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Floer cohomologies of non-torus fibers of

the Gelfand-Cetlin system

Yuichi Nohara and Kazushi Ueda

The Gelfand-Cetlin system has non-torus Lagrangian fibers on
some of the boundary strata of the moment polytope. We com-
pute Floer cohomologies of such non-torus Lagrangian fibers in the
cases of the 3-dimensional full flag manifold and the Grassmannian
of 2-planes in a 4-space.
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1. Introduction

Let P be a parabolic subgroup of GL(n,C) and F := GL(n,C)/P be the as-
sociated flag manifold. The Gelfand-Cetlin system, introduced by Guillemin
and Sternberg [GS83], is a completely integrable system

Φ : F −→ R
(dimR F )/2,

i.e., a set of functionally independent and Poisson commuting functions. The
image Δ = Φ(F ) is a convex polytope called theGelfand-Cetlin polytope, and
Φ gives a Lagrangian torus fibration structure over the interior IntΔ of Δ.
Unlike the case of toric manifolds where the fibers over the relative interior
of a d-dimensional face of the moment polytope are d-dimensional isotropic
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tori, the Gelfand-Cetlin system has non-torus Lagrangian fibers over the
relative interiors of some of the faces of Δ.

Let (X,ω) be a compact toric manifold of dimCX = N , and Φ : X →
RN be the toric moment map with the moment polytope Δ = Φ(X). For
an interior point u ∈ IntΔ, let L(u) denote the Lagrangian torus fiber
Φ−1(u). Lagrangian intersection Floer theory endows the cohomology group
H∗(L(u); Λ0) over the Novikov ring

Λ0 :=

{ ∞∑
i=1

aiT
λi

∣∣∣∣∣ ai ∈ C, λi ≥ 0, lim
i→∞

λi = ∞
}

with a structure {mk}k≥0 of a unital filtered A∞-algebra [FOOO09]. Let
Λ and Λ+ be the quotient field and the maximal ideal of the local ring
Λ0 respectively. An odd-degree element b ∈ Hodd(L(u); Λ0) is said to be a
bounding cochain if it satisfies the Maurer-Cartan equation

(1.1)

∞∑
k=0

mk(b
⊗k) = 0.

A solution b ∈ Hodd(L(u); Λ0) to the weak Maurer-Cartan equation

∞∑
k=0

mk(b
⊗k) ≡ 0 mod Λ0 e0(1.2)

is called a weak bounding cochain, where e0 is the unit in H∗(L(u); Λ0).

The set of weak bounding cochains will be denoted by M̂weak(L(u)). The

potential function is a map PO : M̂weak(L(u)) → Λ0 defined by

∞∑
k=0

mk(b, . . . , b) = PO(b)e0.(1.3)

A weak bounding cochain gives a deformed filtered A∞-algebra whose A∞-
operations are given by

(1.4) mb
k(x1, . . . , xk)

=

∞∑
m0=0

· · ·
∞∑

mk=0

mm0+···+mk+k(b
⊗m0 ⊗ x1 ⊗ b⊗m1 ⊗ · · · ⊗ xk ⊗ b⊗mk).
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The weak Maurer-Cartan equation implies that mb
1 squares to zero, and the

deformed Floer cohomology is defined by

HF ((L(u), b), (L(u), b); Λ0) = Ker(mb
1)
/
Im(mb

1).(1.5)

More generally, one can deform the Floer differential m1 by

(1.6) δb0,b1(x) =
∑

k0,k1≥0
mk0+k1+1(b0, . . . , b0︸ ︷︷ ︸

k0

, x, b1, . . . , b1︸ ︷︷ ︸
k1

)

for a pair (b0, b1) of weak bounding cochains with PO(b0) = PO(b1). The
Floer cohomology of the pair ((L(u), b0), (L(u), b1)) is defined by

HF ((L(u), b0), (L(u), b1); Λ0) = Ker(δb0,b1)/ Im(δb0,b1).(1.7)

If the toric manifold X is Fano, then the following hold [FOOO10]:

• H1(L(u); Λ0) is contained in M̂weak(L(u)).

• The potential function PO on

(1.8)
⋃

u∈IntΔ
H1(L(u); Λ0/2π

√−1Z) ∼= IntΔ× (Λ0/2π
√−1Z)N

can be considered as a Laurent polynomial, which can be identified
with the superpotential of the Landau-Ginzburg mirror of X.

• Each critical point of PO corresponds to a pair (u, b) such that the de-
formed Floer cohomology HF ((L(u), b), (L(u), b); Λ) over the Novikov
field Λ is non-trivial.

• If the deformed Floer cohomology group over the Novikov field is non-
trivial, then it is isomorphic to the classical cohomology group as a
vector space;

HF ((L(u), b), (L(u), b); Λ) ∼= H∗(TN ; Λ).(1.9)

• The quantum cohomology ring QH(X; Λ) is isomorphic to the Jacobi
ring Jac(PO) of the potential function.

In particular, the number of pairs (L(u), b) with nontrivial Floer coho-
mology coincides with rankQH(X; Λ) = rankH∗(X; Λ) provided that the
potential function is Morse.
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Nishinou and the authors [NNU10] introduced the notion of a toric de-
generation of an integrable system, and used it to compute the potential
function of Lagrangian torus fibers of the Gelfand-Cetlin system. The re-
sulting potential function can be considered as a Laurent polynomial just as
in the toric Fano case, which can be identified with the superpotential of the
Landau-Ginzburg mirror of the flag manifold given in [Giv97, BCFKvS00].
In contrast to the toric case, the rank of H∗(F ; Λ) is greater in general
than the rank of the Jacobi ring Jac(PO), and hence than the number of
Lagrangian torus fibers with non-trivial Floer cohomology. In the case of
the 3-dimensional flag manifold Fl(3), the potential function has six crit-
ical points, which is equal to the rank of H∗(Fl(3); Λ). Similarly, the po-
tential function for the Grassmannian Gr(2, 5) of 2-planes in C5 has ten
critical points, which is equal to the rank of H∗(Gr(2, 5); Λ). On the other
hand, the number of critical points of the potential function for the Grass-
mannian Gr(2, 4) of 2-planes in C4 is four, which is less than the rank of
H∗(Gr(2, 4); Λ), which is six.

In this paper, we study non-torus Lagrangian fibers of the Gelfand-Cetlin
system over the boundary of the Gelfand-Cetlin polytope in the cases of
Fl(3), Gr(2, 4), and Gr(2, 5). The main results are the following:

Theorem 1.1. Let Φ: Fl(3) → R3 be the Gelfand-Cetlin system with the
Gelfand-Cetlin polytope Δ = Φ(Fl(3)).

1) There exists a vertex u0 of Δ such that a fiber L(u) = Φ−1(u) over
a boundary point u ∈ ∂Δ is a Lagrangian submanifold if and only if
u = u0.

2) The Lagrangian fiber L(u0) is diffeomorphic to SU(2) ∼= S3.

3) The Floer cohomology of L(u0) is given by

(1.10) HF (L(u0), L(u0); Λ0) ∼= Λ0/T
λΛ0,

where λ > 0 is a constant depending on the symplectic structure of
Fl(3). In particular, the Floer cohomology of L(u0) over the Novikov
field Λ is trivial;

(1.11) HF (L(u0), L(u0); Λ) = 0.

Theorem 1.2. Let Φ: Gr(2, 4) → R4 be the Gelfand-Cetlin system with the
Gelfand-Cetlin polytope Δ = Φ(Gr(2, 4)).
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1) There exists an edge of Δ such that a fiber L(u) = Φ−1(u) over u ∈ ∂Δ
is a Lagrangian submanifold if and only if u is in the relative interior
of the edge.

2) The Lagrangian fiber L(u) over any point u in the relative interior of
the edge is diffeomorphic to U(2) ∼= S1 × S3.

3) H1(L(u); Λ0) is contained in M̂weak(L(u)).

4) The potential function is identically zero on H1(L(u); Λ0).

5) The Floer cohomology HF ((L(u), b), (L(u), b); Λ) of a Lagrangian
U(2)-fiber L(u) over the Novikov field Λ is non-trivial if and only if u
is the barycenter u0 of the edge and b = ±π

√−1/2 e1, where e1 is a
generator of H1(L(u);Z) ∼= Z.

6) If the deformed Floer cohomology group over the Novikov field is non-
trivial, then it is isomorphic to the classical cohomology group;

HF ((L(u0),±π
√−1/2 e1), (L(u0),±π

√−1/2 e1); Λ)(1.12)

∼= H∗(S1 × S3; Λ).

7) The Floer cohomology of the pair ((L(u0), π
√−1/2 e1), (L(u0),

−π
√−1/2 e1)) is trivial;

HF ((L(u0), π
√−1/2 e1), (L(u0),−π

√−1/2 e1); Λ) = 0.(1.13)

More precise statements, which describe the Floer cohomology groups
over the Novikov ring Λ0, are given in Theorem 4.16, and Theorem 4.20.

Theorem 1.3. Let Φ: Gr(2, 5) → R6 be the Gelfand-Cetlin system with the
Gelfand-Cetlin polytope Δ = Φ(Gr(2, 5)).

1) There exist two 3-dimensional faces of Δ such that a fiber L(u) =
Φ−1(u) over u ∈ ∂Δ is a Lagrangian submanifold if and only if u is
an interior point of one of these faces.

2) The Lagrangian fibers over these faces are diffeomorphic to S3 × T 3.

3) Each Lagrangian fiber L(u) over these faces is displaceable from itself
by a Hamiltonian diffeomorphism. In particular, the Floer cohomology
over the Novikov field is trivial;

HF ((L(u), b), (L(u), b); Λ) = 0

for any weak bounding cochain b.
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Remark 1.4. The preimages of the faces stated in Theorem 1.1, Theo-
rem 1.2, and Theorem 1.3 are the loci where the Gelfand-Cetlin systems fail
to be differentiable. Fibers over other boundary faces are lower dimensional
isotropic tori, as in the toric case.

A symplectic manifold (X,ω) is monotone if the cohomology class [ω] is
positively proportional to the first Chern class;

∃λ > 0 [ω] = λc1(X).(1.14)

The quantum cohomology ring of a monotone symplectic manifold does not
have any convergence issue, and hence is defined over C. A Lagrangian
submanifold L is monotone if the symplectic area of a disk bounded by
L is positively proportional to the Maslov index;

∃λ > 0 ∀β ∈ π2(M,L) β ∩ ω = λμ(β).(1.15)

The A∞-operations on the Lagrangian intersection Floer complex of a mono-
tone Lagrangian submanifold is defined over C. The minimal Maslov num-
ber of oriented monotone Lagrangian submanifold is greater than or equal
to 2, so that the obstruction class m0(1) can be written as m0(1) = m0(L) e0,
wherem0(L) ∈ C is the count of Maslov index 2 disks bounded by L, weighted
by their symplectic areas and holonomies of a flat U(1)-bundle on L along
the boundaries of the disks. The monotone Fukaya category is defined as the
direct sum

F(X) :=
⊕
λ∈C

F(X;λ),(1.16)

where F(X;λ) is an A∞-category over C whose objects are monotone La-
grangian submanifolds, equipped with flat U(1)-bundles, satisfying m0(L) =
λ. For any monotone Lagrangian submanifold L, there is a natural ring ho-
momorphism

QH(X) → HF (L,L),(1.17)

which is known by Auroux [Aur07], Kontsevich, and Seidel to send c1(X) ∈
QH(X) to m0(1) ∈ HF (L,L). It follows that F(X;λ) is trivial unless λ is
an eigenvalue of the quantum cup product by c1(X).
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Now consider the case when X = Gr(2, 4), which can be written as a
quadric hypersurface

X =
{
[z0 : · · · : z5] ∈ P

5
∣∣ z20 = z21 + · · ·+ z25

}
.(1.18)

The real locus XR is a monotone Lagrangian sphere, which is the vanish-
ing cycle along a degeneration into a nodal quadric and split-generates the
nilpotent summand DπF(X; 0) of the monotone Fukaya category [Smi12,
Lemma 4.6]. The Floer cohomology HF (XR, XR) is semisimple, and carries
a formal A∞-structure [Smi12, Lemma 4.7]. It follows that DπF(X; 0) is
equivalent to the direct sum of two copies of the derived category Db(C) of
C-vector spaces. On the other hand, (L(u0),±π

√−1/2 e1) are also objects of
the nilpotent summand DπF(X; 0) of the monotone Fukaya category, which
are non-zero by (1.12). Since (L(u0),±

√−1/2 e1) is a pair of orthogonal
non-zero objects in a triangulated category equivalent to Db(C)⊕Db(C),
they split-generate the whole category:

Corollary 1.5. The pair (L(u0),±π
√−1/2 e1) split-generate DπF(Gr(2,

4); 0).

This paper is organized as follows: In Section 2, we recall the construc-
tion of the Gelfand-Cetlin system, and study non-torus Lagrangian fibers in
the cases of the full flag manifold Fl(3) and the Grassmannians Gr(n, 2n),
Gr(2, 5). In Section 3, we discuss critical points of the potential function
and eigenvalues of the quantum cup product by the first Chern class. In
Section 4 we compute the Floer cohomologies over the Novikov ring of non-
torus fibers in Fl(3) and Gr(2, 4). An observation about the displacement
energy of a Lagrangian U(n)-fiber in Gr(n, 2n) is also given in this section.

Acknowledgment. We thank Hiroshi Ohta, Kaoru Ono, and Yoshihiro
Ohnita for useful conversations, and the anonymous referee for valuable
suggestions. Y. N. is supported by Grant-in-Aid for Scientific Research
(No.23740055, 15K04847). K. U. is supported by Grant-in-Aid for Scien-
tific Research (No.24740043, 15KT0105, 16K13743, 16H03930).

2. Non-torus fibers of the Gelfand-Cetlin system

2.1. Flag manifolds

For a sequence 0 = n0 < n1 < · · · < nr < nr+1 = n of integers, let F =
F (n1, . . . , nr, n) be the flag manifold consisting of flags

0 ⊂ V1 ⊂ · · · ⊂ Vr ⊂ C
n, dimVi = ni



1258 Y. Nohara and K. Ueda

of Cn. We write the full flag manifold and the Grassmannian as Fl(n) =
F (1, 2, . . . , n) and Gr(k, n) = F (k, n) respectively. The complex dimension
of F (n1, . . . , nr, n) is given by

N = N(n1, . . . , nr, n) := dimC F (n1, . . . , nr, n) =

r∑
i=1

(ni − ni−1)(n− ni).

Let P = P (n1, . . . , nr, n) ⊂ GL(n,C) be the stabilizer subgroup of the stan-
dard flag (Vi = 〈e1, . . . , eni

〉)ri=1, where {ei}ni=1 is the standard basis of Cn.
The intersection of P and U(n) is U(k1)× · · · ×U(kr+1) for ki = ni − ni−1,
and F is written as

F = GL(n,C)/P = U(n)/(U(k1)× · · · ×U(kr+1)).

We take a U(n)-invariant inner product 〈x, y〉 = trxy∗ on the Lie algebra
u(n) of U(n), and identify the dual vector space u(n)∗ of u(n) with the space√−1u(n) of Hermitian matrices. For λ = diag (λ1, . . . , λn) ∈

√−1u(n) with

(2.1) λ1 = · · · = λn1︸ ︷︷ ︸
k1

> λn1+1 = · · · = λn2︸ ︷︷ ︸
k2

> · · · > λnr+1 = · · · = λn︸ ︷︷ ︸
kr+1

,

the flag manifold F is identified with the adjoint orbit Oλ ⊂ √−1u(n)
of λ. Note that Oλ consists of Hermitian matrices with fixed eigenvalues
λ1, . . . , λn. Let

ω(adξ(x), adη(x)) =
1

2π
〈x, [ξ, η]〉, ξ, η ∈ u(n)

be the (normalized) Kostant-Kirillov form on Oλ.

For each i=1, . . . , r, we set Pi :=P
(∧ni

Cn
)∼=P

( n

ni
)−1. Then the Plücker

embedding is given by

ι : F ↪→
r∏

i=1

Pi, (0 ⊂ V1 ⊂ · · · ⊂ Vr ⊂ C
n) �→ (

∧n1V1, . . . ,
∧nrVr).

Let ωPi
be the Fubini-Study form on Pi normalized in such a way that it

represents the first Chern class c1(O(1)) of the hyperplane bundle. Then the
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Kostant-Kirillov form ω and the first Chern form c1(F ) of F are given by

ω =

r∑
i=1

(λni
− λni+1

)ωPi

and

c1(F ) =

r∑
i=1

(ni+1 − ni−1)ωPi

respectively.

Example 2.1. The 3-dimensional full flag manifold Fl(3) is embedded into

P1 × P2 = P(C3)× P(
∧2

C3) ∼= P2 × P2

as a hypersurface. The image of Fl(3) is given by the Plücker relation

Z1Z23 + Z2Z31 + Z3Z12 = 0,

where [Z1 : Z2 : Z3] and [Z23 : Z31 : Z12] are the Plücker coordinates on P1

and P2 respectively.

Example 2.2. The Grassmannian Gr(2, 4) of 2-planes in C4 is embedded
into P(

∧2
C4) ∼= P5 as a hypersurface. The Plücker relation is given by

Z12Z34 − Z13Z24 + Z14Z23 = 0,

where [Z12 : Z13 : Z14 : Z23 : Z24 : Z34] is the Plücker coordinates.

2.2. The Gelfand-Cetlin system

For x ∈ Oλ and k = 1, . . . , n− 1, let x(k) denote the upper-left k × k sub-
matrix of x. Since x(k) is also a Hermitian matrix, it has real eigenval-

ues λ
(k)
1 (x) ≥ λ

(k)
2 (x) ≥ · · · ≥ λ

(k)
k (x). By taking the eigenvalues for all k =

1, . . . , n− 1, we obtain a set (λ
(k)
i )1≤i≤k≤n−1 of n(n− 1)/2 functions, which
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satisfy the inequalities

(2.2)

λ1 λ2 λ3 · · · λn−1 λn

≥ ≥ ≥ ≥ ≥ ≥
λ
(n−1)
1 λ

(n−1)
2 λ

(n−1)
n−1

≥ ≥ ≥
λ
(n−2)
1 λ

(n−2)
n−2

≥ ≥· · · · · ·≥ ≥
λ
(1)
1

.

It follows that the number of non-constant λ
(k)
i coincides with N = dimC F .

Let I = I(n1, . . . , nr, n) denotes the set of pairs (i, k) such that λ
(k)
i is non-

constant. Then the Gelfand-Cetlin system is defined by

Φ = (λ
(k)
i )(i,k)∈I : F (n1, . . . , nr, n) −→ R

N(n1,...,nr,n).

Proposition 2.3 (Guillemin and Sternberg [GS83]). The map Φ is

a completely integrable system on (F (n1, . . . , nr, n), ω). The functions λ
(k)
i

are action variables, and the image Δ = Φ(F ) is a convex polytope defined
by (2.2). The fiber L(u) = Φ−1(u) over each interior point u ∈ IntΔ is a
Lagrangian torus.

The image Δ ⊂ RN(n1,...,nr,n) is called the Gelfand-Cetlin polytope. The

Gelfand-Cetlin system is not smooth on the locus where λ
(i)
k = λ

(i+1)
k for

some (i, k), or equivalently, where the Gelfand-Cetlin pattern (2.2) contains
a set of equalities of the form

λ
(i+1)
k+1

=
=

λ
(i)
k λ

(i+1)
k

=
=

λ
(i)
k−1

.

The image of such loci are faces of Δ of codimension greater than two where
Δ does not satisfy the Delzant condition. Away from such faces, each fiber
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Figure 2.1: The Gelfand-Cetlin polytope for Fl(3).

Φ−1(u) of Φ is an isotropic torus whose dimension is that of the face of Δ
containing u in its relative interior.

2.3. The case of Fl(3)

After a translation by a scalar matrix, we may assume that Fl(3) is identi-
fied with the adjoint orbit of λ = diag(λ1, 0,−λ2) for λ1, λ2 > 0. Then the
Gelfand-Cetlin polytope Δ consists of (u1, u2, u3) ∈ R3 satisfying

(2.3)

λ1 0 −λ2

≥ ≥ ≥ ≥
u1 u2

≥ ≥
u3

as shown in Figure 2.1. The non-smooth locus of Φ is the fiber L0 = Φ−1(0)
over the vertex 0 = (0, 0, 0) ∈ Δ where four edges intersect.

Definition 2.4 (Evans and Lekili [EL, Definition 1.1.1]). Let K be
a compact connected Lie group. A Lagrangian submanifold L in a Kähler
manifold X is said to be K-homogeneous if K acts holomorphically on X in
such a way that L is a K-orbit.
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Proposition 2.5. The fiber L0 = Φ−1(0) is a Lagrangian 3-sphere given
by

L0 =

⎧⎨⎩
⎛⎝ 0 0 z1

0 0 z2
z1 z2 λ1 − λ2

⎞⎠ ∈ √−1u(3)

∣∣∣∣∣∣ |z1|2 + |z2|2 = λ1λ2

⎫⎬⎭ ,

which is K-homogeneous for

K =

⎧⎨⎩
⎛⎝a1 −a2 0
a2 a1 0
0 0 1

⎞⎠∣∣∣∣∣∣ |a1|2 + |a2|2 = 1

⎫⎬⎭ ∼= SU(2).

Proof. Suppose that x ∈ L0. Then λ
(2)
1 (x) = λ

(2)
2 (x) = 0 implies that x(2) =

0 and thus x has the form

x =

⎛⎝ 0 0 z1
0 0 z2
z1 z2 x33

⎞⎠
for some z1, z2 ∈ C and x33 ∈ R. Since

det(λ− x) = λ
(
λ2 − x33λ− (|z1|2 + |z2|2)

)
= 0

has solutions λ = λ1, 0,−λ2, we have x33 = λ1 − λ2 and |z1|2 + |z2|2 = λ1λ2.
Hence the fiber L0 is the K-orbit of⎛⎝ 0 0

√
λ1λ2

0 0 0√
λ1λ2 0 λ1 − λ2

⎞⎠ = Adg0

⎛⎝λ1 0 0
0 0 0
0 0 −λ2

⎞⎠ ∈ Oλ,

where

g0 =

⎛⎝
√

λ2/(λ1 + λ2) 0 −√λ1/(λ1 + λ2)
0 1 0√

λ1/(λ1 + λ2) 0
√

λ2/(λ1 + λ2)

⎞⎠ ∈ SU(3).

Next we see that L0 is Lagrangian. Since K acts transitively on L0, the
tangent space TxL0 is spanned by infinitesimal actions adξ(x) of ξ ∈ k, where

k =

{
ξ =

(
ξ(2) 0
0 0

)
∈ u(3)

∣∣∣∣ ξ(2) ∈ su(2)

}
∼= su(2)
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is the Lie algebra of K. Since x(2) = 0 for x ∈ L0, we have

ω(adξ(x), adη(x)) =

√−1

2π
tr
(
x(2)[ξ(2), η(2)]

)
= 0

for any ξ, η ∈ k. �

Let ι : Fl(3) → P1 × P2 = P(C3)× P(
∧2

C3) be the Plücker embedding
and ([Z1 :Z2 :Z3], [Z23 :Z31 :Z12]) be the Plücker coordinates. The Kostant-
Kirillov form is given by

ω = λ1ωP1
+ λ2ωP2

.

Since the Lagrangian fiber L0 as a submanifold in SU(3)/T consists of⎛⎝a1 −a2 0
a2 a1 0
0 0 1

⎞⎠ g0 =
1√

λ1 + λ2

×
⎛⎝√

λ2a1 −√
λ1 + λ2a2 −√

λ1a1√
λ2a2

√
λ1 + λ2a1 −√

λ1a2√
λ1 0

√
λ2

⎞⎠ mod T

with |a1|2 + |a2|2 = 1, the image ι(L0) is given by

(2.4) ι(L0) =

{([
a1 : a2 :

√
λ1

λ2

]
,

[
a1 : a2 : −

√
λ2

λ1

]) ∣∣∣∣∣ |a1|2 + |a2|2 = 1

}
.

Define an anti-holomorphic involution τ on Fl(3) by

τ ([Z1 : Z2 : Z3], [Z23 : Z31 : Z12])(2.5)

=

([
Z23 : Z31 : −λ1

λ2
Z12

]
,

[
Z1 : Z2 : −λ2

λ1
Z3

])
.

Proposition 2.6. The Lagrangian L0 is the fixed point set of τ .

One can easily see that τ is an anti-symplectic involution if and only if
λ1 = λ2.
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2.4. The case of Gr(2, 4)

For k < n, let Ṽ (k, n) be the space of n× k matrices of rank k, and set

V (k, n) = {Z ∈ Ṽ (k, n) | Z∗Z = Ik}.

Then the Grassmannian Gr(k, n) is given by

Gr(k, n) = Ṽ (k, n)/GL(k,C) = V (k, n)/U(k).

We first consider the Gelfand-Cetlin system on Gr(n, 2n) for general n.
Fix λ > 0 and identify Gr(n, 2n) with the adjoint orbit Oλ of

λ = diag(λ, . . . , λ︸ ︷︷ ︸
n

,−λ, . . . ,−λ︸ ︷︷ ︸
n

).

The orbitOλ consists of matrices of the form 2λZZ∗ − λI2n for Z ∈ V (n, 2n).

The Gelfand-Cetlin polytope Δ of Gr(n, 2n) consists of u = (u
(k)
i )(i,k)∈I ∈

Rn2

satisfying

u
(2n−1)
n

≥ ≥
λ · · ·

· · · −λ
≥ ≥ ≥ ≥

u
(n)
1 · · · u

(n)
n

≥ ≥· · · · · ·≥ ≥
u
(1)
1

.

For −λ < t < λ, let Lt = Φ−1(t, . . . , t) be the fiber over the boundary point

u
(1)
1 = · · · = u

(2n−1)
n = t of Δ.

Proposition 2.7. The fiber Lt is a Lagrangian submanifold given by

Lt =

{(
tIn

√
λ2 − t2A∗√

λ2 − t2A −tIn

)
∈ √−1u(2n)

∣∣∣∣ A ∈ U(n)

}
∼= U(n),
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which is K-homogeneous for

K =

{(
P 0
0 In

)
∈ U(2n)

∣∣∣∣ P ∈ U(n)

}
∼= U(n).

Proof. We write x ∈ Oλ as

x = 2λZZ∗ − λI2n = λ

(
2Z1Z

∗
1 − In 2Z1Z

∗
2

2Z2Z
∗
1 2Z2Z

∗
2 − In

)
for n× n matrices Z1, Z2 with

Z =

(
Z1

Z2

)
∈ V (n, 2n).

Suppose that x ∈ Lt, or equivalently, λ
(n)
1 (x) = · · · = λ

(n)
n (x) = t. Then the

upper-left n× n block of x satisfies

x(n) = 2λZ1Z
∗
1 − λIn = tIn,

which means that Z1 ∈
√

(λ+ t)/2λU(n). After the right U(n)-action on
V (n, 2n), we may assume that Z1 =

√
(λ+ t)/2λIn. Then the condition

Z∗Z = In implies that

Z∗2Z2 = In − λ+ t

2λ
In =

λ− t

2λ
In.

Hence Z has the form

(2.6) Z =

(√
(λ+ t)/2λIn√
(λ− t)/2λA

)
∈ V (n, 2n)

for some A ∈ U(n), which shows that

x = 2λZZ∗ − λI2n =

(
tIn

√
λ2 − t2A∗√

λ2 − t2A −tIn

)
.

The K-homogeneity is obvious from this expression. Since the tangent space
TxLt is spanned by the infinitesimal action of the Lie algebra k of K, and
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λ
(3)
2 = λ

λ
(3)
2 = −λ

λ
(3)
2 = 0

u2

u1

Figure 2.2: The Gelfand-Cetlin polytope for Gr(2, 4).

x(n) = tIn is a scalar matrix, we have

ωx(adξ(x), adη(x)) =
1

2π
trx(n)[ξ(n), η(n)] = 0

for

ξ =

(
ξ(n)

0

)
, η =

(
η(n)

0

)
∈ k,

which shows that Lt is Lagrangian. �

Corollary 2.8. For t �= 0, the fiber Lt is displaceable, i.e., there exists a
Hamiltonian diffeomorphism ϕ on Gr(n, 2n) such that ϕ(Lt) ∩ Lt = ∅.

Proof. One has g(Lt) = L−t for g =

(
0 −In
In 0

)
∈ U(2n). �

In the rest of this subsection, we restrict ourselves to the case of Gr(2, 4).

We write (u1, u2, u3, u4) = (u
(3)
2 , u

(2)
1 , u

(2)
2 , u

(1)
1 ) for simplicity. Figure 2.2

shows the projection

Δ −→ [−λ, λ], u = (u1, u2, u3, u4) �−→ u1.

The non-smooth locus of Φ is the inverse image of the edge of Δ defined by
u1 = · · · = u4. The fiber Lt over (t, t, t, t) ∈ ∂Δ is a Lagrangian submanifold
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consists of 2λZZ∗ − λI4 with

Z =
1√
2λ

(√
λ+ tI2√
λ− tA

)
mod U(2)

for A ∈ U(2). We identify U(2) with U(1)× SU(2) ∼= S1 × S3 by

U(1)× SU(2) −→ U(2),(
a0,

(
a1 −a2
a2 a1

))
�−→

(
a0 0
0 1

)(
a1 −a2
a2 a1

)
.

Then the image of Lt under the Plücker embedding ι : Gr(2, 4)→P(
∧2

C4)∼=
P5 is given by

ι(Lt) =

{[√
λ+ t

λ− t
: −a0a2 : a1 : −a0a1 : −a2 :

√
λ− t

λ+ t
a0

]
∣∣∣∣∣ |a0|2 = |a1|2 + |a2|2 = 1

}
.

This expression implies the following.

Proposition 2.9. For each t ∈ (−λ, λ), we define an anti-holomorphic in-
volution τt on Gr(2, 4) defined by

τt([Z12 : Z13 : Z14 : Z23 : Z24 : Z34])(2.7)

=

[
λ+ t

λ− t
Z34 : Z24 : −Z23 : −Z14 : Z13 :

λ− t

λ+ t
Z12

]

Then Lt is the fixed point set of τt.

Remark 2.10. The map τ0 for t = 0 is an anti-symplectic involution as
well, and satisfies τ0(Lt) = L−t for each t ∈ (−λ, λ).
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2.5. The case of Gr(2, 5)

We fix λ > 0 and identify Gr(2, 5) with the adjoint orbit Oλ of diag(λ, λ,
0, 0, 0) ∈ √−1u(5). The Gelfand-Cetlin polytope Δ is defined by

(2.8)

λ u1
≥ ≥ ≥

u2 u3 0
≥ ≥ ≥ ≥

u4 u5
≥ ≥

u6

We first consider the fiber L1(s1, s2, t) over a boundary point given by

λ s2
>

>
>

s1 t 0
>

=
=

>

t t
=

=

t

.

Proposition 2.11. The fiber L1(s1, s2, t) is a Lagrangian submanifold
diffeomorphic to U(2)× T 2 ∼= S3 × T 3. Moreover, L1(s1, s2, t) is K-
homogeneous for

K =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
P

e
√−1θ1

e
√−1θ2

1

⎞⎟⎟⎠ ∈ U(5)

∣∣∣∣∣∣∣∣P ∈ U(2), θ1, θ2 ∈ R

⎫⎪⎪⎬⎪⎪⎭
∼= U(2)× T 2.

Proof. Note that Oλ consists of matrices of the form

x = λZZ∗ = λ(zizj + wiwj)1≤i,j≤5(2.9)
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for

Z =

⎛⎜⎜⎜⎜⎝
z1 w1

z2 w2

z3 w3

z4 w4

z5 w5

⎞⎟⎟⎟⎟⎠ ∈ V (2, 5),

i.e.,

5∑
i=1

|zi|2 =
5∑

i=1

|wi|2 = 1,

5∑
i=1

ziwi = 0.(2.10)

Since the upper-left 2× 2 submatrix of x = λ(zizj + wiwj) ∈ L1(s1, s2, t)
satisfies

x(2) = λ

(|z1|2 + |w1|2 z1z2 + w1w2

z2z1 + w2w1 |z2|2 + |w2|2
)

=

(
t 0
0 t

)
,(2.11)

we have √
λ

t

(
z1 w1

z2 w2

)
∈ U(2),(2.12)

and in particular, |z1|2 + |z2|2 = |w1|2 + |w2|2 = t/λ. Then the condition
(2.10) implies

|z3|2 + |z4|2 + |z5|2 = (λ− t)/λ,(2.13)

|w3|2 + |w4|2 + |w5|2 = (λ− t)/λ,(2.14)

z3w3 + z4w4 + z5w5 = 0.(2.15)

On the other hand, the conditions trx(3) = s1 + t, trx(4) = λ+ s2 imply

|z3|2 + |w3|2 = (s1 − t)/λ,(2.16)

|z4|2 + |w4|2 = (λ− s1 + s2 − t)/λ,(2.17)

|z5|2 + |w5|2 = (λ− s2)/λ.(2.18)

After the right SU(2)-action on (z, w), we may assume that (z5, w5) =(√
(λ− s2)/λ, 0

)
. Then (2.13), (2.14), and (2.15) become

|z3|2 + |z4|2 = (s2 − t)/λ,

|w3|2 + |w4|2 = (λ− t)/λ,

z3w3 + z4w4 = 0,
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which mean that the 2× 2 submatrix (zi, wi)i=3,4 has the form(
z3 w3

z4 w4

)
=

(√
(s2 − t)/λ a −√(λ− t)/λ bc√
(s2 − t)/λ b

√
(λ− t)/λ ac

)
for some (

a −b
b a

)
∈ SU(2), c ∈ U(1).

Combining this with (2.16) and (2.17) we have

|a|2 = λ− s1
λ− s2

, |b|2 = s1 − s2
λ− s2

,

and hence(
z3 w3

z4 w4

)
=

1√
λ(λ− s2)

×
(√

(s2 − t)(λ− s1) e
√−1θ1 −√(λ− t)(s1 − s2) e

−√−1θ2c√
(s2 − t)(s1 − s2) e

√−1θ2 √
(λ− t)(λ− s1) e

−√−1θ1c

)

for some θ1, θ2 ∈ R. After the action of{(
1 0

0 e
√−1ϕ

)
∈ U(2)

∣∣∣∣ϕ ∈ R

}
∼= U(1)

from the right, we may assume that(
z3 w3

z4 w4

)
=

1√
λ(λ− s2)

×
(√

(s2 − t)(λ− s1) e
√−1θ1 −√(λ− t)(s1 − s2) e

√−1θ1√
(s2 − t)(s1 − s2) e

√−1θ2 √
(λ− t)(λ− s1) e

√−1θ2

)
.

Therefore Z = (zi, wi)i is normalized as⎛⎜⎝z1 w1
...

...
z5 w5

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
z1 w1

z2 w2√
(s2 − t)(λ− s1)/λ(λ− s2) e

√−1θ1 −√(λ− t)(s1 − s2)/λ(λ− s2) e
√−1θ1√

(s2 − t)(s1 − s2)/λ(λ− s2) e
√−1θ2 √

(λ− t)(λ− s1)/λ(λ− s2) e
√−1θ2√

(λ− s2)/λ 0

⎞⎟⎟⎟⎟⎟⎠
with (2.12), which implies that L1(s1, s2, t) is a K-orbit and diffeomorphic
to U(2)× T 2.
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The assertion that L1(s1, s2, t) is Lagrangian follows from the K-
homogeneity as in the cases of Fl(3) and Gr(n, 2n). �

Next we consider the fiber L2(s1, s2, t) over

λ t
>

=
=

t t 0
=

=
>

>

t s1
>

>

s2

.

Suppose that x = λ(zizj + wiwj)1≤i,j≤5 ∈ L2(s1, s2, t). The condition that
x(3) = λ(zizj + wiwj)1≤i,j≤3 has eigenvalues t, t, 0 is equivalent to

|z1|2 + |z2|2 + |z3|2 = t/λ,(2.19)

|w1|2 + |w2|2 + |w3|2 = t/λ,(2.20)

z1w1 + z2w2 + z3w3 = 0,(2.21)

and hence √
λ

λ− t

(
z4 w4

z5 w5

)
∈ U(2).

On the other hand, the conditions x(1) = s2, trx
(2) = t+ s1, and trx(3) = 2t

imply

|z1|2 + |w1|2 = s2/λ,

|z2|2 + |w2|2 = (t− s2 + s1)/λ,

|z3|2 + |w3|2 = (t− s1)/λ.

Then we have the following.

Proposition 2.12. The fiber L2(s1, s2, t) is a U(2)× T 2-homogeneous La-
grangian submanifold diffeomorphic to U(2)× T 2 ∼= S3 × T 3. Moreover, the
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fibers L1(s1, s2, t) and L2(s1, s2, t) satisfy

g(L2(s1, s2, t)) = L1(λ− s1, λ− s2, λ− t)

for

g =

⎛⎝0 1

· · ·
1 0

⎞⎠ ∈ U(5).

In particular, L1(s1, s2, t) and L2(s1, s2, t) are displaceable.

The Hamiltonian isotopy invariance of the Floer cohomology over the
Novikov field [FOOO09, Theorem G] implies the following.

Corollary 2.13. For i = 1, 2, we have

HF ((Li(s1, s2, t), b), (Li(s1, s2, t), b); Λ) = 0

for any weak bounding cochain b.

Remark 2.14. Other boundary fibers have lower dimensions. For example,
the fiber over

λ t
>

=
=

t t 0
=

=
=

>

t t
=

=

t

consists of ⎛⎜⎜⎜⎜⎝
√

t/λ 0

0
√

t/λ
0 0
z4 w4

z5 w5

⎞⎟⎟⎟⎟⎠ mod U(2)

with (
z4 w4

z5 w5

)
∈
√

(λ− t)/λU(2),

which means that the fiber is diffeomorphic to U(2).
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3. Critical points of the potential function

Let Φ : F = F (n1, . . . , nr, n) → Δ be the Gelfand-Cetlin system on the flag

manifold, and {θ(k)i }(i,k)∈I be the angle variables dual to the action variables

{λ(k)
i }(i,k)∈I . For each u=(u

(i)
k )(i,k)∈I ∈ IntΔ, we identify H1(L(u); Λ0) with

ΛN
0 by

b =
∑

(i,k)∈I
x
(k)
i dθ

(k)
i ∈ H1(L(u); Λ0) ←→ x = (x

(k)
i )(i,k)∈I ∈ ΛN

0 ,

and set

y
(k)
i = ex

(k)
i T u

(k)
i , (i, k) ∈ I,

Qj = T λnj , j = 1, . . . , r + 1.

Theorem 3.1 ([NNU10, Theorem 10.1]). For any interior point u ∈
IntΔ, we have an inclusion H1(L(u); Λ0) ⊂ M̂weak(L(u)). As a function on⋃

u∈IntΔ
H1(L(u); Λ0) ∼= IntΔ× ΛN

0 ,

the potential function is given by

PO(u,x) =
∑

(i,k)∈I

(
y
(k+1)
i

y
(k)
i

+
y
(k)
i

y
(k+1)
i+1

)
,

where we put y
(k+1)
i = Qj if λ

(k+1)
i = λnj

is a constant function.

Example 3.2. We identify the 3-dimensional flag manifold Fl(3) with the
adjoint orbit of λ = diag(λ1, λ2, λ3). The potential function is given by

PO = e−x1T−u1+λ1 + ex1T u1−λ2 + e−x2T−u2+λ2

+ ex2T u2−λ3 + ex1−x3T u1−u3 + e−x2+x3T−u2+u3

=
Q1

y1
+

y1
Q2

+
Q2

y2
+

y2
Q3

+
y1
y3

+
y3
y2

.

The potential function PO has six critical points given by

y1 = y23/y2,

y2 = ±
√

Q3(y3 +Q2),

y3 =
3
√

Q1Q2Q3, e2π
√−1/3 3

√
Q1Q2Q3, e4π

√−1/3 3
√

Q1Q2Q3.
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It is easy to see that all critical points are nondegenerate and have the same
valuation which lies in the interior of the Gelfand-Cetlin polytope. Hence
we have as many critical points as dimH∗(Fl(3)) = 6 in this case. The set
of critical values coincides with the set of eigenvalues of the quantum cup
product by c1(Fl(3)). The Floer differential mb

1 is trivial for each critical
point (u,x) of PO, and the corresponding Floer cohomology is given by

HF ((L(u), b), (L(u), b); Λ0) ∼= H∗(L(u); Λ0) ∼= H∗(T 3; Λ0).

Example 3.3. We identify Gr(2, 4) with the adjoint orbit of diag(2λ, 2λ,
0, 0). Setting Q = T 2λ, the potential function is given by

PO = e−x2T−u2+2λ + e−x1+x2T−u1+u2 + ex1−x3T u1−u3

+ ex3T u3 + ex2−x4T u2−u4 + e−x3+x4T−u3+u4

=
Q

y2
+

y2
y1

+
y1
y3

+ y3 +
y2
y4

+
y4
y3

.(3.1)

This function has four critical points

(y1, y2, y3, y4) =

(
(−1)i 4

√
Q2,

√−1
i 4

√
Q3

4
,
√−1

i 4
√

4Q, (−1)i 4
√

Q2

)

for i = 0, 1, 2, 3, and the corresponding critical values are

PO = 4
√
2
√−1

i 4
√

Q.(3.2)

Since dimH∗(Gr(2, 4)) = 6, one has less critical point than dimH∗(Gr(2, 4)).
These critical points are non-degenerate and have a common valuation

u0 = (λ, 3λ/2, λ/2, λ) ∈ IntΔ.

Hence there exist four weak bounding cochains b0, . . . , b3 such that

HF ((L(u0), bi), (L(u0), bi); Λ0) ∼= H∗(L(u0); Λ0) ∼= H∗(T 4; Λ0)

for i = 0, 1, 2, 3. The set eigenvalues of the quantum cup product by
c1(Gr(2, 4)) consists of the four critical values of the potential function and
the zero eigenvalue with multiplicity two.

Example 3.4. We identify Gr(2, 5) with the adjoint orbit of diag(λ, λ,
0, 0, 0). Since the Gelfand-Cetlin polytope is defined by (2.8), the potential
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function is given by

PO =
Q

y2
+

y2
y1

+
y1
y3

+
y2
y4

+
y4
y3

+
y3
y5

+ y5 +
y4
y6

+
y6
y5

.(3.3)

This function has ten critical points defined by

y56 = Q5, Qy4 = y6(y
3
6 − y24),

and

y1 =
Q

y6
, y2 =

Q

y5
, y3 =

Q

y4
, y5 =

y26
y4

.

The set {
5(ζi5 + ζj5)Q

1/5
∣∣∣ ζ5 = exp(2π

√−1/5) and 0 ≤ i < j ≤ 4
}

(3.4)

of critical values of the potential function coincides with the set of eigenval-
ues of the quantum cup product by c1(Gr(2, 5)).

4. Floer cohomologies of non-torus fibers

We briefly recall the construction of the A∞ structure {mk}k≥0, omitting
various technical details. Let L be a spin, oriented, and compact Lagrangian
submanifold in a symplectic manifold (X,ω). For an almost complex struc-
ture J compatible with ω, let Mk+1(J, β) be the moduli space of stable
J-holomorphic maps v : (Σ, ∂Σ) → (X,L) from a bordered Riemann surface
Σ in the class β ∈ π2(X,L) of genus zero with (k + 1) boundary marked
points z0, z1, . . . , zk∈∂Σ. Then mk=

∑
β∈π2(X,L) T

β∩ωmk,β : H
∗(L; Λ0)

⊗k →
H∗(L; Λ0) is defined by

(4.1) mk,β(x1, . . . , xk) = (ev0)∗(ev∗1 x1 ∪ · · · ∪ ev∗k xk),

where evi : Mk+1(J, β) → L, [v, (z0, . . . , zk)] �→ v(zi) is the evaluation map
at the ith marked point.

4.1. Holomorphic disks in (Fl(3), L0)

We identify Fl(3) with the adjoint orbit of diag(λ1, 0,−λ2) for λ1, λ2 > 0 as
in Subsection 2.3. Note that the symplectic form and the first Chern class
are given by ω = λ1ωP1

+ λ2ωP2
and c1(Fl(3)) = 2(ωP1

+ ωP2
), respectively.
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Recall that the homotopy group π2(Fl(3)) ∼= Z2 is generated by 1-
dimensional Schubert varieties X1 and X2, which are rational curves of
bidegree (1, 0) and (0, 1) in P1 × P2

∼= P2 × P2, respectively. Since L0 is dif-
feomorphic to SU(2) ∼= S3, we have π1(L0) = π2(L0) = 0. The long exact
sequence of homotopy groups yields

π2(Fl(3), L0) ∼= π2(Fl(3)) ∼= Z
2.

Let β1, β2 be generators of π2(Fl(3), L0) corresponding to X1 and X2, re-
spectively. The symplectic area of βi is given by

βi ∩ ω = [Xi] ∩ (λ1ωP1
+ λ2ωP2

) = λi.

Let τ be the anti-holomorphic involution on Fl(3) defined in (2.5). For a
holomorphic disk v : (D2, ∂D2) → (Fl(3), L0), we define a new holomorphic
disk τ∗v : (D2, ∂D2) → (Fl(3), L0) by

τ∗v(z) = τ(v(z)).

Since L0 is the fixed point set of τ , one can glue v and τ∗v along the boundary
to obtain a holomorphic curve w = v#τ∗v : P1 → Fl(3). The induced invo-
lution on π2(Fl(3), L0), which is also denoted by τ∗, is given by τ∗β1 = β2. If
v represents β1 or β2, then [w] = β1 + β2 = [X1] + [X2], i.e., w is a rational
curve of bidegree (1, 1).

Let μL0
: π2(Fl(3), L0) → Z be the Maslov index. If we assume λ1 = λ2

so that τ is an anti-symplectic involution, then we have

μL0
(βi) =

1

2
(μL0

(βi) + μL0
(τ∗βi)) = ([X1] + [X2]) ∩ c1(Fl(3)) = 4

for i = 1, 2. Since the symplectic form ω and the Lagrangian submanifold L0

depend continuously on λ1, λ2 > 0, the Maslov index μL0
(β1) = μL0

(β2) = 4
is independent of λ1, λ2.

To describe holomorphic disks with Lagrangian boundary condition, we
identify the unit disk D2 with the upper half plane H = H+.

Proposition 4.1. Let w : P1 → Fl(3) be a holomorphic curve of bidegree
(1, 1) such that w(R ∪ {∞}) ⊂ L0. After the SU(2)-action, we may assume

(4.2) w(∞) = ([1 : 0 :
√

λ1/λ2], [1 : 0 : −
√

λ2/λ1]).
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We can write

(4.3) w(0) =
([

a1 : a2 :
√

λ1/λ2

]
,
[
a1 : a2 : −

√
λ2/λ1

]) ∈ L0

for some (a1, a2) ∈ S3 \ {(1, 0)}. Then w is given by

w(z) =
([

cz + a1 : a2 :
√

λ1/λ2(cz + 1)
]
,[

cz + a1 : a2 : −
√

λ2/λ1(cz + 1)
])

with c/c = −(a1 − 1)/(a1 − 1).

Remark 4.2. After the action of

{g ∈ PSL(2,R) | g(0) = 0, g(∞) = ∞} ∼= R>0

on H, we may assume that |c| = 1.

Proof. The assumptions (4.2) and (4.3) implies that w has the form

w(z) =
([

c1z + a1 : a2 :
√

λ1/λ2(c1z + 1)
]
,[

c2z + a1 : a2 : −
√

λ2/λ1(c2z + 1)
])

for some c1, c2 ∈ C∗. The Plücker relation

0 = −(c1z + a1)(c2z + a1)− |a2|2 + (c1z + 1)(c2z + 1)

= (c1 − a1c1 + c2 − a1c2)z

implies c1(a1 − 1) + c2(a− 1) = 0. On the other hand, the Lagrangian
boundary condition w(R) ⊂ L0 implies that

c1x+ a1
c1x+ 1

=
c2x+ a1
c2x+ 1

,
a2

c1x+ 1
=

a2
c2x+ 1

, x ∈ R,

which means c2 = c1. �

Note that arg c is determined by a1 up to sign, and the sign corresponds
to whether v = w|H represents β1 or β2. Namely any holomorphic disk in
the class βi satisfying (4.2) and (4.3) is uniquely determined by (a1, a2) for
i = 1, 2.
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Example 4.3. Suppose that (a1, a2) = (−1, 0). Then c = ±√−1, and the
corresponding holomorphic disks are given by

v±(z) =

([
z ±√−1 : 0 :

√
λ1

λ2
(z ∓√−1)

]
,[

z ∓√−1 : 0 : −
√

λ2

λ1
(z ±√−1)

])
.

It is easy to see that the image v+(H) (resp. v−(H)) is the inverse image of the

edge of Δ given by u
(1)
1 = u

(2)
1 and u

(2)
2 = 0 (resp. u

(1)
1 = u

(2)
2 and u

(2)
1 = 0),

which is the upper (resp. lower) vertical edge emanating from the vertex
0 = (0, 0, 0). Although the disks v+ and v− glue to give a holomorphic sphere,
its image in the Gelfand-Cetlin polytope is bent because of the failure of the
differentiability of Φ. The generators β1, β2 of π2(Fl(3), L0) are represented
by v+ and v− respectively.

4.2. Floer cohomology of the SU(2)-fiber in Fl(3)

Let J be the standard complex structure on Fl(3). Since the fiber L0 is
SU(2)-homogeneous, [EL, Proposition 3.2.1] implies the following.

Proposition 4.4. Any J-holomorphic disk in (Fl(3), L0) is Fredholm regu-
lar. Hence the moduli space Mreg

k+1(J, β) of J-holomorphic disks in the class
β with k + 1 boundary marked points is a smooth manifold of dimension

dimMreg
k+1(J, β) = dimL0 + μL0

(β) + k + 1− 3

= μL0
(β) + k + 1.

In particular, we have dimM2(J, βi) = 6 for i = 1, 2. Proposition 4.1
implies the following:

Corollary 4.5. Let U = SU(2) \ {1} ∼= {(a1, a2) ∈ S3 | a1 �= 1}. Then
M2(J, βi) has an open dense subset diffeomorphic to SU(2)× U on which
the evaluation map is given by

SU(2)× U −→ L0 × L0
∼= SU(2)× SU(2), (g1, g2) �−→ (g1, g1g2).

In particular, ev : M2(J, βi) → L0 × L0 is generically one-to-one.
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Since the minimal Maslov number is μL0
(β1) = μL0

(β2) = 4 and

degm1,β(x) = deg x+ 1− μL0
(β), x ∈ H∗(L0; Λ0),

the only nontrivial parts of the Floer differential are

m1,βi
: H3(L0) ∼= H0(L0) −→ H0(L0) ∼= H3(L0)

for i = 1, 2. Corollary 4.5 implies that for the class [p] ∈ H0(L0) of a point,
we have

m1,βi
([p]) = ev0∗[M2(J, βi)ev1

× {p}] = ±[L0].

To see the sign, we use a result on the orientation of the moduli spaces of
pseudo-holomorphic disks by Fukaya, Oh, Ohta, and Ono [FOOO, Theo-
rem 1.5]. The following statement is a slightly weaker version of the result,
which is sufficient for our purpose.

Theorem 4.6. Let (X,ω) be a compact symplectic manifold, and τ an anti-
symplectic involution on X whose fixed point set L = Fix(τ) is non-empty,
compact, connected, and spin. Then mk,β and mk,τ∗β satisfy

mk,β(P1, . . . , Pk) = (−1)εmk,τ∗β(Pk, . . . , P1),

where

ε =
μL(β)

2
+ k + 1 +

∑
1≤i<j≤k

(degPi − 1)(degPj − 1).

Corollary 4.7. We have m1,β1
= m1,β2

for general λ1, λ2 > 0.

Proof. If λ1 = λ2, then τ is anti-symplectic, and thus Theorem 4.6 implies

(4.4) m1,β1
= (−1)μL0 (β1)/2+2m1,τ∗β1

= m1,β2
.

Corollary 4.5 implies that M2(J, βi) depends continuously on λ1, λ2, and
hence its orientation is independent of λ1, λ2. Thus (4.4) holds for general
λ1, λ2. �

Then we have

m1([p]) =

2∑
i=1

m1,βi
([p])Tω(βi) = ±(T λ1 + T λ2)[L0],

which implies the following.
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Theorem 4.8. The Floer cohomology of L0 over the Novikov ring Λ0 is

HF (L0, L0; Λ0) ∼= Λ0/T
min{λ1,λ2}Λ0.

Theorem 1.1 is an immediate consequence of Theorem 4.8.

4.3. Holomorphic disks in (Gr(2, 4), Lt)

We identify Gr(2, 4) with the adjoint orbit of diag(λ, λ,−λ,−λ) for λ > 0.
Note that the Kostant-Kirillov form and the first Chern class are given by

ω = 2λωFS, c1(Gr(2, 4)) = 4ωFS,

respectively, where ωFS is the Fubini-Study form on P(
∧2

C4).
Recall that π2(Gr(2, 4)) ∼= Z is generated by a 1-dimensional Schubert

variety X1, which is a rational curve of degree one in P(
∧2

C4). Since
π1(Gr(2, 4)) = π2(Lt) = 0 and π1(Lt) ∼= Z, the exact sequence

0 −→ π2(Gr(2, 4)) −→ π2(Gr(2, 4), Lt) −→ π1(Lt) −→ 0

implies that π2(Gr(2, 4), Lt) ∼= Z2. Let β1, β2 be generators of π2(Gr(2, 4), Lt)
such that β1 + β2 = [X1] ∈ π2(Gr(2, 4)).

Example 4.9. Consider a holomorphic curve w : P1 → Gr(2, 4) of degree
one defined by

w(z) =

[√
λ+ t

λ− t
(z −√−1) : 0 : z −√−1 :(4.5)

− z −√−1 : 0 :

√
λ− t

λ+ t
(z +

√−1)

]
.

Since w maps R ∪ {∞} to Lt, the restrictions

v+ = w|H+
: (H+, ∂H+) −→ (Gr(2, 4), Lt),

v− = w|H− : (H−, ∂H−) −→ (Gr(2, 4), Lt)

to the upper and lower half planes give holomorphic disks representing β1
and β2. We define β1 = [v+] and β2 = [v−]. It is easy to see that the sym-
plectic areas of v± are given by

ω(β1) =

∫
H+

v∗+ω = λ+ t, ω(β2) =

∫
H−

v∗−ω = λ− t.



Floer cohomologies of non-torus fibers 1281

In the case where t = 0, the sphere w(P1) is mapped by Φ to the slice

Δ0 = Δ ∩ {u(3)2 = 0} of the Gelfand-Cetlin polytope (see Figure 2.2). The
image of the disk v+(H+) ⊂ w(P1) is the lower vertical edge emanating
from the vertex 0 = (0, 0, 0, 0) in Δ0 where four edges are intersecting, and
v+(

√−1) = [0 : 0 : 0 : −1 : 0 : 1] is mapped to the vertex u1 ∈ Δ0 defined

by u
(2)
1 = u

(1)
1 = λ and u

(2)
2 = 0. On the other hand, the remaining part

v−(H−) is mapped onto the upper vertical edge of Δ0 emanating from 0.

The other vertex u2 ∈ Δ0 of this edge, which is defined by u
(2)
2 = u

(1)
1 = −λ

and u
(2)
1 = 0, is the image of v−(−

√−1) = [1 : 0 : 1 : 0 : 0 : 0].

Let τt be the anti-holomorphic involution on Gr(2, 4) defined in (2.7).
Note that (τt)∗ is given by (τt)∗v(z) = τt(v(−z)) for v : (H, ∂H) → (Gr(2, 4),
Lt). Since (τt)∗v+ = v−, the induced involution on π2(Gr(2, 4), Lt) is given
by (τt)∗β1 = β2. Then the Maslov index of βi is given by

μLt
(βi) =

1

2
(μLt

(βi) + μLt
((τt)∗βi)) = [X1] ∩ c1(Gr(2, 4)) = 4

for i = 1, 2.
Since any holomorphic disk v : (H, ∂H) → (Gr(2, 4), Lt) of Maslov index

four yields a holomorphic sphere w = v#(τt)∗v of degree one, we need to
describe holomorphic curves w : P1 → Gr(2, 4) of degree one such that w(R ∪
{∞}) is contained in the Lagrangian fiber Lt. Proposition 4.10 below is
taken from [Sot01, Theorem 2.1], which is well-known in control theory
(cf. e.g. [Ros70]).

Proposition 4.10. Suppose that a holomorphic curve w : P1 → Gr(k, n) =
Ṽ (k, n)/GL(k,C) of degree d is given by

w : z �−→
(

Ik
F (z)

)
mod GL(k,C)

for a rational function F (z) with values in (n− k)× k matrices. Then there
exist matrix valued polynomials P (z), Q(z) of size (n− k)× k and k × k
respectively such that

1) F (z) = P (z)Q(z)−1, i.e., the curve w is given by

w : z �−→
(
Q(z)
P (z)

)
mod GL(k,C),

2) P (z) and Q(z) are coprime in the sense there exist matrix valued poly-
nomials X(z), Y (z) such that X(z)Q(z) + Y (z)P (z) = Ik, and
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3) deg(detQ(z)) = d.

Such P (z) and Q(z) are unique up to multiplication of elements in
GL(k,C[z]).

Note that (2.6) implies that the U(n)-fiber Lt ⊂ Gr(n, 2n) = Ṽ (n, 2n)/
GL(n,C) consists of(

In√
(λ− t)/(λ+ t)A

)
mod GL(n,C)

for A ∈ U(n).

Proposition 4.11. Let w : P1 → Gr(n, 2n) be a holomorphic curve of de-
gree one such that w(R ∪ {∞}) ⊂ Lt, and let F (z) denote the corresponding
rational function with values in n× n matrices. By the U(n)-action, we as-
sume that

(4.6) F (∞) =

√
λ− t

λ+ t
In ∈

√
λ− t

λ+ t
U(n),

and set

(4.7) F (0) =

√
λ− t

λ+ t
A

for A ∈ U(n). Then there exist

a =

⎛⎜⎝a1
...
an

⎞⎟⎠ ∈ S2n−1/S1 = P
n−1

and c ∈ C \ R such that

A = In +

(
c2

|c|2 − 1

)
aa∗,

and

(4.8) F (z) =

√
λ− t

λ+ t

1

z − c
(zIn − cA) =

√
λ− t

λ+ t

(
In − c− c

z − c
aa∗

)
.
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Proof. Let F (z)=Q(z)P (z)−1 be the factorization given in Proposition 4.10.
Then the assumptions (4.6), (4.7), and deg(detP (z)) = 1 imply that F (z)
has the form

F (z) =

√
λ− t

λ+ t

1

z − c
(zIn − cA)

for some c ∈ C. The Lagrangian boundary condition w(R ∪ {∞}) ⊂ Lt im-
plies that

1

x− c
(xIn − cA) ∈ U(n)

for any x ∈ R, which means cA+ cA∗ = (c+ c)In, or equivalently, cA−
Re(c)In is skew-hermitian. Hence cA− Re(c)In has pure imaginary eigen-
values

√−1α1, . . . ,
√−1αn, and can be diagonalized by some g ∈ U(n);

g∗(cA− Re(c)In)g = diag(
√−1α1, . . . ,

√−1αn).

Since

g∗Ag = diag

(
Re(c) +

√−1α1

c
, . . . ,

Re(c) +
√−1αn

c

)
∈ U(n)

has eigenvalues of unit norm, we have αi = ± Im(c) for i = 1, . . . , n. After
the action of a permutation matrix, we may assume that g∗Ag has the form

(4.9) g∗Ag = diag(c/c, . . . , c/c︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n−k

) =: C

for some k. Then F (z) is given by

F (z) =

√
λ− t

λ+ t

1

z − c
g(zIn − cC)g∗

=

√
λ− t

λ+ t
g diag

(
z − c

z − c
, . . . ,

z − c

z − c
, 1, . . . , 1

)
g∗

In particular, we have

detF (z) =

(
λ− t

λ+ t

)n/2(z − c

z − c

)k

.

The condition deg(detP (z)) = 1 implies that k = 1, i.e.,

C = diag(c/c, 1, . . . , 1) = (c/c− 1)E11 + In,
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where E11 = diag(1, 0, . . . , 0) ∈ gl(n,C). Let a ∈ S2n−1 ⊂ Cn be the first col-
umn of g. Then we have

A = g

((
c2

|c|2 − 1

)
E11 + In

)
g∗ =

(
c2

|c|2 − 1

)
aa∗ + In,

which proves the proposition. �

Remark 4.12. 1) The equation (4.9) (with k = 1) implies that detA =
c/c = c2/|c|2.

2) After the R>0-action on the domain, we may assume that |c| = 1.

We now assume that n = 2. The sign of Im(c) = Im
√
detA corresponds

to the homotopy class of the holomorphic disk v = w|H. The curve w cor-
responding to a = [1 : 0] and c = −√−1 coincides with (4.5), and hence
w|H = v+ represents β1. Thus v = w|H represents β1 (resp. β2) when Im(c) =
Im

√
detA < 0 (resp. Im(c) > 0).

4.4. Floer cohomologies of the U(2)-fibers in Gr(2, 4)

Since the minimal Maslov number of the U(2)-fiber Lt is μLt
(βi) = 4, we

have the following by degree reason.

Lemma 4.13. The potential function PO : H1(Lt; Λ0) → Λ0 for Lt is triv-
ial:

PO ≡ 0.

The cohomology of Lt
∼= S1 × S3 is given by

H∗(Lt) ∼= H∗(S1)⊗H∗(S3).

Let e1 ∈ H1(Lt;Z) ∼= H1(S1;Z) and e3 ∈ H3(Lt;Z) ∼= H3(S3;Z) be the gen-
erators, and write b = xe1 ∈ H1(Lt; Λ0). Since degmb

1,β = 1− μLt
(β) and

the minimal Maslov number is four, the only nontrivial parts of the Floer
differential mb

1 are

mb
1,βi

: H4(Lt) ∼= H1(S1)⊗H3(S3) −→ H1(Lt) ∼= H1(S1),

mb
1,βi

: H3(Lt) ∼= H3(S3) −→ H0(Lt) ∼= Λ0

for i = 1, 2.
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Since (Gr(2, 4), Lt) is U(2)-homogeneous, any J-holomorphic disk is Fred-
holm regular for the standard complex structure J by [EL, Proposition 3.2.1].
Hence one has dimM2(J, βi) = 7 for i = 1, 2. In what follows we identify
Lt

∼=
√

(λ− t)/(λ+ t)U(2) with U(2) by rescaling. Now Proposition 4.11
implies the following:

Corollary 4.14. Define f : (0, 2π)×P1→U(2) by f(θ, a)=(e
√−1θ−1)aa∗+

I2. For i = 1, 2, the moduli space M2(J, βi) has an open dense subset diffeo-
morphic to U(2)× (0, 2π)× P1 such that the evaluation map is given by

U(2)×(0, 2π)×P
1 −→ Lt×Lt

∼= U(2)×U(2), (g, θ, a) �−→ (g, g · f(θ, a)).

Note that e
√−1θ = det f(θ, a) is related to c ∈ S1 in Proposition 4.11 by

c = exp(
√−1(θ/2 + π)) or c = exp(

√−1θ/2) corresponding to i = 1, 2.
Next we consider Mk+l+2(J, βi). For a rational curve w : P1 → Gr(2, 4)

given by (4.8), the composition det ◦w|∂H : ∂H = R → Lt
∼= U(2) → S1 is

given by

x �−→ x− c

x− c
.

Hence each boundary point x ∈ ∂H is determined by the argument of
detw(x) = (x− c)/(x− c). Fixing the 0-th and (k + 1)-st boundary marked
points, we have the following.

Corollary 4.15. The moduli space Mk+l+2(J, βi) has an open dense subset
diffeomorphic to{
(g, θ, a, (ti), (sj)) ∈ U(2)×(0, 2π)×P

1×R
k×R

l

∣∣∣∣ 0 < t1 < · · · < tk < θ,
θ < s1 < · · · < sl < 2π

}
on which the evaluation maps ev : Mk+l+2(J, βi) → Lt

∼= U(2) satisfy

(ev0, evk+1) : (g, θ, a, (ti), (sj)) �−→ (g, g · f(θ, a))

and

det evi(g, θ, a, (ti), (sj)) =

⎧⎪⎨⎪⎩
e
√−1ti det g, i = 1, . . . , k,

e
√−1θ det g, i = k + 1,

e
√−1si−k−1 det g, i = k + 2, . . . , k + l + 2.
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Theorem 4.16. For b = xe1 ∈ H1(L0; Λ0/2π
√−1Z) ∼= Λ0/2π

√−1Z, the
deformed Floer differential mb

1 is given by

mb
1(e3) = exT λ+t + e−xT λ−t,(4.10)

mb
1(e1 ∧ e3) = (exT λ+t + e−xT λ−t)e1.(4.11)

Hence the Floer cohomology of (Lt, b) is

HF ((Lt, b), (Lt, b); Λ0)

∼=
{
H∗(L0; Λ0) if t = 0 and x = ±π

√−1/2,

(Λ0/T
min{λ−t,λ+t}Λ0)

2 otherwise.

The Floer cohomology over the Novikov field is given by

HF ((Lt, b), (Lt, b); Λ) ∼=
{
H∗(L0; Λ) if t = 0 and x = ±π

√−1/2,

0 otherwise.

Recall that e1, e3 ∈ H∗(U(2)) are given by

e1 =
1

2π
√−1

tr(g−1dg) =
1

2π
√−1

d log(det g), e3 =
1

24π2
tr
[
(g−1dg)3

]
,

where g−1dg is the left-invariant Maurer-Cartan form on U(2).

Lemma 4.17. For f(θ, a) = (e
√−1θ − 1)aa∗ + I2, we have

f∗e1 =
1

2π
tr(f−1df) =

dθ

2π
,(4.12)

f∗e3 =
1

24π2
tr(f−1df)3 = (1− cos θ)

dθ

2π
∧ ωP1 ,(4.13)

where ωP1 is the Fubini-Study form on P1 normalized in such a way that∫
P1

ωP1 = 1.

Proof. The first assertion (4.12) follows from det f = e
√−1θ. Since f is SU(2)-

equivariant with respect to the natural action on P1 and the adjoint action
on U(2), it suffices to show (4.13) at a = [1 : 0] ∈ P1. A direct calculation
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gives

f−1df =

( √−1dθ −(e−
√−1θ − 1)da2

(e
√−1θ − 1)da2 0

)
,

so that

tr(f−1df)3 = 3(2− e
√−1θ − e−

√−1θ)
√−1dθ ∧ da2 ∧ da2

at a = [1 : 0]. On the other hand, the Fubini-Study form on P1 is given by

ωP1 =

√−1

2π
da2 ∧ da2

at a = [1 : 0], which proves (4.13). �

Proof of Theorem 4.16. Note that for m : U(2)×U(2) → U(2), (g1, g2) �→
g1g2, we have m∗ei = π∗1ei + π∗2ei for i = 1, 3, where π1, π2 : U(2)×U(2) →
U(2) are the projections to the first and the second factors. Then ev∗j ei are
given by

ev∗i e1 =
1

2π
dti + g∗e1, i = 1, . . . , k,

ev∗k+1+i e1 =
1

2π
dti + g∗e1, i = 1, . . . , l,

ev∗k+1 e3 = f∗e3 + g∗e3 = (1− cos θ)
dθ

2π
∧ ωP1 + g∗e3,

where g∗ei is the pull-back of ei by the projection

U(2)× (0, 2π)× P
1 −→ U(2), (g, θ, a) �−→ g

to the first factor. For θ ∈ (0, 2π), set

D1(θ) = {(t1, . . . , tk) ∈ R
k | 0 < t1 < · · · < tk < θ},

D2(θ) = {(s1, . . . , sl) ∈ R
l | θ < s1 < · · · < sl < 2π}.
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Taking a suitable orientation on Mk+l+2(β1, J), we have from (4.1) and
Corollary 4.15 that

mk+l+1,β1
(b, . . . , b︸ ︷︷ ︸

k

, e3, b, . . . , b︸ ︷︷ ︸
l

)(4.14)

=

∫
(0,2π)×P1

(∫
D1(θ)

( x

2π

)k
dt1 ∧ · · · ∧ dtk

)

×
(∫

D2(θ)

( x

2π

)l
ds1 ∧ · · · ∧ dsl

)
(1− cos θ)

dθ

2π
∧ ωP1

=

∫
(0,2π)

1

k!

(
θ

2π
· x
)k 1

l!

((
1− θ

2π

)
x

)l

(1− cos θ)
dθ

2π
.

Note that the terms g∗ej in ev∗i ej don’t contribute to the integral for degree
reason. We also note that the factor 1/k! comes from the fact that k! copies
of the simplex D1(θ) tile the k-dimensional cube [0, θ]k. Hence

mb
1,β1

(e3) =

∫ 2π

0

∑
k,l≥0

1

k!

(
θ

2π
· x
)k 1

l!

((
1− θ

2π

)
x

)l

(1− cos θ)
dθ

2π

=

∫ 2π

0
e(θ/2π)xe(1−θ/2π)x(1− cos θ)

dθ

2π

=

∫ 2π

0
ex(1− cos θ)

dθ

2π

= ex.

The same argument as the proof of Corollary 4.7 gives

mk+l+1,β2
(b, . . . , b︸ ︷︷ ︸

k

, e3, b, . . . , b︸ ︷︷ ︸
l

) = (−1)k+lmk+l+1,β1
(b, . . . , b︸ ︷︷ ︸

l

, e3, b, . . . , b︸ ︷︷ ︸
k

)

= mk+l+1,β1
(−b, . . . ,−b︸ ︷︷ ︸

l

, e3,−b, . . . ,−b︸ ︷︷ ︸
k

),

so that

mb
1,β2

(e3) = e−x.

Hence we have

mb
1(e3) =

2∑
i=1

mb
1,βi

(e3)T
βi∩ω = exT λ+t + e−xT λ−t.
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Next we compute mb
1(e1 ∧ e3) ∈ H1(L0). Note that

ev∗k+1(e1 ∧ e3) = (g∗e1 + f∗e1) ∧ (g∗e3 + f∗e3) = g∗e1 ∧ f∗e3 + · · · .

Since only the term g∗e1 ∧ f∗e3 contribute to mk+l+1,βi
(b, . . . , b, e1 ∧ e3,

b, . . . , b) by degree reason, we have

mk+l+1,βi
(b, . . . , b︸ ︷︷ ︸

k

, e1 ∧ e3, b, . . . , b︸ ︷︷ ︸
l

) = mk+l+1,βi
(b, . . . , b︸ ︷︷ ︸

k

, e1, b, . . . , b︸ ︷︷ ︸
l

)g∗e1.

Hence we obtain

mb
1(e1 ∧ e3) =

2∑
i=1

mb
1,βi

(e1 ∧ e3)T
βi∩ω

=

2∑
i=1

mb
1,βi

(e1)T
βi∩ωe1

= (exT λ+t + e−xT λ−t)e1. �

Remark 4.18. Oh [Oh95, Theorem B] computed the Floer cohomology
HF (L,L;Z/2Z) of a real form in a compact Hermitian symmetric space,
i.e., a fixed point set L = Fix(τ) of an anti-holomorphic and anti-symplectic
involution τ . In particular, the Floer cohomology of the U(2)-fiber L0 =
Fix(τ0) with coefficients in Z/2Z is given by

HF (L0, L0;Z/2Z) ∼= H∗(L0;Z/2Z) ∼= (Z/2Z)4.

On the other hand, (4.10) and (4.11) implies that

HF (L0, L0; Λ
Z

0 )
∼= (ΛZ

0/2T
λΛZ

0 )
2,

where

ΛZ

0 =

{ ∞∑
i=1

aiT
λi

∣∣∣∣∣ ai ∈ Z, λi ≥ 0, lim
i→∞

λi = ∞
}

is the Novikov ring over Z.
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Remark 4.19. Here we consider a Lagrangian U(n)-fiber Lt in Gr(n, 2n)
for general n. The one-parameter subgroup gθ = exp(θξ) of U(2n) given by

ξ =

(
0 −E11

E11 0

)
∈ u(2n)

sends

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

t x11 · · · xn1
. . .

...
...

t x1n · · · xnn
x11 · · · x1n −t
...

...
. . .

xn1 · · · xnn −t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Lt

to Adgθ(x) ∈ Oλ whose upper-left n× n block is given by

(Adgθ(x))
(n) =

⎛⎜⎜⎜⎝
t(1− 2 sin2 θ)− (x11 + x11) sin θ cos θ −x12 sin θ · · · −x1n sin θ

−x1n sin θ t
...

. . .

−x1n sin θ t

⎞⎟⎟⎟⎠.

If Adgθ(x) is still in Lt, i.e., (gθxg
∗
θ)

(n)= tIn, then we have x12= · · ·=x1n=0
and Rex11 = −t tan θ. Since |Rex11| ≤

√
λ2 − t2, one has gθ(Lt) ∩ Lt = ∅ if

|θ| > arctan

√
λ2 − t2

t2
.

Note that the moment map μ : Oλ → u(2n) of the U(2n)-action is given by
μ(x) = (

√−1/2π)x in our setting. Hence the Hamiltonian of gθ is given by

H(x) =

√−1

2π
〈x, ξ〉.

Since maxOλ
H = λ/π and minOλ

H = −λ/π, the norm of gθ is given by∫ θ

0

(
max
Oλ

H −min
Oλ

H
)
dθ =

2λ

π
θ.

Hence the displacement energy of Lt is bounded from above by

h(t) =
2λ

π
arctan

√
λ2 − t2

t2
.
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Note that h(t) is a concave function on [−λ, λ] such that h(±λ) = 0,
h(0) = λ, and h(t) > min{λ− t, λ+ t} for t �= 0,±λ.

Theorem 4.20. The Floer cohomology of the pair (L0, π
√−1/2e1),

(L0,−π
√−1/2e1) is given by

HF ((L0,±π
√−1/2e1), (L0,∓π

√−1/2e1); Λ0) ∼= (Λ0/T
λΛ0)

2.

In particular, the Floer cohomology over the Novikov field is trivial;

HF ((L0,±π
√−1/2e1), (L0,∓π

√−1/2e1); Λ) = 0.

Proof. For b =
√−1π/2e1 ∈ H1(L0; Λ0), we have from (4.1) and (4.14) that

mk+l+1,βi
(b, . . . , b︸ ︷︷ ︸

k

, e3,−b, . . . ,−b︸ ︷︷ ︸
l

)

=

∫
(0,2π)

1

k!

(√−1

4
θ

)k
1

l!

(√−1

4
θ − π

√−1

2

)l

(1− cos θ)
dθ

2π
.

Hence the Floer differential is given by

δb,−b(e3) =
∑
i=1,2

∑
k,l≥0

mk+l+1,βi
(b, . . . , b︸ ︷︷ ︸

k

, e3,−b, . . . ,−b︸ ︷︷ ︸
l

)T βi∩ω

= 2T λ

∫ 2π

0

∑
k,l≥0

1

k!

(√−1

4
θ

)k
1

l!

(√−1

(
θ

4
− π

2

))l

(1− cos θ)
dθ

2π

= 2T λ

∫ 2π

0
e
√−1(θ/2−π/2)(1− cos θ)

dθ

2π

=
16

3π
T λ.

Similarly we have

δb,−b(e1 ∧ e3) =
32

3π
T λe1,

and consequently,

HF ((L0, π
√−1/2e1), (L0,−π

√−1/2e1); Λ0) ∼= (Λ0/T
λΛ0)

2.

The computation of HF ((L0,−π
√−1/2e1), (L0, π

√−1/2e1); Λ0) is com-
pletely parallel. �
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