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Cylindrical contact homology for

dynamically convex contact forms

in three dimensions

Michael Hutchings† and Jo Nelson‡

We show that for dynamically convex contact forms in three di-
mensions, the cylindrical contact homology differential ∂ can be
defined by directly counting holomorphic cylinders for a generic
almost complex structure, without any abstract perturbation of
the Cauchy-Riemann equation. We also prove that ∂2 = 0. Invari-
ance of cylindrical contact homology in this case can be proved
using S1-dependent almost complex structures, similarly to work
of Bourgeois-Oancea; this will be explained in another paper.

1. Introduction and statement of results

1.1. Introduction

Cylindrical contact homology, introduced by Eliashberg-Givental-Hofer [10],
is in principle an invariant of contact manifolds (Y, ξ) that admit a nonde-
generate contact form λ without contractible Reeb orbits of certain gradings.
The cylindrical contact homology of (Y, ξ) is defined by choosing such a con-
tact form λ and taking the homology of a chain complex over Q which is gen-
erated by “good” Reeb orbits, and whose differential ∂ counts J-holomorphic
cylinders in R× Y for a suitable almost complex structure J . Unfortunately,
in many cases there is no way to choose J so as to obtain the transversality
for holomorphic cylinders needed to define ∂ and to show that ∂2 = 0 and
that the homology is invariant. Thus, to define cylindrical contact homol-
ogy in general, some kind of “abstract perturbation” of the J-holomorphic
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curve equation is needed, for example using polyfolds or Kuranishi structures
(cf. [1, 24]).

Although such abstract methods can be used to define contact homology
in general, for computations and applications it is often desirable to have
a more explicit geometric definition of the chain complex, in those special
situations when this is possible. The goal of this paper is to show that for
“dynamically convex” contact forms λ in three dimensions, and for generic
almost complex structures J , one can in fact define the differential ∂ by
counting J-holomorphic cylinders without any abstract perturbation. We
also show that ∂2 = 0. (When π1(Y ) contains torsion we make one additional
assumption, which can be removed if a certain technical conjecture holds.)

Previously, the paper [2] claimed to show geometrically that cylindri-
cal contact homology is well-defined and invariant for dynamically convex
contact forms on S3. However the argument had two gaps: First, a certain
kind of breaking of index 2 cylinders that could potentially interfere with
the compactness argument in the proof that ∂2 = 0 was not considered, see
Proposition 2.8(c) below. Second, S1-dependent almost complex structures
were used to guarantee transversality of the moduli spaces of holomorphic
cylinders. However, breaking the S1 symmetry invalidates the gluing prop-
erty needed to prove ∂2 = 0 and the chain map and chain homotopy equa-
tions1.

We deal with the first issue by using intersection theory of holomorphic
curves to show that the troublesome breaking cannot occur for generic J .
To deal with second issue, we use index calculations to show that one can
already obtain the transversality needed to define ∂ and prove that ∂2 = 0
using a generic almost complex structure, without breaking the S1 symme-
try.

Next one would like to show that cylindrical contact homology is an in-
variant of three-manifolds with contact structures that admit dynamically
convex contact forms, by counting holomorphic cylinders in cobordisms to
define chain maps and chain homotopies. It turns out that generic (S1-
independent) almost complex structures do not give sufficient transversality

1One can correct for this failure of gluing, but one is then naturally led to a
“Morse-Bott” version of the chain complex, with two generators for each Reeb or-
bit, analogous to [6]. The homology of this Morse-Bott chain complex is not the de-
sired cylindrical contact homology, but rather a “non-equivariant” version of it. The
cylindrical contact homology that we want can be regarded as an “S1-equivariant”
version of the latter homology, and recovering this requires an additional construc-
tion as in [7].
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to count index zero cylinders in cobordisms to define chain maps, see Re-
mark 2.6 below. Instead, as we explain in the sequel [19], one can prove this
topological invariance using S1-dependent almost complex structures simi-
larly to [7]. In fact, the proof of invariance shows that cylindrical contact
homology lifts to an invariant with integer coefficients, see Remark 1.9.

1.2. Holomorphic cylinders

We now set up some notation for holomorphic cylinders in the symplectiza-
tion of a contact three-manifold.

Let Y be a closed three-manifold with a contact form λ. Let ξ = Ker(λ)
denote the associated contact structure, and let R denote the associated
Reeb vector field.

A Reeb orbit is a map γ : R/TZ → Y for some T > 0 such that γ′(t) =
R(γ(t)), modulo reparametrization. We do not assume that γ is an embed-
ding. For a Reeb orbit as above, the linearized Reeb flow for time T defines
a symplectic linear map

(1.1) Pγ : (ξγ(0), dλ) −→ (ξγ(0), dλ).

The Reeb orbit γ is nondegenerate if Pγ does not have 1 as an eigenvalue. The
contact form λ is called nondegenerate if all Reeb orbits are nondegenerate;
generic contact forms have this property. Fix a nondegenerate contact form
below.

A (nondegenerate) Reeb orbit γ is elliptic if Pγ has eigenvalues on the
unit circle, positive hyperbolic if Pγ has positive real eigenvalues, and negative
hyperbolic if Pγ has negative real eigenvalues. If τ is a homotopy class of
trivializations of ξ|γ , then the Conley-Zehnder index CZτ (γ) ∈ Z is defined,
see the review in §2.1. The parity of the Conley-Zehnder index does not
depend on the choice of trivialization τ , and is even when γ is positive
hyperbolic and odd otherwise.

We say that an almost complex structure J on R× Y is λ-compatible if
J(ξ) = ξ; dλ(v, Jv) > 0 for nonzero v ∈ ξ; J is invariant under translation
of the R factor; and J(∂s) = R, where s denotes the R coordinate. Fix such
a J .

If γ+ and γ− are Reeb orbits, we consider J-holomorphic cylinders be-
tween them, namely maps u : R× S1 → R× Y such that

∂su+ J∂tu = 0,
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lims→±∞ πR(u(s, t)) = ±∞, and lims→±∞ πY (u(s, ·)) is a parametrization of
γ±. Here πR and πY denote the projections from R× Y to R and Y respec-
tively. We say that u has a “positive end at γ+” and a “negative end at γ−”.
We declare two such maps to be equivalent if they differ by translation and
rotation of the domain R× S1, and we denote the set of equivalence classes
by MJ(γ+, γ−). Note that R acts on MJ(γ+, γ−) by translation of the R

factor in R× Y .
Given u as above, we define its Fredholm index by

ind(u) = CZτ (γ+)− CZτ (γ−) + 2cτ (u).

Here τ is a trivialization of ξ over γ+ and γ−, and cτ (u) denotes the rela-
tive first Chern class c1(u

∗ξ, τ), see [17, §2.5] or [18, §3.2]; the relative first
Chern class vanishes when the trivialization τ extends to a trivialization of
u∗ξ. The significance of the Fredholm index is that if J is generic and u
is somewhere injective, then MJ(γ+, γ−) is naturally a manifold near u of
dimension ind(u). Let MJ

k (γ+, γ−) denote the set of u ∈ MJ(γ+, γ−) with
ind(u) = k.

1.3. Cylindrical contact homology

As above, let λ be a nondegenerate contact form on the closed three-manifold
Y , and let J be a generic λ-compatible almost complex structure on R× Y .
In the absence of certain kinds of contractible Reeb orbits, one would like
to define cylindrical contact homology as follows. (The original definition is
in [10]; we are using some different notation and conventions.)

A Reeb orbit γ is said to be bad2 if it is an even degree multiple cover
of a negative hyperbolic orbit; otherwise γ is called good .

Define CCQ(Y, λ, J) to be the vector space over Q generated by the good
Reeb orbits. One would like to define an operator

δ : CCQ(Y, λ, J) −→ CCQ(Y, λ, J)

by the equation

(1.2) δα =
∑
β

∑
u∈MJ

1 (α,β)/R

ε(u)

d(u)
β.

2In general, in any number of dimensions, a nondegenerate Reeb orbit is bad
when it is an even multiple cover of another Reeb orbit whose Conley-Zehnder
index has opposite parity.
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Here ε(u) ∈ {±1} is a sign associated to u via a system of coherent orienta-
tions as in [5, 11], while d(u) ∈ Z>0 is the covering multiplicity of u (which
is 1 if and only if u is somewhere injective). The definition (1.2) only makes
sense if the moduli spacesMJ

1 (α, β)/R are compact and cut out transversely.
Define another operator

κ : CCQ(Y, λ, J) −→ CCQ(Y, λ, J)

by

κ(α) = d(α)α,

where d(α) ∈ Z>0 denotes the covering multiplicity of α. By counting ends
of the moduli spaces MJ

2 (α, β)/R, one expects (in the absence of certain
contractible Reeb orbits) to obtain the equation

δκδ = 0.

This equation implies that

∂ = δκ

is a differential on CCQ(Y, λ, J). The homology of the resulting chain com-
plex (CCQ(Y, λ, J), ∂) is the cylindrical contact homology CHQ(Y, λ, J).

Note that a different choice of coherent orientations will lead to different
signs in the differential, but the chain complexes will be canonically isomor-
phic. Note also that some papers use a different convention in which the
differential, in our notation, is κδ instead of δκ. The operator κ defines an
isomorphism between these two chain complexes, because (κδ)κ = κ(δκ), cf.
[3, Rem. 3.4].

1.4. The main result

Let Y be a closed three-manifold with a nondegenerate contact form λ.
Suppose that π2(Y ) = 0, or more generally that c1(ξ)|π2(Y ) = 0. Then for
each contractible Reeb orbit γ, we can define the Conley-Zehnder index of
γ by CZ(γ) = CZτ (γ), where τ is a trivialization of ξ|γ which extends to a
trivialization of ξ over a disk bounded by γ.

Definition 1.1. (cf. [14]) Let λ be a nondegenerate contact form on a
closed three-manifold Y . We say that λ is dynamically convex if either:

• λ has no contractible Reeb orbits, or
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• c1(ξ)|π2(Y ) = 0, and every contractible Reeb orbit γ has CZ(γ) ≥ 3.

Example 1.2. [14] If Y is a compact star-shaped (i.e. transverse to the
radial vector field) hypersurface in R4, then

λ =
1

2

2∑
k=1

(xkdyk − ykdxk)

restricts to a contact form on Y . If Y is convex, then λ is dynamically convex
(if it is nondegenerate, which holds for generic Y ).

The main result of this paper is the following:

Theorem 1.3. Let λ be a nondegenerate, dynamically convex contact form
on a closed three-manifold Y . Suppose further that:

(*) A contractible Reeb orbit γ has CZ(γ) = 3 only if γ is embedded.

Then for generic λ-compatible almost complex structures J on R× Y , the
operator δ in (1.2) is well defined and satisfies δκδ = 0, so (CCQ(Y, λ, J), ∂)
is a well-defined chain complex where ∂ = δκ.

Remark 1.4 (on the hypotheses). (a) The hypothesis (*) automati-
cally holds when π1(Y ) contains no torsion, because if γ is a con-
tractible Reeb orbit and γd denotes its d-fold cover, then CZ(γd) ≥
dCZ(γ)− d+ 1.

(b) In general, the hypothesis (*) can be removed from Theorem 1.3 as-
suming a certain technical conjecture on the asymptotics of holomor-
phic curves, see Remark 3.6.

(c) We expect that with similar technical work, the hypothesis of dynam-
ical convexity can be weakened to the hypothesis that all contractible
Reeb orbits γ have CZ(γ) ≥ 2, provided that whenever CZ(γ) = 2, the
count of holomorphic planes asymptotic to γ is zero (this last condition
will hold for example if (Y, λ) has an exact filling).

Remark 1.5 (grading). The chain complex CCQ splits into a direct sum
of subcomplexes according to the homotopy classes of the Reeb orbits in the
free loop space of Y . The condition c1(ξ)|π2(Y ) = 0 (which we are assuming
when there are contractible Reeb orbits) implies that each of these subcom-
plexes has a relative Z-grading. The subcomplex generated by contractible
Reeb orbits has a canonical absolute Z-grading by CZ−1.
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The following theorem will be proved in the sequel [19]:

Theorem 1.6. The cylindrical contact homology CHQ is an invariant of
pairs (Y, ξ) where Y is a closed three-manifold, and ξ is a contact struc-
ture on Y that admits a dynamically convex contact form λ satisfying the
condition (*).

Remark 1.7 (local and sutured versions). Although Theorems 1.3
and 1.6 are stated for closed three-manifolds, their proofs also work for
open three-manifolds in situations where Gromov compactness still holds.
For example:

(a) Assuming suitable transversality, Hryniewicz-Macarini [15] define the
local contact homology CHQ(λ, γm), where γ is an embedded (possibly de-
generate) Reeb orbit in a contact manifold (Y, λ) such that all iterates of γ
are isolated Reeb orbits, and m is a positive integer. To define this, let N
be a tubular neighborhood of γ in Y , and let λ′ be a nondegenerate contact
form in N obtained by a perturbation of λ which is small with respect to m
(in particular λ′ has no short contractible Reeb orbits). Then CHQ(λ, γm)
is the cylindrical contact homology of λ′ in N for Reeb orbits that wind m
times around N . When dim(Y ) = 3, the proof of Theorem 1.3 shows that
the local contact homology chain complex is defined for generic J , and the
proof of Theorem 1.6 shows that the homology depends only on the contact
form in a neighborhood of γ.

(b) The proofs of Theorems 1.3 and 1.6 give a construction of cylin-
drical contact homology on sutured contact three-manifolds [8] admitting
dynamically convex contact forms satisfying (*).

Remark 1.8 (coefficients). The differential ∂ = δκ, as well as the alter-
nate differential κδ, in fact have integer coefficients (because the covering
multiplicity of a holomorphic cylinder always divides the covering multiplici-
ties of the Reeb orbits at its ends). However we do not expect the homologies
of these differentials over Z to be invariant or isomorphic to each other in
general.

Remark 1.9 (relation with Bourgeois-Oancea). (a) The proof of The-
orem 1.6 will show that there is in fact an invariant CHZ (of pairs (Y, ξ) as
in the theorem) which is the homology of a chain complex CCZ over Z, such
that CHQ = CHZ ⊗Q. However the definition of CCZ is quite different; it
starts with a “Morse-Bott” chain complex with two generators for each (good
or bad) Reeb orbit as in [6], and then passes to an S1-equivariant version
similarly to [7]. We expect that CHZ agrees with the invariant SHS1

∗ (Y, ξ)
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defined in [7, §4.1.2]; the latter is a version of S1-equivariant symplectic ho-
mology which is an invariant of contact structures that admit dynamically
convex contact forms3.

(b) It is shown in [7, Thm. 4.3] that if λ is dynamically convex and
J satisfies certain transversality assumptions, then CHQ(Y, λ, J) is isomor-
phic to SHS1

∗ (Y, ξ)⊗Q. However we cannot invoke this theorem to prove
the invariance in Theorem 1.6, because given a dynamically convex λ, it is
often impossible to find any J satisfying the transversality hypotheses4 of
[7, Thm. 4.3].

The rest of this paper is organized as follows. §2 carries out some index
calculations which are needed in the compactness arguments in the proof
of Theorem 1.3. §3 rules out a certain kind of breaking of index 2 cylinders
which, if it happened, would cause a problem for the proof that ∂2 = 0.
Finally, §4 discusses transversality and gluing and completes the proof of
Theorem 1.3.

2. Index calculations

In this section we carry out some index calculations which are needed to
rule out various bad degenerations in the compactness arguments to prove
that ∂ is defined and ∂2 = 0. In this section, we always assume that λ is a
nondegenerate contact form on a three-manifold Y , and J is a λ-compatible
almost complex structure on R× Y . We do not assume that λ is dynamically
convex or that J is generic unless otherwise stated.

2.1. Estimates on the index of multiple covers

We first obtain some estimates on the Fredholm index of certain kinds of
multiply covered curves, without assuming dynamical convexity.

Let u be a J-holomorphic curve in R× Y with positive ends at Reeb
orbits α1, . . . , αk and negative ends at Reeb orbits β1, . . . , βl. Note that
the Reeb orbits αi and βj are not necessarily embedded. Recall that the

3Here SHS1

∗ (Y, ξ) denotes the sum over all free homotopy class of loops c of the

invariant SHc,S1

∗ (Y, ξ) defined in [7, §4.1.2].
4 For example, if the shortest Reeb orbit γ is contractible and elliptic and has

CZ(γ) = 3, and if the count of holomorphic planes asymptotic to γ with a point con-
straint is nonzero, then for any J , holomorphic buildings as in Proposition 2.8(c)(iii)
will exist, which violates the hypotheses of [7, Thm. 4.3].
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Fredholm index of u is given by the formula

(2.1) ind(u) = −χ(u) + 2cτ (u) +

k∑
i=1

CZτ (αi)−
l∑

j=1

CZτ (βj).

Here χ(u) denotes the Euler characteristic of the domain of u, so if u is
irreducible of genus g then

(2.2) χ(u) = 2− 2g − k − l.

Also τ is a trivialization of ξ over the Reeb orbits αi and βj ; and cτ and
CZτ denote the relative first Chern class of u∗ξ and Conley-Zehnder index
with respect to τ as before.

In three dimensions there is a useful explicit formula for the Conley-
Zehnder index:

CZτ (γ) = �θ�+ 	θ

where θ denotes the “rotation number” of γ with respect to τ . If γ is hyper-
bolic, then θ is the number of times that the eigenspaces of the linearized
return map (1.1) rotate with respect to τ as one goes around γ; this is an
integer if γ is positive hyperbolic and an integer plus 1/2 if γ is negative
hyperbolic. If γ is elliptic then θ is an irrational number (due to our assump-
tion that all possibly multiply covered Reeb orbits are nondegenerate), see
[18, §3.2]. Changing the trivialization τ will shift the rotation number θ by
an integer. Also, if m is a positive integer and if γm denotes the Reeb orbit
that is a m-fold multiple cover of γ, then

(2.3) CZτ (γ
m) = �mθ�+ 	mθ
 ,

where θ still denotes the rotation number of γ with respect to τ .
We define a trivial cylinder to be a J-holomorphic cylinder R× γ in

R× Y where γ is a Reeb orbit. We do not require γ to be embedded.

Lemma 2.1. [20, Lem. 1.7] If u is a J-holomorphic curve in R× Y which
is a branched cover5 of a trivial cylinder, then ind(u) ≥ 0. �

Lemma 2.2. Let u be a J-holomorphic curve in R× Y with genus zero,
one positive end, and an arbitrary number of negative ends. Let u denote
the somewhere injective curve covered by u, and let d denote the covering

5In this paper, “branched covers” also include coverings without branch points.
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multiplicity of u over u. Let b denote the number of ramification points of
this cover, counted with multiplicity. Then

(2.4) ind(u) ≥ d ind(u) + 2(1− d+ b).

Proof. We can choose the trivialization τ so that cτ (u) = 0, which implies
that cτ (u) = 0 also. We fix such a trivialization τ and write CZ as a short-
hand for CZτ .

Suppose that u has positive end at α and negative ends at β1, . . . , βk.
Since u must have genus zero, it follows from (2.1) and (2.2) that

(2.5) ind(u) = k − 1 + CZ(α)−
k∑

i=1

CZ(βi).

To obtain a similar formula for ind(u), let n denote the number of neg-
ative ends of u. By Riemann-Hurwitz we have

χ(u) = dχ(u)− b,

which means that

(2.6) 1− n = d(1− k)− b.

Let γ1, . . . , γn denote the Reeb orbits at which u has negative ends (these are
covers of β1, . . . , βk). By the iteration formula (2.3) for the Conley-Zehnder
index, we have ∣∣CZ (

γm1+m2
)− CZ (γm1)− CZ (γm2)

∣∣ ≤ 1,

assuming that all Conley-Zehnder indices are computed using the same triv-
ialization of ξ|γ . It follows from this that

(2.7) CZ(αd) ≥ dCZ(α)− (d− 1)

and

(2.8)

n∑
i=1

CZ(γi) ≤ d

k∑
i=1

CZ(βi) + (dk − n).
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Using the above two inequalities, then using Equation (2.5), and finally using
Equation (2.6), we obtain

ind(u) = n− 1 + CZ(αd)−
n∑

i=1

CZ(γi)

≥ n− 1 + dCZ(α)− (d− 1)− d

k∑
i=1

CZ(βi)− (dk − n)

= d ind(u) + 2(n− dk)

= d ind(u) + 2(1− d+ b). �

We now use Lemma 2.2 to deduce two index estimates in the case when
J is generic which will be needed below.

Lemma 2.3. Assume that J is generic. Let u be a genus zero holomorphic
curve with one positive end and n negative ends. Suppose that the somewhere
injective curve u underlying u is a nontrivial cylinder. Then

ind(u) ≥ n.

Proof. Since J is generic and u is nontrivial, it follows that ind(u) > 0. Also
observe that b = n− 1.

If ind(u) ≥ 2, then Lemma 2.2 implies that ind(u) ≥ 2n and we are done.
It remains to treat the case where ind(u) = 1. In this case Lemma 2.2

gives

(2.9) ind(u) ≥ 2n− d,

which in general might not be sufficient. However we can improve the in-
equality (2.9) as follows.

Let α and β denote the Reeb orbits at which u has positive and negative
ends respectively. Since u has odd index, α or β is positive hyperbolic.

If β is positive hyperbolic, then by (2.3), the inequality (2.8) can be
replaced by the equality

n∑
i=1

CZ(γi) = dCZ(β).

This allows us to add d− n to the right side of (2.9) and we are done.
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On the other hand, if α is positive hyperbolic, then (2.7) can be replaced
by the equality

CZ(αd) = dCZ(α).

This allows us to add d− 1 to the right hand side of (2.9), and since d− 1 ≥
d− n we are also done. �

Lemma 2.4. Assume that J is generic. Let u be a genus zero holomorphic
curve with one positive end and n > 1 negative ends. Suppose that u is not
a branched cover of a trivial cylinder. Then

ind(u) ≥ 5− 2n.

Proof. Let u denote the somewhere injective curve underlying u, let d denote
the covering multiplicity of u over u, and let b denote the number of branch
points counted with multiplicity.

If u is a cylinder, then we are done by Lemma 2.3 and the assumption
that n > 1.

It remains to treat the case where u has more than one negative end.
Since J is generic, we have ind(u) ≥ 1. By Lemma 2.2 we then have

ind(u) ≥ 2− d+ 2b.

By Riemann-Hurwitz as in Equation (2.6) we have

n = d(k − 1) + 1 + b

where k is the number of negative ends of u. It follows from the above
inequality and equation that

(2.10) ind(u) + 2n ≥ d(2k − 3) + 4(b+ 1).

Since k > 1, the right hand side of (2.10) is at least 5. �

We will also need the following facts about the index of multiply covered
cylinders:

Lemma 2.5. Assume that J is generic, and let u be a nontrivial J-
holomorphic cylinder in R× Y . Let u denote the somewhere injective holo-
morphic cylinder underlying u. Then:

(a) 1 ≤ ind(u) ≤ ind(u).
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(b) If ind(u) = 1, and if u has an end at a bad Reeb orbit, then the corre-
sponding end of u is also at a bad Reeb orbit.

Proof. Let α and β denote the Reeb orbits at which u has positive and
negative ends. Let d denote the covering multiplicity of u over u. Choose a
trivialization τ of ξ over α and β so that cτ (u) = 0. Then cτ (u) = 0 also.
Thus

ind(u) = CZτ (α
d)− CZτ (β

d)

and

ind(u) = CZτ (α)− CZτ (β).

We now obtain the conclusions of the lemma as follows:
(a) Since J is generic and u is not a trivial cylinder, we have ind(u) ≥ 1.

Consequently we can choose the trivialization τ so that CZτ (α) ≥ 0 and
CZτ (β) ≤ 0. It then follows from (2.3) that CZτ (α

d) ≥ CZτ (α) and CZτ (β
d)

≤ CZτ (β), so ind(u) ≥ ind(u).
(b) Without loss of generality, the cover of α at which u has an end

is a bad Reeb orbit. We need to show that α itself is a bad Reeb orbit.
If not, then α is negative hyperbolic and d is even. Since ind(u) is odd by
part (a), the Reeb orbit β must be positive hyperbolic. Then both ends of
u are at positive hyperbolic orbits, so ind(u) is even, which contradicts our
hypothesis. �

Remark 2.6. Lemma 2.5(a) does not generalize to higher dimensional con-
tact manifolds; when dim(Y ) > 3, multiply covered cylinders may have in-
dex less than 1, even when J is generic. Also, a four-dimensional symplectic
cobordism between three-dimensional contact manifolds may contain mul-
tiply covered J-holomorphic cylinders u with ind(u) < 0 which cannot be
eliminated by choosing J generically. See [23, Ex. 1.26] for an example of
this involving ellipsoids.

2.2. Low index buildings in the dynamically convex case

We now classify certain holomorphic buildings of low index in the case when
λ is dynamically convex and J is generic.

For our purposes, a “holomorphic building” is an m-tuple (u1, . . . , um),
for some positive integerm, of (possibly disconnected) J-holomorphic curves
ui in R× Y , called “levels”. Although our notation does not indicate this,
the building also includes, for each i ∈ {1, . . . ,m− 1}, a bijection between
the negative ends of ui and the positive ends of ui+1, such that paired ends
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are at the same Reeb orbit6. If m > 1 then we assume that for each i, at least
one component of ui is not a trivial cylinder. A “positive end” of the building
(u1, . . . , um) is a positive end of u1, and a “negative end” of (u1, . . . , um) is
a negative end of um. The “genus” of the building (u1, . . . , um) is the genus
of the Riemann surface obtained by gluing together negative ends of the
domain of ui and positive ends of the domain of ui+1 by the given bijections
(when this glued Riemann surface is connected). We define the Fredholm
index of a holomorphic building by ind(u1, . . . , um) =

∑m
i=1 ind(ui).

Proposition 2.7. Assume that J is generic and λ is dynamically convex.
Suppose that u = (u1, . . . , um) is a genus zero J-holomorphic building with
one positive end and no negative ends. Then:

• ind(u) ≥ 2.

• If ind(u) = 2, then u has only one level (which of course is a plane).

Proof. We use induction on m.
Suppose m = 1. If u1 has its positive end at γ, then by Equation (2.1)

we have ind(u1) = CZ(γ)− 1. Thus the lemma follows from the definition
of dynamically convex.

Now let m > 1 and suppose the proposition is true for m− 1. We need
to show that ind(u) > 2.

Let n denote the number of negative ends of u1. The holomorphic build-
ing (u2, . . . , um) is the union of n genus zero holomorphic buildings, each
having one positive end corresponding to one of the negative ends of u1, and
no negative ends. So by the inductive hypothesis we have

ind(u) ≥ ind(u1) + 2n.

To complete the proof we need to show that

(2.11) ind(u1) + 2n ≥ 3.

If u1 is a trivial cylinder, then we must have n > 1, so (2.11) follows
from Lemma 2.1. If u1 is a nontrivial cylinder, then (2.11) follows from
Lemma 2.3. If u1 is not a cylinder, then we must have n > 1, so (2.11)
follows from Lemma 2.4. �

6One might also want a holomorphic building to include appropriate gluing data
when Reeb orbits are multiply covered, but we will not need this.
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Proposition 2.8. Assume that J is generic and λ is dynamically con-
vex. Suppose that u = (u1, . . . , um) is a nontrivial genus zero J-holomorphic
building with one positive end and one negative end. Then:

(a) ind(u) ≥ 1.

(b) If ind(u) = 1 then u has one level (which of course is a cylinder).

(c) If ind(u) = 2, then one of the following holds:
(i) u has one level.
(ii) u has two levels which are both cylinders.
(iii) u = (u1, u2) where:

∗ u1 is an index zero degree d1 + d2 branched cover of an embed-
ded trivial cylinder R× γ with two negative ends, one at γd1

and one at γd2.
∗ u2 has two components; one component is the trivial cylinder
R× γd1, and the other component is an index two holomorphic
plane with positive end at γd2.

Proof. As in the proof of Proposition 2.7, we use induction on m.
If m = 1 then the proposition follows from Lemma 2.5(a). So suppose

that m > 1 and assume that the proposition is true for m− 1. We need to
show that ind(u) ≥ 2, with equality only if (ii) or (iii) holds.

Let n > 0 denote the number of negative ends of u1. Then the holomor-
phic building (u2, . . . , um) is the union of n genus zero holomorphic buildings
B1, . . . , Bn, each having one positive end. One of these buildings, say B1,
has one negative end, while B2, . . . , Bn have no negative ends.

If n = 1, then B1 is nontrivial, so by the inductive hypothesis ind(B1) ≥
1, with equality only if B1 has one level which is a cylinder. On the other
hand Lemma 2.3 implies that ind(u1) ≥ 1. Thus ind(u) ≥ 2, with equality
only if (ii) holds.

Suppose now that n > 1. If B1 is trivial then ind(B1) = 0. Otherwise
ind(B1) ≥ 1 by the inductive hypothesis. Either way, it follows from Propo-
sition 2.7 that

(2.12) ind(u) ≥ ind(u1) + 2n− 2,

with equality only if B1 is trivial and each of B2, . . . , Bn is an index two
plane.

If u1 is a trivial cylinder, then it follows from (2.12) and Lemma 2.1 that
ind(u) ≥ 2n− 2 ≥ 2. Equality holds only if n = 2 and the equality conditions
for (2.12) are satisfied, which implies (iii).
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If u1 is not a trivial cylinder, then it follows from (2.12) and Lemma 2.4
that ind(u) ≥ 3. �

3. Ruling out bad breaking

The goal of this section is to prove the following proposition, which shows
that for generic J , a sequence of holomorphic cylinders cannot converge to
a building as in case (iii) of Proposition 2.8(c) with d2 = 1.

Proposition 3.1. Let Y be a closed three-manifold with a nondegenerate
contact form λ, and let J be a generic λ-compatible almost complex structure
on R× Y . Let u = (u1, u2) be a holomorphic building where:

• u1 is an index zero pair of pants which is a degree d+ 1 branched cover
of an embedded trivial cylinder R× Y with positive end at γd+1 and
negative ends at γd and γ.

• u2 is the union of the trivial cylinder R× γd and an index two holo-
morphic plane with positive end at γ.

Then a sequence of J-holomorphic cylinders {u(k)}k=1,... in MJ
2 (γ

d+1, γd)/R
cannot converge in the sense of [4] to (u1, u2).

3.1. Writhe bounds

To prove Proposition 3.1, we need to recall some results about the asymp-
totics of holomorphic curves.

Let γ be an embedded Reeb orbit, and let N be a tubular neighborhood
of γ. We can identify N with a disk bundle in the normal bundle to γ, and
also with ξ|γ .

Let ζ be a braid in N , i.e. a link in N such that that the tubular neigh-
borhood projection restricts to a submersion ζ → γ. Given a trivialization τ
of ξ|γ , one can then define the writhe wτ (ζ) ∈ Z. To define this one uses the
trivialization τ to identify N with S1 ×D2, then projects ζ to an annulus
and counts crossings of the projection with (nonstandard) signs. See [17,
§2.6] or [18, §3.3] for details.

Now let u be a J-holomorphic curve in R× Y . Suppose that u has a
positive end at γd which is not part of a multiply covered component. Results
of Siefring [25, Cor. 2.5 and 2.6] show that if s is sufficiently large, then the
intersection of this end of u with {s} ×N ⊂ {s} × Y is a braid ζ, whose



Cylindrical contact homology in three dimensions 999

isotopy class is independent of s. We will need bounds on the writhe wτ (ζ),
which are provided by the following lemma.

Lemma 3.2. Let γ be an embedded Reeb orbit, let u be a J-holomorphic
curve in R× Y with a positive end at γd which is not part of a trivial cylinder
or a multiply covered component, and let ζ denote the intersection of this
end with {s} × Y . If s is sufficiently large, then the following hold:

(a) ζ is the graph in N of a nonvanishing section of ξ|γd. Thus, using the
trivialization τ to write this section as a map γd → C \ {0}, it has a
well-defined winding number around 0, which we denote by windτ (ζ).

(b) windτ (ζ) ≤
⌊
CZτ (γ

d)/2
⌋
.

(c) If J is generic, CZτ (γ
d) is odd, and ind(u) ≤ 2, then equality holds in

(b).

(d) wτ (ζ) ≤ (d− 1)windτ (ζ).

Proof. Choose an identification N � (R/Z)×D2 compatible with the triv-
ialization τ . The asymptotic behavior of holomorphic curves described in
[12], [25], or [21, Prop. 2.4], see the exposition in [18, §5.1], implies the fol-
lowing. For s0 >> 0, one can describe the intersection of this end of u with
[s0,∞)×N ⊂ [s0,∞)× Y as the image of a map

[s0,∞)× (R/dZ) −→ R× (R/Z)×D2,

(s, t) �−→ (s, π(t), η(s, t)),

where π : R/dZ → R/Z denotes the projection, and η is described as follows.
Define the asymptotic operator L from the space of smooth sections of ξ|γd

to itself by

L = Jπ(t)∇t,

where ∇ denotes the connection on ξ|γd defined by the linearized Reeb flow
along γ. The operator L is symmetric and so its eigenvalues are real. We
now have

(3.1) η(s, t) = e−μsϕ(t) +O
(
e(−μ−ε)s

)
,

where μ > 0 is an eigenvalue of the asymptotic operator L, while ϕ is a
corresponding eigenfunction and ε > 0.

It follows from the uniqueness of solutions to ODE’s that the eigenfunc-
tion ϕ is nowhere vanishing. Thus the eigenfunction ϕ has a well-defined
winding number around 0, and together with (3.1) this proves (a).
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It is shown in [13, §3] that for each integer n, there are exactly two
eigenvalues of L for which eigenfunctions have winding number n. Here
and below we count eigenvalues with multiplicity. Moreover, larger winding
numbers correspond to smaller eigenvalues, and the largest possible winding
number for a positive eigenvalue is

⌊
CZτ (γ

d)/2
⌋
. This implies (b).

To prove (c), note that the same argument in [13, §3] also shows that
the smallest possible winding number of an eigenfunction of L with nega-
tive eigenvalue is

⌈
CZτ (γ

d)/2
⌉
. Since CZτ (γ

d) is assumed odd, we have a
strict inequality

⌊
CZτ (γ

d)/2
⌋
<

⌈
CZτ (γ

d)/2
⌉
. Consequently, the two (pos-

sibly equal) eigenvalues of L whose eigenfunctions have winding number⌊
CZτ (γ

d)/2
⌋
are both positive. Thus, if equality does not hold in (b), then

the eigenvalue μ in (3.1) is not one of the two smallest positive eigenval-
ues of L (counted with multiplicity as usual). Now, as pointed out by Chris
Wendl, see [21, Rmk. 3.3], one can use exponentially weighted Sobolev spaces
to set up the moduli space of irreducible holomorphic curves in which the
eigenvalue μ in (3.1) is not one of the two smallest positive eigenvalues. If
J is generic, then somewhere injective holomorphic curves in this moduli
space are cut out transversely, but the dimension of the moduli space is 2
less than usual. Consequently there are no nontrivial somewhere injective
holomorphic curves u in this moduli space with ind(u) ≤ 2.

The analogue of (d) in an analytically simpler situation is proved in [16,
§6]. This argument can be extended to the present case using the refined
asymptotic analysis of Siefring [25, Thms. 2.2 and 2.3]. �

Remark 3.3. Lemma 3.2(b),(d) imply that

wτ (ζ) ≤ (d− 1)
⌊
CZτ (γ

d)/2
⌋
.

In fact one can improve this to

(3.2) wτ (ζ) ≤ (d− 1)
⌊
CZτ (γ

d)/2
⌋
− gcd

(
d,
⌊
CZτ (γ

d)/2
⌋)

+ 1,

see [26]. However we will not need this here.

Symmetrically to Lemma 3.2, we also have the following:

Lemma 3.4. Let γ be an embedded Reeb orbit, let u be a J-holomorphic
curve in R× Y with a negative end at γd which is not part of a trivial
cylinder or multiply covered component, and let ζ denote the intersection of
this end with {s} × Y . If s << 0, then the following hold:
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(a) ζ is the graph of a nonvanishing section of ξ|γd, and thus has a well-
defined winding number windτ (ζ).

(b) windτ (ζ) ≥
⌈
CZτ (γ

d)/2
⌉
.

(c) If J is generic, CZτ (γ
d) is odd, and ind(u) ≤ 2, then equality holds

in (b).

(d) wτ (ζ) ≥ (d− 1)windτ (ζ).

3.2. Counting singularities

We will also need the following inequality from intersection theory of holo-
morphic curves. As before, let γ be an embedded Reeb orbit with tubular
neighborhood N , and let τ be a trivialization of ξ|γ .

Lemma 3.5. Let u be a J-holomorphic curve in [s−, s+]×N with no mul-
tiply covered components and with boundary ζ+ − ζ− where ζ± is a braid in
{s±} ×N . Then

χ(u) + wτ (ζ+)− wτ (ζ−) = 2Δ(u) ≥ 0,

where χ(u) denotes the Euler characteristic of the domain of u, and Δ(u)
is a count of the singularities of u in Y with positive integer weights.

Proof. This is proved similarly to the relative adjunction formula in [16,
Rmk. 3.2]. (The relative first Chern class and relative self-intersection pairing
terms there are zero in our situation.) �

3.3. Proof of Proposition 3.1

The proof of Proposition 3.1 has four steps.
Step 1. We begin with some index calculations.
First note that the hypothesis on u1 forces γ to be elliptic. The reason

is that by (2.1) and (2.3), a pair of pants which is a branched cover of a
hyperbolic trivial cylinder has index 1.

Choose a trivialization τ of ξ|γ . Let θ ∈ R \Q denote the rotation angle
of γ with respect to τ . Then by (2.3), the Conley-Zehnder index of γ is given
by

(3.3) CZτ (γ) = 2 �θ�+ 1.
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Likewise, the Conley-Zehnder indices of γd and γd+1 are given by

CZτ (γ
d) = 2 �dθ�+ 1,(3.4)

CZτ (γ
d+1) = 2 �(d+ 1)θ�+ 1.(3.5)

Our assumption that ind(u1) = 0 is now equivalent to

(3.6) �(d+ 1)θ� = �dθ�+ �θ� .

Here we are using the index formula (2.1) and the fact that cτ (u1) = 0.
Step 2. We now assume that the proposition is false and set up some

notation.
Recall that u2 an equivalence class of holomorphic curves in R× Y ,

where two holomorphic curves are equivalent iff they differ by R-translation
in R× Y . Choose a representative of this equivalence class and still denote
it by u2. Translate the holomorphic curve u2 downward if necessary so that
Lemma 3.2 is applicable to s ≥ 0.

Let N be a tubular neighborhood of the Reeb orbit γ. Fix ε > 0 so that
u2(u

−1
2 ({0} ×N)) has distance at least ε from γ.
Suppose to get a contradiction that there exists a sequence of J-

holomorphic cylinders {u(k)} in MJ
2 (γ

d+1, γd)/R which converges in the
sense of [4] to the building (u1, u2). Then for sufficiently large k, the equiv-
alence class u(k) in MJ

2 (γ
d+1, γd)/R has a representative u ∈ MJ

2 (γ
d+1, γd)

with the following properties:

(i) u−1([0,∞)× Y ) is an annulus with one puncture, which is mapped by
u to [0,∞)×N .

(ii) u−1((−∞, 0]× Y ) consists of a closed disk D and a half-cylinder C.

(iii) u(C) is contained in (−∞, 0]×N , and u(C) ∩ ({0} ×N) is a braid ζ1
which projects to γ with degree d and has distance at most ε/3 from γ.

(iv) u(D) ∩ ({0} ×N) is a braid ζ2 which projects to γ with degree 1 and
is within distance ε/3 of u2(u

−1
2 ({0} ×N)).

Also let ζ+ denote the braid corresponding to the positive end of u at γd+1,
and let ζ− denote the braid corresponding to the negative end of u at γd.

Step 3. We now obtain some inequalities from the previous lemmas.
Since ζ1 is within distance ε/3 of γ, while ζ2 has distance at least 2ε/3

from γ, it follows that ζ1 ∪ ζ2 is a braid and

wτ (ζ1 ∪ ζ2) = wτ (ζ1) + 2dwindτ (ζ2) + wτ (ζ2).
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Since the braid ζ2 projects to γ with degree 1, we have

(3.7) wτ (ζ2) = 0.

By Lemma 3.5, we have

−1 + wτ (ζ+)− wτ (ζ1 ∪ ζ2) = 2Δ+ ≥ 0

where Δ+ denotes the count of singularities of u in [0,∞)× Y . By Lemma 3.5
again we have

wτ (ζ1)− wτ (ζ−) = 2Δ− ≥ 0

where Δ− denotes the count of singularities of u|C . Putting the above four
lines together gives

(3.8) − 1 + wτ (ζ+)− 2dwindτ (ζ2)− wτ (ζ−) ≥ 0.

By Lemma 3.2(b), (d) and Equation (3.5), we have

wτ (ζ+) ≤ d �(d+ 1)θ� .

Since J is assumed generic, applying Lemma 3.2(b),(c) to u2 and using
Equation (3.3) gives

windτ (ζ2) = �θ� .
Finally, Lemma 3.4(b), (d) and Equation (3.4) give

wτ (ζ−) ≥ (d− 1)(�dθ�+ 1).

Putting the above three lines into (3.8) gives

(3.9) d(�(d+ 1)θ� − 2 �θ� − 1)− (d− 1) �dθ� ≥ 0.

Step 4. We now complete the proof. Combining (3.6) with (3.9) gives

�dθ� ≥ d(�θ�+ 1).

This is impossible because for any positive integer d and real number θ
we have �dθ� ≤ dθ < d(�θ�+ 1). This contradiction completes the proof of
Proposition 3.1.
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Remark 3.6. One should be able to show more generally that a sequence of
cylinders cannot converge to a building as in case (iii) of Proposition 2.8(c)
with d2 arbitrary. To do so, one can follow the above argument, but one
would need to generalize (3.7) to get a formula for wτ (ζ2). The required
formula for wτ (ζ2) would follow from:

Conjecture 3.7. Under the assumptions of Lemma 3.2(c), the inequal-
ity (3.2) in Remark 3.3 is an equality.

Conjecture 3.7 would follow if one could show that the first two coeffi-
cients in the asymptotic expansion of the end of the holomorphic curve are
nonzero, instead of just the first coefficient as in Lemma 3.2(c).

4. Proof of the main theorem

We now prove Theorem 1.3, after some preliminaries on transversality and
gluing.

4.1. Automatic transversality

We begin with an automatic transversality lemma. Much more general au-
tomatic transversality results are proved in [27], but we recall the proof of
this simple lemma for the convenience of the reader.

Let λ be a nondegenerate contact form on a three-manifold Y and let J
be a λ-compatible almost complex structure. If u : (Σ, j) → (R× Y, J) is a
J-holomorphic immersion (with ends at Reeb orbits as usual), with normal
bundle N , then it has a deformation operator

Du : L2
1(Σ, N) → L2(Σ, T 0,1Σ⊗C N).

The moduli space of holomorphic curves near u is cut out transversely when
Du is surjective, in which case the tangent space to the moduli space can be
identified with Ker(Du). Let h+(u) denote the number of ends of u at positive
hyperbolic orbits (including even covers of negative hyperbolic orbits).

Lemma 4.1. Let λ be a nondegenerate contact form on a three-manifold
Y and let J be a λ-compatible almost complex structure on R× Y . Let u
be a J-holomorphic immersion as above. If the domain Σ is connected with
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genus g(Σ), and if

(4.1) 2g(Σ)− 2 + h+(u) < ind(u),

then Du is surjective (without any genericity assumption on J).

Proof. Suppose that Du is not surjective. Then there is a nonzero element
ψ of the kernel of the formal adjoint

D∗
u : L2

1(Σ, T
0,1Σ⊗C N) −→ L2(Σ, N).

The Carleman similarity principle implies that the zeroes of ψ, if any, are
isolated and have negative multiplicity. The asymptotic behavior of ψ which
we will describe in a moment implies that the zeroes of ψ are contained in a
compact set. It follows that the count of zeroes of ψ with multiplicity, which
we denote by #ψ−1(0), is well defined and satisfies

(4.2) #ψ−1(0) ≤ 0.

Let τ be a trivialization of ξ over the Reeb orbits at which u has ends; this
induces a trivialization of T 0,1Σ⊗C N over the ends of u. By the definition
of the relative first Chern class, we have

#ψ−1(0) = c1(T
0,1Σ⊗C N, τ) + windτ (ψ)

where windτ (ψ) denotes the sum over the positive ends of u of the winding
number of ψ around the end with respect to the trivialization τ , minus the
corresponding sum over the negative ends of u. Since

c1(T
0,1Σ⊗C N, τ) = χ(Σ) + c1(N, τ) = c1(u

∗T (R× Y ), τ) = c1(u
∗ξ, τ),

we can rewrite the previous formula as

(4.3) #ψ−1(0) = cτ (ξ) + windτ (ψ).

Similarly to (3.1), on a positive end at a (possibly multiply covered)
Reeb orbit γ, the section ψ has the asymptotic behavior

ψ(s, t) = eμsϕ(t) +O
(
e(μ−ε)s

)
,

where μ is now a negative eigenvalue of the asymptotic operator L associated
to γ. It follows from Lemma 3.4(b) that the winding number of ψ around
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this end is at least 	CZτ (γ)/2
. Together with an analogous calculation for
the negative ends, it follows that if u has positive ends at α1, . . . , αk and
negative ends at β1, . . . , βl, then

windτ (ψ) ≥
k∑

i=1

	CZτ (αi)/2
 −
l∑

j=1

�CZτ (βj)/2� .

Since the Conley-Zehnder index of a Reeb orbit is even exactly when that
Reeb orbit is positive hyperbolic, we deduce that

(4.4) 2windτ (ψ) ≥ k + l − h+(u) +

k∑
i=1

CZτ (αi)−
l∑

j=1

CZτ (βj).

Combining (4.2), (4.3), and (4.4) with the index formula (2.1) gives

ind(u) + 2− 2g(Σ)− h+(u) ≤ 0.

This is the negation of the hypothesis (4.1). �

4.2. Transversality

We can now establish the transversality needed to define cylindrical contact
homology. Some of the following lemma was also proved in [22, §2.3].
Lemma 4.2. Let Y be a closed three-manifold with a nondegenerate contact
form λ. Let J be a generic λ-compatible almost complex structure on R× Y .
Then:

(a) For any Reeb orbits γ+ and γ−, the moduli space MJ
1 (γ+, γ−)/R is a

0-manifold cut out transversely.

(b) If γ+ and γ− are good Reeb orbits, then the moduli space MJ
2 (γ+, γ−)/R

is a 1-manifold cut out transversely.

(c) If γ+ and γ− are good, then the function

d : MJ
2 (γ+, γ−)/R −→ Z>0,

which associates to each cylinder its covering multiplicity, is locally
constant.

Proof. We know from [9] that if J is generic, then all irreducible somewhere
injective J-holomorphic curves are cut out transversely. It is also shown in
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[21, Thm. 4.1] that if J is generic, then all irreducible somewhere injective
J-holomorphic curves of index ≤ 2 are immersed. To prove the lemma, we
will show that if J satisies the above two properties, then (a), (b) and (c)
hold.

Let u ∈ MJ
k (γ+, γ−) be a J-holomorphic cylinder with ind(u) = k ∈

{1, 2}, and assume that γ+ and γ− are good when k = 2. Then u is a d-fold
cover of a somewhere injective cylinder u ∈ MJ(γ+, γ−). Since ind(u) ≤ 2,
it follows from Lemma 2.5(a) that ind(u) ≤ 2. Then u is immersed, and
consequently u is also immersed.

Since u is a cylinder of positive index, the inequality (4.1) must hold,
so Lemma 4.1 implies that Du is surjective. This does not yet prove (a)
and (b), because a priori MJ

k (γ+, γ−) might only be an orbifold near u. To
prove that MJ

k (γ+, γ−) is in fact a manifold near u, we need to further show
that the order d group of deck transformations of u over u acts trivially on
Ker(Du). For this purpose, and also to prove (c), it will suffice to show that
every element of Ker(Du) is pulled back from an element of Ker(Du). To
prove this last claim, it is enough to show that ind(u) = ind(u).

We know that u and u both have index 1 or 2. We just need to rule
out the case where ind(u) = 2 and ind(u) = 1. In this case, one of γ+, γ−
is positive hyperbolic, while the other is elliptic or negative hyperbolic. The
elliptic case is impossible because then all covers of u have odd index. Thus
one of γ+, γ− is positive hyperbolic and the other is negative hyperbolic.
Then ind(u) = d, so d = 2. This contradicts the assumption that γ+ and γ−
are good. �

4.3. Gluing

Lemma 4.3. Assume J is generic. Suppose that u+ ∈ MJ
1 (γ+, γ0)/R and

u− ∈ MJ
1 (γ0, γ−)/R. Assume that γ+ and γ− are good Reeb orbits, and let

k = gcd(d(u+), d(u−)). Then:

(a) There are exactly kd(γ0)/d(u+)d(u−) ends of the moduli space
MJ

2 (γ+, γ−)/R that converge to the building (u+, u−).

(b) Each such end consists of cylinders with d = k.

Proof. (a) Fix a point p on the image of γ0 in Y . Choose representatives

φ± : R× S1 → R× Y
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of u± such that

(4.5) lim
s→∓∞πY (φ±(s, 0)) = p.

To glue, one first translates φ+ up and φ− down, then “preglues” them by
patching them together using cutoff functions, and finally uses the contrac-
tion mapping theorem to perturb the preglued cylinder to a holomorphic
cylinder. See e.g. [21, §5], which carries out a general gluing construction of
which the above is a special case7.

Every gluing is obtained by taking some pair (φ+, φ−) satisfying (4.5)
and applying the above construction, cf. [21, §7]. Up to R-translation of the
domain and target, which does not affect the end of the index two moduli
space attained by gluing, there are d(γ0)/d(u±) distinct parametrizations
φ± of u± satisfying (4.5). This gives d(γ0)

2/d(u+)d(u−) pairs (φ+, φ−) sat-
isfying (4.5). Observe that the cyclic group Z/d(γ0) acts on the set of pairs
(φ+, φ−) satisfying (4.5) by rotating the S1 coordinate of φ+ and φ−. Two
pairs (φ+, φ−) glue to the same end of the index two moduli space if and
only if they are in the same orbit of this Z/d(γ0) action. Now j ∈ Z/d(γ0)
fixes the pair (φ+, φ−) if and only if j is a multiple of d(γ0)/d(u+) and
d(γ0)/d(u−), i.e. if and only if j is a multiple of d(γ0)/k. Thus each orbit of
the Z/d(γ0) action has cardinality d(γ0)/k, so the number of orbits is

d(γ0)
2/d(u+)d(u−)
d(γ0)/k

=
kd(γ0)

d(u+)d(u−)
.

(b) Since γ+ and γ− are good, we know from Lemma 4.2(c) that on
each end of the moduli space of index 2 cylinders converging to (u+, u−),
the covering multiplicity d is constant. Now d(u+) and d(u−) must both be
multiples of d. Therefore d is a divisor of k. To complete the proof of (b),
it is enough to show that d is a multiple of k. To do so, note that each
cylinder u± is a k-fold cover of a cylinder û±. It is then enough to show that
every end of the moduli space of index 2 cylinders converging to (u+, u−) is
obtained by taking k-fold covers of an end of the moduli space of index 2
cylinders converging to (û+, û−).

By Lemma 2.5(a) we have ind(û±) = 1, so we can apply part (a) to the
pair (û+, û−). This tells us that the number of ends of the moduli space of

7In [21] it is assumed that the holomorphic curves to be glued are not multiply
covered, but the construction works the same way for multiply covered cylinders.
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index 2 cylinders converging to (û+, û−) is

d(γ0)/k

d(û+)d(û−)
=

kd(γ0)

d(u+)d(u−)
.

By part (a) again, this agrees with the number of ends of the moduli space
of index 2 cylinders converging to (u+, u−). Thus all of the latter ends are
accounted for by k-fold covers of ends converging to (û+, û−). �

4.4. Proof of Theorem 1.3

Assume that λ satisfies the hypotheses of the theorem and that J is generic.
By Lemma 4.2(a), each moduli space MJ

1 (γ+, γ−)/R of index 1 cylinders
is a 0-manifold, which can be oriented by a choice of coherent orientations as
in [5]. By Proposition 2.8(b), MJ

1 (γ+, γ−)/R is compact, hence finite. Thus
the operator δ in (1.2) is defined.

To prove that δκδ = 0, suppose that γ+ and γ− are good Reeb orbits.
We know from Lemma 4.2(b) that the moduli space MJ

2 (γ+, γ−)/R of in-
dex 2 cylinders is an oriented 1-manifold, and the covering multiplicity d
is constant on each component. We claim that MJ

2 (γ+, γ−)/R has a com-

pactification to a compact oriented 1-manifold MJ
2 (γ+, γ−)/R, obtained by

attaching one boundary point to each end, such that

(4.6)
∑

X∈π0(MJ
2 (γ+,γ−)/R)

#∂X

d(X)
= 〈δκδγ+, γ−〉.

Here #∂X denotes the signed count of boundary points of the component
X, which of course is zero. Thus Equation (4.6) implies that δκδ = 0.

To prove (4.6), note that by Proposition 2.8(c), each end of MJ
2 (γ+, γ−)/

R limits to a building as in case (ii) or (iii) of Proposition 2.8(c). But in fact
case (iii) cannot happen, because then the Reeb orbit γd2 is contractible
and has CZ(γd2) = 3, so the hypothesis (*) of the theorem implies that
d2 = 1, and Proposition 3.1 gives a contradiction. Consequently, each end
of MJ

2 (γ+, γ−)/R limits to a building (u+, u−), where u+ ∈ MJ
1 (γ+, γ0)/R

and u− ∈ MJ
1 (γ0, γ−)/R for some Reeb orbit γ0. Given such a pair (u+, u−),

let G(u+, u−) denote its contribution to the left hand side of (4.6). We need
to show that

(4.7) G(u+, u−) =

{
ε(u+)ε(u−)d(γ0)

d(u+)d(u−) , if γ0 is good,

0, if γ0 is bad.
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If γ0 is bad, let u± denote the somewhere injective curve underlying u±.
By Lemma 2.5(b), the negative end of u+ and the positive end of u− are
both at bad Reeb orbits. In particular, d(γ0)/d(u±) is even. Thus the least
common multiple of d(u+) and d(u−) divides d(γ0)/2. It then follows from
Lemma 4.3(a) that there are an even number of ends of the moduli space
MJ

2 (γ+, γ−) that converge to the building (u+, u−). These ends are related to
each other by the Z/d(γ0) action described in the proof of Lemma 4.3(a). By
[5, Thm. 3], shifting by 1 ∈ Z/d(γ0) switches the sign of the corresponding
end, i.e. the sign of the corresponding boundary point of the index two
moduli space. Thus half of the ends have positive sign and half have negative
sign, so G(u+, u−) = 0.

If γ0 is good, then by Lemma 4.3, the number of ends of the moduli space
of index 2 cylinders converging to (u+, u−), divided by their multiplicity, is
d(γ0)/d(u+)d(u−). By [5], each end has sign ε(u+)ε(u−). This implies (4.7)
and completes the proof of Theorem 1.3.
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