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Hamiltonian commutators with

large Hofer norm

Michael Khanevsky

We show that commutators of Hamiltonian diffeomorphisms may
have arbitrarily large Hofer norm. The proposed technique is ap-
plicable to positive genus surfaces and their products. This gives
partial answer to the question presented by McDuff and Polterovich
in [McD].

1. Introduction and results

In this paper we consider the following question which was presented by
D. McDuff and L. Polterovich (question 4 in [McD]). Given a closed sym-
plectic manifold (M,ω), is there an upper bound for Hofer’s norm of a
commutator of two Hamiltonian diffeomorphisms of M? Clearly, a similar
question for R2n and the standard symplectic form has negative answer:
it is sufficient to pick two Hamiltonians f, g with nontrivial commutator
[f, g]. Then the norm of the rescaled commutator

∥∥[sf( ·s), sg( ·s)]∥∥ → ∞ as
s goes to infinity. However, this rescaling trick cannot be applied to closed
manifolds and the question becomes not obvious. In this article we construct
commutators with arbitrarily large norm in a class of closed manifolds which
contains surfaces of positive genus and direct products of such surfaces:

Theorem 1. Let (Σ, ω) be a closed surface of positive genus and (N,ω′)
be a torus or a closed symplectic manifold which admits a pair of transverse
closed Lagrangians whose union is weakly exact. Then the product mani-
fold (Σ×N,ω ⊕ ω′) admits Hamiltonian commutators with arbitrarily large
Hofer norm.

Main tool used in the argument is the theorem below which appeared in
[Ush]. Given two Lagrangians L,L′ we define the separation energy

Esep(L,L
′) = inf

gL∩L′=∅
‖g‖
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to be the least Hofer energy needed to move L away from L′ by a com-
pactly supported Hamiltonian. In the case no such deformation exists we
set Esep(L,L

′) = ∞. This notion is a natural generalization of the displace-
ment energy of a Lagrangian.

Theorem 2. (M. Usher) Let (M,ω) be a geometrically bounded symplectic
manifold, L,L′ ⊂ M be two compact Lagrangians that intersect transversely.
Pick an intersection point p ∈ L ∩ L′ and a tame almost complex structure
J . Then the separation energy satisfies

Esep(L,L
′) ≥ min(σM , σL, σL′ , σp)

where σM denotes the minimal energy of a nonconstant J-holomorphic sphere
in M , σL, σL′ stand for the minimal energy of nonconstant J-holomorphic
discs with boundary on L,L′, respectively. σp denotes the minimal energy of
a nonconstant J-holomorphic strip

u : (R× [0, 1], i) → (M,J),

with boundary conditions u(s, 0) ∈ L, u(s, 1) ∈ L′ for all s ∈ R and which
converges to p either as s → +∞ or as s → −∞. Moreover, in the case J
is regular we may consider for σp only those strips that are isolated in the
corresponding nonparametrized moduli space.

Theorem 4.9 in [Ush] claims Esep(L,L
′) > 0 which is weaker than the

statement above. Nevertheless, the argument taken verbatim implies Theo-
rem 2 except for the last sentence regarding regular almost complex struc-
tures and isolated holomorphic strips. This additional property can be es-
tablished by restricting attention in the proof to holomorphic strips of index
zero.

This theorem can be seen as an adaptation of Chekanov’s bound [Che]
for the displacement energy: Edisp(L) ≥ min(σM , σL). As in Chekanov’s ar-
gument, here is no requirement of existence of Floer homology.

Theorem 2 gives a tool to compute lower bounds for Hofer’s norm.
Given a Hamiltonian g, one may consider two disjoint Lagrangians L,
L′ such that gL intersects L′ transversely. Then ‖g‖ ≥ Esep(gL, L

′) ≥
min(σM , σgL, σL′ , σp) for all p ∈ gL ∩ L′. In certain cases (like the case when
M is a surface) the righthandside expression can be easily computed.

The rest of this paper is organized as follows. Section 2 provides ba-
sic definitions for Hofer’s geometry and Floer theory and in Section 3 we
construct commutators for Theorem 1.
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2. Definitions

A symplectic manifold (M,ω) is called geometrically bounded (see [ALP]) if
there exist a complete Riemannian metric g and an almost complex structure
J such that (M, g) has bounded sectional curvature and injectivity radius
bounded away from zero. In addition we ask that ω(v, Jv) > c1g(v, v) and
|ω(v, w)|2 < c2g(v, v)g(w,w) for some constants c1, c2 > 0. J is called a tame
almost complex structure. Note that for closed M it is enough to assume
that ω(v, Jv) > 0. Let Σ be a Riemannian surface (possibly with boundary),
u : Σ → M a J-holomorphic map. The energy or symplectic area of u is
defined by E(u) =

∫
Σ u∗ω.

Given two Lagrangian submanifolds L1, L2 ⊂ M that intersect trans-
versely and a tame almost complex structure J we consider the set of non-
constant J-holomorphic strips u : R× [0, 1] → M that satisfy u(s, 0) ∈ L1,
u(s, 1) ∈ L2 for all s ∈ R. Every strip u with E(u) < ∞ converges to a pair
of intersection points p, q ∈ L1 ∩ L2 as s → ±∞. We denote by M∗(p, J) the
set of all nonparametrized finite-energy J-holomorphic strips as above which
converge to a given point p ∈ L1 ∩ L2 either as t → +∞ or as t → −∞. The
general theory (see [Flo], [MS]) states that for regular almost complex struc-
tures J , M∗(p, J) admits a manifold structure. The set of regular structures
J is generic in the space of all tame almost complex structures on M .

Assume that (Σ, ω) is a closed symplectic surface. Then every tame
complex structure J on Σ is regular (see Theorem 12.2 in [dSRS]). Let
L1, L2 be two simple closed connected curves in Σ intersecting transversely.
Denote D+ = {z ∈ C

∣∣ |z| ≤ 1 , Im(z) ≥ 0}. Following [dSRS] we define a
smooth lune to be an orientation preserving immersion u : D+ → Σ such
that u(D+ ∩ R) ⊂ L1, u(D+ ∩ S1) ⊂ L2. u(1), u(−1) ∈ L1 ∩ L2 are the end-
points of u. We pick p ∈ L1 ∩ L2. By Theorem 12.1, [dSRS] there is a
bijection between isolated nonparametrized holomorphic strips in M∗(p, J)
and equivalence classes (under reparametrization) of smooth lunes with end-
point at p. Moreover, holomorphic strips and corresponding lunes share the
same image in Σ. In particular, they have the same energy which is equal to
the area covered by the image (counted with multiplicity). In this situation
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we may replace the definition of σp in Theorem 2 by the minimal area of a
smooth lune with endpoint at p.

We call a closed symplectic manifold (N,ωN ) admissible if it satisfies
the following.

• There exist two Lagrangian submanifolds K1,K2 that intersect trans-
versely, an intersection point p ∈ K1 ∩K2 and a regular tame almost
complex structure JN such that M∗(p, JN ) has no isolated strips.

• All JN -holomorphic spheres and disks with boundary either in K1

or in K2 are constant. (This condition holds automatically when ωN

vanishes on π2(N,K1) and on π2(N,K2).)

Suppose that a closed symplectic manifold (N,ω) admits a pair of transverse
Lagrangians whose union is weakly exact (namely, ω vanishes on π2(N,K1 ∪
K2)). It is admissible by the definition above. A closed surface of positive
genus is also an example of such manifold: we pick K1,K2 to be a pair
of simple closed curves that intersect transversely at single point p. Let
JN be an arbitrary complex structure. Let u be a JN -holomorphic strip
with bounded energy and boundary on K1 ∪K2. Its lift ũ to the universal
cover maps boundary of the strip R× [0, 1] to lifts K̃1 ∪ K̃2. The maximum
principle implies that boundary of the image of ũ is contained in K̃1 ∪ K̃2,
hence image(ũ) ⊂ K̃1 ∪ K̃2. By the open mapping theorem ũ is a constant
map, hence u ≡ p. All holomorphic discs and spheres are constant since
π2(N,K1) = π2(N,K2) = π2(N) = {0}.

Lemma 3. Admissible manifolds are closed under direct product.

Proof. Let N1, N2 be admissible manifolds, K1,Ni
,K2,Ni

the corresponding
Lagrangians. Consider the products Kj,N1

×Kj,N2
, j = 1, 2 of the respective

Lagrangians and the product almost complex structure. The regularity of
the almost complex structure is achieved by surjectivity of the linearized ∂̄
operator (see [MS]). A simple computation shows that surjectivity for the
product structure follows from that for JN1

and JN2
. The product almost

complex structure is tame with respect to the product symplectic form.
The projections N1 ×N2 → Ni, i = 1, 2 are J-holomorphic, therefore ev-

ery (JN1
, JN2

)-holomorphic strip in N1 ×N2 projects to a pair of J-holo-
morphic strips in N1, N2. Conversely, given a pair of such strips one may
lift them to a strip in N1 ×N2. This implies that isolated strips in
M∗((p1, p2), (JN1

, JN2
);N1 ×N2) must project to a pair of isolated strips

in M∗(pi, JNi
;Ni) ∪ {const} which are necessarily constant ones.



Hamiltonian commutators with large Hofer norm 1179

Similarly, J-holomorphic spheres and disks project to those in N1 and
N2 hence are constant ones. The lemma follows. �

By this lemma products of positive genus surfaces are admissible. In the
next section we construct commutators in direct products M ×N where M
is a closed symplectic surface of positive genus and N is admissible. This
proves Theorem 1.

Let (M,ω) be a symplectic manifold, g be a Hamiltonian diffeomorphism
with compact support in M . The Hofer norm ‖g‖ (cf. [Hof]) is defined by

‖g‖ = inf

{∫ 1

0
maxG(·, t)−minG(·, t)dt

}

where the infimum goes over all compactly supported Hamiltonian functions
G : M × [0, 1] → R such that g is the time-1 map of the corresponding flow.

3. Construction

First we construct commutators with large Hofer norm on a torus T 2. We
use the following convention: S1 = R/Z, T 2 = S1 × S1 = R2/Z2 equipped
with x, y coordinates. Sometimes we will consider x+ iy as a single complex
coordinate. T 2 is equipped with the standard symplectic form ω = dx ∧ dy
so it has area 1. Let η′ : S1 → R be the piecewise linear function given by

η′(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4s if s ∈ [0, 14 ]

1 if s ∈ [14 ,
1
2 ]

3− 4s if s ∈ [12 ,
3
4 ]

0 if s ∈ [34 , 1]

and η : S1 → R be a C0-close smooth approximation of η′ given by rounding
the four corners in their ε-small neighborhoods (see Figure 1).

We define two Hamiltonian functions F,G : T 2 → R by F (x, y) = η(x)
and G(x, y) = η(y) and denote by ft, gt the time-t maps of the corresponding
autonomous flows. Geometrically, ft rotates upwards all points in the annu-
lus −ε < x < 1/4 + ε (with the maximal rotation length equal to 4t), rotates
downwards the points of the annulus 1/2− ε < x < 3/4 + ε and leaves the
rest of the torus in place. gt performs the same deformation in the horizontal
direction.
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Figure 1.

Proposition 4. The Hofer norm of the commutator [ft, gs] = f−tg−sftgs
satisfies

min(t, s)− 1 ≤ ‖[ft, gs]‖ ≤ 2min(t, s).

Clearly, the proposition implies the desired result for T 2 by letting s, t →
∞.

Proof. The upper bound follows from a standard computation:

‖f−t‖ = ‖ft‖ ≤
∫ t

0
max(F )−min(F )dt = t.

By conjugation invariance of Hofer’s norm we have ‖g−sftgs‖ = ‖ft‖ ≤ t as
well. Therefore ‖[ft, gs]‖ ≤ ‖f−t‖+ ‖g−sftgs‖ ≤ 2t by the triangle inequality.
A similar computation shows ‖[ft, gs]‖ ≤ 2s.

We prove the lower bound. Note that ‖[ft, gs]‖ depends continuously on
s and t, hence it is enough to show the statement for a dense subset of
values.

Step I: We introduce two Lagrangians meridians

L = {1− 2ε} × S1, L′ = {1− ε} × S1.

(ε is the same as in construction of η.) L ∩ L′ = ∅, hence

‖[ft, gs]‖ ≥ Esep(L, [ft, gs]L
′)

and it is enough to show that

Esep(L, [ft, gs]L
′) ≥ min(t, s)− 1.
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Bi-invariance of Hofer’s norm implies

Esep(L, [ft, gs]L
′) = Esep(L, f−tg−sftgs(L

′)) = Esep(gsft(L), ftgs(L
′))(1)

= Esep(gs(L), ftgs(L
′)).

The last equality follows from the fact that ft leaves L invariant.
We use Theorem 2 to get a lower bound for the righthandside expression

in (1). Equip T 2 with multiplication by i. As

π2(T
2) = π2(T

2, gs(L)) = π2(T
2, ftgs(L

′)) = {0},

all holomorphic spheres and holomorphic disks with boundary on Lagran-
gians have zero energy hence are constant ones. Therefore

σT 2 = σgs(L) = σftgs(L′) = ∞.

It is enough to pick an intersection point p so that σp ≥ min(t, s)− 1.

Step II: Put Ls := gs(L), L
′
ts := ftgs(L

′). Consider the universal cover
π : R2 → T 2. Let

L̃ = {1− 2ε} × R, L̃′ = {1− ε} × R

be lifts of L and L′, denote by f̃t, g̃s the lifts of ft, gs to R2. L̃s := g̃s(L̃)
depicted on Figure 2 is a lift of Ls. It looks like an infinite two-sided comb
whose ‘teeth’ have area s each. L̃′

ts := f̃tg̃s(L̃
′) is obtained from a similar

‘comb’ g̃s(L̃
′) whose ‘teeth’ are vertically deformed by f̃t in a periodic way.

The area bounded between each oscillation of L̃′
ts and a ‘tooth’ of L̃s is in the

interval [t− 1, t+ 1]. The righthand side of Figure 2 gives a rough description
of the half-plane to the left of L̃′

ts. That is, L̃
′
ts is the boundary of the shaded

region. Figure 3 gives a more detailed description of the intersection pattern
of two arcs of L̃s and L̃′

st (fat lines). In order to simplify the picture some
of the remaining parts of curves are hidden, the rest are sketched either by
thin or by dotted lines.

We may assume that gsL � ftgs(L
′) as this property holds for generic t.

Pick an intersection point p̃ ∈ L̃s ∩ L̃′
ts in the neighborhood of {0} × R as

described in Figure 3. Put p := π(p̃) ∈ Ls ∩ L′
ts.

Step III: We show that σp ≥ min(t, s)− 1. Following the discussion in
Section 2, we may compute σp by considering the minimal energy of a smooth
lune with endpoint at p instead of the energy of holomorphic strips. Note
that every such lune lifts to a smooth lune in R2 with endpoint at p̃ and
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L̃s L̃′
ts

Figure 2.

p̃

Figure 3.

appropriate boundary conditions in L̃s and L̃′
ts. The lift preserves the energy

(area) of a lune, so we proceed with computations on the universal cover in-
stead of T 2. In Remark 6.11, [dSRS] the authors propose the following algo-
rithm to locate the lunes. Given an intersection point q̃ ∈ L̃s ∩ L̃′

ts, consider
the two arcs γ ⊂ L̃s, γ

′ ⊂ L̃′
ts connecting p̃ with q̃. γ ∪ γ′ bounds a smooth

lune u : D+ → R2, u(R ∩D+)⊆γ, u(S1 ∩D+)⊆γ′ with u(−1) = p̃, u(1) = q̃
if and only if the following conditions hold:
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1) Orient γ, γ′ from p̃ to q̃. p̃, q̃ must have opposite intersection indices.

2) γ must be homotopic to γ′ relative endpoints.

3) The winding number w : R2 \ (γ ∪ γ′) → Z of the closed curve γ ∗ −γ′

must be non-negative and satisfy w(z) ∈ {0, 1} near p̃ and q̃.

Moreover, if γ, γ′ satisfy the conditions above, such a lune is unique up to
reparametrization. We may find lunes with u(−1) = q̃, u(1) = p̃ in a similar
way by interchanging the roles of p̃ and q̃.

Figure 4 describes six lunes with endpoint at p̃ (the proportions are
not precise). The lunes (c-f) cover roughly either a straight ‘tooth’ or a
vertically deformed one and have energy E(u) ≥ s− 1 while the lunes (a)
and (b) satisfy E(u) ≥ t− 1. Therefore E(u) ≥ min(t, s)− 1 holds for all
six.

(a) (b) (c)

(d)

(e) (f)

p̃

Figure 4.
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Step IV: We show that there are no other lunes. This implies σp ≥
min(t, s)− 1 and finishes the proof of the proposition. Note that in our
setup the second condition of the algorithm is always true and the first one
holds for many candidate points q̃. The only significant constraint is imposed
by the third condition.

Let q̃ ∈ L̃s ∩ L̃′
ts be a candidate for the second endpoint of a lune, γ ⊂ L̃s,

γ′ ⊂ L̃′
ts be the arcs connecting p̃ with q̃.

Observation I: let j be one of (a-f), denote by uj the corresponding

lune. Put q̃j , γj ⊂ L̃s, γ
′
j ⊂ L̃′

ts to be the second endpoint and boundary
arcs of uj . If γ � γj and γ′ � γ′j then q̃j ∈ γ ∩ γ′ and the winding number

w : R2 \ (γ ∪ γ′) → Z of γ ∗ −γ′ near q̃j will attain both positive and negative
values. This is a contradiction to the third condition for existence of a lune
in the list above.

Observation II: note that γ traverses L̃s which goes from p̃ either to the
left or to the right to the approximate distance 4s and then turns back.
Similarly, γ′ ⊂ L̃′

ts and L̃′
ts goes either up or down to the distance 4t and

back. We call γ ‘short’ if γ � γc or γ � γd, otherwise it is ‘long’. Similarly,
γ′ is ‘short’ if γ′ � γ′a or γ′ � γ′b and ‘long’ otherwise. If the curve γ is short
then γ′ must be long to arrive to the same endpoint q̃. And vice versa: a
short γ′ implies that γ is long. Therefore at least one of γ, γ′ is long. That
is, either γ traverses a full ‘tooth’ or γ′ goes along a full oscillation.

We assume by contradiction that q̃ is an endpoint which is different from
the six endpoints in (a-f). There are eight possible cases:

• γ is long and goes to the right from p̃ while γ′ goes down from p̃. Then
γ � γc hence by observation I, γ′ ⊂ γ′c. But γ′c contains no intersection
points with L̃s other than p̃ and q̃c, a contradiction.

• γ is long and goes to the right, γ′ goes up. Note that all points on γ
have their y coordinate below that of p̃. Hence γ′ must traverse at least
one full oscillation to arrive to a point q̃ which is below p̃. Moreover,
q̃ is different from q̃a. But then γ′ � γ′a, γ � γa, a contradiction to
observation I.

• γ is long and goes to the left, γ′ goes up. Then γ � γd hence by obser-
vation I, γ′ ⊂ γ′d. But γ

′
d contains no intersection points with L̃s other

than p̃ and q̃d, a contradiction.

• γ is long and goes to the left, γ′ goes down. Then all points on γ have
their y coordinate above that of p̃. Hence γ′ must traverse at least one
full oscillation to arrive to q̃ which is above p̃. Moreover, q̃ is different
from q̃b. Then γ � γb, γ

′ � γ′b, a contradiction.
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• γ′ is long and goes up from p̃, γ goes right. Then γ′ � γa hence by
observation I, γ ⊂ γa. Therefore q̃ ∈ γa. However, on the way up from
p̃, L̃′

ts intersects γa only at the point q̃a.

• γ′ is long and goes up, γ goes left. Then γ � γf as γf has no interior

intersection points with L̃′
ts. We may assume that γ is short (the case

of a long γ was already considered above), namely, q̃ ∈ γd. γ
′
f intersects

γd at three points other than p̃, two of them are q̃d, q̃f and the third
has the same intersection index as p̃, hence cannot be an endpoint of
a lune (contradiction to condition (1) of the algorithm). Therefore γ′

must traverse γ′f , in contradiction to observation I.

• γ′ is long and goes down, γ goes right. Then γ � γe as γe has no
interior intersection points with L̃′

ts. We may assume that γ is short,
that is, q̃ ∈ γc. γ

′
e intersects γc at four points: p̃, q̃c, q̃e and the forth

has inappropriate intersection index. Therefore γ′ must traverse γ′e, in
contradiction to observation I.

• γ′ is long and goes down, γ goes left. Then γ′ � γ′b. By observation I,

γ ⊂ γb. However, on the way down from p̃, L̃′
ts intersects γb only at

the point q̃b. �

Remark 5. f1, g1 constructed above generate a free group F2 in Ham(T 2):
supp(F ) ∪ supp(G) is homotopic to the number eight figure. Pick a com-
mon periodic point x ∈ T 2 of period one for both ft, gt. Then the trajec-
tory of x under the action of < f1, g1 > gives an isomorphism < f1, g1 >�
π1(supp(F ) ∪ supp(G), x).

Denote by S the generating set consisting of f1, g1, f−1, g−1 and their
conjugates in F2. D. Calegari observed that the word metric with respect
to S satisfies all estimates known to the author of the restriction of Hofer’s
metric to F2. It is easy to show that ‖ · ‖S ≥ ‖ · ‖H . It would be interesting
to know if these two metrics are comparable.

We adapt Proposition 4 to handle closed surfaces (M,ω) of genus g > 1.
Without loss of generality we assume that Area(M) > 1. Let F,G : T 2 →
R be the Hamiltonian functions from Proposition 4. We present M as a
connected sum T 2#Σg−1 of the torus with a surface of genus g − 1 where
Σg−1 is glued to T 2 along a small circle which does not intersect the supports
of F,G and the curves L, L′. This allows us to push F,G, ft, gs forward to
M . We continue to denote objects on M with the same notation. We claim
that the same bounds on the Hofer norm hold in M .
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Proposition 6.

min(t, s)− 1 ≤ ‖[ft, gs]‖ ≤ 2min(t, s).

Proof. The proof follows the same lines as Proposition 4. We indicate only
the necessary changes.

Computation of the upper bound is the same.
Step I: we push L, L′, p from T 2 forward to M and equip M with a

complex structure which restricts to i on T 2. As before, we would like to
show Esep(gs(L), ftgs(L

′)) ≥ min(t, s)− 1 using Theorem 2. We note that
σM = σgs(L) = σftgs(L′) = ∞.

Step II: We work with a cover π : M̂ → M which is obtained by gluing
to R2 infinitely many copies of Σg−1 along Z2-periodic lattice. The lifts

L̃s, L̃
′
ts, p̃ are pushed from R2 forward to L̂s, L̂

′
ts, p̂ in M̂ . We get the same

picture as in Figure 3 up to copies of Σg−1 attached in appropriate places.
Steps III-IV: We show that σp ≥ min(t, s)− 1. We consider smooth lunes

with endpoint at p and claim that they arise as pushforward of [some of] the
lunes (a-f) described in Figure 4. We observe that pushforward is possible
only for those lunes that do not cover the attaching circle of Σg−1. When it
is defined, the pushforward preserves the energy, therefore the desired bound
for σp in M follows from that in T 2.

Let uM : D+ → M be a lune with endpoint at p, ûM be its lift to a
lune in M̂ with endpoint at p̂. As ûM (∂D+) ⊂ L̂s ∪ L̂′

ts, the degree of ûM
is a locally constant function in M̂ \ (L̂s ∪ L̂′

ts). We claim that the degree
vanishes in all connected components which contain a copy of Σg−1. Indeed,
let α be a noncontractible loop in Σg−1. If ûM has nonzero degree at points
of α, we lift the picture to the universal cover and get a lift of α contained
inside the lift of ûM . However, the lift of ûM is a lune hence it is bounded
while the lift of α is not bounded, a contradiction.

Therefore the degree of ûM is zero in connected components containing
copies of Σg−1. ûM is an orientation preserving immersion by definition of
a smooth lune, hence these connected components are outside of the image
of ûM . This implies that ûM can be obtained by pushing forward a lune
in R2. �

Let M = Σ×N where Σ is a closed surface of positive genus and N is
an admissible manifold as defined in Section 2. We equip M with a product
symplectic form ω. Denote by πΣ : M → Σ, πN : M → N the natural pro-
jections. The Hamiltonians ft, gs defined in Proposition 6 lift to f̂t = π∗

Σft,
ĝs = π∗

Σgs. They satisfy the same inequality in Hofer norm:
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Proposition 7.

min(t, s)− 1 ≤ ‖[f̂t, ĝs]‖ ≤ 2min(t, s).

Proof. Computation of the upper bound is the same.
To prove the lower bound we pick Lagrangians L̂ := L×K1, L̂

′ := L′ ×
K2 where L,L′ are the Lagrangians in Σ defined in Proposition 6 and
K1,K2 ⊂ N are given by the definition of an admissible manifold. We pick
a product almost complex structure Ĵ := (i, JN ) where i is a complex struc-
ture in Σ and JN is as in the definition of an admissible manifold. Ĵ is
regular by the same argument as used in Lemma 3.

Note that L̂s := ĝsL̂ = Ls ×K1, (Ls ⊂ Σ is the same as in the proof
of Proposition 6), L̂′

ts := f̂tĝs(L̂
′) = L′

ts ×K2. Let p̂ := (pΣ, pN ) where pΣ ∈
Ls ∩ L′

ts is as in Proposition 6 and pN ∈ K1 ∩K2 is taken from the definition
of N . As before, ‖[f̂t, ĝs]‖ ≥ Esep(L̂s, L̂

′
ts) and we apply Theorem 2 to prove

that Esep(L̂s, L̂
′
ts) ≥ min(t, s)− 1.

π2(Σ) = {0} together with the second property of admissible manifolds
imply that Ĵ-holomorphic spheres in M are constant, hence σM = ∞. A
similar argument for disks implies σ

̂L = σ
̂L′
ts
= ∞.

We note that all Ĵ-holomorphic strips in M are projected by πΣ and
πN to pseudo-holomorphic strips in Σ and in N . Vice versa, given two
pseudo-holomorphic strips u1 in Σ and u2 in N , they lift to û = (u1, u2)
in M = Σ×N . Isolated Ĵ-holomorphic strips û in M with endpoint at p̂
are presented by a pair (u1, u2) where u1 is an isolated holomorphic strip in
Σ with endpoint at pΣ and u2 is an isolated JN holomorphic strip with end-
point at pN . We assume that û is not constant. u2 is constant by definition
of N while E(u1) ≥ min(t, s)− 1 by computation in Proposition 6. We note
that E(u) = E(u1) + E(u2) ≥ min(t, s)− 1 hence σp ≥ min(t, s)− 1 and the
proposition follows. �

References

[ALP] M. Audin, F. Lalonde, and L. Polterovich, Symplectic rigidity: La-
grangian submanifolds, in M. Audin and J. Lafontaine, editors, Holo-
morphic curves in symplectic geometry, volume 117 of Progr. Math.,
pages 271–321, Basel, 1994. Birkhäuser Verlag.
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