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J-holomorphic curves with boundary in

bounded geometry

Yoel Groman and Jake P. Solomon

The fundamental properties of J-holomorphic curves depend on
two inequalities: The gradient inequality gives a pointwise bound
on the differential of a J-holomorphic map in terms of its energy.
The cylinder inequality stipulates and quantifies the exponential
decay of energy along cylinders of small total energy. We show these
inequalities hold uniformly if the geometry of the target symplec-
tic manifold and Lagrangian boundary condition is appropriately
bounded.
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1. Introduction

Let (M,ω,L, J) be a symplectic manifold with Lagrangian submanifold L
and almost complex structure J which is tamed by ω. Denote by gJ the
symmetrization of the positive definite form ω(·, J ·). Consider first the case
where M and L are compact. It is shown in [12, Ch. 4] that there are
constants c1, δ1, such that the following gradient inequality holds. Let H ⊂ C
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denote the upper half-plane, and for r > 0 define Ur := Br ∩H. Let

u : (U2r, U2r ∩ R) → (M,L)

be J-holomorphic. Write E(u;Ur) :=
1
2

∫
Ur

|du|2. Then

(1) E(u;U2r) < δ1 ⇒ sup
Ur

|du|2 ≤ c1
r2

E(u;U2r).

A further basic estimate shown in [12, Ch. 4] is the cylinder inequality. It
states that there are constants c2, c3, and δ2 such that the following holds.
Denote by IR the cylinder [−R,R]× S1. For any J-holomorphic map u :
IR → M and for any T ∈ [c2, R], we have

(2) E(u; IR) < δ2 ⇒ E(u; IR−T ) ≤ e−c3TE(u; IR).

There are variants for the case of strips and cylinders with Lagrangian
boundary conditions. See Theorem 2.11 below.

The aim of the present paper is to establish sufficient conditions for the
above inequalities to hold when M,L, are not necessarily compact.

Denote by R the curvature of M, by B the second fundamental form of L
and by i the radius of injectivity of M , all with respect to the metric gJ . For
a tensor A on M or L we denote by ‖A‖m the Cm norm of A with respect
to gJ . For any Riemannian manifold X with submanifold Y and ε > 0, we
say that Y is ε-Lipschitz if

dX(x, y)

min{1, dY (x, y)} ≥ ε ∀x �= y ∈ Y.

We say that Y is Lipschitz if there is an ε such that Y is ε-Lipschitz.

Theorem 1.1. Suppose M and L are complete with respect to gJ , J |L is
compatible with ω, L is Lipschitz, and

max

{
‖R‖2 , ‖J‖3 , ‖B‖2 ,

1

i

}
< ∞.

Then there are constants c1, c2, c3, δ1 and δ2, such that inequalities (1)
and (2) hold.

In [7] and [8] we study quantitative aspects of the geometry of J-
holomorphic curves in M with boundary on L, based on these estimates.
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One application of such quantitative results is for proving Gromov com-
pactness in settings where M and L are not compact.

The difficult part of the proof is the gradient inequality (1). In the com-
pact case this is proven in [12] based on a reflection construction by Frauen-
felder [6]. In this construction the metric gJ is altered in a neighborhood of L
in such a way that L becomes totally geodesic while the new metric remains
Hermitian with respect to J . A large part of this paper is devoted to the
proof of Theorem 2.9, which states that given the bounds of Theorem 1.1,
the reflection construction can be done while preserving the boundedness of
curvature and the first two derivatives of J . See Section 3.

The assumption that J |L is compatible with ω, not necessary in the
compact case, is important for us because it implies that JTL is orthogonal
to TL. Compatibility can likely be replaced by quantitative assumptions on
J |L such as a bound from below on the angle between TL and JTL. However,
compatibility along L does not seem to be a serious restriction. For example,
tame almost complex structures are used to prove that Gromov-Witten type
invariants are invariant under deformations of the symplectic form ω. But
deformations of the symplectic form along L are trivial by the Weinstein
neighborhood theorem.

Basic estimates on the Riemannian geometry of submanifolds are proved
in the non-compact case. Theorem 3.9 gives a lower bound on the distance
to the cut locus of a submanifold. Lemma 2.12 gives a lower bound on
the injectivity radius of a submanifold. In both cases, these results were
previously known in the compact case [3, 15].

In the text we use the notion of a thick-thin measure on a Riemann
surface Σ with boundary. This notion is a more intrinsic formulation of the
inequalities (1) and (2) satisfied by the energy measure induced on Σ by
a J-holomorphic map u : (Σ, ∂Σ) → (M,L). See Section 2 for details. Our
motivation in introducing this formulation is twofold. First, it is sometimes
useful to apply conformal changes to the metric on the domain, which calls
for a conformally invariant formulation of the gradient inequality. Second, we
can slightly weaken the Lipschitz condition on L in Theorem 1.1 and replace
it with a condition on Σ. For this we need a formulation that refers to the
domain as a whole. The full statement of our results is given in Theorem 2.8.

A natural question that is not discussed here concerns the topology of
the space of ω tame almost complex structures that satisfy the hypothesis
of Theorem 1.1. In particular, what conditions on two such almost complex
structures guarantee they belong to the same connected component? We
leave this for future research.
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2. Thick-thin measure

2.1. Preliminaries on conformal geometry

Definition 2.1. Let (I, j) be a compact doubly connected surface with
complex structure j. Themodulus of (I, j), denoted byMod(I, j) orMod(I)
when the complex structure is clear from the context, is the unique real num-
ber r > 0 such that (I, j) is conformally equivalent to [0, r]× S1. Here S1

is taken to be a circle of length 2π. Equip I = [a, b]× S1 with the product
orientation and coordinates ρ, θ, for the factors [a, b], S1, respectively. Define
a metric h on I by

(3) h = dρ2 + hθ(ρ)
2dθ2,

and let j be the induced complex structure. Then

(4) Mod(I, j) =

∫ b

a

1

hθ(ρ)
dρ.

Let I be a doubly connected compact surface, and let L := Mod(I). Then
there is a holomorphic map f : [0, L]× S1 → I unique up to a rotation and
a holomorphic reflection. Fix one such f . For real numbers a ≤ b ∈ [0, L], we
write

S(a, b; I) := f([a, b]× S1) ⊂ I.

For a, b ∈ [0, L] with a ≤ L− b, we write

C(a, b; I) := S(a, L− b; I).

Note that composing f with the holomorphic reflection of [0, L]× S1 replaces
S(a, b) with S(L− b, L− a). The expression C(a, a), however, is independent
of the choice of f .

Definition 2.2. Let U be a Riemann surface biholomorphic to the unit
disk D1. Let h be a conformal metric on U and let z ∈ U . Then there is
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a biholomorphism φ : U → D1 with φ(z) = 0, unique up to rotation. The
conformal radius of U viewed from z is defined to be

rconf (U, z;h) := 1/‖dφ(z)‖h.

Definition 2.3. For any Riemann surface Σ = (Σ, j), write Σ := (Σ,−j).
The complex double of Σ is the Riemann surface

ΣC := Σ ∪ Σ,

where the surfaces are glued together along the boundary by the identity
map. The complex structure on ΣC is the unique one which coincides with
j and with −j when restricted suitably. ΣC is endowed with a natural anti-
holomorphic involution, and for any z ∈ ΣC we denote by z the image of z
under this involution.

Definition 2.4. Let Σ be a connected Riemann surface. A subset S ⊂ ΣC

is said to be clean if either S = S or S ∩ S = ∅.

2.2. Thick-thin measure

For the rest of the discussion, fix constants c1, c2, c3, δ1, δ2 > 0 such that
c3 ≤ 1 and that δ2 <

1
2δ1. For a Riemann surface with metric h, denote by

νh the volume form of h. For μ an absolutely continuous measure on Σ,
denote by dμ(z)

dνh
the Radon-Nikodym derivative with respect to νh.

Definition 2.5. Let (Σ, j) be a Riemann surface, possibly bordered. Let
μ be a finite measure on Σ and extend μ to a measure on ΣC by reflection.
That is,

μ(U) := μ(U),

for U ⊂ Σ a measurable set. Suppose further that μ is absolutely continuous
and has a continuous density dμ

dνh
, where h is any Riemannian metric on ΣC.

The measure μ is said to satisfy the gradient inequality if the following
holds. Let U ⊂ ΣC be biholomorphic to the unit disk such that U ∩ ∂Σ is
connected, and let z ∈ U . Then for any conformal metric h on (ΣC, j),

μ(U) < δ1 ⇒ dμ

dνh
(z) ≤ c1

μ(U)

r2conf
,(5)

where rconf = rconf (U, z;h).
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The measure μ is said to satisfy the cylinder inequality if the following
holds. Let I ⊂ ΣC be clean and doubly connected such that Mod(I) > 2c2.
Then for all t ∈ (c2, 12Mod(I)

)
we have,

μ(I) < δ2 ⇒ μ(C(t, t; I)) ≤ e−c3tμ(I).

The measure μ will be called thick-thin if it satisfies the gradient and
cylinder inequalities.

Definition 2.6. A family of measured Riemann surfaces which are thick-
thin with respect to given constants ci, δi, will be referred to as a uniformly
thick-thin family.

2.3. Conventions

For the rest of the paper, we fix a smooth symplectic manifold (M,ω) with
Lagrangian submanifold L and ω-tame almost complex structure J . We
assume further that J |L is compatible with ω. Let g be a Hermitian met-
ric on M . Let Σ be a compact Riemann surface, let u : Σ → M be a J-
holomorphic curve and let h be a conformal metric on Σ. Let z ∈ Σ. We
denote by ‖du(z)‖g,h the norm of du(z) with respect to the metrics g and h.

The expression ‖du‖2g,h νh is independent of the metric h. However, it does
depend on g. Define the energy measure μu,g of u with respect to g by

μu,g(U) :=
1

2

∫
U
‖du‖2g,h νh.

When g = gJ we omit g from the subscript. We have [12] ‖du‖2h νh = u∗ω.
So,

(6) μu(U) =

∫
U
u∗ω.

Given any metric g on a Riemannian manifold X, denote by Rg, Secg,
∇g and expg respectively, the curvature tensor of g, the sectional curvature
of g, the Levi-Civita connection of g and the exponential map with respect
to g. In this section, when the superscript is omitted and X = M we refer
to the metric g = gJ . For a tensor H of type (r, s) and p ∈ M, we denote
by ‖Hp‖g the norm of Hp with respect to the metric induced by g on the
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tensor bundle of type (r, s). We write

‖H‖g := sup
p∈M

‖Hp‖g .

Note that for any r vectors v1, . . . , vr ∈ TpM we have

‖Hp(v1, . . . , vr)‖ ≤ ‖v1‖ · · · ‖vr‖ ‖Hp‖ .

For j ∈ N we write

‖H‖gj :=

j∑
i=0

∥∥∥∇g(j)H
∥∥∥g ,

where ∇g(0)H := H and ∇g(j+1)H := ∇g∇g(j)H.
We write d(·, ·;X, g), �(·;X, g), Area(·;X, g) and InjRad(X, g) to de-

note distance, length, area, and radius of injectivity with respect to the
Riemannian metric g on X. We shall omit X from the notation when X is
clear from the context. For X = M we shall omit g from the notation when
g = gJ . When X = L we shall omit it if g is the induced metric gJ |L.

Denote by π : νL → L the normal bundle with respect to gJ . Denote by
O the zero section of νL, and denote by

B : TL⊗ TL → νL

the second fundamental form of L with respect to gJ . The expression ‖B‖j
denotes the Cj norm with respect to the induced metric and connection on
T ∗L⊗ T ∗L⊗ TM

∣∣
L
.

Henceforth we shall always assume that gJ and the induced metric on L
are complete.

2.4. The inequalities for the energy distribution

Definition 2.7. Let S be a family of compact Riemann surfaces, possi-
bly with boundary. We say that the data of S together with (M,ω,L, J)
comprise a bounded setting if one of the following holds.

(a) M and L are compact.

(b) L = ∅ and

max

{
‖R‖ , ‖J‖2 ,

1

InjRad(M ; gJ)

}
< ∞.
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(c) L is Lipschitz and

max

{
‖R‖2 , ‖J‖3 , ‖B‖2 ,

1

InjRad(M ; gJ)

}
< ∞.

(d) Each connected component L′ of L is Lipschitz and

max

{
‖R‖2 , ‖J‖3 , ‖B‖2 ,

1

InjRad(M ; gJ)

}
< ∞.

Furthermore, for each Σ ∈ S, there is a conformal metric h of constant
curvature 0,±1, and of unit area in case of zero curvature, such that
∂Σ is totally geodesic and ε-Lipschitz.

Let F be a family of J-holomorphic curves in M with boundary in L.
We associate with F the family SF of domains of elements of F and the
family F̃ of measured Riemann surfaces

F̃ := {(Σ, μu)|[u : (Σ, ∂Σ) → (M,L)] ∈ F}.

Theorem 2.8. If SF together with (M,ω,L, J) comprise a bounded setting,
then F̃ is uniformly thick-thin.

The proof of Theorem 2.8, based on results formulated in the next several
pages, is given at the end of this section. For the proof of the gradient
inequality in the noncompact bordered setting we need the following theorem
whose proof is postponed to Section 3. It is in the proof of this theorem that
the bounds on the derivatives of the curvature and second fundamental form
are required.

Theorem 2.9. Suppose (M,ω,L, J) satisfy the bounds appearing in part (c)
of Definition 2.7. Then there is a Hermitian metric h on M which satisfies
the following conditions:

(a) h is norm equivalent to gJ .

(b) max
{∥∥Rh

∥∥h , ‖J‖h2} < ∞.

(c) L is totally geodesic with respect to h.

(d) JTL = TL⊥.
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The cylinder inequality relies on the isoperimetric inequality formulated
and proven in the compact case in [12, Remark 4.4.2]. We recall the formu-
lation. Let γ : S1 → M be a smooth loop satisfying

�(γ) < InjRad(M).

Let B ⊂ C be the unit disk. We have that γ is contained in a geodesic ball
B′ ⊂ M with radius 1

2InjRad(M). Therefore γ may be extended to a map
uγ : B → B′ ⊂ M satisfying

uγ(e
iθ) = γ(θ)

for all θ ∈ S1 = R/2πZ. We use this to define the symplectic action of γ as

(7) a(γ) := −
∫
B
u∗γω.

Note that this definition is independent of the choice of the extension so
long as it is contained in any geodesic ball of radius 1

2InjRad(M).
Analogously, let γ : [0, π] → M with γ({0, π}) ⊂ L. Suppose L is ε-

Lipschitz, and let

δ = εmin

{
1,

1

2
InjRad(M),

1

2
InjRad(L)

}
.

Suppose �(γ) < δ. Then there is a path α : [0, 1] → L with

(8) �(α) < min

{
1

2
InjRad(M),

1

2
InjRad(L)

}

and α(x) = γ(x) for x ∈ {0, π}. Indeed, the estimate on �(γ) and the ε-
Lipschitz condition imply that γ(0) and γ(π) are on the same connected
component of L and if α is taken to be a minimizing geodesic, estimate (8)
holds. Let γ̃ be the loop obtained from the concatenation of γ and α. We
define the action of γ as

(9) a(γ) := a(γ̃).

It follows from estimate (8) that this definition is independent of the choice
of α.

Lemma 2.10. There is a constant c = c(‖R‖) such that

(10) �(γ) < δ ⇒ |a(γ)| ≤ c�(γ)2.
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Proof. In the compact setting, this is proven in [12, Remark 4.4.2]. The
proof extends to the noncompact case if the curvature is bounded. A similar
claim is shown in the proof of Proposition 4.7.2 and the comments after
Definition 4.1.1 in [14]. �

Let a > π, and let I be one of the following domains:

(a) (−a, a)× S1,

(b) (−a, a)× [0, π],

(c) [0, a)× S1.

Let u : (I, ∂I) → (M,L) be J-holomorphic. In cases (b) and (c), extend the
measure μu to IC = (−a, a)× S1 by reflection. Write E := μu(IC).

Theorem 2.11. Compare [12, Lemma 4.7.3]. Suppose (IC, μu) satisfies
the gradient inequality, InjRad(M) > 0, ‖R‖ < ∞, L is ε-Lipschitz and
InjRad(L) > 0. There are constants c3 and δ2 > 0, depending on the con-
stants c, c1, δ, and δ1 of the isoperimetric and gradient inequalities respec-
tively, such that for all t ≥ 2π, we have

E < δ2 ⇒ μu(C(t, t; IC)) ≤ e−c3tE.(11)

Proof. Take

δ2 := min

{
δ1,

δ2

16c1

}
.

Suppose E < δ2. In cases (a) and (c), let X = S1. In case (b), let X = [0, π].
For any t ∈ [−a, a] write

γt := u|{t}×X .

Let z = (t, s) ∈ C(π, π; IC). Then by the gradient inequality with h the stan-
dard flat cylindrical metric on IC of circumference 2π, we have

‖du(z)‖2 < 4c1δ2
π2

.

Therefore,

�(γt) < δ.(12)

We treat first the cases (a) and (b). By definition of δ capping off u(C(t, t; I))
with discs contained in geodesic balls produces a contractible sphere in
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case (a) and a contractible disc relative to L in case (b). Write

ε(t) := μu(C(t, t; IC)).

By the energy identity, (6), and the definition of the symplectic action, we
have the equation

ε(t) + a(γa−t)− a(γ−a+t) = 0.(13)

Using the isoperimetric inequality, we obtain

ε(t) = a(γ−a+t)− a(γa−t)(14)

≤ c(l(γa−t)2 + l(γ−a+t)
2)

≤ 2πc

∫ 2π

0
|∂su(a− t, s)|2ds+ 2πc

∫ 2π

0
|∂su(−a+ t, s)|2ds

= −2πcε̇(t).

Integrating this differential inequality from π to t we get the estimate

ε(t) ≤ e
π−t

2πc ε(π) ≤ e
π−t

2πc E.

This gives Equation (11) with c3 =
1

4πc for cases (a) and (b).
In case (c), note that a(γ0) = 0 since L is Lagrangian and γ0 is con-

tractible in L by estimate (12). Define

ε(t) := μu(S
1 × [0, a− t]), 0 < t < π.

Then ε(t) = μu(C(t, t; IC))/2. Applying the same derivation as (14) but
dropping the second term in each line, we obtain estimate (11). �

Lemma 2.12. Suppose |Sec| < C, ‖B‖ < H and

InjRad(M) > i0

for some positive constants C,H, and i0. Then

InjRad(L) > 0.

Remark 2.13. The same quantitative dependence of InjRad(L) on the
geometry of (M,L) in the compact case appears in the literature [3]. How-
ever, the proof relies on compactness in an essential way. Namely, in the



778 Y. Groman and J. P. Solomon

compact case, we have

InjRad(L) ≥ min

{
π√
K

,
1

2
�(γmin)

}
,

where K bounds the sectional curvature of L and γmin is the smallest closed
geodesic in L. A lower bound on �(γmin) is derived based on [9]. This requires
γmin to be smooth. In the noncompact case, however, we have to replace γmin

by geodesic loops which do not close up smoothly.

Proof. Let C ′ be a bound on the absolute value of the sectional curvature
of gJ |L. Such a bound exists by the Gauss equation, the bound on |Sec| and
the bound on ‖B‖. For any p in L, let ip be the radius of injectivity of L at
p, and let �p be the length of the shortest (not necessarily closed) geodesic
loop based at p. If no such geodesic exists, take �p = ∞. We have [13, p. 178]

ip ≥ min

{
π√
C ′

,
1

2
�p

}
.

It suffices to have a lower estimate for �p. Let p such that �p < ∞ and
let γ be a geodesic loop based at p realizing the length �p. Since γ is a
geodesic loop in L, its second fundamental form as a loop in M is bounded
by H. If �p ≥ i0

4 , we are done. So assume �p <
i0
4 . Let γ be parameterized

by arc length. Let q = expp
−3i0
4 γ′(0). Let f : Bi0(q) → [0, i0) be given by

x �→ d(x, q;M). There is a function F = F (n,C, i0) such that ‖Hess f‖ < F
on Bi0(q) \Bi0/2(q) [13, Ch. 10, Lemma 50]. Let h : [0, �p] → (i0/2, i0) be
given by h = f ◦ γ. Then

dh

dt

∣∣∣
t=0

= g(∇f, γ′(0)) = g(∇f,∇f) = 1,

and

d2h

dt2
(t) = Hess f(γ′(t), γ′(t)) + g(∇f,B(γ′(t), γ′(t))) ≥ −F −H.

Since f(0) = f(�p), there is some intermediate point where the derivative of
h vanishes. Thus, �p ≥ 1

F+H . �

Lemma 2.14. Let Σ be a closed compact Riemann surface of genus greater
than 1 with its canonical metric h of constant curvature −1. Let γ be a simple
closed geodesic in Σ, and let I ⊂ Σ be doubly connected and such that the
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components of ∂I are freely homotopic to γ. Then

Mod(I) ≤ 1

2�(γ;h)
.

Proof. Choose a lift γ̃ : [0, 1] → H of γ to the hyperbolic plane H by the
universal covering map π : H → Σ. Let i : H → H be a deck transformation
taking γ̃(0) to γ̃(1). Let A be the quotient of H by the isometries generated
by i. It is immediate that A is biholomorphic to an annulus, that π induces
a (non normal) covering map A → Σ, that γ lifts to a closed geodesic γ′

in A and that I lifts to a doubly connected subset I ′ ⊂ A such that the
components of ∂I ′ are freely homotopic to γ′. Clearly,

Mod(I) = Mod(I ′) ≤ Mod(A).

It thus suffices to estimate Mod(A). For this, note that A is a geodesic
tubular neighborhood of γ′, so its metric is given in Fermi coordinates by
�(γ)2

4π2 cosh2(ρ)dθ2 + dρ2. See [2, Theorem 4.1.1]. By Equation (4), we obtain

Mod(A) =

∫ ∞

−∞

dρ

2π�(γ) cosh(ρ)
=

1

2�(γ)
,

which completes the proof. �

Proof of Theorem 2.8. We start with the gradient inequality. When M is
compact, the gradient inequality is proven for closed curves in [12, Lemma
4.3.1]. The proof there relies on the boundedness of the curvature and the
derivatives of J up to order 2. Therefore, the same applies whenever F sat-
isfies Condition (b) in Definition 2.7. Our formulation follows by conformal

invariance of energy and of the expression dμ(z)
dνh

r2conf (z). For curves with
boundary and M compact, a Hermitian metric g is constructed in [6, 12]
such that L is totally geodesic and JTL = TL⊥. It is then shown that for
any such metric, the gradient inequality holds for the measure μu,g with the
constants depending on curvature and of the derivatives of J up to order 2.
SinceM is compact, g and gJ are norm equivalent. Therefore the gradient in-
equality, with different constants, holds for the measure μu. By Theorem 2.9
this generalizes to the noncompact setting when M and L satisfy the bounds
appearing in Conditions (c) or (d) in Definition 2.7.

We now treat the cylinder inequality. Theorem 2.11 and Lemma 2.12
immediately imply the cylinder inequality with uniform constants whenever
the conditions (a), (b) or (c), are satisfied. Note that for these cases we may
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take c2 = 2π. We prove the remaining case. Let Σ be a Riemann surface
with boundary and let

(u : (Σ, ∂Σ) → (M,L)) ∈ F .

For any clean and doubly connected I ⊂ ΣC which meets only one connected
component of ∂Σ there is a connected component L′ ⊂ L such that u(I ∩
∂Σ) ⊂ L′. Thus, Theorem 2.11 applies with the same constants. If I meets
two boundary components, γ1 and γ2, then I ∩ Σ is a strip. So I is a cylinder
which is embedded nontrivially in ΣC. We show that in this case the cylinder
inequality holds vacuously because Mod(I) is bounded above a priori. Let h
be the metric on ΣC of Condition (d) in Definition 2.7. Let γ be a minimizing
geodesic freely homotopic to any boundary component of I. First consider
the case that the curvature of h vanishes. Let I ′ ⊂ ΣC be an annulus with
geodesic boundary such that I ⊂ I ′. Then we have

Mod(I) ≤ Mod(I ′) =
2πArea(I ′;h)

�(γ;h)2
≤ 2π

�(γ;h)2
=

π

2d(γ1, γ2;h)2
≤ π

2ε2
.

Otherwise, h has negative curvature, and

�(γ;h) ≥ 2d(γ1, γ2;h) ≥ 2ε.

So by Lemma 2.14

Mod(I) ≤ 1

4ε
.

Thus, to cover both cases, we may take c2 = max{ 1
8ε ,

π
4ε2 , 2π} and c3 as in

Theorem 2.11. �

Proof of Theorem 1.1. This is just a rephrasing of a particular case of The-
orem 2.8. �

3. Proof of Theorem 2.9

Let g, h, be Riemannian metrics on M , and let V,W,Z, be vector fields on
M . Define tensors Hg,h and Sg,h by

Hg,h(V,W ) := ∇g
V W −∇h

V W,(15)

Sg,h(V,W )Z := Rg(V,W )Z −Rh(V,W )Z.(16)
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Lemma 3.1. Let A ∈ Hom(TM, TM) be the tensor defined by

h(V,W ) := g(AV,W ), ∀p ∈ M, V,W ∈ TpM.

Then

h(Hg,h(Vi, Vj), Vk) = −1

2
{g((∇g

Vj
A)Vk, Vi) + g((∇g

Vi
A)Vk, Vj)(17)

− g((∇g
Vk
A)Vi, Vj)},

∀p ∈ M, Vi, Vj , Vk ∈ TpM.

Proof. Let p ∈ M and let {Vi} be a basis of TpM . Use g and the basis {Vi} to
define geodesic normal coordinates on a neighborhood Np of p. Let {Vi} be
the corresponding coordinate vector fields. Since this is a geodesic coordinate
system centered at p, we have ∇gVi|p = 0. Therefore,

h(Hg,h(Vi, Vj), Vk) = h(Hg,h(Vi, Vj), Vk)|p(18)

= h(∇g
Vi
Vj , Vk)− h(∇h

Vi
Vj , Vk)

= −h(∇h
Vi
Vj , Vk).

By the Koszul formula,

(19) h(∇h
Vi
Vj , Vk) =

1

2
{Vjh(Vk, Vi) + Vih(Vk, Vj)− Vkh(Vi, Vj)}

Now

Vih(Vj , Vk) = Vig(AVj , Vk)(20)

= g(∇g
Vi
(AVj), Vk) + g(AVj ,∇g

Vi
Vk)

= g(∇g
Vi
(AVj), Vk)

= g((∇g
Vi
A)Vj +A∇g

Vi
Vj , Vk)

= g((∇g
Vi
A)Vj , Vk)

= g((∇g
Vi
A)Vj , Vk).

Substitution into Equation (19) gives Equation (17). �

Corollary 3.2. Suppose h and g are norm equivalent. Then
∥∥Hg,h

∥∥g
k
is

bounded if ‖A‖gk+1 is. Furthermore,
∥∥Hg,h

∥∥h
k
is then bounded if and only if∥∥Hh,g

∥∥g
k
is. It follows that for T an arbitrary tensor, ‖T‖gk+1 is bounded if

and only if ‖T‖hk+1 is.
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Proof. If h and g are norm equivalent, then A and A−1 are bounded. Com-
bine this observation with Lemma 3.1 and straightforward calculation. �

Lemma 3.3. We have

Sg,h(V,W )Z = (∇h
V H

g,h)(W,Z)− (∇h
WHg,h)(V,Z)(21)

+Hg,h(V,Hg,h(W,Z))−Hg,h(W,Hg,h(V,Z)),

∀p ∈ M, V,W,Z ∈ TpM.

Proof. Let V ,W,Z, be coordinate vector fields in an h-geodesic coordinate
chart centered at p that extend V,W,Z, respectively. Then

∇h
V
∇h

W
Z|p = ∇h

V
(∇g

W
Z −Hg,h(W,Z))|p(22)

= ∇h
V
∇g

W
Z − (∇h

V H
g,h)(W,Z)|p

= ∇g

V
∇g

W
Z −Hg,h(V ,∇g

W
Z)− (∇h

V H
g,h)(W,Z)|p

= ∇g

V
∇g

W
Z −Hg,h(V,Hg,h(W,Z))− (∇h

V H
g,h)(W,Z)|p.

Substitution into the standard formula for the curvature gives Equation (21).
�

3.1. The controlled reflection construction

We pause for a moment to outline the next four subsections. Denote by
φ : νL → M the map (x, v) �→ expx v. In this subsection we describe two
metrics induced by gJ on a neighborhood of the zero section O of νL. The
first one, g0, is non-linear, the pullback of gJ by φ, while the second, which
we denote by g1, is linear. We then introduce the notion tameness of L.
This means that g0 and g1 are bounded with respect to one another in an
appropriate sense and that L has appropriately bounded geometry. Theo-
rem 3.4 takes as input a tame Lagrangian L. Its output is a metric h on a
small neighborhood of L satisfying the requirements of Theorem 2.9 in that
neighborhood. Furthermore, Theorem 3.4 provides estimates to control the
geometry of h in terms of the geometry of gJ . Theorem 3.5 then provides
an effective criterion for determining whether L is tame. Its proof spans the
next two subsections. In the last subsection it is shown that with the control
provided by Theorem 3.4, the metrics h and gJ can be interpolated in such
a way that the curvature of the interpolated metric is bounded on M . The
interpolated metric satisfies all the requirements of Theorem 2.9.
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We start with the nonlinear metric. We first recall the definition of the
cut locus C(L) ⊂ M . For p ∈ L and v ∈ νL,p, let γ be the geodesic defined
by γ(t) := φ(tv). A cut point of L along γ is a point p = φ(t0v) such that
γ|[0,t0] has minimal length among all the curves connecting γ(t0) to L, but
for all t > t0, γ|[0,t] no longer has minimal length. The cut locus is the set
of all cut points. For any δ > 0, let

Nδ := Bδ(L; gJ) ⊂ M, N ′
δ := φ−1(Nδ) ⊂ νL.

Suppose d(L,C(L); gJ) > δ. Then φ|N ′δ is an embedding. To see this, note
first that φ|N ′δ is injective. Indeed, suppose φ(tv1) = φ(sv2) for v1, v2 ∈ N ′

1

and t, s ∈ (0, δ). Then s = t. Now apply the argument of [4, Ch. 13, Proposi-
tion 2.2] to obtain injectivity. By [1, Ch. 11.4, Corollary 1], no focal point of
L along any geodesic can occur before the cut point. Thus, φ|N ′δ is an injec-
tive immersion of full dimension. Therefore, it is an embedding. We may thus
define a metric g0, by g0 := (φ|N ′δ)∗gJ . We similarly define J ′ := (φ|N ′δ)∗J.

We now define the linear metric. Using J to identify TL and νL, we have
a natural splitting

TνL � TTL = V ⊕H

into vertical and horizontal vectors with respect to the induced Levi-Civita
connection on L. For any o ∈ O and x ∈ π−1(o), this splitting induces a
natural isomorphism

Cx : TxνL → ToνL = νL,o ⊕ ToO.

Namely, Cx|Vx
is the canonical isomorphism

Vx = TxνL,o = νL,o,

and

Cx|Hx
:= dπ.

For any o ∈ O, x ∈ π−1(o), and v1, v2 ∈ TxνL, define

g1(v1, v2) := g0(Cxv1, Cxv2).(23)

We say that L is a K-tame Lagrangian if the following conditions hold.

(a) d(L,C(L)) ≥ K−1.
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(b) g0 and g1 are K-norm-equivalent on N ′
K−1 . That is, for any non-zero

vector v ∈ TN ′
K−1 , we have

K−1 ≤ ‖v‖g0
‖v‖g1

≤ K.

(c) Let D be the tensor on N ′
K−1 such that g0(·, ·) = g1(D·, ·). Then the

covariant derivatives up to order two of D are bounded by K. By
Corollary 3.2 and norm equivalence, it does not matter with respect
to which of the metrics g0 or g1 we take the covariant derivative or
measure its norm up to a redefinition of K.

(d) The second fundamental form of L together with its first covariant
derivative are bounded on L by K.

Theorem 3.4. Suppose that ‖J‖2 and ‖R‖1 are finite on M , and L is K-
tame. Then there is a δ ∈ (0,K−1] and a Riemannian metric h on Nδ with
the following properties:

(a) For any p ∈ Nδ,

h(Jv, Jw) = h(v, w), ∀v, w ∈ TpNδ.

(b)

JTL = TL⊥.

(c) L is totally geodesic with respect to h.

(d) The curvature of h is bounded on Nδ.

(e) h and gJ |Nδ
are norm equivalent. Furthermore, let D be the unique

automorphism of TNδ satisfying h(v, w) := gJ(v,Dw). Then ‖D‖gJ2 is
bounded on Nδ.

Before proving Theorem 3.4 we state the following criterion for verifying
the hypothesis of Theorem 3.4.

Theorem 3.5. Suppose that there is a K > 0 such that

max {‖R‖2 , ‖J‖3 , ‖B‖2} < K,

and L is 1
K -Lipschitz. Then there exists K ′ ≥ K such that L is K ′-tame.
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The proof of Theorem 3.5 will be given at the end of Subsection 3.3.

Proof of Theorem 3.4. Let N := NK−1 and N ′ := N ′
K−1 . Define an almost

complex structure J0 on N ′ by

(J0)v := C−1v ◦ J ′ ◦ Cv, v ∈ N ′.

We use the notation πv : TN ′ → V and πh : TN ′ → H for the vertical and
horizontal projections respectively. Define a tensor

j : TN ′ → TN ′

by

j(y) := −J0πhJ
′
πvy + πhy.

Define metrics g2 and g3 on N ′ by

g2(·, ·) := g1(j·, j·),

and

g3(·, ·) := g2(J
′·, J ′·).

Claim 3.6. O is totally geodesic with respect to both g2 and g3.

Proof. Observe that O is totally geodesic with respect to g1. We first show
that for i = 2, 3, and for any w ∈ N ′,

(24) gi|Htw
= g1|Htw

+O(t2).

Indeed, by definition, g2 coincides with g1 when restricted to H. It remains
to prove (24) for g3. Note first that by smoothness of J ′ and by the fact that
J ′|O maps H|O to V |O and vice versa,

J ′|Htw
= πv ◦ J ′|Htw

+O(t), J ′|Vtw
= πh ◦ J ′|Vtw

+O(t).

Moreover, tautologically,

(J ′ − πv ◦ J ′)(H) ⊂ H, (J ′ − πh ◦ J ′)(V ) ⊂ V,
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and H ⊥ V with respect to g2 and g1. Thus,

g3(·, ·)|Htw
= g2(J

′·, J ′·)|Htw

= g2(πvJ
′·, πvJ ′·)|Htw

+O(t2)

= g1(J0πhJ
′πvJ ′·, J0πhJ ′πvJ ′·)|Htw

+O(t2)

= g1(πhJ
′πvJ ′·, πhJ ′πvJ ′·)|Htw

+O(t2).

= g1(·, ·)|Htw
+O(t2).

Let {x1, . . . , xn, y1, . . . , yn} be a local coordinate system on N ′ such that
∂
∂xi

|O is tangent to O and ∂
∂yi

|O is perpendicular to O with respect to g1 for
i = 1, . . . , n. Then the same holds with respect to g2 and g3 because g1, g2
and g3 coincide on O. Since O is totally geodesic with respect to g1, we have

∂

∂yi
g1

(
∂

∂xj
,

∂

∂xk

)∣∣∣∣
O

= 0, i = 1, . . . , n.(25)

Since H ⊥ V with respect to g2 and g3|TtwN ′ = g2|TtwN ′ +O(t), arguing as
above,

gl

(
∂

∂xj
,

∂

∂xk

)∣∣∣∣
tw

= gl

(
πh

∂

∂xj
, πh

∂

∂xk

)∣∣∣∣
tw

+O(t2), l = 2, 3.

By Equations (24) and (25), we get

∂

∂yi
gl

(
∂

∂xj
,

∂

∂xk

)∣∣∣∣
O

= 0, i = 1, . . . , n, l = 2, 3.
�

We now define h := φ∗(g2 + g3). The metric h obviously fulfills the first two
conditions of Theorem 3.4. Claim 3.6 implies condition (c). We prove the
last two conditions. Note first that since L is K-tame, we have that for any
tensor A on N ′, ‖A‖g0 is bounded on N ′ if and only if ‖A‖g1 is. We wish to
bound ‖j‖g12 and the curvature of g1. For this denote by hS the Sasaki metric
on TL where we consider L with the induced metric. Denote by α : TL → νL
the isomorphism v �→ Jv. Then g1 = α∗hS . We utilize the following relations
between the Levi-Civita connection of hS and the curvature of L [11]. For
a vector field X on L, let Xv and Xh denote respectively the vertical and
horizontal lifts of X to vector fields on TL. Let X and Y be vector fields on
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L, let ξ ∈ TL, and let p = π(ξ). We have

∇hS

XvY
v = 0,(26)

(∇hS

XhY
v)ξ = (∇XY )vξ +

1

2
(Rp(ξ, Yp)Xp)

h
ξ ,(27)

(∇hS

XvY
h)ξ =

1

2
(Rp(ξ,Xp)Yp)

h
ξ ,(28)

(∇hS

XhY
h)ξ = (∇XY )hξ −

1

2
(Rp(Xp, Yp)ξ)

v
ξ .(29)

Claim 3.7. ‖J ′‖g12 and ‖j‖g12 are bounded on N ′

Proof. By the assumption on J , Corollary 3.2 and tameness of L, we have
that ‖J ′‖g12 is bounded. To bound ‖j‖g02 it thus suffices to bound ‖πh‖g12
and ‖J0‖g12 since πv = id− πh. Since α is an isometry between (N ′, g1) and
(TL, hS), it suffices to bound pull-backs by α. By definition,

(α∗πh) (Xh) = Xh, (α∗πh) (Xv) = 0,

(α∗J0) (Xh) = Xv, (α∗J0) (Xv) = −Xh.

Applying formulae (26)-(29), the covariant derivatives of α∗πh and α∗J0 with
respect to hS at a point ξ ∈ TL involve only the curvature of L contracted
with ξ. The second covariant derivatives thus involve only the curvature of L
and its first derivative, again contracted with ξ. By the Gauss equation, the
curvature on L can be expressed in terms of the second fundamental form
of L and the curvature of M . Tameness of L thus implies the claim. �

Claim 3.8. For δ > 0 small enough, φ∗h is norm equivalent to g1 on N ′
δ.

Proof. By definition of h, it suffices that g2 and g3 are norm equivalent to g1
on N ′

δ. For δ > 0 small enough, this follows for g2 from the fact that j is the
identity when restricted to O, and from the bound on ‖∇j‖g1 in Claim 3.7.
A similar argument applies to g3. �

Let

T := j(id+ J ′).

It follows from Claim 3.7 that ‖T‖g12 is bounded on N ′. By the bounds on
B(·, ·) and its first derivative, the curvature of the induced metric on L and
its first derivative are bounded on L. By formulae (26)-(29) it follows that
g1 has bounded curvature on N ′. Let T t denote the transpose of T with
respect to g1. It follows from Lemma 3.3, Corollary 3.2 and Claim 3.8 that
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h = φ∗g1(T tT ·, ·) has bounded curvature on Nδ for δ > 0 small enough. This
proves part (d).

We prove part (e). Tameness of L and Claim 3.8 imply that h and g are
norm equivalent on Nδ. Let now A be the tensor such that g1 = g0(·, A·).
By tameness of L, ‖A‖g02 is bounded on N ′. We have D = φ∗A(T tT ). By
Claim 3.7, tameness of L and Corollary 3.2, we deduce that

∥∥T tT
∥∥g0
2

is
bounded. Thus ‖D‖g2 is bounded as required. Both parts of condition (e) are
now proven. �

3.2. Distance to the cut locus

In this subsection, let (M, g) be a Riemannian manifold, and let L be a
submanifold with second fundamental form B.

Theorem 3.9. Suppose there are K,H, i0, ε > 0, such that |Secg| ≤ K,
InjRad(M ; g) ≥ i0, ‖B‖ ≤ H, and L is ε-Lipschitz. Then

d(L,C(L)) > c

for an a priori constant c = c(K,H, i0, ε).

The proof of Theorem 3.9 will be given after Lemma 3.11 and its proof.

Remark 3.10. The quantitative dependence of d(L,C(L)) on the geometry
of (M,L) in the compact case appears in the literature [15]. However, as in
the control of InjRad(L) that we dealt with in Lemma 2.12, the proof there
relies on compactness in an essential way. Namely, it utilizes the fact that
the distance is realized, which fails in the non-compact case.

In the following lemma, let p, q ∈ L, let γ : [0, 1] → M be a minimizing
geodesic connecting p with q, and let α : [0, �] → L be a unit speed minimiz-
ing geodesic in L connecting p and q. Let θ be the angle between α′(0) and
γ′(0).

Lemma 3.11. There is a constant c = c(K,H, i0) such that θ ≤ c�.

Proof. If θ = 0, the inequality holds trivially. So, assume θ > 0. Let e1, e2 ∈
TpM be orthonormal vectors such that

e1 = γ̇(0)/|γ̇(0)|, α̇(0) = e1 cos θ + e2 sin θ,
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for θ ∈ (0, π). Let r = min{i0/3, π/6
√
K}. Since θ < π, we may assume that

� < r if we make c large enough. Let

p1 = exp(−2re1), p2 = exp(2re2),

and

f1(x) = d(p1, x), f2(x) = −d(p2, x).

The distance function −f2 is convex on B3r(p2) by [13, Theorem 27] and the
choice of r. Since ∇f2 = e2 is perpendicular to γ̇(0), we conclude that f2 ◦ γ
has a critical point at 0, which must be its unique maximum. In particular,
f2(q) ≤ −2r.

On the other hand, write αi = fi ◦ α. Then

α′2(0) = g(α′(0), e2) = sin θ > 0.

Denote by α′′ the covariant derivative of α′ with respect to g. We have

α′′2(t) = g(α′′(t),∇f2) + Hess f2(α
′(t), α′(t)).

Since α is a geodesic in L, we have

|g(α′′(t),∇f2)| = |g(B(α′(t), α′(t)),∇f2)| ≤ H.

On the other hand, the estimate of [13, Theorem 27] implies that

|Hess f2(α
′(t), α′(t))| ≤

√
K coth

(√
Kr
)
.

Thus

|α′′2(t)| ≤ H +
√
K coth

(√
Kr
)
=: f(i0, H,K).

Since α2(�)=f2(γ(1))≤f2(γ(0))=α2(0), Rolle’s theorem implies that α′2(t)
vanishes for some t ∈ (0, �). So,

sin θ ≤ �f(i0, H,K).

Thus, if θ is bounded away from π, say, θ ≤ 3π/4, the claim holds with an
appropriate constant c. If θ > 3π/4 there must be some intermediate point
t ∈ [0, �] where α1(t) = α1(0). So, we may repeat the previous argument with
α1 in place of α2 to obtain

θ ≤ 2π| cos(θ)| ≤ 2πf(i0, H,K)�. �
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Proof of Theorem 3.9. Denote the focal locus of L by F (L). By [16, Corol-
lary 4.2], there is a δ′ = δ′(K,H, i0) > 0 such that d(L,F (L)) > δ′. Let

r ∈ Bδ′(L; g) ∩ C(L).

By the same argument as in [4, Ch. 13, Prop. 2.2], there are points p, q ∈ L,
and normal geodesics γ1 and γ2 connecting p and q respectively to r and
satisfying �(γ1) = �(γ2) = d(r, L) =: �. So, it suffices to bound � from below.
If p = q, we have � ≥ i0. So, assume p �= q.

Let α and γ3 be minimizing geodesics in L and M respectively, con-
necting p and q. Let θ1 and θ2 be the angles between α and γ3 at the
endpoints. By Lemma 3.11 we have θ1 + θ2 ≤ 2c�(α) = 2cd(p, q;L). Since L
is ε-Lipschitz we may assume without loss of generality that d(p, q;L) ≤ 1,
for otherwise � ≥ ε/2 and we are done. Similarly, since InjRad(M) ≥ i0, we
may assume p, q and r, are all contained in the geodesic ball centered at any
one of them. Using again that L is ε-Lipschitz, we obtain

(30) θ1 + θ2 ≤ 2c

ε
d(p, q;M) =

2c

ε
�3,

where �3 = �(γ3). For i = 1, 2, 3, let δi be the angle opposite to γi in the
triangle formed by the points p, q and r. Since γi meets α perpendicularly
at p and q for i = 1, 2, we have

θi + δi ≥ π/2.

Let Sk denote the 2-dimensional simply connected manifold of constant
curvature k. Given a geodesic triangle in a metric space, a comparison trian-
gle in Sk is a triangle with the same side lengths in Sk. The Rauch compar-
ison theorem implies that the angles of the triangle pqr are bounded above
(resp. below) by the corresponding angles of a comparison triangle in SK

(resp. S−K).1 By the Rauch upper bound on angles and the Gauss-Bonnet
theorem,

(31) θ1 + θ2 ≥ π − δ1 − δ2 ≥ δ3 − �δ3K.

On the other hand, let p′q′r′ be a comparison triangle in S−K and let s be
the midpoint of the segment p′q′. By the Rauch lower bound on angles and

1See, e.g., section 4.1 of [10].
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the sine rule of hyperbolic geometry applied to the triangle p′r′s, we obtain

(32)
sinh(

√
K�3/2)

sinh (
√
K�)

≤ sin(δ3/2) ≤ δ3/2.

Combining estimates (30), (31), and (32), we get

(33)
c

ε
≥ sinh(

√
K�3/2)

�3 sinh (
√
K�)

(1− �K) ≥
√
K

2 sinh (
√
K�)

(1− �K).

Inequality (33) implies an estimate for � from below as required. �

3.3. Derivatives of the normal exponential map

3.3.1. Jacobi fields. In the following, suppose d(L,C(L)) > 0, and let
η < d(L,C(L)). Write N = Nη, and N ′ = N ′

η. For any x ∈ N ′, let

γx : [0, 1] → N ′

be the path defined by γx(t) := tx. For any path γ : [a, b] → N ′, denote by

Pγ : Tγ(b)N
′ → Tγ(a)N

′,

the parallel transport with respect to the Levi-Civita connection of the met-
ric g0. We define a tensor A : TN ′ → TN ′ by

Ay := C−1y ◦ Pγy
.

Claim 3.12. We have

g0(v, w) = g1(Av,Aw), ∀v, w ∈ TxN
′, x ∈ N ′.

Proof. Indeed,

g0(v, w) = g0(Pγx
v, Pγx

w)

= g0(CxAv,CxAw)

= g1(Av,Aw).

In the last transition, we use Equation (23). �
For the rest of this section, we omit superscripts from metric quantities when
these are considered with respect to g0.
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Let (X, g) be a Riemannian manifold and let Y ⊂ X be a submanifold.
For vectors ν normal to Y and v tangent to Y , let Sν(v) be defined by

g(Sν(v), ·) = g(B(v, ·), ν).

Let γ be a geodesic in X with γ(0) ∈ Y and γ̇(0) ∈ Tγ(0)Y
⊥. A Y -Jacobi

field Z along γ is a Jacobi field with initial conditions satisfying

Z ′(0) + Sγ′(Z(0)) ∈ (Tγ(0)Y )⊥.

Lemma 3.13. Let x ∈ N ′, v ∈ Tπ(x)O, and let v be the parallel vector field
along γx extending v. Then u := Av is an O-Jacobi field with initial condi-
tions

u(0) = v,

u′(0) = J ′((∇vJ
′)x−B(v, J ′x)).

Proof. Let β be a path in O such that β(0) = π(x) and β′(0) = v. Introduce
the notation ∇L, D

L

d , for the Levi-Civita connection of g0
∣∣
O
. Denote by ξ̃(s)

the parallel transport of the vector J ′x = J ′γ′x(0) along β|[0,s] with respect

to ∇L, and let ξ(s) = −J ′ξ̃(s). Define

f(t, s) := expβ(s) tξ(s).

Since g0 is the pull-back of gJ by the exponential map, we have

f(t, s) = γξ(s)(t).

It follows that

dπ

(
∂f

∂s
(t, 0)

)
= v,

∂f

∂s
(t, 0) ∈ Hγx(t).

For the last assertion, note that ξ is parallel with respect to the connection
on νL induced by the isomorphism νL � TL. By the definitions of C and A,

∂f

∂s
(t, 0) = C−1γx(t)

v = Av(γx(t)).

In other words,

u(t) =
∂f

∂s
(t, 0).

For fixed s, the path t �→ f(t, s) is a geodesic which is normal to O. So, by
Lemma 4.1 in Chapter 10 of [4], u is an O-Jacobi field along γx. Moreover,
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we have ∂f(0,0)
∂s = v and

D

∂t

∂f

∂s

∣∣∣∣
s,t=0

=
D

∂s

∂f

∂t

∣∣∣∣
s,t=0

(34)

=
D

ds
ξ(s)

∣∣∣∣
s=0

=
D

ds
ξ(s) + J ′

DL

ds

(
J ′ξ(s)

)∣∣∣∣
s=0

= −J ′
D

ds

(
J ′ξ(s)

)
+ J ′

(
D

ds
J ′
)
ξ(s) + J ′

DL

ds

(
J ′ξ(s)

)∣∣∣∣
s=0

= J ′
(
(∇vJ

′)x−B(v, J ′x)
)
. �

Lemma 3.14. For x ∈ N ′, let v be orthogonal to O at π(x), and let v be
the parallel vector field along γx extending v. Let u(t) = tAv(γx(t)). Then u
is the O-Jacobi field with initial conditions u(0) = 0 and u′(0) = v.

Proof. Let β be the straight line β(s) = x+ sv in the vector space (νL)π(x).
Define f(t, s) = γβ(s)(t). We have

∂f

∂s
(t, 0) = tC−1γx(t)

v = tC−1γx(t)
◦ Pγx|[0,t]v(t) = tAv(γx(t)).

�
We proceed to estimateA and its derivatives. For this we derive estimates

for derivatives of O-Jacobi fields. Let (X, g) be a Riemannian manifold and
let Y be a submanifold. Suppose d(Y,C(Y )) > η > 0, and let Bη = Bη(Y ; g).
Let n ∈ N and ε > 0. Let Iε = (−ε, ε)n+1 and Iη,ε := [0, η)× Iε. Let t be the
coordinate on [0, η) and let s = (s0, . . . , sn) be the coordinate on Iε. A family
of normal geodesics is a smooth map Γ : Iη,ε → Bη satisfying the following
conditions for all s ∈ Iε:

(a) Γ(·, s) is a geodesic and Γ(·, 0) is of unit speed.
(b) ∂

∂tΓ(0, s) ∈ TY ⊥.

(c) Γ(0, s) ∈ Y .

Write

ZΓ
i0···im(t, s) :=

D

∂sim
· · · ∂

∂si0
Γ(t, s),

WΓ
i0···im :=

D

∂t
ZΓ
i0···im .
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When there is no cause for confusion, we omit the superscript Γ. We abbre-
viate I = (i0, . . . , im) and |I| = m+ 1. It follows from Lemma 4.1 in Chap-
ter 10 of [4] that the fields Zi(·, s) associated to a family of normal geodesics
Γ are Y -Jacobi fields.

The following lemma and its proof are adapted from [5] which, in effect,
treats the case where Y is a point. What we must address is that in our case
Zi(0) is only required to be tangent to Y and may be non-zero.

Lemma 3.15. Let k ≥ 0 bound the absolute value of the sectional curvature
on N ′. There is a δ = δ(k) ∈ (0, η) and a smooth function

Cn,k : [0, δ(k)]× [0,∞) → [0,∞)

with the following significance. Let t0 ∈ [0, δ(k)]. Suppose

(35) max
{
{‖ZI(0, 0)‖}|I|≤n+1, {‖t0WI(0, 0)‖}|I|≤n+1 , ‖R‖n

}
≤ E,

for some E ∈ [0,∞). Then for all I with |I| = n+ 1, and all t ∈ [0, t0],

max{‖ZI(t, 0)‖ , ‖t0WI(t, 0)‖} ≤ Cn,k(t, E).(36)

Before proving Lemma 3.15, we formulate two lemmas about derivatives
of Jacobi fields. Let X (Γ) denote the space of smooth vector fields along Γ.
Let I = (i0, i1, . . . , in) and let I ′ = (i1, . . . , in). Let AI′ , BI′ : X (Γ) → X (Γ)
denote the commutators

AI′ :=

[
D2

∂t2
,

D

∂sin
· · · D

∂si1

]
,

and

BI′ :=

[
R

(
·, ∂
∂t

Γ

)
∂

∂t
Γ,

D

∂sin
· · · D

∂si1

]
.

Applying the operation D
∂sin

· · · D
∂si1

to the Jacobi equation satisfied by Zi0 ,

we obtain the inhomogeneous Jacobi equation

(37)
D2

∂t2
ZI +R

(
ZI ,

∂

∂t
Γ

)
∂

∂t
Γ = (AI′ +BI′)Zi0 .

Lemma 3.16. Let R(m) denote the mth covariant derivative of the curva-
ture. Then AI′Zi0 and BI′Zi0 are linear combination of terms of the form
R(m) or R(j) ◦R(l) contracted with terms of the form ∂

∂tΓ, ZJ , and WJ for
J ⊂ I.
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Proof. As this claim does not refer to initial conditions, its proof is identical
to that of the case dealt with in [5]. See Eq. 2.44 in [5] and the discussion
thereafter. �

Following [5], we introduce a trigrading on the space of expressions of the
type appearing in Lemma 3.16 as follows:

∇ → (1, 0, 0), R → (2, 0, 0),
∂

∂t
Γ → (0, 1, 0), Zi → (0, 0, 1).

Thus,

R(m) → (2 +m, 0, 0), ZI → (|I| − 1, 0, |I|), WI → (|I| − 1, 1, |I|).

The tridegree is defined to be additive with respect to composition and
contraction.

Lemma 3.17. AI′Zi0 and BI′Zi0 are homogeneous of tridegree (2 + n, 2,
1 + n).

Proof. Again see the discussion after Eq. 2.44 in [5]. �

Lemma 3.17 implies that in the expressions of Lemma 3.16 we have 0 ≤
m ≤ n, 0 ≤ j + l ≤ n− 2, and |J | ≤ n. Furthermore, at most two terms of
the form WJ can appear in a given summand.

Lemma 3.18. There is a δ = δ(k) with the following significance. Let γ′

be a geodesic of unit speed and let V and W be vector fields along γ perpen-
dicular to γ satisfying the equation

(38)
D2

dt2
V +R(V, γ′)γ′ = W.

Let ζ : [0, δ] → R be a continuous function such that

‖W (t)‖+ k ‖V (0)‖ ≤ ζ(t).

Let ξ be a solution of the inhomogeneous equation ξ′′ − kξ = ζ with the initial
conditions ξ(0) = 0 and ξ′(0) =

∥∥DV
dt (0)

∥∥. Then
‖V ‖ ≤ ξ + ‖V (0)‖ ,

∥∥∥∥DdtV
∥∥∥∥ ≤ ξ′.(39)
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Proof. When ‖V (0)‖ = 0, this is Lemma 2.5 in [5]. Otherwise, let V0 be
the parallel vector field along γ satisfying V0(0) = V (0). Then U := V − V0

satisfies the inhomogeneous equation

D2

dt2
U +R(U, γ′)γ′ = W +R(V0, γ

′)γ′

with initial conditions U(0) = 0 and DU(0)
dt = DV (0)

dt . The claim thus follows
easily from the previous case. �

Proof of Lemma 3.15. Let γ(t) := Γ(t, 0). Let VI(t) := ZI(t, 0) and let
UI(t) := (AI′ +BI′)Zi0(t, 0). Then VI satisfies the inhomogeneous Jacobi
equation

(40)
D2

dt2
VI +R(VI , γ

′)γ′ = UI

along γ. We prove the lemma by induction on |I|. The inhomogeneous Jacobi
equation (40) splits into normal and tangent parts

D2

dt2
V N
I +R(V N

I , γ′)γ′ = UN
I ,

and

D2

dt2
V T
I =

d2

dt2
g(VI , γ

′)γ′ = g(UI , γ
′)γ′.

Let

f1(t) = cosh
(√

kt
)
, f2(t) = sinh

(√
kt
)
,

h1(t, U
N
I ) = −f1(t)

∫ t

0

1√
k
f2(s)

(‖UN
I (s)‖+ k‖V N

I (0)‖) ds,
h2(t, U

N
I ) = f2(t)

∫ t

0

1√
k
f1(s)

(‖UN
I (s)‖+ k‖V N

I (0)‖) ds,
and

(41) h
(
t, UN

I , a1, a2
)
= h1(t, U

N
I ) + h2(t, U

N
I ) + a1f1(t) + a2f2(t).

Then h is the general solution of the equation

ξ′′ − kξ = ‖UN
I ‖+ k‖V N

I (0)‖.
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Applying Lemma 3.18, we obtain

∥∥V N
I (t)

∥∥ ≤ h

(
t, UN

I , 0,
1√
k

∥∥∥∥∥
(
DVI

dt
(0)

)N
∥∥∥∥∥
)

+
∥∥V N

I (0)
∥∥ ,(42)

and ∥∥∥∥∥
(
DVI

dt
(t)

)N
∥∥∥∥∥ ≤ dh

dt

(
t, UN

I , 0,
1√
k

∥∥∥∥∥
(
DVI

dt
(0)

)N
∥∥∥∥∥
)
.(43)

For the tangential part we get∥∥V T
I

∥∥ = |g(VI , γ
′)|(44)

≤
∫ t

0

∫ s

0

∥∥UT
I (s

′)
∥∥ ds′dt+ t|g(V ′I (0), γ′)|+ |g(V T

I (0), γ′)|.

By the inductive assumption, and Lemmas 3.16 and 3.17, we get

(45) ‖UI(t)‖ ≤
C ′|I|−2,k

t20
(t, E),

for a universal function C ′|I|−2,k. The power of t0 corresponds to the number

of times WI can appear in UI . Estimate (45), assumption (35) and the
explicit formula (41) for h, imply a bound as required on the right hand
sides of inequalities (42), (43) and (44). This completes the inductive step
and the proof of the claim. �

Lemma 3.19. Let x ∈ Bη and let t0 = d(x, Y ). Let γ : [0, t0] → Bη be the
unit speed geodesic normal to Y such that γ(t0) = x. Then TxBη is spanned
by vectors of the form Z(t0) where Z is a Y -Jacobi field along γ. Further-
more, let H > 0 bound the second fundamental form of Y and let k bound
the absolute value of the sectional curvature of X. Then there are constants
C = C(k,H) and δ′ = δ′(k,H) such that if t0 ≤ δ′ then

‖Z(0)‖ ≤ C ‖Z (t0)‖ ,

and ∥∥∥∥DdtZ(0)

∥∥∥∥ ≤ C

(
1 +

1

t0

)
‖Z (t0)‖ .

Proof. Let νY denote the normal bundle to Y , and let φ : νY → X denote
the map (p, v) �→ expp(v). The Y -Jacobi fields span the image of dφ. Since
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there are no focal points on Bη, we have that φ is a submersion. This gives
the first part of the claim. The estimate on ‖Z(0)‖ in the second part fol-
lows by comparison with hypersurfaces in constant curvature manifolds [16,
Theorem 4.3]. We explain the estimate on

∥∥D
dtZ(0)

∥∥ . Any Y -Jacobi field Z
splits as a sum Z = Z1 + Z2 with

Z1(0) = 0, Z ′1(0) ∈ (Tγ(0)Y )⊥,
Z ′2(0) + Sγ′(Z2(0)) = 0.

By the Rauch comparison theorem, we get∥∥∥∥DdtZ1(0)

∥∥∥∥ ≤ C1
‖Z1 (t0)‖

t0
,

with C1 depending on the curvature only. On the other hand, we get∥∥∥∥DdtZ2(0)

∥∥∥∥ ≤ H ‖Z2(0)‖ ≤ HC ‖Z2(t0)‖ .

Let θ(t) be the angle between Z1(t) and Z2(t). Then there is a constant C ′

such that cos θ(t) ≤ C ′t. Indeed,

d

dt
g(Z1(t), Z2(t))

∣∣∣∣
t=0

= 0.

Using the Jacobi equation, we obtain the estimate

d2

dt2
g(Z1(t), Z2(t)) ≤ C ′′ ‖Z1(t)‖ ‖Z2(t)‖+

∥∥Z ′1(t)∥∥ ∥∥Z ′2(t)∥∥ .
Applying Lemma 3.18, one shows that for sufficiently small t,

g0(Z1(t), Z2(t)) ≤ C ′′′
∥∥Z ′1(0)∥∥ ‖Z2(0)‖ t2.

We conclude the claim about

cos θ(t) =
g0(Z1(t), Z2(t))

‖Z1(t)‖ ‖Z2(t)‖

by applying the comparison of [16, Theorem 4.3] to bound the denominator
of the right hand side from below. Taking δ′ small enough, we have θ ≤ 3π

4
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for t ∈ [0, δ′]. In particular, for i = 1, 2,

‖Zi(t0)‖ ≤
√
2 ‖Z(t0)‖ .

The claim now follows. �

3.3.2. Constructing families of geodesics. Below, we abbreviate
[m] := {1, . . . ,m} and write I � [m] to indicate that I is a subset of [m]
with a chosen order on its elements. For a smooth map Λ : (−ε, ε)m → X
and I = {i1, . . . , il} � [m], we abbreviate

DIΛ :=
D

∂sil
· · · ∂

∂si1
Λ.

and similarly for the covariant derivatives of sections of Λ∗TX or maps with
domain [0, η)× (−ε, ε)m. For a family of normal geodesics Γm, we abbreviate
Zm
I := ZΓm

I and Wm
I := ZΓm

I .

Lemma 3.20. Suppose ‖R‖m−1 ≤ E. Let Γm : [0, η)× (ε, ε)m → Bη be a
family of normal geodesics such that

max
I�[m]

{t0‖Wm
I (0, 0)‖, ‖Zm

I (0, 0)‖} ≤ E.

Let Z be a vector field along Γ such that Z(·, s1, . . . , sm) is a Y -Jacobi field
along the geodesic Γ(·, s1, . . . , sm) and

(46) max
I�[m]

{‖DIZ(0, 0)‖ , t0
∥∥DIZ

′(0, 0)
∥∥} ≤ E.

Then there exists a family of normal geodesics

Γm+1 : [0, η)× (−ε, ε)m+1 → Bη

such that

Γm+1|{sm+1=0} = Γm, Zm+1
m+1 |{sm+1=0} = Z,

max
I�[m+1]

{t0‖Wm+1
I (0, 0)‖, ‖Zm+1

I (0, 0)‖} ≤ C(E).
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Proof. Let Γ̂m : (−ε, ε)m+1 → Bη be such that

Γ̂m(s1, . . . , sm, 0) = Γm(0, s1, . . . , sm)

and

∂m+1Γ̂
m(s1, . . . , sm, 0) = Z(0, s1, . . . , sm).

Let Ŵm be a vector field along Γ̂m such that

Ŵm(s1, . . . , sm, 0) = (Γm)′(0, s1, . . . , sm)

and

Dm+1Ŵ
m(s1, . . . , sm, 0) = Z ′(0, s1, . . . , sm).

Let V̂ m be the projection of Ŵm to the normal bundle νY and let

Γm+1(t, s) = expΓ̂m(s)(tV̂ (s)).

Then by construction Γm+1|{sm=0} = Γm. The proof of Lemma 4.1 in

Chapter 10 of [4] shows Zm+1
m+1 = Z. It remains to prove the bounds on

Zm+1
I (0, 0),Wm+1

I (0, 0). By the bound ‖R‖m−1 ≤ E and induction on |I|,
we may reorder the partial derivatives in Zm+1

I (0, 0),Wm+1
I (0, 0), to reduce

the desired bounds to assumption (46). �

Let Λ : (−ε, ε)m → Y, and write DY
I and DνY

I for the induced connections
on Λ∗TY and Λ∗νY . Let a, b be natural numbers and let c = a+ b. Let ξi
be a section of {

Λ∗TY, i = 1 . . . a,

Λ∗νY , i = a+ 1, . . . c
,

and write

D̂Iξj =

{
DY

I ξj , j = 1, . . . a,

DνY

I ξj , j = a+ 1 . . . c
.

Let T : TY ⊗a ⊗ ν⊗bY → TX|Y be a smooth tensor. For I, I1, . . . , Ic � [m], we
write �Ii = I if

∐
Ii = I and the order induced on Ii from I is the chosen

order on Ii.
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Lemma 3.21. Suppose

max

{
‖B‖l, max

J�[m],|J |≤l+1
‖DJΛ(0)‖, ‖T‖l+1

}
< E.

Then, for |I| ≤ l + 1 we have

∥∥∥∥∥DIT (ξ1, . . . , ξc)(0)−
∑

Ii=I

T (D̂I1ξ1, . . . , D̂Icξc)(0)

∥∥∥∥∥
≤ C|I|(E, a, b)

∑
j∈[c],|J |<|I|

‖D̂Jξj(0)‖.

Proof. We prove the lemma by induction starting from |I| = 0, in which
case the claim is tautological. Assuming by induction the lemma holds for
|I| < N , we prove the lemma for |I| = N . We prove first the case T = Id.
For definiteness we treat the case ξ = ξ1 is a section of Λ∗TY , the other case
being similar. Let I = (i1, . . . , iN ) and I ′ = (i2, . . . , iN ). Thus

DIξ = DI′D̂i1ξ +DI′B(∂i1Λ, ξ).

We proceed to estimate both summands on the right hand side of the last
expression. By induction with T = Id and ξ1 = D̂i1ξ,

‖DI′D̂iξ(0)− D̂Iξ(0)‖ ≤ CN−1(E, 1, 0)

⎛
⎝ ∑
|J |<N

‖D̂Jξ(0)‖
⎞
⎠ .

By induction with T = B, ξ1 = ∂i1Λ and ξ2 = ξ, we obtain

‖DI′B(∂i1Λ, ξ)(0)‖ ≤
∑

I1
I2=I′

‖B(D̂I1∂i1Λ, D̂I2ξ)(0)‖

+ CN−1(E, 2, 0)

⎛
⎝ ∑

j=1,2,|J |<|I′|
‖D̂Jξj(0)‖

⎞
⎠

≤ C ′(E)

⎛
⎝ ∑
|J |<N

‖D̂Jξ(0)‖
⎞
⎠ .
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Combining the preceding estimates gives the lemma for T = Id. We now
prove the claim for general T . We have

∥∥∥∥∥DIT (ξ1, . . . , ξc)(0)−
∑

Ii=I

T (DI1ξ1, . . . , DIcξc)(0)

∥∥∥∥∥
≤ C ′′(E)‖T‖N

⎛
⎝ ∑

j∈[c],|I|<N

‖DIξj(0)‖
⎞
⎠ .

From the case T = Id we get

‖DIξ(0)− D̂Iξ(0)‖ ≤ C(E, 1, 0)
∑
|I|≤l

‖D̂Iξ(0)‖.

So,

‖T (DI1ξ1, . . . , DIcξc)(0)− T (D̂I1ξ1, . . . , D̂Icξc)(0)‖

≤ C ′′′(E)‖T‖N

⎛
⎝ ∑

j∈[c],|I|<N

‖D̂Iξj(0)‖
⎞
⎠ .

�

Lemma 3.22. Suppose max{‖B‖m−1, ‖R‖m−1} ≤ E1 and t0 ≤ δ′(k,H) for
δ′(k,H) as in Lemma 3.19. Let Γ = Γm be a family of normal geodesics
satisfying the assumptions of Lemma 3.20 with E = E1 and let v ∈ TΓ(t0,0)X
be a vector of unit length. Then there exists a vector field Z along Γ with
Z(t0, 0) = v that satisfies the assumptions of Lemma 3.20 with E = C1(E1).

Proof. Abbreviate γ(t) := Γ(t, 0). By Lemma 3.19 there exists a Y -Jacobi
field Z̃ along γ such that Z̃(t0) = v and Z̃(0), t0Z̃

′(0), are bounded. Let Ẑ
(resp. Ŵ ) be the vector field along Γ|{t=0} obtained by parallel transport
with respect to the induced connection on Y (resp. νY ) of the tangent vector
Z̃(0) (resp. the normal vector Z̃ ′(0) + SΓ′(0,0)Z̃(0)) along lines parallel to
coordinate axes in increasing order. Let

(47) Û(s) = Ŵ (s)− SΓ′(0,s)Ẑ(s).

Let Z be the unique vector field along Γ that satisfies the Jacobi equation
along Γ(·, s) with initial conditions Z(0, s) = Ẑ(s) and Z ′(0, s) = Û(s) for
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all s ∈ (−ε, ε)m. Then

Z ′(0, s) + SΓ′(0,s)Z(0, s) = Û(s) + SΓ′(0,s)Ẑ(s) = Ŵ (s),

which is a normal field by construction. So Z is a Y -Jacobi field.
It remains to bound the partial derivatives of Z at 0. Namely, for I �

[m], we must bound DI Ẑ(0) and DI Û(0). First, we bound DY
I Ẑ(0) (resp.

DνY

I Ŵ (0)). Indeed, denote by RY (resp. RνY ) the curvature of the induced
connection on TY (resp. νY ). The bounds on ‖B‖m−1, ‖R‖m−1, together
with the Gauss and Ricci equations [4, Chapter 5] imply bounds on ‖RY ‖m−1
and ‖RνY ‖m−1. Using the curvature bounds and induction on |I| to commute
partial derivatives, we reduce to the case that I is decreasingly ordered. In
this case, DY

I Ẑ(0) (resp. DνY

I Ŵ (0)) vanishes by construction of Ẑ and Ŵ .
To complete the proof, we apply Lemma 3.21 with T = Id to bound

DI Ẑ(0) and DIŴ (0). We again apply Lemma 3.21 with T = S to bound
DI(SΓ′(0,·)Ẑ)(0). So, by Equation (47), we obtain a bound on DI Û(0). �

Lemma 3.23. Let Λ : [0, η)× (−ε, ε)m → X and let V be a vector field
along Λ that is parallel along lines s = const. Let 1 ≤ k ≤ m. Suppose

max

{
‖R‖k−1, max

J�[m],|J |≤k
‖DJV (0, 0)‖

}
< E.

Moreover, let t0 ∈ [0, η) and suppose for all t ∈ [0, t0)

max

{
max

J�[m],|J |≤k
{‖DJΛ(t, 0)‖, ‖DJDtΛ(t, 0)‖}

}
< E.

Then maxJ�[m],|J |≤k ‖DJV (t0, 0)‖ ≤ Ck(E, t0).

Proof. We prove this by induction on k. When k = 0 the claim is obvious.
Suppose we have established the claim for all k < N . Let I � [m] with |I| =
N . Start with the equation DIDtV = 0 and apply the commutation rule

DtDiV −DiDtV = R(∂iΛ, ∂tΛ)V,

repeatedly to the expressionDIDt until the t derivative comes last. It follows
that DIV satisfies a differential equation of the form

DtDIV = U

with U a linear combination of derivatives of curvature contracted with
expressions of the form DJΛ, DJDtΛ, with |J | ≤ N and DJV with |J | < N .
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Thus ‖U‖ ≤ C(E, t0). Combining this with the assumption on ‖DIV (0, 0)‖,
the induction step follows. �

3.3.3. Main result. We now return to the setting where Bη = N ′, g = g0
and Y = O.

Lemma 3.24. Assume η ≤ min{δ′(k,H), δ(k)}. Suppose

max
{‖R‖m , ‖J‖m+1 , ‖B‖m

}
< K.

Then for some C = C(K) we have ‖A‖m < C.

Proof. We prove this by induction on m. The case m = 0 is an immediate
consequence of Lemmas 3.13, 3.14, and 3.15. More specifically, in the case
of Lemma 3.14, we apply Lemma 3.15 to the Jacobi field Z(t) = t

‖x‖Av(t).

We proceed with the induction step. Denote by A(i) the ith covariant
derivative of A. Suppose

∥∥A(i)
∥∥ ≤ Ci(K) for 0 ≤ i < m. Let x ∈ N ′ and let

v0, v1, . . . , vm ∈ TxN
′ be unit vectors. We estimate A(m)(v0, . . . , vm). Com-

bining Lemmas 3.20, and 3.22, we inductively construct a family Γm of nor-
mal geodesics which satisfies the assumption of Lemma 3.20 with t0 = ‖x‖,
the constant E depending only on K, and such that Zm

i (‖x‖, 0) = vi for
i = 1, . . . ,m. Lemma 3.15 implies that ZI is bounded in terms of K for all
I � [m].

Let V̂ be the parallel vector field along γx with V̂ (‖x‖) = v0. Let v
‖ and

v⊥ be the tangent and normal components of V̂ (0). Let V̂ ‖ (resp. V̂ ⊥) be the
vector field along Γm|t=0 given by iterated parallel transport of v‖ (resp. v⊥)
with respect to DY (resp. DνY ) along coordinate axes in increasing order. As
in the proof of Lemma 3.22, it follows that ‖DY

I V̂
‖(0)‖ and ‖DνY

I V̂ ⊥(0)‖ are
bounded in terms of K for |I| ≤ m. Let V ‖ and V ⊥ be the vector fields along
Γm obtained by parallel transport of V̂ ‖ and V̂ ⊥ along lines s = const. Let
V = V ‖ + V ⊥. Note that V (‖x‖, 0) = v0. From the construction of V and
Lemma 3.21, we obtain an estimate on DIV (0, 0) in terms of K for all
I � [m]. Lemma 3.23 then implies an estimate on DIV (t, 0) in terms of K
for all I � [m].

Let Ẑ0 be the vector field along Γm given by

Ẑ0(t, s) = AV ‖(t, s) +
t

‖x‖AV
⊥(t, s).

We show that Ẑ0 satisfies the assumptions of Lemma 3.20 with t0 = ‖x‖ and
the constant E depending only on K. Indeed, let Q : TO ⊗ νO → TN ′ be
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the tensor given by

Q(v, x) = J ′((∇vJ
′)x−B(v, J ′x)).

By Lemmas 3.13 and 3.14, Ẑ0 is an O-Jacobi-field along the geodesics Γ(·, s)
with

Ẑ0(0, s) = V ‖(s), Ẑ ′0(0, s) = Q
(
V ‖(s),Γ′(0, s)

)
+

1

‖x‖V
⊥.

Lemma 3.21, applied term by term with T = Id or T = Q as appropriate,
gives the required bounds on the derivatives of Ẑ0 at (s, t) = (0, 0). Let
Γ = Γm+1 be an extension of Γm as in Lemma 3.20 with Z = Ẑ0. Write
s0 := sm+1. By Lemma 3.15 we obtain that ZI is bounded in terms of K for
all I � {0, . . . ,m}.

Note that A(m)(v0, . . . , vm) is the sum of the term D1...mAV (‖x‖, 0) and
terms of the form A(i) for 0 ≤ i < m contracted with expressions of the form
ZI(‖x‖, 0) and DJV (‖x‖, 0) for I � {0, . . . ,m} and J � [m]. But on the slice
t = ‖x‖, we have AV ≡ ZΓ

0 . Therefore,

D1...mAV (‖x‖, 0) = Z0···m(‖x‖, 0).

Thus,

‖A(m)(v0, . . . , vm)‖ ≤ C ′({‖ZI‖}I�{0,...,m}, {‖DJV ‖}J�[m], Cm−1(K))

≤ Cm(K).

This completes the induction step. �

Proof of Theorem 3.5. By Lemma 3.9 there is a K ′ such that

d(L,C(L)) >
1

K ′ .

Since A = Id on O, by Lemma 3.24 withm = 1, we deduce that A is arbitrar-
ily close to Id on Nδ for small enough δ. Thus we can choose δ such that g0
and g1 are norm equivalent on Nδ. Let D be such that g1(D·, ·) = g0(·, ·). It
remains to bound ‖D‖2. Note that D = ATA where the transpose is with re-
spect to g0. Indeed, we have g0(D

−1·, ·) = g1(·, ·) = g0(A
−1·, A−1·), soD−1 =

(ATA)−1. The theorem now follows from Lemma 3.24 with m = 2. �
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3.4. Interpolation of metrics

Let (M, g1) be a Riemannian manifold and L ⊂ M a submanifold. For δ > 0,
write U1 := M \Bδ(L; g1) and U2 := B2δ(L; g1). Let

A ∈ Hom(TU2, TU2)

be positive definite and self adjoint with respect to g1. Let g2 be the metric
on U2 defined by

g2(v, w) := g1(Av,w), p ∈ U2, v, w ∈ TpU2.

Lemma 3.25. Suppose ‖Rg1‖g1 ≤ K < ∞, the second fundamental form
of L is bounded with respect to g1 and d(L,C(L); g1) > 0. Suppose also that
‖A‖g12 and

∥∥A−1∥∥g1 are finite. Then there exists δ > 0 and a partition of
unity {f, 1− f} subordinate to the cover {U1, U2} such that ‖f‖g12 is finite,

and for the metric h := fg1 + (1− f)g2, we have
∥∥Rh

∥∥h is finite.

Proof. Let 0 < δ < d(L,C(L); g1)/2. By the boundedness of A and A−1,
there is a C ∈ [1,∞) such that

C−1g1(v, v) ≤ g2(v, v) ≤ Cg1(v, v)

for any p ∈ U1 ∩ U2 and any v ∈ TpM . Let {f, 1− f} be a partition of unity
subordinate to the cover {U1, U2}, and let h = fg1 + (1− f)g2. We have for
p ∈ U1 ∩ U2,∥∥∥Rh

p

∥∥∥h =
∥∥∥Rg1

p + Sg1,h
p

∥∥∥h ≤ C2
(∥∥Rg1

p

∥∥g1 + ∥∥∥Sg1,h
p

∥∥∥g1) .
By Lemma 3.3

∥∥∥Sg1,h
∥∥∥g1 ≤ 2

(∥∥∥Hg1,h
∥∥∥g1
1
+
(∥∥∥Hg1,h

∥∥∥g1
1

)2)
,

and by Lemma 3.1,∥∥∥Hg1,h
∥∥∥g1
1

≤ 3 ‖f Id+(1− f)A‖g12
∥∥(f Id+(1− f)A)−1

∥∥g1
1

(48)

≤ 3 (C1 ‖f‖g12 + ‖A‖g12 )
2 (∥∥(f Id+(1− f)A)−1

∥∥g1)2
≤ 3n2C2 (C1 ‖f‖g12 + ‖A‖g12 )

2
,

where n = dimM.
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It remains to construct f such that ‖f‖g12 is bounded on U1 ∩ U2. For
this, let {k, 1− k} be a partition of unity of [0, 1] subordinate to the cover
{[0, 1), (0, 1]} and define

f(p) =

⎧⎪⎪⎨
⎪⎪⎩
1− k

(
d(p,L;g1)−δ

δ

)
, p ∈ U1 ∩ U2,

1, p ∈ U1 \ U2,

0, p ∈ U2 \ U1.

Since U1 ∩ U2 = B2δ(L; g1) \Bδ(L; g1), the function f is continuous. The
assumption d(L,C(L); g1) ≥ 2δ ensures that f is smooth. To bound

∥∥f2
∥∥g1
2

it sufficed to bound the derivatives of the distance function

d(p) = d(p, L; g1)

up to order two. Note that d satisfies the partial differential equation |∇d|2 =
1, where ∇d is the gradient of d with respect to g1, which implies ‖d‖g11 is
bounded. It remains to bound the second derivatives of d.

For this let γ : [0, 2δ] → U2 satisfy γ(0) ∈ L and γ′(0) ∈ Tγ(0)L
⊥. Let

p = γ(t0) for some t0 ∈ (δ, 2δ) and let v ∈ γ′(t0)⊥ ⊂ TpU1. Let Z be an L-
Jacobi field along γ such that Z(t0) = v. Then

∇v∇d =
D

dt
Z(t0).

Lemmas 3.19 and 3.18 now provide and an estimate as required. �
Proof of Theorem 2.9. By Theorem 3.5, we can apply Theorem 3.4. The
metrics g and h of Theorem 3.4 satisfy the conditions of Lemma 3.25. In-
terpolating them as in Lemma 3.25 produces a Hermitian metric satisfying
all the conditions of Theorem 2.9. The finiteness of ‖J‖h2 follows from the
bound on ‖f‖2 in Lemma 3.25 and Corollary 3.2. �
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