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Contact manifolds and Weinstein
h-cobordisms

Sylvain Courte

We prove that closed connected contact manifolds of dimension
2n− 1 � 5 related by a flexible Weinstein h-cobordism become
contactomorphic after contact connect-summing with Sk × S2n−k−1

with 2 � k � n− 1. We also provide examples of non-conjugate
contact structures on a closed manifold with exact symplectomor-
phic symplectizations.

1. Introduction

This paper is a sequel to [Cou14], in which the following phenomenon was
observed. If two closed contact manifolds of dimension � 5 are related by a
flexible Weinstein h-cobordism, then their symplectizations are exact sym-
plectomorphic1. As observed in [Cou14] such contact manifolds need not even
be diffeomorphic, but we may ask:

Question. If two contact structures on a given closed manifold have exact
symplectomorphic symplectizations, are they conjugate by a diffeomorphism?

In this paper we wish to provide partial answers to this question in two
different directions. On one hand we prove that contact manifolds related
by a flexible Weinstein h-cobordism become contactomorphic after some
kind of stabilization. Our inspiration comes from the following fact noticed
by Hatcher and Lawson in [HL76]. Let M and M ′ be h-cobordant closed
connected manifolds of dimension m and let k be any integer satisfying
2 � k � m− 2, then for l large enough M#(Sk× Sm−k)#l is diffeomorphic
toM ′#(Sk× Sm−k)#l (where #l denotes the connected sum iterated l times).
We will prove in Section 2 a contact analogue of this result using Morse-
Smale theory of Weinstein structures developed by Cieliebak and Eliashberg
(see [CE12]). On the other hand we prove that the answer to the question,

1A symplectomorphism Ψ : (W, dλ)→ (W, dλ′) between exact symplectic mani-
folds is called exact if Ψ∗λ′ − λ is an exact 1-form.

657



658 Sylvain Courte

as stated, is negative due to the following phenomenon : there are contact
structures on a given manifold which are not conjugate as almost-contact
structures but have exact symplectomorphic symplectizations. This is the
content of Section 3.

Acknowledgments. I warmly thank Emmanuel Giroux for his support
and François Laudenbach for his interest in this work and his comments on
a previous draft of this paper.

2. A stabilization theorem

2.1. Hatcher’s and Lawson’s remark

Let us briefly explain the remark by Hatcher and Lawson mentioned in the
introduction. Let (W,M,M ′) be an h-cobordism of dimension m+ 1 � 6.
For all 2 � k � m− 2, there is an ordered Morse function on W with only
critical points of index k and k + 1. Let N be a level set separating the
critical points of index k and k + 1. Since the homology of the pair (W,M)
vanishes there must be an equal number l of critical points of each index.
The key point is that, in such a situation, handles of index k are trivially
attached to M and, dually, handles of index k + 1 are trivially attached
to M ′; by that we mean that the attaching spheres bound disks and have
trivial normal framings (induced by the disks). In particular the level set N
is diffeomorphic to M#(Sk× Sm−k)#l as well as to M ′#(Sk× Sm−k)#l. In
[HL76], this key point is proved using Smale’s trading trick which consists in
replacing a critical point of index k by a critical point of index k + 2 (birth
of a pair of critical points of index (k + 1, k + 2) followed by the death of a
pair of critical points of index (k, k + 1)); the fact that the critical points of
index k can be cancelled with a critical point of index k + 1 implies that its
attaching sphere is trivial (see Lemma 2.5 for a proof in a contact setting). In
fact, in the extreme case k = 2, it is not proved that the 3-handle is trivially
attached to M ′ because the critical points of index 3 cannot be replaced by
a critical point of index 1 (likewise in the case k = m− 2). In the context
of Weinstein structures of dimension 2n, the trading trick cannot work for
a critical point of index n− 1 because it would have to be replaced by a
critical point of index n+ 1, so we will use a different argument which has
the advantage to treat the extreme cases k = 2 and k = m− 2 as well.
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2.2. Main results and proofs

For n � 3 and 2 � k � n− 1 we consider the (subcritical) Liouville manifold:

(T∗ Sk×R2(n−k), λ = pdq +
1

2

n−k∑
i=1

r2i dθi).(1)

where pdq is the canonical 1-form on T∗ Sk and (ri, θi) are multipolar coordi-
nates in R2(n−k). The contact manifold at infinity of this Liouville manifold is
diffeomorphic to Sk× S2n−k−1; we will always consider this contact structure
on Sk× S2n−k−1. Note that, as it follows from Weinstein tubular neighbor-
hood theorem, this contact manifold is the model for the boundary of a small
tube around any isotropic sphere Sk with trivial symplectic normal bundle
in a symplectic manifold of dimension 2n.

Whitehead torsion allows to classify h-cobordisms in high dimension, we
refer to [Ker65, Coh73] for this notion.

Theorem 2.1. Let (M, ξ) and (M ′, ξ′) be closed connected contact mani-
folds of dimension 2n− 1 � 5. Assume there is a flexible Weinstein h-
cobordism W from (M, ξ) to (M ′, ξ′). Denote by l the minimal integer such
that the Whitehead torsion of W is represented by a matrix of size l. Then
for any integer k satisfying 2 � k � n− 1, we have:

M#(Sk× S2n−k−1)#l is contactomorphic to M ′#(Sk× S2n−k−1)#l

In the statement above, the symbol # denotes the contact connected
sum.

For contact manifolds that are already "sufficiently stabilized", we get
the following partial answer to the question raised in the introduction.

Corollary 2.2. Let (M, ξ) be a closed connected contact manifold of di-
mension 2n− 1 � 5 contactomorphic to (N, ζ)#(Sk× S2n−k−1)#l for some
closed contact manifold (N, ζ) and some integers l � 0 and 2 � k � n− 1.
Assume that the map GLl(Z[π1M ])→Wh(π1M) is surjective. Then any
contact manifold (M ′, ξ′) related to (M, ξ) by a flexible Weinstein h-cobordism
is contactomorphic to it.

Remark 2.3. 1) For n � 4 and k � n− 2, we can consider only subcrit-
ical Weinstein structures instead of the broader class of flexible ones.

2) As follows from the proof of the s-cobordism theorem, the minimal inte-
ger l in the statement above equals the minimal number of critical points
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of index k for a Morse function in normal form of index (k, k + 1) (for
any 2 � k � 2n− 3) and also half the minimal number of critical points
of any Morse function.

3) For finite cyclic fundamental groups π, the map GL1(Z[π])→Wh(π)
is surjective, so one connect sum with Sk× S2n−k−1 is enough (see
[Coh73] p.45).

4) If two closed contact manifolds have exact symplectomorphic symplec-
tizations, then they are related by an invertible Liouville cobordism.
However we do not know whether these invertible Liouville cobordisms
are necessarily Weinstein flexible so that Theorem 2.1 applies.

Example 2.4. The manifolds M1 = L(7, 1)× S2 and M2 = L(7, 2)× S2 are
not diffeomorphic (see [Mil61]). However they carry contact structures that
are related by a flexible Weinstein h-cobordism and in particular they have
exact symplectomorphic symplectizations (see [Cou14]). It follows from Theo-
rem 2.1 that M1#S2×S3 is contactomorphic to M2#S2×S3 where S2×S3 �
∂∞(T∗ S2×R2). From corollary 2.2, we also get that for each flexible We-
instein h-cobordism (W,M1#S2× S3,M ′), M ′ is contactomorphic to M1#
S2× S3.

The main tools for the proof of Theorem 2.1 and corollary 2.2 are the
flexibility results of Cieliebak and Eliashberg concerning Weinstein struc-
tures. For the sake of brevity, we will often refer directly to the book [CE12]
instead of repeating here many statements.

We start with a lemma.

Lemma 2.5. Let (W,ω,X, φ) be a connected Weinstein cobordism of di-
mension 2n from M to M ′ such that φ has only two critical points p and
q of index k + 1 and k respectively, with φ(q) < φ(p) and such that, in an
intermediate level set N between p and q, the ascending sphere of q inter-
sects the descending sphere of p transversally in a single point. Then N is
contactomorphic to M#Sk× S2n−k−1 as well as to M ′#Sk× S2n−k−1.

Proof. Step 0: Cancellation.
According to Proposition 12.22 in [CE12], there is a Weinstein homotopy

from (ω,X, φ) to a Weinstein structure without critical points. In particular
M and M ′ are contactomorphic (and connected) and we only need to prove
that N is contactomorphic to M#Sk× S2n−k−1.

Step 1: By a Weinstein homotopy we create a pair of critical points r and
s of index 1 and 0 respectively below q (see Proposition 12.21 in [CE12]).
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Figure 1: Picture of W before and after the Weinstein homotopy.

The intersection of the ascending disc of s with a level set P between q and
r is an open disc D of codimension zero in P .

Step 2: After a Weinstein homotopy, we can assume that X is standard
near p and q (see Proposition 12.12 in [CE12]). The closure of the descending
disc of p then intersects P in an isotropic closed disk D′ of dimension k. Since
P is connected, there is a contact isotopy of P which takes D′ inside D. We
realize this contact isotopy by a Weinstein homotopy which is fixed up to
scaling above P using Lemma 12.5 from [CE12] (this does not change the
contact structure on level sets above P ).

Step 3: By a Weinstein homotopy we lower q to a level set between
f(r) and f(s). Denote by V the connected component containing s of a
sublevel set just below r (see Figure 1). We obtain a Weinstein cobordism
from M ∪ ∂V to N with only one critical point r of index 1 and whose
descending disc intersects both M and ∂V , N is therefore contactomorphic
to M#∂V .

Step 4: We now prove that the boundary of V is contactomorphic to
Sk× S2n−k−1. After a Weinstein homotopy supported in a neighborhood of s,
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we can assume (see Proposition 12.12 in [CE12]) that the Weinstein structure
is equivalent to the model:

ω =

n∑
i=1

dxi ∧ dyi, X =
1

2

n∑
i=1

(xi∂xi
+ yi∂yi

), φ = φ(s) +

n∑
i=1

(x2i + y2i ).

The closure of the descending disc of p intersects a regular level set just
above s in an isotropic closed disc D′′. There is a contact isotopy of this
sphere which takes D′′ to the disc given by:

{xk+2 = · · · = xn = 0, xk+1 � 0, y1 = · · · = yn = 0},

that we realize by a further Weinstein homotopy using Lemma 12.5 from
[CE12]. Now the closure of the descending disc of p is an embedded disc
of dimension k + 1 whose boundary is the skeleton Σ of V . In particular Σ
is an embedded isotropic sphere with trivial symplectic normal bundle. A
neighborhood of Σ is then symplectomorphic to a neighborhood of the zero
section in T∗ Sk×R2(n−k). Moreover we can find a small tube T around Σ
such that both X and

Xstd = p
∂

∂p
+

1

2

n−k∑
i=1

ri
∂

∂ri

(with the same notations as in 1) are transverse and point outward of ∂T
(the point is that X is a gradient-like vector field and, at each critical point,
the linearized vector field points outward of Σ). Then V appears as the union
of T with a piece of the symplectization of ∂T attached and in particular
∂V is contactomorphic to Sk× S2n−k−1. �

We now prove Theorem 2.1.

Proof of Theorem 2.1. Step 1: Reducing to a normal form.
According to the proof of the s-cobordism theorem (see [Ker65]), there

is a path φs of functions with birth-death type accidents and critical points
of index less than or equal to n such that φ0 = φ and φ1 has a regular
level set N with l critical points p1, . . . , pl of index k + 1 above N , l critical
points q1, . . . , ql of index k below N and no other critical points. According
to Theorem 14.1 in [CE12] there is a Weinstein homotopy (ωs, Xs, φs)s∈[0,1]
of flexible Weinstein structures starting from (ω,X, φ). After a perturbation
of X1 we can also assume that it is Morse-Smale; we rename (ω1, X1, φ1)
back to (ω,X, φ).
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Figure 2: Schematic picture of the successive Weinstein structures on the
cobordism W with l = 2.

Step 2: Creating cancelling pairs of critical points.
By a Weinstein homotopy of flexible Weinstein structures (see Proposi-

tion 12.21 in [CE12]) we create l cancelling pairs of critical points of index k
and k + 1, denoted respectively q′1, . . . , q′l and p′1, . . . , p′l, below N and away
from stable and unstable manifolds of q1, . . . , ql and p1, . . . , pl (see Figure 2).
The effect on the Morse complex is as follows. In a universal cover W̃ →W
with automorphism group π � π1W , the Morse complex of (X,φ) is a chain
complex over the ring Z[π] which looks like:

0→ Ck+1
∂k+1−→ Ck → 0.

By choosing lifts p̃i, q̃i, p̃′i and q̃′i of the critical points of φ to W̃ and
orientations for unstable manifolds at each critical point, we obtain bases
(p̃1, . . . , p̃l, p̃

′
1, . . . , p̃

′
l) of Ck+1 and (q̃1, . . . , q̃l, q̃

′
1, . . . , q̃

′
l) of Ck. The corre-

sponding matrix of ∂k+1 is the stabilized matrix

(
A 0
0 1

)
∈ GL2l(Z[π]).

with A ∈ GLl(Z[π]).
Step 3: A few handleslides.
Take an intermediate level set N ′ separating index k and index k + 1

critical points. In the cobordism between M and N ′, there are only critical
points of index k. We claim that there is a homotopy of gradient-like vec-
tor fields Yt for φ such that Y0 = X, Yt = X above N ′ and such that the
boundary operator ∂k+1 for Y1 has matrix(

1 0
0 A

)
∈ GL2l(Z[π]).
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Indeed, one can realize this homotopy by a sequence of handleslides (see
[Ker65]) between critical points of index k corresponding to the following
row operation on matrices:(

A 0
0 1

)
→

(
A −1
0 1

)
→

(
A −1
A 0

)
→

(
0 −1
A 0

)

→
(
0 −1
A A

)
→

(
1 0
A A

)
→

(
1 0
0 A

)
,

According to Lemma 14.10 in [CE12], there is a flexible Weinstein ho-
motopy (ωs, Xs, φ) which is fixed up to scaling above N ′ and such that X1

is homotopic to Y1 in the space of Morse-Smale gradient-like vector fields
for φ. In particular, the boundary operator ∂k+1 for X1 and Y1 are equal.
Rename (ω1, X1, φ) back to (ω,X, φ).

Step 4: Applying the Whitney trick
Since the Z[π] intersection numbers of descending spheres of q′1, . . . , q′l

with ascending spheres of p1, . . . , pl are zero, we can apply the Whitney
trick to disjoin them by a smooth isotopy. By the flexibility hypothesis,
the descending spheres are loose (or subcritical) and can therefore be made
disjoint by Legendrian isotopy using Murphy’s h-principle (see [Mur12]) or
Gromov’s h-principle (see [CE12, theorem 7.11]). We can then raise the crit-
ical values of q1, . . . , ql above the critical values of p′1, . . . , p′l. Now in the
cobordism containing the critical points p1, . . . , pl and q1, . . . , ql, the bound-
ary operator ∂k+1 in the Morse complex is the identity matrix. Successive
application of the Whitney trick and of Lemma 14.11 in [CE12] allows us to
make the critical points p1, . . . , pl in cancellation position with q1, . . . , ql by
a Weinstein homotopy. Inductively applying Lemma 2.5 then shows that N
is contactomorphic to M ′#(Sk× S2n−k−1)#l.

Step 5: repeating everything
To prove that N is also contactomorphic to M#(Sk× S2n−k−1)#l we

repeat steps 2, 3, 4 analogously above N . Note that in step 3 we use analogous
column instead of row operations on matrices because we do handleslides
between critical points of index k + 1 instead of k. �
Proof of corollary 2.2. Let (W,M,M ′) be an h-cobordism with a flexible We-
instein structure inducing ξ and ξ′. Denote by τ ∈Wh(π1M) the White-
head torsion of W . According to the s-cobordism theorem, there is an h-
cobordism (V,N,N ′) with Whitehead torsion τ (we identify π1M � π1N).
Theorem 13.1 in [CE12] allows us to construct a flexible Weinstein struc-
ture on V inducing contact structures ζ on N and ζ ′ on N ′ (the hypoth-
esis of Theorem 13.1 are fulfilled, see [Cou14]). According to Theorem 2.1
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(the Whitehead torsion of W is represented by a matrix of size l because
GLl(Z[π])→Wh(π) is surjective), (N, ζ)#(Sk× S2n−k−1)#l is contactomor-
phic to (N ′, ζ ′)#(Sk× S2n−k−1)#l, thus we are led to prove that (M ′, ξ′) is
contactomorphic to (N ′, ζ ′)#(Sk× S2n−k−1)#l. For this we consider the triv-
ial Weinstein structure on (Sk× S2n−k)#l × [0, 1] and perform a connected
sum operation with V along the cobordisms (that is we glue them along a
neighbourhood of an arc going from ∂− to ∂+). We get a flexible Weinstein
cobordism from (M, ξ) to (N ′, ζ ′)#(Sk× S2n−k−1)#l with Whitehead torsion
τ . By the s-cobordism theorem, this cobordism is diffeomorphic to W by a
diffeomorphism relative to M . Since there is only one non-degenerate two
form extending ξ up to homotopy (see for example Lemma 2.7 in [Cou14]),
we have two flexible Weinstein structures on W that are formally homo-
topic and by Theorem 14.3 of [CE12], we get that M ′ is contactomorphic to
N ′#(Sk× S2n−k−1)#l. �

3. Non-conjugate almost-contact structures

Theorem 3.1. For n � 3, the closed oriented manifold M2n−1 = L(5, 1)×
S2n−4 carries two contact structures ξ and ξ′ that are not conjugate by a dif-
feomorphism of M (even as almost-contact structures) but which have exact
symplectomorphic symplectizations. Moreover they bound Weinstein struc-
tures on V = L(5, 1)×D2n−3 that are not conjugate as non-degenerate 2-
forms but have exact symplectomorphic completions.

The topological phenomenon that we will make use of is the following.

Lemma 3.2. No diffeomorphism of M may act on π1M = Z/5 by multi-
plication by ±2. The same holds for V .

Proof. This is an application of simple homotopy theory. We sketch the proof
and refer to [Mil61] for more details on Reidemeister torsion. Denote by Δ
the Reidemeister torsion with respect to the ring homomorphism Z[Z/5] =
Z[t]/(t5 − 1)→ C that sends t to ζ = e

i2π

5 ; this is an element in the quotient
group C∗/〈±ζ〉. We have (see [Mil61] p.583, note that the formula for Δ is
the inverse because of a different convention)

Δ((5, 1)) = (ζ − 1)2,

and using the product formula (see [Mil61] p.587), we get

Δ(M) = (ζ − 1)4, Δ(V ) = (ζ − 1)2.
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If Ψ : M →M is a diffeomorphism inducing multiplication by ±2 on
π1 = Z/5, we would have (by invariance of Reidemeister torsion by diffeo-
morphism)

Ψ∗Δ(M) = (ζ±2 − 1)4 = (ζ − 1)4 = Δ(M)

which is false (these complex numbers have different moduli); and likewise
for V in place of M . �

Proof of Theorem 3.1. Step 1: Construction of an h-cobordism.

g(V )

W

V

Figure 3: The h-cobordism W .

The arguments in this step are similar to that in [Mil61]. Note that M
is the (oriented) boundary of V 2n = L(5, 1)×D2n−3. According to the ho-
motopy classification of maps between lens spaces (see [dRMK67, Coh73]),
there is a homotopy equivalence f : L(5, 1)→ L(5, 1) which induces multipli-
cation by 2 on π1. The map f × 0 : L(5, 1)→ V is homotopic to an embed-
ding g (by general position for n � 4 and by Haefliger’s embedding Theorem
[Hae61] for n = 3). The normal bundle of g is trivial; in fact every real vec-
tor bundle of rank k � 3 on L(5, 1) is trivial because the cohomology groups
Hi(L(5, 1);πi−1O(k)) all vanish. Therefore we can extend g to an embedding
V → intV (still denoted by g); the region W = V \ g(intV ) is a non-trivial
h-cobordism from M to M (see Figure 3).

Step 2: Construction of the Weinstein and contact structures.
There exists a complex line bundle η → V with c1(η) 	= 0 ∈ H2(V ) �

Z/5 (Z coefficients are understood for all homology and cohomology groups
appearing in the sequel). The real vector bundle η ⊕ R is trivial (Rk and
C
k denote trivial real and complex vector bundles), as well as the tangent

bundle TL(5, 1) (it follows from the vanishing of the cohomology groups as



Contact manifolds and Weinstein h-cobordisms 667

before). Hence there is a real isomorphism

TV
∼−→ η ⊕ C

n−1,

and we denote by J the pulled-back complex structure on TV . We have
c1(J) = c1(η). The pullback J ′ = g∗J is another complex structure on V and
we have c1(J

′) = g∗c1(J) = 2c1(J) because (by Poincaré duality) g (as well
as f) acts by multiplication by 2 on H2(V ) � H2(L(5, 1)) � H1(L(5, 1)) �
π1 L(5, 1). Since V has a Morse function with critical points of index � 3,
Theorem 13.1 of [CE12] allows us to construct a Weinstein structure on
V formally homotopic to J ′; it induces a contact structure ξ′ on M . By
pushing forward by g, we get a Weinstein structure on g(V ) ⊂ V . Since W is
an h-cobordism, as argued in [Cou14] the conditions of Theorem 13.1 from
[CE12] are met and we can construct a flexible Weinstein structure on W
that extends that of g(V ). Hence we get a Weinstein structure on V formally
homotopic to J ; it induces another contact structure ξ on M . It then follows
from a Mazur trick argument (see [Cou14]) that the symplectizations of
(M, ξ) and (M, ξ′) are exact symplectomorphic and also that the completions
of g(V ) and V are exact symplectomorphic.

Step 3: Proof that the contact and Weinstein structures are not conjugate.
We will show in fact that c1(ξ) and c1(ξ

′) are not conjugate by a diffeo-
morphism. Assume for contradiction that Ψ : M →M is a diffeomorphism
such that Ψ∗c1(ξ) = c1(ξ

′); by analyzing the action of Ψ on cohomology
we will show that Ψ necessarily acts on π1 by multiplication by ±2. Since
H∗(S2n−4) is free, we have a Künneth isomorphism (of graded rings):

H∗(M)
∼−→ H∗(L(5, 1))⊗H∗(S2n−4).

The inclusion i : M → V induces an isomorphism

H2(V )
∼−→ H2(L(5, 1))⊗H0(S2n−4) � Z/5;

and we have c1(ξ) = i∗c1(J) 	= 0 and c1(ξ
′) = i∗c1(J ′) = i∗(2c1(J)) = 2c1(ξ).

In degree 2n− 4, choose a generator a of H0(L(5, 1))⊗H2n−4(S2n−4) � Z.
We have Ψ∗a = ±a+ αc1(ξ) for α ∈ Z/5 if n = 3 and Ψ∗a = ±a if n > 3.
Then c1(ξ) ∪ a generates H2n−2(M) � Z/5 and we have:

Ψ∗(c1(ξ) ∪ a) = Ψ∗c1(ξ) ∪Ψ∗a
= c1(ξ

′) ∪Ψ∗a = 2c1(ξ) ∪Ψ∗a = ±2c1(ξ) ∪ a,
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because, in the case n = 3, c1(ξ) ∪ c1(ξ) = i∗(c1(J) ∪ c1(J)) = 0. Hence, by
Poincaré duality, Ψ induces multiplication by 2 on H1(M) � H2n−2(M), in
contradiction with Lemma 3.2 above.

Likewise if Ψ : V → V is a diffeomorphism that conjugates J and J ′,
then Ψ∗c1(J ′) = c1(J), and then Ψ acts by multiplication by 2 on H2(V ) �
H1(V ) � π1(V ), so cannot be homotopic to a diffeomorphism according to
Lemma 3.2. �
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