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Inequivalent Lefschetz fibrations
and surgery equivalence of
symplectic 4-manifolds

R. INANG BAYKUR

We prove that any symplectic 4-manifold which is not a rational or
ruled surface, after sufficiently many blow-ups, admits an arbitrary
number of nonisomorphic Lefschetz fibrations of the same genus
which cannot be obtained from one another via Luttinger surgeries.
This generalizes results of Park and Yun who constructed pairs of
nonisomorphic Lefschetz fibrations on knot surgered elliptic sur-
faces. In turn, we prove that there are monodromy factorizations
of Lefschetz pencils which have the same characteristic numbers
but cannot be obtained from each other via partial conjugations
by Dehn twists, answering a problem posed by Auroux.

1. Introduction

Since Donaldson’s proof of the existence of Lefschetz pencils on symplectic
4-manifolds [8], an immense literature has been dedicated to the study of
Lefschetz fibrations and pencils. However, a rather fundamental question
has been left mostly unanswered:

How many nonisomorphic Lefschetz pencils / fibrations of the same genus
does a given symplectic 4-manifold admit? [17]

Here, two Lefschetz pencils / fibrations are called isomorphic if there are
orientation-preserving self-diffeomorphisms of the 4-manifold and the base
surface which make the two fibrations commute — where it is clear that
the fiber genera, as well as the number of base points in the case of pencils,
should match to begin with.

Complementary to the diversity question above, one can inquire about
how to relate two different Lefschetz pencils / fibrations. Let (X, f) be a
symplectic Lefschetz pencil and L C X \ Crit(f) be an embedded Lagrangian
torus that fibers over a loop 7 on the base, i.e. f| is a circle bundle over ~
obtained by a parallel transport of a loop « in the fiber. A Luttinger surgery
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along L in the direction of a;, which we will call a fibered Luttinger surgery
in short, yields a new symplectic Lefschetz pencil, which has the same Euler
characteristic, signature and symplectic Kodaira dimension [13] as X, and
if (X, f) is supported by an integral symplectic form w, the characteristic
numbers [w]? and ¢; - [w] do not change [1]. Here is the second question we
are interested in:

Are any pair of integral symplectic Lefschetz pencils with the same
characteristic numbers (¢3, ca, [w]?, c1 - [w]) related via (fibered) Luttinger
surgeries? [3]

This is a Lefschetz pencil version of the — still open — question on the
equivalence of integral symplectic 4-manifolds with the same characteristic
numbers listed above via Luttinger surgeries [2], which in turn is a symplec-
tic version of Stern’s question on the equivalence of homeomorphic smooth
4-manifolds via smooth surgeries along tori [20], settled positively in [7].
Our goal is to address both questions above by proving the following:

Theorem A. Given any closed symplectic 4-manifold X which is not a
rational or ruled surface, and any positive integer N, there are N moniso-
morphic Lefschetz pencils of the same genus on a blow-up of X, which are
not equivalent via fibered Luttinger surgeries. These pencils can be chosen
so that they only have nonseparating vanishing cycles.

In fact, we will show in the proof of the theorem that there is no sequence
of — not necessarily fibered — Luttinger surgeries starting from the blow-
up of X and leading back to it so that the fiber of one pencil transforms
into the fiber of another. Thus the rigidity here is not due to the choice
of Lagrangian tori and surgery coefficients, but due to relating two pencils
instead of underlying symplectic manifold(s). As usual, blowing-up all the
base points, one obtains inequivalent Lefschetz fibrations with the same
properties listed in the theorem.

For a quick insight into the correlation between the above questions
of seemingly different nature, recall that an isomorphism between two Lef-
schetz fibrations can be translated to a combinatorial equivalence between
the associated positive Dehn twist factorizations in the mapping class groups
of surfaces via Hurwitz moves and global conjugations [11, 15]. A weaker
equivalence between two Lefschetz fibrations on two possibly different sym-
plectic 4-manifolds can be then defined by allowing partial conjugations, i.e.
conjugations of positive subwords of the monodromy factorizations in the
mapping class group. A particularly important case of partial conjugation
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is when the conjugating mapping class is a Dehn twist along a curve « pre-
served by the positive subword, which corresponds to a fibered Luttinger
surgery as above [3].

In [17], Park and Yun appealed to this combinatorial approach to show
that there are pairs of inequivalent Lefschetz fibrations on certain knot surg-
ered elliptic surfaces produced by Fintushel and Stern (and it is mentioned
in [17] that Smith had another isolated example of pairwise distinct Lef-
schetz fibrations on T2 x L9#9CP? in his thesis). In order to obtain their
result, the authors proved that for certain pairs of fibered knots, one gets two
distinct subgroups of the mapping class group generated by the collection of
positive Dehn twists in respective monodromy factorizations. Curiously, all
these examples were on symplectic 4-manifolds of Kodaira dimension 1, did
not contain (—1)-sphere sections (i.e. they were not blow-ups of pencils),
and were indeed equivalent via partial conjugations. Moreover, Park and
Yun’s clever use of monodromy groups in [17] was not powerful enough to
distinguish more than two fibrations. Our theorem generalizes their result in
all these aspects, generating examples on blow-ups of almost all symplectic
4-manifolds.

On the other hand, Auroux posed the following [3, Question 5:

Are any two factorizations of a boundary parallel twist into positive Dehn
twists along nonseparating curves always equivalent via Hurwitz moves
and partial conjugations, provided the two factorizations give the same
FEuler characteristic and signature?

As implicitly suggested by the question, one can read off the Euler character-
istic and signature of the total space of such a fibration from the factorization
(where the latter, given by the Meyer signature cocycle, is a much harder
calculation, but possible in principle). Furthermore, since the problem is for-
mulated in analogy with the Luttinger surgery question above, the particular
interest here is in the case when the partial conjugation along a subword is
performed by a Dehn twist along a curve that is fixed with the same orien-
tation by this subword. We will call this an untwisted partial conjugation.
Our second theorem, which is a weaker reformulation of Theorem A in this
setting, answers the above question in the negative:

Theorem B. The positive boundary multitwist in the mapping class group
I'y" of a closed orientable genus g surface with m boundary components ad-
mits N factorizations into positive Dehn twists along nonseparating curves,
which have the same Fuler characteristic and signature, but are not equiv-
alent via Hurwitz moves and untwisted partial conjugations by Dehn twists,
where g is taken sufficiently large for given N,m > 1.
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Our proof of Theorem A does not deal with explicit monodromy fac-
torizations, and instead uses a variant of the degree doubling construction
from [4, 19] for topological Lefschetz pencils. In Section 3 we are going to
introduce an algebraic invariant defined on equivalence classes of Lefschetz
pencils up to isomorphisms and (fibered) Luttinger surgeries, using argu-
ments that rely on Seiberg-Witten theory [12, 22] and holomorphic curves
[23]. This Lefschetz pencil invariant, which we call exzceptional data, encodes
the number of certain multisections representing exceptional classes in the
symplectic 4-manifold. Its importance to us rests on the easiness in keep-
ing track of how exceptional data changes under partial doubling sequences
we will introduce, which simply consist of blow-ups/blow-downs and degree
doublings for pencils, and in turn, this will allow us to reduce the problem
to a merely combinatorial one. All these are contained in Section 3, where
we prove Theorem A. In Section 4 we prove Theorem B and discuss related
problems on cobordisms between symplectic 4-manifolds.

2. Background

Here we review the definitions and basic properties of Lefschetz pencils and
fibrations, mapping class groups, and Luttinger surgeries. The reader can
turn to [9] and [1] for more details.

Let X be a closed, oriented 4-manifold, and B = {b;}, C' = {p;} be finite
non-empty sets of points in X. A Lefschetz pencil (X, f) is a surjection f
from X \ B onto S? that is a submersion on the complement of C, such
that around each base point b; and critical point p; there are local complex
coordinates (compatible with the orientations on X and S?) with respect to
which the map takes the form (z1,22) — z1/29 and (21, 22) — 2122, respec-
tively. A Lefschetz fibration is defined similarly when B = (). Blowing-up
all the base points b; in a pencil (X, f), one obtains a Lefschetz fibration
(X', f") with disjoint (—1)-sphere sections S; corresponding to b;. We say
that we have a genus g pencil/fibration, for g the genus of the regular fiber F
of the pencil/fibration (which is compactified by including the base points).
The fiber containing the critical point p; has a nodal singularity at p;, which
locally arises from shrinking a simple loop a; on F', called the vanishing cy-
cle. A singular fiber of a Lefschetz pencil/fibration (X, f) is called reducible
(resp. irreducible) if a; is separating (resp. nonseparating).

By the seminal work of Donaldson every symplectic 4-manifold (X, w)
admits a symplectic Lefschetz pencil whose fibers are symplectic with re-
spect to w [8]. Conversely, Gompf showed that total space of a Lefschetz
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fibration (recall C' # ()), and in particular blow-up of any pencil, always ad-
mits a symplectic form w with respect to which all regular fibers and any
chosen collection of disjoint sections are symplectic, and in fact, any such two
symplectic forms are deformation equivalent [9]. We will often use the no-
tation (X,w, f) to indicate that f is a symplectic Lefschetz pencil/fibration
with respect to w, where any explicitly discussed sections of f will always
be assumed to be symplectic as well.

Lefschetz pencils and fibrations can be described combinatorially in
terms of products of Dehn twists in the mapping class group as follows:
Let 37" denote a compact oriented surface of genus g with m boundary
components, with the convention that ¥, = 22. The mapping class group,
I'g", of X7 is the group of orientation-preserving self-diffeomorphisms of 37
fixing the points on the boundary up to isotopies fixing the points on the
boundary as well. Let ¢, € I';* denote the positive (right-handed) Dehn twist
along the simple loop a on X7". Now let us also assume that all critical points
p; of the Lefschetz pencil/fibration (X, f) lie in distinct fibers, which can
always be achieved after a small perturbation. It turns out that the local
monodromy around the singular fiber with vanishing cycle a; is t,,, and thus,
the global monodromy of the fibration around all the singular fibers (i.e. in
the complement of a regular fiber) is a product t4, - - -t,, in I')?, called the
monodromy factorization, where r = |C|. The fact that the map extends to
the neighborhood of the excluded regular fiber dictates that the relation

ta, " ta, =ts - - ts.

holds in I'J", where d; are boundary components of 37'. Conversely, pro-
vided g > 2, from any relation between Dehn twists in I'j" as above, one can
construct a genus g Lefschetz pencil (resp. fibration) with m base points
(resp. m disjoint (—1)-sphere sections), and r critical points with vanish-
ing cycles a;. Noting all the choices involved in this correspondence, and
assuming g > 2, we get a one-to-one equivalence between Lefschetz pencils
up to isomorphisms (i.e. orientation-preserving self-diffeomorphisms of the
4-manifold and the base surface which make the fibrations commute) and
monodromy factorizations up to Hurwitz moves and global conjugations (i.e.
trading subwords t4,t4,., with t,, +175;L_1+1tait =tg,.. b , and every g,
with tyq,, ¢ € I'y, respectively) [11, 15].

Lastly, we review the surgery along Lagrangian tori we are interested in
here: Let L be an embedded torus in X with trivial normal bundle, identified
as vL = T? x D? under a chosen framing. Given a simple loop [ on L, let Sll
be a loop on the boundary d(vL) = T3 that is parallel to [ under the chosen
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framing. Let py, denote a meridian circle to L in d(vL). The p/q surgery on
L with respect to [, describes the smooth 4-manifold

Xpipse = (X \vL) U, (T? x D?),
where the gluing diffeomorphism ¢ : 7% x D? — 9(X \ vL) satisfies
p([0D%]) = plur] + q[S]] € H1(A(X \ vL); Z).

Luttinger surgery [14] is a symplectic analogue of this construction: Let L be
an embedded Lagrangian torus in the symplectic 4-manifold (X,w), it then
has a canonical framing for vL = T2 x D?, called the Lagrangian framing,
such that 72 x {z} corresponds to a Lagrangian submanifold of X for every
x € D?. Using this framing in the above construction, the Luttinger surgery
on (X,w) is a 1/q surgery along L with respect to [, producing a new 4-
manifold X’ = X ;;/, with a symplectic form ' that restricts to w in the
complement of the surgery region [1].

Fibered Luttinger surgery along L is then described via choices that count
in the fibration structure as described in the Introduction, and amounts to a
new monodromy factorization obtained by an untwisted partial conjugation
of a subword by a Dehn twist.

3. Proof of Theorem A

The first ingredient we need is the “degree doubling” procedure which pro-
duces a new genus ¢’ symplectic Lefschetz pencil (X, w, f’) with m’ base
points from a given genus g symplectic Lefschetz pencil (X,w, f) with m
base points, where ¢’ = 2g +m — 1 and m’ = 4m. This construction is de-
scribed for holomorphic pencils as well as for Donaldson’s pencils in Smith’s
work [19], and for pencils obtained via branched coverings of CP? by Au-
roux and Katzarkov in [4] with an explicit calculation of the monodromies.
As Smith shows, given a Donaldson pencil with fiber class Poincaré dual to
d [w], one can pass to a pencil with fiber class dual to 2d [w] using this con-
struction, where the latter pencil has only nonseparating vanishing cycles
[19, Theorem 3.10]. We will use a slight variation of this doubling procedure
repeatedly: Let (X,w, f) be a Donaldson type symplectic Lefschetz pencil
with m > 1 base points. Then its partial double along m >k > 1 points is
the Lefschetz pencil one gets by first symplectically blowing-up (X, w, f) at
m — k points and then doubling the resulting pencil on (X', &/, f'), where
X' = X#(m — k)CP2.
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We will need to grant that we can take the double of a given (topolog-
ical) pencil (X, f) in general. As evident in [4], the double (X, f’) of the
pencil (X, f) is obtained by gluing two pieces; the “convex” piece, which
is the complement of the regular fiber, is contained in the new pencil as a
subpiece, whereas the “concave” piece is obtained by a standard doubling
of the regular neighborhood of the fiber which is a standard symplectic disk
bundle of degree m over a genus-g surface. Thus the universality property
discussed in [4] guarantees that we can take the double of the pencil (X, f)
provided there is some pencil with the same genus and same number of base
points for which the doubling procedure is known to work. On the other
hand, as observed in [19], for any g > 2 and m < 2g — 2, there is a holo-
morphic genus-g pencil with m base points on a blow-up of the complex K3
surface, which can be doubled. Modeling the doubling of the convex piece
after this complex model, we can thus glue the two pieces symplectically to
get back X with a new pencil f’ as above. As the gluing involves scaling the
form on one of the pieces, it is clear from the construction that we can equip
the two pencils with symplectic forms w and w’ that are at least deformation
equivalent. We therefore note the following as a consequence of the works of
Smith and Auroux-Katzarkov:!

Lemma 3.1. Let (X,w, f) be a genus-g symplectic Lefschetz pencil with m
base points. If g > 2 and m < 2g — 2, then we can take its double to obtain
a genus-g' symplectic Lefschetz pencil (X,w', ') with m’ base points, where
g=29 +m—1and m' = 4m, and w and W' are deformation equivalent.

For a symplectic pencil (X,w, f), fibers are J-holomorphic with respect
to a suitably chosen almost complex structure J compatible with w. It follows
from Taubes’ correspondence between Gromov and Seiberg-Witten invari-
ants on symplectic 4-manifolds with b*(X) > 1 that exceptional classes e,
in Hy(X) are represented by disjoint J-holomorphic (—1)-spheres S; [22].
The same holds when b(X) =1 and X is not a rational or ruled surface
by the work of Li and Liu [12]. From the positivity of intersections for J-
holomorphic curves, we conclude that each S; is a degree s; multisection
(which we will call an s;-section in short), intersecting genus g > 2 generic
fiber F' positively at exactly s; =S - F' > 1 points. Moreover, in this case,
>s;=(>_85j) - F <2g—2 by the Seiberg-Witten adjunction inequality.
Since we can always equip a Lefschetz fibration with a symplectic form with

1T am grateful to Denis Auroux for verifying the arguments given here.
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respect to which any given finite collection of disjoint sections are symplec-
tic, we note that when X is not a rational or ruled surface, there are at most
2g — 2 base points for a genus-g Lefschetz pencil on X.

We are interested in tracking how exceptional classes, as multisections,
intersect the fiber F’ of the new pencil produced after partial doubling.
As [F'] = 2[F] in Hy(X), any exceptional sphere S that is an s-section of
(X, w, f) gives rise to a 2s-section of (X, w, f’). Note that S misses the base
points in (X, w, f). We introduce the following notation for the combinatorial
data encoding the number of certain exceptional classes. Consider the infinite
tuple of integers

(mg,m1,...,my,0,0,...) = (mo,m1,...,my),

where m,. is the rightmost non-zero entry, thus allowing us to truncate the
infinite tuple as we did on the right hand side. Letting mg denote the num-
ber of base points in (X,w, f) and m;y1, for i > 0, denote the number of
2'_sections of it representing exceptional classes, we will call the above tu-
ple exceptional data for (X,w, f). Here (X,w, f) can of course have other
exceptional s-sections for s # 2¢, but for our purposes, it will suffice to keep
track of the above partial information alone — which will become evident
shortly.

Now, we can partially double (X, w, f) at mg > k > 1 points to obtain a
new Lefschetz pencil (X' o', ') (where (X' ') = (X,w) if kK =myg). First
blowing-up X at mg — k base points, we get a Lefschetz pencil with the
exceptional data (k,mo+ mi —k,...). Then doubling at the remaining k
points, we arrive at the exceptional data

(4k,0,mg +my — k,...,m;)

for the pencil (X’,u’, f'). Note that the length of the truncated tuple is
increased by one. Importantly, if the exceptional sphere S is an s-section of
(X,w, f) with s # 2!, then it becomes a 2s-section of (X’,w’, f') which is not
a 2’-section either, for any i > 0. Moreover, it is clear that the exceptional
data is preserved under any orientation-preserving diffeomorphism of the
pair (X, F), where F' is the fiber of the pencil, so in particular, it is an
invariant of the isomorphism class of the pencil.

A final ingredient we need is due to Welschinger: If L is a Lagrangian
torus in (X, w), then any exceptional class can be represented by a symplectic
(—1)-sphere S disjoint from L by [23, Theorem 1.3]. Moreover, Welschinger’s
proof can be applied simultaneously to a collection of exceptional spheres .S
so as to symplectically isotope them away from L. Note that these S; are not
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guaranteed to be J-holomorphic for an almost complex structure J making
the fibration f J-holomorphic. In particular, we do not claim that they
are multisections any more. The upshot here is that any (Luttinger) surgery
along L, which would be disjoint from some regular fiber F', does not change
the intersection number of S with F' — identified with their inclusions —
in the new symplectic manifold. (Having checked out this aspect, we can
again find homologous J-holomorphic representatives for S; to continue any
blow-up and partial doubling process.)
We summarize what we have so far in the following lemma:

Lemma 3.2. Let (X,w, f) be a symplectic Lefschetz pencil, where X is
not a rational or ruled surface. The exceptional data (mo,my,...,m;) is
an invariant of the isomorphism class of the pencil, and moreover, it is
variant under Luttinger surgeries. For mg > k > 1, the exceptional data
of a partial double of (X,w, f) along k base points is uniquely determined as
(4k,0,mog +my — k,...,m;).

Since any sequence of partial doublings will result in a pencil on some
blow-up of (X,w), with Lemma 3.2 in hand, our proof of Theorem A now
boils down to finding distinct doubling sequences resulting in pencils which

1) land on the same (symplectic) manifold X', and

2) have the same number of base points,

)
)

3) are of the same genera, and
)

4) have distinct exceptional data.

To strike (1) and (2) we will simply look at Lefschetz fibrations with sym-
plectic (—1)-sphere sections obtained by blowing-up all the base points of
the pencils obtained from respective partial doubling sequences. We can
then blow-down any number of these base points to produce the desired
pencils in the statement of our theorem. Note that blow-up/blow-down pro-
cess simply shifts weights back and forth between the first two entries of
the exceptional data. Once we generate pencils on the same manifold, we
will not worry about this when comparing the exceptional data, as we will
generate examples that already differ in their further entries.

If (X',u', f") is obtained from (X,w, f) by a sequence of partial dou-
blings, we see that both the smooth 4-manifold X" and the exceptional data
for the pencil f’ are uniquely determined by the initial exceptional data of
(X,w, f) and the ordered tuple of integers ki, ..., kq, for each partial dou-
bling along k; points. Let us denote the latter sequence by D = [k, ..., k4],
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which is subject to the condition 4k; > k; 1 > 1 for all j. Here we use brack-
ets both to bear in mind this extra condition, as well as to distinguish it
from our notation for the exceptional data (mg, my,...,m;).

Recall that each time we take a partial double of a pencil with m base
points along k points, we pass to a pencil with 4k base points on a symplectic
manifold which is (m — k) times blow-up of the original one. By induction,
we conclude that a partial doubling sequence D = [ky, ..., k4| applied to a
pencil with m base points results in a Lefschetz fibration on a symplectic
manifold which is

d
(o (((m—ky) +4ky) — ko) + dhp + -+ ) -+ )+ dkg =m+ 3> ks
=1

times blow-up of the initial manifold. On the other hand, if we start with a
genus go pencil, the genus of the resulting pencil after applying D inductively
is
d .
(- (2290 + k= 1)+ hy — 1)+ )+ hg — 1 =270 + > 297 (k; = 1).
i=1

We therefore have:

Lemma 3.3. Let f and f’ be genus gy and g{, Lefschetz pencils on (X,w)
with mqy and m{, base points. Two partial doubling sequences

D =lky,...,kq) and D' = [k}, ... Kk}

applied to f and f' (whenever it is possible, in particular when go, g > 2
and mo < 29 — 2, my < 29’;2), respectively, result in Lefschetz fibrations
on the same blow-up X#MCP? and with the same fiber genus g if and only
if

d/
M = m0+3zk‘ —m0—|—32k' and
=1 =1
d .
=200+ 27 (k; — 1) = 2% +Z2d*1k'
1=1

The proof of our theorem now reduces to generating the desired partial
doubling sequences. We will show that there exists even in a simpler setting
than what we have in Lemma 3.3, namely, when f = f’ and d = d’. That is,
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we will begin with a pencil (X,w, f) and apply partial doubling sequences
of the same length to achieve all the conditions (1)—(4) listed above. In this
case, we need
d d

> (ki = k) = 2 (ki — k) = 0.

i=1 i=1
Moreover, since we depart from the same pencil and apply partial doubling
sequences of the same length, without loss of generality we can take the
initial exceptional data as (my,0,...) = (myp). In particular, it is enough to
run our arguments for a minimal symplectic 4-manifold.

First, we note that we can take mg arbitrarily large, since not only is
there a symplectic pencil on any symplectic 4-manifold, but also that one
is guaranteed to have one with arbitrarily large number of base points by
increasing the degree in Donaldson’s construction [8], say by further full
doublings we apply to the initial pencil. Also note that neither blow-ups
nor doublings would produce new separating vanishing cycles, so the second
assertion in our theorem will come for free.

Let D(n) = [k1(n), k2(n), k3(n)] be a family of partial doubling sequences
with 4k;(n) > kj11(n) > 1 and mg > ki, for all j =1,2,3 and n € N. Re-
garding D(n) as a 3-dimensional integral vector, it suffices to show that the
kernel of the integral matrix

1 1 1
( 22 2! 1>

contains D(n + 1) — D(n) for at least N consecutive values of n, provided
myo is large enough. Observe that the vector [1,—3,2] lies in the kernel. If
we set

D(n) = [mo_n>m0+3nam0_2n]a

we get a legitimate partial doubling sequence, if
dmog—4n>mog+3n>1 and 4dmg+12n>mog—2n > 1.
Recalling that my > 1, we see that all needed here is
moy > gn and mg > 14 2n,

which is easily seen to be satisfied by N many consecutive non-negative inte-
ger values of n once my is large enough. The exceptional data corresponding
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to the final pencil is
(4mg — 8n,0,3mg + 14n,3mgy — Tn, n)

by Lemma 3.2. This completes the proof of Theorem A. (|

Remark 3.4. We shall note that, although we have presented our argu-
ments in terms of geometric representatives (as multisections representing
exceptional classes), the inequivalent Lefschetz pencils we have constructed
are at the end distinguished by the homology classes of their fibers. (In fact,
as suggested by the referee, in the case where X is an algebraic surface,
one would hope to obtain similar results by showing that certain suitably
chosen homology classes on a suitable blow-up are very ample and have
different intersection numbers with the exceptional classes.) We therefore
cannot push the same idea any further to generate infinitely many such
pencils. On the other hand, one can also ask how many distinct pencils with
the same fiber class a symplectic 4-manifold (X,w) can be equipped with.
In [6][Theorem 1.4], using completely different methods, we present such
examples which even fix the homeomorphism class of the the pair (X, F),
for F' the fiber.

Remark 3.5. Lefschetz fibrations are seen to convey different features de-
pending on the symplectic Kodaira dimension of the underlying symplec-
tic 4-manifold [5, 6]. Aforementioned examples of inequivalent fibrations of
Park-Yun and Smith were on symplectic 4-manifolds of Kodaira dimension
1. Since symplectic 4-manifolds of negative Kodaira dimension are precisely
the rational and ruled surfaces [13], our theorem presents inequivalent fi-
brations on symplectic 4-manifolds of all non-negative Kodaira dimensions.
It is plausible that, with some extra care, our construction can be carried
out on rational and ruled surfaces as well. In this case, the main compli-
cation we have is that the exceptional (—1)-multisections might intersect
each other, which in turn alters how the exceptional data changes under
partial doublings involving blow-ups. It would be interesting to determine
if the genus g Lefschetz fibrations on ruled surfaces %/, x S24#4CP? and
Yg-1)2 X S248CP?, which are known to realize the minimum number of
Lefschetz singularities [21], are unique up to isomorphisms and fibered Lut-
tinger surgeries.
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4. Partial conjugations and cobordisms

We now prove Theorem B on inequivalent Dehn twists factorizations in
the mapping class group, in connection with the question on the Luttinger
surgery equivalence of symplectic 4-manifolds.

Proof of Theorem B. Let W, W', W" be nontrivial products of positive Dehn
twists along nonseparating curves, where W = W/'W". If the product W' =
[]ta., as a mapping class, stabilizes a loop « on 23", then W' commutes with
the Dehn twist ¢, € I'j". We can then produce a new positive factorization
W!W" which is derived from W by an wuntwisted partial conjugation, for
W, = Htta(ai) = [1ta ta,ta-

Since any boundary twist commutes with nonseparating Dehn twists on
the surface, we can assume without loss of generality that « is a — possi-
bly separating — curve which is not boundary parallel. Taking a parallel
transport of a over a curve v enclosing the Lefschetz critical values corre-
sponding to all vanishing cycles ay, ... ay in the product [] ¢,,, we produce a
Lagrangian torus fibered over . The untwisted partial conjugation amounts
to a Luttinger surgery along the torus in the direction of « [3].

Now, let f;, i =1,..., N be any N distinct genus g Lefschetz pencils on
a symplectic 4-manifold X provided by our Theorem A, with the additional
feature that the vanishing cycles are nonseparating. Observe that, if needed,
we can take full doubles of all f; simultaneously to obtain at least m base
points, for any given m. Hence, for each f;, we get a positive factorization
W; of the boundary parallel multitwist ¢5, ---ts5  into positive Dehn twists
along nonseparating curves in I'l". It immediately follows that W;, W; are
not equivalent via Hurwitz moves and untwisted partial conjugations by
Dehn twists for any i # j. O

Remark 4.1. One can similarly define a surgery along a Klein bottle L
as an equivariant surgery along its double cover, as well as its symplec-
tic analogue as a Luttinger surgery; see e.g. [16]. If the product W’ in the
above proof, as a mapping class, maps the loop a to —a, then W’ still com-
mutes with the Dehn twist ¢, € I'J’, and one can produce a new positive
factorization W/ W, which is now derived from W by a twisted partial con-
jugation. The twisted partial conjugation in this case amounts to a fibered
Luttinger surgery along a Lagrangian Klein bottle L [18]. It is plausible that
Theorem B (and Theorem A) can be extended to include this case as well.
However, our earlier arguments do not go through to conclude this, since



684 R. Inanc Baykur

there is no analogue of Welschinger’s result we used in the proof of Theo-
rem A to guarantee that exceptional spheres can be isotoped away from a
given Lagrangian Klein bottle. (In fact this is not true in general: if we take
the obvious Lagrangian Klein bottle L in X = CP?#CP?, then there exists
a pencil on X for which L is fibered. If L were disjoint from the exceptional
sphere S in X, we could blow-down S to get a Lagrangian embedding of L
in CP?, which contradicts the main theorem of [16, 18].)

Remark 4.2. Let [W',¢] = 1 in IT')". Although any mapping class ¢ in T'y"
can be written as a product of Dehn twists, one cannot necessarily choose
these Dehn twists in a way that each one of them commutes with W’: For
instance, if ¢(a) = —a, we certainly have [t,, ¢] = 1. On the other hand, for
any Dehn twist ¢, satisfying [¢4, t5] = 1, we have b isotopic to a curve disjoint
from a. However, a product of such twists could not reverse the orientation
on a. Hence, the equivalence of two factorizations via partial conjugations is
more general than the equivalence of them via partial conjugations by Dehn
twists.

Remark 4.3. Any two integral symplectic 4-manifolds with the same char-
acteristic numbers (¢?, c2, [w]?, ¢1 - [w]) have the same Euler characteristic
and signature, determined by ¢? and cy. Therefore the results of [7] show that
if one only considers the underlying smooth structures, the two 4-manifolds
would be equivalent via smooth surgeries along tori. However, when we in
addition take compatible symplectic Lefschetz pencils on them, Theorem B
dictates that there is no sequence of Luttinger surgeries taking one to the
other. Curiously, Auroux’s other question on the surgery equivalence of such
integral symplectic 4-manifolds [2] lies in the middle ground these results fall
short of covering.
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