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We investigate the Banach Lie groupoids naturally associated to
W ∗-algebras. We also present statements describing the relation-
ship between these groupoids and the Banach Poisson geometry
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1. Introduction

During recent decades the notion of groupoid entered many branches of
mathematics including topology [4], differential geometry in general [12] and
Poisson geometry [5], [6] in particular as well as the theory of operator al-
gebras [15]. Let us recall shortly that a groupoid is a small category all of
whose morphisms are invertible. In accordance with [12] they are “the nat-
ural formulation of a symmetry for objects which have bundle structure”.
Nevertheless the role of groupoids is not so widely accepted as that of groups.
On the other hand the theory of W ∗-algebras (von Neumann algebras) oc-
cupies an outstanding place in mathematics and mathematical physics [17],
[19].

Motivated by the existence of the canonically defined Banach Lie-Poisson
structure on the predual M∗ of any W ∗-algebra M, see [13], and by the im-
portance of this structure in the theory of infinite dimensional Hamiltonian
systems, see [14], we clarify here some natural connections between Banach
Poisson geometry and groupoid theory from one side and W ∗-algebras from
the other.

In Section 2 we show that the structure of any W ∗-algebra M natu-
rally defines two important groupoids U(M) and G(M) the first of which
consists of the partial isometries in M and the second, being the “complexi-
fication” of U(M), consists of the partially invertible elements of M. In this
section we also discuss canonical actions of G(M) and U(M) on the lattice
of projections L(M) and on the cone M+∗ of the positive normal states on
M. In Theorem 2.16 we show that the action groupoid U(M) ∗M+∗ has a
faithful representation on the GNS bundle E → M+∗ . Theorem 2.17 shows
that one can consider U(M) ∗M+∗ as a subgroupoid of the groupoid of par-
tial isometries U(ρ(M)′) for the commutant ρ(M)′ of the W ∗-representation
ρ : M → L∞(L2Γ(E,M+∗ )) ofM in the Hilbert space of the square-summable
sections for the bundle E → M+∗ .

The topology of groupoids G(M) and U(M) are described in Section 3.
We show here that G(M) is not a topological groupoid with respect to any
natural topology ofM. However the groupoid U(M) is a topological groupoid
with respect to the uniform topology as well as the s∗(U(M),M∗)-topology.
Theorem 3.3 describes the topological structure of the action groupoids re-
lated to U(M).

In Section 4 we investigate the complex Banach manifold structure on
the lattice L(M) and the groupoid G(M) and show that G(M) is a Banach-
Lie groupoid with L(M) as its base manifold, see Theorem 4.5. The last
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statement is also true for the groupoid U(M) when we consider it as a real
Banach manifold, see Theorem 4.6.

In Section 5 we present several, essential in the present context, state-
ments describing relationship between groupoids G(M) and U(M) and the
canonical Poisson structure defined on the Banach vector bundles A∗G(M)
and A∗U(M) predual to the algebroids AG(M) and AU(M) of Banach-Lie
groupoids G(M) and U(M), respectively. From that we conclude that in the
framework of W ∗-algebras theory there exists a natural illustration of the
deep ideas connecting finite dimensional Poisson geometry and Lie groupoids
theory which was investigated in [6], [9], [12], [21], [22].

2. Groupoids associated to W ∗-algebras and their
representations

In this section we introduce various groupoids defined in a canonical way
by the given W ∗-algebra M. We will also describe representations of these
groupoids on vector bundles related to the algebra M as well as to its pre-
dual M∗. The basic facts from the theory of groupoids can be found in the
appendix to this paper. The detailed presentation of the groupoid theory
can be found in [12]. The part of the theory of W ∗-algebras indispensable
for the subsequent investigations is given in [17] and [19].

2.1. Groupoid G(M) of partially invertible elements of a
W ∗-algebra M

By U(M) we shall denote the set of all partial isometries in M, i.e. u ∈ U(M)
if and only if u∗u ∈ L(M), where L(M) is the lattice of orthogonal projec-
tions p = p∗ = p2 ∈ M. Note that the condition u∗u ∈ L(M) is equivalent
to the following conditions uu∗ ∈ L(M), uu∗u = u and u∗uu∗ = u∗, e.g. see
Corollary 1.1.9 in [17]. We also recall that p � q if and only if pq = p and
L(M) is a complete lattice under the order �. More facts about L(M) can
be found in Section 1.10 in [17], see also Appendix A.

For x ∈ M one defines the left support l(x) ∈ L(M) (respectively right
support r(x) ∈ L(M)) as the smallest projection in M such that l(x)x = x
(respectively x r(x) = x). If x = x∗ then l(x) = r(x) =: s(x) and one calls
s(x) the support of x. Let

(2.1) x = u|x|,
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where

u∗u = s(|x|),
be the polar decomposition of x, where u ∈ U(M) and |x| ∈ M+ := {x ∈
M : x∗ = x > 0}, see Theorem 1.12.1 in [17] . Then one has

(2.2)
l(x) = s(|x∗|) = uu∗,
r(x) = s(|x|) = u∗u.

In this paper we will denote by G(pMp) the group of all invertible ele-
ments of theW ∗-subalgebra pMp ⊂ M. In particular if p = 1 thenG(M) will
be the group of all invertible elements ofM and if p = 0 then G(pMp) = {0}.
Similarly by U(pMp) and U(M) we will denote the groups of unitary ele-
ments of pMp and M.

For any x ∈ M one has |x| ∈ pMp, where p = s(|x|). Let us define the
subset G(M) ⊂ M by

(2.3) G(M) := {x ∈ M : |x| ∈ G(pMp), where p = s(|x|)}.
Equivalently, x belongs to G(M) if the left multiplication L|x| by |x| defines
a right M-module isomorphism

(2.4) L|x| : pM →̃ pM

of the right ideal pM.

Proposition 2.1. The subset G(M) ⊂ M has a canonical structure of a
groupoid with L(M) as the base set. The groupoid structure of G(M) is
defined as follows:

(i) the identity section ε : L(M) ↪→ G(M) is the inclusion;

(ii) the source and target maps: s, t : G(M) → L(M) are defined by

(2.5) s(x) := r(x) = u∗u and t(x) := l(x) = uu∗;

(iii) the product

(2.6) G(M)(2) � (x, y) �→ xy ∈ G(M)

on the set of composable pairs

G(M)(2) := {(x, y) ∈ G(M)× G(M); s(x) = t(y)}
is given by the product in the W ∗-algebra M;



Banach-Lie groupoids associated to W ∗-algebras 691

(iv) the inverse map ι : G(M) → G(M) is given by

(2.7) ι(x) := |x|−1u∗,

where u and |x| are defined in the unique way by the polar decomposi-
tion (2.1).

Proof. Since ε : L(M) → G(M) is inclusion the maps t : G(M) → L(M) and
s : G(M) → L(M) are surjective.

From xs(x) = x one has yxs(x) = yx. This gives s(yx) � s(x), where
“�” means lattice order in L(M). Using r(y) = ι(y)y = l(x) and
ι(y)yx s(yx) = ι(y)yx we obtain x s(yx) = x. Thus we have s(x) � s(yx).
This shows that r(yx) = s(yx) = s(x) = r(x). In a similar way we show that
l(yx) = l(y).

The associativity of the product (2.6) follows from the associativity of
the algebra product.

Using (2.1) and (2.2) we get

(2.8)

ι(x)x = ε(s(x)),
xι(x) = ε(t(x)),
s(x) = t(ι(x)),
t(x) = s(ι(x))

for x ∈ G(M). The above proves the groupoid structure of G(M). �

From now on we will call G(M) ⇒ L(M) the groupoid of partially in-
vertible elements of the W ∗-algebra M.

A groupoid G ⇒ B is called a transitive groupoid if and only if for any
elements b1, b2 ∈ B there exists x ∈ G such that s(x) = b1 and t(x) = b2.

Remark 2.2. The groupoid G(M) ⇒ L(M) is not transitive.

It is better to see this in the case when M = MatN×N (C) ∼= End(CN ).
Let Ln(End(CN )) ⊂ End(CN ) denote the subset of projections of rank n,
where 0 � n � N . The groupoid G(End(CN )) ⇒ L(End(CN )) is the dis-
joint union of transitive groupoids Gn(End(CN )) ⇒ Ln(End(CN )), where

Gn(End(CN )) := s−1(Ln(End(CN ))) ∩ t−1(Ln(End(CN ))).

The component of this union corresponding to n = 0 is the groupoid (one
element group) {0} ⇒ {0}. For n = N one has GN (End(CN )) ⇒ {1}, i.e.
the groupoid reduces to the group GL(N,C).
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Remark 2.3. The groupoid Gn(End(CN )) ⇒ Ln(End(CN )) is a gauge
groupoid of the Stiefel principal bundle πn : Stiefn(n,C

N ) → Grass(n,CN )
∼= L(End(CN )) over Grassmannian of n-dimensional subspaces in CN .

For the definition of the gauge groupoid see e.g. [12].

Remark 2.4. For the finite dimension case we have G(M) = M. However,
it is not true in general.

In order to see the above fact we take the W ∗-algebra of bounded op-
erators L∞(L2(R, dt)) on the Hilbert space L2(R, dt). As an example of
x ∈ L∞(L2(R, dt)) such that l(x) = r(x) = 1 we can take the operator

(M| sin |ψ)(t) := | sin t|ψ(t),

of multiplication by the function | sin |. The inverse M−1
| sin | of M| sin | is an

unbounded operator. So, M−1
| sin | /∈ L∞(L2(R, dt)), and thus we find that

M| sin | /∈ G(L∞(L2(R, dt))).

2.2. Groupoid U(M) of partial isometries of a W ∗-algebra M

We show that the set of partially isometries U(M) has a structure of a
subgroupoid of the groupoid G(M) ⇒ L(M) of partially invertible elements
of the W ∗-algebra M.

Proposition 2.5. The set U(M) of partial isometries in M is a wide sub-
groupoid U(M) ⇒ L(M) of the groupoid G(M) ⇒ L(M).

Proof. Since

(2.9) |x∗| = u|x|u∗

we see that the groupoid G(M) is invariant with respect to ∗-involution.
Thus from the definition of the inverse map ι : G(M) → G(M) follows that
the involution J : G(M) → G(M) defined by

(2.10) J(x) := ι(x)∗ = ι(x∗)

is an automorphism of the groupoid G(M). We note also that the set of fixed
points of J : G(M) → G(M), i.e.

(2.11) {u ∈ G(M) : J(u) = u}
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is the set U(M) of all partial isometries of the W ∗-algebra M. Assuming
sources and target maps for U(M) as in (2.5) we immediately see that U(M)
is closed with respect the groupoid product (2.6) and the inverse map G(M)
defined in (2.7). So one has the groupoid structure U(M) ⇒ L(M) on U(M)
with L(M) as the base set. �

2.3. Inner groupoid J (M) and inner action

The other important wide subgroupoid of G(M) ⇒ L(M) is the inner sub-
groupoid J (M) ⊂ G(M) defined by

(2.12) J (M) :=
⋃

p∈L(M)

(s−1(p) ∩ t−1(p)).

It is a totally intransitive subgroupoid and one can consider it as a bundle s :
J (M) → L(M) of groups s−1(p) ∩ t−1(p) = G(pMp) indexed by p ∈ L(M).
One has also the action I : G(M) ∗ J (M) → J (M) of G(M) on J (M) de-
fined by

(2.13) Ixy := xy ι(x)

for (x, y) ∈ G(M) ∗ J (M) := {(x, y) ∈ G(M)× J (M) : r(x) = s(y)}. This
action is called the inner action. Note that the moment map for the in-
ner action is the support map s : J (M) → L(M). Since for y ∈ J (M) one
has s(y) = l(y) = r(y) one can consider the lattice of projections L(M) as a
wide subgroupoid of J (M).

Proposition 2.6. The inner action I : G(M) ∗ J (M) → J (M) restricts to
an action I : G(M) ∗ L(M) → L(M) which is the canonical left action of the
groupoid G(M) on its base set.

Proof. Let us observe that (x, p) ∈ G(M) ∗ L(M) if and only if p = s(x) =
u∗u ∈ L(M), where x = u|x| ∈ G(M). One has

(2.14) Ix(p) = xpι(x) = u|x|p|x|−1u∗ = uu∗ ∈ L(M).

The last equality in (2.14) follows from the fact that the projection p is the
identity element of the group G(pMp) and |x| ∈ G(pMp). �
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2.4. Order relation on the set of inner orbits

Here we discus two relations canonically defined by the inner action of the
groupoid G(M) on the lattice L(M).

The groupoid structure of G(M) allows us to define the principal bundles:

(2.15)
s : t−1(p) → Op

t : s−1(p) → Op

over the orbit Op := {xpι(x) : x ∈ s−1(p)} of the inner action I : G(M) ∗
L(M) → L(M) of G(M) on the lattice L(M). The structure group for the
principal bundles (2.15) is the group G(pMp).

The inner action (2.13) defines an equivalence relation on L(M):

(2.16) p ∼ q iff q ∈ Op,

for which the equivalence class [p] is the orbit Op generated from the pro-
jection p ∈ L(M).

Proposition 2.7. The equivalence relation (2.16) is the same as the Murray-
von Neumann equivalence relation (see e.g. Definition 2.1.1 in [17]), i.e.
q ∈ Op if and only if there exists a partial isometry u ∈ U(M) such that
p = u∗u and q = uu∗.

Proof. If q ∈ Op then there exists x ∈ G(M) such that Ix(p) = q. One has
x = u|x|, where |x| ∈ G(pMp) and p = s(|x|) = u∗u. From (2.14) one finds
that q = uu∗.

Now let us assume that there exists u ∈ U(M) ⊂ G(M) such that p = u∗u
and q = uu∗. Putting in (2.14) x = u we find that

(2.17) Iu(p) = upu∗ = uu∗ = q,

i.e. q ∈ Op. �
From Propositions 2.5 and 2.7 it follows immediately:

Corrolary 2.8. The inner actions of the groupoids G(M) ⇒ L(M) and
U(M) ⇒ L(M) on L(M) have the same orbits.

Remark 2.9. If M is a finite W ∗-algebra then the Murray-von Neumann
equivalence relation becomes the unitary equivalence relation, i.e. q ∼ p if
and only if there exists u ∈ U(M) such that q = upu∗ (see Proposition 1.38
in [19]).



Banach-Lie groupoids associated to W ∗-algebras 695

The above is not valid for an infinite W ∗-algebra M.

Let L(p) := {q ∈ L(M) : q � p} ⊂ L(M) be the lattice ideal of the sub-
projections of the projection p ∈ L(M). One has the canonically defined re-
lation ≺ on the set of equivalence classes of the equivalence relation (2.16),
i.e.

(2.18) [q] ≺ [p] iff
⋃

q′∈[q]
L(q′) ⊂

⋃
p′∈[p]

L(p′).

Proposition 2.10. The relation ≺ defined in (2.18) is a order relation on
the set of the inner action orbits of groupoid G(M) on L(M). If M is a
factor then this order is total.

Proof. The proof of reflexivity and transitivity of the relation ≺ is trivial.
Now let us show that if [p] ≺ [q] and [q] ≺ [p] then [p] = [q]. For this reason
it is enough to show that [p] ∩ [q] �= ∅. Firstly let us observe that

(2.19)
⋃

p′∈[p]
L(p′) =

⋃
p′∈max[p]

L(p′),

where max[p] is the set of maximal elements of the orbit [p] = Op. Thus one
has [p] ≺ [q] and [q] ≺ [p] if and only if

(2.20)
⋃

p′∈max[p]

L(p′) =
⋃

q′∈max[q]

L(q′).

It follows from (2.20) that for p′ ∈ max[p] there exists q′ ∈ max[q] such that
p′ � q′. For the same reason there exists p′′ ∈ max[p] such that q′ � p′′. Since
p′ and p′′ are maximal elements of the orbit [p] we find that p′ = q′ = p′′ ∈
[p] ∩ [q] �= ∅. So, the relation ≺ is antisymmetric.
In the factor case the linearity of order relation ≺ follows from the Compa-
rability Theorem, e.g. see [17], [19]. �

The equivalence relation (2.16) and the order relation (2.18) are funda-
mental for the classification of W ∗-algebras. So, the problem of classification
of U(M)-orbits on L(M) is strictly related to the Murray and von Neumann
classification of W ∗-algebras, see e.g. [17], [19]. The reason is that the inner
action I : U(M) ∗ L(M) → L(M) preserves the lattice structure of L(M),
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i.e. for (u, p) ∈ U(M) ∗ L(M) the maps

(2.21) Iu : L(p) → L(upu∗)

are isomorphisms of the lattice ideals. In particular if a projection z ∈
L(M) ∩ Z(M) is central, where Z(M) is the center of M, then the lattice
L(z) = L(zM) is preserved by the inner action. This allows us to reduce the
classification of U(M)-orbits on L(M) to the classification of U(M)-orbits
for the case when M is a factor.

2.5. Left and right action of G(M) ⇒ L(M) and
U(M) ⇒ L(M) on M

Let us consider the following two actions of G(M) on the W ∗-algebra M:

(i) the left action L : G(M) ∗l M → M defined by

(2.22) Lxy := xy

for (x, y) ∈ G(M) ∗l M := {(x, y) ∈ G(M)×M; r(x) = l(y)};
(ii) the right action R : G(M) ∗r M → M defined by

(2.23) Rxy := yx

for (x, y) ∈ G(M) ∗r M := {(x, y) ∈ G(M)×M; l(x) = r(y)}.
The moment map μ : M → L(M) (see Appendix C) for the left action L
(the right action R) is the left support map μ := l : M → L(M) (the right
support map μ := r : M → L(M)) defined in (2.2). Since both actions are
intertwined by the inverse map, i.e.

(2.24) ι ◦ Lx = Rι(x) ◦ ι

we will restrict ourselves to the left action only. All statements concerning
the right action R : G(M) ∗r M → M we obtain converting statements for
the left action L by (2.24).

Theorem 2.11. The actions L : U(M) ∗l M → M and R : U(M) ∗r M →
M defined by (2.22) and (2.23) are free. Their orbits are indexed by elements
of the cone M+ of positive selfadjoint elements of M.
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Proof. Since left and right actions are intertwined by the inverse map (2.7) it
is enough to consider the case of the left action L. Let us assume that there
are elements u1, u2 ∈ U(M) such that y := u1x = u2x for u∗1u1 = vv∗ =
u∗2u2, where v ∈ U(M) is defined by

(2.25) x = v|x|.

Since |y|2 = y∗y = x∗u∗1u1x = x∗vv∗x = x∗x = |x|2 we have y = u1v|y| =
u2v|y|. Thus from the uniqueness of the polar decomposition(2.1) we obtain
u1v = u2v. The above gives u1 = u1u

∗
1u1 = u1vv

∗ = u2vv
∗ = u2u

∗
2u2 = u2.

So, the left action L is free.
Taking the polar decomposition x = v|x| of x ∈ M we obtain that v∗x =

v∗v|x| = |x| ∈ M+. So any orbit Ox of U(M) intersects M+. If x, y ∈ Ox ∩
M+ then x = |x|, y = |y| and |y| = u|x| for some u ∈ U(M). Thus from
uniqueness of the polar decomposition we obtain x = |x| = |y| = y. �

2.6. Inner representation of G(M) ⇒ L(M) and U(M) ⇒ L(M)
on the bundle A(M) of W ∗-subalgebras of M

In this subsection we investigate the representations of the groupoids on the
vector bundles which are given by the structure of the W ∗-algebra.

Let us begin by briefly explaining that what one understands by rep-
resentation of a groupoid is a direct generalization of the notion of group
representation in a vector space. However, for groupoids one takes a vector
bundle instead of a vector space. For the purposes of this paper as a rule we
assume that the fibres π−1(m), m ∈ M , of vector bundle (E,M, π : E → M)
under consideration will be not necessary isomorphic. In consequence of that
the structural groupoid G(E) of this bundle would be not necessary transitive
on base M .

Recall, see also [12], that the structural groupoid G(E) consists of linear
isomorphisms enm : Em →̃ En between the fibers of π : E → M . The base of
G(E) is the base set M of the bundle. The source map s : G(E) → M and
the target map t : G(E) → M are defined by s(enm) := m and t(enm) := n
respectively. The inverse map is given by ι(enm) := (enm)−1 and the identity
section by ε(m) := idmm. Finally the product of isomorphisms eml : El →̃ Em

and enm : Em →̃ En is given by their composition enm ◦ eml : El →̃ En.
Usually one investigates vector bundles with some additional structures.

In the sequel we will consider cases when the fibres of π : E → M will be
provided with these structures. For example a Hilbert space structure, a
W ∗-algebra structure, a lattice structure or a W ∗-algebra module structure.
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Definition 2.12. Let G be a groupoid with base set B. One defines a rep-
resentation of G on the vector bundle π : E → M as a groupoid morphism:

(2.26)

G G(E)

B M

�� ��

�

�

s t ts

φ

ϕ

of G into the structural groupoid G(E) of the bundle.

Let us take p, q ∈ L(M). According to the commonly accepted notation
by G(M)qp we denote the set t−1(q) ∩ s−1(p). For any p ∈ L(M) one has the
following inclusions:

(2.27)
s−1(p) ⊂ r−1(p) ⊂ Mp
t−1(p) ⊂ l−1(p) ⊂ pM

where Mp (pM) is the left (right) W ∗-ideal generated by p. Recall that the
left support l(x) and right support r(x) are defined for any element x ∈ M,
but the source map s and target map t are defined only for elements in
G(M).

Now we consider the bundle π : MR(M) → L(M) of right M-modules
over the lattice L(M) with total space defined by

(2.28) MR(M) := {(y, p) ∈ M× L(M) : p l(y) = l(y)}

and bundle map π := pr2 as the projection on the second component of the
product M× L(M). The fibre π−1(p) over p ∈ L(M) is the right ideal pM
of M generated by the projection p. Any element x ∈ G(M)qp defines by the
left multiplication an isomorphism Lx : pM →̃ qM of the right M-modules,
i. e.

(2.29) Lx(ay) = Lx(a)y

for a ∈ pM and y ∈ M. The M-module isomorphisms L : pM →̃ qM, where
p, q ∈ L(M), form the groupoid G(MR(M)) of structural isomorphisms of
the fibers of the bundle π : MR(M) → L(M). One can show that L = Lx

for some x ∈ G(M)qp. Thus we have the following statement:
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Proposition 2.13. The structural groupoid G(MR(M)) of the bundle π :
MR(M) → L(M) is isomorphic to G(M).

ReplacingMR(M) byML(M) and the action x → Lx by the right action
x → Rx, where x ∈ G(M), we obtain the anti-isomorphism of G(M) with
G(ML(M)). Using the above two representations we obtain a representation
of G(M) on the bundle π : A(M) → L(M) of the W ∗-subalgebras of M with
total space A(M) defined by

(2.30) A(M) := {(y, p) ∈ M× L(M) : y ∈ pMp}

and the bundle map by π := pr2. The morphism I : G(M) → G(A(M)) of
G(M) into the structural groupoid G(A(M)) of the bundle π : A(M) →
L(M) is defined as follows

(2.31) Ix := Rι(x) ◦ Lx : pMp → qMq,

where x ∈ G(M)qp.
Note here that J (M) ⊂ A(M) and the action I : G(M) ∗ A(M) → A(M)

is an extension of the inner action I : G(M) ∗ J (M)→J (M). For u ∈ U(M)qp
we find that Iu : pMp → qMq is an isomorphism of W ∗-subalgebras of M.
Thus we have

Proposition 2.14. The inner action I : U(M) ∗ A(M) → A(M) of the par-
tial isometries groupoid U(M) on A(M) preserves the positivity, normality,
selfadjointness and the norm of the elements of the fibres of A(M), i.e.:

(i) |Iux| = Iu|x|,
(ii) xx∗ = x∗x iff (Iux)

∗(Iux) = (Iux)(Iux)
∗

(iii) x = x∗ iff (Iux)
∗ = Iux

(iv) ‖Iux‖ = ‖x‖
for (u, x) ∈ U(M) ∗ A(M).

Let M+,Mh and Mn denote the sets of positive, selfadjoint and normal
elements ofM respectively. Let S be the sphere inM, i. e. x ∈ S if and only if
‖x‖ = 1. We conclude from Proposition 2.14 that the subsets J (M) ∩M+,
J (M) ∩Mh, J (M) ∩Mn, J (M) ∩ S and J (M) ∩ U(M) are invariant
with respect to the inner action I : U(M) ∗ J (M) → J (M). Let us also note
that the lattice of projections L(M) consists of the extreme points in M+ ∩
S, e.g. see Proposition 1.6.2 in [17].
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2.7. Left and right predual actions of G(M) ⇒ L(M) and
U(M) ⇒ L(M) on M∗

For the sake of completeness and further applications let us consider the
actions

(2.32)
L∗ : G(M) ∗l∗ M∗ → M∗
R∗ : G(M) ∗r∗ M∗ → M∗

of G(M) ⇒ L(M) on M∗ which are predual to the actions L : G(M) ∗l M →
M and R : G(M) ∗r M → M respectively.

For this reason, refering to Section 2 in [19], we recall that the left
predual action L∗ : M×M∗ → M∗ (respectively the right predual action
R∗ : M×M∗ → M∗) of W ∗-algebra M on the predual Banach space M∗ is
defined by:

(2.33) 〈x, L∗aω〉 := 〈xa, ω〉 (respectively 〈x,R∗aω〉 := 〈ax, ω〉)

for any x ∈ M, where a ∈ M and ω ∈ M∗. So, one has

(2.34) (L∗a)∗ = Ra, and (R∗a)∗ = La.

For any element ω ∈ M∗ one takes the closed left invariant subspace [Mω] ⊂
M∗ (respectively the right invariant subspace [ωM] ⊂ M∗) generated from ω
by the left (respectively right) action of M (2.33). The annihilator [Mω]0 ⊂
M of the Banach subspace [Mω] ⊂ M∗ is a right W ∗-ideal in M. Similarly
the annihilator [ωM]0 ⊂ M of the Banach subspace [ωM] ⊂ M∗ is a left
W ∗-ideal in M. Thus there exist orthogonal projections e, f ∈ M such that
[Mω]0 = eM and [ωM]0 = Mf . The projection e is the greatest one of all
the projections q ∈ M such that R∗qω = 0. Similarly the projection f is
the greatest one of all the projections q ∈ M such that L∗qω = 0. Thus one
defines the maps

(2.35) r∗(ω) := 1− e

and

(2.36) l∗(ω) := 1− f,

where (1− e) and (1− f) are the least projection with the property
R∗(1−e)ω = ω and L∗(1−f)ω = ω respectively. The projections r∗(ω) and l∗(ω)
are called, respectively, the right support projection and the left support



Banach-Lie groupoids associated to W ∗-algebras 701

projection of ω ∈ M∗. It follows from the polar decomposition (see e.g. The-
orem 4.2 in [19])

(2.37) ω = L∗v|ω|

of ω ∈ M∗, where v ∈ U(M) and |ω| ∈ M+∗ , that

r∗(ω) = v∗v and l∗(ω) = vv∗.

The ∗-operation M∗ � ω �→ ω∗ ∈ M∗ is defined by the equality

〈x, ω∗〉 := 〈x∗, ω〉,

where x ∈ M, and ω ∈ M+∗ iff ω = ω∗ and 〈x, ω∗〉 � 0 for any x ∈ M+. For
details see Section 1.5 in [17].

Considering r∗ : M∗ → L(M) and l∗ : M∗ → L(M) as moment maps we
define the actions (2.32) by

(2.38) G(M) ∗r∗ M∗ � (x, ω) �→ R∗xω ∈ M∗

and

(2.39) G(M) ∗l∗ M∗ � (x, ω) �→ L∗xω ∈ M∗,

respectively, where

G(M) ∗r∗ M∗ = {(x, ω) ∈ G(M)×M∗; t(x) = xι(x) = r∗(ω)}

and

G(M) ∗l∗ M∗ = {(x, ω) ∈ G(M)×M∗; s(x) = ι(x)x = l∗(ω)}.

One obtains the left and right predual actions of the subgroupoid
U(M) ⇒ L(M) on M∗ as the restrictions of (2.38) and (2.39), respectively.

2.8. Inner representation of G(M) ⇒ L(M) and U(M) ⇒ L(M)
on the predual bundle A∗(M)

Let us also define the bundle π∗ : A∗(M) → L(M) predual to the bundle
of the W ∗-algebras π : A(M) → L(M). In this case the total space is the
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following

A∗(M) := {(ω, p) ∈ M∗ × L(M) :(2.40)

r∗(ω) = p r∗(ω) and l∗(ω) = l∗(ω)p}

and the bundle map π∗ is the projection of (ω, p) ∈ M∗ × L(M) on the
second component. Note that one can identify the fibre π−1∗ (p) = (R∗p ◦
L∗p)(M∗), p ∈ L(M), with the Banach space (pMp)∗ predual to subalgebra
pMp.

We define the predual inner action Ĩ∗ : G(M) ∗ A∗(M) → A∗(M)

(2.41) Ĩ∗x(ω, p) := (I∗xω, Ixp)

of the groupoid G(M) on the bundle A∗(M) where G(M) ∗ A∗(M) :=
{(x, (ω, p)) : s(x) = p}, the bundle map π∗ : A∗(M) → L(M) is the moment
map and

I∗x = L∗x ◦R∗ι(x).

Now we define the following subbundles of π∗ : A∗(M) → L(M). The
subbundle π∗ : J∗(M) → L(M) whose total space is defined by

(2.42) J∗(M) := {(ω, p) ∈ A∗(M) : l∗(ω) = r∗(ω) = p}.

The subbundle of selfadjoint normal functionals π∗ : Ah∗(M) → L(M) for
which the total space is

(2.43) Ah
∗(M) := {(ω, p) ∈ A∗(M) : ω∗ = ω}.

The subbundle of positive normal functionals π∗ : A+∗ (M) → L(M) with the
set

(2.44) A+
∗ (M) := {(ω, p) ∈ A∗(M) : ω∗ = ω > 0}.

as the total space.

When we restrict the action (2.41) to subgroupoid U(M) ⇒ L(M) we
obtain the following statement.

Proposition 2.15. For the predual inner action I∗ : U(M) ∗ A∗(M) →
A∗(M) of the partial isometries groupoid U(M) ⇒ L(M) on A∗(M) one
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has:

ω = ω∗ iff (I∗uω)∗ = I∗uω(2.45)

‖I∗uω‖ = ‖ω‖(2.46)

|I∗uω| = I∗u|ω|(2.47)

for (u, (ω, p)) ∈ U(M) ∗ A∗(M), i.e. the subbundles (2.42), (2.43), (2.44)
are invariant with respect to this action.

Proof. In order to prove (2.45) we note that for ω ∈ π−1∗ (u∗u) we have
〈ω∗, x〉 := 〈ω, x∗〉, where x ∈ M, so we obtain

(I∗uω)∗ = I∗uω∗.

Thus and from I∗u∗uω = ω we have that ω = ω∗ iff (I∗uω)∗ = I∗uω. Since
‖u‖ = 1 and L∗u∗uω = ω one has

(2.48) ‖L∗uω‖ � ‖ω‖ � ‖L∗uω‖ .

Similarly we prove that ‖R∗uω‖ = ‖ω‖. Thus we have (2.46).
Let us assume that M∗ � ω � 0 then for any x ∈ M+ one has u∗xu ∈

M+ and

〈I∗uω, x〉 = 〈ω, u∗xu〉 � 0.

Thus we find that I∗uω � 0 iff ω � 0. If ω = ω∗ then for any x ∈ M we have

〈(I∗uω)∗, x〉 = 〈ω, u∗xu〉 = 〈ω∗, (u∗xu)∗〉 = 〈I∗uω∗, x〉.

The above shows that inner action commutes with conjugation operation.
Let us take the polar decomposition of ω ∈ π−1∗ (u∗u)

(2.49) ω = L∗v|ω|.

We note that the polar decomposition of I∗uω ∈ π−1∗ (u∗u), where v∗v � u∗u
and vv∗ � u∗u, is given by

(2.50) I∗uω = Luvu∗ |I∗uω|.

From (2.50) it follows that

|I∗uω| = L(uvu∗)∗I∗uω.
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Thus for any x ∈ M we have

〈|I∗uω|, x〉 = 〈L(uvu∗)∗I∗uω, x〉 = 〈I∗uω, xuv∗u∗〉 = 〈ω, u∗xuv∗u∗u〉
= 〈ω, u∗xuv∗〉 = 〈L∗v∗ω, u∗xu〉 = 〈|ω|, u∗xu〉 = 〈I∗u|ω|, x〉.

Thus we obtain (2.47) �

2.9. GNS-bundle

Below we will consider the action groupoid U(M) ∗ M+∗ ⇒ M+∗ overM+∗ (for
the definition of an action groupoid see Appendix E), with s∗ : M+∗ → L(M)
as a moment map and the action U(M) ∗ M+∗ → M+∗ given by

(2.51) I∗uω = uωu∗,

where s∗(ω) = l∗(ω) = r∗(ω), since ω ∈ M+∗ . Let us note that from (2.47)
the cone M+∗ is invariant with respect to the action (2.51).

Now basing on GNS construction, see [7], [18], we define the pre-Hilbert
bundle π : E → M+∗ over the cone of the positive normal states M+∗ . The
total space E and bundle projection we define as follows

(2.52) E := {(x, ω) ∈ M×M+
∗ : xs∗(ω) = x}

and π := pr2|E.
Since for ω ∈ M+∗ one has Eω = π−1(ω) = Ms∗(ω) the scalar product

(2.53) Eω × Eω � (x, y) �→ 〈x|y〉ω := 〈ω, x∗y〉 ∈ C

is non degenerate. Thus it defines the pre-Hilbert space structure on Eω.
Note here that 〈ω, x∗x〉 = 0 if and only if x ∈ M(1− s∗(ω)).

Completing Eω with respect to the norm ‖x‖ω := 〈ω, x∗x〉 1

2 we obtain
the bundle π : E → M+∗ of Hilbert spaces. For clear reasons we will call this
bundle the GNS bundle.

Theorem 2.16. One has a faithful representation

(2.54)

U(M) ∗ M+∗ G(E)

M+∗ M+∗

�� ��

�

�

s t ts

φ

id
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of the right action of groupoid U(M) ∗ M+∗ on the GNS bundle π : E → M+∗
with the fibres isomorphisms φ(u, ω) : Eω → EI∗uω defined as follows

(2.55) φ(u, ω)(xs∗(ω), ω) := (xs∗(ω)u∗, I∗uω)

Proof. For (u, ω) ∈ U(M) ∗ M+∗ we have u∗u = s∗(ω). Thus the following
sequence of equalities

〈φ(u, ω)xs∗(ω)|φ(u, ω)ys∗(ω)〉I∗uω = 〈I∗uω, (xs∗(ω)u∗)∗ys∗(ω)u∗〉(2.56)

= 〈ω, u∗us∗(ω)x∗ys∗(ω)u∗u〉
= 〈ω, (xs∗(ω))∗ys∗(ω)〉
= 〈xs∗(ω)|ys∗(ω)〉ω

shows that φ(u, ω) : Eω → EI∗uω extends to an isomorphism of Hilbert spaces.
For elements (u, ω), (v, λ) ∈ U(M) ∗ M+∗ such that t(v) = s(u), i.e. ω =

I∗vλ we have

φ((u, ω)(v, λ))(xs∗(λ), λ) = φ(uv, λ)(xs∗(λ), λ) = (xs∗(λ)(uv)∗, I∗uvλ)
= φ(u, ω)(xs∗(λ)v∗, I∗vλ)
= (φ(u, ω) ◦ (φ(v, λ))(xs∗(λ), λ))

for any (xs∗(λ), λ) ∈ Eλ. Thus we obtain

(2.57) φ((u, ω)(v, λ)) = φ(u, ω) ◦ φ(v, λ).

We recall that (u, ω)(v, λ) is the product of (U(M) ∗ M+∗ )(2) defined by (E.7).
One can easily check that for φ(u, ω) and φ(u∗, I∗uω) we have

(φ(u∗, I∗uω) ◦ φ(u, ω))(xs∗(ω), ω)
= φ(u∗, I∗uω)(xs∗(ω)u∗, I∗uω)
= (xs∗(ω)u∗u, I∗u∗uω) = (xs∗(ω), ω)

for any (xs∗(ω), ω) ∈ Eω. The above shows that

φ(u∗, I∗uω) ◦ φ(u, ω) = id|Eω
.

In the similar way we prove that

φ(u, ω) ◦ φ(u∗, I∗uω) = id|EI∗uω.
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Thus we get

(2.58) (φ(u, ω))−1 = φ(u∗, I∗uω).

For any (u, ω) ∈ U(M) ∗ M+∗ one has

(id ◦ s)(u, ω) = id(ω) = ω,

(id ◦ t)(u, ω) = id(I∗uω) = I∗uω

and

(s ◦ φ)(u, ω)(xs∗(ω), ω) = s(φ(u, ω)(xs∗(ω), ω)) = ω,

(t ◦ φ)(u, ω)(xs∗(ω), ω) = t(φ(u, ω)(xs∗(ω), ω)) = I∗uω,

which shows that id ◦ s = s ◦ φ and id ◦ t = t ◦ φ, i. e. the diagram (2.54) is
commutative. The above shows that φ is a groupoid morphism.

From

(2.59) φ(u, ω) = φ(u′, ω′).

we find that

ω = ω′

s∗(ω) = u∗u = u′∗u′ = s∗(ω′)(2.60)

and

(2.61) xs∗(ω)u∗ = xs∗(ω)u′∗

for any x ∈ M. Setting x = s∗(ω) in (2.61) we prove that from (2.59) it
follows

(u, ω) = (u′, ω′).

Thus φ is a faithful morphism of groupoids. �

In order to obtain a faithful W ∗-representation of M, see [17], we recall
that Eω is a left W ∗-ideal of M. Hence one has a W ∗-representation ρω :
M → L∞(Eω) of M in the W ∗-algebra of bounded operators on Hilbert
space Eω, defined by the continuous extension of

(2.62) ρω(x)ys∗(ω) := xys∗(ω),

where x ∈ M and ys∗(ω) ∈ Eω.
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Let us denote by L2Γ(E,M+∗ ) the Hilbert space of square summable
sections ψ : M+∗ → E

(2.63)
∑

ω∈M+
∗

‖ψ(ω)‖2ω < ∞

of the GNS bundle.
The direct sum

(2.64) ρ :=
⊕

ω∈M+
∗

ρω

is a faithfulW ∗-representation ρ : M→L∞(L2Γ(E,M+∗ )) ofM in the Hilbert
space L2Γ(E,M+∗ ), see for example Theorem 1.16.7 in [17]. So, one has a
∗-isomorphism M ∼= ρ(M) of M with the W ∗-subalgebra

ρ(M) ⊂ L∞(L2Γ(E,M+
∗ )).

Recall that a ∗-homomorphism of W ∗-algebras is a W ∗-homomorphism if it
is a map φ : M1 → M2 continuous with respect to the σ(M1,M1∗)-topology
and σ(M2,M2∗)-topology.

Theorem 2.17. There exists a groupoid monomorphism

(2.65) Λ : U(M) ∗ M+
∗ → U(ρ(M)′)

of the action groupoid U(M) ∗ M+∗ into the groupoid of partial isometries
U(ρ(M)′) of the W ∗-algebra ρ(M)′, where ρ(M)′ is the commutant of ρ(M)
in the operator algebra L∞(L2Γ(E,M+∗ )).

Proof. We note that Hilbert subspaces Eω1
and Eω2

of L2Γ(E,M+∗ ) are in-
variant with respect to the representation ρ. We note also that any element
eω2
ω1

∈ G(E)ω2
ω1

⊂ G(E) can be extended to a partial isometry of the Hilbert
space L2Γ(E,M+∗ ) with the kernel equals (Eω1

)⊥ ⊂ L2Γ(E,M+∗ ). The map
φ(u, ω) : Eω → EI∗uω, defined in (2.55), intertwining representations ρω and
ρI∗uω, i.e.

(2.66) φ(u, ω) · ρω(y) = ρI∗uω(y) · φ(u, ω)

for y ∈ M, extends to the partial isometry φ(u, ω) of the Hilbert space
L2Γ(E,M+∗ ). By (2.66) this partial isometry belongs to the commutant
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ρ(M)′ of the W ∗-algebra ρ(M). Using the notation

U(M) ∗M+
∗ � (u, ω) �→ Λ(u, ω) := φ(u, ω)

we obtain from the Proposition (2.16) that (2.65) is a groupoid monomor-
phism. �

Finally let us note that the projection

(2.67) pr1 : U(M) ∗ M+
∗ → U(M) ∼= U(ρ(M)′′)

of U(M) ∗ M+∗ on the first component of the product U(M)×M+∗ defines
a covering morphism of the groupoids, see Appendix C. The groupoid iso-
morphism U(M) ∼= U(ρ(M)′′) in (2.67) follows from the isomorphism

ρ(M)′′ = ρ(M) ∼= M

of W ∗-algebras, where the equality ρ(M)′′ = ρ(M) is a consequence of the
bicommutant theorem, see e.g. Theorem 1.20.3 in [17], and one has ρ(M) ∼=
M due to the fact that ρ is a faithful W ∗-representation.

3. Topologies on the groupoids G(M) ⇒ L(M) and
U(M) ⇒ L(M)

The following locally convex topologies are considered on a W ∗-algebra M:
the uniform topology, the Arens-Mackey topology τ(M,M∗), the strong ∗-
topology s∗(M,M∗), the strong topology s(M,M∗), the σ-weak topology
σ(M,M∗), see e. g.[17]. All these topologies define the corresponding topolo-
gies on the groupoids G(M) and U(M). Hence, the natural question arises for
which of the topologies listed above the groupoids are topological groupoids.

Let us start from the groupoid G(M) ⇒ L(M).

Proposition 3.1. For a infinite-dimensional W ∗-algebra M the groupoid
G(M) ⇒ L(M) is not a topological groupoid with respect to any topology of
M mentioned above.

Proof. Let us take p ∈ L(M) and define xn ∈ G(M) by

xn = p+
1

n
(1− p), n ∈ N.

One has

s(xn) = t(xn) = 1 and s(p) = t(p) = p.
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Since the uniform limit of xn is

p = lim
n→∞ xn,

we see that source and target maps of G(M) are not continuous. Thus we
obtain that G(M) is not a topological groupoid. Note that the above con-
sideration does not depend on the choice of topology on M. �

The case of the groupoid U(M) is much better than that of G(M). Let
us begin our considerations from the uniform topology. Since all algebraic
operations in M and the ∗-involution are uniformly continuous and groupoid
maps are expressed by these operations we conclude that the groupoid U(M)
is a topological groupoid with respect to the uniform topology. Let us remark
also that U(M) is uniformly closed in M and L(M) is uniformly closed in
U(M). Note also that the set U(M)(2) = (s× t)−1({(p, p) : p ∈ L(M)}) is
closed in U(M)× U(M).

The groupoid of partial isometries U(M) is not topological with respect
to the σ(M,M∗)-topology (the weak ∗-topology) and with respect to the
s(M,M∗)-topology (the strong topology). The reason is that the product
map (2.6) is not continuous with respect to σ(M,M∗)-topology and the
involution (2.7) is not continuous with respect to the s(M,M∗)-topology.

The Arens-Mackey topology τ(M,M∗) coincides with the s∗-strong topol-
ogy s∗(M,M∗) on the bounded parts of M, see [17]. So both of them induce
on U(M) the same topology. Hence without loss of generality we can restrict
our consideration to the s∗(U(M),M∗)-topology of U(M).

Let us take the closed unit ball B = {x ∈ M : ‖x‖ � 1} in M. The
product map B × B � (x, y) �→ xy ∈ B restricted to B as well as the
∗-involution are continuous with respect to s∗(B,M∗)-topology. From the
above we conclude:

Proposition 3.2. The groupoid U(M) ⇒ L(M) of partial isometries is a
topological groupoid with respect to the s∗(U(M),M∗)-topology.

Let us define on M∗ ∼= {(p, ω) ∈ L(M)×M∗; p = r∗(ω)} (respectively
M∗ ∼= {(p, ω) ∈ L(M)×M∗; p = l∗(ω)}) the topology TM∗ as the topology
inherited from the product topology of L(M)×M∗. The moment map r∗ :
M∗ → L(M) (respectively l∗ : M∗ → L(M)) is continuous with respect to
TM∗ . Since the topology TM∗ of M∗ is stronger than the uniform topology
of M∗ the action (2.38) (respectively (2.39)) is also continuous with respect
to TM∗ .
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Let us define the set

(3.1) P(M∗) := {ω ∈ M∗ : l∗(ω) = r∗(ω)}.

We conclude from the Proposition (2.15) that subsetsM+∗ ⊂ Mh∗ ⊂ P(M∗) ⊂
M∗ of positive normal functionals, selfadjoint functionals and P(M∗) are in-
variant with respect to the predual inner action I∗ : U(M)×M∗ → M∗. The
groupoid U(M) acts continuously on Mh∗ , M+∗ and P(M∗) with respect to
their TM∗-topology. Since

s∗(I∗uω) = s∗(uωu∗) = uu∗ = t(u)

I∗u(I∗vω) = I∗u(vωv∗) = uvωv∗u∗ = uvω(uv)∗ = I∗uvω
I∗ε(s∗(ω))ω = I∗s∗(ω)ω = u∗uωu∗u = ω

we see that the groupoid U(M) acts on P(M∗) in the continuous way with
respect to TM∗ topology of P(M∗).

Summarizing the above considerations and applying the construction
presented in the Appendix we have the following:

Theorem 3.3. (i) The groupoids U(M) ∗l M , U(M) ∗r M , U(M) ∗
J (M) , U(M) ∗Mh and U(M) ∗M+ are topological groupoids with
respect to the relative topology inherited from the product uniform topol-
ogy of U(M)×M .

(ii) The groupoids U(M) ∗l∗ M∗ , U(M) ∗r∗ M∗ , U(M) ∗ P(M∗) , U(M) ∗
M+∗ and U(M) ∗Mh∗ are topological groupoids with respect to the rel-
ative topology inherited from the product uniform topology of U(M)×
M∗.

(iii) The groupoids listed above cover the groupoid U(M) ⇒ L(M).

4. Banach-Lie groupoid structures of G(M) ⇒ L(M) and
U(M) ⇒ L(M)

Now we show that the groupoids G(M) ⇒ L(M) and U(M) ⇒ L(M) have
a canonically defined structures of complex and real Banach manifolds, re-
spectively, which are consistent with their groupoid structures.

4.1. Banach manifold structure on L(M)

Let us begin from definition of a complex Banach manifold structure on
the lattice L(M) of projections of W ∗-algebra M. For this reason for any
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p ∈ L(M) by Πp ⊂ L(M) we denote the subset of projections q ∈ L(M) such
that there exists the Banach splitting

(4.1) M = qM⊕ (1− p)M

of M on the right W ∗-ideals. Note that from the condition (4.1) follows

(4.2) q ∧ (1− p) = 0 and q ∨ (1− p) = 1,

where “∧” and “∨” are joint- and meet-operations on the projections in the
lattice L(M). Since for any pair of projections e, f ∈ L(M) one has

(e ∨ f)− e ∼ f − (e ∧ f),

see [19], taking e = 1− p and f = q we obtain that q ∼ p. So we have Πp ⊂
Op and thus Πp′ ∩Πp = ∅ if p′ �∼ p. The inverse statement, i.e. that p′ ∼ p
implies Πp′ ∩Πp �= ∅ is not true in general case. For example for infinite
W ∗-algebra we can take p �= 1 such that p ∼ 1. Then Π1 = {1} and thus
Π1 ∩Πp = ∅.

Using (4.1) we decompose

(4.3) p = x− y

the projection p on two elements x ∈ qMp and y ∈ (1− p)Mp. In such a
way we define the map ϕp : Πp →̃ (1− p)Mp by

(4.4) ϕp(q) := y.

Let us show that ϕp is a bijection of Πp on the Banach space (1− p)Mp. To
this end for any y ∈ (1− p)Mp we define x by equality (4.3) and note that

(4.5) p = px, xp = x and x2 = x.

Thus the left multiplication maps Lp and Lx on M satisfy

(4.6) Lp = Lp ◦ Lx, Lx = Lx ◦ Lp and Lx ◦ Lx = Lx

and

(4.7) (1− x)M = Ker Lx = Ker Lp = (1− p)M.

From (4.6) one has KerLx = KerLxp = Ker(Lx◦Lp)⊃KerLp = KerLpx =
Ker(Lp ◦ Lx) ⊃ KerLx and thus KerLp = KerLx. For any x2 = x ∈ M if
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y ∈ KerLx then y = (1− x)y. Thus one obtains that KerLx = (1− x)M
and KerLp = (1− p)M. The above proves (4.7).

From (4.7) we have

(4.8) M = xM⊕ (1− p)M,

where xM is right ideal of W ∗-algebra generated by x ∈ M. Let us also note
that

(4.9) Lx : pM →̃ xM and Lp : xM →̃ pM

are mutually inverse isomorphisms of the corresponding right M-modules.
The left support l(x) of x ∈ M is the identity in W ∗-subalgebra xM ∩

(xM)∗. Thus l(x) ∈ xM. This shows that xM = l(x)M and

(4.10) M = l(x)M⊕ (1− p)M,

i.e. l(x) ∈ Πp. In such a way we prove that ϕp has the inverse defined by

(4.11) ϕ−1
p (y) := l(p+ y).

Proposition 4.1. If x ∈ qMp is defined by the decomposition (4.3) then
x∈G(M) and s(x)=p and t(x) = q. So one has section σp :Πp→t−1(Πp) ⊂
G(M) defined by

(4.12) σp(q) := x.

Proof. The above follows from (4.9) and from xM = l(x)M = qM. �

The following proposition describe the complex manifold structure on
L(M).

Proposition 4.2. The atlas (Πp, ϕp), p ∈ L(M), defines on L(M) the
structure of a complex Banach manifold of type G in sense of [3], where
G is the set of Banach spaces (1− p)Mp indexed by elements p ∈ L(M).

Proof. Note that the domains Πp, where p ∈ L(M), of the maps ϕp : Πp →
(1− p)Mp defined in (4.4) cover L(M), i.e.

⋃
p∈L(M)Πp = L(M).
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Now we find the explicit formulae for the transitions maps

(4.13) ϕp ◦ ϕ−1
p′ : ϕp′(Πp ∩Πp′) → ϕp(Πp ∩Πp′)

in the case when Πp ∩Πp′ �= ∅. For this reason let us take for q ∈ Πp ∩Πp′

the following splittings

(4.14)
M = qM⊕ (1− p)M = pM⊕ (1− p)M
M = qM⊕ (1− p′)M = p′M⊕ (1− p′)M.

The splittings (4.14) lead to the corresponding decompositions of p and p′

(4.15)
p = x− y p = a+ b
p′ = x′ − y′ 1− p = c+ d

where x ∈ qMp, y ∈ (1− p)Mp, x′ ∈ qMp′, y′ ∈ (1− p′)Mp′, a ∈ p′Mp,
b ∈ (1− p′)Mp, c ∈ p′M(1− p) and d ∈ (1− p′)M(1− p). Combining equa-
tions from (4.15) we obtain

q = ι(x′) + y′ι(x′)(4.16)

q = (a+ cy)ι(x) + (b+ dy)ι(x).(4.17)

Comparing (4.16) and (4.17) we find that

ι(x′) = (a+ cy)ι(x)(4.18)

y′ι(x′) = (b+ dy)ι(x).(4.19)

After substitution (4.18) into (4.19) and noting that t(a+ cy) � p′ we get

(4.20) y′ = (ϕp′ ◦ ϕ−1
p )(y) = (b+ dy)ι(a+ cy).

All operations involved in the right-hand-side of equality (4.20) are smooth.
�

Remark 4.3. If projections p′ and p are equivalent, i.e. if there exists x ∈
G(M) such that p = s(x) and p′ = t(x), then the Banach spaces (1− p)Mp
and (1− p′)Mp′ are isomorphic.

See also [1] for the investigation of infinite-dimensional Grassmannians
as homogeneous spaces of the Banach-Lie group U(M). Note, that when M
is a finite W ∗-algebra then the orbits of the inner action of the groupoid
U(M) and the orbits of the inner action of unitary group U(M) on the
lattice L(M) coincide.
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4.2. Banach-Lie groupoid structure of G(M) ⇒ L(M)

Now let us introduce a structure of a Banach smooth manifold on G(M).
For this purpose taking p, p̃ ∈ L(M) we define the covering of G(M) by

subsets:

(4.21) Ωp̃p := t−1(Πp̃) ∩ s−1(Πp).

Let us note here that Ωp̃p �= ∅ if and only if p̃ ∼ p. Note also that the set
Ωpp is a subgroupoid of G(M). If Ωp̃p �= ∅ then one has the one-to-one map

(4.22) ψp̃p : Ωp̃p → (1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp

of Ωp̃p on an open subset of the direct sum of the Banach subspaces of the
W ∗-algebra M. This map we define by

(4.23) ψp̃p(x) := (ϕp̃(t(x)), ι(σp̃(t(x)))xσp(s(x)), ϕp(s(x))) ,

where σp(q) ∈ qMp and ϕp(q) ∈ (1− p)Mp are obtained from the decompo-
sition

(4.24) p = σp(q)− ϕp(q)

of p with respect to (4.1). Recall that σp : Πp → t−1(Πp) is a section defined
in (4.12).

Proposition 4.4. The maps

(4.25) (Ωp̃p, ψp̃p : Ωp̃p → (1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp) ,

where (p, p̃) ∈ L(M)× L(M) are pairs of equivalent projections, form a
smooth atlas on the groupoid G(M) in sense of [3].

Proof. The map ψ−1
p̃p : ψp̃p(Ωp̃p) → Ωp̃p inverse to (4.23) looks as follows

(4.26) ψ−1
p̃p (ỹ, z, y) := σp̃(q̃)zι(σp(q)) = (p̃+ ỹ)zι(p+ y)

where q̃ = l(p̃+ ỹ) and q = l(p+ y) are left supports of p̃+ ỹ and p+ y,
respectively. The transition maps

ψp̃′p′ ◦ ψ−1
p̃p : ψp̃p(Ωp̃′p′ ∩ Ωp̃p) → ψp̃′p′(Ωp̃′p′ ∩ Ωp̃p)
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for (ỹ, z, y) ∈ ψp̃p(Ωp̃′p′ ∩ Ωp̃p) are given by

(4.27) (ψp̃′p′ ◦ ψ−1
p̃p )(ỹ, z, y) := (ỹ′, z′, y′),

where

ỹ′ = (ϕp̃′ ◦ ϕ−1
p̃ )(ỹ) = (b̃+ d̃ỹ)ι(ã+ c̃ỹ)(4.28)

y′ = (ϕp′ ◦ ϕ−1
p )(y) = (b+ dy)ι(a+ cy)(4.29)

and

(4.30) z′ = ι(p̃′ + ỹ′)(p̃+ ỹ)zι(p+ y)(p′ + y′).

We note that all maps in (4.28), (4.29), (4.30) are smooth. �

The smooth (analytic) Banach manifold structure on G(M) has the type
G, where G is the set of Banach spaces (1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp in-
dexed by the pair of equivalent elements of L(M).

Theorem 4.5. The groupoid G(M) is a Banach-Lie groupoid over the base
L(M) with respect to the smooth (analytic) Banach manifold structure of
type G defined by the atlas (4.25).

Proof. We show that all groupoid maps and the groupoid product are smooth
(analytic) with respect to the considered Banach manifold structure.

(i) For the source and target map we have

(ϕp ◦ s ◦ ψ−1
p̃p )(ỹ, z, y) = y,(4.31)

(ϕp̃ ◦ t ◦ ψ−1
p̃p )(ỹ, z, y) = ỹ.(4.32)

We assumed in (4.31) and (4.32) that (ỹ, z, y)∈ψp̃p(Ωp̃p), s(ψ
−1
p̃p (ỹ, z, y))

∈ Πp and t(ψ−1
p̃p (ỹ, z, y)) ∈ Πp̃ respectively. We conclude from (4.31)

and (4.32) that ϕp ◦ s ◦ ψ−1
p̃p and ϕp̃ ◦ t ◦ ψ−1

p̃p are smooth (analytic)
submersions.

(ii) For the identity section ε : L(M) → G(M) we have

(4.33) (ψp̃p ◦ ε ◦ ϕ−1
p )(y) =

(
(ϕp̃ ◦ ϕ−1

p )(y), ι(σp̃(ϕ
−1
p (y)))σp(ϕ

−1
p (y)), y

)
,

where y ∈ ϕp(Πp). Since σp̃ : Πp̃ → t−1(Πp̃) and σp : Πp → t−1(Πp) are
smooth (analytic) sections we obtain that ψp̃p ◦ ε ◦ ϕ−1

p is smooth (an-
alytic) map too.
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(iii) The inverse map ι : G(M) → G(M) takes Ωp̃p onto Ωpp̃ and we have

(4.34) (ψpp̃ ◦ ι ◦ ψ−1
p̃p )(ỹ, z, y) = (y, ι(z), ỹ).

Thus ι is a complex smooth (analytic) map.

(iv) Let us take x1 ∈ Ωp̃1p1
and x2 ∈ Ωp̃2p2

such that s(x1) = t(x2) ∈ Πp̃2
∩

Πp1
. Assuming ψp̃1p1

(x1) = (ỹ1, z1, y1) and ψp̃2p2
(x2) = (ỹ2, z2, y2) we

obtain that

ψp̃1p2
(ψ−1

p̃1p1
(ỹ1, z1, y1)ψ

−1
p̃2p2

(ỹ2, z2, y2))(4.35)

= (ỹ1, z1ι(σp1
(ϕ−1

p1
(y1)))(σp̃2

(ϕ−1
p̃2

(ỹ2)))z2, y2).

To summarize, we conclude that G(M) ⇒ L(M) is a Banach-Lie groupoid.
�

4.3. Banach-Lie groupoid structure of U(M) ⇒ L(M)

In order to investigate the structure of real Banach manifold on U(M) we
recall that one can define U(M) as the set of the fixed points of the groupoid
automorphism J : G(M) → G(M) defined in (2.10). Let us note that J is a
bijection of the domain Ωp̃p of the chart (4.22) defined in (4.23). Recall also

that G(M)p̃p is an open subset of the Banach subspace p̃Mp. Since J is an
involution and J(x) = x for x ∈ U(M) one has

(4.36) (DJ(x))2 = 1

for the Fréchet derivative DJ(x) : TxG(M) → TxG(M) of the map J at the
element x ∈ U(M). Thus we obtain a Banach splitting

(4.37) TxG(M) = T+
x G(M)⊕ T−

x G(M)

of the tangent space TxG(M) defined by the projections

(4.38) P±(x) :=
1

2
(1±DJ(x)) .

In the next, instead of ψp̃p : Ωp̃p → (1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp we
will use a new chart defined by

(4.39) θp̃p(x) := ((ϕp̃(t(x)), (up̃(t(x)))
∗xup(s(x)), ϕp(s(x))) = (ỹ, v, y),
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where

up(s(x)) := σp(s(x))|σp(s(x))|−1(4.40)

up̃(t(x)) := σp̃(t(x))|σp̃(t(x))|−1(4.41)

are partial isometries defined by the polar decompositions of σp(s(x)) and
σp̃(t(x)), respectively. The coordinates (ỹ, v, y) defined in (4.39) passing
through the set

((1− p̃)Mp̃)× G(M)p̃p × ((1− p)Mp)

and x ∈ U(M) ∩ Ωp̃p if and only if v ∈ U(M)p̃p. Using the chart (4.39) we
find

D
(
θp̃p ◦ J ◦ θ−1

p̃p

)
(ỹ, v, y) (� ỹ,� v,� y)(4.42)

= (� ỹ,−ι(v∗)(� v)∗ι(v∗),� y)

for (� ỹ,� v,� y) ∈ (1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp ∼= TxG(M). After these
preliminary remarks let us formulate

Theorem 4.6. (i) The groupoid U(M) of partial isometries has a struc-
ture of a real Banach manifold of type G, where the family G consist
of the real Banach spaces

(1− p̃)Mp̃⊕ ip̃Mhp⊕ (1− p)Mp

parameterized by the pairs (p̃, p) ∈ L(M)× L(M) of equivalent projec-
tions.

(ii) The groupoid U(M) is a closed real Banach Lie subgroupoid of G(M)
when G(M) is endowed with the real Banach Lie groupoid structure
underlaying its complex Banach Lie groupoid structure.

Proof. In order to show that U(M) is a real Banach submanifold of G(M) we
define for each x ∈ Ωp̃p ∩ U(M) the subset Ωx

p̃p ⊂ Ωp̃p consisting of such ele-

ments x′ ∈ Ωp̃p for which u ∈ G(M)p̃p defined by θp̃p(x
′) = (ỹ′, u, y′) satisfies

the inequality

(4.43) ‖v − u‖ < 1

where the partial isometry v is the second coordinate of x defined by (4.39).
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From the inequality (4.43) we find that v∗u ∈ G(pMp) satisfies

(4.44) ‖p− v∗u‖ < 1

So, one can define the map θxp̃p : Ω
x
p̃p → (1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp

as follows

(4.45) θxp̃p(x
′) := (ỹ′, log(v∗u), y′).

If x′ ∈ Ωx
p̃p ∩ U(M) then v∗u ∈ U(pMp). Thus log(v∗u) ∈ ipMhp, which im-

plies that the image of the map

(4.46) θxp̃p : Ω
x
p̃p ∩ U(M) → (1− p̃)Mp̃⊕ ip̃Mhp⊕ (1− p)Mp

is contained in the first component of the Banach splitting

(1− p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp(4.47)

=
(
(1− p̃)Mp̃⊕ ip̃Mhp⊕ (1− p)Mp

)
⊕
(
{0} ⊕ p̃Mhp⊕ {0}

)

of the real Banach space underling of the complex Banach space (1− p̃)Mp̃⊕
p̃Mp⊕ (1− p)Mp. Hence we have the atlas (Ωx

p̃p ∩ U(M), θxp̃p) on U(M)
parametrized by (p̃, p) ∈ L(M)× L(M) and x ∈ U(M). This atlas defines
on U(M) a structure of a real Banach manifold which is consistent with the
groupoids structure of U(M) ⇒ L(M). The consistence of (4.46) with the
splitting (4.47) means that U(M) is a submanifold of G(M). For the defini-
tion of Banach submanifold see Section 2 of Chapter 2 in [10]. Summarizing
we see that U(M) ⇒ L(M) is a Banach Lie subgroupoid of G(M) ⇒ L(M).

�

Since the group G(pMp) is a complexification of the unitary group
U(pMp) we conclude from Theorem 4.6 that the groupoid G(M) can be
considered in some sense as a complexification of U(M).

4.4. Short exact sequence of Banach-Lie groupoids

In Subsection 2.3 we have defined the inner subgroupoid J (M) of the
groupoid G(M) of partially invertible elements of a W ∗-algebra M. Now
we show that J (M) is a Banach-Lie subgroupoid of G(M).
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In order to exhibit the Banach submanifold structure of J (M) we define
the charts

κp : Ωp → pMp⊕ (1− p)Mp,

parametrized by p ∈ L(M), where

Ωp := J (M) ∩ Ωpp =
⋃

q∈Πp

t−1(q) ∩ s−1(q)

and

(4.48) κp(x) := (ι(σp(t(x)))xσp(s(x)), ϕp(s(x))) .

The transition maps κp′ ◦ κ−1
p : κp(Ωp′ ∩ Ωp) → κp′(Ωp′ ∩ Ωp) for (4.48) are

(z′, y′) =
(
κp′ ◦ κ−1

p

)
(z, y)(4.49)

=
(
ι(p′ + y′)(p+ y)zι(p+ y)(p′ + y′), (b+ dy)ι(a+ cy)

)
.

Note here that for x ∈ J (M) one has s(x) = t(x). So, it follows from (4.23)
that x ∈ Ωp = J (M) ∩ Ωpp if and only if ỹ = y. Thus, using Theorem 4.5
we see that the groupoid J (M) ⇒ L(M) is a Banach-Lie subgroupoid of
G(M) ⇒ L(M).

Let us take the subset

(4.50)
⋃
p̃∼p

(Πp̃ ×Πp) ⊂ L(M)× L(M)

of the pair groupoid L(M)× L(M) ⇒ L(M). Since
⋃

p̃∼p (Πp̃ ×Πp) is an
open subset of L(M)× L(M) closed with respect to the groupoid operations
one can consider

⋃
p̃∼p (Πp̃ ×Πp) ⇒ L(M) as a Banach-Lie subgroupoid of

the pair groupoid L(M)× L(M) ⇒ L(M).

Proposition 4.7. One has the following short exact sequence of Banach-
Lie groupoids

(4.51)

J (M) G(M)
⋃
p̃∼p

(Πp̃ ×Πp)

L(M) L(M) L(M),

�� ��� �

�

��

�

idid
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i.e. the quotient groupoid G(M)/J (M) ⇒ L(M) is isomorphic with the
groupoid

⋃
p̃∼p (Πp̃ ×Πp) ⇒ L(M).

Proof. According to Chapter I, §2 of [11] the quotient groupoid G(M)/J (M)
consists of the classes [x] of the equivalence relation on G(M) defined as
follows: elements x1, x ∈ G(M) are equivalent if and only if there exists g ∈
G(pMp), where p = t(x1) such that gx1 = x.

One easily checks that all groupoid operations of G(M)/J (M) ⇒ L(M)
are inherited from those of the groupoid G(M) ⇒ L(M). We observe also
that (G(M)/J (M))qp is a one element set if and only if p ∼ q and it is the
empty set in the opposite case. Thus we can identify G(M)/J (M) ⇒ L(M)
with

⋃
p̃∼p (Πp̃ ×Πp) ⇒ L(M). �

5. Groupoids and Banach Lie-Poisson structure of M∗

In [13] it was shown that the predual spaceM∗ of aW ∗-algebraM has canon-
ically defined Lie-Poisson structure. This follows from ad∗(M)-invariance of
Banach subspace M∗ ⊂ M∗, where adx(y) := xy − yx. One defines the Lie-
Poisson bracket of f, g ∈ C∞(M∗,C) as follows

(5.1) {f, g}(ω) := 〈ω, [Df(ω), Dg(ω)]〉

for ω ∈ M∗. Note that Fréchet derivatives Df(ω), Dg(ω) belong to M which
allows to take the commutator of them. The predual space M∗ as well as
the Lie-Poisson bracket (5.1) is invariant with respect to the Ad∗-action of
the Banach group G(M).

The pairing between Mh∗ and the real Banach-Lie algebra iMh of anti-
hermitian elements of M is defined by

Mh
∗ × iMh � (ω, x) �→ i〈ω, x〉 ∈ R.

Hence, multiplying the right hand side of definition (5.1) by i =
√−1 one

obtains the Lie-Poisson bracket for real valued functions f, g ∈ C∞(Mh∗ ,R)
defined on the hermitian part Mh∗ of M∗.

As in the complex case the Banach Lie-Poisson structure of Mh∗ is
Ad∗(U(M))-invariant. If the isotropy subgroup U(M)ρ := {g ∈ U(M) :
Ad∗gρ = ρ} is a Banach-Lie subgroup of U(M), then the connected com-

ponents of the coadjoint orbits Ad∗U(M)ρ of ρ ∈ Mh∗ are in general weakly

symplectic leaves of the real Banach-Lie-Poisson space Mh∗ , see Theorem 7.3
and Theorem 7.4 in [13].
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5.1. Tangent TG(M) ⇒ M and precotangent T∗G(M) ⇒ M∗
groupoids of M

Now let us apply the definitions of the groupoids structures on the tangent
bundle TG and cotangent bundle T ∗G of a Lie group G, e.g. see [11], to the
case of Banach-Lie group G(M). We will do this with some modification.
Namely in our considerations we replace the cotangent bundle T ∗G(M) by
the pre-cotangent bundle T∗G(M) of G(M). Note that in the finite dimen-
sional case the bundles T ∗G and T∗G are canonically isomorphic. In our
case the cotangent bundle T ∗G(M), contrary to the pre-cotangent bundle
T∗G(M) does not have the symplectic structure related to the Banach Lie-
Poisson structure of M∗ defined by (5.1).

The groupoid structure on TG(M) is defined as follows. The base of
TG(M) is the tangent space TeG(M) at the identity element e ∈ G(M).
The source map s : TG(M) → TeG(M) and the target map t : TG(M) →
TeG(M) are defined as follows

(5.2)
s(a) := DLπ(a)−1(π(a))a,

t(a) := DRπ(a)−1(π(a))a,

where a ∈ TG(M) and π : TG(M) → G(M) is the canonical projection on
the base. The identity section ε : TeG(M) → TG(M) is done by the inclu-
sion of the fibre TeG(M) ⊂ TG(M). The involution ι : TG(M) → TG(M)
one defines by

(5.3) ι(a) := DLπ(a)−1(e) ◦DRπ(a)−1(π(a))a.

Finally the groupoid product is defined by

(5.4) ab := DLπ(a)(π(b))b

if and only if (a, b) ∈ TG(M)(2), i.e. s(a) = t(b).
As a base for groupoid structure of T∗G(M) we take the pre-cotangent

space T∗eG(M) at e ∈ G(M). The identity section ε∗ : T∗eG(M) → T∗G(M)
we define as an inclusion T∗eG(M) ⊂ T∗G(M).

Let us take ξ ∈ T∗G(M) and let π(ξ) ∈ G(M) be the projection of ξ on
the base. Then one defines the source and target maps as follows:

(5.5)
s∗(ξ) := (DLπ(ξ)(e))

∗ξ,

t∗(ξ) := (DR(π(ξ))(e))
∗ξ.
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The inversion ι∗ : T∗G(M) → T∗G(M) is defined by

(5.6) ι∗(ξ) := (DLπ(ξ)(π(ξ))
−1)∗ ◦ (DR(π(ξ))(e))

∗ξ.

The product of elements ξ, η ∈ T∗G(M) such that s(ξ) = t(η) is given by

(5.7) ξη := (DL(π(ξ))−1(π(ξ)π(η)))∗η.

The precotangent bundle T∗G(M) is a weak symplectic complex Banach
manifold with the weak symplectic form defined in the following way

ΩL(g, ρ)((a, ξ), (b, η))(5.8)

= 〈η,DLg−1(g)a〉 − 〈ξ,DLg−1(g)b〉 − 〈ρ, [DLg−1(g)a,DLg−1(g)b]〉,

where g ∈ G(M), a, b ∈ TgG(M), ρ, ξ, η ∈ T∗eG(M), see [13]. Thus defined
weak symplectic structure is consistent with the groupoid structure of
T∗G(M) in the sense of [6], [9], [21], [22]. Hence one can consider T∗G(M)
as a weak symplectic groupoid.

The definition of action groupoid structure on the product G×M , where
G is a group acting on a set M , can be found in Appendix D. From this
general definition one gets action groupoid structures on G(M)×M and
G(M)×M∗ defined by adjoint Ad : G(M) → Aut M and co-adjoint Ad∗ :
G(M) → Aut M∗ representation of Banach-Lie group G(M):

Adgx = gxg−1(5.9)

〈Ad∗gω, x〉 := 〈ω,Adg−1x〉,(5.10)

where x ∈ M and ω ∈ M∗ respectively.
The vector bundles trivializations φ : TG(M) → G(M)×M and φ∗ :

T∗G(M) → G(M)×M∗ defined by

φ(a) := (π(a), DLπ(a)−1(π(a))a)(5.11)

φ∗(ξ) := (π(ξ), (DLπ(ξ)(e))
∗ξ)(5.12)

give the canonical groupoid isomorphisms φ : TG(M) → G(M)×M and
φ∗ : T∗G(M) → G(M)×M∗. To this end we use the identifications
TeG(M) ∼= M and T∗eG(M) ∼= M∗.
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Let us define the injective immersions of the groupoids Λ : TG(M) →
G(M) ∗M and Λ∗ : T∗G(M) → G(M) ∗M∗ by:

Λ(a) :=
(
π(a) l(DLπ(a)−1(π(a))a), DLπ(a)−1(π(a))a

)
(5.13)

Λ∗(ξ) :=
(
π(ξ) l((DLπ(ξ)(e))

∗ξ), DLπ(ξ)(e)
∗ξ
)

(5.14)

respectively.

Proposition 5.1. One has the following groupoid monomorphisms

(5.15)

TG(M) G(M) ∗M

M M

�� ��

�

�

s t t̃s̃

Λ

id

and

(5.16)

T∗G(M) G(M) ∗M∗

M∗ M∗

�� ��

�

�

s t t̃s̃

Λ∗

id

of the groupoids TG(M) ⇒ M and T∗G(M) ⇒ M∗ into the action groupoids
G(M) ∗M⇒M and G(M) ∗M∗⇒M∗, where Λ and Λ∗ are defined in (5.13)
and (5.14)

Proof. In order to see that Λ : TG(M) → G(M) ∗M commutes with source
and target maps we note that

(s̃ ◦ Λ)(a) = s̃
(
π(a) l(DLπ(a)−1(π(a))a), DLπ(a)−1(π(a))a

)

= DLπ(a)−1(π(a))a = (id ◦ s)(a),
(t̃ ◦ Λ)(a) = t̃

(
π(a) l(DLπ(a)−1(π(a))a), DLπ(a)−1(π(a))a

)

= Adπ(a) l(DLπ(a)−1 (π(a))a)DLπ(a)−1(π(a))a

= Adπ(a)DLπ(a)−1(π(a))a = (id ◦ t)(a).
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Since l(DLπ(a)−1(π(a))a) = Adπ(a)l(DLπ(b)−1(π(b))b) the following shows
that Λ preserves also the groupoid product

Λ(a)Λ(b)

=
(
π(a) l(DLπ(a)−1(π(a))a), DLπ(a)−1(π(a))a

)
(
π(b) l(DLπ(b)−1(π(b))b), DLπ(b)−1(π(b))b

)

=
(
π(a) l(DLπ(a)−1(π(a))a)(π(b)) l(DLπ(b)−1(π(b))b), DLπ(b)−1(π(b))b

)

= Λ(DLπ(a)(π(b))b) = Λ(ab).

The proof for (5.16) can be done in the similar way. �

5.2. Tangent TG(M) ⇒ TL(M) and precotangent
T∗G(M) ⇒ A∗G(M) prolongations of G(M) ⇒ L(M)

Now instead of the complex Banach-Lie group G(M) let us consider the
groupoid of partially invertible elements G(M). In this case we come to the
following statements.

Since G(M) ⇒ L(M) is a Banach Lie groupoid one can define its tangent
prolongation TG(M) ⇒ TL(M) which is a Banach Lie VB-groupoid, (see e.g.
Definition 11.2.1 in [12]), i.e. one has

(5.17)

TG(M) G(M)

TL(M) L(M)

�� ��

�

�

Ds Dt ts

q̃

q

where the vector bundle projections q and q̃ on the bases define the groupoid
morphism, the tangent maps Ds, Dt, Dι,Dε are vector bundle morphisms.

Let us note also that the map

(q̃, Ds) : TG(M) → G(M)× TL(M)

of tangent groupoid TG(M) on G(M)×L(M) TL(M) := {(x, v) ∈ G(M)×
TL(M); s(x) = q(v)} is a surjective submersion.

Since G(M) ⇒ L(M) is a Banach Lie groupoid we can define its Banach
Lie algebroid AG(M) which is a vector bundle � : AG(M) → L(M) over the
lattice L(M). It follows from the general theory of VB-groupoids that the
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bundle � : AG(M) → L(M) is the core of the tangent prolongation groupoid
TG(M) ⇒ TL(M) of G(M) ⇒ L(M). For definitions of the Lie algebroid of
a Lie groupoid G ⇒ M and the core of VB-groupoid see for example Defi-
nition 3.5.8 in [12] or Appendix F, and Subsection 11.2 of [12], respectively.

The algebroid AG(M) and its predual A∗G(M) are most crucial for the
Poisson aspect of the investigated theory. Namely, extending the consid-
erations from the finite dimensional case, see e.g. [12], [21], [22], to the
Banach-Lie context we obtain the Banach-Lie VB-groupoid

(5.18)

T∗G(M) G(M)

A∗G(M) L(M)

�� ��

�

�

s̃ t̃ ts

q̃∗

q∗

precotangent to the one presented in (5.17), where q∗ and q̃∗ are the projec-
tions on the base. One defines the source s̃ and target t̃ maps in (5.18) as
follows. Let φ ∈ T∗xG(M) and x ∈ AG(M) such that �(x) = p ∈ L(M), then

〈s̃(φ), x〉 := 〈φ,DLg(ε(p))(x−Dε(p)Dt(ε(p))x)〉,(5.19)

〈t̃(φ), x〉 := 〈φ,DRg(ε(p))x〉.(5.20)

The product φ • ψ of φ ∈ T∗xG(M) and ψ ∈ T∗yG(M), where s̃(φ) = t̃(ψ) ∈
A∗pG(M) and s(x) = t(y) = p ∈ L(M), one defines by

(5.21) 〈φ • ψ, ξ · η〉 = 〈φ, ξ〉+ 〈ψ, η〉,

where ξ ∈ TxG(M), η ∈ TyG(M) satisfy Ds(ξ) = Dt(η) and ξ · η ∈ TxyG(M)
is the product of ξ and η in the tangent groupoid TG(M). The above def-
initions we obtain as a direct generalization of those accepted in the finite
dimensional case, e.g. Subsection 11.5 of [12].

The groupoid T∗G(M) ⇒ A∗G(M) is a weak symplectic Banach-Lie re-
alization of the Banach-Poisson bundle A∗G(M), which Poisson structure is
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determined by the algebroid structure of AG(M). We note here that dia-
gram (5.18) is the groupoid version of the diagram

(5.22)

T∗G(M) G(M)

M∗ {1}
�� ��

�

�

s̃ t̃ ts

q̃∗

q∗

valid for the group G(M).
The proofs of these statements are the direct generalizations of the proofs

for the finite dimensional case (see Theorem 11.5.18 in [12]) to the context
of the Banach-Lie groupoids theory.

Finally let us mention that all objects considered above belong to the
category of complex analytic Banach manifolds. They have their real analytic
counterparts if we replace the group G(M) and the groupoid G(M) by U(M)
and U(M) respectively, and M (M∗) by iMh (Mh∗).

A detailed investigation of Banach -Lie Poisson geometry related to W ∗-
algebras needs a longer treatment in a separate paper, which is currently in
preparation.

5.3. The Atiyah sequence of G(M) ⇒ L(M)

The Atiyah sequence is a short exact sequence of Lie algebroids naturally
related to a principal bundle, e.g. see Section 3 of [12].

In the context of the paper we define the Atiyah sequence as the short ex-
act sequence of Banach-Lie algebroids which are algebroids of the groupoids
of (4.51). Let us describe these algebroids explicitly.

The inner groupoid J (M) ⇒ L(M) is a totally intransitive Banach-Lie
groupoid such that s−1(p) = t−1(p) = G(pMp) for p ∈ L(M). Thus one iden-
tifies AJ (M) → L(M) with the bundle A(M) → L(M) defined in (2.30).
Since A(M) → J (M) is a bundle of the associative Banach algebras (W ∗-
algebras) it could be considered as a bundle of Banach-Lie algebras, i.e. it
is an intransitive Banach-Lie algebroid over L(M).

Recall that sections of the Lie algebroid AG of a Lie groupoid G ⇒ M
(e.g. see Section 3 of [12]) are identified with the right invariant vector fields
on G tangent to the s-fibres. Such vector fields are defined in the unique way
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by their values at the identity elements of G. So, by definition the algebroid
AG(M) → L(M) is

(5.23) AG(M) :=
⊔

p∈L(M)

T s
ε(p)G(M) → L(M),

where T s
ε(p)G(M) is the Banach space tangent to s−1(p) at ε(p) ∈ G(M).

Proposition 5.2. For p ∈ L(M) one has the following isomorphism of Ba-
nach spaces

T s
ε(p)G(M) ∼= Mp.

Proof. Let us take ]− ε, ε[� t �→ x(t) ∈ s−1(p) = G(M) ∩Mp such that
x(0) = p. Thus from d

dtx(t)|t=0 =
d
dt(x(t)p)|t=0 =

d
dtx(t)|t=0p one has

d
dtx(t)|t=0 ∈ Mp. The above shows that T s

ε(p)G(M) ⊂ Mp. Let us show that

Mp ⊂ T s
ε(p)G(M). For this reason, for 0 �= x ∈ (1− p)Mp we define x(t) :=

p+ tx, where t ∈ R. If |t| < 1
‖x‖ then

x∗(t)x(t) = (p+ tx)∗(p+ tx) = p+ t2x∗x ∈ G(pMp).

Thus x(t) ∈ G(M)p ⊂ G(M) if |t| < 1
‖x‖ . Since x(0) = p and d

dtx(t)|t=0 = x

we find that x ∈ T s
ε(p)G(M). If x ∈ pMp then x(t) = p+ tx ∈ G(pMp) for

|t| < 1
‖x‖ and thus x ∈ Tε(p)J (M) ⊂ T s

ε(p)G(M). From the above and from

the Banach splitting Mp = pMp⊕ (1− p)Mp we obtain Mp ⊂ T s
ε(p)G(M).

�
We conclude from Proposition 5.2 the following

Proposition 5.3. The algebroid AG(M) → L(M) of G(M) ⇒ L(M) is iso-
morphic, as a vector bundle, to the bundle ML(M) → L(M) of the left M-
modules over L(M). Hence Γ∞(ML(M)) inherits the Lie algebra structure
of Γ∞(AG(M)).

Since
⋃

p̃∼p (Πp̃ ×Πp) is an open subset of L(M)× L(M) containing the
diagonal the Banach Lie algebroid of

⋃
p̃∼p (Πp̃ ×Πp) ⇒ L(M) is the tangent

bundle TL(M) → L(M) of the lattice L(M).
Now, since there is a functorial correspondence between the category of

the Banach-Lie groupoids and the category of the Banach-Lie algebroids we
conclude the following



728 A. Odzijewicz and A. Sliżewska

Proposition 5.4. One has the exact sequence of Banach-Lie algebroids

(5.24) A(M)
ι−→ ML(M)

a−→ TL(M)

over L(M), where ι and a are the inclusion monomorphism and anchor map,
respectively.

Let us note that the algebroid AG(M) = ML(M) splits into transitive
Banach-Lie algebroids over each orbit Op ⊂ L(M), p ∈ L(M) of G(M) ⇒
L(M). There are the Atiyah algebroids of the G(pMp)-principal bundles
t : s−1(p) → Op defined in (2.15). The above considerations justify us to
calling (5.24) the Atiyah sequence of G(M) ⇒ L(M).

Appendix A. The lattice of projections

The set of orthogonal projections L(M) of W ∗-algebra M has canonically
defined structure of complete orthomodular lattice, see Chapter III in [20],
and points (i-vi) below. Let us shortly describe this structure. For details
we refer also to [17, 19].

The order p � q, the meet p ∧ q and the joint p ∨ q are operations in
L(M) defined by

(i)

p � q ⇔ pq = p;

(ii)

p ∧ q := lim
n→∞(pq)n,

the limit in (ii) is taken in the sense of s(M,M∗)-topology;

(iii)

p ∨ q := (p⊥ ∧ q⊥)⊥,

where the orthocomplementation ⊥ : L(M) → L(M) is defined as

p⊥ := 1− p.

The lattice L(M) is also a complete lattice, i.e. for any set of projections
{pα}α∈I one has

(iv) ∨
α∈I

pα ∈ L(M),
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(v) ∧
α∈I

pα ∈ L(M).

We can easily see that

p ∧ p⊥ = 0, p ∨ p⊥ = 1, p⊥⊥ = p, p � q ⇒ q⊥ � p⊥,

and

(vi)

p � q ⇒ q = p ∨ (q ∧ p⊥).

The last property is called the orthomodular property.

Appendix B. Groupoids

Let us recall that a groupoid with the base set B (set of objects) is a
set G such that:

i) there is a pair of maps

B B

G

B

s

����
��
��
��
��
��
G

B

t

���
��

��
��

��
��

�

called source and target map respectively;

ii) for set of composable pairs

G(2) := {(g, h) ∈ G×G; s(g) = t(h)}

one has a product map m : G(2) → G, denoted by

(B.1) m(g, h) =: gh

such that
(a) s(gh) = s(h), t(gh) = t(g),
(b) associativity: k(gh) = (kg)h;

iii) there is an injection ε : B → G called the identity section, such that

ε(t(g))g = g = gε(s(g));
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iv) there exists an inversion ι : G → G denoted by

(B.2) ι(g) =: g−1,

such that

ι(g)g = ε(s(g)), gι(g) = ε(t(g))

for all g ∈ G.

A groupoid G gives rise to a hierarchy of sets
G(0) := ε(B) � B
G(1) := G
G(2) := {(g, h) ∈ G×G; s(g) = t(h)}

...
G(k) := {(g1, g2, ..., gk) ∈ G×G× · · · ×G; t(gi) = s(gi−1), i = 2, 3, . . . , k}

In the paper we will consider the topological (differentiable) groupoids.
Because of this let us recall that the groupoid G is called a topological (dif-
ferentiable) groupoid if G and B have the topologies (differential manifold
structure) such that:

i) the product map (B.1) and the involution (B.2) are continuous (differ-
entiable);

ii) the injection ε : B → G is an embedding (differentiable embedding).

¿From ε ◦ s(g) = gg−1 and ε ◦ t(g) = g−1g it follows that source map
and target map are continuous (differentiable). By definition the topology of
G(k), for k = 0, 1, 2, ..., is inherited from G. In case of differentiable groupoid
one assumes that the source and target maps are submersions.

Appendix C. Groupoid morphisms

A morphism φ of two groupoids G1 and G2 over bases B1 and B2 can be
depicted by the following commutative diagram

(C.1)

G1 G2

B1 B2

�� ��

�

�

s1 t1 t2s2

φG

φB
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By definition one also has

φB ◦ s1 = s2 ◦ φG and φB ◦ t1 = t2 ◦ φG

and

φG(g)φG(h) = φG(gh)

for (g, h) ∈ G
(2)
1 . If φG : G1 ↪→ G2 and φB : B1 ↪→ B2 are inclusion maps one

says that G1 is a subgroupoid of G2. The subgroupoid G1 ⊂ G2 is a wide
subgroupoid of G2 if φB(s1(G1)) = φB(t1(G1)) = B2.

An example of a groupoid morphism is given by

(C.2)

G B ×B

B B

�� ��

�

�

s t pr2pr1

(s, t)

id

where B ×B is the pair groupoid, i.e. s := pr1, t := pr2, ι(x, y) := (y, x),
ε(x) = (x, x) and m((y, z), (x, y)) = (x, z).

Appendix D. Action groupoids

If a group G acts on a set M

G×M � (g,m) �→ g ·m ∈ M

one can define on the set G×M a groupoid structure, which is called the
action groupoid structure. For this case one defines

i) source and target maps s, t : G×M → M as

(D.1) s(g,m) := m ∈ M and t(g,m) := g ·m ;

ii) the groupoid product

(D.2) (g,m)(h, n) := (gh, n)

on the set of composable pairs

(G×M)(2) := {((g,m), (h, n)) ∈ (G×M)× (G×M) : m = h · n}
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iii) the identity section ε : M → G×M by

(D.3) ε(m) = (e,m);

iv) the involution ι : G×M → G×M by

(D.4) ι(g,m) = (g−1, g ·m).

Appendix E. Groupoid actions

We recall the definition of a left action of a groupoid G on a set M .
One assumes for this reason that there exists a map (moment map)

(E.1) μ : M → B

and one defines the space

(E.2) G ∗l M := {(g, r) ∈ G×M : s(g) = μ(r)}.

Then a left action of groupoid G on M is defined as a map G ∗l M � (g, r) �→
g · r ∈ M with properties:

(E.3)
(gh) · r = g · (h · r)
μ(g · r) = t(g)
ε(μ(r)) · r = r.

For the right action of G on M instead of (E.3) we have

(E.4)
r · (gh) = (r · h) · g
μ(r · g) = s(g)
r · ε(μ(r)) = r,

where (g, r) ∈ G ∗r M := {(g, r) ∈ G×M : t(g) = μ(r)}.
As an example let us take the canonical left action of G on its base

B. In this case M := B, μ := id and

(E.5) G ∗l B = {(g, x) : x = s(g)}

The action map is defined by

(E.6) G ∗l B � (g, x) �→ g · x := t(g).

The defining properties (E.3) follow from the corresponding properties of
the maps s, t, ε and the product map (B.1).
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One can generalize the notion of the action groupoid defined in Ap-
pendix D replacing the group G by a groupoid.

Definition E.1. The set G̃ := G ∗l M has a groupoid structure G ∗l M ⇒
M over M defined as follows:

i) source map and target map are given by s̃(g, r) := r ∈ M and t̃(g, r) :=
g · r ∈ M ;

ii) the set of composable pairs

G̃(2) := {((g, r), (h, n)) ∈ G̃× G̃; t(h) = s(g)}

and the product map m̃ : G̃(2) → G̃ is defined as

(E.7) m̃((g, r), (h, n)) = (gh, n);

iii) the identity section ε̃ : M → G̃ is defined by

(E.8) ε̃(r) = (ε(μ(r)), r);

iv) the involution ι̃ : G̃ → G̃ is defined by

(E.9) ι̃(g, r) = (ι(g), g · r).

Similarly as in the group case the groupoid G ∗l M ⇒ M is called the action
groupoid.

In the case when G is a topological groupoid and M is a topological
space we obtain on G̃ a structure of a topological groupoid if the moment
map μ and the action G on M are continuous. The topological structure of
G̃ ⊂ G×M is inherited from product topology of G×M .

One calls the morphism depicted in (C.1) a covering morphism if for
each x ∈ B1 the restriction φG : s−1

1 (x) → s−1
2 (φB(x)) of φG to the s-level

of x is bijection.
The diagram

(E.10)

G ∗l M G

M B

�� ��

�

�

s̃ t̃ ts

pr1

μ
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where

φG(g, r) := pr1(g, r) = g and φB(r) := μ(r),

gives an example of the covering morphism of groupoids.

Appendix F. Algebroids

A Lie algebroid on manifold M , see e.g. Definition 3.3.1 in [12], is a vector
bundle (A, �,M) with a vector bundle map a : A → TM over M (anchor
map) and a bracket [ , ] : ΓA× ΓA → ΓA which is

i) R-bilinear, alternating, satisfies the Jacobi identity,

ii) [X,uY ] = u[X,Y ] + a(X)(u)Y

iii) a([X,Y ]) = [a(X),a(Y )]

for X,Y ∈ ΓA, u ∈ C∞(M).
A Lie algebroid of a Lie groupoid G ⇒ M is the vector bundle

AG :=
⋃

m∈M
Tε(m)(s

−1(m))

with the anchor map a : AG → TM defined by

a := Dt|ε(M).

Any section of AG one can consider as the restriction X|ε(M) to ε(M) of
the vector field X ∈ Γ∞TG tangent to the s-fibres and invariant with re-
spect to the right translations Rg : Gt(g) → Gs(g). So, the Lie bracket of
X|ε(M),Y|ε(M) ∈ Γ∞AG one defines as follows

[X|ε(M),Y|ε(M)] := [X ,Y]|ε(M).

The bundle AG with the above Lie bracket and a = Dt|AG is a Lie algebroid
which is called the Lie algebroid of the Lie groupoid G ⇒ M .
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