopy class.

2.2. The relative grading

This subsection is dedicated to proving that the absolute grading refines
the relative grading. Given two intersection points x,y ∈ Tα ∩ Tβ such that
sz(x) = sz(y), there exists a Whitney disk A ∈ π2(x, y), as proven in [16].
This means that A is a homotopy class of maps ϕ : D2 ⊂ C→ Symg(Σ)
taking i to x, −i to y, the semicircle with positive real part to Tβ and the
one with negative real part to Tα. Let D1, . . . , Dn denote the closures of
the connected components of Σ− α1 − · · · − αg − β1 − · · · − βg. We write
D(A) =

∑n
k=1 akDk, where ak is the multiplicity of ϕ on each Dk. We can

choose a Whitney disk A so that ak ≥ 0 for every k.
We will now construct surfaces F1 ⊃ · · · ⊃ Fm, whose union projects to∑n

k=1 akDk = D(A) on Σ. We take ak copies of each Dk and we glue them
along their boundaries in the following way: we construct F1 by gluing one
copy of each Dk with ak > 0. Then we construct F2 by gluing one copy of
each Dk such that ak − 1 > 0. Inductively we construct surfaces F1, . . . , Fm,
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where m = max ak. So the union of the surfaces Fl can be identified with
D(A). (Similar constructions can be found in [12, 16, 20]).

The Euler measure of a surface with corners S, denoted by e(S), is
defined to be χ(S)− p

4 + q
4 , where p is the number of convex corners of S

and q is the number of concave corners of S. If w ∈ αi ∩ βj , for some i, j, then
a small neighborhood of w, when intersected with the complement of the
union of the α and the β curves, gives rise to four regions. We define nw(Dk)
to be 1/4 times the number of those regions contained in Dk. We extend
nw linearly to the Z-module generated by the domains Dk. Now we define
nx to be the sum of all nxi

, for i = 1, . . . , g. For example, a convex corner
xi of Fl contributes to nx(Fl) with 1/4 and a concave corner xi with 3/4.
Similarly we define ny. By Lipshitz [12], the Maslov index of the Whitney
disk A, denoted by μ(A), is given by

μ(A) = ind(A) = e(D(A)) + nx(D(A)) + ny(D(A))

=

m∑
l=1

(
e(Fl) + nx(Fl) + ny(Fl)

)
.

For each Dk, we define nz(Dk) to be 0 if z 
∈ Dk and 1 if z ∈ Dk, and
we extend nz linearly to sums of Dk. The relative grading was defined by
Ozsváth-Szabó [16] to be

gr(x,y) = μ(A)− 2nz(D(A)) ∈ Z/d,

where d is the divisibility of c1(s(x)). So we need to show that

g̃r(x)− g̃r(y) =

m∑
l=1

(
e(Fl) + nx(Fl) + ny(Fl)− 2nz(Fl)

)
∈ Z/d.

Step 1 : We first assume that m = 1 and that nz(F1) = 0. Recall that
a corner xi is called degenerate if xi = yj for some j. We also assume that
there are no degenerate corners.

We will now choose a convenient trivialization of TY in order to apply
the Pontryagin-Thom construction. Let f be a self-indexing Morse function
f , which is compatible with (Σ,α,β). Let F := F1. Let pi be the index 1
critical point corresponding to αi and qj the index 2 critical point corre-
sponding to βj . Each edge of the boundary of F is part of an αi or a βj .
So each edge of ∂F determines a surface by flowing downwards or upwards
towards a pi or qj , respectively, and, by adding pi and qj , we get a compact
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surface with corners. This surface has typically three corners unless it corre-
sponds to an edge starting at a boundary degenerate corner in which case,
this edge is actually a circle and the surface corresponding to it is a disk. We
call Ai and Bj the surfaces corresponding to the edges contained in αi and
βj , respectively. We note that the flow we consider here is the one generated
by a gradient-like vector field v compatible with the Morse function f .

Let C be the union of F and the surfaces Ai and Bj . We will first choose
a trivialization of TY on C. We start by defining a unit vector field E1,
which is tangent to F . The orientation of Σ induces an orientation on F .
We set E1 to be the positive unit tangent vector along ∂F , with respect to
its boundary orientation, outside a small neighborhood of the corners. At
a neighborhood of a corner, we define E1 on ∂F by keeping it tangent to
F and rotating it by the smallest possible angle. That means that once we
start rotating, E1 will not be tangent to ∂F at any point. In other words,
each connected component of the set of points of ∂F at which E1 is not
tangent to ∂F contains exactly one corner of F . We also have to choose a
corner to rotate an extra 2πχ(F ) clockwise. That allows us to extend E1 to
F . We now define E1 on each Ai and Bj to be an extension of E1 on ∂F such
that it is tangent to Ai and Bj everywhere outside small neighborhoods of
the corners xi and yj and such that it is always transverse to the flow lines
γxi

and γyj
. In particular E1 is tangent to Ai near pi and to Bj near qj .

Near the corners xi and yj , we require E1 to never be tangent to Ai and Bj ,
similarly to how we defined E1 on F . We define E3 on F to be the positive
normal vector field to F , and we extend it to Ai and Bj so that {E1, E3}
is an oriented orthonormal frame on the respective tangent spaces, except
maybe outside a small neighborhood of ∂F . In this neighborhood, we require
that each connected component of the set of points where E3 is not tangent
to Ai or Bj intersects F . Now we take E2 to be the unit vector field on C
orthogonal to E1 and E3 such that {E1, E2, E3} is an oriented basis of TY .
So mapping Ei to ei ∈ R3, we get a trivialization of TY along C. We extend
this trivialization to a neighborhood of C in such a way that E1 and E3

are still tangent to the corresponding unstable and stable surfaces near the
critical points pi and qj and that e1 is a regular value of wx and wy when
seen as maps Y → S2. Now, since there are no degenerate points, C does
not contain an α or β curve. Therefore there is no obstruction to extending
this trivialization to all of Y . So we choose one of those extensions.

Now we define K ′
x = w−1x (e1) and K ′

y = w−1y (e1) as framed links. We
note that inside neighborhoods of the flow lines γxi

and γyi
, these are one

stranded braids contained in the corresponding unstable or stable surface,
except that near each corner of F , this braid rotates around the respective
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flow line as much as E1 restricted to this flow line does, but in the opposite
direction. This is shown in Figure 3(a). It follows from the way that we chose
the trivialization on C that K ′

x and K ′
y do not intersect C outside of those

neighborhoods.
We can isotope K ′

x in neighborhoods of each γxi
in the following way.

Near each corner, this link is rotating around γxi
. We isotope a neighborhood

of this part of the link to the segment of the flow line about which it is
rotating fixing the endpoints. Outside of this neighborhood of the corner,
but still inside the neighborhood of the flow line, the link is contained in the
corresponding unstable or stable surface. We will call this new link Kx. We
can think of the framing of a link as a unit normal vector field to the link. So
the framing on Kx induced from this isotopy can be seen by a vector field
that is normal to the stable and unstable surfaces away from the corners
and rotates with respect to the stable surface as much as K ′

x rotates about
the flow line, as seen in Figure 3(b). We denote this framing by τx. We note
that once we fix which of the two unit normal vector fields to the stable
surface we choose, the unit normal vector field to the unstable surface is
determined.

We can do the same for K ′
y and define Ky with framing denoted by

ηy. Figure 3(c) shows a picture of both Kx and Ky at a neighborhood of a
flow line γxi

. Now we modify C in the following way. For each edge of F ,
we substitute the corresponding Ai or Bj by the region on the unstable or
stable surface bounded by the corresponding edge of F and the segments of
Kx and Ky, see Figure 3(c). We smooth the edges of this surface and denote
by C̃ this smooth surface with boundary, which has cusps. We note that C̃
gives rise to a cobordism S ⊂ Y × [0, 1] between Kx × {0} and Ky × {1}
that is trivial where Kx and Ky coincide.

If we are given a link cobordism between two links and a framing of one,
then it induces a framing of the other. So τx induces a framing τy of Ky. The
Pontryagin-Thom construction tells us that g̃r(x)− g̃r(y) equals τy − ηy. We
will now compute this difference. Since Kx and Ky coincide as framed links
outside of C̃, we only need to do this calculation in a neighborhood of C̃.
To do so, we take a normal vector field N to C̃ and extend it arbitrarily to
Kx ∩Ky. So N gives rise to a framing of S, which we call ν. We denote by
νx and νy the restrictions of ν to Kx and Ky, resp. We will compute the
difference between the framings by first comparing them with ν and then



62 Y. Huang and V. G. B. Ramos

γxi
K ′

x

β

α

γxi
Kx

β

α
Kx

Ky

Ky

(a) (b) (c)

Figure 3.

using the fact that

τy − ηy = (τy − νy)− (ηy − νy) = (τx − νx)− (ηy − νy).

τxνx τxνx

ηy νy ηy νy

convex xi concave xi convex yj concave yj

β

α

β

α

α

β

α

β

Figure 4.

We will look at a neighborhood of the corners of F . In fact we only
need to compute how many times τx rotates with respect to νx, where Kx

coincides with each γxi
and similarly for ηy. We call a nondegenerate corner

of F convex2 if it is a corner of some Dk ⊂ F for only one k and concave1 if
it is a corner of some Dk ⊂ F for three values of k. For convex vertices, the
difference is 0 for both an xi and a yj . For concave vertices, it is +1 for an
xi and −1 for a yj , as shown in Figure 4. In this picture, the orientation of
the link is pointing down, so a counterclockwise turn counts as a +1, since

2Some authors use the adjectives acute and obtuse to denote convex and concave,
respectively.
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that is a left-handed twist. At the distinguished corner, we rotated E1 by an
additional 2πχ(F ) clockwise. If this is an xi it accounts for χ(F ) in τx − νx
and if it is a yj , it accounts for −χ(F ) in ηy − νy. So τy − ηy = χ(F ) + q,
where q is the number of concave corners.

Now if we denote by p the number of convex corners, by Lipshitz’s for-
mula,

ind(F ) = e(F ) + nx(F ) + ny(F )

= χ(F )− 1
4p+

1
4q +

1
4p+

3
4q

= χ(F ) + q = τy − ηy.

Since nz(F )=0, we conclude that g̃r(x)− g̃r(y)=τy − ηy=μ(A)=gr(x,y).
Step 2 : We will now prove a technical lemma that will be useful in the

general case.
Given two links K1 and K2 in Y that belong to the same homology class,

let S be an immersed cobordism between them. That means that S is an
immersed oriented compact surface in Y × [0, 1] that is embedded near its
boundary and such that ∂S = K1 × {1} ∪ (−K2)× {0}. Since an immersed
surface also has a normal bundle, we can ask whether framings of K1 and K2

extend to a framing of S. So given a framing of K1, the surface S induces a
framing of K2. The induced framing of K2 depends heavily on S. In fact, if
we denote the signed number of self-intersections of S by δ(S), we have the
following lemma. Here we orient Y × [0, 1] by declaring that {∂t, E1, E2, E3}
is an oriented basis, where {E1, E2, E3} is an oriented basis for TY and t is
the coordinate function on [0, 1].

Lemma 2.3. Let K1 and K2 be links in Y that belong to the same homology
class and let S and S′ be immersed cobordisms between them, which are in
the same relative homology class. Given a framing of K1, let ζS and ζS′

be the framings induced on K2 by S and S′, respectively. Then ζS − ζS′ =
2(δ(S)− δ(S′)).

To prove that, we will use another lemma, which is a standard result in
Differential Topology.

Lemma 2.4. Let Σ be a closed oriented surface immersed into a closed
oriented 4-manifold X. Let e(NΣ) be the Euler class ot the normal bundle
of Σ with the orientation induced by the orientation of X. Then

[Σ] · [Σ] = e(NΣ) + 2δ(Σ).
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Proof of Lemma 2.3. We are given S, S′ ⊂ Y × [0, 1] such that ∂S′ = ∂S =
K1 × {1} ∪ (−K2 × {0}) and such that S′ − S vanishes in H2(Y × [0, 1]).
Now we take two copies of Y × [0, 1], switch the orientation of one of them
and glue along their common boundaries. We can think of this as Y × [−1, 1]
with the obvious identification of Y × {−1} and Y × {1}, which gives us
Y × S1. We can also glue S ⊂ Y × [0, 1] to −S′ ⊂ Y × [−1, 0] and we get
a closed surface that we call Σ. Now we can assume that in Y × [−ε, ε],
the surface Σ is K2 × [−ε, ε], for ε small. We use S to get a framing on
K2 ⊂ Y × {ε} and S′ to get a framing on K2 ⊂ Y × {−ε}. These are exactly
ζS and ζS′ , respectively. It follows that the relative Euler class of the normal
bundle of Σ restricted to K2 × [−ε, ε] given these two framings is ζS′ − ζS .
Therefore e(NΣ) = ζS′ − ζS . Now, if we think of S, S′ and Σ as chains in
Y × S1, we can write Σ = S − S′. So Σ− (K1 × S1) vanishes inH2(Y × S1).
Hence

[Σ] · [Σ] = [K1 × S1] · [K1 × S1] = 0.

Therefore, by Lemma 2.4,

ζS − ζS′ = 2δ(Σ) = 2(δ(S)− δ(S′)).
�

Step 3 : We now proceed to the general case. We had written D(ϕ) as a
union of surfaces Fl ⊂ Σ, which can be seen as 2-chains in Σ. We need to
show that

g̃r(x)− g̃r(y) =

m∑
l=1

(
e(Fl) + nx(Fl) + ny(Fl)− 2nz(Fl)

)
.

Let γa be the projection to Σ of the image of ∂D2 ∩ {z; Re(z) ≤ 0} under
ϕ and γb be the projection of the image of ∂D2 ∩ {z; Re(z) ≥ 0}. Then γa −
γb = ∂D(A) =

∑
l ∂Fl. We observe that the a corner of Fl can either be an

xi, a yj or neither. If it is neither of the two, then the interiors of γa and
γb intersect at that point. We call this point an auxiliary corner and denote
each of them by wk for some k. Now fix and auxiliary corner wk. Let r be
the multiplicity of γa and s be the multiplicity of γb in a neighborhood of
wk and assume r < s, see Figure 5(a). We might also have an extra t to the
multiplicity of all the four regions. But that will not affect the calculations.
So, for simplicity, we can assume that t = 0. We get a convex corner for
r of the Fl’s and a concave one for r of the Fl’s. For (s− r) of the Fl’s,
this point lies on the boundary and is not a corner. We denote by γwk

the
flow line passing through wk. We say that wk is positive if it behaves as
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a convex xi (i.e γwk
is positively oriented) and as a concave yj (i.e γwk

is
negatively oriented), and that wk is negative if the opposite happens, as
shown in Figure 5(b).

The orientations on γa and −γb give rise to an orientation of ∂Fl. That
is also the orientation induced from Σ, since A ≥ 0. Now we need to define
{E1, E2, E3}. We want to define E1 on Fl in the same way as we did when
we had only one Fl. But we have to be more careful since we may have α
and β curves contained on the surface Fl. This can happen in three different
ways: there is a boundary degenerate corner, an interior degenerate corner
or a pair of nondegenerate corners that are on ∂Fl but are not corners of
∂Fl for some l. Figure 6 shows an example of each of those cases.

For each Fl, we can define Cl, just as we did to define C in Step 1,
except that when one of the edges of Fl is a circle, we will attach a disk
to it, not a triangular surface. We will first define E1 on Fm. For each edge
of Fm that is not a circle, we define E1 to be the positive unit tangent
vector to ∂Fm outside neighborhoods of the corners. Along an edge that is
a circle, we define E1 to be any vector field whose rotation number along
this circle is 0. We note that nondegenerate corners along this circle, e.g.
Figure 6, cannot happen for Fm. If we have an α or β circle contained in
the interior of Fm, then we define E1 along this circle such that its rotation
number is 0. In a neighborhood of each corner including the auxiliary ones,
we rotate E1 as least as possible, as we did in Step 1. We also need to choose
some nondegenerate corners, i.e. not auxiliary corners, to rotate a total of
χ(Fm) + d(Fm), where d(Fm) denotes the number of boundary degenerate
corners of Fm. After doing that, we can now extend E1 to a vector field on
Fm. Now we extend it to the triangular surfaces belonging to Cm just as we
did in Step 1. For each circle on ∂Fm, we extend E1 to the attaching disk
by requiring that it is tangent to the surface f−1(t), for every 3/2 ≤ t ≤ 2,
if the circle is a βj and for every 1 ≤ t ≤ 3/2 if the circle is an αi. We note
that E1 is not tangent to this disk at any point except for the corresponding
critical point, i.e when t = 1 or 2, and on Σ.

Now we want to extend E1 to Fm−1 ⊃ Fm. We first define E1 on ∂Fm−1.
We can do it the same way as we did for ∂Fm except near the intersection
of ∂Fm−1 and Fm, where E1 is already defined. This can only happen in
two cases. The first one is when they intersect at an auxiliary corner. In this
case we just rotate E1 along ∂Fm−1 as least as possible, so that it coincides
with E1 at the corner. The second case is when there is a circle in Fm−1 that
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positive wk negative wk

β β α

α α β

(a) (b)

Figure 5.

contains two nondegenerate corners. In this case, E1 is already defined in
the segment connecting the two nondegenerate corners. So we extend it to
all of this circle in such a way that its rotation number is 0. After doing that,
we can extend E1 to Cm−1 just as we did for Cm. Proceeding by induction,
we define E1 on Cl, for l = m,m− 1, . . . , 1.

We can define E3 on Cl as we did before, but when we have a circle
on ∂Cl, we extend E3 to the corresponding disk by requiring that E3 is
normal to f−1(t) for every t. Now we define E2 such that {E1, E2, E3} is an
orthonormal basis for TY along Cl for all l.

0 0

1 1

1 1

1 1

0
0 0

2
1 1

boundary degenerate interior degenerate pair of nondegenerate

Figure 6.

For every α or β circle contained in F1, either we have attached the
corresponding disk to it in some Cl or it contains an interior degenerate
corner, in which case, we have also required that the rotation number of E1

along this circle is 0. So in the latter case, we can extend E1 and E3 as we
did when the circle was in the boundary. Now, there is no obstruction to
extending the orthonormal frame {E1, E2, E3} to all of Y and, as before,
that determines a trivialization by sending Ei to ei ∈ R3.

Again, we take K ′
x = w−1x (e1) and K ′

y = w−1y (e1). We can isotope them
the same way as before to get Kx and Ky so that they contain segments
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of γxi
and γyi

near the respective corners. We also define the surfaces C̃l

in the same fashion as we did in Step 1. Now, to compute the difference
of their framings, we will use several immersed cobordisms. We start from
Ky. We use C̃1 to define an immersed cobordism. This cobordism exchanges
segments of the flow lines γyj

corresponding to corners yj of F1 with segments
of some γxi

corresponding to corners xi of F1 and possibly segments of some
γwk

, corresponding to concave auxiliary corners wk. The next step is to use
C̃2 to construct an immersed cobordism which exchanges segments of some
γyi

by segments of some γxi
, possibly involves auxiliary corners and keeps

the rest of the link fixed. We can continue this construction inductively
and define immersed cobordisms for C̃1, . . . , C̃m. Every time we obtain a
γwk

, it will first appear as a concave corner and later as a convex corner.
If wk is positively oriented, then it will appear as a positive concave angle
and a negative convex angle, which means that they just cancel, when we
stack the immersed cobordisms. If wk is negatively oriented, then it will
appear as a negative concave corner first and as a positive convex corner
later. In this case, we add trivial cobordisms to the immersed cobordisms
where the segment of γwk

appears and to all of the ones in between. After
stacking all those, the auxiliary corners cancel and we obtain an immersed
cobordism fromKy toKx. Similarly to the case when we had only one Fl, we
conclude that the difference of the framings using the cobordism induced by
C̃l is χ(Fl) + d(Fl) + q(Fl) for each l, where q(Fl) is the number of concave
corners of Fl, not counting the auxiliary corners. Moreover for each auxiliary
corner wk, the difference of framings is +1 if wk is positive, and −1 if wk is
negative. So using this immersed cobordism from Ky to Kx, the difference

between the framings is
∑m

l=1

(
χ(Fl) + d(Fl) + q(Fl)

)
plus the signed count

of the auxiliary corners.
We know that there is an embedded link cobordism from Ky to Kx in

the same relative homology class as the immersed cobordism we were con-
sidering. So, by Lemma 2.3, τy − ηy equals the difference obtained using the
immersed cobordism minus twice the signed number of self-intersections of
the immersed cobordism, since the self-intersection number of an embedded
cobordism is 0. We now need to consider three cases.

(i) There are boundary degenerate corners or a pair of nondegenerate
corners on an α or β curve contained in some ∂Fl.

(ii) There are interior degenerate corners

(iii) There are nondegenerate corners in the interior of some Fl.
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(iii) The basepoint z in in the interior of F1.

In case (i), self-intersections could exist if Kx or Ky intersects Cl for l
such that Cl contains the disk we attach to the corresponding α or β circle.
Let xi and yj be the corresponding corners. Then Cl divides N(γxi

) in two
disconnected components and we can see that Kx enters and exits N(γxi

) in
the same component. Similarly for yj . Therefore the signed number of inter-
sections with Cl is 0. In this case, nxi

+ nyj
= 1. But this +1 appears in the

difference of framings when we added d(Fl) turns to E1 near a nondegenerate
corner.

In case (ii), let xi = yj be the interior degenerate corner. So, nxi
+ nyj

=
2. Also, Kx = Ky in N(γxi

). Also, Kx intersects Cl negatively at only one
point. Therefore, by Lemma 2.3, we have two add +2 to the difference of
the framings.

In case (iii), since Fi ⊃ Fj , for i < j, and the cobordism corresponding
to C̃i is taken before the one corresponding to C̃j , only the nondegenerate
yj ’s which are in the interior of an Fj correspond to intersections. So, by
Lemma 2.3, we have to add twice the number of interior nondegenerate yj ’s.
On the other hand, if we had built our immersed cobordisms in the opposite
order, i.e. starting with Fm and going all the way to F1, then we would get the
same result, except that we would be counting twice the number of interior
nondegenerate corners xi, but in this case the sign of the auxiliary corners
are switched. Since the two calculations have to coincide, it follows that
the number of interior nondegenerate corners xi plus the number of positive
auxiliary corners equals the number of interior nondegenerate corners yj plus
the number of negative auxiliary corners. So twice the number of interior
nondegenerate xi’s plus the signed count of the auxiliary corners equals
the total number of interior nondegenerate corners. That is exactly what
we were missing to get the full nx(Fl) and ny(Fl). Therefore, combining
cases (i),(ii) and (iii), we conclude that the difference of the framings is∑m

l=1

(
e(Fl) + nx(Fl) + ny(Fl)

)
, which is equal to μ(A).

In case (iv), then Kx = Ky near γz. If Kx intersects Fl, then it does
so positively. Hence, by Lemma 2.3, we get an extra −2∑l nz(Fl) in the
difference of framings. Therefore

g̃r(x)− g̃r(y) = τy − ηy = μ(A)− 2nz(A) = gr(x,y).
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3. The absolute grading of the contact invariant

In [17], Oszváth-Szabó defined the contact class c(ξ) ∈ ĤF (−Y ) for a con-
tact 3-manifold (Y, ξ), and they showed that it is an invariant of ξ. Later,
Honda-Kazez-Matić [4] gave an alternative definition of c(ξ) using an open
book decomposition adapted to ξ. In this section, we compute the absolute
grading of the contact invariant c(ξ).

3.1. Contact topology and open book decompositions

Let Y be a closed oriented 3-manifold. A contact structure ξ is a maximally
non-integrable co-oriented 2-plane field, i.e. there exists a 1-form λ such
that λ ∧ dλ > 0 and ξ = kerλ. We call such λ a contact form of ξ. The Reeb
vector field Rλ associated with λ is the unique vector field which satisfies (i)
Rλ � dλ = 0, (ii) Rλ � λ = 1. Although the dynamics of Rλ depend heavily
on the choice of λ, its homotopy class is an invariant of ξ. In fact, two contact
structures are homotopic if and only if their associated Reeb vector fields
are homotopic.

Now recall that an open book decomposition of Y is a pair (S, h), where
S is a compact, oriented surface of genus g with boundary, h : S → S is
a diffeomorphism which is the identity on ∂S, and Y is homeomorphic to
(S × [0, 1])/ ∼. The equivalence relation ∼ is defined by (x, 1) ∼ (h(x), 0)
for x ∈ S and (y, t) ∼ (y, t′) for y ∈ ∂S and t, t′ ∈ [0, 1]. Given a contact
structure ξ on Y , an open book (S, h) is adapted to ξ if there exists a contact
form λ for ξ such that Rλ is positively transverse to int(S) and positively
tangent to ∂S.

Fix an adapted open book (S, h) of (Y, λ). Following [4], let {a1, . . . , a2g}
be a set of pairwise disjoint, properly embedded arcs on S such that S \⋃2g

i=1 ai is a single polygon. We call {a1, . . . , a2g} a basis for S. Next let bi be
an arc which is isotopic to ai by a small isotopy so that the following hold:

1) The endpoints of ai are isotoped along ∂S, in the direction given by
the boundary orientation of S.

2) ai and bi intersect transversely in one point xi in the interior of S.

3) If we orient ai, and bi is given the induced orientation from the isotopy,
then the sign of the intersection ai ∩ bi is +1.

See Figure 7.
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ai bi

xiS

Figure 7: The arcs ai and bi on S.

Observe that (S, h) naturally induces a Heegaard splitting of Y by letting
H1 = (S × [0, 1/2])/ ∼ and H2 = (S × [1/2, 1])/ ∼. This gives a Heegaard
decomposition of Y of genus 2g with Heegaard surface Σ = ∂H1 = −∂H2. By
choosing a basis {a1, . . . , a2g} for S and following the constructions above,
we obtain two collections of simple closed curves α = {α1, . . . , α2g} and
β = {β1, . . . , β2g} on Σ, where αi = ∂(ai × [0, 1/2]) and βi = ∂(bi × [1/2, 1])
for i = 1, . . . , 2g. Then one can properly place the basepoint z and reverse the
orientation of Y to obtain a weakly admissible Heegaard diagram (Σ,β,α, z)

for −Y . It is observed in [4] that x = (x1, . . . , x2g) ∈ ĈF (Σ,β,α, z) defines
a cycle, where xi = ai ∩ bi ∈ αi ∩ βi, i = 1, . . . , 2g.

Theorem 3.1 (Honda-Kazez-Matić [4]). The class [x] ∈ ĤF (−Y ) rep-

resented by x ∈ ĈF (Σ,β,α, z) from above is an invariant of ξ and it is equal
to c(ξ) defined in [17].

Remark 3.2. In light of Theorem 3.1, in order to prove Theorem 1.1(b),
it suffices to show

(3.1.1) g̃r(x) = [ξ]

as homotopy classes of oriented 2-plane fields.

3.2. Proof of Theorem 1.1(b)

Throughout this section, we fix a contact form λ and an adapted open book
decomposition (S, h) of (Y, λ). Note that the contact invariant is presented

as an intersection point x in ĈF (−Y ). The plan is to use the Pontryagin-
Thom construction to show that the vector field constructed in Section 2 to
define g̃r(x) is homotopic to the Reeb vector field Rλ.

Proof of Theorem 1.1(b). Let f be a Morse function adapted to our special
Heegaard diagram (Σ,α,β, z), where Σ = (S × {0}) ∪ (S × {1/2}). Note
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that one needs to reverse the orientation of Y to define [x] = c(ξ). Equiv-
alently, we shall consider, for the rest of the proof, the same Heegaard di-
agram (Σ,α,β, z), but with the downward gradient vector field −∇f . All
the constructions of the absolute grading function carry over by simply re-
versing the direction of all vector fields. Let vx be a nonvanishing vector
field, which is a modification of −∇f , as defined in Section 2. In particular,
the homotopy class of the orthogonal complement of vx equals g̃r(x). Let
S̃ ⊂ int(S) be a closed subsurface such that S deformation retracts onto S̃,
and assume that h is supported in S̃ × {1}. It is easy to see that −∇f is ho-
motopic to Rλ by linear interpolation in a small neighborhood N(S̃ × {1})
of S̃ × {1} in M because they are both positively transverse to S̃ × {1}. Let
H = Y \N(S̃ × {1}) be the genus 2g handlebody3. So it suffices to show
that vx|H is homotopic to Rλ|H relative to ∂H.

To do so, consider a closed collar neighborhood ai × [−1, 1] ⊂ S × {1/2}
of ai on the middle page such that it contains bi in the interior, for i =
1, . . . , 2g. Let Bi = (ai × [−1, 1]× [0, 1]) ∩H ⊂ H be a 3-ball (with corners)
in H, which contains ai and bi in the interior. See Figure 8 for pictures of
the vector fields Rλ|Bi

and −∇f |Bi
.

ai

bi
xiS S

(a) (b)

Figure 8: (a) The Reeb vector field Rλ restricted to Bi. (b) The downward
gradient vector field −∇f restricted to Bi.

Claim. There exists a non-singular vector field R′λ on H, homotopic to Rλ

relative to ∂H, such that (i) R′λ|∂Bi
= vx|∂Bi

, (ii) R′λ|Bi
is homotopic to

vx|Bi
relative to ∂Bi, for i = 1, . . . , 2g.

Proof of Claim. Let Dl = (ai × {−1} × [0, 1]) ∩H and Dr = (ai × {1} ×
[0, 1]) ∩H be the left and right disk boundaries of Bi, respectively. Ob-
serve that Rλ = vx on ∂Bi \ (Dl ∪Dr) by construction. We shall consider

3In fact H is a handlebody with corners, but this is irrelevant here because we
are considering continuous vector fields.
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a collar neighborhood N(Dl) = (ai × [−1− δ,−1 + δ]× [0, 1]) ∩H of Dl for
some small δ > 0, and homotope Rλ to R′λ with the desired properties within
N(Dl). Note that the same construction can be carried over to a collar neigh-
borhood of Dr.

We construct a model vector field Vl on D2 × [−1, 1] in steps. First let F0

be a singular foliation on D2 which has two elliptic singularities as depicted
in Figure 9(a). Let γ ⊂ D2 × [−1, 0] be a properly embedded, boundary
parallel arc such that ∂γ is exactly the union of the two singularities of
F0 on D2 × {−1}. Then there exists a foliation F by disks on D2 × [−1, 0]
such that for any leaf F of F , we have ∂F ∩ int(D2 × [−1, 0]) = γ, and
∂F ∩ (D2 × {−1}) is a leaf of F0. Let V ′l be a non-singular vector field on
D2 × [−1, 0] such that it is positively tangent to γ and positively transverse
to the interior of all leaves of F as depicted in Figure 9(b). Up to homotopy,
we can assume that V ′l |D2×{0} = vx|Dl

as vector fields on a disk. By fixing
a trivialization of the tangent bundle T (D2 × [−1, 1]) using the standard
embedding D2 × [−1, 1] ⊂ R3, we define the vector field Vl on D2 × [−1, 1]
by

Vl(x, t) =

{
V ′l (x, t) if − 1 ≤ t ≤ 0,

V ′l (x,−t) if 0 ≤ t ≤ 1.

where x ∈ D2 is any point. Identify D2 × [−1, 1] with N(Dl) by rescaling in
the [−1, 1]-direction such that Dl is identified with D2 × {0}, N(Dl) \Bi is
identified with D2 × [−1, 0], and N(Dl) ∩Bi is identified with D2 × [0, 1].
It is easy to see that Rλ|N(Dl) is homotopic to Vl as vector fields on N(Dl)
relative to the boundary. Similarly, one can define a non-singular vector
field Vr on N(Dr) such that Rλ|N(Dr) is homotopic to Vr as vector fields on
N(Dr) relative to the boundary. By applying the above homotopy, which is
supported in N(Dl) ∪N(Dr), to Rλ, and repeat this process for every Bi,
i = 1, . . . , 2g, we obtain a new non-singular vector field R′λ. Observe that R′λ
satisfies condition (i) by construction.

To show that R′λ satisfies condition (ii), we use the Pontryagin-Thom
construction. Trivialize the tangent bundle TBi by embedding Bi ⊂ R3 such
that Dl (or Dr) is parallel to the xz-plane, and the [−1, 1]-direction is par-
allel to the y-axis. Consider the associated Gauss maps Gvx

|Bi
: Bi → S2

and GR′
λ
|Bi

: Bi → S2. Without loss of generality, we assume that Gvx
|Bi

and GR′
λ
|Bi

are smooth, and p = (0, 1, 0) ∈ S2 is a common regular value.

Let p′ = (ε,
√
1− ε2, 0) ∈ S2 be a nearby common regular value which keeps

track of the framing, where ε > 0 is small. It is now a straightforward compu-
tation that the Pontryagin submanifoldsG−1vx

(p) andG−1R′
λ
(p) are both framed

cobordant to the framed arc depicted in Figure 10 relative to the boundary.
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(a) (b)

γ

Figure 9: (a) The singular foliation on D2. (b) The vector field V ′l on a leaf
of F in D2 × [−1, 0].

Hence R′λ|Bi
is homotopic to vx|Bi

relative to ∂Bi, for all i = 1, . . . , 2g. This
finishes the proof of the claim. �

Figure 10: A framed arc in Bi, where the framing is indicated by the green
arc.

It remains to show that R′λ is homotopic to vx on H \ (⋃2g
i=1Bi) rel-

ative to the boundary. Let (D2, id) be the trivial open book of S3, and

D̃ ⊂ int(D2) be a slightly smaller disk. Let H̃ denote H \ (⋃2g
i=1Bi) and

observe that it is naturally identified with (D2 × [0, 1] \ ((D̃ × [0, ε)) ∪ (D̃ ×
(1− ε, 1])))/ ∼ by construction. On the one hand, it is easy to see that R′λ|H̃
is homotopic to the restriction of the Reeb vector field compatible with the
open book (D2, id). On the other hand, note that H̃ is nothing but a neigh-
borhood of the gradient trajectory which connects the index 0 critical point
to the index 3 critical point. Hence it follows immediately from our construc-
tion of g̃r(x) that vx|H̃ is also homotopic to the Reeb vector field compatible
with (D2, id). This finishes the proof of Theorem 1.1(b). �

Now we compute the twisted absolute grading of the twisted contact
invariant defined in [14]. Let x ∈ Tα ∩ Tβ be the generator in ĈF (−Y ),
which defines the usual contact invariant as before. Let Z[H1(Y ;Z)]× denote
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the set of invertible elements in Z[H1(Y ;Z)]. First recall that the twisted
contact invariant c(ξ) associated with the contact structure ξ is defined by

c(ξ) = [u · x] ∈ ĤF (−Y )/Z[H1(Y ;Z)]×

where u ∈ Z[H1(Y ;Z)]×. Although c(ξ) is only well-defined up to a unit in
Z[H1(Y ;Z)], the twisted absolute grading g̃rtw(c(ξ)) defined by (1.0.2) still
makes sense. The following result is immediate.

Corollary 3.3. If ξ is a contact structure on Y , then g̃rtw(c(ξ)) = [ξ] ∈
P(Y ).

Proof. This follows immediately from (1.0.2) and Theorem 1.1(b). �

Now we are ready to prove the corollaries given in Section 1.

Proof of Corollary 1.5. If (Y, ξ) is strongly fillable, then c(ξ) 
= 0 ∈ ĤF (−Y )

according to [17]. Since ĤF (−Y ) is a finitely generated Abelian group, there
can be only finitely many absolute gradings, i.e., homotopy classes of 2-plane
fields, that support strongly fillable contact structures.

Now if (Y, ξ) is weakly fillable, then c(ξ) 
= 0 ∈ ĤF (−Y )/Z[H1(Y ;Z)]×

according to [14]. Since ĤF (−Y ) is finitely generated as a Z[H1(Y ;Z)] mod-
ule, the same argument as above together with Corollary 3.3 implies that
there can be only finitely many homotopy classes of 2-plane fields in Y that
support weakly fillable contact structures. �

Proof of Corollary 1.6. By definition if Y is an L-space, then ĤF (−Y ) is
a free Abelian group of rank |H1(Y ;Z)|. Therefore there are at most
|H1(Y ;Z)|-many homotopy classes of 2-plane fields that support strongly
fillable contact structures. To get the same result for weakly fillable contact
structures, it suffices to observe that since Y is a rational homology sphere
by assumption, we have

ĤF (−Y ) � ĤF (−Y )⊗ Z[H1(Y ;Z)].

Hence ĤF (−Y ) is a free Z[H1(Y ;Z)] module of rank |H1(Y ;Z)|, and there-
fore the conclusion follows as before. �

Proof of Corollary 1.7. It suffices to note that according to [18], if Y admits
a metric of constant positive curvature, then Y is an L-space. �
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4. 4-dimensional cobordism and absolute Q-grading

Let W be a connected compact oriented 4-dimensional cobordism between
two connected oriented 3-manifolds Y0 and Y1 such that ∂W = −Y0 ∪ Y1.
Fixing a Spinc structure t on W , Ozsváth-Szabó [19] constructed a map
FW,s : HF ◦(Y0, t|Y0

)→ HF ◦(Y1, t|Y1
) between Heegaard Floer homology

groups by choosing a handle decomposition of W , and counting holomorphic
triangles. It turns out that FW,t is an invariant of W , i.e., it is independent
of the choice of a handle decomposition of W . Throughout this section we fix
a Heegaard diagram (Σ,α,β) for Y0 and a handle decomposition of W . Let
(Σ,α,γ) be the associated Heegaard diagram for Y1 as constructed in [19].

We consider the associated chain map FW,t : ĈF (α,β, t|Y0
)→ ĈF (α,γ, t|Y1

).

Observe that FW,t : ĈF (α,β, t|Y0
)→ ĈF (α,γ, t|Y1

) is a linear map
between graded vector spaces. However, according to Theorem 1.1(a),

ĈF (α,β, t|Yi
) is graded by the set of homotopy classes of oriented 2-plane

fields P(Yi), i = 0, 1, so it is not possible to define an integer degree of FW,t.
There is a weaker notion which is applicable here. Namely, let W : Y0 → Y1
be a cobordism and ξi be an oriented 2-plane field on Yi, for i = 0, 1. We say
ξ0 ∼W ξ1 if and only if there exists an almost complex structure J on W
such that [ξi] = [TYi ∩ J(TYi)], for i = 0, 1, as homotopy classes of oriented
2-plane fields.

The main goal of this section is to prove Theorem 1.1(d) on the chain
level, which we formalize in the following theorem for the reader’s conve-
nience.

Theorem 4.1. Let W : Y0 → Y1 be a compact oriented cobordism with a
fixed handle decomposition, t ∈ Spinc(W ) a Spinc structure on W , and FW,t :

ĈF (α,β, t|Y0
)→ ĈF (α,γ, t|Y1

) the associated cobordism map as discussed
above. Then g̃r(x) ∼W g̃r(y) for any homogeneous generator x ∈ Tα ∩ Tβ in

ĈF (α,β, t|Y0
), and any homogeneous summand y of FW,t(x).

Before we give the proof of Theorem 4.1, we take a step back and look
at the Heegaard Floer homology HF ◦(Y, s) for a torsion Spinc structure
s. By [19], there is an absolute Q-grading of HF ◦(Y, s) which lifts the
relative Z-grading. We shall see that our construction indeed generalizes
their absolute Q-grading. To do so, recall the following construction due
to R. Gompf [3]. Let ξ be an oriented 2-plane field on a closed, oriented 3-
manifold Y . Then there exists a compact, almost complex 4-manifold (X, J)
whose almost-complex boundary is (Y, ξ), i.e. Y = ∂X (as oriented manifolds)
and ξ = TY ∩ J(TY ) with the complex orientation. If c1(ξ) is a torsion class,
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then let θ(ξ) = (PD c1(X))2 − 2χ(X)− 3σ(X) ∈ Q, where χ is the Euler
characteristic and σ is the signature. Observe that θ(ξ) is independent of
the choice of the capping almost complex 4-manifold (X, J) because the
quantity (PD c1(X))2 − 2χ(X)− 3σ(X) vanishes for a closed X.

Let s ∈ Spinc(Y ) be a Spinc structure such that c1(s) is a torsion class,

and let U be the set of homogeneous elements in ĈF (Y, s). We define an
absolute grading function g̃r0 : U→ Q by g̃r0(x) = (2 + θ(g̃r(x)))/4 ∈ Q for
any x ∈ U. This induces an absolute grading function on CF∞(Y, s) by
g̃r0([x, i]) = 2i+ g̃r0(x), and hence on the sub- and quotient-complexes
CF−(Y, s) and CF+(Y, s).

For reader’s convenience, we recall the following theorem/definition of
the absolute Q-grading due to Ozsváth-Szabó [19].

Theorem 4.2 (Ozsváth-Szabó). There exists an absolute grading func-
tion gr : U→ Q satisfying the following properties:

1) The homogeneous elements of least grading in ĤF (S3, s0) have abso-
lute grading zero.

2) The absolute grading lifts the relative grading, in the sense that if x,y ∈
U, then gr(x,y) = gr(x)− gr(y).

3) If W is a cobordism from Y0 to Y1 endowed with a Spinc structure t
whose restriction to Yi is torsion for i = 0, 1, then

gr(FW,t(x))− gr(x) =
(PD c1(t))

2 − 2χ(W )− 3σ(W )

4

for any x ∈ U.

We have the following corollary:

Corollary 4.3. The function g̃r0 described above defines an absolute Q-
grading for HF ◦(Y, s), which coincides with the absolute Q-grading gr de-
fined above.

Proof. We use the Pontryagin-Thom construction. By fixing a trivialization
of TY , the homotopy classes of oriented 2-plane fields on Y are in 1-1 corre-
spondence with the framed cobordism classes of framed links in Y . The first
assertion of the corollary follows from Theorem 1.1(a) and the observation
that adding a right-handed full twist to ξ is equivalent to decreasing θ(ξ)
by 4.
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It follows from the proof of Theorem 4.1 that if t be a Spinc structure on
W whose restriction to Yi is torsion, for i = 0, 1, then FW,t(x) is homogeneous
for every homogeneous element x ∈ U. Since we have shown in Theorem 2.1
that our absolute grading g̃r refines the relative grading, in order to show
that g̃r0 coincides with the absolute Q-grading defined in [19], it suffices to
verify the following two conditions:

1) (Normalization) For the standard contact 3-sphere (S3, ξstd),
g̃r0(c(ξstd)) = 0.

2) (Cobordism formula) Let W : Y0 → Y1 be a cobordism, and t be a
Spinc structure on W whose restriction to Yi is torsion, i = 0, 1. Then

g̃r0(FW,t(x))− g̃r0(x) =
(PD c1(t))

2 − 2χ(W )− 3σ(W )

4

for any homogeneous x ∈ U.

To prove (1), note that it follows from the fact that (S3, ξstd) is the
almost complex boundary of the standard unit 4-ball B4 ⊂ C2.

To prove (2), let (X, J) be an almost complex 4-manifold with almost
complex boundary (Y0, g̃r(x)). By Theorem 4.1, there exists an almost com-
plex structure J ′ on W such that both g̃r(x) and g̃r(FW,t(x)) are J

′-invariant
with the complex orientation. We obtain a new almost complex 4-manifold
with almost complex boundary (X ∪Y0

W, g̃r(FW,t(x))) by gluing (X, J) and
(W,J ′) along Y0. Recall the following theorem on the signature of 4-manifolds
due to Novikov:

Theorem 4.4 (Novikov). Let M be an oriented 4-manifold obtained by
gluing two 4-manifolds M1 and M2 along some components of their bound-
aries. Then the signature is additive:

σ(M) = σ(M1) + σ(M2).

We therefore calculate as follows:

g̃r0(FW,t(x))− g̃r0(x) =
θ(g̃r(FW,t(x)))− θ(g̃r(x))

4

=
(PD c1(W,J ′))2 − 2χ(W )− 3σ(W )

4

=
(PD c1(t))

2 − 2χ(W )− 3σ(W )

4
,

This finishes the proof of the second assertion of the corollary. �
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The proof of Theorem 4.1 occupies the rest of this section. We shall
follow the construction of FW,t given in [19].

Proof of Theorem 4.1. We fix a handle decomposition of W , and study the
2-handle attachments and 1- and 3-handle attachments in W separately.

case 1. Suppose W is given by 2-handle attachments along a framed link
L ⊂ Y0. Let Δ denote the two-simplex, with vertices vα, vβ , vγ labeled clock-
wise, and let ei denote the edge vj to vk, where {i, j, k} = {α, β, γ}. Recall
that given a Heegaard triple (Σ,α,β,γ), one can associate to it a 4-manifold

(4.0.1) Wα,β,γ =
(Δ×Σ)

∐
(eα×Uα)

∐
(eβ×Uβ)

∐
(eγ×Uγ)

(eα×Σ)∼(eα×∂Uα),(eβ×Σ)∼(eβ×∂Uβ),(eγ×Σ)∼(eγ×∂Uγ)

where Uα (resp. Uβ , Uγ) is the handlebody determined by the α (resp. β,
γ) curves. Let Yα,β = Uα ∪ Uβ , Yβ,γ = Uβ ∩ Uγ , and Yα,γ = Uα ∪ Uγ be the
3-manifolds obtained by gluing the α-, β- and γ-handlebodies along Σ in
pairs. After smoothing the corners, we have

∂Wα,β,γ = −Yα,β − Yβ,γ + Yα,γ

as oriented manifolds. See Figure 11.

eα

eβ eγ

Yα,β Yα,γ

Yβ,γ

Figure 11: The 4-manifold Wα,β,γ associated with a Heegaard triple
(Σ,α,β,γ).

According to [19], ifW is obtained by attaching 2-handles along a framed
link L, then there exists a triple Heegaard diagram (Σ,α,β,γ, z) such that
Yα,β = Y0, Yβ,γ = #n(S1 × S2) for some n ≥ 1, and Yα,γ = Y1. Moreover, af-
ter filling in the boundary component Yβ,γ by the boundary connected sum
#n

b (S
1 ×B3), we obtain the original cobordism W . Fix a Spinc structure t
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on W with si = t|Yi
, i = 0, 1. Let Θ ∈ ĈF (#n(S1 × S2)) be the top dimen-

sional generator and let x ∈ Tα ∩ Tβ . By definition, the image of x under

the cobordism map FW,t : ĈF (Y0, s0)→ ĈF (Y1, s1) is a linear combination
of the generators y ∈ Tα ∩ Tγ with coefficients being the count of Maslov
index 0 holomorphic triangles connecting x, Θ and y. Let y be a genera-
tor appearing in FW,t(x) with a nonzero coefficient. We prove the following
claim.

x

Θ

y
α

β γ

Figure 12: A holomorphic triangle on Σ which connects x, Θ, and y.

Claim: There exists an almost complex structure J on Wα,β,γ such that
g̃r(x) ∈ P(Y0), g̃r(Θ) ∈ P(#n(S1 × S2)), and g̃r(y) ∈ P(Y1) admit represen-
tatives which are all J-invariant with the complex orientation.

Proof of Claim. We first assume that y is the intersection point as shown
in Figure 12, which is connected to x and Θ by the obvious (embedded)
holomorphic triangle. We begin by constructing a 2-plane field on eα × Uα,
and note that the same construction carries over to eβ × Uβ and eγ × Uγ .

For simplicity of notations, we assume g(Σ) = 1, so, for instance, x ∈
Tα ∩ Tβ is just one point instead of a g-tuple of points. The same argument
applies to Heegaard surfaces of arbitrary genus without difficulty. Let Vα be
the gradient flow on Uα compatible with the α-curve so that it is pointing
out along ∂Uα. Let p ∈ Uα be the index 1 critical point of Vα and w ∈ Uα be
the index 0 critical point of Vα. Identify the edge eα ⊂ Δ with the subarc of
the α-curve from x to y, which is an edge of the holomorphic triangle, such
that vγ is identified with x and vβ is identified with y. Abusing notations,
we shall not distinguish a point on eα and the corresponding point on the
α-curve under the above identification. For any q ∈ eα, let γ0 and γ1 be the
gradient trajectories which connect w to z and p to q respectively. Let N(γi)
be a tubular neighborhood of γi as depicted in Figure 13, for i = 0, 1. By
restricting the construction of the absolute grading in Section 2.1 to Uα, we
obtain a non-vanishing vector field V ′α,q on Uα which depends on the choice
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of q ∈ eα as depicted in Figure 14. Thus we have constructed a 2-plane
field ξα(q, x) = (V ′α,q(x))⊥3 on eα × Uα, for any q ∈ eα and x ∈ Uα. Here ⊥3

denotes taking the orthogonal complement of V ′α,q within TUα.

γ0 γ1

w

z

p

q

w

z

p

q

(a) (b) (c)

Figure 13: (a) The α-handlebody Uα and tubular neighborhoods of the gra-
dient trajectories γ0 and γ1. (b) The gradient vector field Vα|N(γ0) in N(γ0).
(c) The gradient vector field Vα|N(γ1) in N(γ1).

z q

(a) (b)

Figure 14: (a) The non-vanishing vector field V ′α,q restricted to N(γ0). (b)
The non-vanishing vector field V ′α,q restricted to N(γ1).

Similarly one constructs 2-plane fields ξβ and ξγ on eβ × Uβ and eγ ×
Uγ , respectively. However, note that the boundary component Yα,β = (vγ ×
Uα) ∪ (vγ × Uβ) of Wα,β,γ is a 3-manifold with corners, and the 2-plane fields
ξα and ξβ do not agree along vγ × Σ because they are tangent to the α-
and β-handlebodies which intersect each other in an angle. To smooth the
corners, we replace the triangle Δ in (4.0.1) with a hexagon H with right
corners and attach α, β, and γ handles accordingly as depicted in Figure 15.
In this way we obtain a smooth cobordism which we still denote by Wα,β,γ :
Y0

∐
(S1 × S2)→ Y1, where Y0 = (vγ × Uα) ∪ ([0, 1]× Σ) ∪ (vγ × Uβ), Y1 =

(vβ×Uα) ∪ ([0, 1]×Σ) ∪ (vβ×Uγ), and S1 × S2 = (vα × Uβ) ∪ ([0, 1]× Σ) ∪
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(vα × Uγ) are smooth 3-manifolds. We construct a 2-plane field ξ on (eα ×
Uα) ∪ (eβ × Uβ) ∪ (eγ × Uγ) ∪ ∂Wα,β,γ by extending ξα, ξβ , and ξγ to the
three copies of [0, 1]× Σ such that it is translation invariant in the [0, 1]-
direction on each copy. By construction, it is easy to see that ξ|Y0

� g̃r(x),
ξ|S1×S2 � g̃r(Θ), and ξ|Y1

� g̃r(y).

eα

eβ eγ

H

Y0 Y1

S1 × S2

Figure 15: The smooth cobordism Wα,β,γ : Y0
∐
(S1 × S2)→ Y1.

Let D1 ⊂ Σ be a closed neighborhood of z, and D2 ⊂ Σ be a closed
neighborhood of the holomorphic triangle so that the non-vanishing vec-
tor field V ′i,q is transverse to TΣ along Σ \ (D1 ∪D2) for any i ∈ {α, β, γ},
q ∈ ∂Δ. We extend ξ to the metric closure of H × (Σ \ (D1 ∪D2)) by let-
ting ξ(x, y) = TyΣ for any x ∈ H, and y ∈ Σ \ (D1 ∪D2). We construct an
almost complex structure J on a subset of Wα,β,γ by asking ξ and ξ⊥4 to be
complex line bundles, where ⊥4 denotes taking the orthogonal complement
in TWα,β,γ . In fact J is defined everywhere on Wα,β,γ except finitely many
4-balls (with corners), namely, H ×D1 and H ×D2. To extend J to the
whole Wα,β,γ , we round the corners of ∂(H ×Di), i = 1, 2, in two steps.

Step 1. To round the corners of ∂H ×D1 and ∂H ×D2 near each vertex
of H, we first construct a local model for corner-rounding as follows.

Let (x1, y1, x2, y2) be coordinates on R2 × R2 with the Euclidean metric.
Consider a non-singular vector field

v(x1, y1, x2, y2) = f(x2, y2)
∂

∂y1
+ g(x2, y2)

∂

∂x2
+ h(x2, y2)

∂

∂y2

on R2 × R2, namely, f , g and h cannot be simultaneously zero. Observe that
v is everywhere tangent to R3 � {(x1, y1, x2, y2) | x1 = constant}. Define v⊥3
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to be the pointwise orthogonal complement to v inside R3 � {(x1, y1, x2, y2) |
x1 = constant}. Let J be an almost complex structure on R2 × R2 which
preserves the metric and satisfies:

• J( ∂
∂x1

) = v
‖v‖ ,

• J(v⊥3) = v⊥3 .

Let L = {(x1, 0) | x1 ≥ 0} ∪ {(0, y1) | y1 ≥ 0} ⊂ R2 be an L-shaped bro-
ken line with a corner at the origin. We round the corner of L by considering

Lr = {(x1, 0) | x1 ≥ 1} ∪ {(0, y1) | y1 ≥ 1}
∪ {(x1 − 1)2 + (y1 − 1)2 = 1 | 0 ≤ x1 ≤ 1, 0 ≤ y1 ≤ 1}.

Consider the smooth submanifold L̄ = Lr × R2 in R2 × R2. We compute
the complex line distribution T L̄ ∩ J(T L̄) on T L̄ with respect to J . To do so,
identify L̄ with (−∞,∞)× R2 such that {(0, y1) | y1 ≥ 1} is identified with
(−∞, 0]× R2, {(x1, 0) | x1 ≥ 1} is identified with [1,∞)× R2, and {(x1 −
1)2 + (y1 − 1)2 = 1 | 0 ≤ x1 ≤ 1, 0 ≤ y1 ≤ 1} is identified with [0, 1]× R2.
Let φt : R

3 → R3 be the clockwise rotation about the x-axis by χ(t)π/2,
where (x, y, z) are coordinates on R3 and

χ(t) =

⎧⎪⎨⎪⎩
0 if t ≤ 0,

t if 0 ≤ t ≤ 1,

1 if t ≥ 1.

Lemma 4.5. The 2-plane field T L̄ ∩ J(T L̄) on L̄ � (−∞,∞)× R2 is the
orthogonal complement of the non-singular vector field μ(t, x2, y2) =
φt(v(x2, y2)).

Proof of Lemma 4.5. We first compute J( ∂
∂y1

) as follows. Note that

v⊥3 =

{
span{ ∂

∂x2
, ∂
∂y2
} if g = h = 0,

span{g ∂
∂y2
− h ∂

∂x2
, ∂
∂y1
− fg

λ2
∂

∂x2
− fh

λ2
∂

∂y2
} otherwise.

where λ =
√

g2 + h2. Since we assume that J preserves the Euclidean met-
ric, we have

(4.0.2)

{
J( ∂

∂x2
) = ∂

∂y2
if g = h = 0,

J(g ∂
∂y2
− h ∂

∂x2
) = λ2√

f2+λ2 (
∂

∂y1
− fg

λ2
∂

∂x2
− fh

λ2
∂

∂y2
) otherwise.
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It follows from (4.0.2) and the equation J( ∂
∂x1

) = v
‖v‖ that

J

(
∂

∂y1

)
=

1√
f2 + λ2

(
−f ∂

∂x1
− g

∂

∂y2
+ h

∂

∂x2

)
.

It is easy to see that T L̄ ∩ J(T L̄) restricted to {t} × R2, t ≥ 1, is the
orthogonal complement of J( ∂

∂y1
) = μ(1, ·) up to positive rescaling within

T L̄. Moreover observe that T L̄ ∩ J(T L̄) restricted to {t} × R2, for 0 ≤ t ≤ 1,
is the orthogonal complement of J(t ∂

∂y1
+ (1− t) ∂

∂x1
), which is exactly μ(t, ·)

up to positive rescaling. �
Without loss of generality, let q be a vertex ofH whose adjacent edges are

eα and [0, 1], where [0, 1] is an edge of H connecting α- and β-handlebodies.
Take a small neighborhood N(q) of q in H. Identify N(q) with a small
neighborhood of the origin in R2 restricted to the first quadrant such that
eα ∪ [0, 1] is identified with L. We can further assume that J is defined on
N(q)×Di by taking N(q) sufficiently small, and that it is invariant under
translation in any direction tangent to N(q). Hence we can apply Lemma 4.5
to compute the complex line distribution on Lr ×Di ⊂ N(q)×Di, i = 1, 2,
with respect to J . By rounding all the corners ofH and applying Lemma 4.5,
we conclude that:

1) The complex line distribution T (∂H ×D1) ∩ JT (∂H ×D1) on ∂H ×
D1 is, up to homotopy relative to the boundary, the orthogonal com-
plement of the non-singular vector field v1, where v1|{p}×D1

is shown on
Figure 16(a). In particular v1 is defined to be invariant in the direction
of ∂H.

2) Let θ ∈ [0, 2π) be the coordinate on ∂H with the boundary orien-
tation and ψ : ∂H ×D2 → ∂H ×D2 be a diffeomorphism defined by
ψ(θ, z) = (θ, eiθz). The complex line distribution T (∂H ×D2) ∩
JT (∂H ×D2) on ∂H ×D2 is, up to homotopy relative to the bound-
ary, the orthogonal complement of the non-singular vector field v2 =
ψ∗(v′2), where v′2 is invariant in the direction of ∂H and its restriction
to p×D2, p ∈ ∂H, is shown on Figure 16(b).

Step 2. Now we round the corners of ∂(H ×Di) = (∂H ×Di) ∪ (H ×
∂Di), which is the union of two solid tori meeting each other orthogo-
nally. Note that the 2-plane field T (H × ∂Di) ∩ JT (H × ∂Di) on H × ∂Di

is everywhere tangent to H by our choice of Di ⊂ Σ, for i = 1, 2. Abusing
notations, we still denote by ∂(H ×Di) the smooth 3-sphere obtained by
rounding the corners in the standard way. Let ξi denote T (∂(H ×Di)) ∩
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∂H ×D1 ∂H ×D2

(a) (b)
Figure 16.

JT (∂(H ×Di)), for i = 1, 2. So ξ1 and ξ2 are oriented 2-plane fields. Using
the Pontryagin-Thom construction, we see that ξ1 is homotopic to the nega-
tive standard contact structure on S3, while ξ2 is homotopic to the positive
standard contact structure on S3. Embed H ×Di = B4 ⊂ C2 such that H
and Di are contained in orthogonal complex planes respectively. Let

J0 =

(
i 0
0 i

)
, J ′0 =

(
i 0
0 −i

)
be complex structures on C2. Then it is standard to check that ξ1 � TS3 ∩
J ′0TS3 and ξ2 � TS3 ∩ J0TS

3 as oriented 2-plane fields, where S3 = ∂B4 ⊂
C2. Hence we can extend J to the whole Wα,β,γ satisfying all the desired
properties.

Now we turn to the general case. Let y′ ∈ Tα ∩ Tγ be another intersec-
tion point in FW,t, i.e. there exists a holomorphic triangle ψ′ ∈ π2(x,Θ,y′)
such that the Maslov index μ(ψ′) = 0. Let y ∈ FW,t(x) be the intersection
point as shown in Figure 12 and ψ ∈ π2(x,Θ,y) be the obvious holomor-
phic triangle of Maslov index μ(ψ) = 0. Since ψ and ψ′ induces the same
Spinc structure t on W , we have ψ′ = ψ + φ1 + φ2 + φ3 for φ1 ∈ π2(x,x),
φ2 ∈ π2(Θ,Θ), and φ3 ∈ π2(y,y

′). This implies

μ(ψ′) = μ(ψ) + μ(φ1) + μ(φ2) + μ(φ3).

Therefore

μ(φ1)− 2nz(φ1) = −(μ(φ3)− 2nz(φ3)),

because μ(ψ) = μ(ψ′) = nz(ψ) = nz(ψ
′) = μ(φ2)− 2nz(φ2) = 0. Since we

have shown that there exists an almost complex structure J on Wα,β,γ such
that g̃r(x) ∈ P(Y0), g̃r(y) ∈ P(Y1) and g̃r(Θ) ∈ P(#n(S1 × S2)) are all J-
invariant with the complex orientation, it is easy to show that there exists
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another almost complex structure J ′ on Wα,β,γ such that g̃r(x) + μ(φ1)−
2nz(φ1), g̃r(y)− (μ(φ3)− 2nz(φ3)), and g̃r(Θ) are all J ′-invariant with the
complex orientation. Here we are using the Z-action as explained in Re-
mark 1.3. Now it remains to observe that g̃r(x) = g̃r(x) + μ(φ1)− 2nz(φ1) ∈
P(Y0) since μ(φ1)− 2nz(φ1) is an integral multiple of the divisibility of
c1(g̃r(x)) ∈ H2(Y0;Z), and that

g̃r(y′) = g̃r(y)− gr(y,y′) = g̃r(y)− (μ(φ3)− 2nz(φ3)).

�

It remains to show that J can be extended to W . Recall that W =
Wα,β,γ ∪#n

b (S
1 ×B3). We need to show that there exists an almost com-

plex structure on #n
b (S

1 ×B3) such that its restriction to #n(S1 × S2) =

∂(#n
b (S

1 ×B3)) coincides with J |#n(S1×S2). Note that [Θ] ∈ ĤF (−#n(S1 ×
S2)) defines the contact invariant of the standard contact structure on
#n(S1 × S2), which is holomorphically fillable. Hence the conclusion follows
immediately from Theorem 1.1(b). We finish the proof of Case 1.

Case 2. Suppose W is given by attaching 1- and 3-handles. By duality,
it suffices to consider the case that W consists of 1-handle attachments.
Let (Σ,α,β, z) be a Heegaard diagram of Y0 and (Σ0,α0,β0, z0) a stan-
dard Heegaard diagram of #n(S1 × S2). We obtain a Heegaard diagram
(Σ′,α′,β′, z′) = (Σ,α,β, z)#(Σ0,α0,β0, z0) of Y1. There is an associated
map between the Heegaard Floer homology groups

FW,t : ĈF (Σ,α,β, z, t|Y0
)→ ĈF (Σ′,α′,β′, z′, t|Y1

)

which is induced by FW,t(x) = x⊗Θ, where x ∈ Tα ∩ Tβ is a generator in

the Spinc structure t|Y0
, and Θ ∈ ĈF (#n(S1 × S2)) is the top dimensional

generator. Now the existence of an almost complex structure J on W with
the desired properties follows from Theorem 1.1(b) and the fact that the
standard contact structure on #n(S1 × S2) is fillable by (#n

b (S
1 ×B3), J ′)

for some almost complex structure J ′. So Case 2 is also proved. �

5. The invariance under Heegaard moves

Our aim for this section is to show that the absolute grading is an invariant of
the 3-manifold. That means that if we have two different Heegaard diagrams
for the same 3-manifold, then the absolute grading is preserved under the
isomorphism between the Floer homologies defined in [16]. It is shown in
[16] that any two Heegaard diagrams for the same manifold differ by a
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sequence of Heegaard moves, i.e. isotopies, handleslides, stabilizations and
destabilizations. Every Heegaard move gives rise to a chain map between
the Floer complexes, which induces an isomorphism in homology. It is easy
to see that these chain maps take homogeneous elements to homogeneous
elements. We will show the following theorem.

Theorem 5.1. Let (Σ,α,β, z) be a Heegaard diagram for Y and (Σ′,α′,
β′, z′) the Heegaard diagram obtained by a Heegaard move from (Σ,α,β, z).

Let Γ : ĈF (Σ,α,β, z)→ ĈF (Σ′,α′,β′, z′) be the chain map defined in [16].
If x ∈ Tα ∩ Tβ, then g̃r(x) = g̃r(Γ(x)).

Remark 5.2. Theorem 5.1 gives the invariance we wanted and implies that
the following decomposition is independent of the Heegaard diagram:

ĤF (Y ; s) =
⊕

ρ∈P(Y,s)
ĤF ρ(Y ; s).

To prove Theorem 5.1, we will consider each type of Heegaard move at
a time.

5.1. Isotopies

Let (Σ,α,β, z) be a Heegaard diagram for Y and let α′ be given by moving
α1 to α

′
1 by a Hamiltonian isotopy without passing through z. Then there is a

continuation map Γ : ĈF (Σ,α,β, z)→ ĈF (Σ,α′,β, z) defined by counting
Maslov index 0 holomorphic disks with dynamic boundary conditions, as
defined in [16]. If this isotopy does not create or destroy intersections between
α and β curves, then it corresponds to isotoping the Morse function without
introducing or removing any critical point. In this case it is clear that Γ is
an isomorphism and that it preserves the absolute grading.

Figure 17.
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A finger move is a Hamiltonian isotopy that creates a canceling pair of
intersections, as shown in Figure 17. We only need to show that Γ is invari-
ant when the isotopy introduces or eliminates one finger move and the gen-
eral isotopy invariance follows from that. First assume that α′1 is obtained
from α1 by introducing one finger move. Let x = (x1, . . . , xg) ∈ Tα ∩ Tβ,
where xi ∈ αi ∩ βσ(i), for some permutation σ. Then x1 is moved to a point
x′1 ∈ α′1 ∩ βσ(1). We note that x′1 is never one of the two new intersection
points. It is easy to see an index 0 holomorphic disk from x1 to x′1, which is
actually just a flow line along βσ(1). So if we take x′ = (x′1, x2, . . . , xg), then
x′ is one of the terms in Γ(x). It is easy to see that g̃r(x) = g̃r(x′). Therefore
Γ preserves the absolute grading. Now we assume that α′1 is obtained from
α1 by eliminating a finger move. It remains to see what happens when x1 is
one of the two points that disappears. So we assume that x1 is one of those
two points, such that x = (x1, . . . , xg) ∈ ĈF (Σ,α,β, z). If Γ(x) = 0, then
there is nothing to prove. Assume that Γ(x) 
= 0. So we can take a term x′

in Γ(x). Then since we only isotoped α1, none of the points xi, for i > 1,
have moved. So we can write x′ = (x′1, x2, . . . , xg), where x′1 ∈ α′1 ∩ βσ(1).
That means that there exists a Maslov index 0 holomorphic disk ϕ from x1
to x′1. Now undoing this isotopy and introducing the finger move again, x′1
corresponds to an intersection x′′1 ∈ α1 ∩ βσ(1) and there is a Maslov index
zero holomorphic disk ψ from x′1 to x′′1. We now observe that the compo-
sition ϕ ∗ ψ is homotopic to a Whitney disk from x1 to x′′1 with stationary
boundary conditions, i.e. there exists a Whitney disk from x1 to x′′1 with its
boundary mapping to α1 ∪ βσ(1). Therefore there is an index zero Whitney
disk from x1 to x′′1. So, since the absolute grading refines the relative grading

in ĈF (Σ,α,β, z), it follows that g̃r(x) = g̃r(x′′), where x′′ = (x′′1, x2, . . . , xg),
and hence g̃r(x) = g̃r(x′). That implies that Γ preserves the absolute grading
when a finger move is undone.

5.2. Handleslides

Let (Σ,α,β, z) be a Heegaard diagram for Y and let β′1 be the closed curve
obtained by handlesliding β1 over β2. Now we define β′ = (β′1, β2, . . . , βg).
This handleslide gives rise to a trivial cobordism W = Y × [0, 1], which can
also be obtained from the Heegaard triple diagram (Σ,α,β,β′) by attach-

ing g copies of S1 ×D3, as explained in [16]. Let FW : ĈF (Σ,α,β, z)→
ĈF (Σ,α,β′, z) be the induced chain map. Then, it follows from Theo-
rem 1.1(c) that g̃r(x) ∼W g̃r(FW (x)). That means that there exists an
almost-complex structure J on W such that [T (Y ×{0}) ∩ J(T (Y ×{0}))] =
g̃r(x) and [T (Y × {1}) ∩ J(T (Y × {1}))] = g̃r(FW (x)). Now let ξt = T (Y ×
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{t}) ∩ J(T (Y × {t})), for 0 ≤ t ≤ 1. Under the canonical identification Y �
Y × {t}, {ξt} gives a homotopy between T (Y × {0}) ∩ J(T (Y × {0})) and
T (Y × {1}) ∩ J(T (Y × {1})). Therefore g̃r(x) = g̃r(FW (x)).

5.3. Stabilization

Given a Heegaard diagram (Σ,α,β, z) we stabilize it by taking the con-
nected sum with a two-torus and introducing a new pair of α and β curves
in this two-torus which intersect at exactly one point. This is equivalent to
taking the connect sum of Y with an S3, that is endowed with the stan-
dard genus one Heegaard decomposition. We can write (Σ′,α′,β′, z′) for the
Heegaard diagram of the stabilization. Here Σ′ = Σ#E, for a two-torus E,
α′ = (α1, . . . , αg, αg+1), β

′ = (β1, . . . , βg, βg+1) and z′ ∈ Σ′ is naturally as-
sociated with z, assuming that the connected sum removes a ball from Σ
that does not contain z. Let w be the unique point in αg+1 ∩ βg+1. It is

clear that Γ : ĈF (Σ,α,β, z)→ ĈF (Σ′,α′,β′, z′), which takes (x1, . . . , xg)
to (x1, . . . , xg, w), is an isomorphism. It is also shown in [16] that this map
gives rise to an isomorphism in homology. We need to show that the absolute
grading is invariant under Γ. Let x = (x1, . . . , xg) ∈ ĈF (Σ,α,β, z). In the
definition of g̃r(x) we modify a gradient-like vector field in neighborhoods
of the flow lines γxi

and γ0 to get a nonzero vector field. We can write

Y#S3 = (Y \Bε) ∪φ (S3 \BR),

where Bε is a small ball, BR is a large ball and φ : ∂Bε → ∂BR is a diffeo-
morphism. We can see the same neighborhoods N(γxi

) ⊂ Y and N(γ0) ⊂ Y
in Y#S3. Now we take a gradient-like vector field v for a Morse function
compatible with (Σ′,α′,β, z′). The definition of g̃r(Γ(x)) clearly implies that
the vector field wΓ(x) is homotopic to wx in Y \Bε. So it remains to show
that wx and wΓ(x) are also homotopic in S3 \BR. We can think of S3 \BR as
a small ball Bδ in R3, where wx is very close to being constant with respect
to the standard trivialization. We note that v has only two critical points in
Bδ. It is easy to homotope wx in a neighborhood of Bδ so that it coincides
with v on ∂Bδ. It is also easy to see that after we modify v in N(γxg+1

), the
vector field we obtain is homotopic to wx in Bδ. That concludes the proof
of Theorem 5.1.
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