
journal of
symplectic geometry
Volume 15, Number 1, 1–49, 2017

On the symplectic curvature flow for

locally homogeneous manifolds
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Dedicated to the memory of our dear friend Sergio Console

Recently, J. Streets and G. Tian introduced a natural way to evolve
an almost-Kähler manifold called the symplectic curvature flow, in
which the metric, the symplectic structure and the almost-complex
structure are all evolving. We study in this paper different aspects
of the flow on locally homogeneous manifolds, including long-time
existence, solitons, regularity and convergence. We develop in de-
tail two large classes of Lie groups, which are relatively simple
from a structural point of view but yet geometrically rich and ex-
otic: solvable Lie groups with a codimension one abelian normal
subgroup and a construction attached to each left symmetric alge-
bra. As an application, we exhibit a soliton structure on most of
symplectic surfaces which are Lie groups. A family of ancient so-
lutions which develop a finite time singularity was found; neither
their Chern scalar nor their scalar curvature are monotone along
the flow and they converge in the pointed sense to a (non-Kähler)
shrinking soliton solution on the same Lie group.
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1. Introduction

There is a natural way to evolve an almost-Kähler manifold (M,ω, g, J)
which has recently been introduced by J. Streets and G. Tian in [36] and is
called the symplectic curvature flow (or SCF for short):

(1)

{
∂
∂tω = −2p,
∂
∂tg = −2p1,1(·, J ·)− 2Rc2,0+0,2,

where p is the Chern-Ricci form of (ω, g) and Rc is the Ricci tensor of g.
The equation for the symplectic form is in direct analogy with Kähler-Ricci
flow, the term −2p1,1(·, J ·) in the equation for the metric guarantees that
compatibility is preserved and the term −2Rc2,0+0,2, being geometrically
very natural, yields to the (weak) parabolicity of the flow. The evolution of
J follows from the formula ω = g(J ·, ·) (see (5)). Unlike the anti-complexified
Ricci flow (see [27]), where ω remains fixed in time, and unlike some flows for
hermitian manifolds studied in the literature like hermitian curvature flow
(see [35]), pluriclosed flow (see [37]) or Chern-Ricci flow (see [38]), in which
J is fixed along the flow, in SCF the three structures are indeed evolving.
This certainly makes very difficult the study of any basic property of the
flow. A flow unifying SCF and pluriclosed flow is studied in [10] and a result
on stability of Kähler-Einstein structures is given in [34].

Our aim in this paper is to explore some aspects of the SCF on the
class of locally homogeneous almost-Kähler manifolds, in order to exemplify
and provide some evidence for eventual conjectures in the general case (we
refer to [11, 25, 33] for further work on homogeneous SCF). More precisely,
we are interested in the SCF evolution of compact almost-Kähler manifolds
(M,ω, g) whose universal cover is a Lie group G and such that if π : G −→
M is the covering map, then π∗ω and π∗g are left-invariant (e.g. invariant
structures on solvmanifolds and nilmanifolds). A solution on M is therefore
obtained by pulling down the corresponding solution on the Lie group G,
which by diffeomorphism invariance stays left-invariant and so Equation (1)
becomes an ODE for a compatible pair (ω(t), g(t)), where ω(t) is a closed
non-degenerate 2-form on the Lie algebra g of G and g(t) is an inner product
on g for all t. Notice that short-time existence (forward and backward)
and uniqueness of the solutions are therefore guaranteed, say on a maximal
interval of time (T−, T+) containing 0, T± ∈ R ∪ {±∞}. We therefore study,
more in general, left-invariant solutions on Lie groups which may or may
not admit a cocompact discrete subgroup.
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An almost-Kähler manifold (M,ω, g) will flow self-similarly along the
SCF, in the sense that

(ω(t), g(t)) = (ctϕ(t)
∗ω, ctϕ(t)∗g), for some ct > 0, ϕ(t) ∈ Diff(M),

if and only if the Chern-Ricci form and Ricci tensor of (ω, g) satisfy{
p = cω + LXω,

p1,1(·, J ·) + Rc2,0+0,2 = cg + LXg,
for some c ∈ R, X ∈ χ(M)(complete).

In analogy to the terminology used in Ricci flow theory, we call such structure
(ω, g) a SCF-soliton and we say it is expanding, steady or shrinking, if c < 0,
c = 0 or c > 0, respectively. The following natural open questions were our
main motivation: Does every symplectic Lie group (G,ω) admit a compatible
metric g such that (ω, g) is a SCF-soliton? Is a SCF-soliton structure unique
up to equivalence and scaling? Are all nonflat SCF-solitons on Lie groups
steady or expanding? Note that the last question is related to the long-time
existence of SCF solutions.

The following two large classes of Lie groups have been studied in detail.
We believe that some of the results obtained in the present paper might
also be useful in other problems on almost-Kähler geometry, specially those
involving Chern-Ricci or Ricci curvature.

1.1. Almost abelian solvmanifolds

In Section 4, we attach to each (2n− 1)× (2n− 1)-matrix of the form

A =

⎡⎢⎢⎣
a v

0 A1

⎤⎥⎥⎦ , a ≥ 0, v ∈ R
2n−2, A1 ∈ sp(n− 1,R),

a left-invariant almost-Kähler structure on a 2n-dimensional Lie group de-
noted by GA. The Lie algebra of GA has an orthonormal basis {e1, . . . , e2n}
such that n := 〈e1, . . . , e2n−1〉 is an abelian ideal, ad e2n|n = A, and the fixed
symplectic form and almost-complex structures are respectively given by

ω = e1 ∧ e2n + ω1, J =

⎡⎢⎢⎢⎢⎣
0 0 −1

0 J1 0

1 0 0

⎤⎥⎥⎥⎥⎦ ,
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where {ei} denotes the dual basis and ω1 = g(J1·, ·) is the nondegenerate
2-form on n1 := 〈e2, . . . , e2n−1〉 used to define the Lie algebra sp(n− 1,R)
above. Any almost-Kähler Lie group with a codimension-one abelian nor-
mal subgroup is equivalent to (GA, ω, g) for some matrix A as above. The
structure is Kähler if and only if v = 0 and A1 ∈ su(n− 1).

After giving some criteria for the equivalence between these structures,
we compute their Chern-Ricci and Ricci tensors in terms of A, which is
actually the only datum that is varying in this construction. We then study
the existence, uniqueness and structure of solitons among this class, which
turn out to be all expanding if nonflat.

Theorem 1.1. Assume that v = 0.

(i) If A is either semisimple or nilpotent, then the symplectic Lie group
(GA, ω) admits a compatible metric g such that the almost-Kähler
structure (ω, g) is a SCF-soliton. The condition for (GA, ω, g) being
a SCF-soliton is respectively given by A normal and

[A, [A,At]] = − (|[A,At]|2/|A|2)A.
(ii) If A is neither nilpotent nor semisimple, then the Lie group GA does

not admit any (algebraic) SCF-soliton.

(iii) The SCF evolution is equivalent to the ODE for A = A(t) given by

A′ = −1
2((trA)

2 + trS(A)2)A+ 1
2 [A, [A,A

t]]− trA
2 [A,At].

(iv) Any solution (ω(t), g(t) is immortal (i.e. T+ =∞) in this class.

(v) The quantity |[A,At]|2/|A|4 is strictly decreasing along the flow, unless
the solution is a SCF-soliton.

(vi) Any accumulation point A+ of the set {A(t)/|A(t)| : t ∈ [0,∞)} gives
rise to a limit soliton (GA+

, ω, g). If A0 is not nilpotent, then A+ is a
normal matrix having the same eigenvalues as A0 up to scaling.

Exactly five 4-dimensional symplectic Lie groups admit a lattice, giving
rise to the compact symplectic surfaces which are solvmanifolds. They all
admit a SCF-soliton, and since they all have a codimension one abelian nor-
mal subgroup, we use the results obtained for almost abelian solvmanifolds
described above to study their SCF evolution in Section 5.1, including the
convergence behavior.
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1.2. LSA construction

In order to search for SCF-solitons beyond the solvable case, we considered
in Section 6 a construction attaching to each n-dimensional left-symmetric
algebra (LSA for short; see (39)) an almost-Kähler structure on a 2n-
dimensional Lie group (see [1, 6, 31] for further information on this con-
struction).

We fix an euclidean symplectic vector space (g⊕ g, ω, g, J), where g is
an inner product making the two copies of the vector space g orthogonal
and J =

[
0 I
−I 0

]
. Now for each LSA structure on g, define the Lie algebra

g�θ g with Lie bracket

[(X,Y ), (Z,W )] := ([X,Z]g, θ(X)W − θ(Z)Y ) ,

where [X,Y ]g := X · Y − Y ·X is the corresponding Lie bracket on g and
θ(X) := −L(X)t. Here L(X) denotes LSA left-multiplication by X ∈ g. The
almost-Kähler Lie algebra (g�θ g, ω, g) is therefore completely determined
by the LSA structure. We first prove some criteria on the equivalence be-
tween these structures and then compute their Chern-Ricci and Ricci cur-
vature in terms of θ, which is the only datum varying here.

The SCF on this class is equivalent to the ODE for θ = θ(t) given by

θ′(X) = θ((P1 + S)X) + [θ(X), P t
1 − S], ∀X ∈ g,

where P =
[
P1 0
0 P t

1

]
and Ricac =

[
S 0
0 −S

]
are respectively the Chern-Ricci op-

erator (i.e. p = ω(P ·, ·)) and the anti-J-invariant part of the Ricci operator
Ric (i.e. Ricac = 1

2(Ric+J Ric J)).

Theorem 1.2. Let G denote the 8-dimensional Lie group with Lie algebra
defined as above for the Lie algebra g = u(2) with LSA structure coming from
the identification g = H with the quaternion numbers.

(i) There is a family of ancient solutions on G (i.e. T− = −∞). Each one
of them develops a finite time singularity T+ <∞ (see Example 6.15).

(ii) The Chern scalar curvature tr p of any of the solutions in part (i)
is always positive and, as t→ T+, tr p→∞ after attaining a global
minimum. The scalar curvature R is always negative, attains a global
maximum and R→ −∞, as t→ T+. In particular, neither tr p nor R
are monotone along the flow.
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(iii) G admits a non-Kähler shrinking SCF-soliton (ω, g) (see Example 6.11)
with Chern-Ricci form, Ricci operator and scalar curvature given re-
spectively by

p = 20ω, Ric = Diag(−100, 92, 92, 92,−244,−52,−52,−52), R = −224.

(iv) Each ancient solution from part (i) converges in the pointed sense to
the shrinking SCF-soliton structure in (iii), and backward, they con-
verge to expanding SCF-solitons on certain solvable Lie groups.

Remark 1.3. Along the way, we found negative Ricci curvature metrics
on the Lie group G in the above theorem which are new in the literature as
far as we know (compare with [30]).

1.3. Homogeneous symplectic surfaces

According to the classification obtained in [31], there are fourteen 4-dimen-
sional Lie groups admitting a left-invariant symplectic structure (see Ta-
ble 1). They are all solvable, some of them are actually continuous families
of groups and many of them admit more than one symplectic structure. We
have found in Section 5 a (unique) SCF-soliton on each of these symplec-
tic Lie groups, with the exception of only four cases. For two of them we
were able to prove the non-existence of (algebraic) solitons. The SCF-soliton
almost-Kähler structures and their respective Chern-Ricci and Ricci opera-
tors are given in Table 2. They are all expanding solitons if nonflat and are
static (i.e. p = cω and Rcac = 0) if and only if they are Kähler-Einstein. The
last equivalence was proved for any compact static almost-Kähler structure
of dimension 4 in [36, Corollary 9.5].

2. Preliminaries and notation

Let g be a real vector space. The following notation will be used for g the
tangent space TpM at a point of a differentiable manifold, as well as for the
underlying vector space of a Lie algebra. We consider an almost-hermitian
structure (ω, g, J) on g, that is, a 2-form ω and an inner product g such that
if

ω = g(J ·, ·),
then J2 = −I. The above formula is therefore equivalent to g = ω(·, J ·).
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The transposes of a linear map A : g −→ g with respect to g and ω are
respectively given by

g(A·, ·) = g(·, At·), ω(A·, ·) = ω(·, Atω ·), Atω = −JAtJ,

and if p : g× g −→ R is a bilinear map, then their complexified (or J-
invariant) and anti-complexified (or anti-J-invariant) components are de-
fined by

A = Ac +Aac, Ac := 1
2(A− JAJ), Aac := 1

2(A+ JAJ),

and p = pc + pac, where

pc = p1,1 := 1
2(p(·, ·) + p(J ·, J ·)), pac = p2,0+0,2 := 1

2(p(·, ·)− p(J ·, J ·)).

Let (M,ω, g, J) be a 2n-dimensional almost-Kähler manifold (i.e. dω = 0).
The Chern connection is the unique connection ∇ on M which is hermitian
(i.e. ∇ω = 0, ∇g = 0, ∇J = 0) and its torsion satisfies T 1,1 = 0. In terms of
the Levi Civita connection D of g, the Chern connection is given by

∇XY = DXY + 1
2(DXJ)JY ;

in particular, ∇ = D if and only if (M,ω, g, J) is Kähler. The Chern-Ricci
form p = p(ω, g) is defined by

p(X,Y ) =

n∑
i=1

g(R(X,Y )ei, Jei) =
√−1

n∑
i=1

g(R(X,Y )Zi, Zi),

where R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ] is the curvature tensor of ∇ and

{e1, . . . , en, Je1, . . . , Jen}

is a local orthonormal frame for g with corresponding local unitary frame

Zi := (ei −
√−1Jei)/

√
2, Zi := (ei +

√−1Jei)/
√
2.

The Chern-Ricci form is always closed, locally exact and in the Kähler case p
equals the Ricci form Rc(J ·, ·). By Chern-Weil theory, its cohomology class
equals [p] = 2πc1(M,J), where c1(M,J) ∈ H2(M,R) is the first Chern class.
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The Chern-Ricci form p of a left-invariant almost-hermitian structure
(ω, g, J) on a Lie group with Lie algebra g is given by

(2) p(X,Y ) = −1
2 tr J ad [X,Y ] + 1

2 tr ad J [X,Y ], ∀X,Y ∈ g.

(See [39, Proposition 4.1] or [33]). Remarkably, p only depends on J . Since
p is exact, there exists a unique Z ∈ g such that

p(X,Y ) = g([X,Y ], JZ) = ω(Z, [X,Y ]),

and the Chern-Ricci operator P defined by p = ω(P ·, ·) equals

(3) P = adZ + (adZ)tω .

(See [11, (2.3)]).

3. Symplectic curvature flow

Let (M,ω, g, J) be an almost-Kähler manifold of dimension 2n, i.e. an almost-
hermitian manifold such that dω = 0. With Kähler-Ricci flow as a motiva-
tion, it is natural to evolve the symplectic structure ω in the direction of
the Chern-Ricci form p, but since in general p �= pc, one is forced to flow the
metric g as well in order to preserve compatibility. The following evolution
equation for a one-parameter family (ω(t), g(t)) of almost-Kähler structures
has recently been introduced by Streets-Tian in [36] and is called the sym-
plectic curvature flow (or SCF for short):

(4)

{
∂
∂tω = −2p,
∂
∂tg = −2pc(·, J ·)− 2Rcac,

where p is the Chern-Ricci form of (ω, g) and Rc is the Ricci tensor of g.
SCF-solutions preserve the compatibility and the almost-Kähler condition
(recall that dp = 0). The almost-complex structure evolves as follows:

(5)
∂

∂t
J = −2JP ac − 2J Ricac = −2JP ac + [Ric, J ],

where Ric denotes the Ricci operator of the metric g (i.e. Rc = g(Ric ·, ·))
and P the Chern-Ricci operator (i.e. p = ω(P ·, ·)). We note that if J0 is
integrable, i.e. (ω0, g0) Kähler, then J = J0, Rc

ac = 0 and pc(·, J ·) = Rc for
all t and so SCF becomes precisely the Kähler-Ricci flow for g(t).
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3.1. SCF on Lie groups

Our aim in this paper is to study the SCF evolution of compact almost-
Kähler manifolds (M,ω, g) whose universal cover is a Lie group G and such
that if π : G −→M is the covering map, then π∗ω and π∗g are left-invariant.
This is in particular the case of invariant structures on a quotient M =
G/Γ, where Γ is a cocompact discrete subgroup of G (e.g. solvmanifolds
and nilmanifolds). A solution on M is therefore obtained by pulling down
the corresponding solution on the Lie group G, which by diffeomorphism
invariance stays left-invariant and so it can be studied on the Lie algebra or
infinitesimal level as an ODE.

Any almost-Kähler structure on a Lie group with Lie algebra g which
is left-invariant is determined by a pair (ω, g), where ω is a non-degenerate
2-form on the Lie algebra g that is closed, i.e.

(6) ω([X,Y ], Z) + ω([Y, Z], X) + ω([Z,X], Y ) = 0, ∀X,Y, Z ∈ g,

and g is an inner product on the underlying vector space g compatible with ω
(i.e. if ω = g(J ·, ·), then J2 = −I). Two almost-Kähler structures (g1, ω1, g1)
and (g2, ω2, g2) are called equivalent if there is a Lie algebra isomorphism
ϕ : g1 −→ g2 such that ω1 = ϕ∗ω2 and g1 = ϕ∗g2.

Since all the tensors involved are determined by their value at the iden-
tity of the group, the SCF Equation (4) on M , or on the covering Lie group
G, becomes an ODE system of the form

(7)

{
d
dtω = −2p,
d
dtg = −2pc(·, J ·)− 2Rcac,

where p = p(ω, g) ∈ Λ2g∗ and Rcac = Rcac(ω, g) ∈ S2g∗. Thus short-time ex-
istence (forward and backward) and uniqueness of the solutions are always
guaranteed.

Given a left-invariant almost-hermitian structure (ω0, g0) on a simply
connected Lie group G, one has that

(8) (ω, g) = h∗(ω0, g0) := (ω0(h·, h·), g0(h·, h·)) ,

is also almost-hermitian for any h ∈ GL(g), and conversely, any almost-
hermitian structure on g is of this form. Moreover, the corresponding Lie
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group isomorphism

h̃ : (G,ω, g) −→ (Gμ, ω0, g0), where μ = h · [·, ·] := h[h−1·, h−1·],

is an equivalence of almost-hermitian manifolds. Here [·, ·] denotes the Lie
bracket of the Lie algebra g and so μ defines a new Lie algebra (isomorphic to
(g, [·, ·])) with same underlying vector space g. We denote by Gμ the simply
connected Lie group with Lie algebra (g, μ).

In this way, if we fix a compatible pair (ω0, g0) on a vector space g of
dimension 2n, then each left-invariant almost-hermitian structure on each
2n-dimensional simply connected Lie group can be identified with a point
in the variety L of 2n-dimensional Lie algebras defined by

L := {μ ∈ Λ2g∗ ⊗ g : μ satisfies the Jacobi condition}.

We denote by Sp(ω0) the subgroup isomorphic to Sp(n,R) of GL(g) (�
GL2n(R)) given by those elements preserving ω0 (i.e. ϕ∗ω0 = ω0) and by
sp(ω0) its Lie algebra, which is isomorphic to sp(n,R) and given by the
maps A ∈ gl(g) such that AtJ0 + J0A = 0. If

U(ω0, g0) := Sp(ω0) ∩O(g0),

where O(g0) denotes the subgroup of orthogonal maps (i.e. ϕ∗g0 = g0), then
U(ω0, g0) is isomorphic to the unitary group U(n). Recall that the map h
in (8) is unique only up to left-multiplication by elements in U(ω0, g0).

Note that GL(g)-orbits in L are precisely Lie isomorphism classes. We
are interested in this paper in the algebraic subset L(ω0) ⊂ L of those Lie
brackets for which the fixed 2-form ω0 is closed (see (6)), i.e. on those points
which are almost-Kähler.

Recall that two symplectic Lie algebras (g1, ω1) and (g2, ω2) are said to
be isomorphic if ω1 = ϕ∗ω2 for some Lie algebra isomorphism ϕ : g1 −→ g2.
Therefore, from the varying Lie brackets viewpoint, Sp(ω0)-orbits in L(ω0)
are precisely the isomorphism classes of symplectic Lie algebras

{(g, μ, ω0) : μ ∈ L(ω0)} .

On the other hand, by (8), U(ω0, g0)-orbits in L(ω0) are the equivalence
classes of the almost-Kähler structures

{(g, μ, ω0, g0) : μ ∈ L(ω0)} .
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It also follows that, given μ ∈ L(ω0), the orbit Sp(ω0) · μ also parameterizes
the set of all left-invariant metrics on Gμ which are compatible with ω0.

Example 3.1. If ω0 = e1 ∧ e2n + · · ·+ en ∧ en+1 and the only nonzero
bracket of μ0 ∈ L is μ0(e1, e2) = e3, then μ0 ∈ L(ω0) and is isomorphic to
h3 ⊕ R

2n−3 as a Lie algebra, where h3 denotes the 3-dimensional Heisen-
berg algebra. As an almost-Kähler structure, (Gμ0

, ω0, g0) is equivalent to
(H3 × R)× R

2n−4, where H3 × R is the universal cover of the Kodaria-
Thurston manifold. It is easy to prove that L(ω0) ∩GL(g) · μ0 = Sp(ω0) · μ0

(i.e. (g, μ0) admits a unique symplectic structure up to isomorphism). More-
over, it is proved in the first example in [21, Section 3] that Sp(ω0) · μ0 =
U(ω0, g0) · μ0, from which follows that the Lie group (H3 × R)× R

2n−4 ad-
mits a unique left-invariant almost-Kähler structure up to equivalence for
any n ≥ 2. Consequently, the solution starting at this structure will be self-
similar for any curvature flow on almost-Kähler manifolds invariant by dif-
feomorphisms.

3.2. Bracket flow

In view of the parametrization of left-invariant almost-Kähler structures as
points in the variety L(ω0) ⊂ L described in the above section, it is natural
to study the dynamical system determined by SCF on L(ω0).

Consider for a family μ(t) ∈ Λ2g∗ ⊗ g of brackets the following evolution
equation, called the bracket flow:

(9)
d

dt
μ = δμ(Pμ +Ricacμ ), μ(0) = [·, ·],

where Pμ,Ric
ac
μ ∈ End(g) are respectively the Chern-Ricci and Ricci op-

erators of the almost-hermitian manifold (Gμ, ω0, g0) and δμ : End(g) −→
Λ2g∗ ⊗ g is defined by

(10) δμ(A) := μ(A·, ·) + μ(·, A·)−Aμ(·, ·), ∀A ∈ End(g).

The bracket flow leaves the variety L(ω0) invariant (i.e. (Gμ(t), ω0, g0) is
almost-Kähler for all t) and has been proved in [25] to be equivalent to the
SCF.

Theorem 3.2. [25, Theorem 5.1] For a given simply connected almost-
Kähler Lie group (G,ω0, g0) with Lie algebra g, consider the families of
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almost-Kähler Lie groups

(G,ω(t), g(t)), (Gμ(t), ω0, g0),

where (ω(t), g(t)) is the solution to the SCF-flow starting at (ω0, g0) and μ(t)
is the bracket flow solution starting at the Lie bracket [·, ·] of g. Then there
exist Lie group isomorphisms h(t) : G −→ Gμ(t) (i.e. μ(t) = h(t) · [·, ·]) such
that

(ω(t), g(t)) = h(t)∗(ω0, g0), ∀t.
Moreover, the isomorphisms h(t) can be chosen as the solution to the fol-
lowing systems of ODE’s:

(i) d
dth = −h(P +Ricac) = −h(P ac +Ric), h(0) = I.

(ii) d
dth = −(Pμ +Ricacμ )h = −(P ac

μ +Ricμ)h, h(0) = I.

The maximal interval of time existence (T−, T+) is therefore the same
for both flows, as it is the behavior of any kind of curvature and so regularity
issues can be addressed on the bracket flow.

The above theorem has also the following application on convergence,
which follows from [23, Corollary 6.20] (see [25, Section 5.1] for further
information on convergence).

Corollary 3.3. Let μ(t) be a bracket flow solution and assume that
ckμ(tk)→ λ, for some nonzero ck ∈ R and a subsequence of times tk → T±.
Then, after possibly passing to a subsequence, the almost-Kähler manifolds(

G, 1
c2k
ω(tk),

1
c2k
g(tk)

)
converge in the pointed (or Cheeger-Gromov) sense to (Gλ, ω0, g0), as
k →∞.

We note that the limiting Lie group Gλ in the above corollary might
be non-isomorphic, and even non-homeomorphic, to G (see Examples 4.19
and 6.15).

3.3. Self-similar solutions

In the general case, an almost-Kähler manifold (M,ω, g) will flow self-
similarly along the SCF, in the sense that

(ω(t), g(t)) = (c(t)ϕ(t)∗ω, c(t)ϕ(t)∗g),
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for some c(t) > 0 and ϕ(t) ∈ Diff(M), if and only if{
p(ω, g) = cω + LXω,

pc(ω, g)(·, J ·) + Rcac(ω, g) = cg + LXg,

for some c ∈ R and a complete vector field X on M . In analogy to the
terminology used in Ricci flow theory, we call such (ω, g) a soliton almost-
Kähler structure and we say it is expanding, steady or shrinking, if c < 0,
c = 0 or c > 0, respectively. On Lie groups, it is natural to consider a SCF-
flow solution to be self-similar if the diffeomorphisms ϕ(t) above are actually
Lie group automorphisms (this is actually a stronger condition, see [25,
Example 9.1]). It is proved in [25, Section 7] that this is equivalent to the
following condition: we say that an almost-Kähler structure (ω, g) on a Lie
algebra g is a SCF-soliton if for some c ∈ R and D ∈ Der(g),

(11)

{
P = cI + 1

2(D − JDtJ),

P c +Ricac = cI + 1
2(D +Dt).

The following condition, suggested by the relationship between the SCF and
the bracket flow given in Theorem 3.2,

(12) P +Ricac = cI +D,

is sufficient to get a SCF-soliton (see [25, Proposition 7.4]) and an almost-
Kähler structure for which this holds will be called an algebraic SCF-soliton,
in analogy to the case of homogeneous Ricci solitons (see [18, Section 3] or
[15]). The bracket flow solution starting at an algebraic SCF-soliton is simply
given by μ(t) = (−2ct+ 1)−1/2[·, ·] and hence they are precisely the fixed
points and only possible limits, backward and forward, of any normalized
bracket flow solution c(t)μ(t). In particular, if in Corollary 3.3 one actually
has that ctμ(t)→ λ, as t→ T±, then the pointed limit (Gλ, ω0, g0) is an
algebraic soliton. The absence of certain chaotic behavior for the bracket flow
would imply that any SCF-soliton is actually algebriac (see [25, Section 7.1]).

If an almost-Kähler structure (ω, g) satisfies that

(13)

{
P = c1I +D1,

Ricac = c2I +D2,

for some ci ∈ R, Di ∈ Der(g), then (ω, g) is an algebraic SCF-soliton with
c = c1 + c2 and D = D1 +D2. We call these structures strongly algebraic
SCF-solitons. So far, all known examples of SCF-solitons are of this kind.
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Lemma 3.4. Let (G,ω, g) be a unimodular almost-hermitian Lie group
such that Ricac = cI +D for some c ∈ R and D ∈ Der(g). Then,

cR = tr (Ricac)2,

where R = trRic is the scalar curvature of (G, g).

Proof. Since Ricac = cI +D anti-commute with J , we obtain that Dac =
cI +D and Dc = −cI. This implies that

(14) trRicD = trRicDc + trRicDac = −c trRic + tr (Ricac)2,

and so the lemma follows from the fact that trRicD = 0 when g is unimod-
ular (see e.g. [19, Remarks 2.4, 2.7]). �

It is well known that if g is unimodular and ω is closed, then g must be
solvable (see [28]), and any left-invariant metric g on a solvable Lie group
has R ≤ 0, with equality R = 0 holding if and only if g is flat.

Corollary 3.5. Any unimodular strongly algebraic SCF-soliton (G,ω, g) as
in (13) with g nonflat has c2 ≤ 0, and c2 = 0 if and only if Ricac = 0.

Lemma 3.4 is no longer true if g is not unimodular, counterexamples can
be easily found among the classes of structures studied in the next sections
(see e.g. the soliton on r2 in Table 2). Anyway, formula (14) can always be
used in the non-unimodular case.

4. Almost abelian solvmanifolds

We study in this section the SCF and its solitons in a class of solvable Lie
algebras which is relatively simple from the algebraic point of view but yet
geometrically rich and exotic.

Let (G,ω, g) be an almost-Kähler Lie group with Lie algebra g and
assume that g has a codimension-one abelian ideal n. These Lie algebras are
sometimes called almost-abelian in the literature (see e.g. [5, 9]). It is easy
to see that there exists an orthonormal basis {e1, . . . , e2n} such that

n = 〈e1, . . . , e2n−1〉, ω = e1 ∧ e2n + ω1, J =

⎡⎢⎢⎢⎢⎣
0 0 −1

0 J1 0

1 0 0

⎤⎥⎥⎥⎥⎦ ,
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where {ei} denotes the dual basis, ω1 is a nondegenerate 2-form on n1 :=
〈e2, . . . , e2n−1〉 and ω1 = g(J1·, ·). We fix in what follows the orthonormal
basis {ei} and the 2-form ω, thus obtaining a fixed euclidean symplectic
vector space (g, ω, g) which can be identified with R

2n.
Recall from Section 3.1 the notation Sp(ω), sp(ω) and U(ω, g). We also

use this notation for the 2-form ω1 above and obtain Sp(ω1), sp(ω1) and
U(ω1, g1), where g1 = g|n1

, which are respectively isomorphic to Sp(n−
1,R), sp(n− 1,R) and U(n− 1).

Each of these Lie algebras is therefore determined by the (2n− 1)×
(2n− 1)-matrix

A := ad e2n|n,
and so it will be denoted by μA. Thus μA is always solvable, n is always an
abelian ideal (which is the nilradical of μA if and only if A is not nilpotent)
and μA is nilpotent if and only if A is a nilpotent matrix. It is easy to check
that μA is isomorphic to μB if and only if A and B are conjugate up to a
nonzero scaling.

Proposition 4.1. Any almost-Kähler Lie algebra with a codimension-one
abelian ideal is equivalent to

(g, μA, ω, g), A =

⎡⎢⎢⎣
a vt

0 A1

⎤⎥⎥⎦ ,
for some a ≥ 0, v ∈ R

2n−2 and A1 ∈ sp(ω1) � sp(n− 1,R) (i.e. At
1J1 +

J1A1 = 0).

Proof. By using that the only nonzero Lie brackets are the ones involving
e2n, it is easy to see that ω is closed (see (6)) if and only if

ω(Aei, ej)− ω(Aej , ei) = 0, ∀i, j �= 2n,

which is equivalent to Ae1 ∈ Re1 and ω1(A1·, ·) + ω1(·, A1·) = 0. Thus A1 ∈
sp(ω1) and Ae1 = ae1 for some a ∈ R, which can be assumed nonnegative
by changing to the basis {e1, . . . ,−e2n} if necessary. �

Remark 4.2. It can be assumed that J1 =

[
0 −I
I 0

]
, in which case

sp(ω1) =

{[
B C

D −Bt

]
: Ct = C, Dt = D

}
.
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The almost-Kähler Lie algebra (g, μA, ω, g) in Proposition 4.1 determines
a left-invariant almost-Kähler structure on the corresponding simply con-
nected Lie group GμA

, which will be denoted by (GμA
, ω, g).

Let μB be another Lie algebra as above, where

B =

⎡⎢⎢⎣
b wt

0 B1

⎤⎥⎥⎦ , b ≥ 0, w ∈ R
2n−2, B1 ∈ sp(ω1).

Proposition 4.3. Let A, B be two matrices as above and assume that
neither is nilpotent.

(i) The symplectic Lie algebras (g, μA, ω) and (g, μB, ω) are isomorphic if
and only if there exists α �= 0, ϕ1 ∈ Sp(ω1) and u ∈ n1 such that

b = αa, B1 = αϕ1A1ϕ
−1
1 , w = α2(ϕt

1)
−1 (v + (At

1 − aI)J1ϕ
−1
1 u
)
.

(ii) The almost-Kähler structures (GμA
, ω, g) and (GμB

, ω, g) are equiva-
lent if and only if b = a and there exists ϕ1 ∈ U(ω1, g1) � U(n− 1)
such that

B1 = ϕ1A1ϕ
−1
1 (B1 = ±ϕ1A1ϕ

−1
1 if a = b = 0), w = ϕ1v.

Proof. To prove part (i), we first recall from Section 3.1 that these symplectic
Lie algebras are isomorphic if and only if μB = ϕ · μA for some ϕ ∈ Sp(ω).
It is easy to see by using that ϕ leaves n invariant (notice that n is the
nilradical of both Lie algebras as A and B are not nilpotent), that such a ϕ
must have the form

ϕ =

⎡⎢⎢⎢⎢⎣
α α(J1ϕ

−1
1 u)t β

0 ϕ1 u

0 0 α−1

⎤⎥⎥⎥⎥⎦, for someα, β ∈ R, u ∈ R
2n−2, ϕ1 ∈ Sp(ω1).

Condition μB = ϕ · μA is now equivalent to B = αϕ|nA(ϕ|n)−1, from which
part (i) easily follows.

We now prove part (ii). Since the structures are equivalent if and only if
there exists ϕ ∈ U(ω, g) such that μB = ϕ · μA, we obtain from part (i) that
ϕ has the form above with β = 0, u = 0, α = ±1 and ϕ1 ∈ U(ω1, g1). Thus
a = b since a, b ≥ 0 and α = −1 is only allowed when a = b = 0, concluding
the proof. �
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Remark 4.4. It follows that if

Aα :=

⎡⎢⎢⎣
αa α2v

0 αA1

⎤⎥⎥⎦ , α > 0,

then (GμAα
, ω, g) is equivalent to the almost-Kähler Lie group (GμA

, ω, gα),
where gα is the inner product defined by gα(e1, e1) = α2, gα(e2n, e2n) = α−2,
gα(e1, e2n) = 0 and gα(ei, ej) = δij for all 2 ≤ i, j ≤ 2n− 1. In the case v =
0, μAα

= αμA and (GμAα
, ω, g) is also equivalent to the almost-Kähler Lie

group (GμA
, α−2ω, α−2gα).

Example 4.5. If n = 3 and A, B are defined by taking a = b = 0, v = w =
0 and

(15) A1 =

[
0 0
0 0

0 0
0 1

0 0
0 0

0 0
0 0

]
, B1 =

[
0 0
0 0

0 0
0 −1

0 0
0 0

0 0
0 0

]
,

then the Lie algebras μA and μB are isomorphic but the symplectic Lie
algebras (g, μA, ω) and (g, μB, ω) are not. Indeed, A1 and B1 are GL4(R)-
conjugate but they belong to different Sp(2,R)-conjugacy classes.

It follows from [2, (8)] that the Ricci operator of (GμA
, g) is given by

(16) Ric =

⎡⎢⎢⎣ 1
2 [A,A

t]− aS(A) 0

0 − trS(A)2

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
−a2 + 1

2 |v|2 (12A1v − av)t 0

1
2A1v − av 1

2 [A1, A
t
1]− 1

2vv
t − aS(A1) 0

0 0 −a2 − 1
2 |v|2 − trS(A1)

2

⎤⎥⎥⎥⎥⎦,

and a straightforward computation shows that its anti-J-invariant part is
(17)

Ricac =

⎡⎢⎢⎢⎢⎢⎣
1
2

(|v|2 + trS(A1)
2
) (

1
4A1v − a

2v
)t

0

1
4A1v − a

2v
1
2 [A1, A

t
1]− aS(A1)− 1

2(vv
t)ac −J1

(
1
4A1v − a

2v
)

0 − (J1 (14A1v − a
2v
))t −1

2

(|v|2 + trS(A1)
2
)

⎤⎥⎥⎥⎥⎥⎦.
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The scalar curvature of (GμA
, g) is therefore given by

R = −a2 − trS(A)2 = −2a2 − 1
2 |v|2 − trS(A1)

2.

By using (2), it is straightforward to obtain that the Chern-Ricci operator
of (GμA

, ω, g) is given by

(18) P =

⎡⎢⎢⎢⎢⎣
−a2 − (12At

1v + av
)t

0

0 0 −J1
(
1
2A

t
1v + av

)
0 0 −a2

⎤⎥⎥⎥⎥⎦ ,

and thus the Chern scalar curvature is trP = −2a2.
We note that the following conditions are equivalent:

• (GμA
, ω, g) is Kähler.

• Ricac = 0.

• v = 0 and At
1 = −A1 (i.e. A1 ∈ su(n− 1)).

• R = trP .

• (GμA
, ω, g) is either equivalent as an almost-Kähler manifold (not as

a Lie group) to RH2 × R
2n−2, where RH2 denotes the 2-dimensional

real hyperbolic space (a > 0) or to the euclidean space R
2n (a = 0).

The equivalence between the first and third conditions above also follows
from Proposition 4.1 and [26, Lemma 6.1].

4.1. SCF-solitons

We now explore necessary and sufficient conditions on the matrix A to obtain
a SCF-soliton (GμA

, ω, g).

Theorem 4.6. Let (GμA
, ω, g) denote the almost-Kähler structure defined

as in Proposition 4.1.

(i) If A is not nilpotent, then μA is an algebraic SCF-soliton if and only
if v = 0 and A1 is normal, if and only if A is normal.
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(ii) If v = 0, then μA is an algebraic SCF-soliton if and only if either A is
normal or A is nilpotent (i.e. a = 0 and A1 nilpotent) and

(19) [A1, [A1, A
t
1]] = −

|[A1, A
t
1]|2

|A1|2 A1.

Remark 4.7. It is easy to check that all the (non-flat) SCF-solitons ob-
tained in this theorem are strongly algebraic and expanding. Indeed, if A
is normal then c1 = −a2 c2 = −1

2 trS(A1)
2 and so c = −(a2 + 1

2 trS(A1)
2),

and in the case when A is nilpotent, P = 0 and Ricac = c2I +D2 for c2 =

c = −1
2

( |[A1,At
1]|2

|A1|2 + trS(A1)
2
)
.

Proof. We first prove part (i). Since a linear map D : g −→ g is a derivation
of μA if and only if its image is contained in n and [D|n, A] = 0 (recall
that n is the nilradical of g when A is not nilpotent), we obtain from (17)
and (18) that P +Ricac−cI is a derivation of μA for some c ∈ R if and only
if c = −a2 − 1

2

(|v|2 + trS(A1)
2
)
and

A1v = 2av,(20)

(At
1)

2v +A1A
t
1v − 2aAt

1v =
(
3
2 |v|2 + trS(A1)

2 + 2a2
)
v,(21)

[A1, [A1, A
t
1]]− a[A1, A

t
1] = [A1, (vv

t)ac].(22)

By multiplying scalarly Equation (21) by v and J1v and using (20) we re-
spectively obtain,

|At
1v|2 =

(
3
2 |v|2 + trS(A1)

2 + 2a2
) |v|2,(23)

−4a〈At
1v, J1v〉 = 0,(24)

If a �= 0, then 〈At
1v, J1v〉 = 0 by (24) and thus At

1v = 2av + w with w or-
thogonal to {v, J1v}. This implies that A1J1v = −2aJ1v − J1w and thus

trS(A1)
2|v|2 ≥ 8a2|v|2 + |w|2 > 4a2|v|2 + |w|2 = |At

1v|2,

which contradicts Equation (23) unless v = 0. It follows that A1 is normal
by multiplying scalarly Equation (22) by A1.

We therefore assume that a = 0. By using that (vvt)acv = 1
2 |v|2v,

(vvt)acJv = −1
2 |v|2Jv and (vvt)ac vanishes on the orthogonal complement
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of {v, Jv}, one obtains

(25) tr [A1, A
t
1](vv

t)ac = |At
1v|2.

It now follows from (22), (25) and (23) that

|[A1, A
t
1]− vvt|2 = −〈A1, [A1, [A1, A

t
1]]〉+ |v|4 − 2〈A1A

t
1, vv

t〉+ 2〈At
1A1, vv

t〉
= − trAt

1[A1, (vv
t)ac] + |v|4 − 2|At

1v|2
= tr [A1, A

t
1](vv

t)ac + |v|4 − 2|At
1v|2

= −|At
1v|2 + |v|4

= − (32 |v|2 + trS(A1)
2
) |v|2 + |v|4

= (−1
2 |v|2 − trS(A1)

2)|v|2,

and therefore v = 0 and A1 is normal.
To prove part (ii), we can assume that A is nilpotent by part (i). Since

v = 0 P +Ricac has a block diagonal form and so it is easy to check that
D := P +Ricac−cI is a derivation of μA for some c ∈ R if and only if
[D, ad e2n] = 〈De2n, e2n〉 ad e2n, which is equivalent to [A1, [A1, A

t
1]] being a

scalar multiple of A1. The multiple can be computed by multiplying scalarly
by At

1, concluding the proof. �

Example 4.8. By defining

Ar :=

⎡⎣ 1 0

0
rI 0

0 −rI

⎤⎦ ,
we obtain, in any dimension ≥ 4, a one-parameter family of pairwise non-
equivalent expanding SCF-solitons (GμAr

, ω, g) (see Theorem 4.6, (i)) with

P =

[ −1 0 0

0 0 0

0 0 −1

]
, Ricac =

⎡⎢⎣ −(n− 1)r2 0 0

0
−rI 0

0 rI
0

0 0 −(n− 1)r2

⎤⎥⎦ .
We note that actually the Lie algebras μAr

are pairwise non-isomorphic.
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Example 4.9. Consider the almost-Kähler structure (GμA
, ω, g) with a =

0, v = 0 and

A1 =

[
0 0
C 0

]
, Ct = C.

It is straightforward to check that the soliton condition (19) in Theorem 4.6,
(ii) holds for A1 if and only if C3 = trC4

trC2C. We can assume, up to isometry,
that C is diagonal (see the proof of Proposition 4.3). In that case, (GμA

, ω, g)
is an algebraic SCF-soliton if and only if any diagonal entry of C is either
equal to 0, 1 or −1 (compare with Example 4.5).

In what follows, we study under what conditions on A the symplectic
Lie group (GμA

, ω) admits a compatible left-invariant metric such that the
corresponding almost-Kähler structure is a SCF-soliton. According to the
observation made at the end of Section 3.1 that Sp(ω) · μA parameterizes
the set of all compatible metrics on (GμA

, ω) and Proposition 4.3, (i), this
is equivalent to the existence of a matrix B satisfying the conditions in the
proposition and such that μB is a SCF-soliton. We note that the unique-
ness up to equivalence of the SCF-soliton metric can be analyzed by using
Proposition 4.3, (ii).

The following corollary of Theorem 4.6, (i) therefore follows from the fact
that a matrix is semisimple (always understood over the complex numbers)
if and only if it is conjugate to a normal matrix.

Corollary 4.10. If A is neither nilpotent nor semisimple, then the Lie
group GμA

does not admit any algebraic SCF-soliton.

We now give some existence results for SCF-solitons.

Proposition 4.11. If v = 0 and A is semisimple, then the symplectic Lie
group (GμA

, ω) admits a compatible metric g such that the almost-Kähler
structure (ω, g) is an algebraic SCF-soliton. Moreover, any other algebraic
SCF-soliton (ω̃, g̃) on GμA

such that the symplectic structure ω̃ is isomorphic
to ω is equivalent to (ω, g) up to scaling.

Remark 4.12. The uniqueness statement in the proposition does not imply
that there is a unique algebraic SCF-soliton g on (GμA

, ω) up to equivalence
(see Remark 4.4).

Proof. If A is semisimple then A1 is a semisimple element in sp(ω1) and it is
well-known that so there exists ϕ1 ∈ Sp(ω1) such that ϕ1A1ϕ

−1
1 is normal.
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This implies that ϕ · μA is a an algebraic SCF-soliton, where ϕ ∈ Sp(ω) is
defined by ϕ|{e1,e2n} = id, ϕ|n1

= ϕ1 (see Theorem 4.6, (ii)).
The uniqueness up to equivalence and scaling follows from the fact that

the subset of normal matrices in the Sp(ω1)-conjugacy class of A1 consists
of a single U(ω1, g1)-orbit. Indeed, if μB = ψ · μA with ψ ∈ Sp(ω) is another
algebraic SCF-soliton, then from Proposition 4.3, (i) we obtain that b =
αa and B1 = αψ1A1ψ

−1
1 . In particular B is not nilpotent and hence w = 0

and B1 is normal by Theorem 4.6, (i). This implies that there exists h1 ∈
U(ω1, g1) such that B1 = αh1ϕ1A1ϕ

−1
1 h−11 and thus μB is equivalent to αϕ ·

μA (see Proposition 4.3, (ii)), which is by Remark 4.4 equivalent to the
almost-Kähler structure (α−2ϕ∗ω, α−2ϕ∗g) on GμA

, concluding the proof.
�

The case v = 0 and A nilpotent is more involved, we shall need some
results from [14] on geometric invariant theory concerning moment maps for
real representations of real reductive Lie groups (see e.g. [22, Appendix] for
more information).

Proposition 4.13. If v = 0 and A is nilpotent, then the symplectic Lie
group (GμA

, ω) admits a compatible metric g such that the almost-Kähler
structure (ω, g) is an algebraic SCF-soliton.

Proof. It is known that condition (19) holds for a nilpotent matrix A1 if and
only if A1 is a critical point of the functional square norm of the moment
map F (B) := |m(B)|2. Here m : gl2n−2(R) −→ sym(2n− 2) is the moment
map for the GL2n−2(R)-action by conjugation on gl2n−2(R) and is given by

m(B) = [B,Bt]
|B|2 . It follows from [20, Theorem 4.2] (see also [14, Proposition

5.4]) that each nilpotent conjugacy class contains a critical point whose
k × k-Jordan blocks are given by⎡⎢⎢⎢⎢⎣

0 b1

0
. . .
. . . bk−1

0

⎤⎥⎥⎥⎥⎦ , bi =
√

i(k − i).

These special matrices are the minima of F on the conjugacy class. From the
general theory of moment maps we know that critical points of F are unique
up to the action of the maximal compact subgroup O(2n− 2) of GL2n−2(R).
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Following the notation of [14], we take

G = GL2n−2(R), V = gl2n−2(R), H = Sp(n− 1,R), W = sp(n− 1,R).

By [14, Theorem 3.1] we have that the intersection of the GL2n−2(R)-
conjugacy class of each A1 ∈ sp(n− 1,R) with sp(n− 1,R) is a finite union
of Sp(n− 1)-orbits (more than one in general, see e.g. (15)). Moreover, it
follows from [14, Corollary 3.4] that each of these Sp(n− 1,R)-conjugacy

classes contains a unique up to U(n− 1)-conjugation critical point Ã1 of
the Sp(n− 1,R)-moment map, which coincides with the GL2n−2(R)-moment

map on sp(n− 1) and so Ã1 satisfies condition (19). Since μ
Ã1

= ϕ · μA for
a suitable ϕ ∈ Sp(ω) we conclude that (GμA

, ω) admits an algebraic SCF-
soliton by Theorem 4.6, (ii), as was to be shown. �

4.2. Dimension 4

We now consider the almost abelian case when dim g = 4, i.e. n = 2. If
{e1, . . . , e4} is the canonical basis of g ≡ R

4, then we fix

ω = e1 ∧ e4 + e2 ∧ e3, J =

[ −1
−1

1
1

]
.

Since the 2× 2 matrix A1 is symplectic if and only if trA1 = 0 (see Propo-
sition 4.1), the matrices A have the form

(26) A =
[
a b c
0 d e
0 f −d

]
, a, b, c, d, e, f ∈ R.

It follows from Theorem 4.6, (i) that if A is not nilpotent, then μA is an
algebraic SCF-soliton if and only if A has one of the following two forms:[

a 0 0
0 d e
0 e −d

]
,

[
a 0 0
0 0 e
0 −e 0

]
.

Lemma 4.14. The Lie algebras r4,0 and r4,−1 (see Table 1) do not admit
any algebraic SCF-soliton.

Proof. These Lie algebras are isomorphic to μA, where A is respectively
given by [

1 0 0
0 0 1
0 0 0

]
,

[
1 0 0
0 −1 1
0 0 −1

]
.

The result therefore follows from Corollary 4.10, as these matrices are neither
semisimple nor nilpotent. �
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Any other 4-dimensional symplectic Lie algebra isomorphic to a μA does
admit an algebraic SCF-soliton which has been explicitly given in Table 2.
This follows from a direct application of Theorem 4.6 and Propositions 4.11,
4.13, with the only exception of n4.

4.3. Bracket flow

We study in this section bracket flow evolution of almost-Kähler structures
(GμA

, ω, g) (see Section 3.2). We first introduce the following notation for
each matrix A as in Proposition 4.1:

QA := PμA
+RicacμA

, λA := δμA
(QA) , r := 1

4A1v − a
2v, c := 1

2A
t
1v + av,

α1 := −a2 + 1
2(|v|2 + trS(A1)

2), α2 := −a2 − 1
2(|v|2 + trS(A1)

2).

It follows from (17) and (18) that

(27) QA =

⎡⎢⎢⎢⎢⎣
α1 rt − ct 0

r Q1 −J1(r + c)

0 −(J1r)t α2

⎤⎥⎥⎥⎥⎦ ,

where Q1 :=
1
2 [A1, A

t
1]− aS(A1)− 1

2(vv
t)ac, and a straightforward compu-

tation gives

λA(e1, ei) = −a〈r, J1ei〉e1, ∀i �= 1, 2n,(28)

λA(ei, ej) = 〈r, J1ei〉(vje1 +A1ej)(29)

− 〈r, J1ej〉(vie1 +A1ei), ∀i, j �= 1, 2n,

λA(e2n, e1) =
(−1

2(2a
2 + |v|2 + trS(A1)

2)a+ 〈r, v〉) e1(30)

+A1r − ar,

λA(e2n, ei) = −1
2(2a

2 + |v|2 + trS(A1)
2)Aei + [A,Q]ei,(31)

=
〈− (|v|2 + trS(A1)

2)v

+Q1v + a(r − c)−At
1(r − c), ei

〉
e1

− 1
2(2a

2 + |v|2 + trS(A1)
2)A1ei

+ [A1, Q1]ei − vir, ∀i �= 1, 2n.
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In order to get an invariant family under the bracket flow d
dtμA = λA, we

need to have λA = μB for some matrix B of the same form as A in Proposi-
tion 4.1 for all t, that is, λA(n1, n1) = 0 (see (28) and (29)) and λA(e2n, e1) ∈
Re1 (see (30)). Note that conditions λA(e2n, n) ⊂ n and adλA

e2n|n1
∈ sp(ω1)

automatically hold (see (31)). When v = 0 this clearly holds and the evolu-
tion will be studied below.

We therefore assume that v �= 0. If r �= 0 then a = 0 by (28), and since
the vectors −vjei + viej , 2 ≤ i, j ≤ 2n− 1, generate the orthogonal comple-
ment v⊥ of v it follows from (29) that r ∈ RJ1v. Moreover, (29) implies that
A1v

⊥ = 0 if r �= 0, and so μA is isomorphic to h3 ⊕ R
2n−3 as a Lie alge-

bra and (GμA
, ω, g) is equivalent to its unique almost-Kähler structure (see

Example 3.1).
On the other hand, if r = 0, then the four equations above give that

λ = μB and the bracket flow equation for A = A(t) would become

a′ = −1
2(2a

2 + |v|2 + trS(A1)
2)a,(32)

v′ = −(2a2 + 5
4 |v|2 + trS(A1)

2)v + 1
2A1A

t
1v +

1
2(A

t
1)

2v − aAt
1v,(33)

A′1 = −1
2(2a

2 + |v|2 + trS(A1)
2)A1 + [A1, Q1](34)

= −1
2(2a

2 + |v|2 + trS(A1)
2)A1 +

1
2 [A1, [A1, A

t
1]]

− a
2 [A1, A

t
1]− 1

2 [A1, (vv
t)ac],

Unfortunately, condition r = 0, which is equivalent to A1v = 2av, is not
invariant under this ODE system and hence we need to consider smaller
subsets to get invariant families under the bracket flow in the case v �= 0.

Proposition 4.15. The family
{
μA : a = 0, A1v = 0, At

1v = 0
}
is in-

variant under the bracket flow, which becomes equivalent to

v′ =− (54 |v|2 + trS(A1)
2)v,

A′1 =− 1
2(|v|2 + trS(A1)

2)A1 +
1
2 [A1, [A1, A

t
1]].

Remark 4.16. The Chern-Ricci operator P vanishes for any structure
in this family as r = c = 0. Thus the SCF-evolution reduces to the anti-
complexified Ricci flow (i.e. the symplectic structure remains fixed).

Proof. The evolution equations for v and A1 follow from (33) and (34),
respectively. By using them, it is straightforward to compute the evolution
of the vectors A1v and At

1v to show that they remain zero in time, concluding
the proof. �
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Proposition 4.17. The family {μA : a = 0, A1v = 0, A2
1 = 0} is in-

variant under the bracket flow, which becomes equivalent to

v′ =− (54 |v|2 + trS(A1)
2)v + 1

2A1A
t
1v,

A′1 =− 1
2(|v|2 + trS(A1)

2)A1 +
1
2 [A1, [A1, A

t
1]]− 1

2 [A1, (vv
t)ac].

Remark 4.18. Each Lie algebra in this family is either 2-step (At
1v = 0) or

3-step nilpotent (At
1v �= 0). The Chern-Ricci operator P does not vanish in

the 3-step case; however, P is always a derivation and so the SCF-evolution
also reduces to the anti-complexified Ricci flow as for the above family. It is
easy to see that the SCF-solutions given in [25, Example 9.4] belong to this
family.

Proof. The evolution equations for v and A1 follow from (33) and (34),
respectively. It is then easy to compute the evolution of the vector A1v and
the matrix A2

1 to conclude that they remain zero in time, concluding the
proof. �

4.4. The case v = 0

The subset {μA : v = 0} is invariant under the bracket flow, in the sense that
any bracket flow solution starting at one of these structures has the form
μA(t). Since for each t the Lie algebra μA(t) is isomorphic to the starting
point μA0

, we have that

A(t) = c(t)H(t)A0H(t)−1, for some c(t) > 0, H(t) ∈ GL2n−1(R).

The corresponding spectra (i.e. the unordered set of complex eigenvalues)
therefore satisfy

(35) Spec(A(t)) = c(t) Spec(A0), ∀t.
It follows from (32) and (34) that the bracket flow is equivalent when v = 0
to the ODE system for a = a(t) and A1 = A1(t) given by

(36)

{
a′ = −(a2 + 1

2 trS(A1)
2)a,

A′1 = −(a2 + 1
2 trS(A1)

2)A1 +
1
2 [A1, [A1, A

t
1]]− a

2 [A1, A
t
1].

By using that a = trA and trS(A)2 = a2 + trS(A1)
2, this system can

be written as a single equation for A = A(t) as follows,

(37) A′ = −1
2(a

2 + trS(A)2)A+ 1
2 [A, [A,A

t]]− trA
2 [A,At].
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This equation differs from the bracket flow [2, (7)] used by Arroyo to
study the Ricci flow for Riemannian manifolds (GμA

, g) only in the coef-
ficient that multiplies A, which is − trS(A)2 in that case. One therefore
obtains, with identical proofs as in [2], that the solutions A(t) to (37) and
the corresponding SCF-solutions (ω(t), g(t)) on the solvable Lie group GμA0

satisfy the following properties:

• A(t) and hence the SCF-solution (ω(t), g(t)) are defined for t ∈ (T−,∞)
since |A(t)| is strictly decreasing unless A(t) ≡ A0 (i.e. At

0 = −A0).
(See [2, Proposition 3.4]).

• The (scaling invariant) quantity

|[A,At]|2
|A|4

is strictly decreasing along the flow, unless μA0
is an algebraic SCF-

soliton (see Theorem 4.6, (ii)). This implies that any limit B =

lim
tk→∞

A(tk)
|A(tk)| gives rise to an algebraic SCF-soliton μB. (See [2,

Lemma 3.6 and Corollary 3.7]).

• There is always a subsequence tk →∞ such that if ck := |A(tk)|−1,
then the almost-Kähler manifolds

(
G, 1

c2k
ω(tk),

1
c2k
g(tk)

)
converge in

the pointed sense to an algebraic SCF-soliton (GμB
, ω0, g0), as k →∞,

where B is any accumulation point of {A(t)/|A(t)| : t ∈ [0,∞)} (see
Corollary 3.3).

• If trA2
0 ≥ 0, then the SCF-solution (ω(t), g(t)) is type-III, in the sense

that there is a constant C > 0 (which in this particular case depends
only on the dimension n but in general it may depend on the solution)
such that

|R(ω(t), g(t))|+ |Rm(g(t))| ≤ C

t
, ∀t ∈ (0,∞),

where R and Rm respectively denote the curvature tensors of the
Chern and the Levi-Civita connections. (See [2, Proposition 3.14]; re-

call that we also have that d
dt trS(A)

2 ≤ (trS(A)2)2).
• The Chern scalar curvature trP = −2a2 and the scalar curvature R =
−a2 − trS(A)2 are both increasing and go to 0 as t→∞.

• In the unimodular case (i.e. a = 0), A(t)
|A(t)| converges, as t→∞, to a ma-

trix B such that μB is an algebraic SCF-soliton. (See [2, Lemma 4.1]).
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4.5. Compact quotients

The Lie group GμA
admits a lattice (i.e. a cocompact discrete sugbroup) if

and only if

σeαAσ−1 ∈ SL2n−1(Z),

for some nonzero α ∈ R and σ ∈ GL2n−1(R) (see [5, Section 4]). In that case,
a lattice is given by

Γ = exp
(
σ−1Z2n−1

� Zαe2n
)
.

Moreover, if Spec(A) ⊂ R (i.e. μA is completely solvable), then two of these
lattices differ by an automorphism of GμA

if and only if σeαAσ−1 is conjugate
to τeβAτ−1 or its inverse in GL2n−1(Z) (see [13, Theorem 2.5]). We refer to
[9] for a complete study of lattices on 6-dimensional almost abelian groups,
including results on formality and half-flatness of invariant and non-invariant
symplectic structures on the corresponding compact quotients.

We have found in Section 5 a (strongly algebraic) SCF-soliton on any
symplectic structure on unimodular Lie groups of dimension 4, thus show-
ing that any 4-dimensional compact solvmanifold G/Γ does admit a SCF-
soliton. The next example shows that this is no longer true in dimension
6.

Example 4.19. By setting a = 0, v = 0 and

A1 =

⎡⎢⎢⎣
0 0 1 0
0 log λ 0 0

0 0 0 0
0 0 0 − log λ

⎤⎥⎥⎦ ∈ sp(2,R), λ = 3+
√
5

2 ,

we obtain a symplectic Lie group (GμA
, ω) which does not admit any al-

gebraic SCF-soliton, as A is neither nilpotent nor semisimple (see Corol-
lary 4.10). On the other hand, there exists σ ∈ GL4(R) such that

σeAσ−1 =

⎡⎢⎢⎣
1 0 1 0
0 2 0 1
0 0 1 0
0 1 0 1

⎤⎥⎥⎦ ∈ SL4(Z),

and so Γ = exp
(
σ−1Z4

� Ze6
)
is a lattice of GμA

.
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Concerning the SCF-solution starting at the almost-Kähler structure
(GμA

, ω, g) in the example above, it is straightforward to prove that the
family

A1 =

⎡⎢⎢⎣
0 0 b 0
0 a 0 0

0 0 0 0
0 0 0 −a

⎤⎥⎥⎦ ∈ sp(2,R), a, b ∈ R,

is invariant for the bracket flow equation (see (36))

A′1 = −1
2 trS(A1)

2)A1 +
1
2 [A1, [A1, A

t
1]],

which becomes the following ODE system for the variables a(t), b(t):{
a′ = −(a2 + 1

4b
2)a,

b′ = −(a2 + 5
4b

2)b.

By a standard qualitative analysis, we obtain long-time existence (i.e. T+ =
∞) for all these SCF-solutions and that (a, b)→ (0, 0), as t→∞, from which
follows that (GμA

, ω(t), g(t)), with A as in Example 4.19, converges to the
euclidean space (R6, ω0, g0) in the pointed sense, as t→∞. Note that P ≡ 0
and the scalar curvature R = − trS(A1)

2 is strictly increasing and converges
to 0 as t→∞.

Furthermore,

lim
t→∞A(t)/|A(t)| = B := 1√

2

⎡⎢⎢⎣
0 0 0 0
0 1 0 0

0 0 0 0
0 0 0 −1

⎤⎥⎥⎦ ∈ sp(2,R),

and thus pointed convergence of (GμA
, c(t)ω(t), c(t)g(t)) toward the (strongly

algebraic) SCF-soliton (GμB
, ω0, g0) (see Theorem 4.6, (ii)) follows for c(t) =

|A(t)|2 (see Corollary 3.3), which is isometric to rr3,−1 × R
2, where rr3,−1 is

the SCF-soliton given in Table 2.

Remark 4.20. We note that GμB
also admits a lattice, say Λ. It would

be very useful to understand what kind of convergence one obtains for the
sequence of compact almost-Kähler manifolds (GμA

/Γ, c(t)ω(t), c(t)g(t)) to-
ward (GμB

/Λ, ω0, g0), as t→∞. Notice that GμB
/Λ is compact and not

homeomorphic to GμA
/Γ, thus pointed convergence can not hold for any

subsequence. The diameters of (GμA
/Γ, g(t)) might go to infinity, in which

case only pointed Gromov-Hausdorff convergence may be expected.



30 J. Lauret and C. Will

g Lie bracket 2− form constraint

R
4 (0, 0, 0, 0) ω = e12 + e34 −

rh3 (0, 0, 12, 0) ω = e14 + e23 −
rr3,0 (0, 12, 0, 0) ω = e12 + e34 −
rr3,−1 (0, 12,−13, 0) ω = e14 + e23 −
rr′3,0 (0, 13,−12, 0) ω = e14 + e23 −
r2r2 (0, 12, 0, 34) ωα = e12 + α e13 + e34 α ≥ 0

r′2 (0, 0, 13 + 24, 14− 5
3
· 23) ω = e13 + e24 −

n4 (0, 41, 42, 0) ω = e12 + e34 −
r4,0 (41, 43, 0, 0) ω± = e14 ± e23 −
r4,−1 (41, 43− 42,−43, 0) ω = e13 + e24 −
r4,−1,λ (41,−42, λ · 43, 0) ω = e12 + e34 −1 ≤ λ < 1

r4,λ,−λ (41, λ · 42,−λ · 43, 0) ω = e14 + e23 −1 < λ < 0

r′4,0,λ (41, λ · 43,−λ · 42, 0) ω± = e14 ± e23 0 < λ

d4,1 (41, 0, 12 + 43, 0)
ω1 = e12 − e34 −
ω2 = e14 + e23 −

d4,2
(2 · 41,−42, 12 + 43, 0) ω1 = e12 − e34 −

(2 · 41,−42, 2 · 12 + 43, 0) ω± = e14 ± e23 −
d4,λ (λ · 41, (1− λ) · 42, 12 + 43, 0) ω = e12 − e34 λ≥ 1

2
,λ �=1,2

d′4,λ

(√
λ
2
· 41 + 1√

λ
· 42,

√
λ
2
· 42−

1√
λ
· 41,√λ · 12 +√λ · 43, 0

) ω± = ±(e12 − e34) λ > 0

h4 ( 1
2
· 41 + 42, 1

2
· 42, 12 + 43, 0) ω± = ±(e12 − e34) −

Table 1: Classification of 4-dimensional symplectic Lie algebras [31]

5. SCF-solitons in dimension 4

We now study the existence problem for SCF-solitons on 4-dimensional Lie
groups. We have listed in Table 1 all the symplectic structures up to isomor-
phism on 4-dimensional Lie algebras according to the classification obtained
by Ovando in [31]. We have changed the basis {ei} used in [31] in only three

cases: for r′2 we took {e1,
√

5
3e2,−

√
5
3e3, e4} instead, for ω± on d4,2 we used

{e1,
√
2e2,

1√
2
e3, e4}, and for ω± on d′4,λ, our basis is {e1, e2, 1√

λ
e3,

1√
λ
e4}.

The notation we have used in Table 1 for Lie brackets can be understood
from the example of h4 in the last line, whose Lie bracket is described as
(12 · 41 + 42, 12 · 42, 12 + 43, 0) and means

[e4, e1] =
1
2e1, [e4, e2] = e1 +

1
2e2, [e4, e3] = e3, [e1, e2] = e3.

Note that the wedge product ei ∧ ej has been denoted by eij for shortness.
We have found a strongly algebraic SCF-soliton on each symplectic structure
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on a 4-dimensional Lie group, with the exception of the following four cases:

(r2r2, ωα), α > 0, (r4,0, ω±), (r4,−1, ω), (h4, ω±).

We were able to prove the non-existence of an algebraic SCF-soliton only
in the cases of (r4,0, ω±) and (r4,−1, ω) (see Lemma 4.14). The SCF-soliton
almost-Kähler structures and their respective Chern-Ricci and Ricci opera-
tors are given in Table 2 as diagonal matrices with respect to the orthonor-
mal basis {e1, e2, e3, e4} (except n4), together with the constants ci and the
derivations Di such that P = c1I +D1 and Ricac = c2I +D2. We note that
they are all expanding SCF-solitons since c = c1 + c2 < 0, with the only ex-
ception of the flat structure rr′3,0. Most of these solitons were obtained by
either direct computation or by using the structure results for almost abelian
solvmanifolds given in Theorem 4.6, with the exception of r′2, where the LSA
construction considered in Section 6.2 was crucial.

In the last column we specify when the metric is Kähler-Einstein (K-E),
only Kähler (K) or flat (i.e. isometric to R

4). Recall that such structures are
all Kähler-Ricci solitons.

In some cases, in order to simplify the description of the derivations in
Table 2, we have introduced the following notation:

Aλ := (1 + λ2 − λ, 1 + λ2 + λ, 2(1 + λ2), 0),

Bλ := (2λ2, λ2 − λ, λ2 + λ, 0),

Cλ := (λ2 − 3λ+ 5
4 , λ

2 + λ− 3
4 , 2(λ

2 − λ) + 1
2 , 0).

Remark 5.1. A SCF-soliton (G,ω, g) in Table 2 is static (i.e. p = cω
and Rcac = 0, or equivalently, its SCF-evolution is (ω(t), g(t)) = (−2ct+
1)(ω, g)) if and only if it is Kähler-Einstein. This has been proved for any
compact static almost-Kähler structure of dimension 4 in [36, Corollary 9.5].

5.1. Compact symplectic surfaces

It follows from the classification given in Table 1 that there are exactly
five (simply connected) solvable Lie groups of dimension 4 admitting a left-
invariant symplectic structure which also admit a lattice (i.e. compact dis-
crete subgroup), giving rise to the compact symplectic surfaces which are
solvmanifolds. Their Lie algebras are: R4 (Complex tori), rh3 (Primary Ko-
daira surfaces), rr3,−1, rr′3,0 (Hyperelliptic surfaces) and n4. We refer to [12]
for a comparison with compact complex surfaces which are solvmanifolds.
Recall that rr3,−1 and n4 do not admit invariant complex structures.
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According to Table 2, they all admit a SCF-soliton which is steady in
the flat cases R4 and rr′3,0 and expanding in the other three cases.

Since each of these five Lie algebras admits a codimension one abelian
ideal, it follows from Section 4.2 that any left-invariant almost-Kähler struc-
ture on them is equivalent to (GμA

, ω, g) for some

(38) A =

⎡⎣0 b c
0 d e
0 f −d

⎤⎦ , b, c, d, e, f ∈ R.

It is easy to check that

μA �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R
4 A = 0;

rh3 d2 + ef = 0, db+ fc = 0, eb− dc = 0, A �= 0;

rr3,−1 d2 + ef > 0;

rr′3,0 d2 + ef < 0;

n4 d2 + ef = 0, (db+ fc, eb− dc) �= (0, 0),

and the Chern-Ricci and Ricci operators can be computed by using (18)
and (17), respectively:

P =

⎡⎢⎣
0 − db+fc

2
− eb−dc

2
0

0 0 eb−dc

2

0 − db+fc

2

0

⎤⎥⎦ ,

Ricac =

⎡⎢⎢⎣
d2+ b2+c2

2
+ (e+f)2

4

db+ce

4

bf−dc

4
0

db+ce

4

e2−f2

2
− b2−c2

4
d(f−e)− bc

2

bf−dc

4

bf−dc

4
d(f−e)− bc

2

f2−e2

2
+ b2−c2

4
− db+ce

4

0 bf−dc

4
− db+ce

4
−d2− b2+c2

2
− (e+f)2

4

⎤⎥⎥⎦ .
Each of the following five matrices A provides a SCF-soliton on the corre-
sponding Lie group in the order we are using:

⎡
⎣
0 0 0
0 0 0
0 0 0

⎤
⎦ ,

⎡
⎣
0 0 0
0 0 1
0 0 0

⎤
⎦ ,

⎡
⎣
0 0 0
0 1 0
0 0 −1

⎤
⎦ ,

⎡
⎣
0 0 0
0 0 −1
0 1 0

⎤
⎦ ,

⎡
⎣
0 1 0
0 0 1
0 0 0

⎤
⎦ .

As an application of Section 4.3, for each starting almost-Kähler structure
(GμA

, ω, g) with A as in (38) and b = c = 0, we obtain that A(t)/|A(t)| con-
verges to one of the soliton matrices B above such that GμA

and GμB
are

isomorphic, that is, the one with same eigenvalues as A up to scaling. Thus
pointed convergence of (GμA

, c(t)ω(t), c(t)g(t)) toward the (strongly alge-
braic) SCF-soliton (GμB

, ω, g) follows for c(t) = |A(t)|2 (see Corollary 3.3).



Symplectic curvature flow for homogeneous manifolds 33

g ω
P Ricac

Obs.
c1 D1 c2 D2

R
4 e12 + e34 c1 −c1I c2 −c2I flat

rh3 e14 + e23 0 0 −5
4 (1, 34 ,

7
4 ,

3
2) −

rr3,0 e12 + e34 −1 (0, 0, 1, 1) 0 0 K

rr3,−1 e14 + e23 0 0 −1 (0, 1, 1, 2) −
rr′3,0 e14 + e23 0 0 0 0 flat

r2r2 e12 + e34 −1 0 0 0 K-E

r′2 e13 + e24 −2
3 0 4

9 (0, 0,−8
9 ,−8

9) −

n4 e12 + e34 0

⎡⎣ 0 0

0 −1
2

−1
2 0

0 0

⎤⎦ −5
4 (1, 32 , 2,

1
2) −

r4,−1,λ e12 + e34 −λ2 (λ2, λ2, 0, 0) −(1 + λ2) Aλ −
r4,λ,−λ e14 + e23 −1 (0, 1, 1, 0) −λ2 Bλ −
r′4,0,λ e14 ± e23 −1 (0, 1, 1, 0) 0 0 K

d4,1
e12 − e34 −3

2 0 −1
4 (−3

4 ,
5
4 ,

1
2 , 0)

−
e14 + e23 −2 (0, 2, 2, 0) −

d4,2

e12 − e34 −3
2 0 −9

4 (−3
4 ,

21
4 ,

9
2 , 0) −

e14 + e23 −6 (0, 6, 6, 0)
0 0

K
e14 − e23 −2 (0, 2, 2, 0) −

d4,λ e12 − e34 −3
2 0 −(λ− 1

2)
2 Cλ K-E (λ=

1
2)

d′4,λ ±(e12 − e34) −3
2 0 0 0 K-E

Table 2: SCF-solitons in dimension 4

6. LSA construction

All SCF-solitons we have found in Sections 4 and 5 are on solvable Lie groups
and moreover, they are all expanding in the nonflat case (see Remark 4.7 and
Table 2). For the Ricci flow, it is well known that any shrinking homogeneous
Ricci soliton is trivial, in the sense that it is finitely covered by a product
of a compact Einstein homogeneous manifold with a euclidean space (see
[32]), and any steady homogeneous Ricci soliton is necessarily flat. However,
it is an open question whether any expanding homogeneous Ricci soliton is
isometric to a left-invariant metric on a solvable Lie group, which is now
known to be essentially equivalent to Alekseevskii’s Conjecture (see e.g.
[3, 16, 19] and the references therein).

In this section, in order to search for SCF-solitons beyond the solv-
able case, we shall study a construction attaching to each n-dimensional
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left-symmetric algebra an almost-Kähler structure on a 2n-dimensional Lie
group (see e.g. [1, 6, 31] for further information on this construction). Our
search succeeded in finding a shrinking SCF-soliton on the Lie algebra
u(2)�H (see Example 6.11) and an expanding SCF-soliton on gl2(R)�R

4

(see Example 6.14).
A left-symmetric algebra (LSA for short) structure on a vector space g

is a bilinear product · : g× g −→ g satisfying the condition

(39) X · (Y · Z)− (X · Y ) · Z = Y · (X · Z)− (Y ·X) · Z, ∀X,Y, Z ∈ g.

(From now on, the phrase ‘for all X,Y, Z ∈ g’ will be understood in any
formula containing X,Y, Z). This implies that

(40) [X,Y ]g := X · Y − Y ·X,

is a Lie bracket on g and if L(X) : g −→ g denotes LSA left-multiplication
by X (i.e. L(X)Y = X · Y ), then L is a representation:

L([X,Y ]g) = L(X)L(Y )− L(Y )L(X).

We now show how each LSA structure on g determines an almost-Kähler
structure on g⊕ g. Consider the representation θ : g −→ End(g) given by

(41) θ(X) := −L(X)t,

where L(X)t denotes the transpose of the map L(X) with respect to an
inner product 〈·, ·〉 on g, which will be considered fixed from now on, and
define the Lie algebra g�θ g with Lie bracket

(42) [(X,Y ), (Z,W )] := ([X,Z]g, θ(X)W − θ(Z)Y ) .

Note that by (40) and (41), [·, ·]g is determined by θ as follows,

(43) [X,Y ]g = −θ(X)tY + θ(Y )tX.

Consider also the almost-complex structure J : g⊕ g −→ g⊕ g defined by

J(X,Y ) := (Y,−X), i.e. J =

[
0 I
−I 0

]
.

On the right we are writing J as a matrix in terms of the basis {(ei, 0)} ∪
{(0, ei)}, where {ei} is any orthonormal basis of g. Such basis of g⊕ g will
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be fixed and used without any further mention, e.g. to write operators as
matrices. A 2-form ω on g⊕ g can therefore be defined by

ω := g(J ·, ·), where g := 〈·, ·〉 ⊕ 〈·, ·〉,

or equivalently,

ω = −
n∑

i=1

(ei, 0) ∧ (0, ei),

where {ei} denotes the dual basis of {ei}.
The almost-hermitian Lie algebra (g�θ g, ω, g) is therefore completely

determined by the LSA structure, as θ and [·, ·]g are so and the whole ‘linear
algebra’ data (i.e. (g⊕ g, ω, g)) has been fixed. Moreover, it is easy to see
that condition (43) is equivalent to dω = 0. Summing up,

Proposition 6.1. Any LSA structure on g defines an almost-Kähler Lie
algebra

(g�θ g, ω, g).

Remark 6.2. If we define a Lie bracket [·, ·]∗ on g⊕ g as in (42) by using
the same [·, ·]g but the representation θ∗(X) = L(X) = −θ(X)t instead of θ,
then what we obtain is a hermitian Lie algebra

(g�θ∗ g, J, g),

i.e. J is integrable. Together, the corresponding complex manifold (Gθ∗ , J)
and the symplectic manifold (Gθ, ω) form a weak mirror pair, i.e. their asso-
ciated differential Gerstenhaber algebras are quasi-isomorphic (see e.g. [8]).

Remark 6.3. The left-invariant affine connection on the corresponding Lie
group ∇ : g× g −→ g defined by

∇XY := X · Y = −θ(X)tY,

is flat (i.e. ∇[X,Y ]g = [∇X ,∇Y ]) and torsion free (i.e. [X,Y ]g = ∇XY −
∇Y X).

Remark 6.4. We will assume in what follows that (0, g) is invariant by
any element of Aut(g�θ g) for all the LSA structures considered. This for
example holds when the abelian ideal (0, g) is the nilradical of g�θ g.
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Proposition 6.5. Two symplectic Lie algebras (g�θ1 g, ω) and (g�θ2 g, ω)
are isomorphic if and only if there exists ψ ∈ GL(g) such that

(44) L2(ψX) = ψL1(X)ψ−1, ∀X ∈ g,

i.e. the corresponding LSA structures are isomorphic.

Proof. If (44) holds, then it is easy to check that ϕ =

[
ψ 0
0 (ψt)−1

]
is a

Lie algebra isomorphism between g�θ1 g and g�θ2 g. Since ϕ ∈ Sp(ω), we
obtain that the symplectic Lie algebras are also isomorphic.

Conversely, due to our assumption (see Remark 6.4), any isomorphism

between the Lie algebras has the form ϕ =

[
ϕ1 0
ϕ3 ϕ2

]
, which implies that

ϕ1[·, ·]g1
= [ϕ1·, ϕ1·]g2

and θ2(ϕ1X) = ϕ2θ1(X)ϕ−12 . But since ϕ ∈ Sp(ω) we
have that ϕ2 = (ϕt

1)
−1, from which condition (44) easily follows for ψ =

ϕ1. �

In much the same way, we obtain the following criterium for equivalence.

Proposition 6.6. Two almost-Kähler structures (g�θ1 g, ω, g) and (g�θ2

g, ω, g) are equivalent if and only if there exists an orthogonal map ψ ∈
O(g, 〈·, ·〉) such that

(45) L2(ψX) = ψL1(X)ψ−1, ∀X ∈ g.

Example 6.7. Consider on g = gl2(R) the basis

e1 = [ 0 1
0 0 ] , e2 = [ 0 0

1 0 ] , e3 =
[
1 0
0 −1

]
, e4 = [ 1 0

0 1 ] ,

whose Lie bracket relations are

[e1, e2] = e3, [e3, e1] = 2e1, [e3, e2] = −2e2,

and the one-parameter family of LSA structures defined for any α ≥ 0 by

Lα(e1) =

[
0 0 −1 1+α
0 0 0 0
0 (1+α)/2 0 0
0 1/2 0 0

]
, Lα(e2) =

[
0 0 0 0
0 0 1 1−α

−(1−α)/2 0 0 0
1/2 0 0 0

]
,

Lα(e3) =

[ 1 0 0 0
0 −1 0 0
0 0 α 1−α2

0 0 1 −α

]
, Lα(e4) =

[
1+α 0 0 0
0 1−α 0 0
0 0 1−α2 −α(1−α2)
0 0 −α 1+α2

]
.
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It is proved in [7] that these LSA structures are pairwise non-isomorphic and
henceforth, according to Proposition 6.5, (g�θα g, ω) is a family of pairwise
non-isomorphic symplectic Lie algebras. Actually, the Lie algebras g�θα g,
α ≥ 0 are pairwise non-isomorphic, as it is easy to check that the spectrum
of Lα(e4) is an invariant and equals {1± α, 1± α}. Notice that α = 0 corre-
sponds to the usual multiplication of matrices in gl2(R), and is the only one
associative among the family. In order to obtain the complete classification
of LSA structures on gl2(R) up to isomorphism, an extra one-parameter
family and two more (isolated) structures must be added (see [7, Theorem
3] and [4, Section 5.1]).

6.1. Chern-Ricci and Ricci curvature

We compute in this section the Chern-Ricci operator P and the anti-J-
invariant Ricci operator Ricac for the almost-Kähler structure (g�θ g, ω, g)
from Proposition 6.1.

We first define A,A∗ ∈ g by

A :=

n∑
i=1

θ(ei)ei, A∗ := −
n∑

i=1

θ(ei)
tei =

n∑
i=1

ei · ei.

By a straightforward computation, one obtains that the Chern-Ricci form p
vanishes on both g-summands and

(46) p((X, 0), (0, Y )) = −1
2〈θ(X)Y,A∗〉+ 1

2 tr adg θ(X)Y + 1
2 tr θ(θ(X)Y ).

The Chern-Ricci operator P therefore leaves invariant each g-summand.
More precisely,

Lemma 6.8. P =

[
P 0
0 P t

]
, where P ∈ End(g) is defined by

(47) P = 1
2 adg (A

∗ −A) + 1
2θ(A

∗ −A)t.

Remark 6.9. If Z := 1
2(A

∗ −A), then P ∈ End(g⊕ g) satisfies P = adZ +
(adZ)tω (see (3)) and P ∈ End(g) is given by

P = −R(Z),

where R denotes LSA right-multiplication (i.e. R(X)Y = Y ·X).
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Proof. It follows from (46) and (43) that

〈P (X, 0), (Y, 0)〉 = p((X, 0), (0,−Y ))

= 1
2〈θ(X)Y,A∗〉 − 1

2 tr adg θ(X)Y − 1
2 tr θ(θ(X)Y )

= 1
2〈θ(X)Y,A∗〉 − 1

2 tr adg θ(X)Y − 1
2

∑
〈θ(θ(X)Y )tei, ei〉

= 1
2〈θ(X)Y,A∗〉 − 1

2 tr adg θ(X)Y − 1
2

∑
〈−[θ(X)Y, ei]g + θ(ei)

tθ(X)Y, ei〉
= 1

2〈θ(X)Y,A∗〉 − 1
2 tr adg θ(X)Y + 1

2 tr adg θ(X)Y − 1
2〈θ(X)Y,A〉

= 〈θ(X)Y, 12(A
∗ −A)〉 = 〈Y, θ(X)t 12(A

∗ −A)〉
= 〈Y,−[X, 12(A

∗ −A)]g + θ(12(A
∗ −A))tX〉

= 〈Y, (12 adg (A∗ −A) + 1
2θ((A

∗ −A))t
)
X〉,

which proves formula (47). The formula for P ∈ End(g⊕ g) follows from the
fact that P tω = P , concluding the proof. �

Remark 6.10. It can be proved in much the same way that the Chern-
Ricci operator of the hermitian structure (g�θ∗ g, ω, g), which is the weak

mirror image of (g�θ g, ω, g) (see Remark 6.2), is given by P =

[
P 0
0 P

]
,

where P = P t ∈ End(g) is defined by

〈PX, Y 〉 = − tr θ∗(θ∗(X)Y ) = − trL(X · Y ).

In the following computation of the Ricci curvature we are not assuming
that ω is closed (i.e. condition (43)). The Ricci operator Ric of (g�θ g, g)
can be computed by using for example [24, Section 2.3], which gives

Ric =

[
Ricg−Cθ − S(adgHθ) 0

0 1
2

∑
[θ(ei), θ(ei)

t]− S(θ(H))

]
,(48)

=

[
Mg − 1

2Bg − Cθ − S(adgH) 0
0 1

2

∑
[θ(ei), θ(ei)

t]− S(θ(H))

]
,

where Ricg is the Ricci operator of (g, 〈·, ·〉), Cθ is the positive semi-definite
operator given by

〈CθX,Y 〉 = trS(θ(X))S(θ(Y )),

S(E) := 1
2(E + Et) denotes the symmetric part of an operator E, Mg is

defined by trMgE = −1
4〈δ[·,·]g(E), [·, ·]g〉 (see (10)) and Bg is the Killing
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form of g relative to 〈·, ·〉 (i.e. tr adgX adg Y = 〈BgX,Y 〉). Here H ∈ g is
defined by 〈H,X〉 = tr adX, or equivalently,

H := Hg +Hθ, 〈Hg, X〉 = tr adgX, 〈Hθ, X〉 = tr θ(X).

Thus the scalar curvature equals

R = Rg −
∑

trS(θ(ei))
2 − tr adgHθ − tr θ(H),(49)

= −1
4 |[·, ·]g|2 − 1

2 trBg −
∑

trS(θ(ei))
2 − |H|2,

where Rg is the scalar curvature of (g, 〈·, ·〉).
Furthermore, the anti-J-invariant component of Ric is therefore given by

(50) Ricac =

[
S 0
0 −S

]
,

where

S = 1
2 Ricg−1

2Cθ − 1
2S(adgHθ)− 1

4

∑
[θ(ei), θ(ei)

t] + 1
2S(θ(H)).

It is easy to check that H = A when ω is closed, from which follows that the
Chern scalar curvature is given by

trP = 〈A,A∗〉 − |A|2,

(recall from Remark 6.9 that trP = 2 tr adZ = 2〈H,Z〉 = 2〈A, 12(A∗ −A)〉)
and consequently, trP = 0 when g�θ g is unimodular.

6.2. SCF-solitons

We first note that a simple way to obtain a SCF-soliton of the form (g�θ

g, ω, g) is when both P and S are multiples of the identity (see Examples 6.11
and 6.14 for an explicit application). Indeed, if P = qI and S = rI, q, r ∈ R,
then

Ricac =

[
rI 0
0 −rI

]
= rI +

[
0 0
0 −2rI

]
∈ RI +Der(g�θ g),

and thus the almost-Kähler structure (g�θ g, ω, g) is a (strongly algebraic)
SCF-soliton with c = q + r (see (13)).

We have seen in Section 3.1 that given a symplectic Lie algebra (g, ω),
the set of all compatible metrics can be identified with the orbit Sp(ω) · [·, ·].
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In the case (g�θ g, ω), in order to explore the existence of SCF-solitons, we
can vary the LSA structure by

(51) Lϕ(X) := ϕL(ϕ−1X)ϕ−1,
[
ϕ 0
0 ϕ−1

]
∈ Sp(ω), ϕ ∈ GL(g), ϕt = ϕ.

The corresponding Lie bracket [·, ·]ϕ on g⊕ g defined in (42) is therefore
defined in terms of its components ([·, ·]ϕ)g = ϕ[ϕ−1·, ϕ−1·]g and θϕ(X) =
ϕ−1θ(ϕ−1X)ϕ. Recall that (g�θ g, ω) and (g�θϕ g, ω) are isomorphic as
symplectic Lie algebras (see Proposition 6.5) and that if in addition ϕ ∈
O(g, 〈·, ·〉) (i.e. ϕ2 = I), then the almost-Kähler structures (g�θ g, ω, g) and
(g�θϕ g, ω, g) are equivalent (see Proposition 6.6).

Example 6.11. We consider the Lie algebra g = u(2) with (orthonormal)
basis

e1 =
[
i 0
0 i

]
, e2 =

[
0 −1
1 0

]
, e3 =

[
i 0
0 −i
]
, e4 =

[
0 i
i 0

]
,

and Lie bracket

[e2, e3] = 2e4, [e2, e4] = −2e3, [e3, e4] = 2e2.

If we identify g with the quaternion numbers H via {e1 = 1, e2 = i, e3 =
j, e4 = k}, then the (associative) product on H is an LSA structure defining
the above Lie bracket. By considering the variation

ϕt =

[
t
1
1
1

]
, t > 0,

we obtain the following one-parameter family of LSA structures:

Lt(e1) =
1
t I, Lt(e2) =

[
0 −t
1/t 0

0 −1
1 0

]
,

Lt(e3) =

[ −t 0
0 1

1/t 0
0 −1

]
, Lt(e4) =

[
0 −t
−1 0

0 1
1/t 0

]
,

which define the same Lie bracket as above. The Chern-Ricci operator of
the corresponding almost-Kähler structure (g�θt g, ω, g) is given, according
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to (47), by

Pt =
−5+3t2

2t2 I, i.e. pt =
−5+3t2

2t2 ω,

as it is easy to see that A = −4
t e1 and A∗ = (1t − 3t)e1. It is also straight-

forward to obtain that

Ricgt
=

[
0
2
2
2

]
, Cθt = Diag

(
4
t2 ,

(1−t2)2
2t2 , (1−t

2)2

2t2 , (1−t
2)2

2t2

)
,

Ht = Hθt = −4
t e1, S(θt(Ht)) =

4
t2 I, and∑

[θt(ei), θt(ei)
t] = Diag

(
3(1−t4)

t2 , 1−t
4

t2 ,−1−t4
t2 ,−1−t4

t2

)
.

We now use formula (48) to get

Rict = Diag
(
− 4

t2 ,
α
2t2 ,

α
2t2 ,

α
2t2 ,−5+3t4

2t2 , −9+t4

2t2 , −9+t4

2t2 , −9+t4

2t2

)
.

where α = −1 + 6t2 − t4.

Remark 6.12. It is worth pointing out that (g�θt g, g) has negative Ricci
curvature (i.e. Rict < 0) if and only if t2 < 3−√8.

The anti-J-invariant part of Rict (see (50)) is therefore given by

Ricact =

[
St 0
0 −St

]
, St = Diag

(
−3+3t4

4t2 , 4+3t2−t4
2t2 , 4+3t2−t4

2t2 , 4+3t2−t4
2t2

)
.

Thus St is a multiple of the identity if and only if t2 = 11
5 . More precisely,

for t0 =
√

11
5 , we obtain that

Pt0 =
4
11I,

Ricact0 =

[
72
55I 0
0 −72

55I

]
= 72

55I +

[
0 0
0 −144

55 I

]
∈ RI +Der(g�θt0

g).

This implies that the almost-Kähler structure (g�θt0
g, ω, g) is a (strongly

algebraic) SCF-soliton with c = 92
55 > 0, that is, a shrinking SCF-soliton. We

note that this structure is not Kähler (Ricact �= 0), the Ricci operator is given
by

Rict0 =
1
55 Diag(−100, 92, 92, 92,−244,−52,−52,−52)

and the scalar curvature equals Rt0 = −224
55 . A family of SCF-solutions con-

taining this soliton is studied in Example 6.15.
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Remark 6.13. By using a standard computational program, we found out
that this SCF-soliton is the only one (up to isometry) satisfying S = rI
among all variations of the form ϕ = Diag(a, b, c, d).

Example 6.14. The usual matrix multiplication on g = gl2(R) gives rise to
an LSA structure defining the usual Lie bracket, which in the (orthonormal)
basis

e1 = [ 1 0
0 1 ] , e2 =

[
0 −1
1 0

]
, e3 =

[
1 0
0 −1

]
, e4 = [ 0 1

1 0 ] ,

is given by

[e2, e3] = 2e4, [e2, e4] = −2e3, [e3, e4] = −2e2.

If we consider the variation

ϕs,t =

[
s
t
1
1

]
, s, t > 0,

then the corresponding two-parameter family of LSA structures is defined
by

Ls,t(e1) =
1
sI, Ls,t(e2) =

⎡⎣ 0 −s/t2
1/s 0

0 −1/t
1/t 0

⎤⎦ ,
Ls,t(e3) =

[
s 0
0 −t

1/s 0
0 −1/t

]
, Ls,t(e4) =

[
0 s
t 0

0 1/t
1/s 0

]
,

and the Lie bracket on g changes to

[e2, e3]s,t =
2
t e4, [e2, e4]s,t = −2

t e3, [e3, e4]s,t = −2te2.

By a straightforward computation one obtains that

Ps,t =
(− 5

2s2 + 1
2t2 − 1

)
I,

Ss,t =

⎡⎢⎢⎢⎣
− 3
4s2 +

s2

4t4 +
s2

2
3t2

2 −
s2

2t4 +
2
s2

−3t2

2 −
s2

2 +
2
s2−3

−3t2

2 −
s2

2 +
2
s2−3

⎤⎥⎥⎥⎦ .
It follows that Ss,t is a multiple of the identity if and only if

s2 =
6t4

1− t2
, f(t) := −108t8 + 36t6 − 97t4 − 22t2 + 11 = 0,
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and since f(0) = 11 and f(1) = −180, there exists t0 ∈ (0, 1) such that

f(t0) = 0 (t0 ∼ 0.49). By setting s0 :=
√

6t40
1−t20 (∼ 0.68), we obtain the ex-

panding (strongly algebraic) SCF-soliton (g�θs0,t0
g, ω, g) with c ∼ −3.61,

P = qI (q ∼ −4.24) and S = rI (r ∼ 0.63). We note that this SCF-soliton
has negative Ricci curvature:

Rics0,t0 ∼ Diag(−8.46,−0.43,−9.95,−9.95,−9.73,−1.70,−11.21,−11.21).

6.3. Bracket flow

In this section, in order to study the SCF-evolution of almost-Kähler struc-
tures of the form (g�θ g, ω, g), we consider the bracket flow (9) and use
Theorem 3.2. According to (42), the Lie bracket of g�θ g is determined by
λ := [·, ·]g and θ and so any bracket flow solution μ = μ(t) will be given by
a pair

μ(t) = (λ(t), θ(t)).

By using that

P +Ricac =

[
P + S 0

0 P t − S

]
,

it is easy to see that the bracket flow equation μ′ = δμ(P +Ricac) is equiv-
alent to the system{

λ′ = δλ(P + S),

θ′(X) = θ((P + S)X) + [θ(X), P t − S], ∀X ∈ g.

It follows from Theorem 3.2 that ω remains closed relative to μ(t), that is,

λ(X,Y ) = −θ(X)tY + θ(Y )tX, ∀t,

from which follows that the bracket flow is equivalent to the single equation
for θ given by

(52) θ′(X) = θ((P + S)X) + [θ(X), P t − S], ∀X ∈ g,

where λ is defined in terms of θ as above (recall that P and S depend on θ
and λ). Indeed, if Q1 := P + S and Q2 := P t − S, then λ evolves by
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λ′(X,Y ) = −θ′(X)t(Y ) + θ′(Y )t(X)

= −θ(Q1X)tY − [Qt
2, θ(X)t]Y + θ(Q1Y )tX + [Qt

2, θ(Y )t]X

= λ(Q1X,Y ) + λ(X,Q1Y )−Q1λ(X,Y )

− θ(Y )t(Q1 +Qt
2)X + θ(X)t(Q1 +Qt

2)Y + (Q1 +Qt
2)λ(X,Y ),

and since Q1 +Qt
2 = 2P and P = −R(Z) (see Remark 6.9), the LSA

condition yields

λ′(X,Y ) = δλ(Q1)(X,Y ) + 2 (Y · PX −X · PY + P (X · Y − Y ·X))

= δλ(Q1)(X,Y )

+ 2 (−Y · (X · Z) +X · (Y · Z)− (X · Y ) · Z + (Y ·X) · Z)

= δλ(Q1)(X,Y ).

Example 6.15. For g = u(2) as in Example 6.11, consider the two-parameter
family of almost-Kähler structures (g�θa,b

g, ω, g), where

θa,b(e1) = aI, θa,b(e2) =

[
0 a

−b2/a 0
0 −b
b 0

]
,

θa,b(e3) =

[
a 0
0 b

−b2/a 0
0 −b

]
, θa,b(e4) =

[
0 a
−b 0

0 b
−b2/a 0

]
,

and so the corresponding Lie bracket on u(2) is given by

λa,b(e2, e3) = 2be4, λa,b(e2, e4) = −2be3, λa,b(e3, e4) = 2be2.

We note that this family corresponds to the variation ϕ = Diag(−1/a, 1/b,
1/b, 1/b).

If we denote by Θa,b(X) the right-hand side of bracket flow Equation (52),
then it is easy to compute that

Θa,b(e1) = αI, Θa,b(e2) =

[
0 α
γ 0

0 −β
β 0

]
,

Θa,b(e3) =

[
α 0
0 β

γ 0
0 −β

]
, Θa,b(e4) =

[
0 α
−β 0

0 β
γ 0

]
,
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where

α := −13
4 a

3 + 3
2ab

2 + 3
4b

4/a, β := −1
2a

2b+ 3b3 − 1
2b

5/a2,

γ := −9
4ab

2 − 9
2b

4/a+ 7
4b

6/a3.

This implies that the family is invariant under the bracket flow if and only
if (−b2/a)′ = γ follows from a′ = α and b′ = β, which can be checked in
a straightforward way. The bracket flow on the family of almost-Kähler
structures (g�θa,b

g, ω, g) therefore becomes the following ODE system for
a = a(t), b = b(t):

(53)

{
a′ = −13

4 a
3 + 3

2ab
2 + 3

4b
4/a,

b′ = −1
2a

2b+ 3b3 − 1
2b

5/a2.

We can assume, up to equivalence, that a, b > 0. Note that the shrinking
SCF-soliton found in Example 6.11 belongs to the family; namely, it is con-

tained in the straight line b =
√

11
5 a, on which the equation becomes a′ = ca3

for c = 92
55 . By a standard qualitative analysis, one can obtain the following

information on these SCF-solutions:

• They all develop a finite-time singularity (T+ <∞) and converge

asymptotically to the SCF-soliton solution
(
a(t),

√
11
5 a(t)

)
, a(t) =

(−2ct+ 1)−1/2, t ∈ (−∞, 1
2c).

• They are all ancient solutions (i.e. T− = −∞).

• For the solutions above the soliton (i.e. b >
√

11
5 a), we have that the

Chern scalar curvature trP = (−20a2 + 12b2) is always positive, it
comes from +∞, attains a global minimum and then goes to +∞,
as t→ T+. On the other hand, the solutions below the soliton always
increase trP from −∞ toward +∞.

• The scalar curvature R = −43a4+18a2b2−3b4
2a2 is always negative and goes

from −∞ to −∞, reaching a global maximum for any solution.

We now analyze the convergence behavior. It is easy to see that

lim
t→T+

4√
11

(a, b)√
a2 + b2

=

(√
5
11 , 1

)
,
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and thus pointed convergence of a subsequence (Ga0,b0 , ckω(tk), ckg(tk)) to-
ward the SCF-soliton (G√

5
11 ,1

, ω, g) follows for some ck > 0 (see Corol-

lary 3.3), for any starting almost-Kähler structure (Ga0,b0 , ω, g), a0, b0 > 0.

Concerning backward convergence, we have that if b <
√

11
5 a, then

lim
t→−∞

(a, b)√
a2 + b2

= (1, 0).

It is easy to see that g�θ1,0 g is a solvable Lie algebra with nilradical isomor-
phic to h7, the 7-dimensional Heisenberg algebra. Moreover, (g�θ1,0 g, ω, g)
is an expanding SCF-soliton with

P1,0 = −5
2I, Ricac1,0 = −3

4I +D,

whereD := 1
4 Diag(0, 11, 11, 11, 6,−5,−5,−5) ∈ Der(g�θ1,0 g), and negative

Ricci curvature

Ric1,0 =
1
2 Diag(−8,−1,−1,−1,−5,−9,−9,−9).

On the other hand, for b >
√

11
5 a we obtain,

lim
t→−∞

(a, b)

b2/a
= (0, 1),

and hence a
b2 θa,b → θ∞, as t→ −∞, where the only nonzero coefficients of

θ∞ are θ∞(e2)e1 = −e2, θ∞(e3)e1 = −e3 and θ∞(e4)e1 = −e4. This implies
that g�θ∞ g is a nilpotent Lie algebra and (g�θ∞ g, ω, g) is an expanding
SCF-soliton, which is equivalent to (GμA

, ω, g) as in Example 4.9 with C = I.
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