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Categorification of Clifford algebras

and Uq(sl(1|1))
Yin Tian

We construct families of differential graded algebras Rn and Rn �
Rn for n > 0, and differential graded categories DGP (Rn) gener-
ated by some distinguished projective Rn-modules. The category
DGP (Rn) gives an algebraic formulation of the contact category of
a disk. The 0-th homology category H0(DGP (Rn)) of DGP (Rn)
is a triangulated category and its Grothendieck group K0(Rn) is
isomorphic to a Clifford algebra. We then categorify the multipli-
cation on K0(Rn) to a functor DGP (Rn �Rn) → DGP (Rn). We
also construct a subcategory of H0(DGP (Rn)) which categorifies
an integral version of Uq(sl(1|1)) as an algebra.
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1. Introduction

1.1. Background

Categorification is a process in which we lift an integer to a vector space, a
vector space to a category, and a linear map between vector spaces to a func-
tor between categories. Two of the pioneering works are Khovanov homology
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defined by Khovanov [17] and knot Floer homology, defined independently
by Ozsváth-Szabó [29] and Rasmussen [31], which categorify the Jones and
Alexander polynomials, respectively. Khovanov homology and knot Floer
homology are finer invariants of knots which take values in the homotopy
category of chain complexes of graded vector spaces whose graded Euler
characteristics agree with the polynomial invariants.

The Jones polynomial fits in the general framework of Reshetikhin-
Turaev invariants [33] associated to the fundamental representation V1 of the
quantum group Uq(sl2). With an eye towards categorifying the Reshetikhin-
Turaev invariants, Bernstein-Frenkel-Khovanov [2] formulated a program
for categorifying representations of Uq(sl2). The symmetric powers V ⊗n

1 of
U(sl2) were categorified in [2] and extended to the graded case of Uq(sl2) by
Stroppel [37]. Other tensor product representations of Uq(sl2) were categori-
fied by Frenkel-Khovanov-Stroppel [6]. Chuang and Rouquier [4] categorified
locally finite sl2-representations. More generally, Rouquier [35] studied a 2-
category associated with a Kac-Moody algebra and its 2-representation. For
the quantum groups themselves, Lauda [24] gave a diagrammatic categori-
fication of Uq(sl2) and Khovanov-Lauda [20–22] extended it to the cases of
Uq(sln). The program of categorifying Reshetikhin-Turaev invariants was
brought to fruition by Webster [38, 39] using this diagrammatic approach.

For the Alexander polynomial, Kauffman-Saleur developed a represen-
tation-theoretic approach in the spirit of [23] via the quantum group
Uq(sl(1|1)) of the Lie superalgebra sl(1|1). Rozansky-Saleur in [34] gave
an associated quantum field theory description. Compared to the case of
Uq(sl2), the following question naturally appears in the context:

Question 1.1. Is there a categorical program for Uq(sl(1|1)) and its fun-
damental representation which could recover knot Floer homology?

The first step in such a program is to categorify Uq(sl(1|1)). Motivated
by the strands algebra of Lipshitz-Ozsváth-Thurston [25], Khovanov [18]
categorified the positive part of Uq(gl(1|2)). Douglas-Manolescu [5] gener-
alized the strands algebra associated to a surface to a differential 2-algebra
associated to a circle. Recently, Sartori [36] announced a categorification of
tensor products of the fundamental representation of Uq(sl(1|1)) using the
parabolic category O. The category O was also used in a categorification of
the Temperley-Lieb category by Stroppel [37] and a combinatorial approach
to functorial quantum slk knot invariants by Mazorchuk-Stroppel [28].

The goal of this paper is to present a categorification of the algebra
structure of an integral version of Uq(sl(1|1)). The motivation is from the
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contact category introduced by Honda [8], which presents an algebraic way
to study contact topology in dimension 3. In particular, the distinguished
basis in our categorification is given by geometric objects, called dividing
sets, induced by contact structures. The connection between 3-dimensional
contact topology and Heegaard Floer homology was established by Ozsváth
and Szabó [30] in the closed case. Honda-Kazez-Matić generalized it to the
case of a contact 3-manifold with convex boundary in [11] and formulated
it in the framework of TQFT in [10]. The combinatorial properties of the
contact categories were studied by Mathews in the case of disks [26] and
annuli [27]. The connection to bordered Heegaard Floer homology defined in
[25] is observed by Zarev [40]. Since the quantum sl(1|1) knot invariant was
categorified to Heegaard Floer homology, it is not too surprising that the
contact topology can be used to categorify Uq(sl(1|1)).

1.2. Results

We actually first give a categorification of a Clifford algerba Cln.

Definition 1.2. Define Cln as a unital Z[q±1]-algebra with generators Xi’s
for 0 ≤ i ≤ n, relations:

X2
i = 0;

XiXj = −XjXi if |i− j| > 1;

XiXi+1 +Xi+1Xi = q2i+1−n.

It is easy to see that Cln is a Clifford algebra Cl(Vn, Qn) over Z[q±1],
where Vn is a free Z[q±1]-module spanned by {Xi | 0 ≤ i ≤ n} and Qn is a
quadratic form on Vn given by:

Qn

(
n∑

i=0

aiXi

)
=

n−1∑
i=0

aiai+1q
2i+1−n,

for ai ∈ Z[q±1]. Note that the connection between Uq(gl(1|1)) and Clifford
algerbas was investigated by Reshetikhin-Stroppel-Webster [32] in clarifying
the braid group action defined by R-matrices of Uq(gl(1|1)).

Our first theorem is a categorification of the multiplication mn :
Cln ⊗Z[q±1] Cln → Cln via triangulated categories:

Theorem 1.3. For n > 0, there exist triangulated categories CLn,n and
CLn whose Grothendieck groups are Cln ⊗ Cln and Cln, respectively. There



544 Yin Tian

exists an exact functor Mn : CLn,n → CLn whose induced map on the
Grothendieck groups K0(Mn) : K0(CLn,n) → K0(CLn) agrees with the mul-
tiplication mn : Cln ⊗ Cln → Cln.

Remark 1.4. (1) The basis {Xi | 0 ≤ i ≤ n} in our categorification is dif-
ferent from the basis {ψi, ψ

∗
i | i ∈ Z} of the Clifford algebra in [14]. As

a comparison, Khovanov used a different basis from {pi, qi | i ∈ Z} in the
categorification of a Heisenberg algebra [19].
(2) Compared to the additive categorification of the Heisenberg algebra, the
triangulated or differential graded categories are more useful for categorify-
ing the Clifford algebra.

We view an integral version of Uq(sl(1|1)) as a subalgebra of Cln as fol-
lows. The quantum group Uq(sl(1|1)) is the unital associative Q(q)-algebra
with generators E,F,H,H−1 and relations:

HH−1 = H−1H = 1,

E2 = F 2 = 0,

HE = EH,HF = FH,

EF + FE =
H −H−1

q − q−1
.

We consider two variants of Uq(sl(1|1)): the idempotent completion U
and the integral form Un of U. The idempotent completion U is obtained
from Uq(sl(1|1)) by replacing the unit by a collection of orthogonal idem-
potents 1n for n ∈ Z such that

1n1m = δn,m, H1n = 1nH = qn1n, 1nE = E1n, 1nF = F1n.

Definition 1.5. The integral form Un is the unital associative Z[q±1]-
algebra with generators E,F and relations:

E2 = F 2 = 0, EF + FE =
qn − q−n

q − q−1
= qn−1 + · · ·+ q1−n.

Then Un can be viewed as a subalgebra of Cln by setting

E =
∑

0≤i≤n
i even

Xi, F =
∑

0≤i≤n
i odd

Xi

We construct triangulated full subcategories Un of CLn and Un,n of CLn,n

so that their Grothendieck groups are Un and Un ⊗Un, respectively. Then
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the restriction of Mn in Theorem 1.3 to the subcategory Un,n gives a cate-
gorification of the multiplication on Un.

Theorem 1.6. For n > 0, there exist triangulated categories Un,n and Un

whose Grothendieck groups are Un ⊗Un and Un, respectively. There exists
an exact functor Fn : Un,n → Un whose induced map on the Grothendieck
groups K0(Fn) : K0(Un,n) → K0(Un) agrees with the multiplication fn : Un ⊗
Un → Un.

1.3. Motivation from contact topology in dimension 3

The contact category C(Σ, F ) of (Σ, F ) is an additive category associated to
an oriented surface Σ and a finite subset F of ∂Σ. The objects of C(Σ, F ) are
formal direct sums of isotopy classes of dividing sets on Σ whose restrictions
to ∂Σ agree with F . A dividing set Γ on Σ is a properly embedded 1-manifold,
possibly disconnected and possibly with boundary, which divides Σ into
positive and negative regions. The Euler number e(Γ) of a dividing set is the
Euler characteristic of the positive region minus the Euler characteristic of
the negative region. The morphism HomC(Σ,F )(Γ0,Γ1) is an F2-vector space
spanned by isotopy classes of tight contact structures on Σ× [0, 1] with the
dividing sets Γi on Σ× {i} for i = 0, 1. The composition is given by vertically
stacking contact structures.

We give a very brief description of morphism spaces of contact categories.
Since any tight contact structure preserves the Euler number of the dividing
sets, we have HomC(Σ,F )(Γ0,Γ1) = 0 if e(Γ0) �= e(Γ1). It follows that C(Σ, F )
is actually a disjoint union of its subcategories C(Σ, F ; e) which are gener-
ated by dividing sets Γ with e(Γ) = e. Any dividing set with a contractible
component is isomorphic to the zero object since there is no tight contact
structure in a neighborhood of the dividing set by a criterion of Giroux [7].
As basic blocks of morphisms, bypass attachments introduced by Honda [9]
locally change dividing sets as in Figure 1.

There is a refined version, called the universal cover C̃(Σ, F ) of the con-
tact category C(Σ, F ) given as follows. Choose a dividing set Γ0,e as a base
point for each subcategory C(Σ, F ; e) of C(Σ, F ). The basic objects of C̃(Σ, F )
are pairs (Γ, [ζ]), where Γ is an isotopy class of dividing sets on (Σ, F ) with
e(Γ) = e, and [ζ] is a homotopy class of a 2-plane field ζ on Σ× [0, 1] which
is contact near Σ× {0, 1} with the dividing sets Γ0,e on Σ× {0} and Γ on
Σ× {1}. The morphism set HomC̃(Σ,F )((Γ1, [ζ1]), (Γ2, [ζ2])) is spanned by

tight contact structures {ξ} such that [ζ2] = [ξ ∪ ζ1], where ξ ∪ ζ1 denotes a
concatenation of the 2-plane fields ξ and ζ1. In other words, the component



546 Yin Tian

Figure 1: The picture on the left is a bypass attachment along the dashed
arc; the one on the right is a distinguished triangle given by a triple of bypass
attachments.

[ζ] gives a grading gr(Σ) on the objects of C̃(Σ, F ) which takes values in ho-
motopy classes of 2-plane fields. Equivalently, the grading gr(Σ) is given by
a central extension by Z of the homology group H1(Σ), i.e., there is a short
exact sequence: 0 → Z → gr(Σ) → H1(Σ) → 0. Note that a similar grading
appears in bordered Heegaard Floer homology [25, Section 3.3]. The main
feature of the universal cover C̃(Σ, F ) is the existence of distinguished tri-
angles given by a triple of bypass attachments as in Figure 1. The subgroup
Z of the grading gr(Σ) is related to the shift functor in a triangulated cat-
egory. In particular, Huang [12] showed that a triple of bypass attachments
changes the Z component by 1.

This paper can be viewed as an algebraic formulation of the triangu-
lated structure on the universal cover of the contact category of a disk,
viewed as a rectangle. Let Cn be the universal cover of the contact category
C(Dn, 2n+ 4) of a rectangle Dn with n+ 2 marked points on both the left
and right sides of ∂Dn and no marked points on the top and bottom sides.
The grading gr(Dn) is isomorphic to Z in this case. Although modifying a
disk into a rectangle breaks the symmetry of the disk, it gives a monoidal
structure on Cn, i.e. a bifunctor ρn : Cn × Cn → Cn. The monoidal structure
ρn is given by horizontally stacking two dividing sets along their common
boundaries for the objects and sideways stacking two contact structures for
the morphisms as shown in Fig 2. Since the universal cover Cn is defined
by choosing some base points Γ0,e for each Euler number e, the definition
of ρn really depends on choices of stacking the base points. The algebraic
formulation considered in this paper is motivated by a special choice of ρn.
We won’t discuss the detail about how ρn is defined over the base points.
Although the motivation is from contact topology, our algebraic formulation
can actually be constructed independently.
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[∅]

ρn

Figure 2: The top is a stacking of two dividing sets; the bottom is a distin-
guished collection of dividing sets: [∅], [0], [1], [2].

There is a collection of distinguished dividing sets [∅] and [i]’s for 0 ≤
i ≤ n as shown in Fig 2. Each distinguished object is actually a pair of a
dividing set and its homotopy grading with respect to the base point. From
now on we will focus on the dividing sets and ignore the homotopy grading
for simplicity. Note that any nontrivial dividing set can be represented as a
horizontal stacking of those dividing sets up to isotopy. Let [i] · [j] denote
the horizontal stacking of dividing sets [i] and [j]. Let X∅ and Xi’s be classes
of [∅] and [i]’s in the Grothendieck group of Cn. Under a special choice of ρn
they satisfy the following properties illustrated in Fig 3:

(1) X∅ is the unit since any dividing set is unchanged when stacking [∅]
from both left and right.

(2) X2
i = 0 since the dividing set [i] · [i] contains a contractible loop.

(3) XiXj = −XjXi for |i− j| > 1, since dividing sets [i] · [j] and [j] · [i] are
in the same isotopy class as dividing sets, but their homotopy gradings
differ by 1 from the special choice of ρn. Hence their classes differ by
a minus sign in the Grothendieck group.

(4) XiXi+1 +Xi+1Xi = q2i+1−nX∅, since there exists a distinguished tri-

angle: [i] · [i+ 1] → [∅] → [i+ 1] · [i] [1]−→ [i] · [i+ 1]. The morphism in
HomCn

([i+ 1] · [i], [i] · [i+ 1]) is of cohomological degree 1 due to the
choice of ρn. The exponent of q is related to the height of the location
of the distinguished triangle.
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[∅]

Figure 3: The top left picture represents [0] · [0]; the bottom left compares
[0] · [2] and [2] · [0]; the right picture is a distinguished triangle: [0] · [1] →
[∅] → [1] · [0].

The key ingredient in categorification is the existence of a canonical or
distinguished basis. The morphism sets between objects in the basis are
supposed to give relations on the level of Grothendieck group. In this per-
spective, the contact category Cn of a rectangle provides a distinguished
basis {the dividing sets [i]’s} which lifts the generators Xi’s of the Clifford
algebra Cln. The multiplication on Cln is lifted to the monoidal structure
on Cn and the relations in Cln are lifted to isomorphisms or distinguished
triangles in Cn. In a follow-up paper, we construct a categorical action of the
Clifford algebra Cln which is motivated by stacking Cn with other contact
categories. We conclude this section with the following question:

Question 1.7. What is the intrinsic connection between contact topology
and the Clifford algebra?

1.4. The algebraic formulation

In this paper, we give an algebraic formulation of the contact categories Cn
and the monoidal functor ρn in 3 steps1:

1) Define F2-algebras Rn motivated from considering morphisms in Cn
between objects in certain distinguished basis. Then model Cn by DG
categories DGP (Rn) generated by some projective Rn-modules.

1In fact, the rest of the paper is just algebra which is motivated by the contact
category.



Categorification of Clifford algebras and Uq(sl(1|1)) 549

2) Define multiplication mn on the Grothendieck groups K0(Rn) of
DGP (Rn) and show that K0(Rn) are isomorphic to the Clifford al-
gebras Cln.

3) Categorify mn : K0(Rn)⊗K0(Rn) → K0(Rn) to functors

Mn : DGP (Rn �Rn)
Tn⊗Rn�Rn

−−−−−−−−−→ DGP (Rn)

by tensoring with DG (Rn, Rn �Rn)-bimodules Tn. Here, DG algebras
Rn �Rn are variants of tensor products Rn ⊗Rn by adding a nontriv-
ial differential. The construction of Tn is motivated by the monoidal
functors ρn on the topological side.

The rigorous definition of Rn is given in Definition 2.6 which does not
need contact topology directly. We give more detail about how the alge-
bra Rn is motivated from the contact category Cn. It is easy to see from
Definition 1.2 that Cln has a Z[q±1]-basis:

{Xi0Xi1 · · ·Xik | n ≥ i0 > · · · > ik ≥ 0}.

This basis can be lifted to a collection of distinguished objects of Cn:

Bn = {[i0] · [i1] · · · [ik] | n ≥ i0 > · · · > ik ≥ 0}.

Here homotopy gradings of the distinguished objects are omitted. The key
point is that there exists a choice of homotopy gradings such that HomCn

(x, y)
for any pair x, y ∈ Bn is concentrated at cohomological degree 0. Then the
composition of morphisms in the contact category Cn defines an F2-algebra:

Rn =
⊕

x,y∈Bn

HomCn
(x, y).

More precisely, there is a correspondence from the topological model to the
algebraic model:

φn : Cn → Db(Rn)

z 
→
⊕
x∈Bn

Hom(x, z),

where Db(Rn) is the bounded derived category of finitely generated left
Rn-modules. In fact, the collection Bn of the distinguished objects gener-
ates the contact category Cn by taking iterated mapping cones. Associated
Rn-modules φn(z) are good enough to distinguish objects z of Cn. Roughly
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speaking φn can be viewed as an embedding of Cn into its triangulated en-
velope Db(Rn). This method which describes a category by picking up a
collection distinguished objects was used in Khovanov-Seidel’s approach to
certain Fukaya categories [23]. In order to describe homotopies between com-
plexes of Rn-modules, we will work over DG categories DGP (Rn) generated
by distinguished projective Rn-modules corresponding to the basis Bn on
the topological side.

We describe Rn in terms of a path algebra of a quiver Γn explicitly. The
rigorous definition of Γn will be given in Definition 2.1. Here we only dis-
cuss the motivation from contact topology behind its definition. A key fact
about the contact category Cn is that any morphism in Rn can be written
as a product of elementary morphisms in Rn which are not decomposable.
Therefore we construct the quiver Γn whose vertices are in one-to-one cor-
respondence to the basis in Bn, and whose arrows represent the elementary
morphisms in Rn. More precisely, there exists an arrow

[i0] · [i1] · · · [ik] → [j0] · [j1] · · · [jl]

if l = k + 2 and {j0, j1, . . . , jl} = {i0, i1, . . . , ik} � {s+ 1, s} for some s. Each
arrow actually represents an elementary morphism which is a tight contact
structure given by a single bypass attachment. For instance, there is an
arrow [∅] → [1] · [0] in Γn as a part of the distinguished triangle [0] · [1] →
[∅] → [1] · [0] in Cn as shown in Fig 3. We further impose a commutativity
relation on the path algebra F2Γn about squares in Γn. For instance, the
following square commutes:

[∅] ��

��

[1][0]

��
[3][2] �� [3][2][1][0].

The relation comes from the fact in contact topology that two disjoint bypass
attachments commute up to isotopy. Then we add an extra q-grading on the
set of arrows and define a q-graded algebra Rn as a quotient of F2Γn modulo
the commutativity relation.

Let P (x) = Rne(x) be a left projective Rn-module, where e(x) is an
idempotent of Rn for a vertex x ∈ Bn of Γn. Let DGP (Rn) be a DG category
consisting of finitely iterated mapping cones of maps between distinguished
projective Rn-modules in {P (x) | x ∈ Bn}. As triangulated categories, the



Categorification of Clifford algebras and Uq(sl(1|1)) 551

0-th homology category H0(DGP (Rn)) is equivalent to Kb(Rn), the homo-
topy category of bounded complexes of finitely generated projective q-graded
Rn-modules. The Grothendieck group K0(Rn) of H0(DGP (Rn)), is a free
Z[q±1]-module over the vertex set V (Γn) = Bn.

We then define a multiplication mn : K0(Rn)⊗K0(Rn) → K0(Rn) and
show that K0(Rn) is isomorphic to the Clifford algebra Cln. Consider a
tensor product Rn ⊗Rn and its homotopy category Kb(Rn ⊗Rn) whose
Grothendieck group is isomorphic to K0(Rn)⊗K0(Rn). To categorify mn,
we ideally need (Rn, Rn ⊗Rn)-bimodule to induce a functorKb(Rn ⊗Rn) →
Kb(Rn). But the construction of those bimodules requires more informa-
tion on homotopies between complexes in Kb(Rn ⊗Rn). Thus, we deform
Rn ⊗Rn into Rn �Rn by adding a nontrivial differential and show that two
algebras are quasi-isomorphic. Then consider a DG category DGP (Rn �
Rn) whose 0-th homology category H0(DGP (Rn �Rn)) is equivalent to
Kb(Rn ⊗Rn).

DGP (Rn �Rn)
Mn ��

H0

��

DGP (Rn)

H0

��
H0(DGP (Rn �Rn))

Mn|H0 ��

K0

��

H0(DGP (Rn))

K0

��
Cln ⊗ Cln ∼= K0(Rn ⊗Rn)

mn �� K0(Rn) ∼= Cln.

The key part of this paper is the construction of DG (Rn, Rn �Rn)-
bimodules Tn which is motivated by the monoidal functor ρn in the topo-
logical model. Then tensoring with Tn defines a functor Mn : DGP (Rn �
Rn) → DGP (Rn). We show that Mn induces an exact functor Mn|H0 :
H0(DGP (Rn �Rn)) → H0(DGP (Rn)). Let CLn,n and CLn denote
H0(DGP (Rn �Rn)) and H0(DGP (Rn)), respectively. Then Mn|H0 cat-
egorifies the multiplication mn on the Clifford algebra Cln shown in Theo-
rem 1.3.

The organization of the paper. In Section 2 we construct the quiv-
ers Γn,Γn � Γn and the q-graded DG algebras Rn, Rn ⊗Rn and Rn �Rn.
In Section 3 we define the multiplication on K0(Rn) and show that it is
isomorphic to Cln. In Section 4 we give a categorification of the multipli-
cation: Mn : DGP (Rn �Rn) → DGP (Rn) through the DG (Rn, Rn ⊗Rn)-
bimodules Tn. In Sect. 5 we construct the subcategory Un of H0(DGP (Rn)).
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It categorifies the integral version Un of Uq(sl(1|1)) in the sense that the
restriction of Mn categorifies the multiplication on Un.
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thank Aaron Lauda for teaching me a great deal about the representation
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2. The q-graded DG algebras Rn and Rn � Rn

2.1. The q-graded DG algebra Rn

In this section, we define Rn as path algebras of quivers Γn, for n > 0.
The definition of Γn is purely algebraic although it is motivated from the
contact category Cn More precisely, the vertex set V (Γn) is the basis Bn

consisting of the distinguished objects of the contact category Cn. The arrow
set A(Γn) is given by some morphisms in Cn between the objects in Bn.
Each object x ∈ Bn corresponds to a projective Rn-module P (x). We are
interested in DG categories DGP (Rn) generated by these projective Rn-
modules {P (x) | x ∈ Bn}.

2.1.1. The quiver Γn. We construct a family of quivers Γn =
(V (Γn), A(Γn)), where V (Γn) and A(Γn) are vertex and arrow sets of Γn.

Definition 2.1 (Quiver Γn = (V (Γn), A(Γn))).

1) Let V (Γn) be the set of decreasing sequences of integers bounded by
n and 0, i.e., V (Γn) = {[∅]} � {x = [x0, . . . , xi] | n ≥ x0 > · · · > xi ≥
0, xk ∈ Z for 0 ≤ k ≤ i}.

2) Let A(Γn) be the subset of V (Γn)× V (Γn) , where (x,y) ∈ A(Γn)
for x = [x0, x1, . . . , xi], y = [y0, y1, . . . , yj ] if j = i+ 2 and {y0, y1, . . . ,
yj} = {x0, x1, . . . , xi} � {s+ 1, s} as sets, for some s.

Notation 2.2. We write an arrow (x
s→ y) if (x,y) ∈ A(Γn), where y is

obtained from x by adding a pair of adjacent integers {s+ 1, s}. We write
s ∈ x = [x0, x1, . . . , xi] if s = xk for some k and s /∈ x otherwise.

The quiver Γn is decomposed into connected components according to a
grading on V (Γn):
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Definition 2.3. The Euler grading e : V (Γn) → Z is defined as e(x) =∑i
k=0(−1)xk for x = [x0, x1, . . . , xi] and e([∅]) = 0.

It is easy to see that x and y are in the same connected component of
Γn if and only if they have the same Euler grading: e(x) = e(y). Therefore,
Γn = �eΓn,e, where Γn,e is the connected component with Euler grading e.

Remark 2.4. The Euler grading e actually comes from the Euler number
of a dividing set. Recall a dividing set divides the surface into positive and
negative regions. Then the Euler number is the Euler characteristic of the
positive region minus the Euler characteristic of the negative region.

Example 2.5 (Quiver Γ2). The quiver Γ2 has four components Γ2,e for
e = −1, 0, 1, 2, where Γ2,0 and Γ2,1 are dual to each other.

[1] [2, 0][∅] [2, 1, 0]

[1, 0] [0]

[2, 1] [2]

Figure 4: The quiver Γ2.

2.1.2. The q-graded algebra Rn. In this subsection we define the q-
graded algebra Rn as a quotient of the path algebra F2Γn of the quiver Γn.
F2 is fixed as the ground field throughout the paper.

Definition 2.6. Rn is an associative q-graded F2-algebra with a generator
r(x

s→ y) for each arrow (x
s−→ y) in Γn, idempotents e(x) for each vertex x

in Γn and relations:

e(x) · e(y) = δx,y · e(x),
e(x) · r(x s→ y) = r(x

s→ y) · e(y) = r(x
s→ y),

r(x
s→ y) · r(y t→ w) = r(x

t→ z) · r(z s→ w) for |s− t| > 1.

The unit of Rn is the sum of idempotents: 1Rn
=
∑

x∈V (Γn)
e(x). The q-

grading deg on Rn is given on generators as: degRn
(e(x)) = 0, degRn

(r(x
s→

y)) = n− 1− 2s.
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Remark 2.7. The last commutativity relation is about two paths from x
to w if w is obtained from x by adding two disjoint pairs of adjacent integers
{s+ 1, s} and {t+ 1, t}, for |s− t| > 1.

We refer to the book [1] for an introduction to the representation theory
of quivers. The nice property of the quiver Γn is that it has no oriented
cycles. In particular, Rn is a finite dimensional algebra. Since {e(x) | x ∈
Γn} is a complete set of primitive orthogonal idempotents in Rn, {P (x) =
Rne(x) | x ∈ Γn} forms a complete set of non-isomorphic indecomposable
projective q-graded left Rn-modules, up to grading shifts. Let A{m} denote
A with its q-grading shifted by m, i.e., A{m} = {a ∈ A | degA{m}(a) =
degA(a)−m}. Then any projective graded left Rn-module A is a direct
sum of indecomposables P (x){m}.

Consider Kb(Rn), the homotopy category of bounded cochain complexes
of finitely generated projective graded modules over Rn with grading-
preserving differentials. The chain maps are also grading-preserving. For
any cochain complex M = {· · · → M s → M s+1 → · · · } ∈ Kb(Rn), let M [p]
be M with the cohomological grading shifted by p, i.e., M [p]s = M s+p. By
a standard result in homological algebra, Kb(Rn) is a triangulated category.

Let K0(Rn) be the Grothendieck group of Kb(Rn). It is a Z[q±1]-module
generated by [P ] over all finitely generated projective graded Rn-modules P ,
subject to relations [P{1}] = q[P ], [P [1]] = −[P ] and [P2] = [P1] + [P3] for
each short exact sequence 0 → P1 → P2 → P3 → 0. It is easy to see K0(Rn)
is a free Z[q±1]-module over the basis {[P (x)] | x ∈ V (Γn)}. Let Z[q±1]〈S〉
denote the free Z[q±1]-module generated by the set S, then

K0(Rn) ∼= Z[q±1]〈V (Γn)〉 ∼= Z[q±1]〈Bn〉.

Remark 2.8. The q-grading on Rn is only used to make K0(Rn) as a
Z[q±1]-module. The reader may ignore the q-grading in various modules at
a first reading.

2.1.3. The DG category DGP (Rn). We consider DG algebras and DG
modules with an additional q-grading in a straightforward way. We refer to
[3, Section 10] for an introduction to DG algebras and DG modules. Most of
this subsection is standard homological algebra in the DG world. The goal is
to define the DG category DGP (Rn) consisting of iterated mapping cones of
maps between the projective Rn-modules {P (x) | x ∈ V (Γn)}. The category
DGP (Rn) is our algebraic formulation of the contact category Cn on the
topological side. Instead of studying chain maps up to homotopy in Kb(Rn),
we want to keep track of various homotopies in the DG category DGP (Rn).
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The DG structure is crucial in the construction of functors between DG
categories in Section 4.

Definition 2.9. A q-graded DG algebra (A, d) is a doubly graded F2-
algebra A =

⊕
i,j A

i,j with a unit 1A ∈ A0,0, where i is the cohomological
grading and j is the q-grading. The differential d is an additive endomor-
phism of degree (1, 0) such that for a, b ∈ A:

d2 = 0, d(1A) = 0,

d(a · b) = d(a) · b+ a · d(b).

Definition 2.10. A left q-graded DG module (M,dM ) over a q-graded DG
algebra (A, d) is a doubly graded unitary left A-module M =

⊕
i,j M

i,j ,
where i is the cohomological grading and j is the q-grading. The differential
dM is an additive endomorphism of degree (1, 0) such that for a ∈ A,m ∈ M

d2M = 0, dM (a ·m) = d(a) ·m+ a · dM (m).

We view Rn as a q-graded DG algebra (Rn, d = 0) which has trivial
differential and is concentrated in cohomological grading 0. Let DG(Rn)
be the DG category of q-graded DG Rn-modules. We refer to [16] for an
introduction to DG categories.

Definition 2.11 (DG category DG(A) for a q-graded DG algebra A).

1) The objects of DG(A) are left q-graded DG A-modules.

2) The space of morphisms

(
HomDG(A)(M,N), d

)
=

(⊕
i

Homi
DG(A)(M,N),

⊕
i

di

)

is a cochain complex, where Homi
DG(A)(M,N) is the set of left A-

module maps of degree (i, 0) and

di : Homi
DG(A)(M,N) → Homi+1

DG(A)(M,N)

is given as d(f) = d ◦ f + f ◦ d.
3) A morphism f is closed if d(f) = 0; f is exact if f = d(g) for some mor-

phism g. Let Zi(HomDG(A)(M,N)) and Bi(HomDG(A)(M,N)) denote
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the subset of Homi
DG(A)(M,N) consisting of closed morphisms and

exact morphisms respectively.

Remark 2.12. For (Rn, d = 0), a q-graded DG Rn-module is a cochain
complex of q-graded Rn-modules. A closed morphism of degree 0 is a chain
map.

Definition 2.13. The 0-th homology category H0(DG(A)) of the DG cat-
egory DG(A) has the same objects as DG(A) and its morphisms are given
by

HomH0(DG(A))(M,N) = Z0(HomDG(A)(M,N))/B0(HomDG(A)(M,N)).

Remark 2.14. The 0-th homology category H0(DG(A)) is isomorphic to
the homotopy category of q-graded DG A-modules.

Definition 2.15. A DG A-module P is called projective if the complex
HomDG(A)(P,M) has zero cohomology when the cohomology H(M) of
(M,dM ) ∈ Ob(DG(A)) is zero.

Remark 2.16. The DG Rn-module P (x) = Rne(x) is projective since it is
a direct summand of Rn which is projective [3, Remark 10.12.2.3].

There are two automorphisms of DG(A): [1] and {1} with respect to
the cohomological grading and the q-grading. There is another operation,
called the mapping cone, which constructs a new object C(f) from f ∈
Z0(HomDG(A)(M,N))

Definition 2.17 (Two shift functors and C(f)).

1) The shift functor [1] : DG(A) → DG(A) is an automorphism ofDG(A)
such that,

(M [1])i,j = M i+1,j , dM [1] = dM .

2) The shift functor {1} : DG(A)→DG(A) is an automorphism ofDG(A)
such that,

(M{1})i,j = M i,j+1, dM{1} = dM .

3) For f ∈ Z0(HomDG(A)(M,N)), M,N ∈ Ob(DG(A)), define the map-
ping cone C(f) = N ⊕M [1] with the differential dC(f) = (dN + f, dM ).
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Definition 2.18. Let DGP (Rn) be the smallest full subcategory of
DG(Rn) which contains the projective DG Rn-modules {P (x) | x ∈ V (Γn)}
and is closed under the two shift functors [1], {1} and taking the mapping
cones.

The objects of DGP (Rn) are finitely iterated cones of closed morphisms
between the projective modules {P (x) | x ∈ V (Γn)} up to grading shifts.
Since {P (x) | x ∈ Γn} form a complete set of non-isomorphic indecompos-
able projective Rn-modules up to grading shifts, the 0-th homology category
H0(DGP (Rn)) is equivalent to Kb(Rn) as triangulated categories. Hence
their Grothendieck groups are isomorphic:

K0(H
0(DGP (Rn))) ∼= K0(K

b(Rn)) = K0(Rn).

2.2. The q-graded DG algebra Rn � Rn

We will define the multiplication mn : K0(Rn)⊗K0(Rn) → K0(Rn) in Sec-
tion 3. To categorify K0(Rn)⊗K0(Rn), we first consider the tensor prod-
uct Rn ⊗Rn and its homotopy category Kb(Rn ⊗Rn) whose Grothendieck
group is isomorphic to K0(Rn)⊗K0(Rn). The algebra Rn ⊗Rn can be de-
scribed by a quiver Γn × Γn. Then we construct a quiver Γn � Γn by adding
more arrows on the product Γn × Γn. The new arrows deform Rn ⊗Rn into
a nontrivial DG algebra Rn �Rn. We show that two algebras are quasi-
isomorphic, hence their homotopy categories are equivalent. Note that the
nontrivial DG structure on Rn �Rn is only used to construct the DG
(Rn, Rn �Rn)-bimodule Tn in Section 4.

2.2.1. The q-graded algebra Rn ⊗ Rn.

Definition 2.19. As an F2-algebra, Rn ⊗F2
Rn is the tensor product of two

Rn’s over F2 with unit

1Rn⊗F2
Rn

=
∑

x,y∈V (Γn)

e(x)⊗ e(y).

The q-grading on generators is given as degRn⊗F2
Rn

(a⊗ b) = degRn
(a) +

degRn
(b).

For simplicity, we omit ground rings or fields in various tensor products.
For instance, we write Rn ⊗Rn for Rn ⊗F2

Rn, and K0(Rn)⊗K0(Rn) for
K0(Rn)⊗Z[q±1] K0(Rn).
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Since {e(x)⊗ e(y) | x,y ∈ V (Γn)} is a complete set of primitive orthog-
onal idempotents of Rn ⊗Rn, the modules P ′(x,y) = (Rn ⊗Rn)(e(x)⊗
e(y)) = Rne(x)⊗Rne(y) form a complete set of non-isomorphic indecom-
posable projective graded left Rn ⊗Rn-modules, up to grading shifts. Con-
sider Kb(Rn ⊗Rn), the homotopy category of bounded cochain complexes
of finitely generated projective graded modules over Rn ⊗Rn with grading-
preserving differentials and chain maps. Let K0(Rn ⊗Rn) be the Grothen-
dieck group of Kb(Rn ⊗Rn). It is easy to see that K0(Rn ⊗Rn) is a free
Z[q±1]-module over {[P ′(x,y)] | x,y ∈ V (Γn)}, i.e.,

K0(Rn ⊗Rn) = Z[q±1]〈V (Γn)× V (Γn)〉
= Z[q±1]〈V (Γn)〉 ⊗ Z[q±1]〈V (Γn)〉.

Hence we have K0(Rn ⊗Rn) = K0(Rn)⊗K0(Rn).

2.2.2. The q-graded DG-algebra Rn � Rn. We construct a family of
quivers Γn � Γn viewed as a variant of the product Γn × Γn by adding more
arrows.

Definition 2.20 (Quiver Γn � Γn = (V (Γn � Γn), A(Γn � Γn))).

1) V (Γn � Γn) = V (Γn)× V (Γn).

2) Let A(Γn � Γn) be the subset of

V (Γn � Γn)× V (Γn � Γn) = (V (Γn)× V (Γn))× (V (Γn)× V (Γn)),

where (x,y,x′,y′) ∈ A(Γn � Γn) if one of following holds:
a) (x,x′) ∈ A(Γn) and y = y′;
b) (y,y′) ∈ A(Γn) and x = x′;
c) (x,x′), (y,y′) ∈ A(Γn) and there exist some s ∈ {0, 1, . . . , n− 1}

such that the corresponding arrows are (x
s→ x′) and (y

s+1→ y′)
We denote the arrows for (a), (b) and (c) by (x,y

s,∅−−→ x′,y), (x,y ∅,s−−→
x,y′) and (x,y

s,s+1−−−→ x′,y′), respectively.

Remark 2.21. Arrows of types (a) and (b) are induced from those in each
factor of Γn × Γn. Arrows of new type (c) measure homotopies between
arrows in certain squares as shown in the following example.
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Example 2.22 (Quiver Γ2 � Γ2). One connected component of Γ2 � Γ2

is shown in Fig 5. The arrow ([∅], [∅]) 0,1−−→ ([1, 0], [2, 1]) in red gives the ho-
motopy between two paths:

([∅], [∅]) 0,∅−−→ ([1, 0], [∅]) ∅,1−−→ ([1, 0], [2, 1]) and

([∅], [∅]) ∅,1−−→ ([∅], [2, 1]) 0,∅−−→ ([1, 0], [2, 1]).

([∅], [∅])

([∅], [1, 0])

([1, 0], [∅])

([∅], [2, 1])

([2, 1], [∅])

([1, 0], [1, 0])

([1, 0], [2, 1])

([2, 1], [2, 1])

([2, 1], [1, 0])

Figure 5: One component of the quiver Γ2 � Γ2.

The algebra Rn �Rn is defined as a quotient of the path algebra F2(Γn �
Γn) of the quiver Γn � Γn with a differential corresponding to the arrows of
type (c).

Definition 2.23. (Rn �Rn, d) is an associative q-graded DG algebra with
a differential d, a cohomological grading and a q-grading.

(A) Rn �Rn has idempotents e(x,y) for each vertex (x,y), generators

r(x,y
s,t−→ x′,y′) for each arrow (x,y

s,t−→ x′,y′) in Γn � Γn, here s or tmaybe
∅. The relations consists of two types:

(1) relations from each factor of Γn � Γn:

e(x,y) · e(x′,y′) = δx,x′ · δy,y′ · e(x,y);
e(x,y) · r(x,y s,t−→ x′,y′) = r(x,y

s,t−→ x′,y′) · e(x′,y′) = r(x,y
s,t−→ x,y′);

r(x,y
∅,s−−→ x,y′) · r(x,y′ ∅,t−→ x,y′′′) = r(x,y

∅,t−→ x,y′′) · r(x,y′′ ∅,s−−→ x,y′′′);

r(x,y
s,∅−−→ x′,y) · r(x′,y t,∅−→ x′′′,y) = r(x,y

t,∅−→ x′′,y) · r(x′′,y s,∅−−→ x′′′,y);
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r(x,y
s,∅−−→ x′,y) · r(x′,y ∅,t−→ x′,y′)

= r(x,y
∅,t−→ x,y′) · r(x,y′ s,∅−−→ x′,y′) if t �= s+ 1;

(2) relations on the arrows of type (c) in Γn � Γn:

r(x,y
s,s+1−−−→ x′,y′) · r(x′,y′ ∅,t−→ x′,y′′′)

= r(x,y
∅,t−→ x,y′′) · r(x,y′′ s,s+1−−−→ x′,y′′′);

r(x,y
s,s+1−−−→ x′,y′) · r(x′,y′ t,∅−→ x′′′,y′)

= r(x,y
t,∅−→ x′′,y) · r(x′′,y s,s+1−−−→ x′′′,y′);

r(x,y
s,s+1−−−→ x′,y′) · r(x′,y′ t,t+1−−−→ x′′′,y′′′)

= r(x,y
t,t+1−−−→ x′′,y′′) · r(x′′,y′′ s,s+1−−−→ x′′′,y′′′).

(B) The differential d is given on the generators as:

d(r(x,y
s,s+1−−−→ x′,y′)) = r(x,y

s,∅−−→ x′,y) · r(x′,y ∅,s+1−−−→ x′,y′)

+ r(x,y
∅,s+1−−−→ x,y′) · r(x,y′ s,∅−−→ x′,y′),

and d(r) = 0 otherwise. It is extended by d(r1 · r2) = d(r1) · r2 + r1 · d(r2)
for generators r1, r2.

(C) The cohomological grading gr is given on generators as: gr(r(x,y
s,s+1−−−→

x′,y′)) = −1 and gr(r) = 0 otherwise.

(D) The q-grading deg is given on generators as: deg(r(x,y
s,t−→ x′,y′)) =

(n− 1− 2s) + (n− 1− 2t) and deg(e(x,y)) = 0.

Remark 2.24. Relations of type (1) are analogous to those of Rn ⊗Rn if

we identify e(x,y), r(x,y
∅,s−−→x,y′), r(x,y t,∅−→x′,y) with e(x)⊗ e(y), e(x)⊗

r(y
s−→ y′), r(x t−→ x′)⊗ e(y), respectively.

Lemma 2.25. d is a differential on Rn �Rn.

Proof. It suffices to prove that d preserves the relations of type (2) in Defi-
nition 2.23 (A). We prove it for the first relation of type (2)

r(x,y
s,s+1−−−→ x′,y′) · r(x′,y′ ∅,t−→ x′,y′′′)(*)

= r(x,y
∅,t−→ x,y′′) · r(x,y′′ s,s+1−−−→ x′,y′′′)
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by checking an explicit example for s = 0, t = 3:

(x,y) = ([∅], [∅]), (x′,y′) = ([1, 0], [2, 1]),

(x,y′′) = ([∅], [4, 3]), (x′,y′′′) = ([1, 0], [4, 3, 2, 1]).

We rewrite the relation (*) as αγ1 = γ2β in terms of symbols in Fig 6. The
differential of the arrow α (β) in red is the sum of two paths from its tail
to its head. Two paths commute in each parallelogram without a diagonal
arrow. Now we prove that the differential preserves αγ1 = γ2β by chasing
the diagram:

d(αγ1) = d(α)γ1 = α1α2γ1 + α3α4γ1

= α1γ3β2 + α3γ4β4 = γ2β1β2 + γ2β3β4 = d(γ2β).

([∅], [∅])

([∅], [2, 1])

([1, 0], [∅])

([∅], [4, 3])

([1, 0], [2, 1])

([∅], [4, 3, 2, 1])

([1, 0], [4, 3])

([1, 0], [4, 3, 2, 1])

α
α1

α3

α2

α4

β
β1

β3

β2

β4

γ1
γ3

γ2
γ4

Figure 6:

The proof about all relations in general is similar and left to the reader.
�

2.2.3. Relations between Rn � Rn and Rn ⊗ Rn. We define DG
categories DGP (Rn ⊗Rn) and DGP (Rn �Rn). In order to compute the
Grothendieck group of the 0-th homology category H0(DGP (Rn �Rn)), we
show that Rn �Rn is quasi-isomorphic toRn ⊗Rn which has trivial differen-
tial. Then the homology categoriesH0(DGP (Rn �Rn)) andH0(DGP (Rn ⊗
Rn)) are equivalent. We will show that both Grothendieck groups are iso-
morphic to K0(Rn ⊗Rn).

Definition 2.26. A q-graded DG algebra A is formal if it is q-graded quasi-
isomorphic to its cohomology H(A).

Lemma 2.27. The q-graded DG algebra Rn �Rn is formal and its coho-
mology H(Rn �Rn) is isomorphic to Rn ⊗Rn.
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Proof. It is easy to see that the cohomology H(Rn �Rn) is isomorphic to
Rn ⊗Rn. We define a quasi-isomorphism H : Rn �Rn → Rn ⊗Rn as fol-
lows:

e(x,y) 
→ e(x)⊗ e(y)

r(x,y
∅,s−−→ x,y′) 
→ e(x)⊗ r(y

s−→ y′)

r(x,y
s,∅−−→ x′,y) 
→ r(x

s−→ x′)⊗ e(y)

r(x,y
s,s+1−−−→ x′,y′) 
→ 0 �

Definition 2.28. (1) Let DGP (Rn �Rn) be the smallest full subcate-
gory of DG(Rn �Rn) which contains the projective DG Rn �Rn-modules
{P (x,y) = (Rn �Rn)e(x,y) | x,y ∈ V (Γn)} and is closed under the two
shift functors [1], {1} and taking the mapping cones.

(2) Let DGP (Rn ⊗Rn) be the smallest full subcategory of DG(Rn ⊗Rn)
which contains the projective DGRn ⊗Rn-modules {P ′(x,y) | x,y∈V (Γn)}
and is closed under the two shift functors [1], {1} and taking the mapping
cones.

We give the connection between H0(DGP (Rn �Rn)) and H0(DGP
(Rn ⊗Rn)) as follows. Let Z0(DG(A)) be an abelian category with the
same objects as DG(A), whose morphisms are

HomZ0(DG(A))(M,N) = Z0(HomDG(A)(M,N)).

Consider the homotopy category KDG(A) and derived category DDG(A)
of Z0(DG(A)). They are triangulated categories. Let KPDG(A) be the full
subcategory of KDG(A) consisting of projective q-graded DG A-modules.
The localization functor induces an equivalence: KPDG(A) → DDG(A) [3,
Corollary 10.12.2.9].

For any quasi-isomorphism F : A → B of DG algebras, the derived in-
duction functor ind = B

⊗L
A− : DDG(A) → DDG(B) is an equivalence of

categories [3, Theorem 10.12.5.1]. The induced functor ind on KPDG(A) is
the induction functor B ⊗A −. It maps any projective DG A-module P to a
projective DG B-module B ⊗A P since

HomDG(B)(B ⊗A P,N) ∼= HomDG(A)(P,Res(N))

has zero cohomology for any DGB-moduleN withH(N) = 0, whereRes(N)
is the restriction ofN as a A-module. Hence we have an equivalenceB ⊗A − :
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KPDG(A) → KPDG(B). In particular, indn : KPDG(Rn �Rn) →
KPDG(Rn ⊗Rn) is an equivalence since Rn �Rn is quasi-isomorphic to
Rn ⊗Rn. We have the following equivalence for their subcategories:

Lemma 2.29. The 0-th homology category H0(DGP (Rn �Rn)) is equiv-
alent to the 0-th homology category H0(DGP (Rn ⊗Rn)).

Proof. Notice that indn(P (x,y)) = P ′(x,y) and H0(DGP (Rn �Rn))
is a full subcategory of KPDG(Rn �Rn). We have a restriction of indn:
H0(DGP (Rn �Rn)) → H0(DGP (Rn ⊗Rn)). It is fully faithful since indn :
KPDG(Rn �Rn) → KPDG(Rn ⊗Rn) is an equivalence.

Any object N in H0(DGP (Rn ⊗Rn)) is a finitely iterated cone of maps
between P ′(x,y)’s, hence it is isomorphic to an object indn(M) for some M
in H0(DGP (Rn �Rn)). Therefore, the restriction of indn : H0(DGP (Rn �
Rn)) → H0(DGP (Rn ⊗Rn)) induces an equivalence of categories. �

Since {P ′(x,y) | x,y ∈ Γn} form a complete set of non-isomorphic in-
decomposable projective Rn ⊗Rn-modules up to grading shifts, the 0-th
homology category H0(DGP (Rn ⊗Rn)) is equivalent to Kb(Rn ⊗Rn).

Corollary 2.30. There are isomorphisms of the Grothendieck groups:

K0(H
0(DGP (Rn �Rn))) ∼= K0(H

0(DGP (Rn ⊗Rn)))

∼= K0(K
b(Rn ⊗Rn)) = K0(Rn)⊗K0(Rn).

3. The multiplication on K0(Rn)

The goal of this section is to define the multiplication mn : K0(Rn)⊗K0(Rn)
→ K0(Rn) and show thatK0(Rn)(∼= Z[q±1]〈V (Γ)〉) is isomorphic to the Clif-
ford algebra Cln. We fix some n > 0 throughout this and next sections and
omit the subscript n.

We actually define a higher multiplication M as a Z[q±1, h±1]-bilinear
map

M : Z[q±1, h±1]〈V (Γ)〉 × Z[q±1, h±1]〈V (Γ)〉 → Z[q±1, h±1]〈V (Γ)〉.

The multiplication m is a specialization of M to h = −1. The specialization
is the shadow of a decategorification passing from complexes to their Euler
charateristic, where the variable h corresponds to the cohomological grading
in DGP (R). The higher multiplication M will be our main tool to construct
the (R,R�R)-bimodule T in Section 4.
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Given any pair of decreasing sequences x = [x0, x1, . . . , xi] and y = [y0,
y1, . . . , yj ] ∈ V (Γ), their concatenation x · y = [x0, x1, . . . , xi, y0, y1, . . . , yj ]
may not be decreasing. The definition of M(x,y) gives several rules to
represent a non-decreasing sequence as a linear combination of decreasing
ones. Since any decreasing sequences x corresponds to the projective module
P (x) ∈ DGP (R), the multiplication M(x,y) gives a projective resolution of
the module corresponding to the concatenation x · y.

Definition 3.1 (Higher multiplication M, special cases).Define M(x,y),
where x,y are sequences of length at most 1 in V (Γ):

1) M([a], [b]) = [a, b] if a > b and M([∅], [a]) = M([a], [∅]) = [a].

2) M([a], [a]) = 0.2

3) M([a], [b]) = h(−1)a+b+1

[b, a] if a < b− 1.

4) M([a], [b]) = q2a+1−n[∅] + h[b, a] if a = b− 1.

Remark 3.2. (1) The specialization of M to h = −1 for the special cases
agrees with the defining relations of the Clifford algebra Cln in Definition 1.2
by identifying [a] ∈ V (Γ) with Xa ∈ Cln.

(2) The exponent of q in M corresponds to the q-grading in R : deg(r(x
s→

y)) = n− 1− 2s.

In the rest of this section we generalize M(x,y) in Definition 3.1 to any
x,y ∈ V (Γn) in 3 steps:

Step 1: Use Definition 3.1 (3) to exchange smaller numbers in x with larger
numbers in y if their differences are greater than 1.

Step 2: Use Definition 3.1 (4) to express an adjacent increasing pair as a
sum of the empty sequence and the decreasing pair.

Step 3: Use Definition 3.1 (1), (2) and the distribution law to get the mul-
tiplication in general.

Example 3.3 (Explanation of 3 steps). Let x = [1, 0],y = [2, 1] and
x · y denote M(x,y) in this example. We explain 3 steps in computing [1, 0] ·
[2, 1] whose concatenation is [1, 0, 2, 1]:

2Note that 0 ∈ Z[q±1, h±1]〈V (Γ)〉 is different from both sequences [0], [∅] ∈ V (Γ).
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Step 1: The difference between 2 ∈ y and 0 ∈ x is greater than 1, so we apply
Definition 3.1 (3) to move 2 ∈ y in front of 0 ∈ x in the concatenation:

[1, 0, 2, 1] = h−1[1, 2, 0, 1].

Step 2: Apply Definition 3.1 (4) to adjacent increasing pairs [1, 2] and [0, 1]:

h−1[1, 2, 0, 1] = h−1[1, 2] · [0, 1] = h−1(q3−n[∅] + h[2, 1]) · (q1−n[∅] + h[1, 0]).

Step 3: Apply the distribution law and Definition 3.1 (1), (2):

h−1(q3−n[∅] + h[2, 1]) · (q1−n[∅] + h[1, 0])

= h−1q4−2n[∅] + q1−n[2, 1] + q3−n[1, 0] + h[2, 1] · [1, 0]
= h−1q4−2n[∅] + q1−n[2, 1] + q3−n[1, 0].

The definition of M in general is given as follows. We first want to keep
track of the exponent of h in Step 1. The cohomological shifting number
μ(x,y) counts the shift in h as in Definition 3.1 (3) when exchanging num-
bers with difference greater than 1.

Definition 3.4 (Cohomological shifting μ). Define μ : V (Γ)× V (Γ) →
Z by

μ(x,y) =

i∑
k=0

j∑
l=0

μ(xk, yl)

for x = [x0, . . . , xi] and y = [y0, . . . , yj ], where

μ(xk, yl) =

{
(−1)xk+yl+1 if xk < yl − 1;

0 otherwise.

In Step 2, we want to find all adjacent increasing pairs for x and y
and then apply Definition 3.1 (4). Let p(x,y) be the number of adjacent
increasing pairs {s, s+ 1 | s ∈ x, s+ 1 ∈ y} for x,y ∈ V (Γ). Since all these
pairs are distinct, they can be ordered as {s1, s1 + 1}, . . . , {sp(x,y), sp(x,y) +
1} such that s1 > · · · > sp(x,y), where si(x,y) is the smaller number in the
i-th pair for x,y. We write si for si(x,y) when there is no confusion. The
multiplication M([s], [s+ 1]) is defined in Definition 3.1 (4).

Definition 3.5. Define β : {0, 1, . . . , n− 1} → Z[q±1, h±1]〈V (Γ)〉 by

β(s) = q2s+1−n[∅] + h[s+ 1, s].
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Let α′
i(x,y) be the i-th non-increasing sequence consisting of

{xk ∈ x | si+1 + 1 ≤ xk < si} and {yl ∈ y | si+1 + 1 < yl ≤ si}

for 0 ≤ i ≤ p(x,y). Here we assume s0 = +∞, and sp(x,y)+1 = −∞. Note
that α′

i could be [∅]. We now define the following since we want to set α′
i to

zero if it has repetitions:

Definition 3.6 (i-th sequence αi). Define

αi : V (Γ)× V (Γ) → Z[q±1, h±1]〈V (Γ)〉

by

αi(x,y) = D(α′
i(x,y)),

where D : {non-increasing sequences of integers bounded by n and 0} →
Z[q±1, h±1]〈V (Γ)〉 is given as

D(x) =

{
x if the sequence x is decreasing;

0 otherwise.

We finally consider Step 3 and generalize Definition 3.1 (1) and (2) to a
gluing map Gk for k elements in V (Γ).

Definition 3.7. Let Gk : (Z[q±1, h±1]〈V (Γ)〉)×k → Z[q±1, h±1]〈V (Γ)〉 be a
Z[q±1, h±1]-multilinear map defined over the basis V (Γ)×k as follows:

Gk(x
1,x2, . . . ,xk)

=

⎧⎪⎨
⎪⎩
[x10, . . . , x

1
i1
, x20, . . . , x

2
i2
, . . . , xk0, . . . , x

k
ik
] if xjij > xj+1

0

for 1 ≤ j ≤ k − 1,

0 otherwise,

where x1 = [x10, . . . , x
1
i1
],x2 = [x20, . . . , x

2
i2
], . . . ,xk = [xk0, . . . , x

k
ik
]. Here we

assume xjij > xj+1
0 is always true when xj or xj+1 is [∅].

Remark 3.8. The gluing map G2 is associative: G2(G2(x,y), z) = G2(x,
G2(y, z)), and Gk is a composition of Gk−1 and G2: Gk(x

1,x2, . . . ,xk) =
Gk−1(G2(x

1,x2), . . . ,xk). The gluing map Gk is used in the distribution law
in Step 3.

We are now in a position to define the higher multiplication M in general.
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Definition 3.9 (Higher multiplication M). Define M over the basis
{(x,y) | x,y ∈ V (Γ)} by

M(x,y) = hμ(x,y)G2p(x,y)+1(α0(x,y), β(s1(x,y)), . . . ,

β(sp(x,y)(x,y)), αp(x,y)(x,y)).

Remark 3.10. (1) The definition of M above reduces to Definition 3.1 in
special cases.

(2) The multiplication M(x,y) agrees with the gluing map G2(x,y) if
G2(x,y) �= 0.

Definition 3.11 (Multiplication m). The multiplication

m : Z[q±1]〈V (Γ)〉 × Z[q±1]〈V (Γ)〉 → Z[q±1]〈V (Γ)〉

is defined as the specialization of M to h = −1.

The specialization of M to h = −1 is exactly the multiplication on Cln
since they agree on the generators as shown in Remark 3.2. In other words,
we compute the multiplication on Cln in terms of the Z[q±1]-basis V (Γn)
when specializing M to h = −1.

Proposition 3.12. There is an isomorphism of Z[q±1]-algebras:

Z[q±1]〈V (Γn)〉 → Cln

[a] 
→ Xa.

4. Categorification of the multiplication on K0(R)

We fix some n for the rest of the paper and denote Rn by R for simplicity.
We construct a DG (R,R�R)-bimodule T in Section 4.1. Tensoring with
T defines a functor M : DGP (R�R) → DGP (R) and its induced functor
M|H0 : H0(DGP (R�R)) → H0(DGP (R)) on the homology categories. We
show that M|H0 categorifies the multiplication m on K0(R).

4.1. The DG (R,R � R)-bimodule T

We construct a DG (R,R�R)-bimodule T in 3 steps:

1) define the left R-module T =
⊕

x,y∈V (Γ) T (x,y) in Section 4.1.1;
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2) define the differential d =
∑

x,y∈V (Γ) d(x,y) on left R-submodules
T (x,y) in Section 4.1.2;

3) define the right DG (R�R)-module structure on T in Sections 4.1.3
and 4.1.4.

Since the construction is rather technical, we explain the main points in
the following example.

Example 4.1. We use the higher multiplication M(x,y) in Definition 3.9
to define T (x,y) ∈ DGP (R), for (x,y) ∈ {([∅], [∅]), ([1, 0], [∅]), ([∅], [2, 1]),
([1, 0], [2, 1])}. Roughly speaking, T (x,y) is a projective DG R-module which
lifts M(x,y). For instance, we define

T ([∅], [∅]) = P ([∅])

since M([∅], [∅]) = [∅]. Similarly, we define

T ([1, 0], [∅]) = P ([1, 0]), T ([∅], [2, 1]) = P ([2, 1]).

To define T ([1, 0], [2, 1]), recall from Example 3.3 that

M([1, 0], [2, 1]) = h−1([∅] + h[2, 1]) · ([∅] + h[1, 0])

by ignoring the q-grading for simplicity. Note that h corresponds to the co-
homological grading in DGP (R). Then one factor ([∅] + h[2, 1]) is lifted to
a complex P ([∅]) → P ([2, 1]), whose differential is given by the right mul-
tiplication with r([∅] → [2, 1]) ∈ R. Define the DG R-module T ([1, 0], [2, 1])
as a tensor product of two complexes up to a total grading shift:

(P ([∅]) → P ([2, 1]))⊗ (P ([∅]) → P ([1, 0])) = P ([∅]) → P ([2, 1])⊕ P ([1, 0]).

In general, we define T (x,y) ∈ DGP (R) for all x,y ∈ V (Γ) and set the left
DG R-module T =

⊕
x,y∈V (Γ) T (x,y).

The right multiplication with r(x,y
s,t−→ x′,y′) on T will be defined as a

map:

×r(x,y
s,t−→ x′,y′) : T (x,y) → T (x′,y′),

which is compatible with the left R-module structure on T . In particular,
the map should be a morphism in HomDGP (R)(T (x,y), T (x

′,y′)). Then a
part of the bimodule T can be described by the following diagram whose
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vertices are T (x,y)’s. The arrows represent the right multiplication on T
with the following generators in R�R:

r1 = r([∅], [∅] 0,∅−−→ [1, 0], [∅]), r2 = r([1, 0], [∅] ∅,1−−→ [1, 0], [2, 1]),

r3 = r([∅], [∅] ∅,1−−→ [∅], [2, 1]), r4 = r([∅], [2, 1] 0,∅−−→ [1, 0], [2, 1]),

r0 = r([∅], [∅] 0,1−−→ [1, 0], [2, 1]).

They satisfy d(r0) = r1r2 + r3r4 as shown in Example 5.

T ([∅], [∅]) ×r1 ��

×r3
��

×r0

��

T ([1, 0], [∅])
×r2
��

T ([∅], [2, 1]) ×r4 �� T ([1, 0], [2, 1])

Then we use the definition of T (x,y)’s above to get a corresponding
diagram in DGP (R), where the dashed arrows in the bottom right corner
of Fig 7 denote the differential in T ([1, 0], [2, 1]).

P ([∅])

r3

P ([2, 1]) r4

r0

P ([2, 1])

⊕
P ([1, 0])

P ([1, 0])

P ([∅])

r1
r2

Figure 7: The construction of (R,R�R)-bimodule T .

We define the remaining 5 arrows as morphisms in DGP (R) in the fol-
lowing. Each arrow from P (z) to P (w) is given by the right multiplication
with a generator r(z → w) ∈ R. These morphisms in DGP (R) define the
right DG R�R-module structure on T . For instance, the right multiplica-
tion with r1 on T is a map:

×r1 : T ([∅], [∅]) → T ([1, 0], [∅])

which is defined as the morphism from P ([∅]) = T ([∅], [∅]) to P ([1, 0]) =
T ([1, 0], [∅]) on the top arrow in Fig 7. Similarly, we define the right multi-
plication with other generators. The point is that the right multiplication
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with r1r2 and r3r4 do not agree. They actually differ by the differential of
the right multiplication with r0 by chasing the diagram in Fig 7:

d(m× r0) = m× (r1r2 + r3r4) = m× d(r0),

where m ∈ P ([∅]) in the top left corner of Fig 7. This gives T the right DG
R�R-module structure.

4.1.1. T as a left R-module. We use the higher multiplication M(x,y)
to construct T (x,y), for x,y ∈ V (Γ). Recall from Definition 3.9 that:

M(x,y) = hμ(x,y)G2p(x,y)+1(α0(x,y), β(s1(x,y)), . . . ,

β(sp(x,y)(x,y)), αp(x,y)(x,y))

is a Laurent polynomial of h. Let Mk : V (Γ)× V (Γ) → Z[q±1]〈V (Γ)〉 be the
coefficient of hk in M:

M(x,y) =

+∞∑
k=−∞

Mk(x,y)hk =

μ(x,y)+p(x,y)∑
k=μ(x,y)

Mk(x,y)hk.

We want to expand Mk(x,y) further in terms of q. We will omit x,y in
μ(x,y), p(x,y), si(x,y) when x,y are understood.

Let Ik−μ(x,y) = {A ⊂ {1, 2, . . . , p} | |A| = k − μ} be the collection of all
(k − μ)-element subsets of {1, 2, . . . , p} for μ ≤ k ≤ μ+ p. Let η : Ik−μ(x,y)
→ Z be the overall shift in q:

η(A) =
∑
i/∈A

(2si + 1− n).

Let βA : {s1, . . . , sp} → V (Γ) be a choice of components of β in Definition 3.5
depending on an index set A ∈ Ik−μ(x,y):

βA(si) =

{
[si + 1, si] if i ∈ A;

[∅] otherwise.

Definition 4.2 (Expansion of Mk). For any given x,y ∈ V (Γ) and A ∈
Ik−μ(x,y), let

Mk
A(x,y) = G2p+1(α0, βA(s1), . . . , βA(sp), αp) ∈ V (Γ) � {0}
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be the coefficient of qη(A) in Mk(x,y):

Mk(x,y) =
∑

A∈Ik−μ

Mk
A(x,y)q

η(A).

Recall that P (x) = R · e(x) and P (x){n} is P (x) with the q-grading
shifted by n. Let P (0) = 0 denote the trivial R-module. We now define
T =

⊕
x,y∈V (Γ) T (x,y) as a left R-module.

Definition 4.3. Define T (x,y)=
⊕

k T
k(x,y) as left projective R-modules,

where

T k(x,y) =
⊕

A∈Ik−μ(x,y)

P (Mk
A(x,y)){η(A)}.

Remark 4.4. The class of T k(x,y) in the Grothendieck group K0(R) is
Mk(x,y).

4.1.2. T as a left DG R-module. We define the differential

d =
∑

x,y∈V (Γ)

d(x,y) on T,

where d(x,y) are differentials on the left R-submodules T (x,y) of T . More
precisely,

d(x,y) =
∑
k

dk(x,y) =
∑
k

∑
A∈Ik−μ

B∈Ik+1−μ

dBA(x,y),

where dk(x,y) : T k(x,y) → T k+1(x,y) is defined on each summand by

dBA(x,y) : P (Mk
A(x,y)){η(A)} → P (Mk+1

B (x,y)){η(B)}.

Given x,y ∈ V (Γ), if A ∈ Ik−μ is a subset of B ∈ Ik+1−μ and

Mk
A = G2p+1(α0, βA(s1), . . . , βA(sp), αp)

Mk+1
B = G2p+1(α0, βB(s1), . . . , βB(sp), αp)),

are both nonzero, then they only differ by a pair of adjacent numbers
{si(A,B) + 1, si(A,B)} at βA(si(A,B)) and βB(si(A,B)). Here we write i(A,B)

for the unique element in B −A. Hence there exists a generator r(Mk
A

si(A,B)−−−−→
Mk+1

B ) ∈ R.
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Definition 4.5. Given x,y ∈ V (Γ), A ∈ Ik−μ, B ∈ Ik+1−μ, define

dBA(x,y) : P (Mk
A){η(A)} → P (Mk+1

B ){η(B)}

as a left R-module map given by multiplying r(Mk
A

si(A,B)−−−−→ Mk+1
B ) from

the right if B = A � {i(A,B)} and Mk
A,M

k+1
B ∈ V (Γ). Otherwise define

dBA(x,y) = 0.

Remark 4.6. The map dBA preserves the q-grading due to the q-grading
shifting {η(A)}, {η(B)} on the modules.

Lemma 4.7. d is a differential, i.e., dk+1(x,y) ◦ dk(x,y) = 0 for any x,y ∈
V (Γ).

Proof. It suffices to prove that

(**) dk+1(x,y) ◦ dk(x,y)∣∣
P (Mk

A){η(A)} =
∑

B∈Ik+1−μ

C∈Ik+2−μ

dCB ◦ dBA = 0

for any A ∈ Ik−μ(x,y). By definition dBA , d
C
B are both nonzero if and only if

B = A � {i(A,B)}, C = B � {i(B,C)},
for some i(A,B), i(B,C) and Mk

A,M
k+1
B ,Mk+2

C ∈ V (Γ). Then there exists
another index set B′ = A � {i(B,C)} such that C = B′ � {i(A,B)} and
Mk+1

B′ ∈ V (Γ). Moreover, dB
′

A , dCB′ are both nonzero by definition. Then the
map

dCB ◦ dBA : P (Mk
A){η(A)} → P (Mk+2

C ){η(C)}
is the right multiplication by

r(Mk
A

si(A,B)−−−−→ Mk+1
B ) · r(Mk+1

B

si(B,C)−−−−→ Mk+2
C )

and the map dCB′ ◦ dB′
A is the right multiplication by

r(Mk
A

si(B,C)−−−−→ Mk+1
B′ ) · r(Mk+1

B′
si(A,B)−−−−→ Mk+2

C ).

We have dCB ◦ dBA + dCB′ ◦ dB′
A = 0 since

r(Mk
A

si(A,B)−−−−→ Mk+1
B ) · r(Mk+1

B

si(B,C)−−−−→ Mk+2
C )

= r(Mk
A

si(B,C)−−−−→ Mk+1
B′ ) · r(Mk+1

B′
si(A,B)−−−−→ Mk+2

C ).

This implies Equation (**). �
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4.1.3. The right R � R-multiplication.. In this subsection we define

the right multiplication with the generators e(x,y) and r(x,y
s,t−→ x′,y′)

of R�R. Let m× r denote the right multiplication for m ∈ T, r ∈ R�R
andm · a denote the multiplication in R form ∈ P (x) ⊂ R, a ∈ R. Note that
m · a is not the left Rmultiplication on T . In general, the right multiplication

with r(x,y
s,t−→ x′,y′) on T is a map:

×r(x,y
s,t−→ x′,y′) : T (x,y) → T (x′,y′),

which is given by a morphism in HomDGP (R)(T (x,y), T (x
′,y′)). The defini-

tion of m× r is rather involved and occupies the next several pages.

(1) Let r = e(x,y). Then define m× e(x,y) = δx,x′δy,y′m for m ∈ T (x′,y′).

(2) Let r = r(x,y
∅,t−→ x,y′). Let us abbreviate μ = μ(x,y), μ′ = μ(x,y′),

p = p(x,y), p′ = p(x,y′), si = si(x,y) and s′i = si(x,y
′). Since y′ = y � {t+

1, t} and in particular t+1 /∈ y, we have t /∈ {s1, . . . , sp}. Let a(t) ∈ {1, . . . , p}
be the number such that sa(t) > t > sa(t)+1.

The right multiplication

× r(x,y
∅,t−→ x,y′) :⊕

A∈Ik−μ

P (Mk
A(x,y)){η(A)} →

⊕
B∈Ik−μ′

P (Mk
B(x,y

′)){η(B)}

is defined on a case-by-case basis as follows:

(2A) Suppose t−1 /∈ x and t /∈ x. We have μ′=μ, p′=p. Decompose αa(t)=
G2(αa(t)+, αa(t)−), where αa(t)+ is the subsequence of αa(t) consisting of num-
bers greater than t and αa(t)− is the complementary sequence of αa(t)+ in
αa(t). Then we have

M(x,y) = hμG2p+1(α0, . . . , αa(t), . . . , αp)

= hμG2p+2(α0, . . . , αa(t)+, αa(t)−, . . . , αp),

M(x,y′) = hμG2p+3(α0, . . . , αa(t)+, [t+ 1, t], αa(t)−, . . . , αp).

Define a function f : Ik−μ(x,y) → Ik−μ′(x,y′) as the identity. Then two
non-increasing sequences Mk

A(x,y) and Mk
f(A)(x,y

′) differ by the pair
{t+ 1, t}. If both sequences are decreasing, then there exists a genera-

tor r(Mk
A(x,y)

t−→ Mk
f(A)(x,y

′)) ∈ R; otherwise we still write r(Mk
A(x,y)

t−→ Mk
f(A)(x,y

′)) to denote 0 ∈ R.
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For m ∈ P (Mk
A(x,y)){η(A)}, we define the right multiplication

m× r(x,y
∅,t−→ x,y′)

= m · r(Mk
A(x,y)

t−→ Mk
f(A)(x,y

′)) ∈ P (Mk
f(A)(x,y

′)){η(f(A))}.

(2B) Suppose t− 1 /∈ x and t ∈ x. We have μ′ = μ, p′ = p+ 1. Consider a
decomposition similar to that in (2A): αa(t) = G2(αa(t)+, αa(t)−), here t ∈
αa(t)−. In this case, t is in some adjacent increasing pair for x,y′ since t ∈ x
and t+ 1 ∈ y′. In particular, t = s′a(t)+1 ∈ {s′1, . . . , s′p′}. Then we have

M(x,y) = hμG2p+2(α0, . . . , β(sa(t)), αa(t)+, αa(t)−, . . . , αp),

M(x,y′) = hμG2p+3(α0, . . . , β(s
′
a(t)), αa(t)+, β(t), αa(t)−, . . . , αp)

= hμG2p+3(α0, . . . , β(s
′
a(t)), αa(t)+, β(s

′
a(t)+1), αa(t)−, . . . , αp).

Define f : Ik−μ(x,y) → Ik−μ′(x,y′) for A ∈ Ik−μ(x,y) by

f(A) = {a | a ∈ A, a ≤ a(t)} � {a+ 1 | a ∈ A, a > a(t)}.

We have βf(A)(s
′
a(t)+1) = [∅] since a(t) + 1 /∈ f(A). Hence Mk

A(x,y) =

Mk
f(A)(x,y

′).
For m ∈ P (Mk

A(x,y)){η(A)}, we define the right multiplication

m× r(x,y
∅,t−→ x,y′) = m · e(Mk

f(A)(x,y
′)) ∈ P (Mk

f(A)(x,y
′)){η(f(A))}.

(2C) Suppose t− 1 ∈ x and t /∈ x. We have μ′ = μ+ μ(t− 1, t+ 1) = μ− 1
and p′ = p+ 1. Consider a decomposition

αa(t) = G3(αa(t)+, [t− 1], αa(t)−),

where αa(t)+ is the subsequence of αa(t) consisting of numbers greater than t
and αa(t)− is the subsequence of αa(t) consisting of numbers less than t− 1.
The number t− 1 is in some adjacent increasing pair for x,y′ since t− 1 ∈ x
and t ∈ y′. In particular, t− 1 = s′a(t)+1. Then we have

M(x,y)=hμG2p+3(α0, . . . , β(sa(t)), αa(t)+, [t−1], αa(t)−, . . . , αp),

M(x,y′)=hμ
′
G2p+4(α0, . . . , β(s

′
a(t)), αa(t)+, [t+1], β(t− 1), αa(t)−, . . . , αp)

=hμ
′
G2p+4(α0, . . . , β(s

′
a(t)), αa(t)+, [t+1], β(s′a(t)+1), αa(t)−, . . . , αp).
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Define f : Ik−μ(x,y) → Ik−μ′(x,y′) for A ∈ Ik−μ(x,y) by

f(A) = {a | a ∈ A, a ≤ a(t)} � {a(t) + 1} � {a+ 1 | a ∈ A, a > a(t)}.

We have βf(A)(s
′
a(t)+1) = [t, t− 1] since a(t) + 1 ∈ f(A). Then there exists

a generator r(Mk
A(x,y)

t−→ Mk
f(A)(x,y

′)) if Mk
A(x,y) and Mk

f(A)(x,y
′) are

both nonzero. The definition of the right multiplication is the same as that
in (2A).

(2D) Suppose t− 1, t ∈ x. We have μ′ = μ− 1 and p′ = p+ 2. Consider a
decomposition

αa(t) = G4(αa(t)+, [t], [t− 1], αa(t)−),

where αa(t)+ is the subsequence of αa(t) consisting of numbers greater than
t and αa(t)− is the subsequence of αa(t) consisting of numbers less than
t− 1. The numbers t and t− 1 are in some adjacent increasing pairs for
x,y′ since t− 1, t ∈ x and t, t+ 1 ∈ y′. In particular, we have t = s′a(t)+1

and t− 1 = s′a(t)+2. Then we have

M(x,y) = hμG2p+4(α0, . . . , β(sa(t)), αa(t)+, [t], [t− 1], αa(t)−, . . . , αp);

M(x,y′) = hμ
′
G2p+5(α0, . . . , β(s

′
a(t)), αa(t)+, β(t), [∅], β(t− 1),

αa(t)−, . . . , αp)

= hμ
′
G2p+5(α0, . . . , β(s

′
a(t)), αa(t)+, β(s

′
a(t)+1), [∅], β(s′a(t)+2),

αa(t)−, . . . , αp).

Define f : Ik−μ(x,y) → Ik−μ′(x,y′) for A ∈ Ik−μ(x,y) by

f(A) = {a | a ∈ A, a ≤ a(t)} � {a(t) + 2} � {a+ 2 | a ∈ A, a > a(t)}.

We have βf(A)(s
′
a(t)+1) = [∅], βf(A)(s

′
a(t)+2) = [t, t− 1] since a(t) + 1 /∈ f(A),

a(t) + 2 ∈ f(A). Hence Mk
A(x,y) = Mk

f(A)(x,y
′). The definition of the right

multiplication is the same as that in (2B).

(3) Let r = r(x,y
t,∅−→ x′,y). Definitions of the right multiplication are sim-

ilar to those in (2) and break into 4 cases, depending on whether t+ 2 ∈ X
and whether t+ 1 ∈ X.

(4) Let r = r(x,y
t,t+1−−−→ x′,y′). Let us abbreviate μ′ = μ(x′,y′), p′ = p(x′,y′)

and s′i = si(x
′,y′). We have μ′ = μ− 1, p′ = p+ 2 and a decomposition

αa(t) = G2(αa(t)+, αa(t)−) which is similar to that in (2A). The numbers t+ 1
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and t are in some increasing adjacent pairs for x′,y′ since t, t+ 1 ∈ x and
t+ 1, t+ 2 ∈ y′. In particular, we have t+ 1 = s′a(t)+1, t = s′a(t)+2 and

M(x,y) = hμG2p+2(α0, . . . , β(sa(t)), αa(t)+, αa(t)−, . . . , αp);

M(x′,y′) = hμ
′
G2p+5(α0, . . . , β(s

′
a(t)), αa(t)+, β(t+ 1), [∅], β(t),

αa(t)−, . . . , αp)

= hμ
′
G2p+5(α0, . . . , β(s

′
a(t)), αa(t)+, β(s

′
a(t)+1), [∅], β(s′a(t)+2),

αa(t)−, . . . , αp).

Define f : Ik−μ(x,y) → Ik−1−μ′(x′,y′) for A ∈ Ik−μ(x,y) by

f(A) = {a | a ∈ A, a ≤ a(t)} � {a+ 2 | a ∈ A, a > a(t)}.

We have βf(A)(s
′
a(t)+1) = βf(A)(s

′
a(t)+2) = [∅] since a(t) + 1, a(t) + 2 /∈ f(A).

Hence Mk
A(x,y) = Mk−1

f(A)(x
′,y′).

For m ∈ P (Mk
A(x,y)){η(A)}, we define the right multiplication

m× r(x,y
t,t+1−−−→ x′,y′) = m · e(Mk−1

f(A)(x
′,y′)) ∈ P (Mk−1

f(A)(x
′,y′)){η(f(A))}.

This concludes the definition of the right R�R-multiplication.

Remark 4.8. The definition above is compatible with the q-grading on T .

4.1.4. T as a right DG (R � R)-module. We need to show that the
above definition gives T a right DG R�R-module structure. More precisely,
we need to verify that

1) (m× r1)× r2 = (m× r′1)× r′2, if r1 · r2 = r′1 · r′2 for m ∈ T and gener-
ators r1, r2, r

′
1, r

′
2 ∈ R�R.

2) d(m× r) = d(m)× r +m× d(r), for m ∈ T and r ∈ R�R.

A direct verification of the second equation for r = r([∅], [∅] 0,1−−→ [1, 0], [2, 1])
is given in Example 4.1. We prove it for general cases in the following lemma
and leave the verification of the first equation for the reader.

Lemma 4.9. The differential satisfies the Leibniz rule with respect to the
right multiplication:

d(m× r) = d(m)× r +m× d(r),

for m ∈ P (Mk
A0
(x,y)){η(A0)}, A0 ∈ Ik−μ(x,y) and r = r(x,y

t,t+1−−−→ x′,y′).
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Proof. Consider the index maps in the definition of right multiplication with

r(x,y
t,t+1−−−→ x′,y′):

f : Ik−μ(x,y) → Ik−1−μ′(x′,y′),

f(A) = {a | a ∈ A, a ≤ a(t)}
� {a+ 2 | a ∈ A, a > a(t)}, for A ∈ Ik−μ(x,y);

g : Ik+1−μ(x,y) → Ik−μ′(x′,y′),

g(B) = {b | b ∈ B, b ≤ a(t)}
� {b+ 2 | b ∈ B, b > a(t)}, for B ∈ Ik+1−μ(x,y).

Let B′ = {B′ ∈ Ik+1−μ(x,y) | B′ ⊃ A0}, B = {B | B = g(B′) for some B′ ∈
B′} and

B = {B ∈ Ik−μ′(x′,y′) | B ⊃ f(A0)} = B1 � B2 � B,
where B1 = {B = f(A0) � {a(t) + 1}}, B2 = {B = f(A0) � {a(t) + 2}}.

Then for m ∈ P (Mk
A0
(x,y)){η(A0)}, we have

d
(
m× r(x,y

t,t+1−−−→ x′,y′)
)

(right multiplication in Section 4.1.3 (4)) = d(m · e(Mk−1
f(A0)

(x′,y′)))
(differential in Section 4.1.2) =

∑
B∈B dBf(A0)

(m)

(decomposition of B = B1 � B2 � B) =
∑

B∈B m · r(Mk−1
f(A0)

(x′,y′)
si(f(A0),B)−−−−−−→ Mk

B(x
′,y′))

+m · r(Mk−1
f(A0)

(x′,y′)
sa(t)+1−−−−→ Mk

B1
(x′,y′))

+m · r(Mk−1
f(A0)

(x′,y′)
sa(t)+2−−−−→ Mk

B2
(x′,y′))

(Mk−1
f(A0)

(x′,y′) = Mk
A0
(x,y)) =

∑
B′∈B′ m · r(Mk

A0
(x,y)

si(A0,B′)−−−−−→ Mk+1
B′ (x,y))

(Mk
g(B′)(x

′,y′) = Mk+1
B′ (x,y)) +m · r(Mk−1

f(A0)
(x′,y′) t+1−−→ Mk

B1
(x′,y′))

(sa(t)+1 = t+ 1, sa(t)+2 = t) +m · r(Mk−1
f(A0)

(x′,y′) t−→ Mk
B2
(x′,y′))

(right multiplication in Section 4.1.3 (2- 4)) = d(m)× r(x,y
t,t+1−−−→ x′,y′)

+m× r(x,y
∅,t+1−−−→ x,y′)× r(x,y′ t,∅−→ x,y′)

+m× r(x,y
t,∅−→ x′,y)× r(x′,y ∅,t+1−−−→ x′,y′)

= d(m)× r(x,y
t,t+1−−−→ x′,y′)

+m× d(r(x,y
t,t+1−−−→ x′,y′)). �

It is easy to see that the left R-module and the right R�R-module struc-
tures on T are compatible:

a · (m× r) = (a ·m)× r,
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for a ∈ R, r ∈ R�R andm ∈ T . Here a ·m denotes the left R multiplication
on T . We finally have the DG (R,R�R)-bimodule T .

4.2. The functor M : DGP (R � R) → DGP (R)

We show that tensoring with T over R�R maps the projective DG R�R-
module P (x,y) = (R�R)e(x,y) to a projective DG R-module in DGP (R).

Lemma 4.10. The tensor product T ⊗R�R P (x,y) is the DG R-module

T (x,y) =

(⊕
k

T k(x,y),
∑
k

dk(x,y)

)

in DGP (R) for any x,y ∈ V (Γ).

Proof. Since T =
⊕

x′,y′∈V (Γ) T (x
′,y′) as left DG R-modules, it follows that

T ⊗ P (x,y) is the quotient of
⊕

x′,y′∈V (Γ)(T (x
′,y′)× P (x,y)) by the rela-

tion

{(m× r, e(x,y)) = (m, r · e(x,y)) | m ∈ T (x′,y′), r ∈ R�R}.

Since T (x′,y′)× P (x,y) is spanned by {(m, r · e(x,y)) | m ∈ T (x′,y′), r ·
e(x,y) �= 0}, the tensor product T ⊗ P (x,y) is isomorphic to

{(m× r, e(x,y)) | m ∈ T (x′,y′), r · e(x,y) �= 0} ∼= T (x,y). �

Since DGP (R�R) is generated by the P (x,y)’s, we obtain the functor

M : DGP (R�R)
T⊗R�R−−−−−−−→ DGP (R).

The following lemma implies that we have an induced functor on their ho-
mology categories

M|H0 : H0(DGP (R�R)) → H0(DGP (R)).

Lemma 4.11. The functor M preserves closed and exact morphisms.
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Proof. For any g ∈ HomDGP (R�R)(N,N ′), we have

M(g) = idT ⊗ g ∈ HomDGP (R)(T ⊗N,T ⊗N ′).

It suffices to prove d(idT ⊗ g) = idT ⊗ d(g). For any t ∈ T, n ∈ N ,

(d(idT ⊗ g))(t⊗ n) = d ◦ (idT ⊗ g)(t⊗ n) + (idT ⊗ g) ◦ d(t⊗ n)

= d(t⊗ g(n)) + (idT ⊗ g)(d(t)⊗ n+ t⊗ d(n))

= d(t)⊗ g(n) + t⊗ d(g(n)) + d(t)⊗ g(n) + t⊗ g(d(n))

= t⊗ d(g(n)) + t⊗ g(d(n))

= (idT ⊗ d(g))(t⊗ n). �

Note that M|H0 is an exact functor since M also preserves mapping
cones. Then M|H0 induces a Z[q±1]-linear map K0(M|H0) : K0(R⊗R) →
K0(R) under the isomorphisms

K0(H
0(DGP (R�R))) ∼= K0(R)⊗K0(R), K0(H

0(DGP (R))) ∼= K0(R).

Proof of Theorem 1.3. The isomorphism K0(Rn) ∼= Cln was proved in
Proposition 3.12. In order to prove that Mn|H0 : H0(DGP (Rn �Rn)) →
H0(DGP (Rn)) categorifies the multiplication mn, we compute K0(M|H0)
in terms of the basis {[P (x,y)]} of K0(R)⊗K0(R). By Remark 4.4 and
Lemma 4.10 we have

K0(M|H0)(x,y) = K0(M|H0)([P (x,y)])

= [T ⊗ P (x,y)] = [T (x,y)]

=
∑
k

[T k(x,y)]hk|h=−1 =
∑
k

Mk(x,y)hk|h=−1

= m(x,y).

Hence, we finish the proof of Theorem 1.3. �

5. A categorification of Un via a subcategory of
H0(DGP (Rn))

5.1. Un as a subalgebra of K0(Rn)

We include Un into K0(Rn) as a subalgebra for n > 0.
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Lemma 5.1. There is an inclusion of Z[q±1]-algebras:

ın : Un → K0(Rn)

1 
→ 1

E 
→
∑

0≤i≤n
i even

Xi

F 
→
∑

0≤i≤n
i odd

Xi

Proof. It suffices to show that ın maps the relations of Un in Definition 1.5
to the relations of K0(Rn) in Proposition 3.12:

(ın(E))2 =

(∑
i even

Xi

)2

=
∑
i even

X2
i +

∑
i<j even

(XiXj +XjXi) = 0 = ın(E
2).

Similarly (ın(F ))2 = 0 = ın(F
2). We also have

ın(E)ın(F ) + ın(F )ın(E) =
∑
i even
j odd

XiXj +
∑
i even
j odd

XjXi

=

n−1∑
i=0

(XiXi+1 +Xi+1Xi) +
∑

i<j−1

(XiXj +XjXi)

=

n−1∑
i=0

q2i+1−n + 0

= ın(EF + FE). �
Similarly, we have an inclusion ın,n= ın ⊗ ın : Un ⊗Un→K0(Rn ⊗Rn).
Hence Un and Un ⊗Un can be viewed as subalgebras of K0(Rn) and

K0(Rn ⊗Rn), respectively. The restriction of mn : K0(Rn ⊗Rn) → K0(Rn)
to fn : Un ⊗Un → Un gives the algebra structure on Un. We will lift sub-
algebras to subcategories in the next section.

5.2. A subcategory of H0(DGP (Rn)) categorifying Un

Since K0(Rn) is isomorphic to the Grothendieck group of H0(DGP (Rn)),
we can formally construct Un as a triangulated full subcategory of
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H0(DGP (Rn)) whose Grothendieck group is the subalgebra Un. We define
a bifunctor

χn : H0(DGP (Rn))×H0(DGP (Rn)) → H0(DGP (Rn ⊗Rn))

→ H0(DGP (Rn �Rn)),

where the first map is given by tensoring two DG Rn-modules over F2 and
the second map is an inverse of the equivalence in Lemma 2.29 which maps
P ′(x,y) to P (x,y) for any pair x,y ∈ Γn. Let ρn = Mn|H0 ◦ χn :

H0(DGP (Rn))×H0(DGP (Rn)) → H0(DGP (Rn �Rn))

→ H0(DGP (Rn)).

Notice that ρn(M,P ([∅])))=ρn(P ([∅]),M)=M , for anyM ∈H0(DGP (Rn)).
To define Un, we first lift 1 to P ([∅]), q to P ([∅]){1}, and q−1 to

P ([∅]){−1}. Letters E and F are lifted to

E =
⊕
i even

P ([i]) ∈ H0(DGP (Rn)),

F =
⊕
i odd

P ([i]) ∈ H0(DGP (Rn)).

Then for the multiplication A1A2 of A1, A2 ∈ {1, q, q−1, E, F}, we lift it to

A1A2 = ρn(A1,A2),

where Ai is the lifting of Ai defined above for i = 1, 2. For multiplication of
3 letters A1, A2, A3 ∈ {1, q, q−1, E, F}, we have different lifting of multipli-
cation for different orders. For instance, we lift (A1A2)A3 to

ρn(ρn(A1,A2),A3),

and A1(A2A3) to

ρn(A1, ρn(A2,A3)).

For multiplication of more letters, the definition of lifting is similar.
Then we define Un as the smallest triangulated full subcategory of

H0(DGP (Rn)) containing the lifting of multiplication of all finitely many
letters in {1, q, q−1, E, F} for all possible orders.
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Remark 5.2. An equation in Un may not be lifted to an isomorphism in
Un. For example, the equation E2 = 0 ∈ Un is lifted to

EE =
⊕

i,j even

Mn(P ([i], [j])) ∈ H0(DGP (Rn)).

As a cochain complex, EE = (EE)−1 ⊕ (EE)0 has zero differential, where

(EE)−1 = (EE)0 =
⊕

i,j even
i>j

P ([i, j]).

It is not isomorphic to 0 ∈ H0(DGP (Rn)).

Next we define Un,n as the smallest triangulated full subcategory of
H0(DGP (Rn �Rn)) containing {χn(X ,Y) | X ,Y ∈ Un}.
Proof of Theorem 1.6. Since Un is generated by q, q−1, E and F as an al-
gebra and Un is the smallest triangulated full subcategory containing the
lifting of multiplication of q, q−1, E and F , it follows that K0(Un) = Un.
Similarly, we have K0(Un,n) = Un ⊗Un.

Since the exact functorMn|H0 : H0(DGP (Rn �Rn)) → H0(DGP (Rn))
maps Un,n into Un, let Fn : Un,n → Un be the restriction. Then K0(Fn) :
K0(Un,n) → K0(Un) agrees with the multiplication fn : Un ⊗Un → Un.
Hence we proved Theorem 1.6. �
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