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Absolute vs. relative Gromov-Witten

invariants
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We compare the absolute and relative Gromov-Witten invariants
of compact symplectic manifolds when the symplectic hypersurface
contains no relevant holomorphic curves. We show that these in-
variants are then the same, except in a narrow range of dimensions
of the target and genera of the domains, and provide examples
when they fail to be the same.
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1. Introduction

Gromov-Witten invariants of a compact symplectic manifold (X,ω) are cer-
tain, often delicate, counts of J-holomorphic curves in X; they play promi-
nent roles in symplectic topology, algebraic geometry, and string theory. For
a symplectic hypersurface V in (X,ω), i.e. a closed symplectic submanifold
of real codimension 2, relative Gromov-Witten invariants of (X,ω, V ) count
J-holomorphic curves in X with specified contacts with V . If V contains
no (non-constant) J-holomorphic curves that could possibly contribute to
a specific absolute invariant of X, one could hope that such an absolute
invariant equals the corresponding relative invariant with the basic contact
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condition, divided by the number of orderings of the contact points. We
show that this is indeed the case, except in a narrow range of dimensions
of the target and genera of the domains; see Theorem 1 and Remarks 1.2–
1.4. Examples 1–3 illustrate the three cases when the absolute and relative
invariants can fail to be equal.

For g, k ∈ Z≥0, we denote by Mg,k the Deligne-Mumford moduli space
of stable k-marked genus g connected nodal curves. If 2g + k < 3, Mg,k is
empty with this definition, though it is often convenient to formally take it to
be a point in these cases, as done when we set up notation for GW-invariants
below. If g, k ∈ Z≥0, A ∈ H2(X;Z), and J is an an almost complex structure
on X compatible with (or tamed by) ω, let Mg,k(X,A) denote the moduli
spaces of stable J-holomorphic k-marked maps from connected nodal curves
of genus g. If in addition V ⊂ X is a symplectic hypersurface, s ≡ (s1, . . . , s�)
is an �-tuple of positive integers such that

(1.1) s1 + · · ·+ s� = A · V,

and J is compatible with V in a suitable sense, let M
V

g,k;s(X,A) denote the
moduli spaces of stable J-holomorphic (k + �)-marked maps from connected
nodal curves of genus g that have contact with V at the last � marked
points of orders s1, . . . , s�, respectively. These moduli spaces are introduced
in [13, 17, 18] under certain assumptions on J and reviewed in Section 2.
The expected dimensions of these two moduli spaces are given by

dimvirMg,k(X,A) = 2
(
〈c1(X), A〉+ (n− 3)(1− g) + k

)
,

dimvirM
V

g,k;s(X,A) = 2
(
〈c1(X), A〉+ (n− 3)(1− g)

+ k + �(s)− |s|
)
,

(1.2)

where �(s) ≡ � and |s| ≡ s1 + · · ·+ s�. In particular, these dimensions are
the same if

s = 1� ≡
(
1, . . . , 1︸ ︷︷ ︸

�

)
,

i.e. the tuple s imposes no contact conditions on degree A J-holomorphic
curves, beyond what a generic such curve can be expected to satisfy.

For each i = 1, . . . , k, let

(1.3) evi : Mg,k(X,A),M
V

g,k;s(X,A) −→ X

be the i-th evaluation map. It sends the equivalence class of a J-holomorphic
map u : Σ −→ X from a genus g nodal curve Σ to u(xi) ∈ X, where xi ∈ Σ
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is the i-th marked point. Let

(1.4) st : Mg,k(X,A),M
V

g,k;s(X,A) −→Mg,k

denote the forgetful morphism to the Deligne-Mumford space. If 2g + k ≥ 3,
it sends the equivalence class of a J-holomorphic map u : Σ −→ X from a
marked genus g nodal curve Σ to the equivalence class of the stable k-
marked genus g nodal curve Σ′ obtained from (Σ, x1, . . . , xk) by contracting
the unstable components (spheres with one or two special, i.e. nodal or
marked, points); see Figure 1.

u
st

x1 x2

u
st

x1

x2

Figure 1: Examples of the stabilization morphism (1.4).

Along with the virtual class for Mg,k(X,A), constructed in [30] in “semi-
positive” cases, in [1] in the algebraic case, and in [7, 21] in the general case,
the first morphisms in (1.3) and (1.4) give rise to the (absolute) GW-invariants

of (X,ω):

GWX
g,A(κ;α1, . . . , αk) ≡

〈
st∗κ

k∏
i=1

ev∗iαi, [Mg,k(X,A)]vir
〉

(1.5)

∀κ ∈ H∗(Mg,k), αi ∈ H∗(X),

where H∗ denotes the cohomology with Q-coefficients. The number above
vanishes unless

(1.6) deg κ+

k∑
i=1

degαi = 2
(
〈c1(X), A〉+ (n− 3)(1− g) + k

)
.



1192 M. F. Tehrani and A. Zinger

Along with the virtual class for M
V

g,k;s(X,A), the second morphisms in (1.3)
and (1.4) give rise to the relative GW-invariants of (X,ω, V ):

GWX,V
g,A;s(κ;α1, . . . , αk) ≡

〈
st∗κ

k∏
i=1

ev∗iαi, [M
V

g,k;s(X,A)]vir
〉

(1.7)

∀κ ∈ H∗(Mg,k), αi ∈ H∗(X).

Such a virtual class is constructed in [13] in “semi-positive” cases and in [18]
in the algebraic case and is used in [17] in the general case; see Section 2 for
more details. The number in (1.7) vanishes unless

deg κ+

k∑
i=1

degαi = 2
(
〈c1(X), A〉+ (n− 3)(1− g) + k + �(s)− |s|

)
.

The numbers in (1.5) and (1.7) are (graded-) symmetric and linear in the
inputs αi. By the latter property, they give rise to well-defined numbers

GWX
g,A(κ;α),GWX,V

g,A;s(κ;α) ∈ Q ∀κ ∈ H∗(Mg,k), α ∈ H∗(X)⊗k .

The numbers

GWX
g,A(α) ≡ GWX

g,A(1;α) and GWX,V
g,A;s(α) = GWX,V

g,A;s(1;α)

are called primary GW-invariants or GW-invariants with primary insertions. In
some cases, the numbers (1.5) and (1.7) can be described as signed counts of
concrete geometric objects, J-holomorphic or (J, ν)-holomorphic maps; see
Sections 2 and 5.

Remark 1.1. The numbers (1.5) and (1.7) do not cover GW-invariants

that arise from natural classes on Mg,k(X,A) and M
V

g,k;s(X,A), such as

ψ-classes (which are generally different from the ψ-classes on Mg,k pulled
back by the morphism (1.4)) and the euler classes of obstruction bundles of
various kinds; both types of classes are central to GW-theory. The geometric
constructions of the numbers (1.5) and (1.7) reviewed in Sections 2 and 5
are not compatible with such classes.

Definition 1. Let (X,ω) be a compact symplectic manifold, g ∈ Z≥0, and
A ∈ H2(X;Z). A symplectic hypersurface V ⊂ X is (g,A)-hollow if there
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exists an ω|V -tame almost complex structure JV on V such that every non-
constant JV -holomorphic map u : Σ −→ V from a smooth connected Rie-
mann surface Σ satisfies

g(Σ) > g, or 〈u∗ω,Σ〉 > ω(A), or 〈u∗ω,Σ〉 = ω(A), u∗[Σ] 
= A.

Theorem 1. Suppose (X,ω) is a compact symplectic manifold of real di-
mension 2n, g, k ∈ Z≥0, A ∈ H2(X;Z), and V ⊂ X is a (g,A)-hollow sym-
plectic hypersurface such that A · V ≥ 0. If

(1.8) (g,A) 
= (1, 0) and (n− 5)g(g − 1) ≥ 0 ,

then the absolute GW-invariants (1.5) and the basic corresponding relative
GW-invariants (1.7) agree:

GWX
g,A(κ;α) =

1

(A · V )!
GWX,V

g,A;1A·V
(κ;α)(1.9)

∀ κ ∈ H∗(Mg,k), α ∈ H∗(X)⊗k .

This identity also holds if κ = 1, A 
= 0, and either g = 2 or n 
= 4.

Remark 1.2. By Theorem 1, the absolute GW-invariants with primary
insertions, i.e. κ = 1, and the corresponding relative invariants in degree A 
=
0 may fail to be equal only if n = 4 and g ≥ 3 at the same time; the possibility
of such a failure is illustrated by Example 3. With non-trivial constraints κ,
the two invariants in degree A 
= 0 may fail to be equal only if 1 ≤ n ≤ 4
and g ≥ 2 at the same time; the possibility of such a failure is illustrated by
Example 2. Example 1, which is motivated by [14, Example 12.5], illustrates
the possibility of failure of (1.9) with A = 0.

Remark 1.3. In Section 3, we give two versions of essentially the same
proof of Theorem 1. The first version is a direct comparison of the two
invariants. It is particularly suitable for considering the independence of the
geometrically constructed curve counts of the chosen Donaldson divisor in
[2, 8, 15]; see Section 5. The argument involves several cases; in all, but one
of them, the conclusion is established by a dimension-counting argument. In
the exceptional case, when κ = 1, n = 3, and g ≥ 3, we also use the fact that
λ2
g = 0 on Mg; see [27, (5.3)]. The second version of the proof is a formal

application of the symplectic sum formula for GW-invariants, as in the setup
introduced in [23, Section 2.2], successfully applied in the genus 0 case in [12],
and used in the attempted proof of [15, Theorem 11.1]. As indicated by [15],
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establishing (1.9) in this way leads to the analogue of (1.9) for virtual classes,
at least in the algebraic category; see Section 3.3.

Remark 1.4. It is sufficient to verify the condition of Definition 1 for
J-holomorphic maps u : Σ −→ V that are simple in the sense of [26, Sec-
tion 2.5]. By [26, Section 3.2], moduli spaces of such maps have the ex-
pected dimensions for a generic ωV -tame (or compatible) almost complex
structure JV on V . Thus, by the first equation in (1.2), V is (g,A)-hollow if

(1.10) A′ · V > 〈c1(X), A′〉+ (n− 4)(1− g′)

for all g′ ∈ Z≥0 with g′ ≤ g and A′ ∈ H2(X;Z) with ω(A′) ≤ ω(A) such that
A′ can be represented by a J0-holomorphic curve for some fixed ω-tame
almost complex structure J0 on X. By Gromov’s Compactness Theorem,
the number of such classes A′ is finite. Since ω(A′) > 0 for all such classes,
(1.10) can be achieved by taking V to be Poincare dual to a sufficiently high
multiple of a rational symplectic form close to ω. Such V , called Donald-

son hypersurfaces, always exist by [3] and are central to the construction of
genus 0 curve counts in [2] and its attempted extensions to positive genera
in [8] and [15]; see Section 5.

Remark 1.5. For the purposes of the direct proof of Theorem 1 in Sec-
tion 3.1, it is sufficient to assume that there exist an almost complex struc-
ture JV on V and an arbitrarily small perturbation ν on V as in Section 2 so
that every (JV , ν)-holomorphic map u : Σ −→ V from a smooth connected
Riemann surface Σ satisfies

u∗[Σ] = 0, or g(Σ) > g, or 〈u∗ω,Σ〉 > ω(A),

or 〈u∗ω,Σ〉 = ω(A), u∗[Σ] 
= A.

For the purposes of the proof of Theorem 1 via the symplectic sum formula
in Section 3.2, it is sufficient to assume the GW-invariants of V of genus g′

and in the class A′ vanish whenever A′ 
= 0, g′ ≤ g, and ω(A′) ≤ ω(A).

The next three examples illustrate different cases when (1.9) fails to
hold. They are justified in Section 4.

Example 1. Suppose (X,ω) is a compact symplectic manifold of real di-
mension 2n and V ⊂ X is a symplectic hypersurface. Let j ∈ H2(M1,1) be
the Poincare dual of a generic point and α ∈ H2(X). The genus 1 degree 0
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GW-invariants of (X,ω) and (X,ω, V ) satisfy

GWX
1,0(j; 1) =

χ(X)

2
=

1

0!
GWX;V

1,0;()(j; 1) +
χ(V )

2
,(1.11)

GWX
1,0(α) = −

〈α cn−1(X), X〉

24
=

1

0!
GWX,V

1,0;()(α)−
〈α|V cn−2(V ), V 〉

24
,(1.12)

where χ(·) is the euler characteristic and () in the subscript is the length 0
contact vector (and thus gives 0! in the denominators).

Example 2. Denote by P1 the one-dimensional complex projective space
with the standard symplectic form and by Vδ ⊂ P1 the symplectic hypersur-
face consisting of δ ∈ Z≥0 distinct points. Let pt ∈ H2(P1) be the Poincare
dual of a point and κ ∈ H2(M2,2) be the Poincare dual of the divisor whose
generic element consists of two components, one of genus 2 and the other
of genus 0; see the bottom right diagram in Figure 1. The genus 2 degree 1
GW-invariants of P1 and (P1, Vδ) satisfy

(1.13)
1

240
= GWP

1

2,1(κ
4; pt, pt) =

1

δ!
GWP

1,Vδ

2,1;1δ
(κ4; pt, pt) +

δ

1, 152
.

Example 3. Denote by P4 the four-dimensional complex projective space
with the standard symplectic form and by Vδ ⊂ P4 a smooth complex hy-
persurface of degree δ. Let pt ∈ H8(P4) be the Poincare dual of a point. The
genus 3 degree 1 primary GW-invariants of P4 and (P4, Vδ) satisfy

(1.14) −
37

82, 944
= GWP

4

3,1(pt) =
1

δ!
GWP

4,Vδ

3,1;1δ
(pt) +

δ(δ2 − 5δ + 8)

72, 576
.

Remark 1.6. The proof in Section 4.3 of the second equality in (1.14)
applies to primary GW-invariants of P4 and (P4, Vδ) in degree d as long as
Vδ contains no curves of genus at most 3 and degree at most d that pass
through the constraints. In these cases, the last term in (1.14) should be
multiplied by the genus 0 degree d absolute GW-invariant with an extra
point insertion. The condition on Vδ in particular excludes the d = 1 GW-
invariants with primary insertions (P1,P2) if δ = 1.

We review the definitions of absolute and relative invariants in Section 2,
focusing on the geometric differences for the requirements on generic pa-
rameters (J, ν) determining the two types of invariants. These differences
are fundamental to establishing Theorem 1 in Section 3 and the claims of
Examples 1–3 in Section 4. In Section 5, we review the Cieliebak-Mohnke
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approach to constructing GW-invariants and relate a key issue in this ap-
proach to Theorem 1 and Examples 1–3.

This note was inspired by the discussions regarding [15, Theorem 11.1]
and the related aspects of [8] at and following the SCGP workshop on con-
structing the virtual cycle in GW-theory. We would like to thank the SCGP
for organizing and hosting this very enlightening workshop and the authors
of [15] and [8] for bringing up important questions concerning relative GW-
invariants. We are also grateful to C.-C. Liu and D. Maulik for sharing
invaluable insights on [15, Theorem 11.1] and C. Faber for providing in-
tersection numbers for Deligne-Mumford moduli spaces. The second author
was partially supported by NSF grant 0846978.

2. Review of GW-invariants

Let g, k ∈ Z≥0 be such that 2g + k ≥ 3,

(2.1) }Mg,k −→Mg,k

be the branched cover of the Deligne-Mumford space of stable k-marked
genus g curves by the associated moduli space of Prym structures con-
structed in [22], and

πg,k : qUg,k −→ }Mg,k

be the corresponding universal curve. A k-marked genus g nodal curve with

a Prym structure is a connected compact nodal k-marked Riemann surface
(Σ, z1, . . . , zk) of arithmetic genus g together with a holomorphic map stΣ :
Σ −→ qUg,k which surjects on a fiber of πg,k and takes the marked points of Σ
to the corresponding marked points of the fiber.

If J is an almost complex structure on a smooth manifold X, A ∈
H2(X;Z), and

(2.2) ν ∈ Γg,k(X, J) ≡ Γ
(

qUg,k ×X,π∗
1(T

∗ qUg,k)
0,1 ⊗C π∗

2(TX, J)
)
,

a k-marked genus g degree A (J, ν)-map is a tuple (Σ, z1, . . . , zk, stΣ, u) such
that (Σ, z1, . . . , zk, stΣ) is a genus g k-marked nodal curve with a Prym
structure and u : Σ −→ X is a smooth (or Lp

1, with p > 2) map such that

u∗[Σ] = A and

∂̄J,ju
∣∣
z
≡

1

2

(
dzu+ J ◦ dzu ◦ j

)
= ν(stΣ(z), u(z)) ◦ dzstΣ ∀ z ∈ Σ,
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where j is the complex structure on Σ. Two such tuples are equivalent if
they differ by a reparametrization of the domain commuting with the maps
to qUg,k.

Suppose (X,ω) is a compact symplectic manifold and J is an ω-tame
almost complex structure. By [30, Corollary 3.9], the space Mg,k(X,A; J, ν)
of equivalence classes of k-marked genus g degree A (J, ν)-maps is Hausdorff
and compact in Gromov’s convergence topology. By [30, Theorem 3.16], for
a generic ν each stratum of Mg,k(X,A; J, ν) consisting of simple (not multi-
ply covered) maps of a fixed combinatorial type is a smooth manifold of the
expected even dimension, which is less than the expected dimension of the
subspace of simple maps with smooth domains (except for this subspace it-
self). By [30, Theorem 3.11], the last stratum has a canonical orientation. By
[30, Proposition 3.21], the images of the strata of Mg,k(X,A; J, ν) consisting
of multiply covered maps under the morphism

(2.3) st× ev1 × · · · × evk : Mg,k(X,A; J, ν) −→Mg,k ×Xk

are contained in images of maps from smooth even-dimensional manifolds of
dimension less than this stratum if ν is generic and (X,ω) is semi-positive in
the sense of [26, Definition 6.4.1]. Thus, (2.3) is a pseudocycle. Intersecting
it with generic representatives for the Poincare duals of the classes κ and αi

and dividing by the order of the covering (2.1), we obtain the (absolute) GW-
invariants (1.5) of a semi-positive symplectic manifold (X,ω) in the stable
range, i.e. with (g, k) such that 2g + k ≥ 3. If g = 0, the same reasoning
applies with ν = 0 and yields the same conclusion if (X,ω) satisfies a slightly
stronger condition (c1(A) > 0 instead of c1(A) ≥ 0 in [26, Definition 6.4.1]).
For general symplectic manifolds (X,ω), the GW-invariants (1.5) are defined
in [7, 21] using Kuranishi structures (or finite-dimensional approximations)
and local perturbations ν as in (2.2).

Suppose in addition V ⊂ X is a closed symplectic hypersurface and
J(TV ) = TV . Thus, J induces a complex structure iX,V on (the fibers of)
the normal bundle

πX,V : NXV ≡ TX|V
/
TV −→ V.

A connection ∇NXV in (NXV, iX,V ) induces a splitting of the exact sequence

0 −→ π∗
X,VNXV −→ T (NXV )

dπX,V

−→ π∗
X,V TV −→ 0(2.4)

of vector bundles over NXV which restricts to the canonical splitting over
the zero section and is preserved by the multiplication by C∗; see [33,
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Lemma 1.1]. For each trivialization

NXV |U ≈ U × C

over an open subset U of V , there exists α ∈ Γ(U ;T ∗V ⊗R C) such that the
image of π∗

X,V TV corresponding to this splitting is given by

T hor
(x,w)(NXV ) =

{
(v,−αx(v)w) : v ∈ TxV

}
∀ (x,w) ∈ U × C.

The isomorphism (x,w) −→ (x,w−1) of U × C∗ maps this vector space to

T hor
(x,w−1)

(
(NXV )∗

)
=

{
(v, w−2αx(v)w) : v ∈ TxV

}
=

{
(v, αx(v)w

−1) : v ∈ TxV
}

∀ (x,w) ∈ U × C∗.

Thus, the splitting of (2.4) induced by a connection in (NXV, iX,V ) extends
to a splitting of the exact sequence

0 −→ T vrt(PXV ) −→ T (PXV )
dπX,V

−→ π∗
X,V TV −→ 0,

where

(2.5) πX,V : PXV ≡ P
(
NXV ⊕ V × C

)
−→ V ;

this splitting restricts to the canonical splittings over

(2.6) PX,∞V ≡ P(NXV ⊕ 0) and PX,0V ≡ P(0⊕X × C)

and is preserved by the multiplication by C∗. Via this splitting, the al-
most complex structure JV ≡ JX |V and the complex structure iX,V in the
fibers of πX,V induce an almost complex structure JX,V on PXV which
restricts to almost complex structures on PX,∞V and PX,0V and is pre-
served by the C∗-action. Furthermore, the projection πX,V : PXV −→ V is
(JV , JX,V )-holomorphic. By [33, Lemma 2.2], ξ ∈ Γ(V,NXV ) is (JX,V , J |V )-
holomorphic if and only if ξ lies in the kernel of the ∂̄-operator on (NXV, iX,V )
corresponding to the connection used above.

For each m ∈ Z≥0, let

XV
m =

(
X � {1} × PXV � · · · � {m} × PXV

)
/ ∼ , where(2.7)

x ∼ 1× PX,∞V |x , r × PX,0V |x ∼ (r + 1)× PX,∞V |x

∀x ∈ V, r = 1, . . . ,m− 1;
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see Figure 2. Define

qm : XV
m −→ X by qm(x) =

{
x, if x ∈ X;

πX,V ([v, w]), if x = (r, [v, w]) ∈ r × PXV.

We denote by Jm the almost complex structure on XV
m so that

Jm|X = J and Jm|{r}×PXV = JX,V ∀ r = 1, . . . ,m.

For each (c1, . . . , cm) ∈ C∗, define

Θc1,...,cm : XV
m −→ XV

m(2.8)

by Θc1,...,cm(x) =

{
x, if x ∈ X;

(r, [crv, w]), if x = (r, [v, w]) ∈ r × PXV.

This diffeomorphism is biholomorphic with respect to Jm and preserves the
fibers of the projection PXV −→ V and the sections PX,0V and PX,∞V .

Suppose J(TV ) = TV and J is ω-tame. We denote by ∇ the Levi-Civita
connection of the metric gJ on X determined by (ω, J) as in [26, (2.1.1)],
by ∇̃ the corresponding JX -linear connection, as above [26, (3.1.3)], and
by ∇̂ the connection given by

∇̂vζ = ∇̃vζ −
1

4

{
∇JζJ + J∇ζJ

}
(v) ∀ ζ ∈ Γ(X;TX), v ∈ TX.

By the next paragraph, the ∂̄-operator

∇̂0,1 : Γ(X;TX) −→ Γ
(
X;T ∗X0,1 ⊗C TX

)
, ζ −→

1

2

(
∇·ζ + J∇J ·ζ

)
,

restricts to an operator

∇̂0,1 : Γ(V ;TV ) −→ Γ
(
V ;T ∗V 0,1 ⊗C TV

)
,

and thus descends to a ∂̄-operator

Γ(V ;NXV ) −→ Γ
(
V ;T ∗V 0,1 ⊗C NXV

)
corresponding to some connection∇NXV in (NXV, iX,V ); see [33, Section 2.3].
Let JX,V denote the complex structure on PXV induced by JV and ∇NXV

as in the paragraph above the previous one; it depends only on the above
∂̄-operator and not on the connection ∇NXV realizing it.
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V

PX,∞V

PX,0V

PX,∞V

PX,0V

X

1× PXV

2× PXV
z1

z2 z3 z4

Figure 2: The image of a relative map with k = 1 and s = (2, 2, 2) to the
space XV

2 .

If in addition u : (Σ, j) −→ (X, J) is (J, j)-holomorphic, i.e. ∂̄J,ju = 0, the
linearization of the ∂̄J,j-operator at u is given by

Du : Γ(Σ, u∗TX) −→ Γ0,1
J,j (Σ;u

∗TX) ≡ Γ
(
Σ, (T ∗Σ, j)0,1 ⊗C u∗(TX, J)

)
,

Duξ =
1

2

(
∇̂uξ + {u∗J} ◦ ∇̂uξ ◦ j) +

1

4
Nu

J (ξ, du),(2.9)

where ∇̂u andNu
J are the pull-backs of the connection ∇̂ and of the Nijenhuis

tensor NJ of J normalized as in [26, p18], respectively, by u; see [26, (3.1.7)].
If in addition u(Σ) ⊂ V ,

Du

(
Γ(Σ, u∗TV )

)
⊂ Γ0,1

J,j (Σ, u
∗TV ),

because the restriction of Du to Γ(Σ;u∗TV ) is the linearization of the ∂̄J,j-
operator at u for the space of maps to V . Thus, Du descends to a first-order
differential operator

(2.10) DNXV
u : Γ(Σ, u∗NXV ) −→ Γ0,1

J,j (Σ, u
∗NXV ).

By (2.9), this operator is C-linear if

(2.11) NJ(v, w) ∈ TxV ∀ v, w ∈ TxX, x ∈ V.

Under this assumption, ξ ∈ Γ(Σ, u∗NXV ) is a (JX,V , j)-holomorphic map if
and only if ξ ∈ kerDNXV

u .
If J(TV ) ⊂ V , Σ is a smooth connected Riemann surface, and u : Σ −→

X is a J-holomorphic map such that u(Σ) 
⊂ V , then u−1(V ) is an isolated
set of points zi; see the beginning of [4, Section 5.1]. Furthermore, u has a
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well-defined order of contact with V at each zi ∈ u−1(V ), ordVziu ∈ Z+; if Σ
is compact, ∑

zi∈u−1(V )

ordVziu = u∗[Σ] · V .

If A ∈ H2(X;Z), g, k, � ∈ Z≥0, and s = (s1, . . . , s�) ∈ (Z+)� is a tuple satis-
fying (1.1), let

(2.12) MV
g,k;s(X,A) ⊂Mg,k+�(X,A)

denote the subset of equivalence of stable J-holomorphic maps u from
marked genus g nodal curves (Σ, z1, . . . , zk+�) such that

u−1(V ) =
{
zk+1, . . . , zk+�

}
and ordVzk+i

u = si ∀ i = 1, . . . , �.

If J satisfies (2.11), we denote by

(2.13) M
V

g,k;s(X,A) ⊃MV
g,k;s(X,A)

the space of equivalence classes of stable JX,V -holomorphic maps u : Σ −→
XV

m, with m ∈ Z≥0, from connected marked genus g nodal curves (Σ, z1, . . . ,
zk+�) such that the restriction of u to each irreducible component of XV

m is
contained in either X or in {r} × PXV for some r = 1, . . . ,m, but not in V
or {r} × PX,0V for any r,

qm∗u∗[Σ] = A, ord{m}×PX,0V
zk+i

u = si ∀ i = 1, . . . , �,

and the orders of contacts of the two branches at each node on V , {r} ×
PX,0V , or {r} × PX,0V agree; see Figure 2. Two maps u as above are equiv-
alent if they differ by an isomorphism of marked domains and a composition
with an isomorphism (2.8); see [4, Section 4.2] for more details.

The relative moduli spaces M
V

g,k;s(X,A) are introduced in [17] in a some-
what different formulation and under a stronger assumption on J than (2.11),
which essentially requires it to be given via the Symplectic Neighborhood
Theorem [25, Theorem 3.30] and makes the setup very amenable for the
gluing needed to construct a virtual class. In [13], the relative moduli spaces
are re-introduced, again in a somewhat different formulation from the pre-
vious paragraph, with ω-compatible J satisfying (2.11). The relative non-
amenability of this setup with the gluing is not material in cases when the
relative invariants (1.7) can be defined geometrically, as in the next para-

graph. By [17, Section 3.2] and [13, Section 6], the spaces M
V

g,k;s(X,A) are
compact; they are also Hausdorff.
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With notation as in (2.2) and J as in the previous two paragraphs, let

ΓV
g,k(X, J) ⊂ Γg,k(X, J)

denote the subspace of elements ν such that

ν| qUg,k×V
∈ Γg,k(V, J |V ), ∇̃wν + J∇̃Jwν ∈ (T ∗ qUg,k)

0,1 ⊗C TxV(2.14)

∀ w ∈ TxX, x ∈ V.

The first condition in (2.14) insures that every (J, ν)-holomorphic map u :
Σ −→ X has well-defined order of contact with V at all points of u−1(V )
not contained in an irreducible component of Σ mapped into V . The second
condition in (2.14) implies that the linearization of the ∂̄J,j − ν operator at
u : Σ −→ V induces a C-linear map

DNXV
u : Γ(Σ, u∗NXV ) −→ Γ0,1

J,j (Σ, u
∗NXV )

for every (J, ν)-holomorphic map u : Σ −→ V . The moduli spaces

MV
g,k;s(X,A; J, ν) ⊂M

V

g,k;s(X,A; J, ν)

can then be defined analogously to (2.12) and (2.13). The component maps
into the rubber layers {r} × PXV are then (JX,V , ν

′)-holomorphic, with

ν ′ ∈ Γg′,k′(PXV, J),

{ν ′|w}(v) =
(
{∇̃wν}(v), ν(v)

)
∈ T vrt

w NXV ⊕ T hor
w NXV

∀ w ∈ NXV, v ∈ T qUg′,k′ .

By the same reasoning as for JX,V , ν
′ given by the second line above extends

over PX,∞V , is C∗-equivariant, and satisfies (2.14) with (X,V ) replaced by
(PXV,PX,0V ) and (PXV,PX,∞V ).

By [13, Proposition 7.3], the space M
V

g,k;s(X,A; J, ν) is compact. By

[13, Lemma 7.5], if ν is generic each stratum of M
V

g,k;s(X,A; J, ν) consisting
of simple maps of a fixed combinatorial type is a smooth manifold of the
expected even dimension, which is less than the expected dimension of the
subspace of simple maps with smooth domains (except for this subspace
itself). By [13, Theorem 7.4], the last stratum has a canonical orientation.

As explained in [4, Section 4.3], the images of the strata of M
V

g,k;s(X,A)
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consisting of multiply covered maps under the morphism

st× ev1 · · · × evk × evk+1 · · · × evk+� :(2.15)

M
V

g,k;s(X,A; J, ν) −→Mg,k+� ×Xk × V �

are contained in images of maps from smooth even-dimensional manifolds
of dimension less than the main stratum if ν is generic, subject to the con-
ditions (2.11) and (2.14), (V, ω|V ) is semi-positive, and (X,ω, V ) is semi-
positive in the sense of [4, Definition 4.7(1)]. Such strata do not even exist

if the domains of all elements of M
V

g,k;s(X,A) possibly contributing to the
number (1.7) are stable for some J , as happens in Section 5. By the proof
of [15, Proposition 8.2], all relevant domains are stable for a generic J if

(2.16) A′ · V ≥ 〈c1(X), A′〉+
1

2
dimRX + 2g

for all A′ ∈ H2(X;Z) with ω(A′) ≤ ω(A) such that A′ can be represented
by a J-holomorphic curve. In the above cases, (2.15) is thus a pseudocycle.
Intersecting it with generic representatives for the Poincare duals of the
cohomology classes κ onMg,k+�, α1, . . . , αk on X, and αk+1, . . . , αk+� on V
and dividing by the order of the covering (2.1), we obtain the relative GW-
invariant

GWX,V
g,k;s

(
κ;α1, . . . , αk;αk+1, . . . , αk+�

)
= GWX,V

g,k;s

(
κ;α1 ⊗ · · · ⊗ αk;αk+1 ⊗ · · · ⊗ αk+�

)
.

The relative GW-invariant (1.7) is the above invariant with κ pulled back
fromMg,k by the forgetful morphism fromMg,k+� and αk+i = 1 for all i =
1, . . . , �. If g = 0, the same reasoning applies with ν = 0 and yields the same
conclusion if (X,ω, V ) satisfies the slightly stronger condition of [4, Defini-
tion 4.7(2)]. For general triple (X,ω, V ), the relative GW-invariants (1.7) are
defined similarly to [7, 21] using Kuranishi structures (or finite-dimensional
approximations) and local perturbations ν as in (2.14).

3. Proof of Theorem 1

A generic (J, ν)-holomorphic map contributing to the absolute GW-invariant
(1.5) has intersection number A · V with V . One would thus expect it to
meet V at A · V distinct points. The different orderings of these points
would ideally give rise to (A · V )! distinct relative maps contributing to
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the relative GW-invariant (1.7). However, a regular pair (J, ν) determining
the number (1.5) may not satisfy the conditions (2.11) and (2.14) required
of the pairs (J, ν) determining the number (1.7), while a generic pair satis-
fying (2.11) and (2.14) may not be regular for the purposes of determining
the number (1.5). Thus, there is no à priori reason for the identity (1.9)
to hold in general. Below we give two versions of nearly the same proof of
Theorem 1: first by a direct comparison and then by formally applying the
symplectic sum formula.

3.1. By direct comparison

The restriction (2.11) on J (or even the stronger one in [17]) is not mate-
rial, as we can simply fix one admissible J and then choose a suitable ν to
compute the GW-invariants (1.5) and (1.7). We start by choosing a generic
ν|V ∈ Γg′,k′(V, J) and then extend it to X so that it satisfies the second
condition in (2.14). A generic such extension ν determines the relative GW-
invariant (1.7). It counts the (J, ν)-maps that pass through generic repre-
sentatives of the Poincare duals of κ and αi have images in X with no
components mapped into V . Dropping the contact marked points, we ob-
tain a regular element of Mg,k(X,A; J, ν) which contributes to the absolute
GW-invariant (1.5). However, because ν may not be generic as far as the
absolute invariants are concerned, Mg,k(X,A; J, ν) may contain other ele-
ments u which meet generic representatives of the Poincare duals of κ and αi.
Any such u must have at least some components mapped into V , as all other
components can be regularized with ν subject to the condition (2.14).

Spaces MΓ(ν) of maps as at the end of the previous paragraph can be
represented by decorated connected bipartite graphs Γ with vertices v

• alternating between those representing the topological components Σv of
the domain of the maps into V and into X (without being contained in V ),

• labeled by pairs indicating the genus gv of Σv and the degree Av of the
map on Σv, and

• decorated by disjoint subsets of {1, . . . , k}, indicating the marked points
carried by Σv;

see Figure 3. Since MΓ(ν) is contained in Mg,k(X,A; J, ν),

gΓ +
∑
v∈Γ

gv = g,
∑
v∈Γ

Av = A ∈ H2(X;Z) , and
∑
v∈Γ

kv = k,
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X

V

1 2

(g,A) X

V

1 2

(g4, A4) (g5, A5)

(g1, A1)

(g3, A3)

(g2, A2)

Figure 3: Bipartite graphs Γ representing elements of Mg,2(X,A; J, ν).

where v ∈ Γ means that v is a vertex in Γ, gΓ is the genus of the graph Γ
(number of edges minus the number vertices plus 1), and kv is the number of
original marked points attached to a vertex v ∈ Γ (the number of the original
marked points carried by the topological component Σv of Σ). We denote
by ΓV the set of vertices of Γ corresponding to the components mapped
into V and by ΓX the set of remaining vertices. For each v ∈ Γ, let �v ∈ Z≥0

denote the number of edges leaving v (the number of nodes joining Σv to
other topological components of Σ). The stability condition on the elements
of Mg,k(X,A) implies that kv + �v ≥ 3 for each v ∈ Γ with (gv, Av) = (0, 0).

If the domains of all relevant elements of Mg,k(X,A) are stable, as is
the case in Section 5, the above perturbations ν can be chosen globally
as elements of ΓV

g,k(X, J). Otherwise, the same general principle applies by
using compatible Kuranishi structures for maps to X and to V . Theorem 1
is established by showing that the subspace

MΓ(κ;α; ν) ⊂MΓ(ν) ⊂Mg,k(X,A; J, ν)

of the elements that are of type Γ and meet generic representatives of the
Poincare duals of κ and α is empty for a generic ν satisfying (2.14) unless Γ
is the one-vertex graph of maps to X, as in the first diagram in Figure 3.
We can assume that κ and α satisfy (1.6).

Since V is assumed to be (g,A)-hollow in Theorem 1, we can use the
Symplectic Neighborhood Theorem [25, Theorem 3.30] to choose an ω-tame
almost complex structure J on X so that J(TV ) ⊂ TV , JV ≡ J |V satisfies
the conditions of Definition 1, and J satisfies (2.11). Thus, the degree Av of
the restriction of any element of MΓ(ν) to a topological component Σv of
the domain mapped into V is zero. If the genus gv of such Σv is zero, the
restriction of any element u of MΓ(0) to Σv is regular as a map into X and
stays so after a small generic deformation ν as in the previous paragraph. If
gv = 0 for all v ∈ ΓV , MΓ(ν) consists of regular maps into X for a generic ν
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satisfying (2.14) and thus has the expected dimension. Since this dimen-
sion is smaller than the virtual dimension of Mg,k(X,A), unless ΓV = ∅,
MΓ(κ;α; ν) = ∅. In particular, if g = 0, all (J, ν)-maps for a generic ν satis-
fying (2.14) are regular as maps to X and transverse to V . Thus, the sets
of stable maps contributing to the numbers on the two sides of (1.9) are
the same in this case, up to the orderings of the A · V intersection points
with V . This establishes the g = 0 case of (1.9).

If n ≥ 5,

dimvirMg′,0(V, 0) = 2(n− 4)(1− g′) < 0 ∀ g′ ≥ 2.

In these cases, we can choose deformations ν satisfying (2.14) so that
MΓ(ν) = ∅ if gv ≥ 2 for any v ∈ ΓV . For the purposes of establishing the
g ≥ 1 cases of (1.9), it thus remains to consider the spaces MΓ so that
gv ∈ {0, 1} for all v ∈ ΓV . Denote by ΓV ;1 ⊂ ΓV the subset of vertices so
that gv = 1. In the next paragraph, we show that

(3.1) dimMΓ(ν) ≤ dimvirMg,k(X,A)− 2
∑

v∈ΓV ;1

�v

for a generic ν satisfying (2.14), if either n ≥ 5 or gv ≤ 1 for all v ∈ ΓV (in
particular, if g = 1). Thus, MΓ(κ;α; ν) = ∅ in these cases if Γ is not the
basic one-vertex graph as in the first diagram in Figure 3, and so (1.9) again
holds.

Removing the vertices of ΓV ;1 from Γ and replacing the edges leading to
them by the marked points on the remaining vertices, we obtain graphs Γi,
with i = 1, . . . , N for some N ∈ Z+, representing subspaces MΓi

(0) of the
moduli spaces Mgi,ki+�i(X,Ai) with

N∑
i=1

(gi − 1) +
∑

v∈ΓV ;1

�v = g − 1,

N∑
i=1

Ai = A,

N∑
i=1

ki +
∑

v∈ΓV ;1

kv = k ,

N∑
i=1

�i =
∑

v∈ΓV ;1

�v ,

where ki ∈ Z≥0 is the number of the original marked points carried by
the component Γi. The moduli spaces M1,kv+�v(V, 0; J, ν) corresponding
to v ∈ ΓV ;1 are of dimension 2(kv + �v) ∈ Z+ for a generic choice of ν|V .
Since MΓi

(ν) contains no component of positive genus mapped into V , it
has the expected dimension for a generic extension of ν|V satisfying (2.14).
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Taking into account the matching conditions at the nodes joining elements
of MΓi

(ν) to elements of M1,kv+�v(V, 0; J, ν), we find that

dimMΓ(ν) ≤
N∑
i=1

dimMΓi
(ν) +

∑
v∈ΓV ;1

dimM1,kv+�v(V, 0; J, ν)− 2n
∑

v∈ΓV ;1

�v

≤ 2

N∑
i=1

(
〈c1(X), Ai〉+ (n− 3)(1− gi) + ki + �i

)
+ 2

∑
v∈ΓV ;1

(kv + �v)− 2n
∑

v∈ΓV ;1

�v

= 2
(
〈c1(X), A〉+ (n− 3)(1− g) + k

)
+ 2(n− 3 + 1 + 1− n)

∑
v∈ΓV ;1

�v .

Along with the first equation in (1.2), this establishes (3.1) and concludes
the proof of the first claim of Theorem 1.

Remark 3.1. A regular genus 1 degree 0 (J, ν)-map into V may not be
regular as a (J, ν)-map into X. However, the space of such maps has the
expected dimension for the target X because this dimension is the same as
the expected dimension for the target V in the g = 1 case. Thus, a boundary
stratum of (J, ν)-maps with only g = 0, 1 components contained in V is of
smaller dimension than the main stratum of maps into X. However, the
space of (J, ν)-maps from smooth genus 1 domains into V has the same
dimension as the main stratum; this is precisely what makes Example 1
possible.

Suppose next that κ = 1 and g ≥ 2 in (1.9), i.e. only the primary inser-
tions are considered. Given a bipartite graph Γ describing a subspace MΓ(0)
of Mg,k(X,A) as in Figure 3, let Γ0 be the decorated bipartite graph ob-
tained by replacing the genus labels of all vertices v ∈ ΓV with 0. Thus,
MΓ0

(0) is a subspace of Mg0,k(X,A) for some g0 < g, unless gv = 0 for all
v ∈ ΓV (in which case Γ0 = Γ and thus g0 = g). If n = 1, 2 and g0 < g,

dimvirMg0,k(X,A) < dimvirMg,k(X,A)

by the first equation in (1.2). Thus, for a generic ν ∈ ΓV
g0,k

(X, J),MΓ0
(1;α; ν)

= ∅ in this case, and so ν ∈ ΓV
g,k(X, J) can be chosen so that MΓ(1;α; ν) = ∅

whenever g′v > 0 for any v ∈ ΓV . This establishes the n = 1, 2 cases of the
last claim of Theorem 1.
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If g ≥ 2 in (1.9) and n = 3,

(3.2) dimvirMg0,k(X,A) = dimvirMg,k(X,A) .

For any v ∈ ΓV with gv ≥ 1,

Mgv,kv+�v(V, 0) =Mgv,kv+�v × V ;

the obstruction bundle for this moduli space is

(3.3) π∗
1E

∗ ⊗ π∗
2TV −→Mgv,kv+�v × V ,

where E −→Mgv,kv+�v is the rank gv Hodge vector bundle of holomorphic
differentials; it has chern classes λi ≡ ci(E). For gv ≥ 2, it is the pull-back
of the Hodge vector bundle over Mg by the forgetful morphism; if gv = 1,
it is the pull-back of the Hodge line bundle over M1,1. By [27, (5.3)] in the
first case and for dimensional reasons in the second case,

(3.4) λ2
gv

= 0 ∈ H4gv
(
Mgv,kv+�v

)
.

Since the obstruction bundle is given by (3.3),

(3.5)
[
Mgv,kv+�v(V, 0; J, ν)

]
= e

(
π∗
1E

∗ ⊗ π∗
2TV

)
∩
[
Mgv,kv+�v × V

]
for a generic ν ∈ ΓV

gv,kv

(
X, J). By (3.2), MΓ0

(1;α; ν) consists of isolated
maps meeting V transversality at finitely many points pj for such a choice
of ν (if MΓ0

(1;α; ν) is not empty). These points include the nodes where
irreducible components of elements of MΓ0

(1;α; ν) meet the elements of
Mgv,kv+�v(V, 0; J, ν) with v ∈ ΓV . By (3.5) and (3.4), the homology class
represented by the subspace of the latter passing through pj is

e
(
E∗ ⊗ Tpj

V
)
∩
[
Mgv,kv+�v

]
= λ2

gv
∩
[
Mgv,kv+�v

]
= 0.

Thus, the contribution of MΓ(1;α; ν) to the left-hand side of (1.9) is the
degree of a zero-cycle which vanishes in the homology and thus is 0, if gv ≥ 1
for any v ∈ ΓV . This establishes the κ = 1, n = 3, and g ≥ 2 case of (1.9).

The remaining case of Theorem 1 is κ = 1, n = 4, g = 2, and A 
= 0 (oth-
erwise both sides of (1.9) vanish for dimensional reasons). By the previous
discussion, it is sufficient to show that MΓ(1;α; ν) = ∅ for a generic ν satis-
fying (2.14) if gv = 2 for some v ∈ ΓV . This assumption implies that gv′ = 0
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for all v′ ∈ ΓV − v and

(3.6) dimvirMg0,k(X,A) = dimvirMg,k(X,A) + 4 .

By the first equation in (1.2), the virtual dimension of M2,0(V, 0) is 0. Thus,
we can choose a deformation ν satisfying (2.14) so that the image of all ele-
ments of Mg0,kv+�v(X,A; J, ν) is contained in arbitrary small neighborhoods
of finitely many points of V . By (3.6), for a generic such ν there are no
elements of MΓ0

(1;α; ν) that pass through these images, since each point
in V ⊂ X imposes a condition of real codimension 6 on maps to X. Thus,
MΓ(1;α; ν) = ∅ for a generic ν satisfying (2.14) in this case as well.

3.2. Via the symplectic sum formula

We next give a proof of Theorem 1 by applying the symplectic sum formula
to the symplectic decomposition

(3.7) X = X #
V=PX,∞V

PXV ,

with PX,∞V ⊂ PXV as in (2.5) and (2.6). The P1-bundle PXV −→ V carries
a symplectic form induced from ω|V in a way well-defined up to symplectic
deformation equivalence; see the beginning of Section 3.3.

According to the symplectic sum formula, the left-hand side of (1.9) is
a weighted count of k-marked genus g degree A (J, ν)-maps u into

(3.8) XV
1 ≡ X ∪

V=PX,∞V
PXV

that have the same contact order with the common hypersurface V at the
two branches of each node, take no smooth point of the domain to V , and
meet generic representatives of the Poincare duals of κ and αi. The degree

of such u is the class in X represented by the composition of u with the
natural projection

(3.9) q : X ∪
V=PX,∞V

PXV −→ X ;

its weight is the product of the contacts with the common hypersurface
(counted once for each pair of contacts from the two sides).

Spaces MΓ(κ;α) of such maps to XV
1 can be represented by the same

kind of connected bipartite graphs Γ as in Section 3.1 with an additional
decoration de ∈ Z+ for each edge e; see Figure 4, where edge labels 1 are not
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X

PXV

V

PX,∞V

1 2

(g,A)

(0, 0)

X

PXV

V

PX,∞V

1 2
(g4, A4) (g5, A5)

(g1, A1) (g3, A3)

(0, 0)

(g2, A2)

2

Figure 4: Bipartite graphs Γ representing elements ofMg,2(X
V
1 , A; J, ν) with

A · V = 7.

explicitly indicated. The subset ΓV of vertices now describes the topological
components Σv of the domain Σ that are mapped to PXV ; the additional
decorations de specify the orders of contacts with V of the branches of the
nodes associated with the edges. The stability condition on Γ described
before now applies only to the vertices v ∈ ΓX . The composition of an ele-
ment u in such a space MΓ(κ;α) with q produces an element of the space
MΓ̄(κ;α) considered above with Γ̄ obtained from Γ by dropping the edge
labels and contracting off the unstable vertices v ∈ ΓV and the edges leaving
from them.

Breaking a graph Γ as in the previous paragraph at the mid-point of
each edge, we obtain the relative moduli spaces

M
V

gv,kv;sv(X,Av) and M
PX,∞V

gv,kv;sv(PXV,Av(sv))

with v ∈ ΓX and v ∈ ΓV , respectively, where sv is the tuple given by the
labels on the edges and Av(sv) is the sum of the push-forward of Av under the
inclusion PX,0V −→ PXV and |sv| fiber classes. The left-hand side of (1.9)
is the sum over all admissible graphs Γ of the weighted products of the
corresponding relative invariants with the relative primary insertions given
by the usual Kunneth decomposition of the diagonal in V 2 at each node; see
the second-to-last equation on page 201 in [19] and equations (5.4), (5.7),
and (5.8) in [17]. Since the intersection points of elements of MΓ(κ;α) are
unordered, while the contact points of the corresponding relative invariants
are ordered, the contribution from each graph Γ should be divided by the
number of orderings of the intersection points.

Some care is needed in translating the constraints κ and αi in (1.5)
into constraints for the relative invariants of (X,V ) and (PXV,PX,∞V ). If
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v ∈ ΓX , the corresponding relative invariant of (X,V ) keeps the insertion αi

at the absolute marked point corresponding to i, if it is carried by Σv.
If v ∈ ΓV , the corresponding relative invariant of (PXV,PX,∞V ) gets the
insertion π∗

X,V (αi|V ) at the absolute marked point corresponding to i, where
πX,V : PXV −→ V is the projection map. Denote by

stv : M
V

gv,kv;sv(X,Av) −→Mgv,kv+�(sv) or

stv : M
PX,∞V

gv,kv;sv(PXV,Av(sv)) −→Mgv,kv+�(sv)

the stabilization map, depending on whether v ∈ ΓX or v ∈ ΓV , respectively;
in the unstable range, the target of this map is one point. Let

glΓ :
∏
v∈Γ

Mgv,kv+�(sv) −→Mg,k

be the morphism given by identifying pairs of points corresponding to the
same edge in Γ. In particular,

glΓ ◦
∏
v∈Γ

stv = st ◦ ιΓ : MΓ −→Mg,k ,

where ιΓ : MΓ −→Mg,k(X
V
1 , A) is the inclusion map. By the Kunneth for-

mula,

gl∗Γκ =
∑
j

⊗
v∈Γ

κj;v ∈
⊗
v∈Γ

H∗
(
Mgv,kv+�(sv)

)
= H∗

(∏
v∈Γ

Mgv,kv+�(sv)

)

for some κj;v ∈ H∗(Mgv,kv+�(sv)). In the Γ-summand in the symplectic sum
decomposition for the absolute GW-invariant (1.5), the insertion κ is re-
placed by the insertion κj;v in the relative invariant corresponding to the
vertex v and the resulting products are summed over all j. This is carried
out in a specific case in Section 4.2.

Since V is assumed to be (g,A)-hollow in Theorem 1, we can choose
an almost complex structure JV on V so that it satisfies the conditions of
Definition 1. Using a connection in NXV as in Section 2, we can extend JV
to an almost complex structure J on PXV so that the condition (2.11) is
satisfied and the projection πX,V : PXV −→ V is (JV , J)-holomorphic. Using
the same connection, we can extend any ν ∈ Γg,k(V, JV ) to

π∗
X,V ν ∈ Γ

PX,∞V

g,k (PXV, J)
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so that πX,V ◦ u : Σ −→ V is (JV , ν)-holomorphic whenever u : Σ −→ PXV
is (J, π∗

X,V ν)-holomorphic.
By the previous paragraph, we can assume that the degree Av of the

composition of the restriction of any element of MΓ to a topological com-
ponent Σv of the domain mapped into PXV with πX,V is zero, i.e. all rel-
evant relative invariants of (PXV,PX,∞V ) lie in the fiber classes dvF with
dv ∈ Z≥0. A key point of the paragraph above the previous one is that the

class integrated over the relative moduli space M
PX,∞V

gv,kv;sv(PXV, dF ) corre-
sponding to the vertex v is pulled back by the projection map

(3.10) ϕ ≡ st× πX,V : M
PX,∞V

gv,kv;sv(PXV, dvF ) −→Mgv,kv+�(sv) × V .

In particular, if

(3.11) dimvirM
PX,∞V

gv,kv;sv(PXV, dvF ) > dim
(
Mgv,kv+�(sv) × V

)
,

then the relative invariant corresponding to the vertex v ∈ ΓV vanishes and
such bipartite graph Γ does not contribute to the left-hand side of (1.9).

By the second equation in (1.2) and the condition |sv| = dv, (3.11) is
equivalent to

dv + (n− 3)(1− gv) + kv + �(sv)

> n− 1 +

{
0, if gv = 0, kv + �(sv) ≤ 2;

3gv − 3 + kv + �(sv), otherwise.

If gv = 0, either dv ∈ Z+ (and thus �(sv) ∈ Z+) or kv ≥ 3 for stability reason.
Thus, the relative invariant corresponding to a vertex v ∈ ΓV with gv = 0
is zero unless dv = 1, kv = 0, and sv = (1). In this remaining case, the only
nonzero relative invariant is

GW
PXV,PX,∞V

0,F ;(1)

(
1, 1; PDV ([pt])

)
= 1.

In particular, the contribution to the left-hand side of (1.9) from the simplest
graph, i.e. as in the first diagram in Figure 4, is

(3.12)
1

(A · V )!
GWX,V

g,A;1A·V

(
κ;α; 1A·V

)
≡

1

(A · V )!
GWX,V

g,A;1A·V

(
κ;α

)
.

All other nonzero contributions to the left-hand side of (1.9) can come only
from graphs Γ such that (dv, kv, sv) = (1, 0, (1)) for all v ∈ ΓV with gv = 0
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and gv ∈ Z+ for some v ∈ ΓV . Since there are no such graphs if g = 0, this
concludes the proof of the g = 0 case of (1.9).

We next show that the relative invariants corresponding to v ∈ ΓV with
gv ∈ Z+ also vanish under the assumptions of (1.8). If gv ≥ 2 and ν ∈
Γgv,0(V, JV ), the composition with the projection πX,V induces a contin-
uous map

(3.13) πX,V : M
PX,∞V

gv,kv;sv

(
PXV, dvF ; J, π∗

X,V ν
)
−→Mgv,0

(
V, 0; JV , ν

)
.

Since

dimMgv,0

(
V, 0; JV , ν

)
= dimvirMgv,0

(
V, 0

)
= (n− 4)(1− gv) ∀ gv ≥ 2

for a generic ν ∈ Γgv,0(V, JV ), the moduli spaces in (3.13) are empty if gv ≥ 2
and n ≥ 5. In particular, the relative invariants vanish in these cases.

If gv = 1, then dv, �(sv) ∈ Z+ by the first assumption in (1.8). For a
generic ν ∈ Γ1,1(V, JV ),

πX,V : M
PX,∞V

1,kv;sv

(
PXV, dvF ; J, π∗

X,V ν
)
−→M1,1

(
V, 0; JV , ν

)
is then a fibration with typical fiber M

pt
1,kv;sv(P

1, d)j, where the subscript j

denotes the moduli space with j fixed onM1,1. Since the obstruction bundle
for M1,1(V, 0) is given by (3.3),[

M1,1

(
V, 0; JV , ν)

]
= e

(
π∗
1E

∗ ⊗ π∗
2TV

)
∩
[
M1,1 × V

]
(3.14)

= {j} × V1 +M1,1 × V0,

where V0, V1 ⊂ V are some cycles of R-dimensions 0 and 2, respectively, and
j is a fixed element of M1,1. Since

dimvirM
pt
1,kv;sv(P

1, dv) = dv + kv + �(sv)

> kv + �(sv) = dimM1,kv+�(sv),

the integral of the pull-back of any class by (3.10) vanishes on the last term
in (3.14). Since

dimvirM
pt
1,kv;sv(P

1, dv)j = dv − 1 + kv + �(sv)

> kv + �(sv)− 1 = dimM1,kv+�(sv);j ,

the integral of the pull-back of any class by (3.10) vanishes on the first term
on the RHS of (3.14) as well.
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In summary, the only graph Γ that contributes to the left-hand side
of (1.9) via the symplectic sum formula applied to the decomposition (3.7)
under the assumptions (1.8) is the graph with

|ΓX | = 1 and (gv, dv, kv, sv) = (0, 1, 0, (1)) ∀ v ∈ ΓV ;

see the first diagram in Figure 4. Since its contribution is given by (3.12),
we have established the first claim of Theorem 1.

Suppose next that κ = 1 and g ≥ 2 in (1.9), i.e. only the primary inser-
tions are considered. The relative invariants of (X,V ) that enter into the
symplectic sum formula then count curves that meet generic Poincare duals
of all the constraints αi. If n = 1, 2 and g0 < g,

(3.15) dimvirM
V

g0,k;s0(X,A) < dimvirMg,k(X,A)

by (1.2). Thus, these relative invariants vanish if n = 1, 2 and the total genus
of the vertices in ΓX is less than g. This happens in particular if gv > 0 for
any v ∈ ΓV . Along with the paragraph containing (3.12), this establishes the
n = 1, 2 cases of the last claim of Theorem 1.

Suppose gv ≥ 2 for some v ∈ ΓV and n = 3. The dimensions of the two
moduli spaces in (3.15) are then the same. The relative invariants of (X,V )
that enter into the symplectic sum formula thus count curves that meet V at
finitely many distinct points {pj}. Since the obstruction bundle for
Mgv,0(V, 0) is given by (3.3), the homology class of the subspace of elements
of Mgv,0(V, 0; JV , ν) that pass through pj[

Mgv,0(V, 0; JV , ν)|pj

]
= e

(
E∗ ⊗ Tpj

V
)
∩
[
Mgv,0 × {pj}

]
= λ2

gv
∩
[
Mgv,0

]
= 0;

see (3.4). Thus, by (3.13), the genus gv relative invariants of (PXV,PX,∞V )
with a relative point insertion vanish in this case as well.

The remaining case of Theorem 1 is κ = 1, n = 4, and g = 2. Since A 
= 0
in this case, dv, �(sv) ∈ Z+. For a generic ν ∈ Γ2,0(V, JV ), the target in (3.13)
is a finite set of points, while the dimension of the fiber is

dv + 1− gv + kv + �(sv) ≥ 1− 1 + 0 + 1 = 1.

Thus, the genus 2 relative invariants of (PXV,PX,∞V ) with only primary
insertions from V vanish. This concludes the proof of the last claim of The-
orem 1.
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3.3. Extension to virtual cycles

In the process of establishing the first claim of Theorem 1 above, we showed
that the relative invariants in the fiber classes of P1-bundles often vanish.
This, more technical, conclusion is summarized, in Lemma 3.2 below. It leads
to a version of Theorem 1 for virtual moduli cycles; see Corollary 3.3.

Let (V, ω) be a compact symplectic manifold, πL : L −→ V be a complex
line bundle, and

πL,V : PL ≡ P(L⊕ V × C) −→ V

be the bundle projection map. Given a Hermitian metric ρ (square of the
norm) and a ρ-compatible connection ∇ in L, let α denote the connection 1-
form on the ρ-circle bundle in L and its extension to L− V via the retraction
given by v −→ v/|v|. The closed 2-form

ω̃ ≡ π∗
X,V ω − ε d

(
α

1 + ρ2

)
on L− V extends to a closed 2-form on PL, which is symplectic if ε > 0 is
sufficiently small; we will take the symplectic deformation equivalence class
of this form to be the default one. Let

PL,∞ = P(L⊕ 0) ⊂ PL .

The projection map

ϕ ≡ st× πL,V : M
PL,∞

g,k;s (PL, dF ) −→Mg,k+�(s) × V,

where F ∈ H2(PL;Z) is the fiber class, induces a push-forward on the virtual
class:

ϕ∗

[
M

PL,∞

g,k;s (PL, dF )
]vir

∈ H∗

(
Mg,k+�(s) × V

)
.

By the Poincare duality applied on Mg,k+�(s) × V , this push-forward is
determined by the evaluation of cohomology classes pulled back from

Mg,k+�(s) × V by ϕ on the virtual class of M
PL,∞

g,k;s (PL, dF ). Thus, Section 3.2
establishes the following statement.

Lemma 3.2. Let (V, ω) be a compact symplectic manifold of real dimen-
sion 2(n− 1) and L −→ V be a complex line bundle. If g, d, k ∈ Z≥0 and
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s ∈ (Z+)� are such that

(3.16) (g, d) 
= (1, 0) and (n− 5)g(g − 1) ≥ 0 ,

then

ϕ∗

[
M

PL,∞

g,k;s (PL, dF )
]vir

=

{
[V ], if (g, d, k, s) = (0, 1, 0, (1));

0, otherwise.

Corollary 3.3 (D. Maulik). Suppose (X,ω) is a projective manifold of
real dimension 2n, g, k ∈ Z≥0, A ∈ H2(X;Z), and V ⊂ X is a (g,A)-hollow
projective hypersurface such that A · V ≥ 0. If

(3.17) (g,A) 
= (1, 0) and (n− 5)g(g − 1) ≥ 0 ,

then

(3.18)
[
Mg,k(X,A)

]vir
=

1

(A · V )!
f∗

[
Mg,k;1A·V

(X,A)
]vir

,

where f is the morphism between the moduli spaces dropping the relative
marked points.

Proof. Let Δ ⊂ C denote a small disk around the origin, Z be the blowup
of Δ×X along 0× V , and π : Z −→ Δ be the projection map. Thus,

Zλ = X ∀ λ ∈ Δ∗ ≡ Δ− 0 and Z0 ≡ π−1(0) = XV
1 ,

with notation as in (3.8).
As summarized in [19, Section 0], there are moduli stacks Mg,k(X

V
1 , A)

and Mg,k(Z, A). The former carries a virtual class so that

(3.19)
[
Mg,k(X

V
1 , A)

]vir
=

[
Mg,k(Zλ, A)

]vir
=

[
Mg,k(X,A)

]vir
under the inclusion intoMg,k(Z, A). In the case of the given family Z −→ Δ,
(3.19) can be written as

(3.20) q∗
[
Mg,k(X

V
1 , A)

]vir
=

[
Mg,k(X,A)

]vir
,
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with q as in (3.9). By the last formula on page 201 in [19],

[
Mg,k(X

V
1 , A)

]vir
=

∑
Γ

m(Γ)

�(Γ)!
ΦΓ∗Δ

!
([

M(X,ΓX)
]vir

(3.21)

×
[
M(PXV,ΓV )

vir
])

.

This sum is taken over the same bipartite graphs Γ as in Section 3.2. For
such a graph Γ, m(Γ) is the product of the edge labels (of contacts with the
common divisor V ) and �(Γ) is the number of edges (of contacts with V ). In
the notation of Section 3.2, the two moduli spaces appearing on the right-
hand side of (3.21) are∏

v∈ΓX

M
V

gv,kv;sv(X,Av) and
∏
v∈ΓV

M
PX,∞V

gv,kv;sv

(
PXV,Av(sv)

)
,

respectively. The symbol Δ! indicates the cap product with the product over
the edges of Γ of the pull-back of the diagonal ΔV ⊂ V 2 by the evaluation
maps at the relative marked points corresponding to the same edge, while ΦΓ

is the morphism given by identifying these marked points.
Since V is (g,A)-hollow, the only possible nonzero summands in (3.21)

correspond to Γ with Av = 0 for all v ∈ ΓV . For such Γ, the relative eval-
uation maps are given by the composition with the projection map πX,V :
PXV −→V , while q ◦ ΦΓ factors through id×ϕ. Combining (3.20) and (3.21),
we thus obtain[

Mg,k(X,A)
]vir

=
∑
Γ

m(Γ)

�(Γ)!
ΦΓ∗Δ

!
([

M(X,ΓX)
]vir

(3.22)

× ϕ∗

[
M(PXV,ΓV )

vir
])

,

with the sum now taken over bipartite graphs Γ as in Section 3.2 with
Av = 0 for all v ∈ ΓV . For such graphs Γ, the restrictions (3.17) imply the
restrictions (3.16) for all (g, d) = (gv, dv) with v ∈ ΓV . By Lemma 3.2, the
last term in (3.22) thus vanishes except for the basic graph Γ with |ΓX | = 1,
(gv, Av, kv) = (0, 0, 0) for all v ∈ ΓV , and all edge labels equal to 1, i.e. as in
the first diagram in Figure 4. The summand in (3.22) corresponding to this
basic graph gives (3.18). �

Remark 3.4. The equality (3.19) is established in [19] for a general flat
degeneration π : Z −→ Δ, with Z0 consisting of two smooth varieties joined
along a smooth hypersurface, only after summing over all classes A of the
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same degree with respect to an ample line bundle over Z. However, in the
given case, the relevant summands on the two sides of (3.19) lie in different
spaces and thus must be equal pairwise.

Remark 3.5. The conclusion of Corollary 3.3 should apply to any compact
symplectic manifold (X,ω) and (g,A)-hollow symplectic hypersurface V .
Unfortunately, the above proof of Corollary 3.3 makes use of the symplectic
sum (degeneration) formula for virtual fundamental cycles (not just num-
bers) in GW-theory, which is not even claimed in the symplectic category in
any work we are aware of. In particular, [14] is concerned only with equating
GW-invariants (viewed as numbers), contrary to the claim just above [15,
(11.4)].

Remark 3.6. The crucial step in our proof of Theorem 1 and Lemma 3.2
is that we start by taking a generic regularization for the maps to V , i.e. a
horizontal deformation of the parameters (J, ν) along V , before deforming
the parameter ν in the normal direction to V . The order of the deformations
is reversed in [15, Section 12], which makes the horizontal directions not
even defined and crucially misses out the opportunity to quickly settle most
cases of Theorem 1. The argument in [15, Section 11] instead misinterprets
[6, (9)] to arrive at the conclusion of Lemma 3.2 in Section 3.3 without
the restrictions in (3.16) and the conclusion of Corollary 3.3 without the
restrictions in (3.17) or the projective assumptions on X and A.

4. Details on the counter-examples

In Sections 4.1–4.3, we establish the claims made in Examples 1–3, respec-
tively; see Section 1. In the case of Example 1, we give two computations
of the relative invariants. In the cases of Examples 2 and 3, we include lo-
calization computations of the δ = 0, 1 numbers as consistency checks; the
localization computations for Example 3 are separated off into Section 4.4.

In Sections 4.2–4.4, we use some degree 1 relative GW-invariants of
(P1,∞) and rubber relative invariants of (P1,∞, 0) with respect to the stan-
dard C∗-action. In principle, all such invariants are computed in [6, 28]. As
it is not completely trivial to extract actual numbers from the generating
series in [6, 28], we include alternative computations for the few numbers
relevant to our purposes.
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4.1. Genus 1 degree 0 invariants

Let (X,ω, V ) be as in Example 1. Fix an ω-tame almost complex structure J
on X so that J(TV ) = TV and the Nijenhuis condition (2.11) holds.

For a complex structure j on a smooth 1-marked genus 1 Riemann surface
(Σ, x1), the space of degree 0 holomorphic maps u : Σ −→ X consists of
the constant maps and so is canonically isomorphic to X. The obstruction
bundle (i.e. the bundle of the cokernels of the linearizations DJ,u of the

∂̄J,j-operator at u) is isomorphic to H0,1
j ⊗C TX, where H0,1

j is the complex
one-dimensional space of anti-holomorphic one-forms on Σ. Thus,

(4.1) TX ≈ Obs −→ Holj(X, 0) ≈ X.

By definition, the 1-marked genus 1 degree 0 fixed j absolute GW-invariant
with primary insertion 1 ∈ H∗(X) is the (signed) number of solutions u :
Σ −→ X of

(4.2) ∂̄J,ju
∣∣
z
= ν

(
z, u(z)

)
∀ z ∈ Σ, u∗[Σ] = 0 ∈ H2(X;Z),

for a generic element

ν ∈ Γj(X, J) ≡ Γ
(
Σ×X, (T ∗Σ)0,1 ⊗C TX

)
.

The projection ν̄ of this element to the cokernel ofDJ,u for each u∈Holj(X, 0)
induces a transverse section of the obstruction bundle (4.1). The solutions
of (4.2) correspond to the zeros of ν̄, as the obstruction to solving (4.2)
vanishes at these points. Thus, the number of solutions of (4.2) is

〈
e(Obs),Holj(X, 0)

〉
=

〈
cn(TX), X

〉
= χ(X).

If j ∈ H2(M1,1) is the Poincare dual of a generic element, the absolute GW-
invariant GWX

1,0(j; 1) is half this number, because the group of automor-

phisms of a generic element ofM1,1 is Z2. This establishes the first equality
in (1.11).

For maps of degree A = 0, A · V = 0 and so the only compatible contact
vector is the length 0 vector, which we denote by (). By definition, the
1-marked genus 1 degree 0 fixed j GW-invariant of (X,V ) with contact
vector () and primary insertion 1 ∈ H∗(X) is the number of solutions u :
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Σ −→ X of

(4.3) ∂̄J,ju
∣∣
z
= ν

(
z, u(z)

)
∀ z ∈ Σ, u∗[Σ] = 0 ∈ H2(X;Z), u(Σ) 
⊂ V,

for a generic ν ∈ ΓV
j (X, J), where

ΓV
j (X, J) ⊂ Γj(X, J)

is the subspace of elements ν such that

ν|Σ×V ∈ Γj(V, J |V ),

∇̃wν + J∇̃Jwν ∈ (T ∗Σ)0,1 ⊗C TxV ∀ w ∈ TxX, x ∈ V.

By the first assumption above, the number of maps u : Σ −→ V ⊂ X that
satisfy the first two conditions in (4.3) and fail the third is χ(V ). The total
number of maps u : Σ −→ X that satisfy the first two conditions in (4.3) is
χ(X), as in the previous paragraph. Thus, the number of solutions of (4.3)
is χ(X)− χ(V ). Similarly to the previous paragraph, the relative GW-
invariant GWX,V

1,0;()(j; 1) is half this number. This establishes the second equal-

ity in (1.11).
With α as in (1.12), let Y ⊂ X be a generic representative of the Poincare

dual of α. Since every degree 0 J-holomorphic map is constant,

M1,1(X, 0) =M1,1 ×X.

Similarly to the previously case, the obstruction bundle in this case is iso-
morphic to

(4.4) Obs = π∗
1E

∗ ⊗ π∗
2TX −→M1,1 ×X,

where E −→M1,1 is the Hodge line bundle of holomorphic differentials. Its
first chern class, λ ≡ c1(E), satisfies

(4.5)
〈
λ,M1,1

〉
=

1

24
.

By definition, the 1-marked genus 1 degree 0 absolute GW-invariant with
primary insertion α is the (signed) number of solutions u : (Σ, j) −→ X of

(4.6) ∂̄J,ju
∣∣
z
= ν

(
z, u(z)

)
∀ z ∈ Σ, u∗[Σ] = 0 ∈ H2(X;Z), u(x1) ∈ Y,
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where Σ is a smooth torus, x1 ∈ Σ is the marked point, ν is a generic element
of

Γ1,1(X, J) ≡ Γ
(
U1,1 ×X, (T ∗U1,1)

0,1 ⊗C TX
)
,

and U1,1 −→M1,1 is the universal curve. Similarly to the case considered
above, ν induces a transverse section ν̄ of the obstruction bundle (4.4). The
solutions of (4.6) correspond to the zeros of ν̄ with u(x1) ∈ Y . Thus,

GWX
1,0(α) =

〈
e(Obs),M1,1 × Y

〉
= −

〈
λ,M1,1

〉〈
cn−1(X), Y

〉
(4.7)

= −
1

24

〈
α cn−1(X), X

〉
.

This establishes the first equality in (1.12).
By definition, the 1-marked genus 1 degree 0 GW-invariant relative to V

with contact vector () and primary insertion α is the number of solutions
u : (Σ, j) −→ X of

∂̄J,ju
∣∣
z
= ν

(
z, u(z)

)
∀ z ∈ Σ,

u∗[Σ] = 0 ∈ H2(X;Z), u(x1) ∈ Y, u(Σ) 
⊂ V,
(4.8)

for a generic ν ∈ ΓV
1,1(X, J), where ΓV

1,1(X, J) ⊂ Γ1,1(X, J) is the subspace of
elements ν satisfying (2.14). By the first assumption in (2.14) and previous
paragraph, the number of maps u : Σ −→ V ⊂ X that satisfy the first three
conditions in (4.8) and fail the fourth is

GWV
1,0(PDV (V ∩ Y )) = −

1

24

〈
PDV (V ∩ Y ) cn−2(Y ), Y

〉
(4.9)

= −
1

24

〈
α|V cn−2(Y ), Y

〉
.

Since the total number of maps u : Σ −→ X that satisfy the first three con-
ditions in (4.8) is GWX

1,0(α), GWX,V

1,0;()(α) is the difference of (4.7) and (4.9),

as claimed in the second equality in (1.12).

Remark 4.1. Strictly speaking, the arguments in the last two paragraphs
should be applied to the universal curve qU1,1 over the moduli space }M1,1

of 1-marked genus 1 curves with Prym structures in place of U1,1 and the
resulting numbers should then be divided by the order of the covering (2.1)
with (g, k) = (1, 1). This nuance is taken into account by E −→M1,1 being
a line orbi-bundle over an orbifold with the chern class given by (4.5).

The absolute invariant GWX
1,0(j; 1) can also be computed using the same

framework as GWX
1,0(α). If σ ∈M1,1 represents the Poincare dual of j, (4.7)
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becomes

GWX
1,0(j; 1) =

〈
e(Obs), [σ]×X

〉
=

〈
1, [σ]

〉〈
cn(X), X

〉
=

1

2
χ(X).

Below we recall a similar framework for computing the relative invariants
in the algebraic category, based on [20, Section 8], and note that it applies
equally well in the symplectic category.

If X is a complex manifold and V ⊂ X is a complex hypersurface, the
sheaf OX(TX) of holomorphic vector fields contains the subsheaf
OX(TX(− log V )) of vector fields with values in TV along V . If (z1, . . . , zn)
is a coordinate chart on U ⊂ X such that U ∩ V is the slice zn = 0,
OU (TX(− log V )) is freely generated by the vector fields

∂

∂z1
, . . . ,

∂

∂zn−1
, zn

∂

∂zn
.

Thus, OX(TX(− log V )) is a locally free sheaf of rank n, i.e. the sheaf of a
holomorphic sections of a holomorphic vector bundle TX(− log V ) of rank n.
In the symplectic category, such a vector bundle can be constructed using
the Symplectic Neighborhood Theorem [25, Theorem 3.30]; the resulting
complex vector bundle is well-defined up to equivalence by the deformation
equivalence class of ω as a symplectic form on X ⊃ V .

Lemma 4.2. Suppose (X,ω) is a compact symplectic manifold of real di-
mension 2n and V ⊂ X is a compact symplectic hypersurface. If α ∈
H2(n−k)(X), then〈

α ck(TX(− log V )), X
〉
=

〈
α ck(X), X

〉
−

〈
α ck−1(V ), V

〉
.

Proof. By definition, there is a short exact sequence of sheaves

(4.10) 0 −→ OX(TX(− log V )) −→ OX(TX) −→ OV (V ) −→ 0,

where the second non-trivial homomorphism is the restriction to V followed
by the projection to the normal bundle NXV , which equals to the restriction
of the line bundle OX(V ) to V . Combining (4.10) with the short exact
sequence

0 −→ OX −→ OX(V ) −→ OV (V ) −→ 0,
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we find that

c
(
OX(TX(− log V ))

)
= c

(
OX(TX)

)
c
(
OV (V )

)−1

= c
(
OX(TX)

) (
c(OX(V ))c(OX)−1

)−1

= c(X)
(
1 + PDXV

)−1
.

Thus, 〈
α ck(TX(− log V )), X

〉
(4.11)

=
〈
α ck(X), X

〉
−

k−1∑
i=0

(−1)i
〈
α ck−1−i(X) (PDXV )1+i, X

〉
=

〈
α ck(X), X

〉
−

k−1∑
i=0

(−1)i
〈
α ck−1−i(X) c1(NXV )i, V

〉
.

Since c(V ) = c(TX)|V c(NXV )−1, the claim follows from (4.11). �

In the projective setting, the analogue of the obstruction bundle (4.4)
for the relative moduli space is

ObsV = π∗
1E

∗ ⊗ π∗
2TX(− log V ) −→M1,1 ×X ;

see [20, Section 8]. In the symplectic setting, the substance of the first re-
striction in (2.14) is that ν induces a section of ObsV . If ν is generic, subject
to the conditions in (2.14), this section is transverse to the zero set every-
where and when restricted to M1,1 × V . Thus, it has no zeros along V and
the two relative invariants in Example 1 are given by

GWX,V

1,0;()(j; 1) =
〈
e(ObsV ), [σ]×X

〉
=

〈
1, [σ]

〉〈
cn(TX(− log V )), X

〉
,

GWX,V

1,0;()(α) =
〈
e(ObsV ),M1,1 × Y

〉
= −

〈
λ,M1,1

〉〈
cn−1(TX(− log V )), Y

〉
.

The second equalities in (1.11) and (1.12) now follow from Lemma 4.2
and (4.5).

Finally, we note that (1.11) and (1.12) are consistent with the symplectic
sum formula as stated in the second-to-last equation on page 201 in [19] and
applied to the decomposition (3.7). Since the degree A = 0 in this case, there
are only two types of bipartite graphs Γ as in Section 3.2 to sum over: the
two possible one-vertex graphs; see Figure 5. The symplectic sum formula
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X

PXV

V

PX,∞V

(1, 0) X

PXV

V

PX,∞V

(1, 0)

Figure 5: The two bipartite graphs Γ contributing to the genus 1 degree 0
GW-invariants of X via the symplectic sum formula applied to (3.7).

in these cases gives

GWX
1,0(j; 1) = GWX,V

1,0;()(j; 1) + GW
PXV,PX,∞V

1,0;() (j; 1),(4.12)

GWX
1,0(α) = GWX,V

1,0;()(α) + GW
PXV,PX,∞V

1,0;()

(
π∗
X,V (α|V )

)
,(4.13)

with PX,∞V ⊂ PXV and πX,V : PX,∞V −→ V as in (2.5) and (2.6). Accord-
ing to the second equality in (1.11),

GWX,V

1,0;()(j; 1) =
χ(X)− χ(V )

2
,

GW
PXV,PX,∞V

1,0;() (j; 1) =
χ(PXV )− χ(PX,∞V )

2
=

2χ(V )− χ(V )

2
.

Thus, (4.12) is consistent with the first equality in (1.11). According to the
second equality in (1.12),

GWX,V

1,0;()(α) = −
〈α cn−1(X), X〉 − 〈α|V cn−2(V ), V 〉

24
,

GW
PXV,PX,∞V

1,0;()

(
π∗
X,V (α|V )

)
= −

〈π∗
X,V (α|V ) cn−1(PXV ),PXV 〉

24

+
〈α|V cn−2(V ), V 〉

24

= −
2 〈α|V cn−2(V ), V 〉 − 〈α|V cn−2(V ), V 〉

24
.

Thus, (4.13) is consistent with the first equality in (1.12).

4.2. Genus 2 degree 1 invariants of P1

We establish the second equality in (1.13) by applying the symplectic sum
formula, as stated in the second-to-last equation on page 201 in [19], to the
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P1

{1} × P1 {7} × P1

p1 p7

1 2

(2, 1)

(0, 0)

P1

{1} × P1 {7} × P1

p1 p7

1 2

(0, 1)

(0, 0) (2, 0)

Figure 6: Bipartite graphs Γ that contribute to the absolute GW-invariant
in (1.13) via the symplectic sum decomposition with respect to V7 =
{p1, . . . , p7}.

absolute GW-invariant in (1.13) via the decomposition (3.7) with

X = P1, V = Vδ ≡ {p1, . . . , pδ}, PXV = {1, . . . , δ} × P1 .

We will make use of some top intersection numbers on the Deligne-Mumford
spacesM2 andM2,1, as summarized in Tables 1 and 2. The numbers forM3

andM3,1, appearing in Tables 1 and 3, will be used in Sections 4.3 and 4.4.
These numbers can be obtained from C. Faber’s computer program, which
is described in [5].

Since the Poincare duals of the two primary insertions in (1.13) vanish
on the divisor Vδ (the constraining points can be chosen to be distinct from
the δ points in Vδ), kv = 0 for all v ∈ ΓV (the marked points stay on the X-
side) if Γ is a bipartite graph as in Section 3.2 contributing to the absolute
GW-invariant in (1.13). Furthermore, Av = 1 for the unique vertex v ∈ ΓX

and all edge labels are 1 in this case (because the curve on the X-side
is of degree 1 and so meets each point in the divisor with order 1). By
Section 3.2 or Lemma 3.2 (separately), there are thus only two types of
graphs Γ contributing to the absolute GW-invariant in (1.13):

(1) (gv, Av, kv) = (0, 0, 0) for all v ∈ ΓV and

(2) the δ graphs with (gv, Av, kv) = (2, 0, 0) for one element v ∈ ΓV and
(gv, Av, kv) = (0, 0, 0) for the remaining δ − 1 elements v ∈ ΓV ;

see Figure 6. There are other bipartite graphs Γ, but they all contain a
vertex v ∈ ΓV with gv = 1; by Section 3.2 or Lemma 3.2, such a graph does
not contribute to an absolute GW-invariant via the symplectic sum formula.
In the setup of Section 3.1, such graphs correspond to configurations with
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genus 1 components sinking into the divisor; since there are no higher-genus
components sinking into the divisor in this case, the argument in Section 3.1
also implies that such a configuration does not contribute.

Thus, by the symplectic sum formula,

GWP
1

2,1(κ
4; pt, pt) =

1

δ!
GWP

1,Vδ

2,1;1δ
(κ4; pt, pt)(4.14)

+
δ

δ!

∑
i

GWP
1,Vδ

0,1;1δ
(κi; pt, pt)GWP

1,pt
2,1;(1)(κ

′
i; 1) ,

with κi ∈ H∗(M0,2+δ) and κ′i ∈ H∗(M2,1) given by

gl∗κ4 =
∑
i

κi ⊗ κ′i ∈ H∗(M0,2+δ)⊗H∗(M2,1) = H∗(M0,2+δ ×M2,1),

where

gl :M0,2+δ ×M2,1 −→M2,2 ,

is the morphism obtained by forgetting the last δ − 1 points on the genus 0
curve and identifying the marked point of the genus 2 curve with the third
marked point on the genus 0 curve. Since κ is the Poincare dual of the divisor
represented by the bottom right diagram in Figure 1, it follows that

(4.15)
∑
i

κi ⊗ κ′i ≡ gl∗κ4 = 1⊗ ψ4
1,

where ψ1 ∈ H∗(M2,1) is the chern class of the universal cotangent line bun-
dle. By Theorem 1,

(4.16)
1

δ!
GWP

1,Vδ

0,1;1δ
(1; pt, pt) ≡

1

δ!
GWP

1,Vδ

0,1;1δ
(pt, pt) = GWP

1

0,1(pt, pt) = 1.

Combining (4.14) with (4.15), (4.16), and Lemma 4.3 below, we conclude
that

GWP
1

2,1(κ
4; pt, pt) =

1

δ!
GWP

1,Vδ

2,1;1δ
(κ4; pt, pt) + δ

〈
ψ4
1,M2,1

〉
.

The second equality in (1.13) now follows from the first column in Table 2.

Lemma 4.3 (C.-C. Liu). If st : M
pt
2,0;(1)(P

1, 1) −→M2,1 is the forgetful

morphism dropping the map to P1, then

(4.17) st∗
[
M

pt
2,0;(1)(P

1, 1)
]vir

=
[
M2,1

]
.
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λ3
1 λ1λ2 λ6

1 λ4
1λ2 λ3

1λ3 λ2
1λ

2
2 λ1λ2λ3 λ3

2 λ2
3

1
2880

1
5760

1
90720

1
181440

1
725760

1
362880

1
1451520

1
725760 0

Table 1: The top intersections of λ-classes on M2 and M3.

Since M2,1 is smooth (as an orbifold) and irreducible, (4.17) is equiva-
lent to

(4.18)
〈
st∗σ, [M

pt
2,0;(1)(P

1, 1)]vir
〉
= 1,

where σ∈H8(M2,1) is the Poincare dual of a generic element (Σ, x1) ofM2,1.
We give two proofs of (4.18) below. The first argument applies the virtual
localization theorems of [9, 10] as in [11, Chapter 27]. The second proof
applies the obstruction analysis of [31] as in [32, Section 4].

Proof 1 of (4.18). We use the standard (C∗)-action on P1. It has two fixed
points,

p1 = [1, 0] and p2 = [0, 1],

and lifts linearly to an action on OP1(1) −→ P1. As in [11, Chapter 27], we
let

αi = c1
(
OP1(1)

)∣∣
pi
∈ H∗

(C∗)2 ≡ H∗
(
B((C∗)2)

)
= H∗(P∞ × P∞) = C[α1, α2] .

The fixed loci of the induced action onM
p2

2,0;(1)(P
1, 1) consist of maps sending

components of positive genus to either the fixed point p1 or the rubber P1

attached to the fixed point p2. The three graphs describing these fixed loci
in the notation of [11, Chapter 27] are shown in Figure 7. In these diagrams,
the first vertex label indicates the corresponding fixed point of P1, while the
second indicates the genus of the component taken there, if any. The edge
degree is 1 in all cases, corresponding to the degree 1 cover from P1 −→ P1.

(1, 2)

2
1

(1, 1)

(2, 1)
1

1

(2, 2)
1

Figure 7: The three graphs describing the (C∗)2-fixed loci of M
p2

2,0;(1)(P
1, 1).
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ψ4
1 ψ3

1λ1 ψ2
1λ

2
1 ψ2

1λ2 ψ1λ
3
1 ψ1λ1λ2

1
1152

1
480

7
2880

7
5760

1
1440

1
2880

Table 2: The top intersections of λ-classes and ψ1 on M2,1.

The morphism st takes the fixed locus represented by the middle diagram
in Figure 7 to the closure in M2,1 of the locus consisting of two-component
maps. Thus, st∗σ vanishes on this locus and the middle diagram does not
contribute to (4.18) via the virtual localization theorem of [9].

The locus represented by the first diagram in Figure 7 is isomorphic to
M2,1 and is cut down by st∗σ to a single point. The space of deformations
of this locus consists of moving the node and of smoothing the node; after
restricting to the cut-down space, the equivariant chern class of both of
these line bundles equal to the equivariant chern class of TP1 at p1, which is
α1 − α2 in this case; see [11, Exercise 27.1.3]. The obstruction bundle after
cutting down by st∗σ is

H1(Σ;Tp1
P1) =

(
H0(Σ;T ∗Σ⊗ T ∗

p1
P1)

)∗
≈ Tp1

P1 ⊕ Tp1
P1 ;

its equivariant euler class is (α1 − α2)
2. Thus, the contribution of the first

diagram in Figure 7 to (4.18) is∫
M2,1

st∗σ
(α1 − α2)

2

(α1 − α2) · (α1 − α2)
= 1 ;

see [9, (7)] or [10, Theorem 3.6].
The locus represented by the last diagram in Figure 7 is isomorphic to

the (rubber) moduli space M
0,∞
2,0;(1),(1)(P

1, 1)∼ of relative morphisms to the

non-rigid target (P1, 0,∞) with the standard C∗-action; see [10, Section 2.4].
Since the virtual dimension of this moduli space is 3, the restriction of st∗σ to
this fixed locus vanishes. By [10, Theorem 3.6], the last diagram in Figure 7
thus does not contribute to (4.18). Combining this with the conclusion of
the two previous paragraphs, we obtain (4.18). �

Proof 2 of (4.18). Let (Σ, j, x1) be a generic element ofM2,1 as before. The
number (4.18) is the number of solutions u : Σ −→ P1 of

(4.19) ∂̄J,ju
∣∣
z
= ν

(
z, u(z)

)
∀ z ∈ Σ, u∗[Σ] = [P1] ∈ H2(P

1;Z),
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for a generic ν ∈ Γpt
j (P1, J), where

Γpt
j (P1, J) ⊂ Γ

(
Σ× P1, (T ∗Σ)0,1 ⊗C TP1

)
is the subspace of elements ν such that

(4.20) ν|Σ×pt = 0, ∇wν + J∇Jwν = 0 ∀ w ∈ TptP
1.

The moduli space of degree 1 holomorphic maps (Σ, j) −→ P1 and its ob-
struction bundle are given by

(4.21) H0,1
Σ ⊗ TP1 ≈ Obs −→ Holj(P

1, 1) ≈ P1 ,

where H0,1
Σ is the space of harmonic (0, 1)-forms on Σ.

The space of deformations of the domain of the elements in Holj(P
1, 1)

is the product of the two tangent bundles at the node, i.e.

(4.22) Tx1
Σ⊗ TP1 ≈ TP1 −→ P1 .

Each smoothing parameter υ in this line bundle determines an approxi-
mately (J, j)-holomorphic map uυ : Σ −→ P1; see [31, Section 3.3]. The first-
order term of the projection π0,1

υ,−∂̄J,juυ of ∂̄J,juυ to Obs is given by{
L(υ1 ⊗ υ2)

}
(ψ) = ψx1

(υ1)
{
dx2

u
}
(υ2) ∈ Tu(x2)P

1 ∀ ψ ∈ H1,0
Σ ,

where x2 ∈ P1 is the node of the rational component of the domain of the
map; see [32, Lemma 4.5]. Since L is injective in this case, the solutions
of (4.19) correspond to the zeros of the section of

(4.23) Obs/ImL −→ Holj(P
1, 1)

induced by a generic ν, excluding the one with u(x2) = pt; see the proof of
[32, Corollary 4.7]. Thus, the number of solutions of (4.19) is〈

e(Obs/ImL),Holj(P
1, 1)

〉
− 1

=
〈
c1(H

0,1
Σ ⊗ TP1)− c1(Tx1

Σ⊗ TP1),P1
〉
− 1 = 1.

This establishes (4.18). �

We next use the virtual localization theorem of [9] to compute the abso-
lute invariant and the δ = 1 case of the relative invariant in Example 2. We
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(1, 2)

2

1 2

(1, 0)

(2, 2)

1 2

(1, 2)

2

1 2

3

(1, 0)

(2, 2)

1 2

3

Figure 8: The two pairs of graphs possibly contributing to the two integrals
in (4.24).

continue with the localization setup of the first proof of (4.18) and compute

∫
[M2,2(P1,1)]vir

st∗κ4 ev∗1OP1(1− α2) ev
∗
2OP1(1− α2) and∫

[M
p2
2,2;(1)(P

1,1)]vir
st∗κ4 ev∗1OP1(1− α2) ev

∗
2OP1(1− α2) .

(4.24)

The (C∗)2-fixed loci consist of maps sending the positive-genus components
and the absolute marked points to the fixed points p1 and p2. Since the
equivariant chern class of OP1(1− α2) vanishes at p2, the only graphs possi-
bly contributing to the integrals in (4.24) must have both absolute marked
points sent to p1. Since the morphism st takes fixed loci with a positive-genus
component at both fixed points to the closure in M2,2 of the locus consist-
ing of two genus 1 curves, st∗κ4 vanishes on such fixed loci as well. The two
remaining graphs possibly contributing to each of the integrals in (4.24) are
shown in Figure 8.

The locus represented by the first diagram in Figure 8 is isomorphic
to M2,3. The space of deformations of this locus consists of moving the
node and of smoothing the node; the equivariant chern classes of these line
bundles are α1 − α2 and α1 − α2 − ψ3, respectively. The euler class of the
obstruction bundle is given by

e
(
E∗ ⊗ Tp1

P1
)
= λ2 − (α1 − α2)λ1 + (α1 − α2)

2 .

By [9, (7)], the contribution of the first diagram in Figure 8 to the first
integral in (4.24) is thus
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∫
M2,3

st∗κ4 (α1 − α2)
2 λ2 − (α1 − α2)λ1 + (α1 − α2)

2

(α1 − α2)(α1 − α2 − ψ3)
(4.25)

=

∫
M2,3

st∗κ4
(
λ2 − λ1ψ3 + ψ2

3)

= 0 + 4〈ψ3
1λ1,M2,1〉 − 〈(f

∗ψ1)
3ψ2

2,M2,2〉

= 4〈ψ3
1λ1,M2,1〉 − 〈ψ

3
1ψ

2
2,M2,2〉 ,

where f :M2,2 −→M2,1 is the forgetful morphism. The second equality
above applies the dilaton equation [11, Exercise 25.2.7] to the middle term,
while the last equality follows from [11, Lemma 25.2.3].

The locus represented by the second diagram in Figure 8 is isomorphic
to M2,1. The space of deformations of this locus consists of moving and
smoothing the two nodes; the total equivariant euler class of the deforma-
tions is

(α1 − α2)(α2 − α1)(α1 − α2)(α2 − α1 − ψ1).

The euler class of the obstruction bundle is given by

e
(
E∗ ⊗ Tp2

P1
)
= λ2 − (α2 − α1)λ1 + (α2 − α1)

2 .

By [9, (7)], the contribution of the second diagram in Figure 8 to the first
integral in (4.24) is thus∫

M2,1

st∗κ4 (α1 − α2)
2 λ2 − (α2 − α1)λ1 + (α1 − α2)

2

(α1 − α2)3(α1 − α2 + ψ1)
(4.26)

=

∫
M2,1

ψ4
1 =

1

1152
.

Combining (4.25) and (4.26) with

〈ψ3
1ψ

2
2,M2,2〉 =

29

5760

from C. Faber’s program, we obtain the first equality in (1.13).
The contribution of the fixed locus of M

p2

2,2;(1)(P
1, 1)]vir represented by

the third diagram in Figure 8 to the second integral in (4.24) is the same as
of the first diagram to the the first integral in (4.24). The locus represented

by the fourth diagram in Figure 8 is isomorphic to M
0,∞
2,0;(1),(1)(P

1, 1)∼. Since

the virtual dimension of this moduli space is 3, the restriction of st∗κ4 to
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P4

PP4V7

V7

PP4,∞V7

(3, 1)

1

(0, 0)

P4

PP4V7

V7

PP4,∞V7

(0, 1)

1

(0, 0) (3, 0)

Figure 9: Bipartite graphs Γ that contribute to the absolute GW-invariant
in (1.14) via the symplectic sum decomposition with respect to V7.

this fixed locus vanishes and so the latter does not contribute to the second
integral in (4.24). Along with the two previous paragraphs, this provides a
direct check of the d = 1 case of the second equality in (1.13).

4.3. Genus 3 degree 1 primary invariants of P4

We establish the second equality in (1.14) by applying the symplectic sum
formula, as stated in the second-to-last equation on page 201 in [19], to the
absolute GW-invariant in (1.14) via the decomposition (3.7) with X = P4

and V = Vδ, where Vδ ⊂ P4 is a smooth degree δ hypersurface.
Since the Poincare dual of the primary insertion in (1.14) vanishes on

the hypersurface Vδ (the constraining point can be chosen outside of Vδ),
kv = 0 for all v ∈ ΓV (the marked point stays on the X-side) if Γ is a bi-
partite graph as in Section 3.2 contributing to the absolute GW-invariant
in (1.14). Furthermore, Av = 1 for the unique vertex v ∈ ΓX . By Section 3.2
or Lemma 3.2 (separately), the only graphs Γ that may contribute to the
absolute GW-invariant in (1.14) satisfy

(1) (gv, Av, kv) = (0, 0, 0) for all v ∈ ΓV or

(2) (gv, Av, kv) = (3, 0, 0) for one element v ∈ ΓV and (gv, Av, kv) = (0, 0, 0)
for the remaining elements v ∈ ΓV .

There are other bipartite graphs Γ, but they all contain a vertex v ∈ ΓV with
gv ∈ {1, 2}; by Section 3.2, such a graph does not contribute to an absolute
GW-invariant with primary insertions via the symplectic sum formula. By
Section 3.2 or Lemma 3.2, the label of the edge leaving a vertex v ∈ ΓV with
gv = 0 in a contributing graph Γ is 1 (and thus omitted in our diagrams).



Absolute vs. relative Gromov-Witten invariants 1233

By the proof of Lemma 3.2 in Section 3.2, the same is the case if gv = 3;
otherwise, the fiber of the projection in (3.13) would have positive dimension,
while too many conditions would be imposed on the curve on the X-side.
The same conclusions can be drawn from Section 3.1.

In summary, there are only two graphs that may contribute to the abso-
lute GW-invariant in (1.14) via the symplectic sum formula; they are shown
in Figure 9. Thus,

GWP
4

3,1(pt) =
1

δ!
GWP

4,Vδ

3,1;1δ
(pt)(4.27)

+
δ

δ!
GWP

4,Vδ

0,1;1δ
(1; pt; 1δ−1, pt)GW

P
P4Vδ,PP4,∞Vδ

3,F ;(1) (1; 1; 1) ,

where F ∈ H2(PP4Vδ;Z) is the fiber class. The first insertion 1 in the last
two relative invariants in (4.27) indicates that no constraint is imposed on
the domain of the maps by pulling back a class κ from a Deligne-Mumford
space of curves. The relative insertions (1δ−1, pt) and 1 in these invariants
(shown after the second semi-column in each case) arise from the Kunneth
decomposition of the diagonal ΔV in V 2; the point insertion on the first of
these invariants corresponds to the pairing with the second invariant, which
arises from a zero-dimensional relative moduli space. It is immediate from
the g = 0 part of the argument in Section 3.1 that

(4.28)
δ

δ!
GWP

4,Vδ

0,1;1δ
(1; pt; 1δ−1, pt) = GWP

4

0,1(pt, pt) = 1.

Combining (4.27) with (4.28) and Lemma 4.4 below, we conclude that

GWP
4

3,1(pt) =
1

δ!
GWP

4,Vδ

3,1;1δ
(pt) +

〈c1(Vδ)c2(Vδ)− c3(Vδ), Vδ〉

362880
.

The second equality in (1.14) now follows from

c(Vδ) =
(
(1 + x)5(1 + δx)−1

)∣∣
Vδ
∈ H∗(Vδ;Z),

where x = c1(OP4(1)) ∈ H2(P4;Z) is the standard generator.

Lemma 4.4. Let (V, ω) be a compact symplectic manifold of real dimen-
sion 6 and L −→ V be a complex line bundle. With notation as at the be-
ginning of Section 3.3, the virtual dimension of the genus 3 relative moduli

space M
PL,∞

3,0;(1)(PL, F ) is 0 and

deg
[
M

PL,∞

3,0;(1)(PL, F )
]vir

=
〈c1(V )c2(V )− c3(V ), V 〉

362880
.
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Proof. The first claim is immediate from the second equation in (1.2). In
order to establish the second claim, we proceed as in Section 3.2 by first
choosing a generic deformation ν ∈ Γ3,0(V, JV ). Lifting JV and ν to PL −→
V as in Section 3.2, we obtain a fibration

(4.29) πL,V : M
PL,∞

3,0;(1)

(
PL, F ; J, π∗

X,V ν
)
−→M3,0

(
V, 0; JV , ν

)
as in (3.13). In this case, the base is zero-dimensional. Since the obstruction
bundle for M3,0(V, 0) is given by (3.3) with (gv, kv + �v) = (3, 0), the degree
of this base is 〈

e(π∗
1E

∗ ⊗ π∗
2TV ),M3 × V

〉
= 〈λ1λ2λ3,M3〉

〈
c1(V )c2(V )− 3c3(V ), V

〉
+ 〈λ3

2,M3〉
〈
c3(V ), V

〉
+ 〈λ2

3,M3〉
〈
c1(V )3

− 3c1(V )c2(V ) + 3c3(V ), V
〉
.

The three intersection numbers on M3 above are provided by Table 1
and (3.4). The second claim of Lemma 4.4 now follows from Lemma 4.5
below. �

Lemma 4.5. If st : M
pt
3,0;(1)(P

1, 1) −→M3 is the forgetful morphism drop-

ping the map to P1 and the marked point, then

(4.30) st∗
[
M

pt
3,0;(1)(P

1, 1)
]vir

= 4
[
M3

]
.

Since M3 is smooth (as an orbifold) and irreducible, (4.30) is equiva-
lent to

(4.31)
〈
st∗σ, [M

pt
3,0;(1)(P

1, 1)]vir
〉
= 4,

where σ ∈ H12(M3) is the Poincare dual of a generic element Σ ofM3. We
give two proofs of (4.31) below, which are similar to the two proofs of (4.18).

Proof 1 of (4.31). We continue with the localization setup in the first proof
of (4.18). The fixed loci of the induced action on M

p2

3,0;(1)(P
1, 1) again consist

of maps sending components of positive genus to either the fixed point p1
or the rubber P1 attached to the fixed point p2. The four graphs describing
these fixed loci, in the notation of [11, Chapter 27] and Figure 7, are shown
in Figure 10.

The morphism st takes the fixed loci represented by the two middle
diagrams in Figure 10 to the closure in M3 of the locus consisting of two-
component maps. Thus, st∗σ vanishes on these loci and the two middle
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(1, 3)

2
1

(1, 2)

(2, 1)
1

(1, 1)

(2, 2)
1

1

(2, 3)
1

Figure 10: The four graphs describing the (C∗)2-fixed loci of M
p2

3,0;(1)(P
1, 1)

diagrams do not contribute to (4.31) via the virtual localization theorem
of [9].

The locus represented by the first diagram in Figure 10 is isomorphic to
M3,1 and is cut down by st∗σ to the curve Σ (which encodes the position
of the node). The space of deformations of this locus consists of moving the
node and of smoothing the node; its euler class equals

(α1 − α2)(α1 − α2 + c1(TΣ))

after restricting to the cut-down space. The obstruction bundle after cutting
down by st∗σ is

H1(Σ;Tp1
P1) =

(
H0(Σ;T ∗Σ⊗ T ∗

p1
P1)

)∗
≈ Tp1

P1 ⊕ Tp1
P1 ⊕ Tp1

P1 ;

its equivariant euler class is (α1 − α2)
3. Thus, the contribution of the first

diagram in Figure 10 to (4.31) is∫
M3,1

st∗σ
(α1 − α2)

3

(α1 − α2)(α1 − α2 + c1(TΣ))
= −

∫
Σ
c1(TΣ) = 4 ;

see [9, (7)] or [10, Theorem 3.6].
The locus represented by the last diagram in Figure 10 is isomorphic to

M
0,∞
3,0;(1),(1)(P

1, 1)∼. Since the virtual dimension of this moduli space is 5, the
restriction of st∗σ to this fixed locus vanishes. By [10, Theorem 3.6], the last
diagram in Figure 10 thus does not contribute to (4.31). Combining this
with the conclusion of the two previous paragraphs, we obtain (4.31). �

Proof 2 of (4.31). Let (Σ, j) be a generic element ofM3 as before. The first
paragraph of the second proof of (4.18) applies to the present situation; the
only change is that the base in (4.21) is replaced by

Σ×Holj(P
1, 1) ≈ Σ× P1 .



1236 M. F. Tehrani and A. Zinger

The line bundle of smoothing parameters (4.22) now becomes

TΣ⊗ TP1 −→ Σ× P1 .

Analogously to the sentence containing (4.23), the solutions of the analogue
of (4.19) in this situation correspond to the zeros of the section of

Obs/ImL −→ Σ×Holj(P
1, 1),

with L as before, induced by a generic admissible ν, excluding the ones with
u(x2) = pt. Without the first restriction on ν in (4.20), the number of such
zeros would have been〈

e(Obs/ImL),Σ×Holj(P
1, 1)

〉
=

〈
c1(C

3/TΣ),Σ
〉〈
c1(TP

1),P1
〉
= 8.

The contribution to this number from the vanishing of ν̄ along Σ× pt is the
number of zeros of an affine bundle map

TptP
1 ⊕ TΣ⊗ TptP

1 −→ H0,1
Σ ⊗ TptP

1

with an injective linear part. Thus, the latter number is〈
e(C3/(C⊕ TΣ)),Σ

〉
= 4 .

The number in (4.31) is the difference of the two numbers above. �

4.4. The δ = 0, 1 numbers in Example 3

We now use the virtual localization theorem of [9] to compute the absolute
invariant and the virtual localization theorem of [10] to compute the δ = 1
case of the relative invariant in Example 3.

We apply [9, (7)] with the C∗-action on P4 given by

c · [Z1, Z2, Z3, Z4, Z5] = [Z1, cZ2, cZ3, c
−1Z4, c

−1Z5]

and its linear lift to OP4(1) defined in the same way. The fixed locus of this
action consists of

p1 ≡ [1, 0, 0, 0, 0], P1
23 ≡

{
[0, Z2, Z3, 0, 0] ∈ P4

}
,

P1
45 ≡

{
[0, 0, 0, Z4, Z5] ∈ P4

}
.
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(1, 3)

i

1

(1, 2)

(i, 1)

1

(1, 1)

(i, 2)

1

1

(i, 3)

1

(1, 3)

i

1

2

(1, 2)

(i, 1)

1

2

(1, 1)

(i, 2)

1

2

1

(i, 3)

1

2

Figure 11: The two sets of graphs possibly contributing to the inte-
grals (4.32) and (4.37), with i ∈ {+,−} in the first case and i ∈ {2, 3, 4, 5}
in the second case.

Let

α = c1
(
OP4(1)

)∣∣
p2
∈ H∗

C∗ .

We denote by

M3,1(P
4, 1)p1

⊂M3,1(P
4, 1)

the preimage of p1 under the evaluation morphism ev1. We will compute∫
[M3,1(P4,1)p1 ]

vir

1.(4.32)

The C∗-fixed loci of this moduli space consist of maps sending the positive-
genus components to p1 or a point on P1

23 or P
1
45 with the image of a degree 1

rational component running between p1 and a point on either P1
23 or P1

45.
The four types of graphs possibly contributing the integral in (4.32) are
shown in the left half of Figure 11, where ± on the bottom vertex indicates
whether it lies on P1

23 or P1
45, respectively. In the computations below, we

first assume that i = +.
The locus represented by the first diagram in Figure 11 is isomorphic

toM3,2 × P1. The space of deformations of this locus consists of smoothing
the node and turning the line around it away from P1

23; the equivariant euler
class of the space of deformations is thus

(−α− x− ψ2)(2α+ x)2 = −(α+ x+ ψ2)(2α+ x)2 ,

where x = c1(OP1(1)) ∈ H1(P1;Z) is the standard generator. The euler class
of the obstruction bundle is given by

e
(
E∗
3 ⊗ Tp1

P4
)
=

(
λ3 − αλ2 + α2λ1 − α3

)2(
λ3 + αλ2 + α2λ1 + α3

)2
.

By [27, (5.3)],(
λ3 − αλ2 + α2λ1 − α3

)(
λ3 + αλ2 + α2λ1 + α3

)
= −α6 .
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The contribution of the first diagram in Figure 11 to (4.32) is thus

−

∫
M3,2×P1

α12

(α+ x+ ψ2)(2α+ x)2
=

5

2
〈x,P1〉

〈
ψ8
2,M3,2

〉
(4.33)

=
5

2

〈
ψ7
1,M3,1

〉
=

5

165888
.

The second equality above applies the dilaton equation [11, Exercise 25.2.7];
the last follows from the first column in Table 3.

The locus represented by the second diagram in Figure 11 is isomorphic
to M2,2 ×M1,1 × P1. The space of deformations of this locus consists of
smoothing the two nodes and moving the bottom node away from P1

23; the
equivariant euler class of the space of deformations is thus

(−α− x− ψt)(α+ x− ψb)(α+ x)(2α+ x)2

= −(α+ x+ ψt)(α+ x− ψb)(α+ x)(2α+ x)2 ,

where ψt ∈ H∗(M2,2) and ψb ∈ H∗(M1,1). The euler class of the obstruction
bundle is given by

e
(
E∗
2 ⊗ Tp1

P4
)
e
(
E∗
1 ⊗ TP4|P1

23

)
=

(
λ2 − αλ1 + α2

)2(
λ2 + αλ1 + α2

)2
×

(
λb − 2x

)(
λb − (α+ x)

)(
λb − (2α+ x)

)2
= 4α

(
λ2 − αλ1 + α2

)2(
λ2 + αλ1 + α2

)2
× (3λbx− 2αx+ αλb)

(
λb − (α+ x)

)
,

where λb ∈ H∗(M1,1). By [27, (5.3)],(
λ2 − αλ1 + α2

)(
λ2 + αλ1 + α2

)
= α4 .

Since ψ1 = λ on M1,1, the contribution of the second diagram in Figure 11
to (4.32) is thus ∫

M2,2×M1,1×P1

4α9(3λbx− 2αx+ αλb)

(α+ x+ ψt)(α+ x)(2α+ x)2
(4.34)

= 5〈λ,M1,1〉〈x,P
1〉
〈
ψ5
2,M2,2

〉
=

5

24

〈
ψ4
1,M2,1

〉
=

5

27648
.

The second equality above applies the dilaton equation [11, Exercise 25.2.7];
the last follows from the first column in Table 2.
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ψ7

1 ψ6

1λ1 ψ2

5λ
2

1 ψ5

1λ2 ψ4

1λ
3

1 ψ4

1λ1λ2 ψ4

1λ3

1

82944

7

138240

41

290304

41

580608

23

96768

23

193536

31

967680

ψ3

1λ
4

1 ψ3

1λ
2

1λ2 ψ3

1λ1λ3 ψ3

1λ
2

2 ψ2

1λ
5

1 ψ2

1λ
3

1λ2 ψ2

1λ
2

1λ3 ψ2

1λ1λ
2

2 ψ2

1λ2λ3

41

181440

41

362880

41

1451520

41

725760

1

7560

1

15120

1

60480

1

30240

1

120960

Table 3: The top intersections of λ-classes and ψi
1 with i ≥ 2 on M3,1; the

intersections with ψ1
1 are obtained by multiplying the corresponding numbers

in Table 1 by 4.

The locus represented by the third diagram in Figure 11 is isomorphic
to M1,2 ×M2,1 × P1. The euler class of its deformation space is as in the
previous paragraph. The euler class of the obstruction bundle is given by

e
(
E∗
1 ⊗ Tp1

P4
)
e
(
E∗
2 ⊗ TP4|P1

23

)
=

(
λt − α

)2(
λt + α

)2(
λ2 − 2xλ1

)(
λ2 − (α+ x)λ1

+ (α+ x)2
)(
λ2 − (2α+ x)λ1 + (2α+ x)2

)2
,

where λt ∈ H∗(M1,2). Since λ2 = 0 on M1,2 and λ2
2, 2λ2 − λ2

1 = 0 on M2,
the contribution of the third diagram in Figure 11 to (4.32) is thus

−

∫
M1,2×M2,1×P1

4α8λ1(2α
2λ1 − 4αλ2

1 − (8α2 − 24αλ1 + 29λ2
1)x)

(α+ x+ ψ1)(α+ x− ψ2)(α+ x)(2α+ x)2
(4.35)

=
〈
ψ2
1,M1,2

〉
〈x,P1〉

〈
λ3
1ψ1 − 8λ2

1ψ
2
1 + 8λ1ψ

3
1,M2,1

〉
= −

1

11520
.

The second equality above applies the dilaton equation [11, Exercise 25.2.7]
and uses the first column in Table 1 and the third in Table 2.

The locus represented by the fourth diagram in Figure 11 is isomorphic
toM3,1 × P1. The space of deformations of this locus consists of smoothing
the (bottom) node and moving it from P1

23; the equivariant euler class of the
space of deformations is thus

(α+ x− ψ1)(α+ x)(2α+ x)2 .

The euler class of the obstruction bundle is given by

e
(
E∗
3 ⊗ TP4|P1

23

)
=

(
λ3 − 2xλ2

)(
λ3 − (α+ x)λ2 + (α+ x)2λ1 − (α+ x)3

)
×

(
λ3 − (2α+ x)λ2 + (2α+ x)2λ1 − (2α+ x)3

)2
.
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Since λ2
1 = 2λ2, λ

2
2 = 2λ1λ3, and λ2

3 = 0 on M3,1, the contribution of the
fourth diagram in Figure 11 to (4.32) is thus

∫
M3,1×P1

α6(16α2λ4
1 − 16αλ5

1 + 9λ6
1 − 64α3λ3)

(α+ x− ψ1)(α+ x)(2α+ x)2

(4.36)

+

∫
M3,1

α2(128α4λ2
1 − 256α3λ3

1 + 424α2λ4
1 − 308αλ5

1 + 141λ6
1 − 768α3λ3)

8(α− ψ1)

=
1

8
〈x,P1〉

〈
69λ6

1ψ1 − 148λ5
1ψ

2
1 + 232λ4

1ψ
3
1 − 256λ3

1ψ
4
1 + 128λ3ψ

4
1

+ 128λ2
1ψ

5
1,M3,1

〉
= −

1

2880
.

Combining the numbers in (4.33)-(4.36) and multiplying the result by 2 (to
account for i = ±), we obtain the first equality in (1.14). This conclusion
agrees with A. Gathmann’s growi program.

We next apply [10, Theorem 3.6] with the action of T ≡ (C∗)2 on P4

given by

(c1, c2) · [Z1, Z2, Z3, Z4, Z5] = [Z1, c1Z2, c
−1
1 Z3, c2Z4, c

−1
2 Z5]

and its linear lift to OP4(1) defined in the same way. The fixed locus of this
action consists of the five points

p1 ≡ [1, 0, 0, 0, 0], . . . , p5 ≡ [0, 0, 0, 0, 1].

Let

α1 = c1
(
OP4(1)

)∣∣
p2
∈ H∗

T , α2 = c1
(
OP4(1)

)∣∣
p4
∈ H∗

T ,

V =
{
[0, Z2, Z3, Z4, Z5] ∈ P4

}
.

We denote by

M
V

3,1;(1)(P
4, 1)p1

⊂M
V

3,1;(1)(P
4, 1)

the preimage of p1 under the evaluation morphism ev1. We will compute∫
[M

V

3,1;(1)(P
4,1)p1 ]

vir

1 .(4.37)

The C∗-fixed loci of this moduli space consist of maps sending the positive-
genus components to p1 and at most one of the fixed points pi with i =
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2, 3, 4, 5; the image of the non-contracted degree 1 rational tail runs be-
tween p1 and one of the fixed points pi with i = 2, 3, 4, 5. The four types of
graphs possibly contributing to the integrals in (4.37) are shown in the right
half of Figure 11. In the computations below, we first assume that i = 2.

The locus represented by the first diagram in the right half of Figure 11
is isomorphic to M3,2. Its deformations consist of smoothing the node and
turning the line around it away from p2; the equivariant euler class of the
space of deformations is thus

(−α1 − ψ2)
(
α1 − (−α1)

)
(α1 − α2)

(
α1 − (−α2)

)
= −2α1(α

2
1 − α2

2)(α1 + ψ2).

The obstruction bundle is as for the first diagram in Figure 11, but its euler
class is now given by

∏
j=1,2

(
(α3

j − α2
jλ1 + αjλ2 − λ3)(α

3
j + α2

jλ1 + αjλ2 + λ3)
)
= α6

1α
6
2 ;

the equality holds by [27, (5.3)]. The contribution of the fifth diagram in
Figure 11 to (4.37) is thus

−

∫
M3,2

α6
1α

6
2

2α1(α2
1 − α2

2)(α1 + ψ2)
(4.38)

= −
1

2
·

α6
2

α4
1(α

2
1 − α2

2)

〈
ψ8
2,M3,2

〉
= −

1

2
·

α6
2

α4
1(α

2
1 − α2

2)

〈
ψ7
1,M3,1

〉
= −

1

2
·

1

82944
·

α6
2

α4
1(α

2
1 − α2

2)
.

The second equality above applies the dilaton equation [11, Exercise 25.2.7];
the last follows from the first column in Table 3.

The locus represented by the second diagram in the right half of Fig-
ure 11 is isomorphic to

F2 ≡M2,2 ×M
0,∞
1,0;(1),(1)(P

1, 1)∼ .

The equivariant euler class of the space of deformations becomes

−2α1(α
2
1 − α2

2)(α1 + ψt)(α1 − ψb),



1242 M. F. Tehrani and A. Zinger

where ψt ∈ H∗(M2,2) and ψb = ψ∞ is on the rubber moduli space; see [10,
Section 3.3]. The euler class of the obstruction bundle is now given by

e
(
E∗
2 ⊗ Tp1

P4
)
e
(
E∗
1 ⊗ Tp2

V
)

=
∏
j=1,2

(
(α2

j − αjλ1 + λ2)(α
2
j + αjλ1 + λ2)

)
× (2α1 − λb)(α1 − α2 − λb)(α1 + α2 − λb)

∼= −α4
1α

4
2(5α

2
1 − α2

2)λb mod H∗
T ⊂ H∗

T(F2) ,

where λb ∈ H∗(F2) is the pull-back of λ ∈ H∗(M1,1) by either forgetful mor-
phism f from the second factor. Since

M
0,∞
1,0;(1),(1)(P

1, 1)∼ ≈M1,1 ×M
0,∞
0,1;(1),(1)(P

1, 1)∼

as spaces and the last factor above is a point, ψb vanishes on the virtual class
of the second factor in F2. The second proofs of (4.18) and (4.31) readily
show that

f∗
[
M

0,∞
1,0;(1),(1)(P

1, 1)∼
]vir

=
[
M1,1

]
.

Thus, the contribution of the sixth diagram in Figure 11 to (4.37) is

∫
[F2]vir

α4
1α

4
2(5α

2
1 − α2

2)λb

2α1(α2
1 − α2

2)(α1 + ψt)α1
(4.39)

= −
1

2
·
α4
2(5α

2
1 − α2

2)

α4
1(α

2
1 − α2

2)
·
〈
ψ5
2,M2,2

〉
〈λ,M1,1〉

= −
1

2
·
α4
2(5α

2
1 − α2

2)

α4
1(α

2
1 − α2

2)
·
1

24

〈
ψ4
2,M2,1

〉
= −

1

2
·

1

27648
·
α4
2(5α

2
1 − α2

2)

α4
1(α

2
1 − α2

2)
.

The second equality above applies the dilaton equation [11, Exercise 25.2.7];
the last follows from the first column in Table 2.

The locus represented by the third diagram in the right half of Figure 11
is isomorphic to

F3 ≡M1,2 ×M
0,∞
2,0;(1),(1)(P

1, 1)∼ ≡ F3;1 × F3;2 .
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The equivariant euler class of its deformation space is as in the previous
paragraph. The euler class of the obstruction bundle is now given by

e
(
E∗
1 ⊗ Tp1

P4
)
e
(
E∗
2 ⊗ Tp2

V
)

=
∏
j=1,2

(
(αj − λt)(αj + λt)

)
· (4α2

1 − 2α1λ1 + λ2)

×
(
(α1 − α2)

2 − (α1 − α2)λ1 + λ2

)(
(α1 + α2)

2 − (α1 + α2)λ1 + λ2

)
∼= −α3

1α
2
2(9α

2
1 − α2

2)λ
3
1 +

1

2
α2
1α

2
2(25α

4
1 − 10α2

1α
2
2 + α4

2)λ
2
1

mod H∗
T ⊗H≤2(F3;2) ⊂ H∗

T(F3) ,

where λt ∈ H∗(M1,2) and λ1, λ2 ∈ H∗(F3;2) are the pull-backs of the
Hodge classes λ1, λ2 ∈ H∗(M2) by the forgetful morphism f from the second
factor. Since

M
0,∞
2,0;(1),(1)(P

1, 1)∼ ≈M2,1 ×M
0,∞
0,1;(1),(1)(P

1, 1)∼

∪
(
M1,1 ×M1,1 ×M

0,∞
0,2;(1),(1)(P

1, 1)∼
)/

Z2

as spaces and the last factors in the two spaces on the RHS above are
zero- and one-dimensional, ψ2

b vanishes on the virtual class of F3;2. Since λ3
1

vanishes on the divisor in M2 consisting of two-component curves and

(4.40)
〈
ψk−1
∞ ,M

0,∞
0,k;(1),(1)(P

1, 1)∼
〉
= 1 ∀ k ≥ 3,

the second proofs of (4.18) and (4.31) readily show that〈
λ3
1, [M

0,∞
2,0;(1),(1)(P

1, 1)∼]
vir

〉
=

〈
e(C2/TΣ2),Σ2

〉〈
λ3
1, [M2]

〉
= 2

〈
λ3
1, [M2]

〉
;〈

ψ∞λ2
1, [M

0,∞
2,0;(1),(1)(P

1, 1)∼]
vir

〉
=

〈
λ2
1,M1,1

〉2
.

Thus, the contribution of the seventh diagram in Figure 11 to (4.37) is∫
[F3]vir

α3
1α

2
2(9α

2
1 − α2

2)λ
3
1

2α1(α2
1 − α2

2)(α1 + ψt)α1
(4.41)

−
1

2

∫
[F3]vir

α2
1α

2
2(25α

4
1 − 10α2

1α
2
2 + α4

2)λ
2
1ψ∞

2α1(α2
1 − α2

2)(α1 + ψt)α2
1

=
〈ψ2

t ,M1,2〉

2α4
1(α

2
1 − α2

2)

(
α2
1α

2
2(9α

2
1 − α2

2) · 2
〈
λ3
1, [M2]

〉
− α2

2(25α
4
1 − 10α2

1α
2
2 + α4

2) ·
〈λ,M1,1〉2

2

)
= −

1

2
·

1

138240
·
α2
2(89α

4
1 − 46α2

1α
2
2 + 5α4

2)

α4
1(α

2
1 − α2

2)
;
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the last equality follows from Table 1.
The locus represented by the last diagram in Figure 11 is isomorphic to

F4 ≡M
0,∞
3,0;(1),(1)(P

1, 1)∼ .

The equivariant euler class of its deformation space is reduced to 2α1(α
2
1 −

α2
2)(α1 − ψb). The euler class of the obstruction bundle becomes

e
(
E∗
3 ⊗ Tp2

V
)
= (8α3

1 − 4α2
1λ1 + 2α1λ2 − λ3)

×
(
(α1 − α2)

3 − (α1 − α2)
2λ1 + (α1 − α2)λ2 − λ3

)
×

(
(α1 + α2)

3 − (α1 + α2)
2λ1 + (α1 + α2)λ2 − λ3

)
∼= −

1

2
α2
1(9α

2
1 − α2

2)λ
5
1 +

1

4
α1(45α

4
1 − 14α2

1α
2
2 + α4

2)λ
4
1

− (18α6
1 − 20α4

1α
2
2 + 2α2

1α
4
2)λ

3
1

− (17α6
1 + 45α4

1α
2
2 + 3α2

1α
4
2 − α6

2)λ3 mod H∗
T ⊗H≤4(F4),

where λi ∈ H∗(F4) is the pull-back of the Hodge class λi ∈ H∗(M3) by the
forgetful morphism f . Since

M
0,∞
3,0;(1),(1)(P

1, 1)∼ ≈M3,1 ×M
0,∞
0,1;(1),(1)(P

1, 1)∼

∪M2,1 ×M1,1 ×M
0,∞
0,2;(1),(1)(P

1, 1)∼

∪
(
(M1,1)

3 ×M
0,∞
0,3;(1),(1)(P

1, 1)∼
)/

S3

as spaces and the last factors in the three spaces on the RHS above are
zero-, one-, and two-dimensional, respectively, ψ3

b vanishes on the virtual
class of F4. Since λ5

1 vanishes on the divisor in M3 consisting of two-
component curves and λ4

1 vanishes on the subvariety consisting of four-
component curves (three elliptic curves attached to a P1), (4.40) and the
second proofs of (4.18) and (4.31) give

〈
λ5
1, [M

0,∞
3,0;(1),(1)(P

1, 1)∼]
vir

〉
=

〈
λ5
1e(E

∗/TΣ3), [M3,1]
〉

=
〈
λ5
1ψ

2
1 − λ6

1ψ1, [M3,1]
〉
;〈

ψ∞λ4
1, [M

0,∞
3,0;(1),(1)(P

1, 1)∼]
vir

〉
= 8

〈
λ,M1,1

〉〈
λ3
1,M2

〉
;〈

ψ2
∞λ3

1, [M
0,∞
3,0;(1),(1)(P

1, 1)∼]
vir

〉
=

〈
λ,M1,1

〉3
,〈

ψ2
∞λ3, [M

0,∞
3,0;(1),(1)(P

1, 1)∼]
vir

〉
=

1

6

〈
λ,M1,1

〉3
.
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Thus, the contribution of the last diagram in Figure 11 to (4.37) is

−
1

2

∫
[F4]vir

α2
1(9α

2
1 − α2

2)λ
5
1

2α1(α2
1 − α2

2)α1
+

1

4

∫
[F4]vir

α1(45α
4
1 − 14α2

1α
2
2 + α4

2)λ
4
1ψ∞

2α1(α2
1 − α2

2)α
2
1

−
1

6

∫
[F4]vir

(125α6
1 − 75α4

1α
2
2 + 15α2

1α
4
2 − α6

2)λ
3
1ψ

2
∞

2α1(α2
1 − α2

2)α
3
1

.

The preceding set of equations reduces this to

1

2α4
1(α

2
1 − α2

2)

(
−

1

2
α4
1

(
9α2

1 − α2
2

)(〈
λ5
1ψ

2
1, [M3,1]

〉
− 4

〈
λ6
1, [M3]

〉)
(4.42)

+ α2
1

(
45α4

1 − 14α2
1α

2
2 + α4

2

)
· 2

〈
λ,M1,1

〉〈
λ3
1,M2

〉
−

(
125α6

1 − 75α4
1α

2
2 + 15α2

1α
4
2 − α6

2

)〈λ,M1,1

〉3
6

)

= −
1

2
·

1

2903040
·
1747α6

1 − 1577α4
1α

2
2 + 441α2

1α
4
2 − 35α6

2

α4
1(α

2
1 − α2

2)
.

The sum of (4.38), (4.39), (4.41), and (4.42) multiplied by 2 (to account for
i = 3) is

−
1

2903040
·
1747α6

1 + 292α4
1α

2
2

α4
1(α

2
1 − α2

2)
.

Adding in the same expression with α1 and α2 interchanged (to account for
i = 4, 5), we find that

GWP
4,V1

3,1;(1)(pt) = −
97

193536
.

Along with the first equality in (1.14), this confirms the δ = 1 case of the
second equality in (1.14).

5. The Cieliebak-Mohnke approach to GW-invariants

Theorem 1 and Examples 1–3 answer a key question arising in recent at-
tempts to adapt the idea of [2] to constructing positive-genus GW-invariants
geometrically. In this section, we review this approach and discuss its con-
nections with Theorem 1 and Examples 1–3.

Suppose (X,ω) is a compact symplectic manifold such that ω represents
a rational cohomology class. By [3, Theorem 1], the Poincare dual of every
sufficiently large integer multiple δω of ω can be represented by a symplectic
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hypersurface V in (X,ω). If A ∈ H2(X;Z)− {0} can be represented by a J-
holomorphic map u : Σ −→ X for some ω-tame almost complex structure,
then

A · V = δ ω(A) > 0.

The idea of [2] is to define the primary genus 0 GW-invariants by counting
J-holomorphic maps P1 −→ X that pass through generic representatives of
constraints of the appropriate total dimension and send A · V points of P1

to V and dividing the resulting number by (A · V )!. In order to ensure that
the sets of maps being counted are finite, the almost complex structure J
on X is allowed to vary with the domain of the map in a coherent way. For δ
sufficiently large and a generic coherent family of J ’s, every non-constant J-
holomorphic map u : P1 −→ X of ω-energy at most ω(A) intersects X − V
and sends at least three distinct points of the domain to V ; see [2, Proposi-
tion 8.13].

The almost complex structures J used in [2] are required to be com-
patible with V , in the sense that J(TV ) ⊂ TV . A coherent family of such
complex structures can be viewed as a special case of a single pair (J, ν),
with ν as (2.2) satisfying the first condition in (2.14). By a standard cobor-
dism argument, the resulting count of (J, ν)-maps is independent of a generic
pair (J, ν) compatible with (ω, V ). As in [2, Section 10], the independence
of the counts on V can be shown by defining such counts with respect to
two transverse Donaldson’s hypersurfaces, V and V ′, that are compatible
with the same ω-tame almost complex structure J on X. In particular, the
dimension-counting argument at the beginning of Section 3.1 can be easily
modified to show that the number of maps does not change if an additional
J-holomorphic hypersurface V ′ is added.

Remark 5.1. The counts defined in [2] have not been directly shown to
be invariant under deformations of ω, which is a central property of GW-
invariants in symplectic topology. This could be established by showing that
two Donaldson’s divisors with respect to deformation equivalent symplectic
forms and of the same degree are deformation equivalent through Donald-
son’s divisors. While it remains unknown whether this is the case, the invari-
ance of the counts of [2] under small deformations of ω is studied directly
in [16].

Remark 5.2. Pairs (J, ν) as in Section 2 have been standard on the sym-
plectic side of GW-theory at least since [29, 30]. Using such pairs in [2] would
have avoided the need for an elaborate coherency condition on families of
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almost complex structure and would have simplified the transversality is-
sues. The first part of Section 2 and a slight variation of the genus 0 portion
of Section 3.1 in the present paper would have sufficed for the purposes
of [2]. This would have also extended the construction to genus 0 invariants
with constraints pulled back from the Deligne-Mumford space, as well as to
genus 1.

By [17, Section 3.2], any topological component of the preimage of a J-
holomorphic hypersurface V in X under the limit u : Σ −→ X of a sequence
of J-holomorphic maps uk : Σk −→ X from smooth domains meeting X − V
comes with a holomorphic section of the pull-back of the normal bundle to V .
By [13, Section 6], this conclusion also applies to (J, ν)-holomorphic maps,
if J(TV ) = TV and ν satisfies the first condition in (2.14). If J and ν also
satisfy (2.11) and the second condition in (2.14), spaces of maps from stable
domains that satisfy this limiting condition are of dimension at least two
less than the space of maps from smooth domains which meet X − V . If all
relevant domains are stable, invariants of (X,ω, V ) can then be defined by
counting such maps; see Section 2.

The attempts in [8, 15] to extend the approach of [2] to positive-genus
GW-invariants utilize the ideas outlined in the previous paragraph. A crucial
claim of [8, 15] is that the resulting counts of relative genus g degree d
(J, ν)-maps are independent of the choice of (g,A)-hollow hypersurface V
(at least, if it is a Donaldson’s hypersurface). As illustrated by Theorem 1
and Examples 1–3, this claim is often, but not always, true. As illustrated
by the direct proof of Theorem 1 in Section 3.1, it is true precisely when the
ideas outlined in the previous paragraph are not needed to define the relative
counts. In these cases, the argument in Section 3.1 implies that the counts
do not change when a second J-holomorphic hypersurface V2 is added.

In principle, the approach of [2] could be adapted to constructing positive-
genus GW-invariants by subtracting lower-genus contributions with appro-
priate coefficients if the real dimension of the target X is 8 or less. These
coefficients are determined by the chern classes of the divisor V , the top in-
tersections of λ-classes onMg, and the relative GW-theory of P1. While all
of these are computable in some sense, it does not appear that the resulting
coefficients would have reasonably simple expressions.
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Birkhäuser, 1983.

[28] A. Okounkov and R. Pandharipande, Virasoro constraints for target
curves, Invent. Math. 163 (2006), no. 1, 47–108.

[29] Y. Ruan and G. Tian, A mathematical theory of quantum cohomology,
J. Differential Geom. 42 (1995), no. 2, 259–367.

[30] Y. Ruan and G. Tian, Higher genus symplectic invariants and sigma
models coupled with gravity, Invent. Math. 130 (1997), no. 3, 455–516.



1250 M. F. Tehrani and A. Zinger

[31] A. Zinger, Enumerative vs. symplectic invariants and obstruction bun-
dles, J. Symplectic Geom. 2 (2004), no. 4, 445–543.

[32] A. Zinger, Enumeration of genus-two curves with a fixed complex struc-
ture in P2 and P3, J. Differential Geom. 65 (2003), no. 3, 341–467.

[33] A. Zinger, Basic Riemannian geometry and Sobolev estimates used in
symplectic topology, arXiv:1012.3980.

Simons Center for Geometry and Physics

SUNY Stony Brook, NY 11794, USA

E-mail address: mtehrani@scgp.stonybrook.edu

Department of Mathematics

SUNY Stony Brook, NY 11794, USA

E-mail address: azinger@math.sunysb.edu

Received October 16, 2014


