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Shrinking good coordinate systems

associated to Kuranishi structures

Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono

The notion of good coordinate system was introduced by Fukaya
and Ono in [FOn] in their construction of virtual fundamental
chain via Kuranishi structure which was also introduced therein.
This notion was further clarified in [FOOO1] in some detail. In
those papers no explicit ambient space was used and hence the
process of gluing local Kuranishi charts in the given good coordi-
nate system was not discussed there. In our more recent writing
[FOOO2, FOOO3], we use an ambient space obtained by gluing
the Kuranishi charts. In this note we prove in detail that we can
always shrink the given good coordinate system so that the result-
ing ‘ambient space’ becomes Hausdorff. This note is self-contained
and uses only standard facts in general topology.

1. Introduction

In [FOn, FOOO1] the present authors associated a virtual fundamental chain
to a space with Kuranishi structure. For the construction we used the notion
of good coordinate system. The process of constructing a good coordinate
system out of Kuranishi structure corresponds to that of choosing and fixing
an atlas consisting of a locally finite covering of coordinate charts in the
manifold theory.

In [FOn, FOOO1] the process to associate the virtual fundamental chain
to a space with good coordinate system, is described without using ‘ambient
space’, that is, the space obtained by gluing Kuranishi charts by coordinate
change. In our more recent writing, [FOOO2, FOOO3], which contains fur-
ther detail of this construction, we describe the same process using ‘ambient
space’, explicitly. For the description of the construction of virtual funda-
mental chain using ambient space, certain properties, especially Hausdorff-
ness, of the ambient space is necessary.

In [FOn, FOOO1], the tools of Kuranishi structure and its associated
good coordinate system are applied to study moduli spaces of stable maps.
The moduli space of stable maps can be very singular in general but we can
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embed a small portion thereof at each point of the moduli space locally into
an orbifold which is called a Kuranishi neighborhood. An element of a Ku-
ranishi neighborhood appearing in such applications is a ‘map’ with domain
a nodal curve satisfying a differential equation, that is, a slightly perturbed
Cauchy-Riemann equation. To write down this perturbed Cauchy-Riemann
equation, one needs to fix various extra data locally in our moduli space.
Because of this reason, the union of Kuranishi neighborhoods cannot be
globally regarded as a subset of certain well-defined set of maps, and gluing
the given Kuranishi neighborhoods to construct an ambient space a priori
may not make sense. The main result of the present article is to show that
we can, however, always shrink the given Kuranishi neighborhoods and the
domains of coordinate change and glue the resulting shrinked neighborhoods
to obtain certain reasonable space, which one may call an ‘ambient space’ or
a ‘virtual neighborhood’. It also shows that we can always do so, after some
shrinking, by employing only elementary general topology arguments, with
the originally given definition of good coordinate system in [FOn, FOOO1].

Our purpose of writing this short note is to separate the abstract com-
binatorial general topology issue from other parts of the story of Kuranishi
structure given in [FOOO3] and its implementations, and to clarify the parts
of general topology. This note is self-contained and can be read indepen-
dently of the previous knowledge of Kuranishi structures.

2. Statement

To make it clear that the arguments of this note do not involve the proper-
ties of orbifolds, vector bundles on them, the smoothness of the coordinate
change and others, we introduce the following abstract notions that lie in
the realm of general topology and not of manifold theory.

In this note, X is always assumed to be a locally compact separable
metrizable space.

Definition 2.1. An abstract K-chart of X consists of U = (U, S, ψ) where
U is a locally compact separable metrizable space, S ⊆ U is a closed subset
and ψ : S → X is a homeomorphism onto an open subset.

Definition 2.2. Let Ui = (Ui, Si, ψi) (i = 1, 2) be abstract K-charts of X.
A coordinate change from U1 to U2 consists of Φ21 = (U21, ϕ21) such that:

1) U21 ⊆ U1 is an open set.
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2) ϕ21 :U21→U2 is a topological embedding, i.e., a continuous map which
is a homeomorphism onto its image.

3) S1 ∩ U21 = ϕ−121 (S2). Moreover ψ2 ◦ ϕ21 = ψ1 on S1 ∩ U21 (i.e., when-
ever both are defined).

4) ψ1(S1 ∩ U21) = ψ1(S1) ∩ ψ2(S2).

Definition 2.3. Let Z ⊆ X be a compact subset. An abstract good co-
ordinate system of Z in the weak sense is ÁU = (P, {Up}, {Φpq}) with the
following properties.

1) P is a partially ordered set. We assume P is a finite set.

2) For p ∈ P, Up = (Up, Sp, ψp) is an abstract K-chart.

3) If q ≤ p then a coordinate change Φpq = (Upq, ϕpq) from Uq to Up in
the sense of Definition 2.2 is defined. We require Upp = Up and ϕpp to
be the identity map.

4) If r≤q≤p then ϕpr=ϕpq ◦ ϕqr on Upqr :=ϕ
−1
qr (Upq)∩Upr (i.e., when-

ever both are defined).

5) If ψp(Sp) ∩ ψq(Sq) �= ∅ then either p ≤ q or q ≤ p holds.

6)
⋃
ψp(Sp) ⊇ Z.

Definition 2.4. Let ÁU = (P, {Up}, {Φpq}) be an abstract good coordinate
system of Z in the weak sense. We consider the disjoint union

∐
p Up and

define a relation ∼ on it as follows. Let x ∈ Up, y ∈ Uq. We say x ∼ y if one
of the following holds. We put Φpq = (Upq, ϕpq).

(a) p = q and x = y.

(b) p ≤ q, x ∈ Uqp and y = ϕqp(x).

(c) q ≤ p, y ∈ Upq and x = ϕpq(y).

We remark that by the requirement given in the second half of Defini-
tion 2.3 3), the case (a) is redundant in that it is a special case of either of
(b) or (c) but we state it separately for the semantic reason.

Definition 2.5. An abstract good coordinate system of Z in the weak sense
ÁU = (P, {Up}, {Φpq}) is said to be an abstract good coordinate system of Z
in the strong sense if the following holds.

7) The relation ∼ is an equivalence relation.



1298 K. Fukaya, et al.

8) The quotient space (
∐

p Up)/ ∼ is Hausdorff with respect to the quo-
tient topology.

We denote by |ÁU| the quotient space (
∐

p Up)/ ∼ equipped with quotient
topology.

Remark 2.6. Suppose p < q < r and x ∈ Up, y ∈ Uq, z ∈ Ur. We assume
x ∼ y and x ∼ z. Then, by definition, x ∈ Uqp, y = ϕqp(x). Moreover x ∈
Urp, z = ϕrp(x). Therefore if y ∈ Urq in addition, then Definition 2.3 4) im-
plies z = ϕrq(y), and hence z ∼ y. Namely the transitivity holds in this case.

However the relation y ∈ Urq may not be satisfied in general. This is a
reason why Definition 2.5 7) does not follow from Definition 2.3 1) – 6).

Example 2.7. SupposeP = {1, 2} with 1 < 2, U1 = U2 = R, U21 = (−1, 1).
ϕ21 : (−1, 1) → R is the inclusion map. We also take S1 = S2 = X = Z =
{0} and ψ1 = ψ2 is the identity map.

They satisfy Definition 2.3 1) – 6) and Definition 2.5 7). However the
space U1 � U2/ ∼ is not Hausdorff. In fact 1 ∈ U1 and 1 ∈ U2 do not have
separating neighborhoods.

Definition 2.8. 1) Let V be an open subset of a separable metrizable
space U . We say that V is a shrinking of U and write V � U , if V is
relatively compact in U , i.e., the closure V in U is compact.1

2) Let U = (U, S, ψ) be an abstract K chart and U0 ⊆ U be an open sub-
set. We put U|U0

= (U0, S ∩ U0, ψ|S∩U0
). This is an abstract K chart.

If U0 � U , we say U|U0
is a shrinking of U .

3) Let ÁU = (P, {Up}, {Φpq}) be an abstract good coordinate system of Z

in the weak sense. We say an abstract good coordinate system ÁU0 =
(P, {U0

p}, {Φ0
pq}) of Z in the weak sense is a shrinking of ÁU if the

following hold:
a) Each of U0

p is a shrinking of Up.
b) For p ≥ q, the domain of Φ0

pq is a shrinking of the domain of Φpq

(namely U0
pq � Upq) and Φ0

pq is a restriction of Φpq.

Theorem 2.9 (Shrinking Lemma). Suppose ÁU = (P, {Up}, {Φpq}) is an
abstract good coordinate system of Z in the weak sense. Then there exists a
shrinking ÁU0 of ÁU that becomes an abstract good coordinate system of Z in
the strong sense.

1We remark in a rare situation where V is both open and compact it may happen
V � U and V = U .
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Remark 2.10. Suppose (V,E,Γ, s, ψ) is a Kuranishi neighborhood in the
sense of [FOOO1, Definition A1.1] or [FOn, Definition 6.1]. Then the triple
(V/Γ, s−1(0)/Γ, ψ) is an abstract K-chart in the sense of Definition 2.1. It
is easy to see that a coordinate change in the sense of [FOOO1, (A1.12)]
or [FOn, Definition 6.1] induces a coordinate change in the sense of Defini-
tion 2.2.2

Thus a good coordinate system in the sense of [FOOO1, Lemma A1.11]
or [FOn, Definition 6.1] induces an abstract good coordinate system in the
weak sense (of X) of Definition 2.3.

The two conditions 7), 8) appearing in Definition 2.5 is exactly the same
as the conditions 7), 8) in [FOOO3, Definition 3.14].

Thus Theorem 2.9 implies that we can always shrink a good coordinate
system in the sense of [FOOO1, Lemma A1.11] or [FOn, Definition 6.1] to
obtain one in the sense of [FOOO3, Definition 3.14].

Note Theorem 2.9 is used during the proof of [FOOO3, Theorem 3.30],
which claims the existence of good coordinate system.

We will also prove the following:

Proposition 2.11. Let ÁU = (P, {Up}, {Φpq}) be an abstract good coordi-
nate system in the strong sense of Z. Let U ′p � Up chosen for each p. (Here

Up = (Up, Sp, ψp).) We consider the image U ′p → |ÁU| and denote it by the
same symbol U ′p. Then the union

U ′ =
⋃

p∈P
U ′p ⊆ |ÁU|

is separable and metrizable with respect to the induced topology.

Remark 2.12. Note U ′ can also be written as
∐
U ′p/ ∼ for certain equiv-

alence relation ∼. However we do not equip it with the quotient topology
but with the subspace topology of the quotient topology on |ÁU|.

3. Proof of the main theorem

Lemma 3.1. Let ÁU = (P, {Up}, {Φpq}) be an abstract good coordinate sys-
tem of Z in the weak sense and U0

p ⊆ Up, U
0
pq ⊆ Upq be open subsets. We

2 Note that Definition 2.2 4) is required for coordinate changes appearing in good
coordinate systems.
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assume

(3.1) ϕ−1pq (U
0
p ) ∩ U0

q ∩ Sq ⊆ U0
pq ⊆ ϕ−1pq (U

0
p ) ∩ U0

q

for q ≤ p and

(3.2)
⋃

p∈P
ψp(U

0
p ) ⊇ Z.

Then ËU0 = (P, {Up|U0
p
}, {Φpq|U0

pq
}) is an abstract good coordinate system of

Z in the weak sense.

Proof. We first show that Φpq|U0
pq

is a coordinate change: Uq|U0
q
→ Up|U0

p
.

Definition 2.2 1), 2) are obvious. Definition 2.2 3) follows from

ϕ−1pq (U
0
p ∩ Sp) ∩ U0

pq = ϕ−1pq (Sp) ∩ ϕ−1pq (U
0
p ) ∩ U0

pq

= Sq ∩ Upq ∩ ϕ−1pq (U
0
p ) ∩ U0

pq

= Sq ∩ ϕ−1pq (U
0
p ) ∩ U0

pq

= Sq ∩ U0
q ∩ ϕ−1pq (U

0
p ) ∩ U0

pq

= Sq ∩ U0
pq.

The second equality is Definition 2.2 3) for Φpq and the last equality follows
from the second inclusion of (3.1).

We next prove Definition 2.2 4). Let q ≤ p. (3.1) implies

Sq ∩ U0
q ∩ ϕ−1pq (U

0
p ) = Sq ∩ U0

pq

Therefore using the fact ϕ−1pq (Sp) ⊆ Sq, we have

Sq ∩ U0
q ∩ ϕ−1pq (Sp ∩ U0

p ) = Sq ∩ U0
pq.

Thus Definition 2.2 4) holds.
We thus checked Definition 2.3 3). Definition 2.3 1),2),4),5) follow from

the corresponding properties of ÁU . Definition 2.3 6) is a consequence of (3.2).
�

Remark 3.2. In fact, the converse of Lemma 3.1 also holds. More precisely,
if U0

p ⊆Up, U
0
pq⊆Upq are open subsets such that ËU0=(P, {Up|U0

p
}, {Φpq|U0

pq
})

is an abstract good coordinate system of Z in the weak sense, then (3.1)
and (3.2) hold.
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Lemma 3.3. Let ÁU = (P, {Up}, {Φpq}) be an abstract good coordinate sys-
tem of Z in the weak sense. Then there exist compact subsets Kp ⊆ X such
that

(3.3)
⋃

p∈P
Kp ⊇ Z, Kp ⊆ ψp(Sp).

Proof. Since
⋃

p∈P ψp(Sp) ⊇ Z is an open covering, for any x ∈ Z there exist
its neighborhood Ux and p(x) ∈ P such that Ux � ψp(x)(Sp(x)). We cover our
compact set Z by finitely many {Ux�

| � = 1, . . . , L} of them. Then Kp :=⋃
�;p(x�)=p Ux�

has the required properties. �

Proposition 3.4. Any abstract good coordinate system of Z in the weak
sense has a shrinking.

Proof. Let ÁU = (P, {Up}, {Φpq}) be an abstract good coordinate system of
Z in the weak sense. We take compact subsets Kp satisfying (3.3). Since ψp

is a topological embedding ψ−1p (Kp) is compact. There exists U0
p such that

ψ−1p (Kp) ⊆ U0
p � Up, since Up is locally compact. Then (3.2) is satisfied. We

put

(3.4) A0
pq = Sq ∩ ϕ−1pq (U

0
p ) ∩ U0

q .

Let Apq be its closure in Uq.

Lemma 3.5. Apq ⊆ Upq and Apq is compact.

Proof. Compactness of Apq immediately follows since Apq = A0
pq ⊂ U0

q .
We now prove Apq ⊆ Upq. Let xa ∈ A0

pq be a sequence. We will prove
that it has a subsequence which converges to an element of Upq. Since
xa ∈ U0

q � Uq we may assume that x ∈ Uq is its limit. By definition of
A0

pq, ya := ϕpq(xa) ∈ Sp ∩ U0
p . Since U

0
p is relatively compact in Up, there

is a subsequence of {ya} such that it converges to some y ∈ Up. On the
other hand, by Definition 2.2 3), ψp(ya) = ψq(xa). Then by continuity of
ψp : Sp → X, ψq : Sq → X, ψq(x) = ψp(y). (We use the fact that X is Haus-
dorff here.) Obviously this point is contained in ψp(Sp) ∩ ψq(Sq) which is
equal to ψq(Sq ∩ Upq) by Definition 2.2 4). By the injectivity of ψq on Sq,
this implies x ∈ Upq. This finishes the proof. �
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Using Lemma 3.5 and the local compactness of Upq, we then take V 0
pq

such that

(3.5) Apq ⊆ V 0
pq � Upq

and put

U0
pq = V 0

pq ∩ ϕ−1pq (U
0
p ) ∩ U0

q .

Since A0
pq ⊆ ϕ−1pq (U

0
p ) ∩ U0

q , (3.5) implies A0
pq ⊆ U0

pq � Upq. Since U
0
p and

U0
pq satisfy (3.1) and (3.2), Proposition 3.4 follows from Lemma 3.1. �

We start the proof of the main theorem. We take a shrinking ËU1 =
(P, {Up|U1

p
}, {Φpq|U1

pq
}) of given ÁU = (P, {Up}, {Φpq}). We put

(3.6) ϕ1
pq = ϕpq|U1

pq
.

We apply Lemma 3.3 to ËU1 to obtain Kp. We take a metric dp of Up and
put:

(3.7) U δ
p = {x ∈ U1

p | dp(x, ψ−1p (Kp)) < δ}.

Since ψ−1p (Kp) is compact and U1
p is locally compact, U δ

p � U1
p for sufficiently

small δ.
We use the next lemma several times in this section.

Lemma 3.6. Suppose q ≤ p, δn → 0 and xn ∈ U δn
q ∩ (ϕ1

pq)
−1(U δn

p ). Then
there exists a subsequence of xn, still denoted by xn, such that:

1) xn converges to x ∈ Sq.

2) ϕ1
pq(xn) converges to y ∈ Sp.

3) ψq(x) = ψp(y) ∈ Kp ∩Kq.

4) x ∈ U1
pq and y = ϕ1

pq(x).

Proof. Let δ0 > 0 be a fixed sufficiently small constant and consider δ >
0 with δ < δ0. Since U

δ
p � U δ0

p and U δ
q � U δ0

q for small δ, we may take a

subsequence such that xn and ϕ1
pq(xn) converge to x ∈ U δ0

q and y ∈ U δ0
p ,

respectively.
Then (3.7) implies x ∈ ψ−1q (Kq) and y ∈ ψ−1p (Kp). We have proved 1)

and 2).
Since xn ∈ U1

pq � Upq, its limit x is in Upq. Since ϕpq is defined on Upq

and is continuous, we have ϕpq(x) = ϕpq(limn→∞ xn) = limn→∞ ϕpq(xn) =
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y. Then by Definition 2.2 3) we have ψq(x) = ψp(y). Note ψq(x) ∈ Kq and
ψp(y) ∈ Kp. Therefore 3) holds.

Then x ∈ U1
pq follows from Definition 2.2 4) and Kp ⊆ ψp(Sp ∩ U1

p ),
Kq ⊆ ψq(Sq ∩ U1

q ). �

We take a decreasing sequence of positive numbers δn with limn→∞ δn = 0
and put

(3.8) Un
p = U δn

p , Un
pq = U δn

q ∩ (ϕ1
pq)

−1(U δn
p ).

We remark Un
pq ⊆ U1

pq since U1
pq is the domain of ϕ1

pq.

By Lemma 3.1, ÈUn = (P, {Up|Un
p
}, {Φpq|Un

pq
}) is an abstract good coor-

dinate system of Z in the weak sense. Since Un
p ⊆ U1

p � Up and Un
pq ⊆ U1

pq �
Upq, ÈUn is a shrinking of ÁU .

We will prove that ÈUn is an abstract good coordinate system of Z in
the strong sense for sufficiently large n. The proof occupies the rest of this
section. We put

(3.9) Cn
p = Un

p , Cn
pq = Un

q ∩ (ϕ1
pq)

−1(Un
p ).

Here Un
p is the closure of Un

p in Up, which coincides with the closure of Un
p

in U1
p . (This is because U

n
p � U1

p .) Moreover Cn
p is compact. We consider

Ûn =
∐

p∈P
Un
p , Ĉn =

∐

p∈P
Cn

p

where the right hand sides are disjoint union. Note Ûn ⊆ Ĉn. We define a
relation on Ûn by applying Definition 2.4 to ÈUn . We denote it by ∼n. We
also define a relation ∼′n on Ĉn as follows.

Definition 3.7. Let x ∈ Cn
p and y ∈ Cn

q . We say x ∼′n y if one of the fol-
lowing holds.

(a) p = q and x = y.

(b) p ≤ q, x ∈ Cn
qp and y = ϕ1

qp(x).

(c) q ≤ p, y ∈ Cn
pq and x = ϕ1

pq(y).

The next lemma is immediate from our choice (3.8) of Un
pq.

Lemma 3.8. Let x, y ∈ Ûn ⊆ Ĉn. Then x ∼n y if and only if x ∼′n y.



1304 K. Fukaya, et al.

We now prove:

Proposition 3.9. The relations ∼n and ∼′n are equivalence relations for
sufficiently large n.

Proof. In view of Lemma 3.8 it suffices to show that ∼′n is an equivalence
relation for sufficiently large n.

We assume that this is not the case. Note ∼′n satisfies all the prop-
erty required for the equivalence relation possibly except transitivity. There-
fore by taking a subsequence if necessary we may assume that there exist
xn, yn, zn ∈ Ĉn such that xn ∼′n yn, yn ∼′n zn but xn ∼′n zn does not hold.

Let xn ∈ Cn
pn
, yn ∈ Cn

qn
, zn ∈ Cn

rn . Since P is a finite set we may as-
sume, by taking a subsequence if necessary, that p = pn, q = qn, r = rn are
independent of n.

We first examine the consequence of xn ∼′n yn. We remark that Cn
p ⊆

U2δn
p and Cn

q ⊆ U2δn
q . Therefore, in Case (b) of Definition 3.7 we can apply

Lemma 3.6 to xn and take a convergence subsequence, still denoted by xn.
We denote limn→∞ xn = x. Then by continuity of ϕqp, yn = ϕqp(xn) also
converges. We denote y = limn→∞ yn. Then x ∈ U1

qp and ψp(x) = ψq(y). In
Case (c) of Definition 3.7, the same reasoning gives rise to a point y ∈ U1

pq

with x = ϕpq(y) and the equality ψp(x) = ψq(y). (By the same reason as
that of the remark after Definition 2.4, we do not need to examine the case
(a) separately.)

Next we examine the consequence of yn ∼′n zn. Starting from the sub-
sequence we took above, we can again apply Lemma 3.6 with xn or yn, p,
q replaced by yn or zn, q, r, respectively. Then by taking a subsequence if
necessary we have z = limn→∞ zn, such that y ∈ U1

rq or z ∈ U1
qr and ψq(y) =

ψr(z).
Thus combining the above two, we have ψp(x) = ψq(y) = ψr(z). There-

fore either p ≤ r or r ≤ p holds. We may assume r ≤ p without loss of general-
ity. Then since ψp(x) = ψr(z) we have z ∈ U1

pr, ϕpr(z) = x by Definition 2.2
3), 4). Therefore zn ∈ U1

pr for sufficiently large n, since U1
pr is open in Ur.

We use it to show:

Lemma 3.10. We have ϕ1
pr(zn) = xn for sufficiently large n.

Proof. Since ψp(x) = ψq(y) = ψr(z) Definition 2.3 5) and r ≤ p imply that
one of the following holds.

(a) q ≤ r ≤ p. (b) r ≤ q ≤ p. (c) r ≤ p ≤ q.



Shrinking good coordinate systems 1305

In Case (a) we have y ∈ U1
rq ∩ U1

pq ∩ (ϕ1
rq)
−1(U1

pr). Hence for all suf-
ficiently large n, yn ∈ U1

rq ∩ U1
pq ∩ (ϕ1

rq)
−1(U1

pr) and xn = ϕ1
pq(yn) = ϕ1

pr ◦
ϕ1
rq(yn) = ϕ1

pr(zn), by Definition 2.3 4).
In Case (b), we have z ∈ U1

pr ∩ U1
qr ∩ (ϕ1

qr)
−1(U1

pq). Hence, for all suffi-
ciently large n, zn ∈ U1

pr ∩ U1
qr ∩ (ϕ1

qr)
−1(U1

pq) and ϕ
1
pr(zn) = ϕ1

pq ◦ ϕ1
qr(zn) =

ϕ1
pq(yn) = xn.
In Case (c) we have z ∈ U1

pr ∩ U1
qr ∩ (ϕ1

pr)
−1(U1

qp). Hence, for sufficiently
large n, zn ∈ U1

pr ∩ U1
qr ∩ (ϕ1

pr)
−1(U1

qp). Moreover yn = ϕ1
qp(xn) and yn =

ϕ1
qr(zn) = ϕ1

qp ◦ ϕ1
pr(zn). Since ϕ

1
qp is injective, we find that xn = ϕ1

pr(zn).
�

Lemma 3.10 implies xn ∼′n zn for sufficiently large n. This is a contradiction.
�

We have thus proved that ÈUn satisfies Definition 2.5 7) for sufficiently large
n. We now turn to the proof of Definition 2.5 8). Let Wpq � U1

pq be an open
neighborhood of ψ−1q (Kp ∩Kq).

Lemma 3.11. For all sufficiently large n, we have

(3.10) (ϕ1
pq)

−1(Un
p ) ∩ Un

q ⊆Wpq.

Proof. If (3.10) is false there exists a sequence xn ∈ (ϕ1
pq)

−1(Un
p ) ∩ Un

q \
Wpq with n→ ∞. We apply Lemma 3.6 and may assume 1), 2), 3), 4) of
Lemma 3.6. Then x ∈ U1

pq , ψq(x) = ψp(y) ∈ Kq ∩Kp. It implies x ∈Wpq.
Thus xn ∈Wpq for large n. This is a contradiction. �

Lemma 3.12. Cn
pq is a compact subset of Cn

q for all sufficiently large n.

Proof. It suffices to show that Cn
pq is a closed subset of Cn

q . Let xa ∈ Cn
pq be

a sequence converging to x ∈ Cn
q . By definition

(3.11) xa ∈ U δn
q ∩ (ϕ1

pq)
−1(U δn

p ).

Now (3.11), (3.10) and U δn
q ⊆ U2δn

q imply that xa ∈Wpq � U1
pq for suffi-

ciently large n. Therefore x ∈ U1
pq. Since ϕ

1
pq is continuous on U1

pq we have
lima→∞ ϕ1

pq(xa) = ϕ1
pq(x). Since ϕ

1
pq(xa) ∈ Cn

p and Cn
p is compact, x ∈ U1

pq

implies ϕ1
pq(x) ∈ Cn

p . Thus x ∈ Cn
pq. This proves that C

n
pq is closed in Cn

q as
required. �
We define Cn = Ĉn/ ∼′n. The following is an immediate consequence of
Lemma 3.12.
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Lemma 3.13. Let n be sufficiently large so that Lemma 3.11 holds. Then
the space Cn is Hausdorff with respect to the quotient topology.

Proof. We first note that Ĉn is Hausdorff since it is a disjoint union of
Hausdorff spaces Cn

q over q. On the other hand, Lemma 3.12 implies that

the relation ∼′n is a closed relation defined on Ĉn for any such n. The lemma
then is a standard consequence in general topology. �

We remark that |ÈUn| = Ûn/ ∼n by definition. The inclusion Ûn → Ĉn

induces a map Ûn → Cn. Lemma 3.8 implies that it induces an injective
map |ÈUn| → Cn. This map is continuous by the definition of the quotient
topology. Therefore Lemma 3.13 implies that |ÈUn| is Hausdorff. The proof
of Theorem 2.9 is now complete.

Remark 3.14. We would like to note that the domain Un
pq of the coordinate

change of the shrinking ÈUn of ÁU is not of the form

(3.12) ϕ−1pq (U
n
p ) ∩ Un

q

but is

Un
pq = (ϕ1

pq)
−1(Un

p ) ∩ Un
q = ϕ−1pq (U

n
p ) ∩ Un

q ∩ U1
pq.

In fact (3.12) is not relatively compact in Upq in general even when Un
p

are relatively compact in Up for all p. We thank J. Solomon who found
an example related to this point and informed it to us. Here we present a
simpler and more directly related example.

Let Ui = {i} × R, Si = {i} × {0, 1} ⊂ Ui (i = 1, 2). We put U21 = {1} ×
(R \ {0}) and define ϕ21 : U21 → U2 by ϕ21(1, t) = (2, t). We putX = {(1, 0),
(2, 0), 1} and ψ1(1, 0) = (1, 0), ψ1(1, 1) = 1, ψ2(2, 0) = (2, 0), ψ2(2, 1) = 1.
They define an abstract good coordinate system of Z = X in the weak sense.

Let U ′i be a small neighborhood of Si in Ui. We may take U ′i = {i} ×
((−ε, ε) ∪ (1− ε, 1 + ε)), for example. We put

U ′21 = ϕ−121 (U
′
2) ∩ U ′1 ∩ U21 = {1} × ((−ε, 0) ∪ (0, ε) ∪ (1− ε, 1 + ε))

The space obtained by gluing U ′1 and U ′2 by ϕ21|U ′
21
is not Hausdorff. In fact,

(1, 0) and (2, 0) have no separating neighborhoods.
We shrink U ′21 to

U ′′21 = {1} × (1− ε, 1 + ε).

Then the space obtained by gluing U ′1 and U ′2 by ϕ21|U ′′
21

is a disjoint union
of three intervals and is Hausdorff.
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We remark that U ′21 is not relatively compact in U21 but U
′′
21 is relatively

compact in U21.

4. Proof of metrizability

In this section we prove Proposition 2.11.
We recall the following well-known definition. A family of subsets {Ui |

i ∈ I} of a topological space Y containing x ∈ Y is said to be a neighborhood
basis of x if

(nbb 1) each Ui contains an open neighborhood of x,

(nbb 2) for each open set U containing x there exists i such that Ui ⊆ U .

A family of open subsets {Ui | i ∈ I} of a topological space X is said
to be a basis of the open sets if for each x the set {Ui | x ∈ Ui} is a neigh-
borhood basis of x. A topological space is said to satisfy the second axiom
of countability if there exists a countable basis of open subsets {Ui | i ∈ I}.
A classical result of Urysohn says a topological space is metrizable if it is
regular and satisfies the second axiom of countability. (See a standard text
book such as [Ke] for these facts.)

Proof of Proposition 2.11. We put Kp=U ′p and consider K=
∐

p∈PKp/∼K

in |ÁU|. (Here ∼K is the restriction of the equivalence relation ∼U obtained by
applying Definition 2.4 to ÁU . (∼U is an equivalence relation on

∐
p∈P Up ⊇∐

p∈PKp.) Let Πp : Kp → K be the the natural inclusion followed by the

projection. As a subset of |ÁU|, we can also write K =
⋃

p∈PKp ⊆ |ÁU|. Note
the induced topology of the embedding U ′ → K coincides with the induced
topology of the embedding U ′ → |ÁU|. This is because the map K → |ÁU| is a
topological embedding. (K is compact and |ÁU| is Hausdorff.) Therefore, it
suffices to show that K is metrizable with respect to the quotient topology
of ΠP,K :

∐
p∈PKp → K. We remark that K is compact. K is Hausdorff

since |ÁU| is Hausdorff and K → |ÁU| is injective and continuous. Therefore
K is regular. Now it remains to show that K satisfies the second axiom of
countability. This is [FOOO2, Lemma 8.5]. We repeat its proof here for the
convenience of the reader.

For each p, we take a countable basis Up = {Up,ip ⊆ Kp | ip ∈ Ip} of open
sets of Kp. We may assume ∅ ∈ Up.

For each�i = (ip)p∈P (ip ∈ Ip) we define U(�i) to be the interior of the set

(4.1) U+(�i) :=
⋃

p∈P
Πp(Up,ip).
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Then {U(�i)} is a countable family of open subsets of K. We will prove that
this family is a basis of open sets of K.

Let q ∈ K, we put

(4.2) P(q) = {p ∈ P | ∃x, q = [x], x ∈ Kp}.

Here and hereafter we identify Kp to the image of ΠP,K(Kp) in K. Note
since K is Hausdorff and Kp is compact, the natural inclusion map Kp →∐

p∈PKp induces a topological embedding Kp → K.
For p ∈ P(q), we have xp ∈ Kp with [xp] = q. We put

Ip(q) = {ip ∈ Ip | xp ∈ Up,ip}.

Then {Up,ip | ip ∈ Ip(q)} is a countable neighborhood basis of xp in Kp. For

each �i = (ip) ∈ ∏
p∈P(q) Ip(q), we set

(4.3) U+(�i) =
⋃

p∈P(q)

Πp(Up,ip) ⊆ K.

We claim that the collection {U+(�i) |�i ∈ ∏
p∈P(q) Ip(q)} is a neighborhood

basis of q in K for any q. The claim follows from Lemmata 4.1, 4.2 below.

Lemma 4.1. The subset U+(�i) is a neighborhood of q in K.

Proof. For p ∈ P(q) the set Kp \ Up,ip is a closed subset of Kp and so is
compact. Therefore Πp(Kp \ Up,ip) is a compact subset in the Hausdorff
space K and so is closed.

If p /∈ P(q) then we consider Πp(Kp) which is closed.
Now we put

K0 =
⋃

p∈P(q)

Πp(Kp \ Up,ip) ∪
⋃

p/∈P(q)

Πp(Kp).

This is a finite union of closed sets and so is closed. It is easy to see that
q ∈ K \K0 ⊆ U+(�i). �

Lemma 4.2. The collection {U+(�i)} satisfies the property (nbb 2) of the
neighborhood basis above.

Proof. Let U ⊆ K be an open subset containing q. Since the map Kp → K
is a topological embedding, U ∩Kp is an open set of Kp. Therefore for each



Shrinking good coordinate systems 1309

p ∈ P(q), the set U ∩Kp is a neighborhood of xp in Kp. By the definition
of neighborhood basis in Kp, there exists ip such that Up,ip ⊆ U ∩Kp. We

put �i = (ip). Then U
+(�i) ⊆ U as required. �

We remark that U+(�i) in (4.3) is a special case of U+(�i) in (4.1). (We take
Up,ip = ∅ for p /∈ P(x).) The family U(�i) is a countable basis of open sets of
K. Proposition 2.11 is now proved. �
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