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Cone decompositions of non-simple

polytopes

José Agapito and Leonor Godinho

A polytope cone decomposition expresses the characteristic func-
tion of a polytope as a sum of characteristic functions of convex
cones associated to its faces. In this work we generalize the de-
compositions for simple polytopes introduced in [3] to any convex
polytope.

1. Introduction

The interplay between simple convex lattice polytopes and projective toric
varieties has been extensively studied. If a lattice polytope P ⊂ Rd is non-
simple (meaning that there is at least one vertex with more than d incident
edges), we can still associate to P a projective toric variety, now with worse
than orbifold singularities, by a generalization of the Delzant construction
[6]. These singular toric varieties appear in many contexts. They can arise,
for instance, as a result of singular symplectic reduction on toric manifolds
(see for example [8] for the case of isolated singularities) and as Calabi Yau
manifolds, with implications in mirror symmetry and string theory [11]. It
is then interesting to extend the existing simple-polytope decompositions to
non-simple polytopes.

Some of these formulas [3, 13] were obtained by exploring the relation
between simple lattice regular polytopes and smooth toric varieties, and then
generalized to all simple lattice polytopes using combinatorial methods. In
particular, the decompositions obtained in [3] were suggested by the work
of Witten on localization on critical values of the square of the moment
map. This localization technique was developed by Paradan [16] and later
generalized by Harada-Karshon [10].

Perhaps the most well-known polytope decomposition is the Brianchon-
Gram formula [7] which expresses the characteristic function 1P of a convex
polytope P as the alternating sum of the characteristic functions of the
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tangent cones CF at the faces of P ; namely,

(1) 1P =
∑
F⊆P

(−1)dimF1CF
.

The Lawrence-Varchenko decomposition [14, 17], also known as polar
decomposition, expresses the characteristic function of a convex simple poly-
tope (only) in terms of the characteristic functions of polarized tangent cones
at the vertices of P (cones obtained by flipping some of the edge vectors em-
anating from each vertex, so that they all point in the same direction). In
particular, we have

(2) 1P =
∑

v vertex of P

(−1)mv1C�
v
,

wheremv is the number of edge vectors ofCv which are flipped andC�
v is the

resulting flipped (or polarized) tangent cone at the vertex v. This flipping
process is determined by a direction specified by a choice of a special vector
(called polarizing vector) that cannot be parallel to any of the affine lines
generated by the edges of P . Formula (2) has been generalized by Haase [9]
to non-simple polytopes.

Karshon, Sternberg and Weitsman [13] and Agapito [1] gave weighted
versions of (2) (for simple polytopes), assigning weights to the faces of the
polytope P and of the polarized cones C�

v in a consistent way (see Section 3
for a detailed explanation). A weighted version of (1) was also given in [2].

In [3] new polytope decompositions for simple polytopes were obtained
that combine the above two formulas. As in (1), these decompositions ex-
press 1P in terms of characteristic functions of cones with the affine spaces
generated by the faces of the polytope as apices. However, these cones are
not polarized according to a unique direction. Indeed, a different vector is
assigned to each face of P and the generators of the corresponding tangent
cone are flipped accordingly. These polarizing vectors are obtained by choos-
ing a suitable starting point ε (the same for all such vectors) and taking as
end points the orthogonal projections β(ε,ΔF ) of ε onto the affine spaces
ΔF generated by the different faces. The formulas thus obtained are

1
w

P =
∑
F⊆P

(−1)mF1P (β(ε,ΔF )) 1
w

C�
F

,

where mF is the number of generators of CF that are flipped, 1
w

C�
F

is the

weighted characteristic function of the polarized tangent cone C�
F at F , and
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1
w

P is the weighted characteristic function of the polytope P . In this work
we generalize these decompositions to any convex polytope.

The idea is to argue as follows. If V is a vector space of dimension d
and P is a full-dimensional polytope in V , we write the tangent cone to
P at a non-simple face F (meaning that F is contained in a number of
facets of P greater than its codimension) as an intersection of simple cones
with apex ΔF determined by a regular triangulation TF of the dual cone to
CF (also known as the normal cone at F ). We then polarize these simple
cones as described above and sum the weighted characteristic functions of
the resulting polarized cones, taking into consideration the parity of the
number of edges that are flipped, obtaining a function

1
w

TF
:=
∑
i

(−1)mF,i1
w

C�
σi(F )

.

The values of this function are independent of the choice of the regular
triangulation TF at all points which do not lie in any affine space generated
by a non-simple face containing F (cf. Proposition 6.6). Moreover, if we
assign the same weight to all the hyperplanes generated by the facets of P ,
the values of 1

w

TF
are always independent of the triangulation, for all points

in V . In all cases, denoting by 1
w

F the restriction of 1
w

TF
to the set of points

where this independence holds, and by W the set of possible starting points
of polarizing vectors (described in Section 6), we obtain the following result.

Theorem 1.1. Let P ⊂ V be any convex full-dimensional polytope and let
S be the union of the affine spaces generated by the non-simple faces of P .
Then, for ε ∈ W and x ∈ V \ S, we have

(3) 1
w

P (x) =
∑
F⊆P

1P (β(ε,ΔF )) 1
w

F (x),

where β(ε,ΔF ) is the orthogonal projection of ε onto the affine space ΔF

generated by the face F . Moreover, when all the weights assigned to the
hyperplanes generated by the facets of P are equal to some fixed q ∈ C, the
value of the function on the RHS of (3) at x ∈ S is also independent of the
choice of regular triangulation and is equal to{

qcodimFx − (rx − codimFx) q
codimFx−1(1− q) if x ∈ P

0 otherwise
,
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where rx is the number of facets of P that contain x and Fx is the face of
P such that x ∈ int Fx. In particular, for q = 1, the RHS of (3) is equal to
1P (x), the (unweighted) characteristic function of P , for every x ∈ V .

This theorem is first proved for compatible choices of regular triangu-
lations of the different inner normal cones to P at its non-simple faces (cf.
Proposition 6.2). Then, we use this fact to show that the functions 1

w

TF

are independent of triangulations, thus obtaining the final complete result
as stated. The compatible choices of regular triangulations are obtained by
considering a regular triangulation of the polar dual polytope P ∗ [9], as
explained in Section 6. Since the functions involved are independent of the
triangulation, we do not have to worry about the compatibility of the regular
triangulations used when applying Theorem 1.1. The proof of Proposition 6.2
is divided in two parts. Firstly, we show that the sum

(4)
∑
F⊆P

1P (β(ε,ΔF ))1
w

TF

is independent of ε (the starting point of all polarizing vectors), where the
functions 1

w

TF
are constructed using compatible regular triangulations. This

is done by a wall-crossing argument; i.e., by considering the effect of crossing
a wall in the complement of the set of suitable values of ε. Secondly, we show
that

(5) 1
w

P (x) =
∑
F⊆P

1P (β(ε,ΔF ))1
w

TF
(x)

holds for x ∈ V \ S by carefully picking a suitable value of ε for each x.
In addition, since the sum in (4) is independent of ε for every x ∈ V , we
compute this sum when x ∈ S, in the particular case where the same weight
is assigned to all the hyperplanes generated by the facets of P . A crucial step
in this computation, as well as in the proof of (5) in the general situation,
is Lemma 6.5, which states that, given a regular triangulation of the normal
cone at a non-simple vertex, there exists a special simple polarized cone
C�

σi0
(v) that contains all the other polarized cones C�

σi(v)
determined by the

triangulation.
Finally, let us point out that making a choice of compatible regular tri-

angulations corresponds to performing simple deformations of the polytope
P by parallel translating some of its facets. This observation gives an alter-
native proof of Proposition 6.2 for x ∈ V \ S. Nevertheless, if we want to
extend this result to V , as we do when we assign the same weight to all the
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hyperplanes generated by the facets of P , it is crucial to use a wall-crossing
argument (cf. Remark 6.9).

This paper is structured as follows. In Sections 3 and 4 we describe the
polarizing process and the assignment of weights to the different faces of
the polytope and of the polarized cones. Then, in Section 5, we describe
the decompositions presented in [3] and, in Section 6, we generalize these
formulas to any convex polytope.

2. Preliminaries

2.1. Polytopes and convex cones

Let V be a real vector space of dimension d with a lattice Λ. We refer to
the elements of Λ as integral points. An element x ∈ V is called rational
if kx ∈ Λ for some integer k �= 0. The space of rational elements of V is
denoted by VQ. A subspace W ⊂ V is called rational if W ∩ Λ is a lattice
in W , and an affine subspace of V is called rational if it is a translate of a
rational subspace by a rational element of V . The dual space V ∗ is equipped
with the dual lattice Λ∗ of Λ:

Λ∗ := {ξ ∈ V ∗ | 〈ξ,x〉 ∈ Z for everyx ∈ Λ}.

If S is a subset of V , then we denote by ΔS the affine subspace generated
by S. If S consists of rational elements of V , then ΔS is rational. Note that
ΔS may contain no integral points. We denote by lin(S) the vector subspace
of V parallel to ΔS and by S⊥ the subspace of V ∗ orthogonal to S:

S⊥ = {ξ ∈ V ∗ | 〈ξ,x〉 = 0, for every x ∈ S}.

If W is a subspace of V , the dual space (V/W )∗ is canonically identified with
the subspace W⊥ ⊂ V ∗. The vector space V has a canonical Lebesgue mea-
sure dx for which the fundamental domain of Λ has measure 1. In particular,
if {e1, . . . , ed} is a basis of V such that

Λ =

d∑
i=1

Z ei,

then, for x =
∑d

i=1 xi ei ∈ V , we have dx = dx1 · · · dxn.
A convex rational cone in V is a closed convex cone

∑k
i=1R+wi which

is generated by a finite number of elements wi ∈ VQ. An affine rational cone
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in V is a translate of a convex rational cone in V by a rational element of
V . All cones considered in this work are convex and rational. We will simply
refer to them as cones. A cone C (affine or not) is said to be pointed if it
does not contain any straight line. We can then write

C = {v + λ1w1 + · · ·+ λkwk | λ1, . . . , λk ≥ 0},

where v ∈ VQ and w1, . . . ,wk ∈ VQ generate the extreme rays of C. These
vectors wi, only defined up to a positive scalar, are called the generators of
C. If a cone C is not pointed, then it contains an affine space of positive
dimension. The maximal affine space contained in C is called the apex of
C. The dimension of a cone C is the dimension of the affine space ΔC

generated by C. If dimC = d then C is called a full-dimensional (or solid)
cone, in which case ΔC = V . Note that any affine rational cone C is the
intersection of a finite number of half-spaces whose boundaries are affine
rational hyperplanes meeting in (at least) one point.

A (rational) convex polytope P ⊂ V is a bounded intersection of a min-
imal finite collection B(P ) of closed half-spaces in V (with rational bound-
aries). Throughout this paper we will assume that any polytope is rational,
convex and full-dimensional. Let F be the set of closed faces of P . Then

F =

n⋃
k=0

F(k),

where F(k) is the set of faces of P of dimension k. Note that F(d) = {P}
and that F(0) is the set of vertices of P . A face of codimension-1 is called a
facet. If F is a face of P , we define the set

FF := {F̃ ∈ F(d− 1) | F ⊂ F̃}

as the set of facets of P that contain F . For each facet F ∈ F(d− 1), we
write the affine hyperplane ΔF as

(6) ΔF = {x ∈ V | 〈ηF ,x〉+ λF = 0},

where λF ∈ R and ηF ∈ V ∗ is a normal vector to the facet F such that

P ⊂ {x ∈ V | 〈ηF ,x〉+ λF ≥ 0}

(i.e. ηF is an inward-pointing normal vector). Note that ηF is only deter-
mined up to multiplication by an element of R+.
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If F is a face of P , we define the tangent cone to P at F as

CF := {y + r (x− y) | r ≥ 0, y ∈ ΔF , x ∈ P} ⊂ V.

It is the smallest (full-dimensional) affine cone with apex ΔF that contains
P . Let the barrier cone of F be the translate of CF that contains lin(F ).
Then we define the dual cone NF to CF (also known as the normal cone
at F ) as

NF := {ξ ∈ V ∗ | 〈ξ,x〉 ≥ 0 for all x in the barrier cone of F}.

Then

NF =
∑
˜F∈FF

R≥0η ˜F .

Finally, considering the projection πF : V → V/lin(F ), we define the trans-
verse cone TF of P along F as the cone in V/lin(F ) given by πF (CF ). It is a
solid pointed affine cone in the quotient space V/lin(F ) with vertex πF (ΔF ).
Note that if F is a vertex of P , then the transverse cone TF coincides with
the tangent cone CF .

Let C be a solid cone in V . Given a face F of C, let rCF be the number
of facets of C that contain F . A face F of C will be called simple in C if

rCF = codimF = d− dimF.

The cone C is said to be a simple cone if all its faces are simple. Similarly, a
polytope is called simple if the tangent cones to P at its faces are all simple.

Given a full-dimensional polytope P ⊂ V , consider the (pointed) cone
C(P ) spanned by P ; that is, the set of all real, non-negative linear combi-
nations of elements of P × {1}. The dual cone C(P )∨ of C(P ) is the cone
whose extremal rays are generated by the outer normal vectors at the facets
of C(P ). If P contains the origin, C(P )∨ is itself spanned by a polytope,
namely

P∨ = {ξ ∈ V ∗ | 〈ξ,x〉 ≤ 1 for all x ∈ P},
called the polar of P (see for instance [12] for details). For an arbitrary
polytope P , there is a translate Q such that the origin belongs to the relative
interior of Q relative to its affine hull A. It is then possible to take the polar
Q∨ of Q in A. Any polytope Q∨ formed in this way is usually denoted
by P ∗ and referred to as the polar dual of P . There are many different
choices for P ∗, but they are all combinatorially equivalent. Note that in this
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construction a k-face of P corresponds to a (d− (k + 1))-face of P ∗ and
vice-versa (cf. Figure 1).
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Figure 1: Polar duality for the octahedron and the cube.

3. Polarization of simple tangent cones

We will, from now on, fix a scalar product on V and consider the associated
isomorphism j : V ∗ → V . Given a solid convex rational polytope P ⊂ V let
W ⊂ V \ ∂P be the set of points ε ∈ V \ ∂P such that, for every face F of
P , the j-orthogonal projection β(ε,ΔF ) of ε onto ΔF (defined by the scalar
product) is not in any affine space generated by a proper subface of F . Then,
fixing ε ∈ W and considering a simple face F of P (i.e. one with a simple
tangent cone), the vector

(7) βF := β(ε,ΔF )− ε ∈ V

is the direction vector used to polarize the tangent cone CF (see examples
in Figure 2). To be more explicit, we start by taking the generators αF,j

of the transverse (pointed) cone TF ⊂ V/lin(F ) and then we consider the
vectors

α+
F,j := εF,j αF,j ∈ V/lin(F )

such that
〈
j−1(πF (βF )), α

+
F,j

〉
> 0, where εF,j ∈ {±1}. We then define the

polarized tangent cone C�
F to P at F as the affine cone in V with apex ΔF
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whose image by πF is

πF (C
�
F ) = πF (ΔF ) +

rF∑
j=1

R≥0 α+
F,j ,

where rF = |FF | = codimF .

Remark 3.1. Note that, by definition of W ,
〈(
j−1 ◦ πF

)
(βF ), αF,j

〉
�= 0

for every j = 1, . . . , rF . Indeed, if codimF �= 0 and αF,j ∈ V/lin(F ) is a gen-
erator of TF , then

〈(
j−1 ◦ πF

)
(βF ), αF,j

〉
= 0 would imply that j−1(βF ) ∈

lin(F̃ )⊥ for some other face F̃ of P with dim F̃ = dimF + 1 and

πF (Δ ˜F ) = πF (ΔF ) + R≥0αF,j .

Then, since β(ε,ΔF ) ∈ ΔF , the point ε would be in a hyperplane j-
perpendicular to Δ

˜F , which is impossible by the definition of W (the j-
orthogonal projection of ε onto Δ

˜F would be in ΔF and F is a proper

subface of F̃ ).

4. Weighted characteristic functions

We will now see how to define weighted characteristic functions for P and its
polarized tangent simple cones (at simple faces). First, let us number the
facets of P as F1, . . . , FNP

and let Δi := ΔFi
be the hyperplanes generated

by the Fi. For each i ∈ I := {1, . . . , NP }, one assigns a weight

wi(x) :=

{
qi ∈ C if x ∈ Δi

1 ifx ∈ V \Δi

,

where q1, . . . , qNF
are complex numbers chosen arbitrarily. Then, one defines

the weighted characteristic function of P associated to this choice of weights
as

(8) 1
w

P (x) :=

⎧⎪⎨⎪⎩
NP∏
i=1

wi(x) if x ∈ P

0 otherwise

.

For polarized tangent simple cones at simple faces of P one proceeds as
follows. Let IF ⊂ I be the index set of the collection of hyperplanes generated
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by the facets of CF

IF := {i ∈ I | Fi ∈ FF }.

For each i ∈ IF , let Hi be the halfspace that contains C
�
F and has boundary

Δi. Considering H+
i := Hi \Δi one sets

(9) q�i =

{
qi if H+

i ∩ P �= ∅
1− qi if H+

i ∩ P = ∅
and w�

i(x) =

{
q�i if x ∈ Δi

1 if x ∈ V \Δi

.

One then defines the weighted characteristic function of the simple cone as

(10) 1
w

C�
F

(x) :=

⎧⎨⎩
∏
i∈IF

w�
i(x), if x ∈ C�

F

0, otherwise

.

(cf. [1, 3] for details and Figure 2 for examples). The usual characteristic
functions can be obtained from the weighted ones by making all the qi equal
to 1, in which case one has 1

w

C�
F

(x) = 0 whenever x is in a facet of C�
F lying

in the boundary of one of the half spaces H+
i with H+

i ∩ P = ∅.

5. Decomposition formulas

We now present the polytope decompositions introduced in [3] for simple
polytopes. For each ε ∈ W , the direction vectors βF defined in (7) are used
to polarize the tangent cones at the corresponding faces of P . Note that the
decomposition formula in (11) only takes into account the polarized tangent
cones at faces F for which the j-orthogonal projection of ε onto F is in P .

Theorem 5.1. Let P ⊂ V be a convex full-dimensional simple polytope and
let ε ∈ W . Then,

(11) 1
w

P =
∑
F⊆P

(−1)mF1P (β(ε,ΔF )) 1
w

C�
F

,

where the sum is taken over the faces F of P , where ΔF is the affine space
generated by the face F , where C�

F is the polarized tangent cone at F with
respect to the direction vector βF = β(ε,ΔF )− ε (with β(ε,ΔF ) being the
orthogonal projection of ε onto ΔF ), and where mF is the number of gener-
ators of the transverse cone TF that are flipped by polarization.
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Figure 2: Polytope decompositions for two different values of ε.

If the tangent cones to P at the different faces F are polarized using the
vectors −βF instead of βF , one obtains the following polytope decomposi-
tions:

(12) 1
w

P =
∑
F⊆P

(−1)mF+dimF1P (β(ε,ΔF )) 1
w

C�
F

.

We show in [3] that a region R ⊂ W can be chosen such that, if ε ∈ R, the
resulting decomposition in (12) becomes the Lawrence-Varchenko formula.
Moreover, when

A := int

((⋂
v

(
v + j−1 (Nv)

))
∩ P

)
�= ∅,

where, for a given vertex v, Nv is the dual cone to Cv, we can take ε ∈ A
and obtain the Brianchon-Gram formula (1) from (12).

6. Non-simple polytopes

In this section we generalize the polytope decompositions presented in the
previous section to any convex polytope P . Recall that a face F of P is
simple when the number of facets of P containing F equals the codimension
of F . We will call a face F of P non-simple when the number of facets of P
containing F is greater than the codimension of F .

Let us label the facets of P as F1, . . . , FNP
, denote by ηi ∈ V ∗ the nor-

malized inner normal vectors ηFi
to Fi, and write λi := λFi

(here ηFi
and

λFi
are as in (6)). Then P is the intersection of NP half-spaces

P =
⋂

1≤i≤NP

{x ∈ V | 〈ηi,x〉+ λi ≥ 0}.
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Let F be a non-simple face of P and consider the corresponding set of
facets FF . The cone NF , generated by the normal vectors ηi to Fi ∈ FF , is
the dual cone to CF . Let us choose a regular triangulation TF of this cone;
i.e., a face-to-face subdivision of NF into simplicial cones σ1(F ), . . . , σLF

(F )
for which there exists a convex piecewise linear function on NF with the
σi(F )s as domains of linearity (cf. [5, 15] for details). Note that LF = rF −
(codimF − 1), where rF := |FF | = rCF

F .
The tangent cone CF can be written as the intersection of the simple

cones Cσi(F ) with apex ΔF ,

CF =

LF⋂
i=1

Cσi(F ),

where

Cσi(F ) := {x ∈ V | 〈ηj ,x〉+ λj ≥ 0, j ∈ IF,i},
with

(13) IF,i := {j ∈ {1, . . . , NP } | Fj ∈ FF and ηj ∈ σi(F )}

(cf. Figure 3 for an example with dimF = 0).

Triangulation
“
〈η1, η3, η4〉︸ ︷︷ ︸

σ1

, 〈η1, η2, η3〉︸ ︷︷ ︸
σ2

)

A = (−1,−1, 1)
B = (1,−1, 1)
C = (1, 1, 1)
D = (−1, 1, 1)
v = (0, 0, 0)

Facets Normal
vectors

Weights

AvB η1 q1
BvC η2 q2
AvB η3 q3
DvA η4 q4
ABCD η5 q5

Cσ
1

Cσ
2

� �

��

�

A B

CD

v

Figure 3: Example of a triangulation and the associated cones Cσi
(v).

Choosing ε ∈ V \ ∂P so that the j-orthogonal projection β(ε,ΔF ) of ε
onto ΔF is not in any affine space generated by a proper subface of F , we can
polarize the simple cones Cσi(F ) as in Section 3. Let mF,i be the number of
edges of the transverse cone of Cσi(F ) at F that are flipped in the polarizing
process. Then, for each j ∈ IF,i, we consider the half-space Hj that contains

C�
σi(F ) and has boundary Δj := ΔFj

. We set H�
j := Hj \Δj and define q�j
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and w�
j as in (9). The weighted characteristic function of the simple cone

C�
σi(F ) is then

(14) 1
w

C�
σi(F )

(x) :=

⎧⎪⎨⎪⎩
∏

j∈IF,i

w�
j(x) if x ∈ C�

σi(F )

0 otherwise

.

Finally we define the functions

(15) 1
w

TF
:=

LF∑
i=1

(−1)mF,i1
w

C�
σi(F )

.

Remark 6.1. For a simple face F the tangent cone CF is already a simple
cone. Hence CF = Cσ1(F ), which allows us to write (15) as

1
w

TF
= (−1)mF,11

w

C�
σ1(F )

= (−1)mF1
w

C�
F

.

Denoting by SF the union of the affine spaces generated by non-simple
faces of P that contain F , we will see later that the values of the function
1
w

TF
on V \ SF do not depend on the triangulation TF . For this reason, we

will simply denote the function 1
w

TF
by 1

w

F .
However, before proving the last assertion, we have to show that our

decompositions hold for non-simple polytopes using compatible choices of
regular triangulations for the different dual cones to the tangent cones at
non-simple faces of P . To do this, we proceed as follows. First, we take P ∗,
a polar dual polytope of P , and consider a regular triangulation T of P ∗ (cf.
Figure 4). Given a non-simple face F ∈ F(k), consider the corresponding
(d− (k + 1))-face of P ∗, here denoted by F ∗. The restriction of the triangu-
lation T to F ∗ decomposes this face into (d− (k + 1))-simplices (each with
d− k vertices). Numbering the vertices of P ∗ as v1, . . . , vNP

and the cor-
responding facets of P by F1, . . . , FNP

, let IF ∗ ⊂ {1, . . . , NP } be the index
set of the vertices of F ∗ (note that |IF ∗ | = rF ). Then T defines a subdivi-
sion of IF ∗ into sets IF,1, . . . , IF,LF

with LF := rF − codimF + 1. Since the
vertices of P ∗ correspond to facets of P and, in particular, the vertices of
F ∗ correspond to the facets of P that contain F , this subdivision, in turn,
gives us a regular triangulation TF of NF , the dual cone to CF . Indeed, the
triangulation of NF is given by

TF = {σ1(F ), . . . , σLF
(F )},
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where each σi(F ) is the simple cone generated by the normal vectors ηj to
the facets Fj of P with j ∈ IF,i (all of which contain F ).

Facets of P ∗

8415 := a∗

5126 := b∗

6237 := c∗

3487 := d∗

1432 := e∗

8567 := f∗

Triangulation of faces of P ∗

�

�

�

�

4

1

2

3

�

�

�

�

8

5

6

7

Triangulations Ti of normal

cones at vertices of P

T
a
= {〈η

1
, η

4
, η

5
〉, 〈η

4
, η

5
, η

8
〉}

T
b
= {〈η

1
, η

2
, η

5
〉, 〈η

2
, η

5
, η

6
〉}

T
c
= {〈η

2
, η

3
, η

7
〉, 〈η

2
, η

6
, η

7
〉}

T
d
= {〈η

3
, η

4
, η

7
〉, 〈η

4
, η

7
, η

8
〉}

T
e
= {〈η

1
, η

2
, η

4
〉, 〈η

2
, η

3
, η

4
〉}

T
f
= {〈η

5
, η

6
, η

7
〉, 〈η

5
, η

7
, η

8
〉}

Figure 4: A regular triangulation of the dual polytope of the octahedron.

Finally, before stating and proving our result for these particular choices
of triangulations, one has to establish the region W ⊂ V where the initial
point ε of the polarizing vectors for the different tangent cones can be chosen
from. For that, consider the set of affine spaces

B :=

{⋂
i∈I

Δi | I ⊂ {1, . . . , NP }
}

formed by all possible intersections of hyperplanes generated by facets of P .
To ensure that the polarizing vectors (j−1 ◦ πF )(βF ), with βF := β(ε,ΔF )−
ε, are not j-perpendicular to any generator of the transverse cone of C�

σi(F )

at F , one takes ε ∈ W , where W is now the set of points ε in V \ ∂P such
that, for each Δ ∈ B, the j-orthogonal projection β(ε,Δ) of ε onto Δ is not
in any proper affine subspace of Δ contained in B.

Using the functions defined in (10) and (15), a regular triangulation T
of the polar dual polytope P ∗, and the region W defined above, one obtains
the following proposition.

Proposition 6.2. Let P ⊂ V be any convex polytope and let S be the union
of the affine spaces generated by non-simple faces of P . Moreover, let T
be a regular triangulation of the polar dual polytope P ∗, and consider its
restrictions to regular triangulations TF of the dual cones to the tangent
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cones of P at non-simple faces F . Then, on V \ S and for ε ∈ W , we have

(16) 1
w

P =
∑
F⊆P

1P (β(ε,ΔF ))1
w

TF
on V \ S,

where the sum is taken over the faces F of P .
Moreover, in the particular case where all the weights qi (i = 1, . . . , NP )

are equal to some fixed value q ∈ C, the sum on the RHS of (16), at x ∈ S,
is equal to{

qcodimFx − (rx − codimFx) q
codimFx−1(1− q) if x ∈ P

0 otherwise
,

where Fx is the face of P such that x ∈ int (Fx) and rx = |FFx | is the number
of facets of P that contain x.

In particular, if q = 1, we obtain

1P =
∑
F⊆P

1P (β(ε,ΔF ))1TF

for every point ∈ V , where 1P is the (unweighted) characteristic function
of P .

Remark 6.3. Note that, if P is a simple polytope, we get back the decom-
positions in Theorem 5.1 (cf. Remark 6.1).

Remark 6.4. As it will become clear in the proof below, the equality
in (16) still holds for points x ∈ S ∩ P c (where we have both sides equal to
zero). However, the values of the functions 1

w

TF
at these points will not, in

general, be independent of the triangulation.

Proof. As in the proof of Theorem 5.1 presented in [3], we show this result in
two steps. First we show that the RHS of (16) is independent of the choice of
ε. Then, for each x ∈ V \ S, we find an ε for which (16) holds. We choose this
order because, with the first step, we will simultaneously be proving that
the sum on the RHS of the weighted Lawrence-Varchenko decomposition
for non-simple polytopes is independent of the choice of polarizing vector
(since these are particular cases of (16)), which will be needed in the proof
of the second step. The fact that the Lawrence-Varchenko decomposition
for non-simple polytopes is a particular case of (16) is explained in detail in
Remark 6.7.
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Step 1: The complement W c of W is a finite family of walls of codimen-
sion 1, W c = E1 ∪ · · · ∪ EK ∪ F(d− 1). Let ε1 and ε2 be in two contiguous
regions and let E be its common wall. Let εt be any path in V from ε1 to ε2
that crosses E once and does not cross any other wall. Given a proper face
F of P and a generator αF,k ∈ V/lin(F ) of the transverse cone to one of the
cones Cσi(F ) defined by the corresponding triangulation TF , the sign of

(17)
〈
(j−1 ◦ πF ) (β(εt,ΔF )− εt), αF,k

〉
changes as εt crosses the wall E, exactly when ΔF ∩ ∂P is contained in E and
αF,k is j-perpendicular to πF (E). Hence, if dimF �= d− 1, this sign changes
if and only if ΔF is contained in (exactly) one affine space Δ

˜F perpendicular

to E with F̃ a face of Cσi(F ) with dim F̃ = dimF + 1. Indeed, Δ
˜F is such

that

πF (Δ ˜F ) = πF (ΔF ) + RαF,k

and unicity follows from dimensional reasons. On the other hand, if dimF =
d− 1, the sign of (17) changes if and only if ΔF ∩ P ⊆ E. In this case, we
define F̃ to be P , and so dim F̃ = dimF + 1 and ΔF is contained in Δ

˜F = V .

In all cases, if F is a simple face of P , then F̃ is also a simple face of P
and so, from the proof of Theorem 5.1 presented in [3], one knows that the
differences between the contributions of F to the RHS of (16) before and
after εt crosses the wall, and those of F̃ , sum to zero.

Let us then consider the case where F is a non-simple face of P and let
us assume, without loss of generality, that the sign of (17) flips from negative
to positive as εt crosses the wall E. Let TF = {σ1(F ), . . . , σLF

(F )} be the
restriction of T to NF (with LF = rF − (codimF − 1)) giving the simple

cones Cσi(F ). If the sign of
〈
(j−1 ◦ πF )(β(εt,ΔF )− εt), αF,k

〉
changes as εt

crosses a wall then(
1
w

TF

)1
:=
∑
i

(−1)(mF,i)11
w

(C�
σi(F ))

1

=
∑

i s.t.±αF,k is not
a gen. of the transverse

cone of (C�
σi(F ))

1

(−1)(mF,i)11
w

(C�
σi(F ))

1

+
∑

i s.t.±αF,k is
a gen. of the transverse

cone of(C�
σi(F ))

1

(−1)(mF,i)11
w

(C�
σi(F ))

1
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and (
1
w

TF

)2
:=
∑
i

(−1)(mF,i)21
w

(C�
σi(F ))

2

=
∑

i s.t.±αF,k is not
a gen. of the transverse

cone of (C�
σi(F ))

2

(−1)(mF,i)11
w

(C�
σi(F ))

2

−
∑

i s.t.±αF,k is
a gen. of the transverse

cone of (C�
σi(F ))

2

(−1)(mF,i)11
w

(C�
σi(F ))

2 ,

where
(
C�

σi(F )

)1
,
(
C�

σi(F )

)2
are the polarized cones before and after the

crossing.
Now one has to consider two cases. If ±αF,k is a generator of the trans-

verse cone TF along F (see Figure 5 for the case where dim F = 0), let
Ik ⊂ {1, . . . , LF } be the index set of the cones C�

σi(F ) whose transverse cones
have ±αF,k as a generator. The difference between the contributions of F to
the RHS of (16) before and after εt crosses the wall is then∑

i∈Ik
(−1)(mF,i)1

(
1
w

(C�
σi(F ))

1 + 1
w

(C�
σi(F ))

2

)
= ±1

w

C�

˜F

,

where F̃ is a common face of all C�
σi(F ) with i ∈ Ik (and of P ) such that

πF (F̃ ) = πF (ΔF ) + RαF,k,

and whereC�
˜F
is the polarized tangent cone to P at F̃ . (Note that |Ik| = r

˜F −
(codim F̃ − 1) since, if F̃ is non-simple, by compatibility of the triangulations
used for F and F̃ , the face F̃ has to be contained in exactly r

˜F − (codim F̃ −
1) cones C�

σi(F ).) On the other hand, β(ε1,Δ ˜F ) ∈ P , while β(ε2,Δ ˜F ) /∈ P

and so the corresponding contributions of F̃ to the right hand side of (16)
are

∓1
w

C�

˜F

and 0.

The ∓ sign in ∓1
w

C�

˜F

follows from the fact that the vectors

vi := πF

(
β
(
β(εi,Δ ˜F ),ΔF

) )
− πF

(
β
(
εi,Δ ˜F

) )
(i = 1, 2)
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are of the form vi = riαF,k, with ri ∈ R satisfying r1 < 0 and r2 > 0, since

〈
j−1(vi), αF,k

〉
=
〈
j−1(εi)− j−1

(
β(εi,Δ ˜F )

)
, αF,k

〉
+
〈
j−1 (β(εi,ΔF ))− j−1(εi), αF,k

〉
=
〈
j−1 (β(εi,ΔF ))− j−1(εi), αF,k

〉
.

Consequently, the differences in the contributions of F to the RHS of (16)
before and after εt crosses the wall, and those of F̃ , sum to zero (cf. Figure 5).

Cones Cσi

polarized

with respect to

v − ε1

� �

��

�

A B

CD

v

�

ε1

ε1 = (1 + ε, 1 + ε, ε)

+

+

C�
σ
1

C�
σ
2

Cones Cσi

polarized

with respect to

v − ε2

� �

� �

�

A B

CD

v

�

ε2

ε2 = (1 + ε, 1− ε, ε)

+

C�
σ
1

C�
σ
2

0 < ε << 1

Difference

of

contributions

� �

� �

�

A B

CD

v
+

C�

ṽD

Figure 5: Polarized cones when the generator is an edge vector.

If, however, ±αF,k is not a generator of the transverse cone along F
(cf. Figure 6) then there exist exactly two simple cones, say CσiA

(F ) and
CσiB

(F ) (with σiA(F ), σiB(F ) in TF ), whose transverse cones have ±αF,k as
generator. Moreover, if for a given ε, the vector ±αF,k is a generator of the
transverse cone ofCσiA

(F ), then∓αF,k is a generator of the transverse cone of
CσiB

(F ). Hence, (−1)mF,iA = −(−1)mF,iB for both ε1 and ε2. Consequently,
the difference in the contributions of F to (16) before and after εt crosses
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the wall is ∑
i s.t.±αF,k is

a gen. of the transverse
cone ofCσi(F )

(−1)(mF,i)1
(
1
w

(C�
σi(F ))

1 + 1
w

(C�
σi(F ))

2

)

= (−1)(mF,iA
)1(1

w

(C�
σiA

(F ))
1 + 1

w

(C�
σiA

(F ))
2)

+ (−1)(mF,iB
)1(1

w

(C�
σiB

(F ))
1 + 1

w

(C�
σiB

(F ))
2)

= (−1)(mF,iA
)1(1

w

C�

˜F

− 1
w

C�

˜F

) = 0,

where F̃ is the face of C�
σiA

(F ) (or C�
σiB

(F )) with dim F̃ = dimF + 1, such

that

πF (F̃ ) = πF (ΔF ) + RαF,k,

and where C�
˜F
is the polarized tangent cone to CσiA

(F ) (or CσiB
(F )) at F̃

(cf. Figure 6). Note that the union of the cones (C�
σiA

(F ))
1 and (C�

σiA
(F ))

2

and the union of the cones (C�
σiB

(F ))
1 and (C�

σiB
(F ))

2 are both equal to C�
˜F
.

Cones Cσi

polarized

with respect to

v − ε1

� �

��

�

A B

CD

v

+

+

C�
σ1

C�
σ2

�ε1

ε1 = (−ε,−ε,−3ε)

Cones Cσi

polarized

with respect to

v − ε2

� �

��

�

A B

CD

v

+

+

C�
σ1

C�
σ2

�ε2

ε2 = (ε,−ε,−3ε)

+

Difference of contributions

0 < ε << 1

�

v

+

C�

ṽhor

�

v

C�

ṽhor

Figure 6: Polarized cones when the generator is not an edge vector.

Finally, we note that, if for a given face F̃ of P , the value of 1P
(
β(εt,Δ ˜F )

)
changes when crossing the wall E, the intersection of Δ

˜F with E contains
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ΔF ∩ P for (exactly) one face F of P with dimF = dim F̃ − 1, and the result
then follows.

Step 2: First we take an ε ∈ W for which β(ε,ΔF ) /∈ P , whenever F is
a face with dimF > 0; that is, we take

(18) ε ∈ W̃ :=
⋂

F face ofP s.t.
dimF>0

{x ∈ V | β(x,ΔF ) ∩ F = ∅}.

Then the equality in (16) becomes

(19) 1
w

P (x) =
∑

v vertex of P

1
w

Tv
(x).

To prove (19) we choose a vector ξ ∈ V ∗ for which (19) becomes a weighted
version of the Lawrence-Varchenko decomposition for non-simple polytopes,
where the cones involved are polarized with respect to ξ. The existence of
such a polarizing vector can be shown as in the proof of Theorem 5.1 in
[3]. Note that this Lawrence-Varchenko decomposition is a weighted version
of the one shown in [9]. Nevertheless, for x ∈ V \ S, it follows easily from
Lemma 6.5 below, once we know that the sum

(20)
∑

v vertex of P

1
w

Tv
,

where all the cones involved are polarized with respect to a fixed vector ξ,
is independent of the choice of polarizing vector (which we know by Step 1
as explained in Remark 6.7). The proof goes as follows.

For x ∈ P \ S we consider the (simple) face Fx of P such that x ∈ intFx

and we pick a vertex v0 in this face. If v0 is a simple vertex, then we
proceed as in [3, 13] and we are done. If, however, v0 is a non-simple vertex,
we consider the cones Cσ1(v0), . . . ,CσLv0

(v0) (with vertex v0) defined by the

triangulation Tv0
, and we take i0 ∈ {1, . . . , Lv0

} for which Fx is contained
in a face of Cσi0

(v0) of the same dimension. Since the sum in (20) does

not depend on the polarizing vector, we take a vector ξ̃ ∈ V ∗ for which
C�

v0
= Cv0

and C�
σi0

(v0)
= Cσi0 (v0) (cf. Lemma 6.5 for the existence of this

vector). Note that for every other vertex v �= v0 of P , we have C�
v �= Cv.
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Then, at x, the RHS of (19) is equal to

∑
vvertex
of P

1
w

Tv
(x) = 1

w

Tv0
,v0

(x) =

Lv0∑
i=1

(−1)mi,v01
w

C�
σi(v0)

(x)

= 1
w

Cσi0
(v0)

(x) =
∏

j∈IFx

qj = 1
w

P (x).

If x ∈ P c \ S so that the LHS of (19) is zero, we take a vertex v1 of
P that minimizes the distance to x. Again, if v1 is a simple vertex, we
proceed as in [3, 13] and we are done. If v1 is a non-simple vertex, let
Cσ1(v1), . . . ,CσLv1

(v1) be the simple cones (with vertex v1) defined by the

triangulation Tv1
. Since x /∈ Cv1

there exists an i1 ∈ {1, . . . , Lv1
} such that

x /∈ Cσi1 (v1) (because Cv1
is equal to the intersection of the cones Cσi(v1)).

Choosing a polarizing vector ξ̃ for which C�
v1

= Cv1
and C�

σi1
(v1)

= Cσi1 (v1)

(cf. Lemma 6.5), the RHS of (19) becomes equal to zero (since none of the
polarized cones defined by the triangulations Tv for the different vertices
v of P contains x) and the result follows. (Note that all cones C�

σi(v1)
, for

i �= i1 are contained in C�
σi1

(v1)
.)

Let us now see what happens when all the weights qi are equal to some
fixed value q ∈ C and x ∈ S. Assume first that x ∈ S ∩ P and let Fx be the
(non-simple) face of P such that x ∈ intF . Let v0 be a vertex of P in Fx and
consider a cone Cσi0

(v0) defined by the triangulation Tv0
, with Fx contained

in a face of Cσi0 (v0) of the same dimension. Using independence on the

polarizing vector, we can take ξ̃ such thatC�
v0

= Cv0
andC�

σi0
(v0)

= Cσi0 (v0)

(cf. Lemma 6.5). Then, at x, the RHS of (19) is equal to

(21)
∑

v vertex of P

1
w

Tv
(x) = 1

w

Tv0
(x) =

Lv0∑
i=1

(−1)mi,v01
w

C�
σi(v0)

(x).

For each i �= i0, let Fi be the facet of the polarized coneC�
σi(v0)

that inter-

sects Cv0
∩ int C�

σi0
(v0)

given by Lemma 6.5. Then, since the cone C�
σi0

(v0)

is simple, Fx must also be contained in the boundary of (rFx
− codimFx)

other cones C�
σi(v0)

with i �= i0 and so the sum in (21) equals

qcodimFx − (rFx
− codimFx) q

codimFx−1(1− q).

Indeed, Fx is an intersection ofm := codimFx facets ofC�
σi0

(v0)
(with weight

q) and, for each C�
σi(v0)

with i �= i0 that it intersects, Fx is the intersection of
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the facet Fi (with weight (1− q)) with m− 1 other facets of C�
σi(v0)

(these

cones are simple).
If x ∈ S ∩ P c we proceed similarly. �
Finally, we state and prove the technical Lemma used in the proof above.

Lemma 6.5. Let v be a vertex of a convex polytope P ⊂ V and let

Tv = {σ1(v), . . . , σLv
(v)}

be any regular triangulation of the inner normal cone Nv. Let ξ ∈ V ∗ be
a polarizing vector such that Cv = C�

v. Then, there exists exactly one i0 ∈
{1, . . . , Lv} such that

C�
σi0

(v) = Cσi0
(v)

and each of the other cones C�
σi(v)

defined by Tv intersects Cv ∩ int (C�
σi0

(v))

in (exactly) one facet Fi of P with Fi �= Fj if i �= j.
Moreover, for every i ∈ {1, . . . , Lv} there exists a polarizing vector ξ ∈

V ∗ for which Cv = C�
v and C�

σi(v)
= Cσi(v).

Proof. Let 1Tv,v be the (unweighted) function obtained from 1
w

Tv,v
by making

all the weights qi equal to 1. Then,

1Tv
=

Lv∑
i=1

(−1)mv,i1C�
σi(v)

(note that we know from [9] that 1Tv,v does not depend on the choice of
a regular triangulation of the normal cone to P at v). For each facet F of
the polarized cones C�

σi(v)
, let HF,i be the halfspace bounded by ΔF that

contains C�
σi(v)

, and consider H+
F,i := HF,i \ΔF . Then, by [9], since we are

using a polarizing vector for which Cv
� = Cv, we have

1 = 1P (v) = 1Tv
(v) =

Lv∑
i=1

(−1)mv,i1C�
σi(v)

(v) =
∑

i s.t.H+
F,i∩P 
=∅

for all facetsF ofC�
σi(v)

1

= #
{
i ∈ {1, . . . , Lv} | H+

F,i ∩ P �= ∅ for all facets of C�
σi(v)

}
.

Indeed, 1C�
σi(v)

(v) = 1 if, for all facets F of C�
σi(v)

, we have H+
F,i ∩ P �= ∅,

and is zero otherwise. We conclude then that there must exist exactly one
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cone C�
σi0

(v) such that H+
F,i0

∩ P �= ∅ for all facets F of C�
σi0

(v); i.e., such

that C�
σi0 (v)

= Cσi0
(v). Hence all the other polarized cones C�

σi(v)
with i �= i0

have at least one facet F for which

H+
F,i ∩ P = ∅

and so they do not intersect the interior of P . By convexity, each of these
polarized cones C�

σi(v)
intersects Cv ∩ intC�

σi0
(v) in at most one facet of

Cv. Moreover, Cv has rv facets and d of these are contained in facets of
C�

σi0
(v). Since every triangulation of Nv generates rv − (d− 1) simple cones

with vertex v, each cone C�
σi(v)

, with i �= i0, intersects Cv ∩ int (C�
σi0 (v)

) in

a different facet Fi of Cv. For all other facets F of C�
σi(v)

with F �= Fi we
have by convexity that

H+
F,i ∩ P �= ∅

(cf. Figure 7). Note that all C�
σi(v)

with i �= i0 are contained in C�
σi0

(v).

To show that for every i ∈ {1, . . . , Lv} there exists a polarizing vector
for which Cv = C�

v and C�
σi(v)

= Cσi(v), we consider a half-space H with

v ∈ ∂H and Cσi(v) ⊂ H (and consequently P ⊂ H since all cones Cσi(v)

contain P ), and take any inward pointing vector ξ ∈ V ∗ orthogonal to the
bounding hyperplane of H. Then 〈ξ,v〉 ≤ 〈ξ,y〉 for every y ∈ Cσi(v) (and

hence for every y ∈ Cv), implying that C�
σi(v)

= Cσi(v) and C�
v = Cv. �

We will now show that the functions 1wTF
do not depend on the choice of

a regular triangulation of the normal cone at F . For that we first consider
the case where F is a vertex v.

Proposition 6.6. Let P ⊂ V be a convex polytope and let ε ∈ W . For a
vertex v of P , let Sv be the union of the affine spaces generated by non-
simple faces of P that contain v. Then, the values of the weighted functions
1
w

Tv
on V \ Sv, obtained from a regular triangulation Tv of the normal cone

to P at v, do not depend on the choice of triangulation.
Moreover, in the particular case where all the weights qi (i = 1, . . . , NP )

are equal, the values of 1
w

Tv
on the whole space V do not depend on the choice

of the regular triangulation.

Proof. Let v0 be a vertex of P and consider ξ := j−1(βv0
) = j−1(v0 − ε).

Then take ε′ ∈ W such that the polytope decomposition in Proposition 6.2
with respect to ε′ is the Lawrence-Varchenko decomposition with respect
to ξ (cf. Remark 6.7). Let T 1

v0
and T 2

v0
be two regular triangulations of the
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Facets Normal
vectors

Weights

1v2 η1 q1
2v3 η2 q2
3v4 η3 q3
4v5 η4 q4
5v1 η5 q5
12345 η6 q6

Triangulation T1

〈η1, η2, η3〉 = σ1

〈η1, η3, η4〉 = σ2

〈η1, η4, η5〉 = σ3

�

�

�

�

�

�

1

2

3

4

5

6

7

v

Cσ1

Cσ2

Cσ3

�

�

�

�

�

�

1

2

3

4

5

6

7

v

C�
σ1

C�
σ2

C�
σ3

ξ polarizing vector

Triangulation T2

〈η1, η2, η5〉 = σ4

〈η2, η3, η4〉 = σ5

〈η2, η4, η5〉 = σ6

�

�

�

�

�

�

1

2

3

4

5

8

9

v

Cσ6

Cσ5

Cσ4

�

�

�

�

�

�

1

2

3

4

5

8

9

v

C�
σ6

C�
σ5

C�
σ4

Figure 7: An Illustration of Lemma 6.5.

normal cone Nv0
and let us choose two regular triangulations T 1, T 2 of the

polar dual polytope P ∗ that restrict to T 1
v0

and T 2
v0

on Nv0
, respectively.

Then, for x ∈ V \ S, it follows from Proposition 6.2 that

1
w

P (x) =
∑

v vertex ofP

1
w

T 1
v ,v(x) =

∑
v vertex ofP

1
w

T 2
v ,v(x),

where T 1
v and T 2

v are the restrictions of T 1 and T 2 to the different normal
cones Nv. Just like in [9] the functions 1

w

T i
v ,v

, i = 1, 2, are both conic and

positive, meaning that for every w ∈ V \ {0}, 1w

T i
v
(v + λw) is constant in

λ > 0, and 1
w

T i
v
(v +w) = 0 if 〈ξ,w〉 < 0. Hence, like in [9], we conclude that

1
w

T 1
v ,v = 1

w

T 2
v ,v for every vertex v of P and so, in particular, 1

w

T 1
v0

,v0
= 1

w

T 2
v0

,v0
.

To see this, let us first order the vertices v1, . . . ,vk of P in increasing order
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of the value 〈ξ,vj〉 (just sweep V by hyperplanes 〈ξ,x〉 = c). For x ∈ V such
that 〈ξ,x〉 < 〈ξ,v1〉, we trivially have

1
w

T 1
vj

,vj
(x) = 1

w

T 2
vj

,vj
(x) = 0, for every j = 1, . . . , k,

by positivity. For x ∈ V \ Sv1
such that 〈ξ,x〉 ∈ [〈ξ,v1〉, 〈ξ,v2〉[ (x is between

two hyperplanes 〈ξ,x〉 = c with c = 〈ξ,v1〉 and c = 〈ξ,v2〉), we have

1
w

T 1
v1

,v1
(x) =

k∑
j=1

1
w

T 1
vj

,vj
(x) (since, by positivity,1

w

T 1
vj

,vj
(x) = 0 for all j > 1)

= 1
w

P (x) =

k∑
j=1

1
w

T 2
vj

,vj
(x) = 1

w

T 2
v1

,v1
(x) (again by positivity),

and 1
w

T 1
vj

(x) = 1
w

T 2
vj

,v1
(x) = 0 for every j ≥ 2 by positivity. We now proceed

by induction: let x ∈ V \ S such that 〈ξ,x〉 ∈ [〈ξ,vi〉, 〈ξ,vi+1〉[, and assume
that 1

w

T 1
vj

(y) = 1
w

T 2
vj

(y) for every y ∈ [〈ξ,vj〉, 〈ξ,vj+1〉[ with j < i,

1
w

T 1
vi

(x) =

k∑
j=i

1
w

T 1
vj

(x) (since, by positivity, 1
w

T 1
vj

(x) = 0 for j > i)

= 1
w

P (x)−
i−1∑
j=1

1
w

T 1
vj

(x)

= 1
w

P (x)−
i−1∑
j=1

1
w

T 1
vj

(xj) (for some xj s.t. 〈ξ,xj〉 ∈ [〈ξ,vj〉, 〈ξ,vj+1〉[)

= 1
w

P (x)−
i−1∑
j=1

1
w

T 2
vj

(xj) = 1
w

P (x)−
i−1∑
j=1

1
w

T 2
vj

(x) =

k∑
j=i

1
w

T 2
vj

(x)

= 1
w

T 2
vi

(x) (again by positivity),

where the fact that the functions involved are conic allowed us to use xj

instead of x. We conclude that

• 1
w

T 1
vi

(x) = 1
w

T 2
vi

(x);

• 1
w

T 1
vj

(x) = 1
w

T 2
vj

(x) for j > i, by positivity;

• 1
w

T 1
vj

(x)=1
w

T 1
vj

(xj)=1
w

T 2
vj

(xj)=1
w

T 2
vj

(x) for some xj∈ [〈ξ,vj〉, 〈ξ,vj+1〉[
with j < i, by the fact that the functions involved are conic.
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Hence, for every x ∈ V \ S and every vertex v of P , we have 1
w

T 1
v
(x) = 1

w

T 2
v
(x)

and, in particular, 1
w

T 1
v0

,v0
= 1

w

T 2
v0

,v0
on V \ S and consequently on V \ Sv0

.

We proceed similarly for the case where all the weights qi are equal to
some fixed value q ∈ C, taking now x ∈ V and the function f : V → C given
by

f(x) =

⎧⎪⎨⎪⎩
1
w

P (x) if x ∈ P \ S
qcodimFx − (rFx

− codimFx) q
codimFx−1(1− q) if x ∈ P ∩ S

0 otherwise

,

instead of 1
w

P . �

Remark 6.7. In the above proofs we have used several times the fact that,
given a polarizing vector ξ, we can always take ε > 0 for which the decom-
position in Proposition 6.2 becomes the Lawrence-Varchenko decomposition
with respect to ξ. Let us see how this works. For every polarization there
exists exactly one vertex v0 for which C�

v0
= Cv0

(namely the vertex v0 for
which 〈ξ,v〉 is minimal). Then, considering the outward dual (or normal
cone) N−

v0
to Cv0

(i.e. the pointed cone generated by the outward normal

vectors to the facets of P that contain v0) and the set W̃ defined in (18),

one can take λ > 0 such that −λ ξ ∈ N−
v0
, while v0 − λj(ξ) ∈ W̃ and

λ > max
vertex of P
i=1,...,Lv

j=1,...,d

{〈
j−1(v0 − v), αv,i,j

〉
〈ξ, αv,i,j〉

}
,

where the vectors αv,i,j , for i = 1, . . . , Lv and j = 1, . . . , d, are the generators
of the cones Cσi(v) given by a regular triangulation (the existence of λ is
guaranteed by the fact that ξ is not perpendicular to any edge vector of the
cones involved). Then, taking ε := v0 − λj(ξ) and βv := v − ε, one easily
sees that

〈ξ, αv,i,j〉
〈
j−1(βv), αv,i,j

〉
=〈ξ, αv,i,j〉2 λ− 〈ξ, αv,i,j〉

〈
j−1(v0 − v), αv,i,j

〉
>0

for every i = 1, . . . , Lv and j = 1, . . . , d, and so, given any vertex v, polariz-
ing the conesCσi(v) with respect to the vector obtained from βv is equivalent
to polarizing them with respect to ξ.

Since Proposition 6.6 holds for any convex polytope, we conclude that,
given any solid pointed non-simple cone C contained in a subspace L ⊂ V ,
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any x ∈ L \ Sv (where Sv is the union of the affine spaces of L generated by
non-simple faces of C), and any assignment of weights to the hyperplanes
generated by the facets ofC, the value of the weighted characteristic function
1
w

Tv
(x) of the polarized cone C� (with respect to some polarizing vector),

obtained from a regular triangulation of the inner normal cone to the vertex
v of C, does not depend on the choice of the triangulation.

Going back to V and taking any non-simple face F of P , we note that
for any x ∈ V \ SF ,

1
w

TF
(x) =

LF∑
i=1

(−1)mF,i1
w

C�
σi(F )

(x) =

LF∑
i=1

(−1)mF,i1
w

T
C

�
σi(F )

(πF (x)),

where TC�
σi(F )

is the transverse cone of C�
σi(F ) along ΔF ; i.e., a full-

dimensional pointed cone in V/lin(F ) given by the image πF (C
�
σi(F )) of the

affine cone C�
σi(F ). Consequently, 1

w

TF
(x) is equal to the value of the char-

acteristic function of the polarized transverse (pointed) cone along F at the
point πF (x), for some triangulation of NπF (ΔF ) induced by a triangulation
of NF (note that we can naturally identify NπF (ΔF ) to NF ). Since we know
that the values of this last function on (V/lin(F )) \ SπF (ΔF ) are independent
of the choice of a regular triangulation, so are the values of 1

w

TF
on V \ SF ,

where SF is the union of the affine spaces generated by the non-simple faces
of P that contain F . Then, we obtain the following result.

Proposition 6.8. Let F be a non-simple face of a convex polytope P . The
values of the function 1

w

TF
on V \ SF are independent of the choice of a

regular triangulation TF . Moreover, in the particular case where the weights
qi are equal for all i = 1, . . . , NP , the values of 1

w

TF
on the whole space V do

not depend on the choice of a regular triangulation.

After this, since we now know that these functions are independent of
the regular triangulation chosen, we will denote them simply by 1

w

F and
finally obtain our main result (Theorem 1.1).

Remark 6.9. Choosing a regular triangulation of the dual polytope P ∗

and obtaining, by restriction, regular triangulations of the dual cones NF

at non-simple faces F , corresponds to performing a simple deformation of
the polytope obtained by parallel moving some of its facets. Hence, an alter-
native proof for the above decomposition is obtained by carefully choosing
these small perturbations of P and then applying Theorem 5.1. In particular,
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we proceed as follows. First, we express P as an intersection of halfspaces.
Then, for a fixed x ∈ V \ S, we consider the halfspaces Hi whose boundaries
do not contain x and we shift them by sufficiently small amounts hi such
that, if x is in the interior of Hi, it remains in its interior and, if it is in the
exterior, it remains in the exterior. A generic choice of such shifts should
yield a simple perturbation Ph of P . Indeed, since x is not in any non-simple
face of P , even if we restrict to this set of perturbations, the polytope Ph will
still be simple for an open dense subset of values of h near zero. Then, the
left and right hand sides of (16) in Proposition 6.2, when evaluated at x, are
the same for the simple perturbed polytope as they are for the original poly-
tope P . However, this alternative argument for the proof of Proposition 6.2
cannot be applied if we want to extend our result to points in S, as we do
in the particular case where all the weights qi are equal to some fixed value
q ∈ C. For this we would still need a wall-crossing argument. Note that this
extended decomposition was used, in this particular case, in Propositions 6.6
and 6.8 to show that the values of the functions 1

w

F on V do not depend on
the choice of a regular triangulation. In all cases, if we use the perturbation
argument, the important fact that the functions 1

w

F are independent of the
choice of a regular triangulation (or of a simple perturbation) would still
remain to be proved.

Finally, we point out that we can repeat the above arguments to show
that the polytope decompositions presented in (12) (using −βF to obtain the
polarizing vectors) also generalize to any convex polytope (we just multiply
the functions 1

w

F by (−1)dimF ).
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