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Augmentations and rulings of

Legendrian knots

C. Leverson

For any Legendrian knot Λ in (R3, ker(dz − ydx)), we show that
the existence of an augmentation to any field of the Chekanov-
Eliashberg differential graded algebra over Z[t, t−1] is equivalent to
the existence of a ruling of the front diagram, generalizing results of
Fuchs, Ishkhanov, and Sabloff. We also show that any even graded
augmentation must send t to −1.
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1. Introduction

A Legendrian knot in (R3, ξstd) is an embedding Λ : S1 → R3 which is ev-
erywhere tangent to the contact planes. In [4] (see related [6]), Chekanov
introduced a combinatorial way to associate a non-commutative differential
graded algebra (DGA) over Z/2 to a Lagrangian diagram of a Legendrian
knot Λ in R3. The DGA is generated by crossings of Λ and the differential
is determined by a count of immersed polygons whose edges lie on the knot
and whose corners lie at crossings of Λ. In the literature, this DGA is called
the Chekanov-Eliashberg DGA. Chekanov showed that the homology of the
DGA is invariant under Legendrian isotopy. He also showed that a linearized

1089



1090 C. Leverson

version of the homology of the DGA could be used to distinguish between
two Legendrian 52 knots in R3 which could not be distinguished by the ro-
tation and Thurston-Bennequin numbers. In the early 2000’s, Etnyre, Ng,
and Sabloff gave a lift of the Chekanov-Eliashberg DGA to a DGA (A, ∂)
over R = Z[t, t−1] which has a full Z-grading (see [10]). One can recover the
Chekanov-Eliashberg DGA by setting t = 1, which requires one to consider
the grading mod 2r(Λ), and considering the coefficients mod 2 (where r(Λ)
is the rotation number, defined in §2).

Another Legendrian knot invariant uses generating families, functions
whose critical values generate front diagrams of Legendrian knots. Following
ideas introduced by Eliashberg in [5], Fuchs [11] and Chekanov-Pushkar [3]
gave invariants involving decompositions of the generating families, which
are now called “normal rulings” and can also be used to distinguish between
Chekanov’s 52 knots.

Remarkably, there is a close connection between the Chekanov-Eliashberg
DGA and rulings. Fuchs [11], Fuchs-Ishkhanov [12], and Sabloff [17] showed
that the existence of a ruling is equivalent to the existence of an augmenta-
tion to Z/2 of the Chekanov-Eliashberg DGA, where an augmentation to a
ring S is an algebra map ε : A → S such that ε ◦ ∂ = 0 and ε(1) = 1.

The main result of this paper gives a generalization of these results
using an extension of Sabloff’s construction in [17]. Let F be a field and
R = Z[t, t−1]. Given a ρ-graded augmentation ε : A → F of the Z[t, t−1]-
differential graded algebra (A, ∂) of a knot Λ, we will find a ρ-graded normal
ruling of the knot diagram. Conversely, given a ρ-graded normal ruling of
the knot diagram, we will define a ρ-graded augmentation ε : A → F of the
DGA over Z[t, t−1] with ε(t) = −1. (For ρ = 0, this is the so called graded
case and for ρ = 1, the ungraded case.) Terminology will be introduced in §2.

In §3 and §4, we will show:

Theorem 1.1. Let Λ be a Legendrian knot in R3. Given a field F , (A, ∂)
has a ρ-graded augmentation ε : A → F if and only if any front diagram of
Λ has a ρ-graded normal ruling. Furthermore, if ρ is even, then ε(t) = −1.

Note that this generalizes Fuchs, Fuchs-Ishkhanov, and Sabloff’s results,
giving a correspondence between normal rulings and augmentations to any
field F of the DGA over Z[t, t−1]. This does not contradict the result in [15]
that there are augmentations to matrix algebras which do not send t to −1
as the matrix algebras are not fields.
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Theorem 1.1 can be extended and interpreted in terms of the augmen-
tation variety for a Legendrian knot. Define

Augρ(Λ) = {ε(t) : ε a ρ-graded augmentation of (A, ∂)} ⊂ F ∗

the augmentation variety of Λ, where F ∗ = F\{0}.
In higher dimensions, understanding the augmentation variety is inter-

esting and useful (see [1] and [14]), so there has been some question as to
whether we can determine the augmentation variety in R3 with the standard
contact structure. In §3, we prove:

Theorem 1.2. If ρ is odd and ρ|2r(Λ), then

Augρ(Λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{−x2 : x ∈ F ∗} if there exists a ρ-graded normal ruling of Λ

which is not oriented (introduced in §3)
{−1} if there exists a ρ-graded normal ruling of Λ

and all rulings are oriented

∅ if there are no ρ-graded normal rulings of Λ.

For example, the right handed trefoil Λ in Figure 1 has DGA (A, ∂) with
|ci| = 0 for 1 ≤ i ≤ 3, |c4| = |c5| = 1, and |t| = 0. Then A = A(c1, . . . , c5)
with differential

∂c1 = ∂c2 = ∂c3 = 0

∂c4 = t+ c1 + c3 + c1c2c3

∂c5 = 1− c1 − c3 − c3c2c1.

Let F be a field. If ε : A → F is a 1-graded (ungraded) augmentation, then

0 = ε(t) + ε(c1) + ε(c3) + ε(c1)ε(c2)ε(c3)

0 = 1− ε(c1)− ε(c3)− ε(c3)ε(c2)ε(c1)

and so ε(t) = −1. Thus Aug1(Λ) = {−1}.
Now consider the left handed trefoil Λ′ depicted in Figure 1. The associ-

ated DGA is (A′, ∂′) with |c1| = |c2| = |c4| = −1, |c3| = |c5| = |c6| = 1, and
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Figure 1: The left figure is a Legendrian right handed trefoil and the right
is a Legendrian left handed trefoil with crossings labeled. The ∗ indicates
the placement of the base point corresponding to t.

|t| = 2. Then A = A(c1, . . . , c6) with differential

∂′c1 = ∂′c2 = ∂′c3 = 0

∂′c4 = t+ c1c2

∂′c5 = 1 + c2c3

∂′c6 = 1 + c3c1.

Let F be a field. If ε : A′ → F is a 1-graded (ungraded) augmentation, then

0 = ε(t) + ε(c1)ε(c2)

0 = 1 + ε(c2)ε(c3)

0 = 1 + ε(c3)ε(c1).

Therefore ε(c2) = −(ε(c3))−1 = ε(c1) and so ε(t) = −(ε(c3))−2. So any non-
zero choice of ε(c3) yields an augmentation and thus Aug1(Λ

′) = {−x2 : x ∈
F ∗}.

This result complements the recent work of Henry and Rutherford [13].
Henry and Rutherford show that counts of the augmentations to any finite
field, without restrictions on where the augmentation sends t, are Legendrian
knot invariants and that they can be related to the ruling polynomials of
the knot, thus showing that the Chekanov-Eliashberg algebra determines
the ruling polynomial. Our result shows that if ρ is even, one can restrict
the count of ρ-graded augmentations to augmentations which send t to −1,
as there are not any which do not.

Theorem 1.1 tells us that if there exists an augmentation to Z/2, then
there exists an augmentation to any field. In §5, we will show that given an
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augmentation to Z/2 of the Chekanov-Eliashberg DGA, we can use construc-
tions similar to those in the proof of Theorem 1.1 to define an augmentation
to any ring. In particular:

Theorem 1.3. Let Λ be a Legendrian knot in R3. Let (Az/2, ∂) be the
Chekanov-Eliashberg DGA over Z/2 and let (A, ∂) be the DGA over R =
Z[t, t−1]. If ε′ : Az/2 → Z/2 is an augmentation of (Az/2, ∂), then one can
find a lift of ε′ to an augmentation ε : A → Z of (A, ∂) such that ε(t) = −1.

In other words, we will define ε so that the following diagram commutes:

(A, ∂) ε ��

t=1
��

Z

��
(Az/2, ∂) ε′

�� Z/2

This theorem tells us that given an augmentation to Z/2 of (Az/2, ∂),
there exists an augmentation to any ring S of (A, ∂) which sends t to −1.

1.1. Outline of the article

In §2 we recall background on Legendrian knots and give definitions of the
Chekanov-Eliashberg DGA, including sign conventions for defining the al-
gebra over Z[t, t−1], and a normal ruling. §3 gives the proof that given an
augmentation one can define a normal ruling. §4 finishes the proof of Theo-
rem 1.1 by proving that given a normal ruling one can define an augmenta-
tion. §4 goes to prove Theorem 1.2, giving the augmentation variety in the
odd graded case. The paper concludes with the proof of Theorem 1.3 in §5.

1.2. Acknowledgements

The author thanks Lenhard Ng for introduction to the problem, for many
useful discussions, and for the contribution of the proof of Lemma 3.2. The
author also thanks Dan Rutherford for helpful conversations. This work was
partially supported by NSF grant DMS-0846346.



1094 C. Leverson

2. Background material

2.1. Diagrams of knots

In this section, we will briefly review necessary ideas of Legendrian knot
theory. For further references on this subject, see [8].

A contact structure on a 3-manifold M is a completely nonintegrable
2-plane field ξ. Locally, a contact structure is the kernel of a 1-form α which
satisfies the non-degeneracy condition

α ∧ dα 
= 0

at every point in M . We will be concerned with the standard contact
structure on R3, which is the completely nonintegrable 2-plane field ξ0 =
kerα0, where α0 = dz − ydx. A Legendrian knot is an embedding Λ :
S1 → R3 which is everywhere tangent to the contact planes. A Legendrian
isotopy is an ambient isotopy of Λ through Legendrian knots. We are in-
terested in Legendrian isotopy classes of Legendrian knots in R3.

The classical invariants for Legendrian isotopy classes of knots are the
topological knot type, Thurston-Bennequin number, and rotation number
(see [2]). The Thurston-Bennequin number measures the self-linking of
a Legendrian knot Λ. If Λ′ is a knot that is a push off of Λ in a direction
tangent to the contact structure, then tb(Λ) is the linking number of Λ and
Λ′. The rotation number r of an oriented Legendrian knot Λ is the rotation
of its tangent vector field with respect to any global trivialization of ξ0, for
example, {∂y, ∂x + y∂z}. A natural question is then whether these invariants
with the topological knot type alone classify Legendrian knots, in other
words, whether all Legendrian knots are “Legendrian simple.” Eliashberg
and Fraser [7] show that Legendrian unknots are Legendrian simple and
Etnyre and Honda [9] show that Legendrian torus and figure eight knots are
as well.

Two particularly useful projections of Legendrian knots are the La-
grangian projection and the front projection. The Lagrangian projection
is the map

π� : (x, y, z) �→ (x, y).

The front projection is the map

πf : (x, y, z) �→ (x, z).
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c1 c2 c3
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q2

Figure 2: The left figure gives a Lagrangian projection of a Legendrian right
handed trefoil with crossings labeled and the right figure gives a front pro-
jection.

In general, we will call the Lagrangian projection (resp. front projection) of a
Legendrian knot a Lagrangian diagram (resp. front diagram). Figure 2
gives Lagrangian (left) and front (right) projections of a Legendrian version
of a right handed trefoil.

Note that one can recover the y coordinate of a knot from the slope of
the front diagram (see [8]):

y =
dz

dx
.

This implies that lines tangent to a front diagram of a Legendrian knot
are never vertical. Front diagrams instead have semicubical cusps. It also
implies that at a double point the strand with the smaller (more negative)
slope has a smaller y coordinate and so passes in front of the strand with
larger (more positive) slope. For a front diagram of an oriented Legendrian
knot, the rotation number is half of the difference between the number of
downward-pointing cusps and the number of upward-pointing cusps.

In particular, we will find that front diagrams in plat position will be
easier to manipulate. A front diagram is in plat position if all of the left
cusps have the same x coordinate, all of the right cusps have the same x
coordinate, and there do not exist crossings in the diagram which have the
same x coordinate. One can use Legendrian versions of the Reidemeister II
moves and planar isotopy to put any front diagram into plat position. The
diagram of the trefoil given in Figure 2 is an example of a diagram in plat
position.

Note. Label the crossings of a front diagram of Λ in plat position by
{c1, . . . , cn, q1, . . . , qm} with q1, . . . , qm the crossings at the right cusps la-
beled from the top to the bottom and c1, . . . , cn the remaining crossings
labeled from left to right (see Figure 6).
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Figure 3: A labeling of the Reeb signs of the quadrants around a crossing.

2.2. Definition of the DGA and augmentations

This section contains a brief overview of the differential graded algebra pre-
sented by Etnyre, Ng, Sabloff in [10] which lifts the Chekanov-Eliashberg
differential graded algebra over Z/2 in [4] to a DGA over Z[t, t−1].

Given a front diagram of an oriented Legendrian knot Λ in R3 with the
standard contact structure, Ng’s resolution process [16] gives a Lagrangian
diagram for a knot Legendrian isotopic to Λ by smoothing left cusps, replac-
ing right cusps with a loop, and resolving crossings so that the over crossing
strand has smaller (more negative) slope.

Note. Label the crossings of the Lagrangian resolution of a front diagram
of Λ by {c1, . . . , cn, q1, . . . , qm} with q1, . . . , qm the crossings from resolving
the right cusps and c1, . . . , cn the remaining crossings. Label each quadrant
around a crossing as shown in Figure 3. We will refer to these labels as the
Reeb signs and will call a quadrant at a crossing positive or negative
depending on its Reeb sign.

Definition 2.1. Let Λ be an oriented Legendrian knot decorated with ∗ for
the base point. The algebraAR(c1, . . . , cn, q1, . . . , qm) is the noncommutative
graded free associative unital algebra over R = Z[t, t−1] generated (as an
algebra) by {c1, . . . , cn, q1, . . . , qm}. We will sometimes shorten this to AR.

The grading for t is defined to be −2r(Λ). To give ci a grading, we first
must specify a capping path γci . The capping path γci is the unique path
in Λ which begins at the under crossing of ci, ends at the over crossing of
ci, and does not go through the base point ∗ (note that this may mean the
capping path has the opposite orientation of the knot), as seen in Figure 4.

Define the rotation number r(γci) to be the fractional number of coun-
terclockwise revolutions made by the tangent vector to γci in the Lagrangian
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+ +
−
−

Figure 4: The choice of capping path for a crossing, where the capping path
is denoted by a heavy line and the arrow gives the orientation of the capping
path. The signs are the Reeb signs.

projection as we follow the path. One can perturb the diagram of Λ so that
all crossings are orthogonal and thus r(γci) is an odd multiple of 1/4. Define
the grading on ci by

|ci| = −2r(γci)−
1

2
.

(Note that by setting t = 1 we recover Chekanov’s grading from [4], though
we then need to consider the grading mod 2r(Λ).)

Since we are working with front projections of knots, we can assign the
gradings mod 2r(Λ) of crossings at right cusps: |qk| = 1. Let C(Λ) be the
set of points on Λ corresponding to cusps of the front projection of Λ. A
Maslov potential function is a locally constant function

μ : Λ\C(Λ)→ Z/2r(Λ)

such that for two strands meeting at a cusp (either left or right), the upper
strand has Maslov potential one higher than the lower strand. Such a func-
tion is well-defined up to a constant. Near a crossing ck, let αk be the strand
in the front diagram with more negative slope and let βk be the strand with
more positive slope. The grading defined earlier now becomes

|ck| ≡ μ(αk)− μ(βk) mod 2r(Λ).

Label a point on the diagram ∗. This will be the base point corresponding
to t. In §2.5 we will discuss the case when we have multiple base points.
We define the differential ∂ on AR(c1, . . . , cn, q1, . . . , qm) by appropriately
counting immersed disks in the Lagrangian resolution of the front projection
of Λ. (Later we will make assumptions about the form of the diagrams so
that all the disks are embedded.)

Given a generator a and an ordered set of generators {b1, . . . , bk}, let
Δ(a; b1, . . . , bk) be the set of orientation-preserving immersions

f : D2 → R2
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Figure 5: The signs in the figure are Reeb signs. The orientation signs are
−1 for the shaded quadrants and +1 everywhere else. For crossings of odd
degree, all orientation signs are +1. For crossings of even degree, we use the
convention indicated in the left figure if the crossing comes from the front
projection and the convention in the right figure if the crossing is in a dip,
which will be discussed in §2.4. Note that a crossing has even/odd degree
precisely when it is positive/negative in the sense of writhe.

(up to smooth reparametrization) that map ∂D2 to the Lagrangian resolu-
tion of πf (Λ), such that

1) f is a smooth immersion except at a, b1, . . . , bk,

2) a, b1, . . . , bk are encountered in counter-clockwise order along f(∂D2),

3) near a, b1, . . . , bk, f(D
2) covers exactly one quadrant, specifically, a

quadrant with positive Reeb sign near a and a quadrant with negative
Reeb sign near bi for 1 ≤ i ≤ k.

We can assign a word in A to each embedded disk by starting with the
first corner after the one covering the + quadrant and listing the crossing
labels of all negative corners as encountered while following the boundary
of the immersed polygon counter-clockwise. We associate a sign to each
immersed disk by associating an orientation sign δQ,a to each quadrant Q
in the neighborhood of a crossing a, determined by Figure 5, and defining the
sign of a disk f(D2), the product of the orientation signs over all the corners
of the disk, denoted δ(f(D2)). In practice, we can define δ(a; b1 · · · bk) to be
the sign of the unique disk with positive corner at a (with respect to Reeb
signs) and negative corners at b1, . . . , bk, the product of the orientation signs
over all corners of the disk. (In exceptional cases there may be more than
one disk with negative corners at b1, . . . , bk.) Note that our convention for
assigning orientation signs differs from [10]. At any crossing c where our
convention differs from that in [10], one can recover the convention in [10]
by sending c to −c.

Define n∗(a; b1, . . . , bk) to be the signed count of the number of times
one encounters the base point ∗ while following f(∂D2) in the counter-
clockwise direction, where the sign is determined by whether one encounters
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c1 c2 c3

q1

q2

Figure 6: The Lagrangian resolution of the front diagram of the right trefoil
in plat position. Crossings are labeled and ∗ indicates the base point corre-
sponding to t. The shaded regions are quadrants with orientation sign −1.
All other quadrants have orientation sign +1.

the base point while following the orientation of the knot or going against
the orientation of the knot.

Definition 2.2. The algebra AR is a differential graded algebra (DGA)
whose differential ∂ is defined as follows:

∂a =
∑

(b1,...,bk)

δ(a; b1 · · · bk)tn∗(a;b1,...,bk)b1 · · · bk,

where the sum is taken over (b1, . . . , bk) where Δ(a; b1, . . . , bk) is nonempty.
Extend ∂ to AR via ∂(Z[t, t−1]) = 0 and the signed Leibniz rule:

∂(vw) = (∂v)w + (−1)|v|v(∂w).

From Theorem 3.7 in [10], the differential ∂ has degree −1 and satisfies
∂2 = 0.

For example, the right handed trefoil depicted in Figure 6 with r = 0
and tb = 1 has |ci| = 0 and |qi| = 1. We have AR = AR(c1, c2, c3, q1, q2) with
differential

∂c1 = ∂c2 = ∂c3 = 0

∂q1 = t+ c1 + c3 + c1c2c3

∂q2 = 1− c1 − c3 − c3c2c1.

Definition 2.3. A graded algebra isomorphism

φ : A(a1, . . . , an)→ A(b1, . . . , bn)
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is elementary if there exists j ∈ {1, . . . , n} such that

φ(ai) =

{
bi i 
= j

ubj + v v ∈ A(b1, . . . , bj−1, bj+1, . . . , bn), u a unit in R, i = j.

A composition of elementary isomorphisms is called tame.

Definition 2.4. Define the algebra Ei = A(ei1, ei2) by setting |ei1| = i− 1,
|ei2| = i, ∂ei2 = ei1, and ∂ei1 = 0.

This algebra models the second Reidemeister move, which produces two
new crossings.

Definition 2.5. Given a DGA (A(a1, . . . , an), ∂), the degree i stabiliza-
tion of (A(a1, . . . , an), ∂) is defined to be A(a1, . . . , an, ei1, ei2). The grading
and the differential are inherited from A and Ei. Two DGA’s (A, ∂) and
(A′, ∂′) are stable tame isomorphic if there exist two sequences of stabi-
lizations Si1 , . . . , Sin and Sj1 , . . . , Sjm and a tame isomorphism

φ : Sin(· · · (Si1(A)) · · · )→ Sjm(· · · (Sj1(A′)) · · · ),

which is also a chain map.

In fact, the stable tame isomorphism class of the DGA is invariant under
Legendrian isotopy. Chekanov proved this result over Z/2 in [4] and Etnyre,
Ng, and Sabloff proved this result over Z[t, t−1] in [10].

Now that we have the DGA associated with the projection of Λ, we can
discuss the augmentations.

Definition 2.6. Let F be a field. An augmentation of (A, ∂) to F is
a ring map ε : A → F such that ε ◦ ∂ = 0 and ε(1) = 1. If ρ|2r(Λ) and ε
is supported on generators of degree divisible by ρ, then ε is ρ-graded. In
particular, if ρ = 0, we say it is graded and if ρ = 1, we say it is ungraded.
We call a generator a augmented if ε(a) 
= 0.

For example, if we recall the DGA over Z[t, t−1] for the right handed
trefoil, then we can classify the augmentations to any field F as follows: Let
ε : AR → F be an augmentation. Then ε(t) = −1 and

• if ε(c1) = 0, then ε(c3) = 1 and ε(c2) ∈ F

• if ε(c3) = 0, then ε(c1) = 1 and ε(c2) ∈ F
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• if ε(c1), ε(c3) 
= 0, then

ε(c2) = (1− ε(c1)− ε(c3))(ε(c1))
−1(ε(c3))−1.

Note that if F is a finite field, as in [13], and |F | is the number of elements
in F , then we see that there are |F | augmentations of the first type, |F |
augmentations of the second type, and |F ∗|2 augmentations of the third
type, where F ∗ = F\{0}. In fact,

{(ε(c1),ε(c2), ε(c3), ε(q1), ε(q2), ε(t)) : ε an augmentation to F}(1)

= F
∐

F
∐

(F ∗)2.

In [13], this is called the augmentation variety of (A(Λ), ∂). Comparing this
with possible rulings of the trefoil, definition given in §2.3, one sees that (1)
coincides with Theorem 3.4 of [13].

For example, the following are examples of graded augmentations to R.

c1 c2 c3 q1 q2 t

ε1 1 1
2 0 0 0 −1

ε2 0 1
2 1 0 0 −1

ε3 2 3
4 −2

5 0 0 −1
ε4 −2

5
3
4 2 0 0 −1

ε5
1
2 0 1

2 0 0 −1

Note that any augmentation of a stabilization S(A) restricts to an aug-
mentation of the smaller algebra A and any augmentation of the algebra A
extends to an augmentation of the stabilization S(A) where the augmenta-
tion sends ei1 to 0 and ei2 to an arbitrary element of F if ρ|i and 0 otherwise.

2.3. Rulings

This paper will show that there is a way to construct an augmentation from
a normal ruling and a normal ruling from an augmentation.

Definition 2.7. Consider a front diagram in plat position of a Legendrian
knot Λ. A ruling of this diagram consists of a one-to-one correspondence
between the set of left cusps and the set of right cusps where, for each pair
of corresponding cusps, two paths in the front diagram join them. These
ruling paths must satisfy the following:

1) Any two paths in the ruling only meet at crossings or cusps;
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2) The interiors of the two paths joining corresponding cusps are disjoint.
Thus each pair of paths bound a topological disk.

The first condition tells us the ruling paths never overlap at more than
a finite number of points. The second condition tells us that there are disks
similar to those in the differential ∂, but possibly with “obtuse” corners. As
noted in [11], these imply that the ruling paths cover the front diagram and
the x-coordinate of each path in the ruling is monotonic.

Near a crossing, the two ruling paths which intersect at the crossing are
called crossing paths. The two paths paired with the crossing paths are
called companion paths.

Given a ruling, at any crossing, we either have that the crossing paths
pass through each other, or one path lies entirely above (has z-coordinate
strictly greater than) the other. In the latter case, we say the ruling is
switched at the crossing. If all of the switched crossings in the ruling are
of the form (a), (b), or (c), as seen in Figure 7, then we say the ruling is
normal. Thus, the possible configurations near a crossing in a normal ruling
are shown in Figure 7.

If all of the switched crossings have grading divisible by ρ for some ρ
such that ρ|2r(Λ), then we say the ruling is ρ-graded. In particular, if
ρ = 0, then we say the ruling is graded and if ρ = 1, then we say the ruling
is ungraded.

For example, the right handed trefoil has three graded normal rulings as
seen in Figure 8.

In [3], Chekanov and Pushkar showed that the number of ρ-graded nor-
mal rulings is invariant under Legendrian isotopy.

2.4. Dips

We will construct a normal ruling of the diagram by using the augmentation
to construct an augmentation ε of the dipped diagram satisfying Property
(R), as called in [17]. However, the notation in the following section will be
necessary to write down Property (R).

Given a Legendrian knot Λ in plat position, we construct a dip between
two crossings by a sequence of Reidemeister II moves, as seen in Figure 9 in
the front projection and Lagrangian projection. In the front projection, it is
clear that the diagram with the dip is isotopic to the original diagram. To
construct a dip, number the 2m strands from bottom to top. Using a type II
Reidemeister move, push strand 2 over strand 1, then strand 3 over strand
1, then strand 3 over strand 2, and so on. So that strand k is pushed over
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(a) (b) (c)

(d) (e) (f)

Figure 7: By including vertical reflections of (d), (e), and (f), these are all
possible configurations of crossings appearing in a normal ruling. The top
row contains all possible configurations for switched crossings in a normal
ruling.

Figure 8: The graded normal rulings of the right handed trefoil.

strand � in lexicographic order. If strand k crosses strand � after strand i
crosses strand j, we write (i, j) < (k, �).

The dipped diagram involves introducing a dip between each crossing
in the plat position diagram and between the left, respectively right, cusps
and the first, respectively last, crossing (see Figure 13). Each Reidemeister II
move introduces two new variables. For the dip immediately after crossing
ck, we will use akrs and bkrs to denote the new crossings introduced when
strand r is passed over strand s (r > s), with bkrs being the leftmost and
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1

2

3

4

b41

b42

b43

b31

b32

b21 a41

a42

a43

a31

a32

a21

Figure 9: The left diagram gives the modification of the front projection
when creating a dip, while the right diagram gives the modification of the
Lagrangian projection. In the Lagrangian projection, the bk-lattice is made
up of the crossings on the left and the ak-lattice is made up of the crossings
on the right. The crossings in the bk-lattice are labeled down and to the left,
while the crossings in the ak-lattice to the right, with k’s suppressed.

akrs being the rightmost new crossing (see Figure 9). We will say the bkrs
generators belong to the bk-lattice and the akrs belong to the ak-lattice.
Thus we will have ak/bk-lattices for 0 ≤ k ≤ n. While dipped diagrams have
many more crossings than the original knot diagram, the differential ∂ onAR

is generally much simpler. We note that if μ is a Maslov potential function
on the front diagram, then

|bkrs| = μ(r)− μ(s).

Since the differential ∂ lowers degree by one,

|akrs| = |bkrs| − 1.

Orientation sign assignments are given in Figure 5. We can reduce pos-
sible disks, and thus possible terms in the differential, further in certain
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b a b a−
+ −

−

Figure 10: Possible disks contributing to ∂ with a negative corner at a.

cases. As the disks in the computation of Az/2 are the same disks in the
computation of A, we have the following lemma from [17].

Lemma 2.8 ([17] Lemma 3.1). If a and b are the new crossings created
by a type II move during the creation of a dip and y is any other crossing,
then a appears at most once in any term of ∂y, and if a appears in any term
of ∂y, then b does not.

This follows from considering the disks which have a negative corner at
a as seen in Figure 10.

Through consideration of the dipped diagram, we see

• the differential of crossings in the bk-lattice involve at most
– ck,
– base points (we will discuss the case when we have more than one

in the next section),
– crossings in the ak−1-lattice,
– crossings in the ak-lattice,
– crossings in the bk-lattice,

• the differential of crossings in the ak-lattice only involve
– base points,
– crossings in the ak-lattice,

• the differential of ck only involves
– base points,
– ak−1i+1,i if strands i and i+ 1 cross at ck

for all 1 ≤ k ≤ n. This greatly reduces the types of totally augmented disks
for which to look to compute whether we have an augmentation, where a
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totally augmented disk is a disk which contributes to the differential, all
of whose negative corners are augmented.

Notation 2.9. ak{r,s} = akmax(r,s),min(r,s)

2.5. Augmentations before and after a base point move

As we create dips, we will find that the signs are simpler if, in certain cases,
we add in a few extra base points. In [15], Ng and Rutherford give the DGA
isomorphisms induced by adding a base point and by moving one base point
around a knot. First, we need to extend our definition of the DGA over
Z[t, t−1] to a DGA over Z[t±11 , . . . , t±1s ], which we will call A(Λ, ∗). To this
end, label s points on the Lagrangian resolution of the front diagram of Λ
by the base points ∗1, . . . , ∗s respectively associated to t1, . . . , ts.

Definition 2.10. The algebra A is a DGA whose grading is defined analo-
gously to the case when there is only one base point: We define |t1| = −2r(Λ)
and |ti| = 0 for 1 < i ≤ s. Given a crossing c, let γc be the unique path fol-
lowing the under strand of c to the over strand of c while avoiding ∗1 and
define |c| = −2r(γc)− 1

2 . The differential ∂ is defined as follows:

∂a =
∑

(b1,...,bk)

δ(a; b1 · · · bk)tn∗1 (a;b1,...,bk)
1 · · · tn∗s (a;b1,...,bk)

s b1 · · · bk,

where the sum is taken over (b1, . . . , bk) where Δ(a; b1, . . . , bk) is nonempty.
Extend ∂ to A via ∂(Z[t, t−1]) = 0 and the signed Leibniz rule:

∂(vw) = (∂v)w + (−1)|v|v(∂w).

Theorem 2.11 ([15] Thm. 2.19). The map ∂ : A(Λ, ∗)→ A(Λ, ∗) lowers
degree by 1 and is a differential: ∂2 = 0. Up to stable tame isomorphism, the
differential graded algebra (A(Λ, ∗), ∂) is an invariant of Λ under Legendrian
isotopy (and choice of base point(s)).

Theorem 2.12 ([15] Thm. 2.20). Let ∗1, . . . , ∗k and ∗′1, . . . , ∗′k denote
two collections of base points on the Lagrangian resolution of the front di-
agram of a Legendrian knot Λ, each of which is cyclically ordered along Λ.
Let (A(Λ, ∗1, . . . , ∗k), ∂) and A(Λ, ∗′1, . . . , ∗′k), ∂′) denote the corresponding
multi-pointed DGAs. Then there is a DGA isomorphism Ψ:(A(Λ, ∗1, . . . , ∗k),
∂)→ (A(Λ, ∗′1, . . . , ∗′k), ∂′) such that Ψ(ti) = ti for all i.
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In the proof of this theorem, the isomorphism Ψ is defined so that
Ψ(cj) = cj if no base point is pushed over or under the crossing cj . If, how-
ever, the base point ∗i is pushed over crossing cj , then Ψ(cj) = t±1i cj , the
sign depending on whether the base point is pushed along the knot in the
direction of the orientation or against the orientation of the knot. If the base
point ∗i is pushed under the crossing cj , then Ψ(cj) = cjt

±1
i , again, the sign

depending on the orientation of the knot.

Theorem 2.13 ([15] Thm. 2.21). Let ∗1, . . . , ∗k be a cyclically ordered
collection of base points along Λ, and let ∗ be a single base point on Λ. Then
there is a DGA homomorphism φ : (A(Λ, ∗), ∂)→ (A(Λ, ∗1, . . . , ∗k), ∂) such
that φ ◦ ∂ = ∂ ◦ φ and φ(t) = t1 · · · tk.

Thus, we can assume there is one base point on each of the right cusps.
Also, this shows us that if ε′ is an augmentation on the diagram after moving
the base point ∗i over the crossing cj , then ε = ε′Ψ is an augmentation on
the diagram before moving the base point.

Remark 2.14. In summary, if ε(ti) = −1, then moving the base point ∗i
over or under a crossing only changes the augmentation by changing the
sign of the augmentation on that crossing, no matter the orientation of the
strand.

Note that these theorems tell us that we have the following relationship
between augmentations to a field F on a diagram with one base point and
the augmentations to F on the same diagram but with mutliple base points:
Suppose t is the variable associated to the single base point ∗, and t1, . . . , ts
are the variables associated to the base points ∗1, . . . , ∗s. By moving all the
base points ∗1, . . . , ∗s to the location of ∗ and then using Theorem 2.13, we
see that for every augmentation ε to F of the multiple base point diagram,
there exists an augmentation ε′ to F of the single base point diagram such
that ε′(a) = xaε(a) for some xa ∈ F ∗ for all crossings a and

ε′(t) = ε(t1 · · · ts) =
s∏

i=1

ε(ti).

In particular, if ε(ti) = ±1 for all i, then ε′(a) = ±ε(a) for all crossings a.
One can also easily check that for all augmentations ε′ to F of the single base
point diagram and x1, . . . , xs ∈ F ∗ such that x1 · · ·xs = ε′(t), there exists an
augmentation ε to F of the multiple base point diagram with ε(a) = xaε

′(a)
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b a

Figure 11: A type II Reidemeister move with crossings a and b.

for some xa ∈ F ∗ for all crossings and ε(ti) = xi. In particular, if ε(ti) = ±1
for all i, then xa = ±1 for all crossings a.

2.6. Augmentations before and after type II moves

To understand how augmentations before the addition of a dip relate to aug-
mentations after, we need to consider the stable DGA isomorphism induced
by a type II move. Suppose (A′Z , ∂′) is the DGA over Z=Z[t1, t

−1
1 , . . . , tq, t

−1
q ]

for a knot diagram before a type II move and that (AZ , ∂) is the DGA over
Z afterward. So

AZ = AZ(a, b, a1, . . . , ar, b1, . . . , bs; ∂)

A′Z = AZ(a1, . . . , ar, b1, . . . , bs; ∂
′).

Suppose that the other crossings are ordered by height:

h(bs) ≥ · · · ≥ h(b1) ≥ h(b) > h(a) ≥ h(a1) ≥ · · · ≥ h(ar).

From [17] we know it is possible to construct a dip in the plat diagram so
that this ordering takes the following form: Suppose strand k is pushed over
strand �. Each aj either lies to the left of the dip or aj = amn or bmn with
m− n ≤ k − �. Similarly, bj either lies to the right of the dip or bj = amn or
bmn with m− n > k − �.

Recall the algebra Ei = AZ(e1, e2) with |e1| = i− 1, |e2| = i, ∂e2 = e1,
and ∂e1 = 0. Define the vector space map H : S(A′Z)→ S(A′Z) by

H(w) =

⎧⎪⎨⎪⎩
0 w ∈ A′Z
0 w = Qe2R with Q ∈ A′Z , R ∈ S(A′Z)
(−1)|Q|+1Qe2R w = Qe1R with Q ∈ A′Z , R ∈ S(A′Z).
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Note that either crossing a or b is a positive crossing, so ∂b = −a+ v,
where v is a sum of terms in the ai and t±1i . Define Φ0 : AZ → S|b|(A′Z) by

Φ0(w) =

⎧⎪⎨⎪⎩
e2 w = b

−e1 + v w = a

w otherwise.

[10] tells us Φ0 is a grading-preserving elementary isomorphism. Inductively
define maps Φi on the generators of AZ on generators by:

Φi(w) =

{
bi +H(∂′bi − Φi−1∂bi) w = bi

Φi−1(w) otherwise.

In [10], it is shown that Φ := Φs is a DGA isomorphism between AZ and
S|b|(A′Z).

If there is an augmentation ε′ on S(A′Z), then ε = ε′Φ is an augmentation
on AZ . One can check that

(2) ε(ai) = ε′(ai), ε(a) = ε′(v), ε(b) = ε′(e2).

Recall that if |e2| = 0, then ε′(e2) can be chosen arbitrarily.
Analogous to the result for the Z/2 case in [17], we have:

Lemma 2.15. After a type II Reidemeister move involved in making a dip
in a plat diagram, suppose ε(bi) has been determined for i < j. Then

ε(bj) = ε′(bj)−
∑
p

δ(bj ;QpaRp)(−1)|Φ(Qp)|ε(QpbRp)

for Qp, Rp ∈ A′Z such that ∂bj = P +
∑

p δ(b;QpaRp)QpaRp where P is the
sum of the terms in ∂bj which do not contain a.

Proof. We know

Φ(bi) = bi +H(∂′bi − Φ∂bi).

We will prove the result by inducting on j. For the base case, suppose
j = 1. Since ∂ lowers height, we know ∂b1 ∈ AZ(a, b, a1, . . . , ar) and ∂′b1 ∈
AZ(a1, . . . , ar). By Lemma 2.8, we know if P is the sum of terms in ∂b1
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which do not contain a, then ∂b1 has the form

∂b1 = P +
∑
p

δ(b1;QpaRp)QpaRp,

where Qp, Rp ∈ AZ(a1, . . . , ar). Therefore

H(∂′b1 − Φ∂b1) = H

(
∂′b1 − Φ

(
P +

∑
p

δ(b1;QpaRp)QpaRp

))

= H

(
∂′b1 − Φ(P )−

∑
p

δ(b1;QpaRp)Qp(−e1 + v)Rp

)
.

We know ∂′b1 ∈ AZ(a1, . . . , ar), so H(∂′b1) = 0. Since P ∈ AZ(b, a1, . . . , ar),
we know Φ(P ) ∈ AZ(e2, a1, . . . , ar) and so H(Φ(P )) = 0. Thus

H(∂′b1 − Φ∂b1) = −
∑
p

δ(b1;QpaRp)H(Qp(−e1 + v)Rp)

=
∑
p

(−1)|Qp|+1δ(b1;QpaRp)Qpe2Rp.

So

ε(b1) = ε′(Φ(b1))
= ε′(b1 +H(∂′b1 − Φ∂b1))

= ε′(b1) + ε′
(∑

p

(−1)|Qp|+1δ(b1;QpaRp)Qpe2Rp

)
= ε′(b1)−

∑
p

(−1)|Qp|δ(b1;QpaRp)ε(QpbRp).

Since

Φ(b1) = b1 +H(∂′b1 − Φ∂b1)

= b1 −
∑
p

(−1)|Qp|δ(b1;QpaRp)Qpe2Rp,

we have also shown that e1 does not appear in Φ(b1).
Now suppose the equation is satisfied for bi and that e1 does not ap-

pear in Φ(bi) for i < j. As before, since ∂ is height decreasing, we know that
∂bj ∈ AZ(a, b, a1, . . . , ar, b1, . . . , bj−1) and ∂′bj ∈ AZ(a1, . . . , ar, b1, . . . , bj−1).
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By Lemma 2.15 we know that if P is the sum of terms in ∂bj which do not
contain a, then

∂bj = P +
∑
p

δ(bj ;QpaRp)QpaRp,

where Qp, Rp ∈ AZ(a1, . . . , ar, b1, . . . , bj−1). By the inductive assumption,
Φ(bi) does not contain e1 for i < j and so Φ(Qp),Φ(Rp), and Φ(P ) do not
contain e1. So

H(Φ(QpaRp)) = H(Φ(Qp)(−e1 + v)Φ(Rp))

= (−1)|Φ(Qp)|Φ(Qp)e2Φ(Rp).

Therefore

H(∂′bj − Φ∂bj) = −
∑
p

(−1)|Φ(Qp)|δ(bj ;QpaRp)Φ(Qp)e2Φ(Rp).

Thus Φ(bj) = bj +H(∂′bj − Φ∂bj) does not contain e1.
We then see

ε(bj) = ε′Φ(bj)
= ε′(bj +H(∂′bj − Φ∂bj))

= ε′(bj)−
∑
p

(−1)|Φ(Qp)|δ(bj ;QpaRp)ε(QpbRp),

as desired. �
Therefore, after a type II move involved in making a dip, if ε(bi) has

been determined for i < j, then

ε(bj) = ε′(bj)−
∑

(−1)|Φ(Qp)|δ(bj ;QpaRp)ε(QpbRp),

where the sum is over totally augmented disks with positive corner at bj and
a negative corner at b.

3. Augmentation to ruling

In this section, we will use a construction similar to that of Sabloff’s in [17]
to construct a ρ-graded normal ruling from a ρ-graded augmentation to a
fixed field F . This shows the forward direction of Theorem 1.1. Suppose that
D is the front diagram of a Legendrian knot Λ in plat position. By the dis-
cussion in §2.5 we can assume that there are base points ∗1, . . . , ∗m, one on
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each right cusp, labeled from top to bottom corresponding to t1, . . . , tm.
Let ε′ : AZ → F be a ρ-graded augmentation of the DGA (AZ , ∂) over
Z = Z[t±11 , . . . , t±1m ] of D. (Note that then ε′(t) =

∏m
i=1 ε

′(ti) for the corre-
sponding augmentation over Z[t, t−1].) We will construct a ρ-graded normal
ruling for the knot diagram while simultaneously extending the augmenta-
tion to an augmentation ε of the dipped diagram by adding one dip at a
time from left to right. We will add base points to the diagram as we go to
simplify the augmentation.

Start the ruling at the left of the diagram, pairing strands 2k and 2k − 1
for 1 ≤ k ≤ m. We will extend the ruling from left to right along the diagram
such that Property (R), stated below, is satisfied. We can ensure Property
(R) is satisfied because when introducing new crossings in the creation of
the dips, the a/b-lattices, we get to choose where the augmentation sends
the crossings in the b-lattice. We have enumerated the conditions we will
need to check to ensure we end up with a ρ-graded augmentation of the
dipped diagram and a ρ-graded normal ruling.

Property (R): At any dip, the generator ajrs is augmented if and only if
the strands r and s are paired in the ruling between cj and cj+1.

Recall that the crossings from the resolution of the right cusps are labeled
q1, . . . , qm from top to bottom and that the remaining crossings are labeled
c1, . . . , cn from left to right. Also, the strands are labeled from bottom to
top. It will also be important to recall that the orientation signs at positive
original crossings are given by the left most diagram in Figure 5, while
orientation signs at positive crossings in the a/b-lattices are given in the
right diagram.

We will inductively define augmentations on partially dipped diagrams
by adding dips one at a time from left to right and defining augmentations on
these diagrams. In particular, if εj is an augmentation on the diagram with
dips added up to the crossing cj , we will extend the ruling and construct
εj+1, an augmentation on the diagram with dips added up to the crossing
cj+1:

1) Extend the ruling over cj by a switch if εj(cj) 
= 0 and just to the
left of cj , the ruling matches configuration (a), (b), or (c) in Figure 7.
Otherwise, no switch.

2) Consult Figure 12 to determine whether any base points will be added
between cj and cj+1. For each added base point, follow the strand it
will end up on to the right all the way to a right cusp and add a base
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point ∗α at the right cusp. Fix εj+1(tα) = −1 and recall from §2.5
that we must then set εj+1(ti) = −εj(ti), where ∗i is the base point
already at the right cusp (1 ≤ i ≤ m). Move the base point ∗α along
the strand to between cj and cj+1, modifying the augmentation on any
crossing the base point goes over or under by a factor of −1 according
to Remark 2.14.

3) Place a dip between crossings cj and cj+1, making sure to place the
dip so that the new base points are to the right if they end up in
the dip according to Figure 12 and to the left if not. Between each
Reidemeister II move involved in making the dip:
a) Extend the augmentation ε′ of the DGA of the diagram before the

Reidemeister II move to an augmentation ε of the DGA of the
new diagram satisfying Property (R) by defining ε on the two new
crossings by Figure 12 and modifying ε from ε′ by Lemma 2.15.

b) Move base points to location specified by Figure 12 and modify ε
using Remark 2.14.

Note that εj+1 will agree with εj on the diagram to the left of cj though,
according to Lemma 2.15, they may differ on cj+1, . . . , cn.

When we complete this process and have a fully dipped diagram, the
augmentation εn = ε is a ρ-graded augmentation of the dipped diagram,
and we have a normal ruling of the original diagram. We will also see that
the resulting augmentation has restrictions on what ε(t) equals depending
on whether ρ is even or odd, yielding Theorem 3.1 and Theorem 1.2.

For example, Figure 13 gives an augmentation to R of the right handed
trefoil and the resulting ruling and augmentation of the dipped diagram
from following this process.

3.1. Left cusps

Let ε0 be the ρ-graded augmentation of the original diagram. We know the
ruling must pair strand 2k with strand 2k − 1 for 1 ≤ k ≤ m (where m is the
number of right cusps) at the left end of the diagram. Now add a dip between
the left cusps and c1. We must now extend ε0 to an augmentation ε1 of the
new diagram. This will require successively extending the augmentation ε′

of the diagram before the Reidemeister II move to the augmentation ε of
the diagram after one of the moves involved in constructing a dip. We will
compute how the augmentation ε0 changes as we complete each Reidemeister
II move in constructing the dip.
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−(f), product of signs of aj−1
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a

aa1a
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−(f), product of signs of aj−1
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a

aa1a
−1
2

a1
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Figure 12: In the diagrams, ∗ denotes a base point. A dot denotes the spec-
ified crossing is augmented and the augmentation sends the crossing to the
label. Here −/+(a) denotes a negative/positive crossing where the ruling
has configuration (a) and the rest are defined analogously.
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1
2

1
2

−1

1

1

− 1
2

−2
− 1

2

− 1
2

2

1
2 −1

−1

−1

−1
1

1

Figure 13: The top left diagram gives an augmentation of the right trefoil.
The top right diagram gives the normal ruling and the bottom diagram
gives the augmentation of the dipped diagram resulting from following the
process of the proof. The dots denote that the crossing is augmented and
the label on the dot gives where the augmentation sends the crossing. The
∗ gives the placement of the base points. All base points are sent to −1 by
the augmentation. (In general, it may not be the case that all base points
are sent to −1.)

Consider the type II Reidemeister move which pushes strand k over
strand �. We must consider the following when extending ε′, the augmen-
tation before pushing strand k over strand �, to ε, the augmentation of the
resulting diagram.

1) We must choose ε′(e2). In this case, choose ε′(e2) = 0. Thus, equa-
tion (2) tells us

ε(b0k�) = ε′(e2) = 0.

2) By equation (2),

ε(a0k�) = ε′(vk�),

where

∂b0k� = a0k� + vk�.

From Figure 14, we know vk� is a sum of words in b0ij for (i, j) <
(k, �) and contains a 1 if (k, �) = (2r, 2r − 1) for some 1 ≤ r ≤ m. Since
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b043

−

Figure 14: Shaded region gives the disk which contributes 1 to ∂b043.

ε′(b0ij) = 0 for all (i, j) < (k, �), by step (1), we see that

ε(a0k�) = ε′(vk�) =

{
1 (k, �) = (2r, 2r − 1) for some 1 ≤ r ≤ m

0 otherwise.

3) We must now check whether any “corrections” need to be made to ε′ to
get ε. In particular, whether there are any “corrections” which need to
be made to ε′ on the a0ij generators with (i, j) < (k, �) but i− j ≥ k − �.
As ε′(e2) = 0, Lemma 2.15 tells us there are no corrections.

We must now check that the resulting augmentation is ρ-graded. Since ε′

is ρ-graded and ε is constructed from ε′ by a grading preserving Reidemeister
II DGA isomorphism, we only need to check that any new crossings which
are augmented by ε have grading divisible by ρ. We know

|b02r,2r−1| = μ(2r)− μ(2r − 1) = (μ(2r − 1) + 1)− μ(2r − 1) = 1

for 1 ≤ r ≤ m and so

|a02r,2r−1| = |b02r,2r−1| − 1 = 0

for 1 ≤ r ≤ m since ∂ lowers degree by 1. So ε is a ρ-graded augmentation
satisfying Property (R).

3.2. Extending across original crossings

Consider the crossing cj , the crossing of strands i and i+ 1. Let us extend
the ruling across the crossing cj and use εj , the augmentation of the diagram
with dips added up to the crossing cj , to define εj+1, the diagram with dips
added up the crossing cj+1. Note that εj+1 will agree with εj on crossings
to the left of the dip added between cj and cj+1.
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First we need to extend the ruling; extend the ruling across cj by a switch
if εj(cj) 
= 0 and just to the left of cj , the ruling so far matches configuration
(a), (b), or (c). Otherwise, there is no switch. Let 1 ≤ L,K ≤ n such that
strand i is paired with strand L and strand i+ 1 is paired with strand K in
the ruling between cj and cj+1.

We will now construct a dip between between cj and cj+1, move base
points into place, and extend εj to an augmentation εj+1 in the process.

It will be useful to note that Table 1 gives all possibly totally aug-
mented disks in the various configurations of the ruling near crossings, up
to base points. Since the way we extend the ruling across cj depends on
εj(cj) and the ruling immediately to the left of cj , we will need to consider
when εj(cj) = 0 and εj(cj) 
= 0.

(Case 1: εj(cj) = 0) In this case, extend the ruling across cj without a
switch. As with adding a dip between the left cusps and c1, we will com-
pute how the augmentation ε′ of the diagram before a Reidemeister II move
changes to an augmentation ε after each move involved in the making the
dip. Consider the type II move that pushes strand k over strand �. Let
ε′ be the augmentation on the diagram before the move and let ε be the
augmentation on the resulting diagram. We will proceed as follows:

1) Define ε on the bj-lattice.

2) Define ε on the aj-lattice.

3) Make corrections to ε using Lemma 2.15.

4) Make corrections due to moving base points into place.

Following this process, we have:

1) Choose ε′(e2) = 0.

2) From equation (2), we know

ε(ajk�) = ε′(vk�).

Since neither cj nor any crossing in the bj-lattice is augmented, the

only totally augmented disks in vk� have a positive corner at bjk� and
a single augmented negative corner in the aj−1-lattice.

If such a disk exists, by Property (R), the negative corner in the
aj−1-lattice must be where two paired strands in the ruling cross as
seen in Figure 15. Since this is the only negative corner of the disk, we
know k and � are paired in the ruling between cj and cj+1 as well. So,
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Table 1: All possible totally augmented disks.

Configuration Positive corner Terms in ∂ corresp. to
of cj totally aug. disks

up to base pts.

not augmented bjrs, r, s paired, r, s /∈ {i, i+ 1} aj−1rs , ajrs
bj{i,L} aj−1{i+1,L}, a

j
{i,L}

bj{i+1,K} aj−1{i,K}, a
j
{i+1,K}

(a) bjrs, r, s paired, r, s /∈ {i, i+ 1} aj−1rs , ajrs
bjiL cja

j−1
iL , ajiL

bji+1,L aj−1iL , bji+1,ia
j
iL

bjKi aj−1K,i+1, a
j−1
K,i+1cjb

j
i+1,i

bjK,i+1 ajK,i+1cj , a
j
K,i+1

(b) bjrs, r, s paired, r, s /∈ {i, i+ 1} aj−1rs , ajrs
bjiK aj−1i+1,K , cja

j−1
iL bjLK

bji+1,K aj−1iL bjLK , aji+1,K

bjiL cja
j−1
iL , ajiL

bji+1,L aj−1iL , bji+1,ia
j
iL

(c) bjrs, r, s paired, r, s /∈ {i, i+ 1} aj−1rs , ajrs
bjKi aj−1K,i+1, a

j−1
K,i+1cjb

j
i+1,i

bjLi aj−1Li bji+1,i, a
j
Li

bjK,i+1 aj−1K,i+1cj , a
j
K,i+1

bjL,i+1 aj−1Li , bjLKajK,i+1

(d) bjrs, r, s paired, r, s /∈ {i, i+ 1} aj−1rs , ajrs
bjiL aj−1i+1,L, a

j
iL

bjK,i+1 aj−1Ki , a
j
K,i+1

(e) bjrs, r, s paired, r, s /∈ {i, i+ 1} aj−1rs , ajrs
bjiL aj−1i+1,L, a

j
iL

bjiK cja
j−1
iK , aj−1i+1,Lb

j
LK

bji+1,K aj−1iK , aji+1,K

(f) bjrs, r, s paired, r, s /∈ {i, i+ 1} aj−1rs , ajrs
bjLi aj−1L,i+1, a

j
Li

bjK,i+1 aj−1Ki , a
j
K,i+1

bjL,i+1 aj−1Li cj , b
j
LKajK,i+1

if we recall that aj{k,�} = ajmax(k,�),min(k,�), then

ε(ajk�) = ε′(vk�) = ε′(δ(bjk�; a
j−1
k� )aj−1k� )

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε(aj−1{i,K}) (k, �) = {i+ 1,K}
ε(aj−1{i+1,L}) (k, �) = {i, L}
ε(aj−1k� ) if k, � paired and k, � 
= i, i+ 1

0 otherwise.
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−
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− +
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Figure 15: The disks with one negative corner in the ak−1-lattice which
contribute terms to the differential of crossings in the bk-lattice if εj(cj) = 0.

3) Since ε′(e2) = 0, by Lemma 2.15, we know there are no “corrections”
to ε(ajrs) for (r, s) < (k, �).

4) As there are no base points to move into place, no modifications to
the augmentation are needed.

We must now check that the resulting augmentation is ρ-graded. Since
ε′ satisfies Property (R), we know aj−1{i,K}, a

j−1
{i+1,L}, and aj−1k� are augmented

if strands k and � are paired between cj and cj+1. Thus, if ε
′ is a ρ-graded

augmentation, then each has degree divisible by ρ. Since ∂ lowers degree by
one,

|bj{i+1,K}| = |aj−1{i,K}|+ 1, |bj{i,L}| = |aj−1{i+1,L}|+ 1, |bjk�| = |aj−1k� |+ 1

and since |ajrs| = |bjrs| − 1,

|aj{i+1,K}| = |aj−1{i,K}|, |aj{i,L}| = |aj−1{i+1,L}|, |ajk�| = |aj−1k� |.

So ε is a ρ-graded augmentation satisfying Property (R) if ε′ is ρ-graded.
(Case 2: εj(cj) 
= 0) Now suppose cj is augmented. This breaks into

six cases, one for each possible configuration of cj seen in Figure 7. In each
case, while creating the dip, we will extend the augmentation εj of the knot
diagram before adding the dip between crossings cj and cj+1 over the dip,
move the base points into place and modify the augmentation accordingly to
end up with an augmentation εj+1 of the modified diagram. As in the case
where cj was not augmented, we will compute how the augmentation changes
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as we do each Reidemeister II move involved in making a dip between cj
and cj+1.

Configuration (a): By considering Figure 12, we see that if cj is a
negative crossing, we add two base points at the right cusp to the right on
strand i+ 1 and move them along strand i+ 1 to between cj and cj+1, modi-
fying the augmentation on any crossings we push the base points over/under
according to Remark 2.14. Note that as we are moving two base points along
the same strand, no modification of the augmentation is necessary. If cj is
a positive crossing, we add one base point on strand i and follow the same
process, though, in this case, modification of the augmentation by a factor
of −1 on the crossings we push the base point over/under is necessary by
Remark 2.14. Note that whether cj is a positive or negative crossing, one
base point will be to the left of the dip we are adding, and, if cj is a negative
crossing, we will also have one base point to the right.

Consider the Reidemeister II move where strand k is pushed over strand
�. Let ε′ be the augmentation on the diagram before the move and let ε be
the augmentation of the diagram after. Note that by our strand labeling
convention L < i < i+ 1 < K.

As before, we must consider the following:
(k, �) < (i+ 1, i):

1) Choose ε′(e2) = 0.

2) We know ε(ajk�) = ε′(vk�). If k 
= i, i+ 1, then Table 1 tells us

ε′(vk�) = ε′(δ(bjk�; a
j−1
k� )aj−1k� ).

So, in this case, vk� has a totally augmented disk if and only if
ε′(aj−1k� ) 
= 0 if and only if k and � are paired between cj−1 and cj+1 by
Property (R). Otherwise (k, �) = (i+ 1, L) or (k, �) = (i, L). In these
cases

ε(ajiL) = ε′(viL)

=

{
ε′(δ(bjiL; cja

j−1
iL )cja

j−1
iL ) cj negative crossing

ε′(δ(bjiL; cja
j−1
iL )t±1α cja

j−1
iL ) cj positive crossing

= ε(cja
j−1
iL )
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and

ε(aji+1,L) = ε′(vi+1,L)

=

{
ε′(δ(bji+1,L; a

j−1
iL )t±1α aj−1iL ) cj negative crossing

ε′(δ(bji+1,L; a
j−1
iL )aj−1iL ) cj positive crossing

=

{
−ε(aj−1iL ) cj negative crossing

ε(aj−1iL ) cj positive crossing.

3) Since ε′(e2) = 0 by Lemma 2.15, there are no “corrections” to the
augmentation of the previously constructed portion of the aj-lattice.

4) In the case where cj is a negative crossing, according to Figure 12, we

move a base point over aji+1,L to get

ε(aji+1,L) =

{
−(−ε(aj−1iL )) cj negative crossing

ε(aj−1iL ) cj positive crossing

}
= ε(aj−1iL ).

Note that we do not need to move the other base points as they are
to the left of the dip and so no more modifications are necessary.

(k, �) = (i+ 1, i):

1) According to Figure 12, choose ε′(e2) = (ε(cj))
−1. Then

ε(bji+1,i) = ε′(e2) = (ε(cj))
−1.

2) From looking at Table 1, we see that vi+1,i = 0 and so

ε(aji+1,i) = ε′(vi+1,i) = 0.

3) As ε′(e2) = 1 we need to check for “corrections.” In particular, the
disk in Figure 16 contributes the term aji+1,ia

j
iL to ∂aji+1,L and is the

only disk with negative corner at aji+1,i whose other negative corners

are augmented since ajiL is the only crossing of strand L which is
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ai+1,L aiL

ai+1,i

+ −
−

Figure 16: The disk contributing to ∂aji+1,L, which requires “correcting” the
augmentation. Crossings are labeled.

augmented by Property (R). Thus Lemma 2.15 tells us

ε(aji+1,L) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε′(aji+1,L)− (−1)|t±1

α |δ(aji+i,L; a
j
i+1,ia

j
iL)ε(t

±1
α bji+1,ia

j
iL)

cj negative crossing

ε′(aji+1,L)− (−1)|1|δ(aji+i,L; a
j
i+1,ia

j
iL)ε(b

j
i+1,ia

j
iL)

cj positive crossing

=

{
ε(aj−1iL ) + ε(t±1α bji+1,ia

j
iL) cj negative crossing

ε(aj−1iL )− ε(bji+1,ia
j
iL) cj positive crossing

= ε(aj−1iL )− (ε(cj))
−1ε(cja

j−1
iL )

= 0,

where tα is associated with the base point ∗, since

δ(aji+1,L; a
j
i+1,ia

j
iL) =

{
−1 cj negative crossing

1 cj positive crossing.

Thus ε satisfies Property (R).

4) By Remark 2.14, moving a base point over aji+1,i will not change the

augmentation since ε(aji+1,i) = 0 in the case where cj is a negative
crossing.

(k, �) > (i+ 1, i):

1) According to Figure 12, choose ε′(e2) = 0.

2) As before, if neither strands k nor � is a crossing strand, then ajk� is
augmented if and only if k and � are paired in the ruling between cj
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aj−1
K,i+1

−

cj

−

bji+1,i

−+
bjKi

aj−1
K,i+1

−
+

bjKi

aj−1
K,i+1

−

cj

−

+

bjK,i+1

Figure 17: Totally augmented disks with one negative corner in the aj−1-
lattice contributing to the differential of crossings in the bj-lattice. The cross-
ings at corners of the disks are labeled.

and cj+1. Note that this tells us the augmentation on the aj-lattice is
the same as the aj−1-lattice. We do, however, see in Figure 17 that
there is one totally augmented disk in vK,i+1 and two in vKi.

Thus

ε(ajKi) = ε′(vKi)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε′(δ(bjKi; a

j−1
K,i+1)a

j−1
K,i+1) + ε′(δ(bjKi; a

j−1
K,i+1cjb

j
i+1,i)a

j−1
K,i+1cjt

±1
α bji+1,i)

cj negative crossing

ε′(δ(bjKi; a
j−1
K,i+1)a

j−1
K,i+1t

±1
α ) + ε′(δ(bjKi; a

j−1
K,i+1cjb

j
i+1,i)a

j−1
K,i+1cjb

j
i+1,i)

cj positive crossing

=

{
ε(aj−1K,i+1)− ε(aj−1K,i+1cjb

j
i+1,i) cj negative crossing

−ε(aj−1K,i+1) + ε(aj−1K,i+1cjb
j
i+1,i) cj positive crossing

= 0,

since

ε(ajK,i+1cjb
j
i+1,i) = ε(aj−1K,i+1cj)(ε(cj))

−1 = ε(aj−1K,i+1).



1124 C. Leverson

And,

ε(ajK,i+1) = ε′(vK,i+1)

=

{
ε′(δ(bjK,i+1; a

j−1
K,i+1cj)a

j−1
K,i+1cjt

±1
α t±1β ) cj negative crossing

ε′(δ(bjK,i+1; a
j−1
K,i+1cj)a

j−1
K,i+1cj) cj positive crossing

= ε(aj−1K,i+1cj).

3) Since ε′(e2) = 0, by Lemma 2.15, no “corrections.”

4) By Figure 12, no base points to move.

If ε′ is a ρ-graded augmentation, then ρ
∣∣|cj | since cj is augmented. Thus,

the ruling is ρ-graded so far. Since ε is constructed from ε′ by a grading-
preserving Reidemeister II DGA isomorphisms and ε′ is ρ-graded, we only
need to check that a few crossings have degree divisible by ρ. We see that
|bji+1,i| = μ(i+ 1)− μ(i) = |cj | and, since ∂ lowers degree by one,

|ajK,i+1| = |bjK,i+1| − 1 = |aj−1K,i+1|
|ajiL| = |bjiL| − 1 = |aj−1iL |.

So ε is ρ-graded.
As in the nonaugmentated case, if strands k and � are paired in the

ruling between cj−1 and cj+1, then aj−1k� is augmented and |ajk�| = |aj−1k� |. So
ε is a ρ-graded augmentation which satisfies Property (R).

Configuration (b): Now suppose the ruling has configuration (b) near
cj . Note that with our strand assignments i+ 1 > i > L > K. According to
Figure 12, if cj is a negative crossing, then follow strand K to the right to
a right cusp and add a base point and follow strand i+ 1 to the right to
a right cusp and add two base points. Move these base points back along
their respective strands to between cj and cj+1, modifying the augmentation
according to Remark 2.14. If cj is a positive crossing, then follow strand i
to the right to a right cusp, add a base point, and move it back to between
cj and cj+1, modifying the augmentation as necessary.

As before, we will compute how the augmentation εj changes as we
complete Reidemeister II moves involved in the construction of a dip, to
yield the extended augmentation εj+1.

Consider the augmentation ε extension of the augmentation ε′ where
strand k is pushed over strand � in the creation of a dip between cj and
cj+1.
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(k, �) < (L,K): This case follows in the way of the first case of config-
uration (a) so that setting ε′(e2) = 0, we transfer the augmentation on the
aj−1-lattice to that aj-lattice.

(k, �) = (L,K):

1) According to Figure 12, set ε′(e2) = (ε(cja
j−1
iL ))−1ε(aj−1i+1,K) to obtain

ε(bjLK) = ε′(e2) = (ε(cja
j−1
iL ))−1ε(aj−1i+1,K).

2) We see that ε′(vLK) = 0, since K and L are neither paired nor crossing
strands in the ruling between cj and cj+1. Thus

ε(ajLK) = ε′(vLK) = 0.

3) There are no “corrections” as any disk in the aj-lattice with negative

corner at ajLK must have an augmented negative corner of the form

ajL∗, but strand L is paired with strand i in the ruling between cj and
cj+1, so the only such crossing has not been made in the dip yet.

4) No base points to move, so no corrections.

(L,K) < (k, �) < (i+ 1, i):

1) According to Figure 12, set ε′(e2) = 0.

2) In Figure 18, we see all the totally augmented disks contributing to
vk� in ∂bjk�.

Therefore

ε(ajiK) = ε′(viK)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε′(δ(bjiK ; aj−1i+1,K)aj−1i+1,Kt±1α ) + ε′(δ(bjiK ; cja

j−1
iL bjLK)cja

j−1
iL bjLK)

cj negative crossing

ε′(δ(bjiK ; aj−1i+1,K)aj−1i+1,K) + ε′(δ(bjiK ; cja
j−1
iL bjLK)cja

j−1
iL bjLK)

cj positive crossing

=

{
−ε(aj−1i+1,K) + ε(cja

j−1
iL bjLK) cj negative crossing

−ε(aj−1i+1,K)− ε(cja
j−1
iL bjLK) cj positive crossing

}
= 0,

since

ε(cja
j−1
iL bjLK) = ε(cja

j−1
iL )(ε(cja

j−1
iL ))−1ε(aj−1i+1,K) = ε(aj−1i+1,K).



1126 C. Leverson

aj−1
i+1,K

−
bjiK

+

aj−1
iL

−

−
cj

bjLK

−
bjiK

+

aj−1
iL

−

cj
−

bjiL

+

aj−1
iL

− bjLK

−
bji+1,K

+

aj−1
iL

−
bji+1,L

+

Figure 18: Totally augmented disks with one negative corner in the bj−1-
lattice which contribute to the differential of a crossing in the aj-lattice. All
crossings at corners of disks are labeled.

We also have

ε(ajiL) = ε′(viK) = ε′(δ(bjiL; cja
j−1
iL )cja

j−1
iL )

=

{
ε(cja

j−1
iL ) cj negative crossing

−ε(cjaj−1iL ) cj positive crossing,

ε(aji+1,K) = ε′(vi+1,K) = ε′(δ(bji+1,K ; aj−1iL bjLK)cja
j−1
iL )

= ε(aj−1iL bjLK)

= ε(aj−1iL )(ε(cja
j−1
iL ))−1ε(aji+1,K),

ε(aji+1,L) = ε′(vi+1,L) = ε′(δ(bji+1,L; a
j−1
iL )aj−1iL ) = ε(aj−1iL ).

3) Since ε′(e2) = 0, by Lemma 2.15, there are no “corrections.”

4) Note that if cj is a negative crossing, according to Figure 12, we need to

move two base points over aji+1,K and aji+1,L, so no changes. However,
if cj is a positive crossing, then we need to move one base point over
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ajiK and ajiL to give ε(ajiK) = 0 and

ε(ajiL) =

{
ε(cja

j−1
iL ) cj negative crossing

−(−ε(cjaj−1iL )) cj positive crossing

}
= ε(cja

j−1
iL ).

(k, �) = (i, i+ 1):

1) According to Figure 12, set ε′(e2)=(ε(cj))
−1 and so ε(bji+1,i)=(ε(cj))

−1.

2) As before, ε(aji+1,i) = ε′(vi+1,i) = ε′(0) = 0.

3) We do have one correction: the disk aji+1,ia
j
iL in ∂aji+1,L. Lemma 2.15

tells us

ε(aji+1,L) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε′(aji+1,L)− (−1)|t±1

α |δ(aji+1,L; a
j
i+1,ia

j
iL)ε(t

±1
α bji+1,ia

j
iL)

cj negative crossing

ε′(aji+1,L)− (−1)|1|δ(aji+1,L; a
j
i+1,ia

j
iL)ε(b

j
i+1,ia

j
iL)

cj positive crossing

=

{
ε(aj−1iL ) + ε(t±1α bji+1,ia

j
iL) cj negative crossing

ε(aj−1iL )− ε(bji+1,ia
j
iL) cj positive crossing

= 0,

since

ε(bji+1,ia
j
iL) = (ε(cj))

−1ε(cja
j−1
iL ) = ε(aj−1iL ).

4) As ε(aji+1,i) = 0, no corrections are needed when moving the base point

∗α over aji+1,i.

Since

|bji+1,i| = μ(i+ 1)− μ(i) = |cj |
|bjLK | = μ(L)− μ(K)

= μ(L)− μ(i) + μ(i)− μ(i+ 1) + μ(i+ 1)− μ(K)

= −|aj−1iL | − |cj |+ |aj−1i+1,K |,

aj−1iL , aj−1i+1,K , and cj are augmented by ε′, and ε′ is ρ-graded, we know ε is
ρ-graded.

Since ε′ satisfies Property (R) on the aj−1-lattice, we know ε is a ρ-
graded augmentation which satisfies Property (R). In fact, ε is just aji+1,i, a

j
iL
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augmented with the rest of the augmentation on the aj-lattice transferred
from the aj−1-lattice.

Configuration (c), (d), (e), (f): Similarly, one can extend εj over
a crossing cj with the ruling having configuration (c), (d), (e), or (f) near
cj to an augmentation εj+1 satisfying Property (R) by defining it on new
crossings as specified in Figure 12. We omit the calculations.

3.3. Right cusps

By construction and Lemma 2.15, ε = εn is an augmentation. In this section,
we will show that we do in fact have a ruling. Recall that q1, . . . , qm are the
crossings at the right cusps numbered from top to top. Then

∂qk = t±1k + an2m−2k+2,2m−2k+1

for 1 ≤ k ≤ m, where the power of tk is determined by the orientation of
the knot at the right cusp, since strands 2m− 2k + 2 and 2m− 2k + 1 are
incident to the k-th right cusps from the bottom. Since ε is an augmentation,

0 = ε∂qk

= ε(t±1k + an2m−2k+2,2m−2k+1)

= (ε(tk))
±1 + ε(an2m−2k+2,2m−2k+1).

Since 0 
= ε(t) =
∏s

i=1 ε(ti),

ε(an2m−2k+2,2m−2k+1) = −(ε(tk))±1 
= 0.

Since ε satisfies Property (R), this tells us strands 2m− 2k + 2 and
2m− 2k + 1 are paired at the right cusps for all 1 ≤ k ≤ m and so this
construction does give a ruling.

This concludes the proof of the forward direction of Theorem 1.1. This
construction also gives restrictions on ε(t) for any augmentation ε. In par-
ticular, the final statement in Theorem 1.1:

Theorem 3.1. If ρ is even with ρ
∣∣2r(K), then any ρ-graded augmentation

ε satisfies ε(t) = −1.

Proof. Consider the associated ρ-graded ruling. If ρ is even, then any ρ-
graded ruling is only switched at crossings ck with ρ

∣∣|ck| and so 2
∣∣|ck|. Thus

any paired strands in the ruling have opposite orientation. If strand i is
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Figure 19: Oriented right handed trefoil with a normal graded ruling indi-
cated.

+(a)

sgn(k,K) = −1
sgn(k, i) = +1

+(a)

sgn(k,K) = +1

sgn(k, i) = −1

+(b)

sgn(k, i+ 1) = +1

sgn(k, i) = +1

+(b)

sgn(k, i+ 1) = −1
sgn(k, i) = −1

+(c)

sgn(k, L) = −1
sgn(k,K) = −1

+(c)

sgn(k, L) = +1

sgn(k,K) = +1

Figure 20: All possible ruling configurations and orientations near a crossing
which is switched in a ρ-graded normal ruling when ρ is even with signs of
ruled pairs given with our strand labeling convention.

oriented to the right, we assign that portion of the ruling, the sign +1 and
if it is instead oriented to the left, we assign −1. Define sgn(i, k) to be the
sign for strands i > j paired in the ruling between ck and ck+1. Note that
this sign can only change going over a switched crossing.

For example, if we have the trefoil with the orientation given in Figure 19,
then

k 0 0 1 1 2 2 3 3

i 4 2 4 2 4 3 4 2

sgn(i, k) +1 −1 +1 −1 +1 −1 +1 −1
Given a ρ-graded ruling with ρ even, we also see that we cannot have

switched crossings which are negative crossings. So all switched crossings
have one of the configurations appearing in Figure 20.

Note that in these switch configurations the signs of ruling pairs do not
change. Thus, each ruling path is an oriented unknot. The important part
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of this is that if a ruling pair has sign +1, respectively −1, at the left cusp,
then it has sign +1, respectively −1, at the right cusp.

We will show that for any k such that 0 ≤ k ≤ n,

(3)
∏

(ε(akrs))
sgn(r,k) = 1,

where the product is taken over all paired strands r and s in the ruling
between ck and ck+1.

Clearly this is true for k = 0. Induct on k. Suppose equation (3) is true
for k − 1. We will show that equation (3) holds for k. If the ruling is not
switched at ck, then the result is clear. If ck has configuration type +(a),
then, by Figure 12,

ε(akrs) =

⎧⎪⎨⎪⎩
ε(ck)ε(a

k−1
K,i+1) (r, s) = (K, i+ 1)

ε(ck)ε(a
k−1
iL ) (r, s) = (i, L)

ε(ak−1rs ) otherwise

and

sgn(K, k) = − sgn(i, k), sgn(r, k) = sgn(r, k − 1)

for all strands r and s paired in the ruling between ck and ck+1. Thus∏
r,s

(ε(akrs))
sgn(r,k)

= (ε(ck)ε(a
k−1
K,i+1))

sgn(K,k)(ε(ck)ε(a
k−1
iL ))sgn(i,k)

·
∏

(r,s) �=(K,i+1),(i,L)

(ε(ak−1rs ))sgn(r,k)

= (ε(ck))
− sgn(i,k)(ε(ak−1K,i+1))

sgn(K,k)(ε(ck))
sgn(i,k)(ε(ak−1iL ))sgn(i,k)

·
∏

(r,s) �=(K,i+1),(i,L)

(ε(ak−1rs ))sgn(r,k−1)

= (ε(ak−1K,i+1))
sgn(K,k−1)(ε(ak−1iL ))sgn(i,k−1)

∏
(r,s) �=(K,i+1),(i,L)

(ε(ak−1rs ))sgn(r,k−1)

=
∏
r,s

(ε(ak−1rs ))sgn(r,k−1)

= 1.

Similarly, we can see the same is true if ck has configuration +(b) or +(c)
since sgn(r, k) = sgn(r, k − 1) for all strands r and s which are paired in the
ruling between ck and ck+1.
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In particular, the result is true for k = n. Since

∂q� = t
sgn(2m−2�+2,2m−2�+1)
� + an2m−2�+2,2m−2�+1,

we know

0 = ε∂q� = (ε(t�))
sgn(2m−2�+2,n) + ε(an2m−2�+2,2m−2�+1)

for all 1 ≤ � ≤ m. Thus

ε(t�) = −(ε(an2m−2�+2,2m−2�+1))
sgn(2m−2�+2,n)

and so, if s is the number of base points, then

ε(t) =

s∏
�=1

ε(t�) = (−1)s−m
m∏
�=1

(
−(ε(an2m−2�+2,2m−2�+1))

sgn(2m−2�+2,n)
)

= (−1)s
m∏
�=1

(ε(an2m−2�+2,2m−2�+1))
sgn(2m−2�+2,n)

= (−1)s
= −1

as by Lemma 3.2 we know we have an odd number of base points. �
Recall that we add an even number of base points if a crossing ck has

configuration (d), (e), (f), or not augmented, two for each −(a) crossing,
an odd number for each +(a), ±(b), ±(c), and one for each right cusp.
Thus, to show there are an odd number of base points, it suffices to show
the following: (The following argument was communicated to the author by
Lenhard Ng.)

Lemma 3.2. If c gives the number of right cusps, s is the number of
switches in the ruling, and a− is the number of −(a) crossings, then

c+ s+ a− ≡ 1 mod 2.

Proof. We will prove this result by showing each of the following statements:

tb+ r ≡ # components mod 2(4)

tb ≡ c+ cr mod 2(5)

cr ≡ s mod 2(6)

r ≡ a− mod 2(7)
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where r is the rotation number and cr is the number of crossings. Note that
if we add these four equations together, we get that

c+ s+ a− ≡ # components mod 2.

Since in our case we have a knot, this gives the desired result.
Statement 4 is a standard result. Statement 5 results from the fact that

the Thurston-Bennequin number is the number of right cusps plus the num-
ber of crossings counted with sign. To prove statement 6, we will count the
number of interlaced pairs from left to right.

We say that two pairs of points are interlaced if we encounter the pairs
alternately as we move vertically. In other words, if ai denotes one pair of
companion strands and bi denotes the other, then they appear from top to
bottom as a1b1a2b2.

Note that the number of interlaced pairs does not change as we go from
left to right over a switched crossing and changes by ±1 as we go from
left to right over a nonswitched crossing. We also know that we have zero
interlaced pairs at the left and right cusps. Thus, the number of nonswitched
crossings, which is equal to the number of crossings minus the number of
switched crossings, is even, which gives

cr ≡ s mod 2.

The proof of statement 7 will be a little more involved. First, at any
vertical segment of the dipped diagram which does not include a crossing, if
r and s (r > s) are paired, assign the pair the number 0 if they are oriented
the same way and sgn(r, k) as defined in Theorem 3.1 otherwise. To any
such vertical slice of the diagram, associate the sum of these numbers over
the ruled pairs in that slice. For example, Figure 21 gives the assignments
for the given ruling of the left handed trefoil.

One can check that this count goes up by ±2 as you go over a −(a)
crossing and otherwise does not change. At the left cusps, we compute the
sum to be uL − dL, where uL is the number of up cusps and dL the number
of down. At the right cusps, we compute the sum to be dR − uR, where uR
and dR are defined analogously. Therefore we have

(dR − uR) ≡ (uL − dL) + 2a− mod 4,

2r ≡ 2a− mod 4,

r ≡ a− mod 2.

�



Augmentations and rulings of Legendrian knots 1133

+

−

+

+1

+

−

+

+1

+

−

+

+1

+
−

+

+1

+
−
+

+1

+
−
+

+1

+
−
+

+1

−
+
−

−1

−

+
−

−1

−

+

−
−1

−

+

−
−1

−

+

−
−1

Figure 21: The diagram gives a normal ruling of the left handed trefoil. At
each vertical slice of the diagram, the paired strands in the ruling are dec-
orated with +/−, denoting the assignment of +1/− 1 to the corresponding
paired strands. The number below the vertical slice gives the assigned sum
over the ruled pairs.

The augmentation variety is more complicated when ρ is odd. Given
a ρ-graded augmentation to a field F , once again, consider the associated
ρ-graded ruling.

Remark 3.3. Since

∂q� = t
sgn(2m−2�+2,2m−2�+1)
� + an2m−2�+2,2m−2�+1,

we know

ε(t�) = −(ε(an2m−2�+2,2m−2�+1))
sgn(2m−2�+2,n) = −x2�ε(an2m−2�+2,2m−2�+1),

where

x� =

{
1 if sgn(2m− 2�+ 2, n) = 1

ε(an2m−2�+2,2m−2�+1) if sgn(2m− 2�+ 2, n) = −1.

If s is the number of base points, then

ε(t) =

s∏
�=1

ε(t�) = (−1)s−m
m∏
�=1

(−x2�ε(an2m−2�+2,2m−2�+1)
)

= (−1)sx2
m∏
�=1

ε(an2m−2�+2,2m−2�+1)

= −x2,

for x=
∏

x�∈F ∗, since there are an odd number of base points by Lemma 3.2.
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It is clear that

1 =
∏

r,s paired

ε(a0rs).

Looking at the various configurations for the switched crossings ck (see Fig-
ure 12), we see that∏

r,s paired(ε(a
i+1
rs ))∏

r,s paired(ε(a
i
rs))

=

{
(ε(ck))

2 if the ruling has configuration (a) near ck

1 otherwise

for 1 ≤ i < n. So

m∏
k=1

ε(an2k,2k−1) =
∏

r,s paired

ε(anrs) = x2

for some x ∈ F ∗. Therefore there exists x ∈ F ∗ such that

ε(t) =

s∏
k=1

ε(tk) = −x2.

The following theorem, restated from the introduction, gives a slightly
more precise result for when there exists a ρ-graded normal ruling for the
diagram which is not oriented, meaning a ruling for which not all ruling
strands are oriented unknots.

Theorem 1.2. If ρ is odd and ρ|2r(Λ), then

Augρ(Λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{−x2 : x ∈ F ∗} if there exists a ρ-graded normal ruling of Λ

which is not oriented

{−1} if there exists a ρ-graded normal ruling of Λ

and all rulings are oriented

∅ if there are no ρ-graded normal rulings of Λ.

Proof. Suppose there exists a ρ-graded normal ruling for Λ which is not
oriented. Fix 0 
= x ∈ F . Since every ruling is oriented on the portion at
the left cusps, for it to be an unoriented ruling, there has to be a crossing
which takes the ruling from oriented to unoriented going from left to right.
The only configurations for the ruling which do this are the crossings with
configuration −(a), −(b), or −(c). Thus, a normal ruling of Λ is not oriented
if and only if it has a crossing with configuration −(a), −(b), or −(c). In
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fact, any ruling is also oriented at the right cusps and so must have at least
two crossings where the ruling has configuration −(a),−(b), or −(c).

Consider Λ from the last crossing with configuration −(a),−(b), or −(c),
which we will denote ck, to the right cusps. Note that any crossing with con-
figuration +(a), +(b), +(c), ±(d), ±(e), ±(f), or not switched preserves the
orientation of the paired strands in the ruling. In other words, whatever ori-
entation the strands in the ruling have just to the right ck is the orientation
they have all the way through to the right cusps. Let σ ∈ S2m be the permu-
tation of the strands so that if strands r and s with r > s are paired in the
ruling immediately to the right of the crossing ck, then strand σ(r) is the
strand with higher label and σ(s) is the strand with lower label if we follow
the ruled pair to the right cusps. (Note that σ(r) = σ(s) + 1 and 2|σ(r).)

As in the ρ even case, set the orientation sgn(r, j) = 1 if strand r is
oriented to the right immediately after crossing cj and sgn(r, j) = −1 if
strand r is oriented to the left for k ≤ j ≤ n. Labeling strands as before,
this gives us

sgn(max(i+ 1,K), k) sgn(max(i, L), k)(8)

=

{
+1 if ck has configuration −(a)
−1 if ck has configuration −(b) or −(c).

Set �r = m+ 1− σ(r)
2 . Note that � is chosen so that σ(r) and σ(s) are

the strands crossing at q�. Thus

∂q�r = t
sgn(r,k)
�r

+ anσ(r),σ(s)

and so

ε(t�r) = −(ε(anσ(r),σ(s)))sgn(r,k)

since sgn(r, k) = ±1.
Define ε, an augmentation to F of the DGA (A(Λ′), ∂) of the dipped

diagram Λ′ of Λ, satisfying Property (R), by

ε(cj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xsgn(K,k) j = k and cj has configuration −(a),−(c)
xsgn(i,k) j = k and cj has configuration −(b)
1 if the ruling is switched at cj and j 
= k

0 otherwise.
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Note that Property (R) tells us that

ε(akrs) = ε(anσ(r),σ(s))

for all strands r and s paired in the ruling between ck and ck+1. We also
note that ε must be a ρ-graded augmentation, since it was defined using a
ρ-graded normal ruling.

We see that if cj has configuration −(a), then

ε(anσ(r),σ(s)) =

⎧⎪⎨⎪⎩
xsgn(K,k) (r, s) = (K, i+ 1)

1 r, s paired in ruling

0 otherwise.

If cj has configuration −(b), then

ε(anσ(r),σ(s)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xsgn(i,k) (r, s) = (i, L)

x− sgn(i,k) (r, s) = (i+ 1,K)

1 r, s paired in ruling

0 otherwise.

If cj has configuration −(c), then

ε(anσ(r),σ(s)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xsgn(K,k) (r, s) = (K, i+ 1)

x− sgn(K,k) (r, s) = (L, i)

1 r, s paired in ruling

0 otherwise.

We know

ε(t) =

s∏
j=1

ε(tj) = (−1)s−m
m∏
j=1

ε(tm−j+1)

= (−1)s−m
m∏
j=1

(−(ε(an2j,2j−1))sgn(2j,n))



Augmentations and rulings of Legendrian knots 1137

= (−1)s(ε(an{σ(K),σ(i+1)}))
sgn(max(K,i+1),k)(ε(an{σ(i),σ(L)}))

sgn(max(i,L),k)

·
m∏
j=1

(ε(an2j,2j−1))
sgn(2j,n)

j �=m−�max(K,i+1)+1,m−�max(L,i)+1

= −(ε(an{σ(K),σ(i+1)}))
sgn(max(K,i+1),k)(ε(an{σ(i),σ(L)}))

sgn(max(i,L),k)

=

⎧⎪⎨⎪⎩
−(xsgn(K,k))sgn(K,k)(xsgn(K,k))sgn(i,k) ck has configuration −(a)
−(x− sgn(i,k))sgn(i+1,k)(xsgn(i,k))sgn(i,k) ck has configuration −(b)
−(xsgn(K,k))sgn(K,k)(x− sgn(K,k))sgn(L,k) ck has configuration −(c)

= −x2

by equation (8).
By Remark 3.3,

Augρ(Λ) ⊂ {−x2 : x ∈ F ∗},
so Augρ(Λ) = {−x2 : x ∈ F ∗}.

Now suppose there exists a ρ-graded normal ruling for Λ and all ρ-
graded normal rulings of Λ are oriented. In this case, the ruling must only
have switched crossings with configuration +(a), +(b), +(c), (d), (e), or
(f). Note that the proof of Theorem 3.1 only required this be the case for
the ruling, so the augmentation associated to the normal ruling must have
ε(t) = −1 and so Augρ(Λ) = {−1}.

If there do not exist any ρ-graded rulings for Λ, then clearly
Augρ(Λ) = ∅. �

4. Ruling to augmentation

To show the backward direction of Theorem 1.1, that given a ρ-graded nor-
mal ruling of a front diagram of a Legendrian knot, we can find a ρ-graded
augmentation of A, it suffices to show that given a ρ-graded normal ruling
of a front diagram, there exists a ρ-graded augmentation ε of the dipped
diagram. We will do this by, in some sense, following the same argument as
previously, but backwards. This includes the condition that the augmenta-
tion of the dipped diagram satisfies Property (R).

In particular, we will be able to find an augmentation ε of the dipped
diagram satisfying Property (R) for which, if a crossing ck is augmented,
ε(ck) = 1 and such that ε(t1 · · · ts) = −1 where ∗1, . . . , ∗s are the base points
in the final diagram.
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4.1. Definition of augmentation

As previously, we can assume the base point ∗ corresponding to t is in the
loop of the top right cusp. We can then add one base point to each right
cusp. We will set ε(ti) = −1 (1 ≤ i ≤ m), this will also be true for the base
points added subsequently. Note that we will not need to do any of the
“correction” calculations for disks and base points as we are defining the
map this way.

4.1.1. Left. For any ruling, at the left end of the diagram, we have strand
2k paired with 2k − 1 for 1 ≤ k ≤ m, where m is the number of right cusps.
For ε to satisfy Property (R), we must set

ε(b0rs) = 0

for all k and � and

ε(a0rs) =

{
1 there exists k s. t. r = 2k, s = 2k − 1, 1 ≤ k ≤ m

0 otherwise.

4.1.2. Original crossings. Consider a crossing cj . If the ruling is switched
at cj , set ε(cj) = 1. If not, set ε(cj) = 0. (Note that we can augment the
switched crossings to any nonzero element of F and still get an augmenta-
tion, but we may end up with an augmentation where ε(t) 
= −1.)

Add base points and augment crossings in the dips, following Figure 12.

4.2. Properties of the augmentation

By the proof that augmentations imply rulings, ε is an augmentation and by
the following, the resulting augmentation ε on the original undipped diagram
with one base point ∗ associated to t satisfies ε(t) = −1.

Since we have set ε(ti) = −1 for all 1 ≤ i ≤ s and Lemma 3.2 tells us s
is odd,

ε(t) =

s∏
i=1

ε(ti) = (−1)s = −1.

5. Lifting augmentations

Given an augmentation to Z/2 of the Chekanov-Eliashberg DGA over Z/2.
We will now use constructions similar to those in the proof of Theorem 1.1
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to construct a lift of the augmentation to an augmentation to Z of the
lift of the Chekanov-Eliashberg DGA and thus that one can construct an
augmentation to any ring. Restating from the introduction:

Theorem 1.3. Let Λ be a Legendrian knot in R3. Let (Az/2, ∂) be the
Chekanov-Eliashberg DGA over Z/2 and let (A, ∂) be the DGA over
R = Z[t, t−1]. If ε′ : Az/2 → Z/2 is an augmentation of (Az/2, ∂), then one
can find a lift of ε′ to an augmentation ε : A → Z of (A, ∂) such that
ε(t) = −1.
Proof. Recall that Ei = A(e1, e2) where |e1| = i− 1, |e2| = i, ∂(e2) = e1, and
∂(e1) = 0 and Si(AR(a1, . . . , an)) = AR(a1, . . . , an, e1, e2).

Note that, for any augmentation ε on AR to Z, there exists an aug-
mentation ε̂ on S(AR) to Z which agrees with ε on AR ⊂ S(Ar) and for
any augmentation ε̂ on S(AR) to Z, there exists an augmentation ε on
AR to Z which agrees with ε on AR ⊂ S(AR). And, we have the analo-
gous result for any augmentation of Az/2. Thus, clearly one can find a lift
ε : AR → Z of ε′ : Az/2 → Z/2 if and only if one can find a lift ε : S(AR)→ Z
of ε : S(Az/2)→ Z/2.

So, if there exists a lift for A, then there exists a lift for any stable
tame isomorphic differential graded algebra. Therefore, to show the result,
it suffices to show there exists a lift of the augmentation to Z/2 of differential
graded algebras of knots in plat position. So we may assume Λ is in plat
position.

Given an augmentation ε′ : Az/2 → Z/2 of the Chekanov-Eliashberg DGA
over Z/2. Using Lemma 2.15 modulo 2 and the definition given in Figure 12

mod 2, we can extend ε′ to an augmentation ε̂ : ̂Az/2 → Z/2 of the DGA
over Z/2 for the dipped diagram of Λ. We saw that if we know ε̂(ci) and the
augmentation on the ai/bi-lattices for i < j, then

ε̂(cj) ≡ ε′(cj) +
j−1∑
i=0

∑
k,�

∑
p

ε̂(Qpb
i
k�Rp) mod 2

where, for 0 ≤ i < j, ∂bik� = P +
∑

pQpa
i
k�Rp before passing strand k over

strand � in the creation of the dip between ci and ci+1 and P is the sum
of terms which do not contain aik� with our labeling convention. This is the
same as the construction introduced in [17]. From [17] we know that this
augmentation satisfies Property (R).

Let (ÃZ , ∂̃) be the lift of the Chekanov-Eliashberg DGA over Z/2 to a
DGA over Z = Z[t±11 , . . . , t±1s ] of the DGA over Z[t±11 , . . . , t±1s ] of the dipped
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diagram of Λ. Define ε̃ : ÃZ → Z by

ε̃(cj) =

{
1 if ε̂(cj) 
= 0

0 otherwise.

on the original crossings, define ε̃ as given by Figure 12 for all other crossings,
add base points where indicated in Figure 12, and define

ε̃(ti) =

{
−ε̃(an2m−2i+2,2m−2i+1) if 1 ≤ i ≤ m

−1 if m < i ≤ s.

Note that all crossings and base points are augmented to 0 or ±1. One can
check that with this definition, ε̃ is an augmentation of the dipped diagram
of Λ. Note that as the same original crossings are augmented in the dipped
diagram, this augmentation must correspond to the same ruling as ε̂ and by
definition, satisfies Property (R). So, clearly,

ε̃(c) ≡ ε̂(c) mod 2

for all crossings c in the dipped diagram of Λ.
We will use induction on k to show that∏

ε̃(akpq) = 1,

where the product is taken over all paired strands p and q, for all 1 ≤ k ≤ n
and thus, that

s∏
i=1

ε̃(ti) = −1.

Since ε̃(a0pq) = 1 for (p, q) = (2m− 2k + 2, 2m− 2k + 1) for some k such that
1 ≤ k ≤ m, we know ∏

p,q

ε̃(a0pq) = 1.

Looking at Figure 12, we see that∏
p,q ε̃(a

k
pq)∏

p,q ε̃(a
k−1
pq )

=

{
(ε̃(ck−1))2 if the ruling has config. (a) near ck−1
1 otherwise

}
= 1,
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since ε̃(ck−1) = ±1. Thus, if
∏

ε̃(ak−1pq ) = 1, then
∏

ε̃(akpq) = 1. So, in partic-
ular,

∏
ε̃(anpq) = 1. Thus

s∏
i=1

ε̃(ti) = (−1)s−m
m∏
i=1

ε̃(ti) = (−1)s−m
m∏
i=1

(−ε̃(an2m−2i+2,2m−2i+1))

= (−1)s
m∏
i=1

ε̃(an2m−2i+2,2m−2i+1) = (−1)s = −1,

since Lemma 3.2 tells s is odd.
Lemma 2.15 in its original form also gives us a method to define an

augmentation of the original diagram from an augmentation of the dipped
diagram of Λ. Thus we have the augmentation ε : AZ → Z of the original
diagram, defined by

ε(cj) = ε̃(cj) +

j−1∑
i=0

∑
k,�

∑
p

ε(bik�;Q
′
pa

i
k�R

′
p)(−1)|Φ(Q′

p)|ε̃(Q′pb
i
k�R

′
p)

where, for 0 ≤ i < j, ∂bik� = P +
∑

p ε(b
i
k�;Q

′
pa

i
k�R

′
p)Q

′
pa

i
k�R

′
p before passing

strand k over strand � in the creation of the dip between ci and ci+1 and P is
the sum of terms which do not contain aik� with our labeling convention. Note
that the “correction” disks in the Z/2 case are the same as the “correction”
disks in the Z[t±11 , . . . , t±1s ] case, but the Z[t±11 , . . . , t±1s ] “correction” disks
may be counted with negative sign and the disk may have extra corners at
base points. Recall that ε̃(ti) = −1 for m < i ≤ s. Thus

ε̃(Q′p) ≡ ε̃(Qp) mod 2, ε̃(R′p) ≡ ε̃(Rp) mod 2,

since the disk which contributes Q′p (resp. R′p) to the differential may have
extra corners at base points ti for m < i ≤ s (base points not occurring at
right cusps) which the disk which contributesQp (resp. Rp) to the differential
does not have.

We will now show that ε is, in fact, a lift of ε′.

ε(cj) = ε̃(cj) +

j−1∑
i=0

∑
k,�

∑
p

δ(bik�;Q
′
pa

i
k�R

′
p)(−1)|Φ(Q′

p)|ε̃(Q′pb
i
k�R

′
p)

≡ ε̃(cj) +

j−1∑
i=0

∑
k,�

∑
p

ε̃(Qpb
i
k�Rp) mod 2
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≡
⎛⎝ε′(cj) +

j−1∑
i=0

∑
k,�

∑
p

ε̂(Qpb
i
k�Rp)

⎞⎠+

j−1∑
i=0

∑
k,�

∑
p

ε̃(Qpb
i
k�Rp) mod 2

≡ ε′(cj) + 2

j−1∑
i=0

∑
k,�

∑
p

ε̂(Qpb
i
k�Rp) mod 2

≡ ε′(cj) mod 2,

since ε̃ is a lift of ε̂. Note that this shows that the resulting augmentation
of the DGA over Z[t±11 , . . . , t±1s ] is a lift and so, by the discussion of moving
and adding base points in §2.5, the augmentation of the DGA over Z[t, t−1]
is a lift as well, and

ε(t) =

s∏
i=1

ε(ti) = −1.

And, since there is a unital homomorphism from Z to any unital ring S, we
can also use ε′ to define an augmentation ε : A → S with ε(t) = −1. �
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