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On periodic orbits in cotangent bundles of

non-compact manifolds

J. B. van den Berg, F. Pasquotto, T. Rot,

and R. C. A. M. Vandervorst

This paper is concerned with the existence of periodic orbits on
energy hypersurfaces in cotangent bundles of Riemannian mani-
folds defined by mechanical Hamiltonians. In [14] it was proved
that, provided certain geometric assumptions are satisfied, regu-
lar mechanical hypersurfaces in R

2n, in particular non-compact
ones, contain periodic orbits if one homology group among the top
half does not vanish. In the present paper we extend the above
mentioned existence result to a class of hypersurfaces in cotangent
bundles of Riemannian manifolds with flat ends.

1. Introduction

The question of existence of periodic orbits of a Hamiltonian vector field XH

on a given regular energy level, i.e. a level set Σ = H−1(0) of the Hamiltonian
function H, with dH �= 0 on Σ, has been a central question in Hamiltonian
dynamics and symplectic topology which has generated some of the most
interesting recent developments in those areas. The existence of a periodic
orbit does not depend on the Hamiltonian itself, but only on the geometry
of the energy level that the Hamiltonian defines. For this reason one also
speaks of closed characteristics of the energy level.

After the first pioneering existence results of Rabinowitz [10] and [11]
and Weinstein [18] for star-shaped and convex hypersurfaces respectively,
Viterbo [15] proved the existence of closed characteristics on all compact
hypersurfaces of R2n of so called contact type. The latter notion was intro-
duced by Weinstein as a generalization of both convex and star-shaped [19].
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These first results were obtained by variational methods applied to a suitable
(indefinite) action functional.

More recently, Floer, Hofer, Wysocki [3] and Viterbo [17], provided an
alternative proof of the same results (and much more) using the powerful
tools of symplectic homology or Floer homology for manifolds with bound-
ary.

Up to now though, very little is known about periodic orbits on non-
compact energy hypersurfaces: even the Floer homology type of technique
mentioned above breaks down when one drops the compactness assumptions.
It is clear that additional geometric and topological assumptions are needed
in order to make up for the lack of compactness. In [14] we were able to
formulate a set of such assumptions that led to an existence result for the
case of mechanical hypersurfaces in R

2n, that is, hypersurfaces arising as
level sets of Hamiltonian functions of the form kinetic plus potential energy.

Mechanical hypersurfaces in cotangent bundles are an important class
of contact manifolds since they occur naturally in conservative mechani-
cal dynamics. In the case of compact mechanical hypersurfaces Bolotin [2],
Benci [1], and Gluck and Ziller [4] show the existence of a closed charac-
teristic on Σ via closed geodesics of the Jacobi metric on the configuration
manifold. A more general existence result for cotangent bundles is proved
by Hofer and Viterbo in [5] and improved in [16]: Any connected compact
hypersurface of contact type over a simply connected manifold has a closed
characteristic, which confirms the Weinstein Conjecture in cotangent bun-
dles of simply connected manifolds. However, the existence of closed char-
acteristics for non-compact mechanical hypersurfaces is not covered by the
result of Hofer and Viterbo and fails without additional geometric condi-
tions. In this paper we address the question for non-compact mechanical
hypersurfaces, in cotangent bundles of non-compact (smooth) Riemannian
manifolds (M, g).

1.1. Main result

A Riemannian manifold is said to have flat ends if the curvature tensor van-
ishes outside a compact set. The main theorem of this paper is the following
existence result.

Theorem 1.1. Let H : T ∗M → R be the Hamiltonian H(q, θq) =
1
2g
∗
q (θq, θq) + V (q), where
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• (M, g) is an n-dimensional complete orientable Riemannian manifold
with flat ends;

• Σ = H−1(0) is a regular hypersurface, i.e.,dH �= 0 on Σ;

• V is asymptotically regular, i.e. there exist a compact set K and a
constant V∞ > 0 such that

| gradV (q)|≥V∞, for q∈M \K and
‖HessV (q)‖
| gradV (q)| → 0, as d(q,K) → ∞.

Assume moreover that there exists an integer 0 ≤ k ≤ n− 1 such that

(i) Hk+1(ΛM) = 0 and Hk+2(ΛM) = 0, and

(ii) Hk+n(Σ) �= 0.

Then Σ has a periodic orbit which is contractible in T ∗M .

Here ΛM denotes the free loop space of H1 loops into M . The proof of
Theorem 1.1 follows the scheme of the proof of the existence result for non-
compact hypersurfaces in R

2n presented in [14], and when arguments are
identical as that paper, we refer to it without proof. We regard periodic or-
bits as critical points of a suitable action functional A . The functional does
not satisfy the Palais-Smale condition. Therefore we introduce a sequence of
approximating functionals Aε, for ε > 0, which do satisfy the Palais-Smale
condition. Critical points of Aε satisfying certain bounds converge to critical
points of A as ε → 0. Next, based on the assumptions on the topology of
Σ and M , we construct linking sets in M and lift these to linking sets in
the free loop space, where we apply a linking argument to produce critical
points for the approximating functionals satisfying the appropriate bounds.
These critical points then converge to a critical point of A as ε → 0. Because
we construct the linking sets in the component of the loop space contain-
ing the contractible loops, this critical point corresponds to a contractible
loop. Hence, due to our method of proof, in this paper we do not find non-
contractible loops.

One of the main issues in cotangent bundles (as opposed to R
2n) is that

the linking arguments get more involved due to the topology of M . Another
difficulty is that curvature terms appear in the analysis of the functional,
which require some care.

Theorem 1.1 directly generalizes the results of [14]. In [14] examples are
given that show that both topological and geometric assumptions on Σ are
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necessary. Theorem 1.1 also improves the result in the R2n case, as it requires
weaker assumptions on the metric.

After completion of this research, and based on the results presented
in this paper, Suhr and Zehmisch [13] were able to prove that some of the
technical hypotheses of Theorem 1.1 can be removed. In particular, the main
result holds for cotangent bundles over manifolds of bounded geometry and
no assumptions on the homology of the loop space are necessary.

1.2. Acknowledgement

We would like to thank the referee for carefully reading our manuscript and
for the many constructive comments and suggestions, which substantially
improved the presentation of our result.

2. The Palais-Smale condition

Periodic orbits on Σ can be regarded as critical points of the action functional

B(q, T ) =

∫ T

0

{
1

2
|q′(t)|2 − V (q(t))

}
dt,

for mappings q : [0, T ] → M with q(0) = q(T ). Via the coordinate transfor-
mation

(q(t), T ) 	→ (c(s), τ) =
(
q(sT ), log(T )

)
.

we obtain the rescaled action functional

A (c, τ) =
e−τ

2

∫ 1

0
|c′(s)|2 ds− eτ

∫ 1

0
V (c(s)) ds,

for mappings c : S → M and τ ∈ R, where S
1 = [0, 1]/{0, 1} is the parame-

terized circle. The natural domain of the functional A is ΛM × R, where
ΛM denotes the space of loops of Sobolev regularity H1 in M . It is con-
venient to define E(c) = 1

2

∫ |c′(s)|2ds and W(x) =
∫ 1
0 V (c(s))ds such that

A (c, τ) = e−τE(c)− eτW(c). There are some basic inequalities for the vari-
ous metrics on the loop space which will be used in the analysis. The proofs,
as well as more details on the construction of the loop space and the metrics,
can be found in the books of Klingenberg [6, 7]. Let c, c̃ ∈ ΛM and s, s̃ ∈ S

1,
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then

dM (c(s), c(s̃)) ≤
√

|s− s̃|
√

2E(c),(1)

dC0(c, c̃) ≤
√
2 dΛM (c, c̃),(2)

where dΛM is the metric induced by the Riemannian metric on ΛM , and
dC0(c, c̃) = sups∈S1 dM (c(s), c̃(s)). This metric is complete if the metric in-
duced by the Riemannian metric on M is complete. See for example [7,
Theorem 2.4.7] where the proof also shows that ΛM is complete as a met-
ric space if M is complete as a metric space. For ξ ∈ TcΛM , we have the
estimate

(3) ‖ξ‖L2 ≤ ‖ξ‖C0
≤

√
2‖ξ‖H1 .

A direct computation gives the variation of the action.

Lemma 2.1. The action A : ΛM × R → R is continuously differentiable.
For any (ξ, σ) ∈ T(c,σ) ΛM × R the first variation is given by

dA (c, τ)(ξ, σ) = e−τ
∫ 1

0
〈c′(s),�ξ(s)〉ds− eτ

∫ 1

0
〈gradV (c(s)), ξ(s)〉ds

−
∫ 1

0

[e−τ
2

|c′(s)|2 + eτV (c(s))
]
σ ds

= dcA (c, τ)ξ −
(
e−τE(c) + eτW(c)

)
σ,

where the gradient gradV is taken with respect to the metric g on M .

The functional A does not satisfy the Palais-Smale condition. We there-
fore approximate this functional by functionals Aε, and show that the ap-
proximating functionals do satisfy PS. We then find critical points of the
approximating functionals using a linking argument. Finally we show that
these critical points converge to a critical point of A as ε → 0. The approx-
imating, or penalized, functionals are defined by

Aε(c, τ) = A (c, τ) + ε(e−τ + eτ/2).

The term εe−τ penalizes orbits with short periods, and εeτ/2 penalizes
orbits with long periods. Recall that,. for ε > 0 fixed, a sequence {(cn, τn)} ∈
ΛM × R is called a Palais-Smale sequence for Aε, if:

(i) there exist constants a1, a2 > 0 such that a1 ≤ Aε(cn, τn) ≤ a2;
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(ii) ‖dAε(cn, τn)‖ → 0 as n tends to ∞.

The metric in Condition (ii) is the dual Riemannian metric on T ∗ΛM ×
R. This can be equivalently rewritten as

(4) dAε(cn, τn)(ξ, σ) = 〈gradAε(cn, τn), (ξ, σ)〉H1×R = o(1)(‖ξ‖H1 + |σ|),

as n → ∞ and (ξ, σ) ∈ T(cn,τn)ΛM × R. Condition (i) implies that, by pass-
ing to a subsequence if necessary, Aε(cn, τn) → aε, with a1 ≤ aε ≤ a2. In
what follows we tacitly assume we have passed to such a subsequence.

Remark 2.2. We will only consider Palais-Smale sequences that are posi-
tive, thus a1 > 0. The functionals Aε satisfy the Palais-Smale condition for
critical levels aε > a1 > 0.

The relation between A and Aε gives:

dAε(cn, τn)(ξ, σ) = dA (cn, τn)(ξ, σ)− ε
(
e−τn − 1

2
eτn/2

)
σ.

Proceeding as in Lemma 7 of [14] we get the following estimates for Palais
Smale sequences.

2e−τnE(cn) + ε

(
2e−τn +

1

2
eτn/2

)
= aε + o(1),(5)

eτnW(cn)− ε
3

4
eτn/2 = −aε

2
+ o(1), as n → ∞.(6)

From these estimates, we get a priory bounds on τn as in Lemma 8 of [14]
and combining this with estimate (5) for the kinetic energy, we also get a
bound on the kinetic energy.

Lemma 2.3. Let (cn, τn) be a Palais-Smale sequence. There are constants
T0 < T1 and C (depending on ε) such that T0 ≤ τn ≤ T1 and ‖c′n‖2L2 =
2E(cn) ≤ C.

The following proposition establishes the Palais-Smale condition for the
action Aε, with ε > 0.

Proposition 2.4. Let (cn, τn) be a Palais-Smale sequence for Aε, ε > 0.
Then (cn, τn) has an accumulation point (cε, τε) ∈ ΛM × R that is a critical
point, i.e. dAε(cε, τε) = 0 and the action is bounded 0 < a1 ≤ Aε(cε, τε) =
aε ≤ a2.
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Proof. From Lemma 2.3 we have that E(cn) ≤ C and |τn| ≤ C ′, with
the constants C,C ′ > 0 depending only on ε. Fix s0 ∈ S

1, then by Eq. (1)
we have dM (cn(s), cn(s0)) ≤

√|s− s0|
√
2C ≤ √

2C, and therefore cn(s) ∈
B√2C(cn(s0)), for all s ∈ S

1 and all n. Since K ⊂ M is compact, its diam-
eter is finite. It follows, that if dM (cn(s0),K) → ∞ that there exists an N
such that cn(s) ∈ M \K, for all s ∈ S

1 and all n ≥ N . The argument that
it is impossible that dM (cn(s0),K) → ∞ follows from asymptotic regularity
and is identical to the proof of Lemma 9 of [14].

Thus dM (cn(s0),K) ≤ C ′′ and therefore there exists an 0 < R < ∞ such
that cn(s) ∈ BR(K) for all s ∈ S

1 and all n ≥ N . Since (M, g) is complete,
the Hopf-Rinow Theorem implies that BR(K) is compact and thus {cn(s)} ⊂
M is pre-compact for any fixed s ∈ S

1. The sequence {cn(s)} is point wise
relatively compact and equicontinuous by Eq. (1). Therefore, by the general-
ized version of the Arzela-Ascoli Theorem [8] there exists a subsequence cnk

converging in C0(S1,M) (uniformly) to a continuous limit cε ∈ C0(S1,M).
It remains to show that cε is an accumulation point in ΛM , thus in H1 sense.

Due to the above convergence in C0(S1,M), the sequence {cn} can
be assumed to be contained in a fixed chart

(U(c0), exp−1c0

)
, for a fixed

c0 ∈ C∞(S1,M). Following [6] it suffices to show that exp−1c0 cn is a Cauchy
sequence in Tc0ΛM = H1(c∗0TM). This final technical argument is identical
to Theorem 1.4.7 in [6], which proves that {cn} has an accumulation point
in (cε, τε) ∈ ΛM × R, proving the Palais-Smale condition for Aε. The limit
points satisfy dAε(cε, τε) = 0, and Aε(cε, τε) = aε. �

For critical points of Aε we prove additional a priori estimates on τε.
The latter imply a priori estimates on cε. This allows us to pass to the limit
as ε → 0.

We start with pointing out that critical points of the penalized action
Aε satisfy the following Hamiltonian identity

(7)
e−2τε

2
|cε′(s)|2 + V (cε(s)) ≡ ε

(
−e−2τε +

1

2
e−τε/2

)
= ε̃.

Thus the critical point (cε, τε) corresponds to a periodic orbits on Σε̃. Via
the transformation qε(t) = cε(te

−τ ) and the Legendre transform of (qε, q
′
ε) to

a curve γε on the cotangent bundle we see that the Hamiltonian action is

A H
ε (γε, τε) =

∫
γε

Λ + ε
(
e−τε + eτε/2

)
,

where Λ is the tautological 1-form on T ∗M .
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A regular hypersurface of a mechanical Hamiltonian, wether it is com-
pact or not, is always is of contact type, cf. [12]. In the case that Σ is defined
for a Hamiltonian with V asymptotically regular, an explicit contact form
can be constructed and a stronger contact type condition holds. Consider
the vector field:

(8) v(q) = − gradV (q)

1 + |gradV (q)|2 ,

and the function f : T ∗M → R defined by f(x) = θq(v(q)), for all x =
(q, θq) ∈ T ∗M . For κ > 0, define the 1-form Θ = Λ+ κdf . Clearly, dΘ = Ω,
the standard symplectic form on the cotangent bundle. Define the energy
surfaces Σε = {x ∈ T ∗M | H(x) = ε}.

Proposition 2.5. Let V be asymptotically regular. Then there exists
ε0, κ0 > 0, such that for every −ε0 < ε < ε0, Θ = Λ+ κdf restricts to a con-
tact form on Σε, for all 0 < κ ≤ κ0. Moreover, for every κ, there exists a
constant aκ > 0 such that

Θ(XH) ≥ aκ > 0, for all x ∈ Σε and for all − ε0 < ε < ε0.

The energy surfaces Σε are said to be of uniform contact type.

Proof. A tedious, but straightforward computation reveals that1

XH(f)(q, θq) =
| gradV (q)|2

1 + | gradV (q)|2 − HessV (q)(θq, θq)

1 + | gradV (q)|2(9)

+
2θq(gradV (q))HessV (q)(gradV, θq)

(1 + | gradV (q)|2)2 .

The reverse triangle inequality, and Cauchy-Schwarz directly give

XH(f) ≥ | gradV (q)|2
1 + | gradV (q)|2 − 3‖HessV (q)‖ |θq|2

1 + | gradV (q)|2 .

1Given a metric, the Hessian of a function is the bilinear form on the tangent bun-
dle defined by HessV (q)(Xq, Yq) = 〈∇X gradV, Y 〉(q), where X and Y are vector
field extensions of Xq, Yq. Via the musical isomorphisms the Hessian also induces
a bilinear form on the cotangent bundle and a pairing between the tangent and
cotangent bundle, which we all denote with the same symbol.
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By asymptotic regularity there exists a constant C such that 3‖HessV (q)‖
1+| gradV (q)|2 ≤

C, hence

XH(f) ≥ | gradV (q)|2
1 + | gradV (q)|2 − C |θq|2.

This yields the following global estimate

Θx(XH)(q, θq) ≥
(
1− κC

)|θq|2 + κ
| gradV (q)|2

1 + | gradV (q)|2 > 0 for all x ∈ T ∗M,

for all 0 < κ ≤ κ0 = 1/2C. The final step is to establish a uniform positive
lower bound on aκ for (q, θq) ∈ Σε, independent of (q, θq) and ε.

If dM (q,K) ≥ R is sufficiently large, then asymptotic regularity gives
that | gradV (q)| > V∞. Thus, in this region,

1

2
|θq|2 + κ

| gradV (q)|2
1 + | gradV (q)|2 ≥ κ

| gradV (q)|2
1 + | gradV (q)|2 ≥ κV 2∞

1 + V 2∞
.

On dM (q,K) < R we can use standard compactness arguments. For (q, θq) ∈
Σε, we have the energy identity 1

2 |θq|2 + V (q) = ε. Suppose that 1
2 |θq|2 < ε0,

then |V (q)| < ε+ ε0. If ε0 is sufficiently small, this implies that | gradV (q)| ≥
V0 > 0 for some constant V0, because gradV �= 0 at V (q) = 0. Therefore in
this case

1

2
|θq|2 + κ

| gradV (q)|2
1 + | gradV (q)|2 >

κV 2
0

1 + V 2
0

.

If |θq|2 ≥ ε0, then ε0 is a lower bound of this quantity. We have exhausted
all possibilities and established a uniform lower bound on Θ(XH). �

The following a priori bounds are due to the uniform contact type of Σ.

Lemma 2.6. Let (cε, τε) be critical points of Aε, with 0 < a1 ≤ Aε(cε, τε) ≤
a2. Then there is a constant T2, independent of ε, such that τε ≤ T2 for
sufficiently small ε.

Proof. We start with the case τε ≥ 0. The Hamiltonian action satisfies

A H
ε (γε, τε) =

∫
γε

Λ + ε
(
e−τε + eτε/2

) ≤ a2,

and thus
∫
γε
Λ ≤ a2. Since Σ is of uniform contact type it holds for γε ⊂ Σε̃,

with ε̃ ≤ ε ≤ ε0, that

a2 ≥
∫
γε

Λ =

∫
γε

Θ =

∫ eτε

0
αγε

(XH) ≥ aκe
τε .
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We conclude that always τε ≤ max{0, log(a2/aκ)}, which proves the lemma.
�

We can also establish a lower bound on τε under the condition that
M is asymptotically flat. It is here that the assumption of M having flat
ends is really necessary, all other estimates carry through under the weaker
assumption of bounded geometry.

Lemma 2.7. Let (cε, τε) be critical points of Aε, with 0 < a1 ≤ Aε(cε, τε) ≤
a2. If (M, g) is asymptotically flat, then there is a constant T3, independent
of ε, such that τε ≥ T3 for sufficiently small ε.

Proof. Assume, by contradiction that τε → −∞ as ε → 0. Then Equation (5)
gives

(10) 2E(cε) = eτεaε − 2ε− ε

2
e3τε/2 → 0, as ε → 0.

Fix s0 ∈ S
1. Then the previous equation implies, using Equation 1, that

cε(s) ∈ Bε′
(
cε(s0)

)
, where ε′ =

√
eτεa2 − 2ε− ε

2e
3τε/2. We distinguish two

cases:
(i) There exists an R > 0 such that dM (cε(s0),K) ≤ R for all ε. Then

cε(s) ∈ Bε′+R(K), and therefore |V (cε(s))| ≤ C for all s ∈ S
1 and all ε > 0.

This implies
∫ 1
0 eτεV (cε(s))ds → 0, which contradicts (6), as aε > 0, and thus

τε ≥ T3.
(ii) Now we assume no such R > 0 exists, and assume thus that

dM (cε(s0),K) → ∞ as ε → 0 to derive a contradiction. By bounded geom-
etry of M , every point q ∈ M has a normal charts (Uq, exp

−1
q ) and con-

stants ρ0, R0 > 0 such that Bρ0
(q) ⊂ Uq and |∂�Γk

ij(q)| ≤ R0. This implies
that cε(s) ∈ Ucε(s0) for sufficiently small ε. We assume M has flat ends, and
since d(cε(s0),K) → ∞ the metric on the charts Ucε(s0) is flat. We identify
these charts with open subsets of Rn henceforth. The differential equation
cε satisfies is

(11) e−2τε∇sc
′
ε(s) + gradV (cε(s)) = 0.

Take the unique geodesic γ from cε(s0) to cε(s) parameterized by arc length,
i.e.

γ(0) = cε(s0), γ(dM (cε(s0), cε(s)) = cε(s), and |γ′(t)| = 1.
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Then, by asymptotic regularity, ‖HessV (γ(t))‖ ≤ C| gradV (γ(t))| for some
constant C > 0, and

d

dt
| gradV (γ(t))|2 = 2 HessV (γ(t))(gradV (γ(t)), γ′(t))

≤ 2‖HessV (γ(t))‖| gradV (γ(t))| ≤ 2C| gradV (γ(t))|2.
Gronwall’s inequality therefore implies that

(12) | gradV (γ(t))| ≤ | gradV (γ(0))|eCt.

We identify Ucε(s0) with an open subset of Rn, and we write gradV (γ(t)) =

gradV (γ(0)) +
∫ t
0

d
dσ gradV (γ(σ))dσ. Hence

| gradV (γ(t))− gradV (γ(0))|(13)

≤
∫ t

0
‖HessV (γ(σ))‖dσ ≤ C

∫ t

0
| gradV (γ(σ))|dσ

≤ | gradV (γ(0))|(eCt − 1).

For any solution to Equation (11), we compute

d

ds
e2τε〈gradV (cε(s0)), c

′
ε(s)〉

= e2τε〈gradV (cε(s0)),∇sc
′
ε(s)〉

= −〈gradV (cε(s0)), gradV (cε(s))〉
= −〈gradV (cε(s0)), gradV (cε(s0))〉
− 〈gradV (cε(s0)), gradV (cε(s))− gradV (cε(s0))〉

By asymptotic regularity and Estimate (13), we find that

d

ds
e2τε〈gradV (cε(s0), c

′
ε(s)〉 ≤ −V 2

∞ + V 2
∞(eCdM (cε(s0),cε(s)) − 1).

We see that as ε → 0 that e2τε〈gradV (cε(s0), c
′
ε(s)〉 is monotonically de-

creasing in s. We conclude that cε cannot be periodic. This is a contradic-
tion, therefore there exists a constant T3 such that τε ≥ T3, for sufficiently
small ε. �

Proposition 2.8. Let (cε, τε), ε → 0 be a sequence satisfying dAε(cε, τε) =
0, and 0 < a1 ≤ Aε(cε, τε) ≤ a2. If (M, g) has flat ends then there exists a
convergent subsequence (cε′ , τε′) → (c, τ) in ΛM × R, ε′ → 0. The limit sat-
isfies dA (c, τ) = 0, and 0 < a1 ≤ A (c, τ) ≤ a2.
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Proof. From Lemmas 2.6 and 2.7 we obtain uniform bounds on τε. We can
now repeat the arguments of the proof of Proposition 2.4 on the sequence
{cε}, from which we draw the desired conclusion. �

3. The relation of the topology of the hypersurface with the
topology of its projection

We investigate the relation between the topology of Σ and its projection
N = π(Σ) to the base manifold. Recall that we assume H to be mechanical
and that the hypersurface Σ = H−1(0) is regular. Thus N and its boundary
∂N are given by

N = {q ∈ M | V (q) ≤ 0}, and ∂N = {q ∈ M | V (q) = 0},

and ∂N is smooth. We have the topological characterization

(14) Σ ∼= ST ∗N
⋃

ST ∗N
∣∣
∂N

DT ∗N
∣∣
∂N

.

The characterization is given in terms of the sphere bundle ST ∗N and the
disc bundle DT ∗N in the cotangent bundle of N . The vertical bars denote
the restriction of the bundles to the boundary. This topological characteri-
zation gives a relation between the homology of Σ and N . In this section we
identify Σ with this characterization.

Recall that a map is proper if preimages of compact sets are compact. In
the proof of the next proposition, compactly supported cohomology H∗

c (M)
is used, which is contravariant with respect to proper maps. In singular
(co)homology, homotopic maps induce the same maps in (co)homology. For
compactly supported cohomology, maps that are homotopic via a homo-
topy of proper maps, induce the same maps in cohomology. If ∂N = ∅ the
following proposition directly follows from the Gysin sequence.

Proposition 3.1. There exist isomorphisms H i
c(Σ)

∼= H i
c(N) for all 0 ≤

i ≤ n− 2.

Proof. Let C be the closure of a collar of ∂N in N . Thus C deformation
retracts via a proper homotopy onto ∂N . Denote by π also the projection
ST ∗M → M . Then π−1(C) is the closure of a collar of ST ∗N

∣∣
∂N

= ∂ST ∗N
in ST ∗N , and therefore it deformation retracts via a proper homotopy onto
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ST ∗N
∣∣
∂N

. Define D ⊂ Σ by

D = π−1(C)
⋃

ST ∗N
∣∣
∂N

DT ∗N
∣∣
∂N

.

This is a slight enlargement of the disc bundle of M restricted to the bound-
ary ∂N , which Figure 1 clarifies. By construction D deformation retracts
properly to DT ∗N

∣∣
∂N

, which in turn deformation retracts properly to ∂N .
This induces an isomorphism

(15) H∗
c (D) ∼= H∗

c (∂N).

Let S = ST ∗N . The intersection D ∩ S deformation retracts properly to
ST ∗N

∣∣
∂N

. Thus the isomorphism

(16) H∗
c (D ∩ S) ∼= H∗

c (ST
∗N

∣∣
∂N

),

holds. The inclusions in the diagram

S j1
��

S ∩D

ı1 ��

ı2 ��

Σ

D
j2

��

are proper maps, because the domains are all closed subspaces of the co-
domains. This gives rise to the contravariant Mayer-Vietoris sequence of
compactly supported cohomology of the triad (Σ, S,D)
(17)

�� H i
c(Σ)

(ji1,−ji2)�� H i
c(S)⊕H i

c(D)
ıi1+ıi2 �� H i

c(S ∩D) �� H i+1
c (Σ) ��

The map ıi2 is an isomorphism: this can be seen from the Gysin sequence
for compactly supported cohomology as follows. Recall that from any vector
bundle E → B of rank n over a locally compact space B, we can construct a
sphere bundle SE → B. The Gysin sequence relates the cohomology of SE
and B,
(18)

. . . �� H i−n
c (B)

εi �� H i
c(B)

πi
�� H i

c(SE)
δ �� H i−n+1

c (B) �� . . .

The map εi is the cup product with the Euler class of the sphere bundle.
We apply this sequence to the sphere bundle in T ∗N restricted to ∂N . For
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dimensional reasons the sequence breaks down into short exact sequences

(19) 0 �� H i
c(∂N)

πi
�� H i

c(ST
∗N

∣∣
∂N

) �� 0 for 0 ≤ i ≤ n− 2.

The diagram

H i
c(D)

ıi2 ��

∼=
��

H i
c(S ∩D)

∼=
��

H i
c(∂N)

πi
�� H i

c

(
ST ∗N

∣∣
∂N

)
commutes. This shows that ıi2 is an isomorphism for 0 ≤ i ≤ n− 2. The map
ıi1 + ıi2 in the Mayer-Vietoris sequence, Equation (17), is surjective, and the
sequence breaks down into short exact sequences

(20) 0 �� H i
c(Σ) �� H i

c(S)⊕H i
c(D)

ıi1+ıi2 ��
H i

c(S ∩D)
p

�� �� 0 .

More is true, since the sequence actually splits by the map p = (0, (ıi2)
−1).

If we study the Gysin sequence for N and S we see that

(21) 0 �� H i
c(N)

πi
�� H i

c(S) �� 0, for 0 ≤ i ≤ n− 2.

The isomorphisms (21), (15), (16), and (19) can be applied to the sequence
in Equation (20) and because the sequence is split the stated isomorphism
holds. �

Proposition 3.2. For all 2 ≤ i ≤ n there is an isomorphism

(22) Hi(N, ∂N) ∼= Hi+n−1(Σ).

Proof. This is a double application of Poincaré duality for non-compact man-
ifolds with boundary. The dimension of N is n, and therefore Poincaré du-
ality gives Hi(N, ∂N) ∼= Hn−i

c (N). The boundary of Σ is empty, and its
dimension equals 2n− 1, thus Hn+i−1(Σ) ∼= Hn−i

c (Σ). By Proposition 3.1
we have Hn−i

c (N) ∼= Hn−i
c (Σ), for all 2 ≤ i ≤ n. The isomorphism stated in

the proposition is the composition of the isomorphisms. �
We would also like the previous proposition to be true if i = 1. This

is the case if the bundle ST ∗N is trivial, but in general this is not true.
However, the following result is sufficient for our needs.
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π

M

NC

∂N

DT ∗M
∣∣∣
∂N D

S

π−1(C)

π−1(C)

Figure 1: A sketch of the spaces D, and S. In the picture N is a half-
line, hence ∂N is a point. The topology of the energy hypersurface can be
recovered from its projection N .

Proposition 3.3. If Hn(Σ) �= 0 and Hn(M) = 0, then H1(N, ∂N) �= 0.

Proof. We will show that a non-zero element in Hn−1
c (Σ) gives rise to a non-

zero element in Hn−1
c (N). A double application of Poincaré duality, as in the

previous proposition, will give the desired result. We will use the same nota-
tion as in the proof of Proposition 3.1. The Gysin sequence, Equation (18),
for the sphere bundle ST ∗N

∣∣
∂N

over ∂N breaks down to the short exact
sequence

(23) 0 �� Hn−1
c (∂N)

πn−1
�� Hn−1

c (ST ∗N
∣∣
∂N

)
δ �� H0

c (∂N) �� 0 .

Because ST ∗N
∣∣
∂N

is an (n− 1)-dimensional sphere bundle over an (n− 1)-

dimensional manifold, it admits a section σ : ∂N → ST ∗N
∣∣
∂N

and Equa-
tion (23) splits. We obtain the isomorphism

Hn−1
c (S ∩D) ∼= Hn−1

c (ST ∗N
∣∣
∂N

) ∼= Hn−1
c (∂N)⊕H0

c (∂N).

where the first isomorphism is induced by a homotopy equivalence. Now we
look at the Mayer-Vietoris sequence for S,D,

0 �� Hn−1
c (Σ)

(jn−1
1 ,−jn−1

2 )
�� Hn−1

c (S)⊕Hn−1
c (D)

ın−1
1 +ın−1

2 ��

∼=
��

Hn−1
c (S ∩D)

(σn−1,δ)
��

Hn−1
c (S)⊕Hn−1

c (∂N) �� Hn−1
c (∂N)⊕H0

c (∂N).
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We get a zero on the left of this sequence, because we have shown that in the
previous step that the map ın−21 + ın−22 is surjective, cf. the argument before
Equation (20). We claim that jn−11 is injective. Suppose otherwise, then there
are [x], [y] ∈ Hn−1

c (Σ), with [x] �= [y] such that jn−11 ([x]) = jn−11 ([y]). Then
jn−11 ([x]− [y]) = 0. But since the map (jn−11 ,−jn−12 ) is injective, we realize
that jn−12 ([x]− [y]) �= 0. But then ın−12 jn−12 ([x]− [y]) = 0 by the exactness
of the sequence. Moreover

σn−1ın−12 jn−12 ([x]− [y]) = (ı2σ)
n−1jn−12 ([x]− [y]).

But, by the proper homotopy equivalenceD ∼= ∂N , we realize that (ı2σ)
n−1 :

Hn−1
c (D) → Hn−1

c (∂N) is an isomorphism, and jn−12 ([x]− [y]) �= 0. This is a
contradiction, hence jn−11 is injective. Recall that the Gysin sequence comes
from the long exact sequence of the disc and sphere bundle, and the Thom
isomorphism. From this we derive the following commutative diagram, which
shows a naturality property of the Gysin sequence.

0 �� Hn−1
c (∂N) �� Hn−1

c (ST ∗N
∣∣
∂N

)
δ �� H0

c (∂N) ��

0 �� Hn−1
c (DT ∗N

∣∣
∂N

) ��

∼=
		

Hn−1
c (ST ∗N

∣∣
∂N

)
δ ��

=

		

Hn
c (DT ∗N

∣∣
∂N

, ST ∗N
∣∣
∂N

) ��

Φ−1∼=
		

0 �� Hn−1
c (DT ∗N) ��

		

Hn−1
c (ST ∗N)

δ ��

ın−1
1

		

Hn
c (DT ∗N,ST ∗N

)
��

		

0 �� Hn−1
c (N) ��

∼=
		

Hn−1
c (ST ∗N)

δ ��

=

		

H0
c (N) ��

Φ∼=
		

The top and bottom rows are the Gysin sequences of (∂N, ST ∗N
∣∣
∂N

) and

(N,ST ∗N
∣∣
N
) respectively. The vertical maps between the middle rows are

the pullback maps of the inclusion of pairs (DT ∗N
∣∣
∂N

, ST ∗N
∣∣
∂N

) →
(DT ∗N,ST ∗N

∣∣
N
). The vertical maps Φ are the Thom isomorphisms. The

map ın−11 in the diagram is is the same as the map induced by ı1 : S ∩D →
S, under the isomorphism induced by the homotopy equivalence S ∩D ∼=
ST ∗N

∣∣
∂N

, which we therefore denote by the same symbol.

We want to show that δjn−11 (y) = 0 for all y ∈ Hn−1
c (Σ). For this we

argue as follows. Recall thatH0
c (N) consists of constant functions of compact

support, and therefore is generated by the number of compact components
of N . If the vertical map in the third column, from H0

c (N) → H0
c (∂N) is not

injective, then N has a compact component without boundary. This implies
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that M must have a compact component without boundary. But we assume
that Hn(M) = 0, therefore M does not have orientable compact components
and H0

c (N) → H0
c (∂N) is injective. Let [y] ∈ H0

c (Σ) be non-zero. Obviously
in Hn−1

c (ST ∗N
∣∣
∂N

) we have the equality ın−11 jn−11 ([y]) = ın−12 jn−12 ([y]), and
from the definition of the boundary map in the long exact sequence of the
pair in the second row of the diagram, we obtain

δın−11 jn−11 ([y]) = δın−12 jn−12 ([y]) = [p−1d(ın−12 )−1ın−12 jn−12 y]

= [p−1djn−12 y] = [p−1jn−12 dy] = 0.

where p is the projection map in the defining short exact sequence. By the
injectivity of the map H0

c (N) → H0
c (∂N), and the commutativity of the

diagram we must have that δjn−11 ([y]) = 0 ∈ H0
c (N). The exactness of the

bottom row now shows that there must be an element in Hn−1
c (N) which is

mapped to jn−11 ([y]), because it jn−11 ([y]) is in the kernel of δ. Poincaré dual-
ity for non-compact manifolds with boundary states thatHn(Σ) ∼= Hn−1

c (Σ),
and Hn−1

c (N) ∼= H1(N, ∂N). Thus, by the preceding argument we get a non-
zero class in H1(N, ∂N). �

Proposition 3.4. Suppose that Hk+n(Σ) �= 0 and Hk+1(M) = 0, for some
0 ≤ k ≤ n− 1. Then there exists a non-zero class in Hk(M \N) which is
mapped to zero in Hk(M) by the morphism induced by the inclusion.

Proof. Consider the long exact sequence of the pair (M,M \N)

Hk+1(M) → Hk+1(M,M \N) → Hk(M \N) → Hk(M).

The homology groupHk+1(M) is zero by assumption, thus the middle map is
injective. If we can find a non-zero element in Hk+1(M,M \N), then we see
it is mapped to a non-zero element of Hk(M \N), which in turn is mapped
to zero in Hk(M) by exactness of the sequence. By excision Hk+1(M,M \
N) ∼= Hk+1(N, ∂N). Thus there is a non-zero element of Hk(M \N) which
is mapped to zero in Hk(M) by the inclusion for 0 ≤ k ≤ n− 1. �

Remark 3.5. In our setting, the assumption Hk+1(M) = 0 is automat-
ically satisfied. This follows from the assumption Hk+1(ΛM) = 0 on the
topology of the loop space, and Equation (29).
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4. The link

4.1. The parameter ν

For analytical reasons, we need to shrink the setN = π(Σ) = {q ∈ M |V (q) ≤
0} to

(24) Nν = {q ∈ M |V (q) ≤ −ν
√

1 + | gradV (q)|2}.

For small ν this can be done diffeomorphically. On the modified set Nν we
estimate the potential V uniformly.

Lemma 4.1. There exist ν > 0 sufficiently small, such that

• The spaces N and Nν are diffeomorphic, and M \N and M \Nν are
diffeomorphic.

• If Hk+n(Σ) �= 0 and Hk+1(M) = 0 for some k, there exists a non-
zero class in Hk(M \Nν) which is mapped to zero in Hk(M) by the
morphism induced by the inclusion.

• There exists a ρν > 0 such that, for all q ∈ Nν ,

(25) V (q̃) ≤ −ν

2
, for all q̃ ∈ Bρν

(q).

Proof. Consider the function f : M → R defined by

f(q) =
V (q)√

1 + | gradV (q)|2 .

The gradient flow of this function induces the diffeomorphism. Because N is
non-compact, the Gradient Deformation Lemma does not apply. However,
following the estimates of Lemma 14 of [14], it follows that this function
satisfies the condition of Palais and Smale, and has no critical values be-
tween 0 and −ν. A theorem of Palais [9, Theorem 10.2] now shows that N
and Nν are diffeomorphic through the gradient flow defined by this func-
tion. Proposition 3.4 therefore shows that there exists a non-zero class in
Hk+1(M \Nν) that is mapped to zero in Hk(M) by the morphism induced
by the inclusion.

We now estimate V uniformly on balls of radius ρν around points of
Nν . By continuity and compactness, there exists a ρν > 0 such that for all
q ∈ Nν with d(q,K) < 1, and all q̃ ∈ Bρν

(q), the estimate V (q̃) ≤ −ν
2 holds.
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ΛM × R
M

Nν
U

W

ΛM × RM

A

B

Figure 2: Sketches of the domain ΛM × R of the functional A . The manifold
M is embedded in ΛM by the map sending q ∈ M to the constant loop
cq(s) = q, and hence is embedded in ΛM × R. On the left, the (k)-link in
the base manifold, between W and Nν is shown. This link obviously does not
persist in the loop space. However, it is possible to lift the link to ΛM × R,
depicted on the right, to the sets A and B, which (k + 1)-link in ΛM × R.

For q ∈ Nν with d(q,K) ≥ 1, if ρν < 1, then d(q̃, K) > 0 for all q̃ ∈ Bρν
(q).

If ρν < injM , there exists a unique shortest geodesic γ parameterized by
arclength ρ′ν < ρν , and Equation (12) holds. We compute

V (q̃) = V (q) +

∫ ρ′
ν

0

d

ds
V (γ(s))ds

≤ V (q) + | gradV (q)|e
Cρ′

ν − 1

C

≤ −ν
√

1 + | gradV (q)|2 + | gradV (q)|e
Cρν − 1

C
.

The function x 	→ −ν
√
1 + x2 + eCρν−1

C x has the maximum

−
√

ν2 −
(
e2Cρν − 1

C

)2

for e2Cρν−1
C ≤ ν. We can find ρν > 0 small such that V (q̃) ≤ −ν

2 . This is
independent of q, because so is C. �

4.2. Constructing linking sets.

We will use the topological assumptions in Theorem 1.1, to construct linking
subspaces of the loop space. These are in turn used to find candidate critical
values of the functional A .
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The goal is to construct a link in the function space with right bounds
for A on the linking sets. We will in fact construct this link in a tubular
neighborhood of M in ΛM . By the assumption of bounded geometry, we
can construct a well behaved tubular neighborhood. Let NM be the normal
bundle of ι(M) in ΛM . Recall that we denote the constant loop at q ∈ M ,
by cq, thus cq(s) = q for all s ∈ S. Elements ξ ∈ NcqM are characterized by
the fact that

∫
S1 ξ(s)ds = 0. Assuming that M is of bounded geometry, we

get a uniform tubular neighborhood in the loop space.

Proposition 4.2. Assume that M is of bounded geometry. Then there
exists an open neighborhood V of ι(M) in ΛM and a diffeomorphism φ :
NM → V, with the property that it maps ξ ∈ NM with ‖ξ‖H1 ≤ injM

2 to
φ(ξ) ∈ ΛM with dH1(cq, φ(ξ)) = ‖ξ‖H1.

The inclusion of the zero section in the normal bundle is denoted by
ζ : M → NM . The zero section of the normal bundle is mapped diffeo-
morphically into ι(M) ⊂ ΛM by φ. The norm ‖ · ‖⊥ defined by ‖ξ‖⊥ =∫
S1〈�ξ(s),�ξ(s)〉 ds, is equivalent to the norm ‖ · ‖H1 . To be precise the
following estimate holds

(26) ‖ξ‖⊥ ≤ ‖ξ‖H1 ≤
√
2‖ξ‖⊥.

By Proposition 3.4 and Lemma 4.1 there exists a non-zero [w] ∈ Hk(M \
Nν) such that ik([w]) = 0 in Hk(M). In this formula i is the inclusion i :
M \Nν → M , and ik the induced map in homology of degree k. Because
ik[w] = 0, there exists a u ∈ Ck+1(M) such that ∂u = w. We disregard any
connected component of u that does not intersect w. Set W = |w| and U =
|u| where | · | denotes the support of a cycle. Both are compact subspaces
of M . Note that we can assume that W is contained in M \N , because
M \Nν is a deformation retract of M \N . The inclusion Hk(W ) → Hk(M \
Nν) is non-trivial by construction. We say that W (k)-links Nν in M . The
linking sets discussed above will be used to construct linking sets in the
loop space, satisfying appropriate bounds, cf. Proposition 5.1. A major part
of this construction is carried out by the “hedgehog” function, which is a
continuous map h : [0, 1]× U → ΛM with the following properties

(i) h0(U)⊂V, with the tubular neighborhood V defined in Proposition 4.2.

(ii) The restriction ht
∣∣
W

is the inclusion of W in the constant loops in
ΛM ,
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U × {0}
M × {0}

Nν × {ρ}

π̂(f(U))

W × {0}W × {0}
Figure 3: The projected normal bundle π̂(NM) = M × R is depicted. The
set Z = U × {0} ∪ π̂(f(U)) and Nν × {ρ} (k + 1) link in M × R.

(iii) Only W is mapped to constant loops. Thus ht(q) ∈ ι(M) if and only
if q ∈ W .

(iv)
∫ 1
0 V (h1(q)(s))ds > 0 for all q ∈ U .

The construction is similar, but not equivalent to the construction of
such a function in the appendix of [14]. The reason that this construction
cannot be followed ad verbatim, is that the topology of the loop space might
be non-trivial and that the global interpolation operators used there cannot
be defined. The construction has to be done locally: for t = 0, a point q ∈ U is
mapped to a loop close (in H1 sense) to the constant loop cq(s) = q. Points
on the boundary W are mapped to constant loops, but other points are
never mapped to a constant loop. This ensures the first three properties (for
t = 0). By construction, there are a finite number of points where the loops
stay for most of the time. These points are then homotoped to points where
the potential is positive. This ensures the last property, using compactness
of U . The details of the construction are given in [12].

Properties (i) and (ii) are used to lift the link of M to a link in ΛM . The
remaining properties are used to deform the link to sets where the functional
satisfies appropriate bounds, and show that the link is not destroyed during
the homotopy.

Because U is compact, andNν is closed, ι(U ∩Nν) is compact. Moreover,
it does not intersect ht(U) for any t, by property (iii). Hence dΛM (h[0,1](U),

ι(U ∩Nν)) > 0. Set 0 < ρ < min( injM2 , ρν

2 ) such that

(27) ρ <
1

2
dΛM (h[0,1](U), ι(U ∩Nν)).

Define f : U → NM by the equation f(q) = φ−1h0(q), where φ : NM →
V is defined in Proposition 4.2. The restriction of f to W is the inclusion
of W into the zero section of NM by Property (ii). Recall that the normal
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bundle comes equipped with the equivalent norm ‖ · ‖⊥, cf. (26). Define the
map π̂ : NM → M × R by

π̂(q, ξ) = (q, ‖ξ‖⊥).

Define S = π̂−1(Nν × {ρ}). This is a sphere sub-bundle of radius ρ in the
normal bundle over Nν . Recall that the inclusion of M as the zero section
in NM is denoted by ζ : M → NM . Set

Z = π̂(ζ(U) ∪ f(U)) = U × {0} ∪ π̂(f(U)).

The sets are depicted in Figure 3. Because W (k)-links Nν in M , the set Z
(k + 1)-links π̂(S) = Nν × {ρ} in M × R, as we prove below.

Lemma 4.3. The inclusion Hk+1(Z) → Hk+1(M × R \Nν × {ρ}) is non-
trivial.

Proof. Recall that W = |w| and w = ∂u with u ∈ Ck+1(M) a (k + 1)-cycle.
Define the cycle x ∈ Ck+1(Z) by

x = π̂k+1ζk+1(u)− π̂k+1fk+1(u),

This cycle is closed, because

∂x = π̂kζk(∂u)− π̂kfk(∂u)

= π̂kζk(w)− π̂kfk(w) = 0.

In the last step we used that f
∣∣
W

= ζ
∣∣
W
. Hence [x] ∈ Hk+1(Z). We show

that this class is mapped to a non-trivial element in Hk+1(M × R \Nν ×
{ρ})

For technical reasons we need to modify Z and Nν × {ρ}. Define the set
Z̃ by

Z̃ = U × {0} ∪W × [0, ρ] ∪ Tρ(π̂f(U)),

where Tρ : M × R → M × R is the translation over ρ in the R direction,
i.e. Tρ(q, r) = (q, r + ρ). Denote by Iρ the interval (ρ3 ,

2ρ
3 ). There exists a

homotopy mt : M × R → M × R, with the following properties:

(i) m0 = id,

(ii) mt(Z̃) ∩mt(Nν × Iρ) = ∅, for all t,

(iii) m1(Z̃) = Z,
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(iv) m1(Nν × Iρ) = Nν × {ρ}.
These properties ensure that Z (k + 1)-links Nν × {ρ} if and only if Z̃ (k +
1)-links Nν × Iρ. Define [x̃] = (m1)

−1
k+1[x] ∈ Hk+1(Z̃). This is well defined

because (m1)k+1 is an isomorphism. We will reason that this class includes
non-trivially in Hk+1(M × R \Nν × Iρ). For this we apply Mayer-Vietoris
to the triad (Z̃, U1, U2), with

U1 = U × {0} ∪W ×
[
0,

2ρ

3

)
,

U2 = W ×
(ρ
3
, ρ

]
∪ Tρ π̂f(U).

Note that U1 ∩ U2 = W × Iρ. From the Mayer-Vietoris sequence for the triad
we get the boundary map

Hk+1(Z̃)
δ �� Hk(W × Iρ) .

By definition of the boundary map δ in the Mayer-Vietoris sequence, we
have that δ[x̃] = (m1)

−1
k π̂k ζk[w]. Now we consider a second Mayer-Vietoris

sequence, the Mayer-Vietoris sequence of the triad(
M × R \Nν × Iρ,M × R> ρ

3
\Nν × Iρ,M × R< 2ρ

3
\Nν × Iρ

)
.

By naturality of Mayer-Vietoris sequences, the following diagram commutes

Hk+1(Z̃)

ik+1

��

δ �� Hk(W × Iρ)

ik
��

Hk+1(M × R \Nν × Iρ)
δ �� Hk(M × Iρ \Nν × Iρ).

We argued that δ[x̃] = (m1)
−1
k π̂k ζk[w]. We have that ik(m1)

−1
k π̂k ζk[w] �= 0

by assumption. By the commutativity of the above diagram we conclude that
ik+1[x̃] �= 0. Thus Z̃ (k + 1)-links Nν × Iρ in M × R, which implies that Z
(k + 1)-links Nν × {ρ} in M × R. �

The previous lemma lifted the link in the base manifold to a link in
M × R. We now lift this link to the full normal bundle.

Lemma 4.4. The inclusion Hk+1(ζ(U) ∪ f(U)) → Hk+1(NM \ S) is non-
trivial.
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Proof. The following diagram commutes

Hk+1(ζ(U) ∪ f(U))
π̂k+1

��

ik+1

��

Hk+1(Z)

ik+1

��

Hk+1(NM \ S) π̂k+1
�� Hk+1(M × R \Nν × {0}).

Define [y] = ζk+1[u]− fk+1[u]. Recall that [x] = π̂k+1[y] includes non-
trivially in Hk+1(M × R \Nν × {ρ}) by the construction in lemma 4.3. By
the commutativity of the above diagram πk+1ik+1[y] = ik+1πk+1[y] �= 0.
Thus i∗[y] �= 0. The inclusion Hk+1(ζ(U) ∪ f(U)) → Hk+1(NM \ S) is non-
trivial. �

The domain of A is not the free loop space ΛM , but ΛM × R. The extra
parameter keeps track of the period of the candidate periodic solutions. Thus
we need once more to lift the link to a bigger space. In this process we also
globalize the link, moving it from the normal bundle to the full free loop
space. Recall that we write E = ΛM × R. The subsets At = AI ∪AII ∪At

III

are defined by

AI = φ(ζ(U))× {σ1}
AII = φ(ζ(W ))× [σ1, σ2]

At
III = ht(U)× {σ2}

The constants σ1 < σ2 will be specified in Proposition 5.1. Finally we define
the sets A,B ⊂ E by

(28) A = A1 and B = φ(S)× R.

Figure 4 depicts the sets A and B.

Lemma 4.5. The inclusion Hk+1(A) → Hk+1(E \B) is non-trivial.

Proof. By Lemma 4.4 the morphism induced by the inclusion Hk+1(ζ(U) ∪
f(U)) → Hk+1(NM \ S) is non-trivial. By applying the diffeomorphism φ,
we see therefore that

Hk+1(φ(ζ(U)) ∪ φ(f(U))) → Hk+1(V \ φ(S)),

is non-trivial. Because the base manifold (seen as the constant loops) is a
retract (but not necessarily a deformation retract) of the loopspace we have
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the following relation:

(29) H∗(ΛM) ∼= H∗(M)⊕H∗(ΛM,M).

We assume Hk+2(ΛM) = 0, thus Hk+2(ΛM,M) = 0. The tubular neighbor-
hood V deformation retracts to M , hence we have Hk+2(ΛM,V) ∼=
Hk+2(ΛM,M). Since φ(S) is closed and contained in the interior of V, we
can excise φ(S). This gives an isomorphism Hk+2(ΛM \ φ(S),V \ φ(S)) ∼=
Hk+2(ΛM,V) ∼= 0. The long exact sequence of the pair (ΛM \ φ(S),V \
φ(S)) now gives that Hk+1(V \ φ(S)) → Hk+1(ΛM \ φ(S)) is injective. It
follows that Hk+1(φ(ζ(U) ∪ f(U))) → Hk+1(ΛM \ φ(S)), is non-trivial. Let
π1 : ΛM × R → ΛM be the projection to the first factor. Because of the
choice of ρ, cf. Equation (27) the set π1(A

t) never intersects π1(B). By the
construction of the sets At and B, the map π1 induces a homotopy equiva-
lence between At and π1(A

t) and between E \B and ΛM \ π1(B), so that
the diagram

Hk+1(A
t)

(π1)k+1

��

�� Hk+1(E \B)

(π1)k+1

��

Hk+1(π1(A
t)) �� Hk+1(ΛM \ π1(B)),

commutes. We see that Hk+1(A
t) → Hk+1(E \B) is non-trivial if and only

if Hk+1(π1(A
t)) → Hk+1(ΛM \ π1(B)) is non-trivial. For all t ∈ [0, 1] the in-

duced maps are the same, because of homotopy invariance. For t = 0 we have
that π1(A

0) = φ(ζ(U) ∪ f(U)), and ΛM \ π1(B) = ΛM \ φ(S). We conclude
that A (k + 1)-links B in ΛM . �

5. Estimates

We need to estimate A on the sets A,B ⊂ E, defined in Equation (28).

Proposition 5.1. If ν and ρ are sufficiently small, then there exist con-
stants σ1 < σ2 and 0 < a < b, such that

(30) A
∣∣
A
≤ a and A

∣∣
B
> b.

Proof. We first estimate A on B = φ(S)× R. Let (c1, τ) ∈ φ(S)× R. Then
c1 = φ(ξ) = expc0(ξ) where ξ is a vector field along a constant loop c0 at q ∈
Nν , for which ‖ξ‖⊥ = ‖�ξ‖L2 = ρ. From the Gauss lemma, and the following
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ΛM

R

ι(M)

BAII

AI

A1
III

Figure 4: A sketch of the linking sets A = AI ∪AII ∪A1
III andB. For graph-

ical reasons the base manifold M and the loop space ΛM are depicted as
one-dimensional.

estimate, cf. Equations (3) and (26),

‖ξ‖C0 ≤
√
2‖ξ‖H1 ≤ 2‖ξ‖⊥

we see that sups∈S1 dM (c0(s), c1(s)) ≤ 2ρ. Recall that we assumed ρ ≤ ρν

2 .
Hence for all s ∈ S

1, we have c1(s) ∈ Bρν
(q) and therefore V (c1(s)) ≤ −ν

2 ,
by Lemma 4.1. We use this to estimate the second term of

(31) A (c1, τ) =
e−τ

2

∫ 1

0
|c′1(s)|2ds− eτ

∫ 1

0
V (c1(s))ds.

Let us now concentrate on the first term. We construct the geodesic from
c0 to c1 in the loop space, namely ct(s) = expc0(tξ(s)). This can also be
seen as a singular surface in M , cf. [7]. Now we apply Taylor’s formula with
remainder to t 	→ E(ct). There exists a 0 ≤ t̃ ≤ 1 such that

(32) E(c1) = E(c0) + d

dt
E(ct)

∣∣∣
t=0

+
1

2

d2

dt2
E(ct)

∣∣∣
t=0

+
1

6

d3

dt3
E(ct)

∣∣∣
t=t̃

.

The first term E(c0) = 0, since c0 is a constant loop. Because t 	→ ct is a
geodesic d

dt

∣∣
t=0

E(ct) = 0. The second order neighborhood of a closed geodesic
is well studied [7, Lemma 2.5.1]. We see that c0 is a (constant) closed
geodesic, therefore

d2

dt2

∣∣∣
t=0

E(ct) = D2E(c0)(ξ, ξ) = ‖ξ‖2⊥ = ρ2.



On periodic orbits in cotangent bundles 1171

The curvature term in the second variation vanishes at t = 0, because c0
is a constant loop. The third derivative of the energy functional can be
bounded in terms of the curvature tensor and its first covariant derivative
times a third power of ‖ξ‖⊥. By the assumption of bounded geometry, we
can therefore uniformly bound E(c1). The main point is that for ρ sufficiently
small, E(c1) ≥ Cρ2, for some constant C > 0. We now can estimate A on B.

(33) A (c1, τ) ≥ e−τ

2
Cρ2 +

eτ

2
ν ≥

√
C νρ

Set b =
√
C νρ, then A |B > b. It remains to estimate A on the set A = AI ∪

AII ∪A1
III . Let (c, σ1) ∈ AI = φ(ζ(U))× {σ1}. Recall that U is compact,

hence Vmax = supq∈U −V (q) < ∞. Because c is a constant loop, we find

(34) A (c, σ1) = −eσ1

∫ 1

0
V (c(s))ds ≤ eσ1Vmax.

By choosing σ1 ≤ log( b
2Vmax

) we get A
∣∣
AI

≤ b/2. On AII = φ(W )× [σ1, σ2]
all the loops are constants as well, moreover their image is contained in W .
The potential is positive on W hence A

∣∣
AII

< 0 < b
2 . It remains to estimate

A on A1
III = h1(U)× {σ2}. Recall that we constructed h in such a way that

for any q ∈ U we have
∫ 1
0 V (h1(q)(s))ds > 0. This gives

A (c, σ2) =
e−σ2

2

∫ 1

0
|h1(q)′(s)|2ds− eσ2

∫ 1

0
V (h1(q)(s))ds(35)

≤ e−σ2

2

∫ 1

0
|h1(q)′(s)|2ds.

Because h is continuous and U is compact, Emax = supq∈U E(h1(q)) < ∞.
And therefore

(36) A (c, σ2) ≤ e−σ2

2
Emax.

By setting σ2 > max(log(Emax

b ), σ1) we get A
∣∣
A1

III

≤ b
2 . Now set a = b/2, and

we see that A |A < a < b. �

6. Proof of the main theorem

Proof of Theorem 1.1. From the assumptions Hk+1(Σ) �= 0 and Hk+1(ΛM)
= Hk+2(ΛM) = 0, we are able to construct linking sets A and B in the
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loop space, cf. Lemma 4.5. We estimate A on A and B in Proposition 5.1.
We now use Lemma 13 of [14], with the minor caveat that the proof uses
the fact that Hk+1(ΛM × R) ∼= 0 after formula (17) of this paper, which is
automatically true for M = R

2n, but which we assume a priori here. �
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