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Let M be a differentiable manifold and G a compact, connected Lie
group acting on M by isometries. In this paper, we study the equiv-
ariant cohomology of X = T M, and relate it to the cohomology of
the Marsden-Weinstein reduced space via certain residue formulae.
In case that X is a compact, symplectic manifold with a Hamil-
tonian G-action, similar residue formulae were derived by Jefirey,
Kirwan et al. [26, 27].
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1. Introduction

Let X be a symplectic manifold carrying a Hamiltonian action of a compact,
connected Lie group G with Lie algebra g, and denote the corresponding
momentum map by J: X — g*. In case that X is compact and 0 a regular
value of the momentum map, the cohomology of the Marsden-Weinstein
reduced space X,.q = J71(0)/G was expressed by Jeffrey and Kirwan [27] in
terms of the equivariant cohomology of X via certain residue formulae. If 0 is
not a regular value, similar residue formulae were derived by them and their
collaborators [26] for nonsingular, connected, complex, projective varieties
X. These formulae rely on the localization theorem of Berline-Vergne [3, 4]
and Atiyah-Bott [2], and are related to the non-Abelian localization theorem
of Witten [44]. The intention of this paper is to extend their results to non-
compact situations, and derive similar residue formulae in case that X is
given by the cotangent bundle of a G-manifold.

Let X be a differentiable manifold carrying a smooth action of a con-
nected Lie group G. According to Cartan [10], its equivariant cohomology
can be defined by replacing the algebra A(X) of smooth differential forms on
X by the algebra (S(g*) ® A(X))“ of G-equivariant polynomial mappings

0:93 X — o(X) € A(X),

where g denotes the Lie algebra of G. Let X denote the fundamental vector
field on X generated by an element X € g. Defining equivariant exterior
differentiation by

Do(X) =d(o(X)) —15(e(X)), X €g,0€(S(g") ©AX))°,

where d and ¢ denote the usual exterior differentiation and contraction, the
equivariant cohomology of the G-action on X is given by the quotient

H{(X) =KerD/Im D,

which is canonically isomorphic to the topological equivariant cohomology
introduced in [2] in case that G is compact, an assumption that we will
make from now on. The main difference between ordinary and equivariant
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cohomology is that the latter has a larger coefficient ring, namely S(g*), and
that it depends on the orbit structure of the underlying G-action. Let us now
assume that X admits a symplectic structure w which is left invariant by G.
By Cartan’s homotopy formula,

0=Lizw=doigw+izodw=doizw,

where £ denotes the Lie derivative with respect to a vector field, implying
that ¢ zw is closed for each X € g. G is said to act on X in a Hamiltonian
fashion, if this form is even exact, meaning that there exists a linear function
J 1 g — C*(X) such that for each X € g the fundamental vector field X is
equal to the Hamiltonian vector field of J(X), so that

d(J(X)) + 15w =0.

An immediate consequence of this is that for any equivariantly closed form
o the form given by e'(/(X)=)p(X) is equivariantly closed, too. Following
Souriau and Kostant, one then defines the momentum map of a Hamiltonian
action as the equivariant map

I:X—g" Jn)(X)=J(X)n).

Assume next that 0 € g* is a regular value of J, which is equivalent to
the assumption that the stabilizer of each point of J~1(0) is finite. In this
case, J71(0) is a differentiable manifold, and the corresponding Marsden-
Weinstein reduced space or symplectic quotient

Xred = J_l(o)/G

is an orbifold with a unique symplectic form w;..q determined by the iden-
tity * w = 7" Wyeq, where 7 : J71(0) — X,..q and ¢ : J71(0) < X denote the
canoncial projection and inclusion, respectively. Furthermore, 7 induces an
isomorphism between H*(X,.4) and H}(J~'(0)). Consider now the map

K HEX) -5 HEI7(0) ™5 B (Xyea),

and assume that X is compact and oriented. In this case, Kirwan [29] showed
that IC defines a surjective homomorphism, so that the cohomology of X,..q
should be computable from the equivariant cohomology of X. This is the
content of the residue formula of Jeffrey and Kirwan [27], which for any
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0 € H}(X) expresses the integral

dim Xred/2

—iWred (_iwred)k
(1) e re ]C(Q) — Z TIC(Q)[dimed—Qk’]
Xred Xred k=0 .

in terms of data of X. More precisely, let 7' C G be a maximal torus, and
XT its fixed point set. Then (1) is given by a sum over the components F'
of X' of certain residues involving the restriction of ¢ to the G-orbit G - F
and the equivariant Euler form ynp of the normal bundle NF' of F. The
departing point of their work is the observation that the integral (1) should
be given by the g-Fourier transform of the tempered distribution

g5 X — / e X)=w)p(X)
X

evaluated at 0 € g*. The mentioned formula of Jeffrey and Kirwan is then
essentially a consequence of the localization formula in equivariant coho-
mology, proved independently by Berline and Vergne [4] and Atiyah and
Bott [2] at approximately the same time. In case that 0 € g* is not a reg-
ular value, analogous residue formulae were derived in [26] for nonsingular,
connected, complex, projective varieties X within the framework of geomet-
ric invariant-theoretic quotients, under some weak assumptions about the
group action. In this situation, there is no longer a surjection from equivari-
ant cohomology onto the cohomology of the corresponding quotient, whose
singularities are worse than in the orbifold case. Nevertheless, their is still
a surjection onto its intersection cohomology, which is a direct summand of
the ordinary cohomology of any resolution of singularities of the quotient.
Using a canonical desingularization procedure for such quotients developed
by Kirwan [30] in combination with certain residue operations established
by Guillemin and Kalkman [20], residue formulae for intersection pairings
can then be derived.

Historically, the localization formula emerged as a generalization of a
result of Duistermaat and Heckman [16] concerning the pushforward of the
Liouville measure of a compact, symplectic manifold carrying a Hamiltonian
torus action along the momentum map. As it turns out, this pushforward is a
piecewise polynomial measure, or equivalently, its inverse Fourier transform
is exactly given by the leading term in the stationary phase approximation.
In this context, the image of the momentum map was also intensively studied
[23]. The study of the pushforward of the Liouville measure was motivated by
attempts of finding an asymptotic approximation to the Kostant multiplicity
formula [32] in order to examine the partition function occuring in that
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formula, which otherwise is very difficult to evaluate [21]. On the other side,
the origin of the localization formula can be traced back to a residue formula
for holomorphic vector fields derived by Bott [6], which was inspired by the
generalized Lefschetz formula of Atiyah and Bott [1].

The Duistermaat-Heckman formula was extended to non-compact sym-
plectic manifolds by Prato and Wu [39]. On the other hand, the equivari-
ant cohomology of hyper-Kéahler quotients, which are rarely compact, was
studied by Hausel and Proudfoot [22], generalizing a result of Martin for
compact symplectic manifolds, which expresses the cohomology of the quo-
tient by the group in terms of the cohomology of the corresponding quotient
by its maximal torus. Further, Martens [34] combined the Jeffrey-Kirwan
residue formulae with symplectic cuts to obtain residue formulae in certain
non-compact situations.

In this paper, we shall prove a residue formula in case that X = T*M is
given by the cotangent bundle of a differentiable, paracompact manifold M
on which a compact, connected Lie group G acts by general isometries. For
this, we shall determine the asymptotic behavior of integrals of the form

L = [ [ [ Ity Xy | ax. 0,
g

via the stationary phase principle, where ¢ € g*, a € C2°(X X g) is an ampli-
tude, dn the Liouville measure on X, and dX denotes an Euclidean measure
on g given by an Ad (G)-invariant inner product on g. While asymptotics
for I.(u) can be easily obtained for free group actions, one meets with se-
rious difficulties when singular orbits are present. The reason is that, when
trying to examine these integrals in case that ¢ € g* is not a regular value of
the momentum map, the critical set of (J(n) —¢)(X) is no longer smooth,
so that, a priori, the stationary phase principle can not be applied in this
case. Instead, we shall circumvent this obstacle in the case ¢ =0 by par-
tially resolving the singularities of the critical set of the momentum map,
and then apply the stationary phase theorem in a suitable resolution space.
By this we are able to obtain asymptotics for Iy(x) with remainder estimates
in the case of singular group actions. This approach was developed first in
[12, 40] to describe the spectrum of an invariant elliptic operator on a com-
pact G-manifold, where similar integrals occur, and used in the derivation of
equivariant heat asymptotics in [38]. The asymptotic description of I.(x) in a
neighborhood of ¢ = 0 then allows us to derive the following residue formula.
Let o € H:(T*M) be of the form o(X) = a + DB(X), where a is a closed,
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basic differential form on T*M of compact support, and S is an equivari-
ant differential form of compact support. Fix a maximal torus 7' C G, and
denote the corresponding root system by A(g®, t©). Assume that the dimen-
sion k of a principal G-orbit in M is equal to d = dimg g, and denote the
product of the positive roots by ®. Let further W be the Weyl group and
H a principal isotropy group of the G-action on M. Denote the principal
stratum of J71(0) by RegJ~1(0), and put Reg X,.q = RegJ~1(0)/G. Also,
let r: A**%(T*M) — A*(RegJ~1(0)) be the natural restriction map, and
consider the mapping

K2 A M) A7 A (Reg I71(0)) T2 A (Reg Xea),

where 7, denotes integration along the fibers of the principal G-bundle
RegJ~1(0). Then, by Theorem 7,

o H]
92 d —Ww — | @2
(2m) /Regxmi Ke ™ a) 7|W|VOITRGS ( Z uF> ,

FeF

where w(X) = w — J(X), F denotes the set of components of the fixed point
set of the T-action on X = T* M, and the up are rational functions on t given
by
up:t3Y — (—QW)rkF/QeiJY(F)/ £ ) MQ(Y)?
7 xnr(Y)

Jy (F) being the constant value of J(Y) on F. The definition of the residue
operation, given in Definition 1 and Proposition 7, relies on the fact that the
Fourier transform of up is a piecewise polynomial measure. Our approach
is in many respects similar to the one of Jeffrey, Kirwan et al., but differs
from their’s in that it is carried out in a C*-setting and based on the sta-
tionary phase theorem. In a future paper, we intend to extend our results to
general symplectic manifolds, and investigate the relation of the map K to
the Kirwan map /C. For this, it will be necessary to implement a desingular-
ization process for general momentum maps, which should be similar, but
more involved than the one developed in this paper for cotangent bundles
of G-manifolds, where the momentum map is given in terms of the Liouville
form.

Acknowledgements. The author wishes to thank Michele Vergne for
pointing out to him that the results in [40] could be related to equivariant
cohomology, and teaching him many things about the field. Also, he would
like to thank the referee for calling his attention to the work of Prato and
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beginnings by the grant RA 1370/2-1 of the German Research Foundation
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2. Localization in equivariant cohomology

Let X be a 2n-dimensional, paracompact, symplectic manifold with symplec-
tic form w and Riemannian metric g. Since w is non-degenerate, w™ /n! yields
a volume form on X called the Liouwville form, whose existence is equivalent
to the fact that X is orientable. Define a bundle morphism 7 : TX — TX
by setting

gn(jxa QJ) = wn(%7f‘g)7 x?@ € TnXa

and assume that 7 is normed in such a way that J2 = —1, which defines
J uniquely. J constitutes an almost-complex structure that is compatible
with w, meaning that

on(TX,TY) = wy(X,D),  wyX,TX) > 0.

Furthermore, g,(JX%,J9) = g,(X,9). (X, 7, g) is consequently an almost-
Kéhler manifold. If J is integrable, (X, 7, g) becomes a Kahler manifold.
Next, assume that X carries a Hamiltonian action of a compact, connected
Lie group G of dimension d. In particular, G is a real reductive group. Denote
the corresponding Kostant-Souriau momentum map by

J: X =g In)(X)=Jx(n) =J(X)n).

By definition, dJx + ¢ gw = 0 for all X € g, where X denotes the vector field
on X given by

(XD = SHe ™ e Xea [eCX)

By this choice, the mapping X — X becomes a Lie-algebra homomorphism,
so that in particular [X,Y] = [X,Y]. Also note that J is G-equivariant in
the sense that J(g~1n) = Ad*(g)J(n).

In what follows, we assume that g is endowed with an Ad (G)-invariant
inner product, which allows us to identify g* with g. Let further dX and d¢
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be corresponding measures on g and g*, respectively, and denote by
Fq:S(g%) — S(g), Fy:S'(g) = S'(g%)

the g-Fourier transform on the Schwartz space and the space of tempered
distributions, respectively. In this paper, we intend to relate the equivariant
cohomology H{(X) of X to the cohomology of the symplectic quotient

Xyed = Q0/G, Q. =JT1).

Following [44] and [27], we consider for this the map

X La(X):/ exa, X ey, a € A (X),
X

regarded as a tempered distribution in §'(g), where A.(X) denotes the al-
gebra of differential forms on X of compact support. If (X, w) is a compact
symplectic manifold, G a torus, and o = w™/n! the Liouville measure, L, is
the Duistermaat-Heckman integral, and corresponds to the inverse g-Fourier
transform of the pushforward J,(w™/n!) of the Liouville form along the mo-
mentum map. In this case, the g-Fourier transform of L,, is exactly J.(w™/n!)
and a piecewise polynomial measure on g* [16].

We are therefore interested in the g-Fourier transform FyL, of L, in
general, and particularly, in its description near 0 € g*. Take an Ad*(G)-
invariant function ¢ € C2°(g*) with total integral equal to 1 and g-Fourier
transform

B(X) = (Fap)(X) = / e HEX) () de,

g*

where we wrote £(X) = (£, X). Then . (&) = ¢(e71€) /e, & > 0, constitutes
an approximation of the J-distribution in g* at 0 as € — 0, and we consider
the limit

(2) lim (FyLa, @) = lim / La(X)p(eX)dX
e—0 e—0

g
- dXxX
:lim// e’JX/Eacﬁ(X)—d,
e—0 gJX &

where we took into account that ¢.(X) = ¢(eX). Next, fix a maximal torus
T C G of dimension dr with Lie algebra t, and consider the root space
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decomposition

i“=t“o P
YEA

where A = A(g®, t%) denotes the set of roots of g© = g ®r C with respect
to t€ = t®g C, g© being a reductive Lie algebra over C, and g, are the
corresponding root spaces. Since dimc g, = 1, the decomposition implies
d — dr = dimg g — dimpg t = |A[|. Assume that « is such that L, is Ad (G)-
invariant. Using Weyl’s integration formula [27, Lemma 3.1], (2) can be
rewritten as

(8)  lim (FyLa,¢:) = ﬁfm lim /t { /X e"]yoz} H(eY)D2(Y)dY,
where ®(Y) =[], ca, 7(Y) and Ay is the set of positive roots, while W =
W (g%, t%) denotes the Weyl group. Here vol G and vol T’ stand for the vol-
umes of G and T with respect to the corresponding volume forms on G
and 7T induced by the invariant inner product on g and its restriction to t,
respectively. In what follows, we shall express this limit in terms of the set

Fl={peX:t-n=n VteT}

of fixed points of the underlying T-action. The connected components of F'T
are smooth submanifolds of possibly different dimensions, and we denote the
set, of these components by F. Let F' € F be fixed, and consider the normal
bundle NF of F. As can be shown, the real vector bundle N F' can be given
a complex structure, and splits into a direct sum of two-dimensional real
bundles PqF , which can be regarded as complex line bundles over F. For
each n € F, the fibers (PqF )n are T-invariant, and endowing them with the
standard complex structure, the action of t can be written as
(P )y sveidi(Ywe (Pf),  Yet

where the A" € t* are the weights of the torus action [19]. They do not
depend on 7. Now, if g is an equivariantly closed form, Ly (Y') can be
computed using

Theorem 1 (Localization formula in equivariant cohomology). Let
X be a differentiable n-dimensional manifold acted on by a compact Lie
group G, and o an equivariantly closed form on X with compact support.
For'Y € g, let Xg denote the zero set of Y. Then Q(Y)[n] 18 exact outside
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Xo, and

= 9 rkNXo/2ﬂ
/XQ(Y) /XO( 2m) XNXO(Y)’

where N X denotes the normal bundle of Xq, which has been endowed with
an orientation compatible with the one of Xo, and xnx, @5 the equivariant
Euler form of the normal bundle.

Proof. The proof is the same as the proof of [3, Theorem 7.13|, which con-
sists essentially in a local computation, except for [3, Lemma 7.14] which,
nevertheless, can be easily generalized to equivariantly closed forms with
compact support on non-compact manifolds. O

To apply this theorem in our context, recall that an element Y € t is
called regular, if the set {exp(sY): s € R} is dense in T". The set of regular
elements, in the following denoted by t/, is dense in t and

(4) {nexz?zo}:FT, Y et.
We then have the following

Corollary 1. Let o € H{(X) be an equivariantly closed form on X of com-
pact support and Y € t'. Then

Loy (Y) = /X FO vy = 3 up(Y),

FeF

where the up are rational functions on t given by

. —iw Y)
5 up:t3Y — (=27 I”kNF/2€1JY(F)/ i7
" F 2 r XnF(Y)

Jy (F') being the constant value of Jy on F.

Proof. Since Y s €'(/y =) p(Y") defines an equivariantly closed form, the as-
sertion follows immediately from the previous theorem and (4). i
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In the last corollary, the equivariant Euler class is given by

xve(Y) =[P + A5 (),

q

where ¢; (PqF ) € H%(F) denotes the first Chern class of the complex line
bundle PqF . Thus,

1 a(Ph)\ "
e ()~ T AT(Y) rql (l " Aff(Y))

q

1 rq Cl(PqF) K
= L2 6D (A?(Y)) '

q 0<r,

Note that the sum in the last expression is finite, since c1(Pf)/AE(Y) is
nilpotent. Consequently, the inverse makes sense. Let us also note that the
set, of critical points of Jx is given by

Crit Jx = {neX: %, =0}, Xeg,

and is clean in the sense of Bott. Indeed, Crit Jx is a smooth submanifold
consisting of possibly several components of different dimensions. On the
other hand, the Hessian of Jx is given by the symmetric bilinear form

Hess Jx : T;(X) x T),(X) — R,
(X1,%2) > (X1)n(X2(Jx)), n € Crit Jx,

where Xo(Jx) = dJx(X3) = —ng(ig), and X denotes the extension of a
vector X € T;,(X) to a vector field. Now,

(6) %Z(w()?,%)) = ﬁi (L)?L%jw) = Lﬁii;{ ngjw + Ly £3~€ (Lijw)

= Lﬁiii Lg,w +ig Lﬁgiijw +ig L%jﬁi(w),
so that at a point n € Crit Jxy one computes
(7) —Hess Jx (X1, X2) = X1 (w(X, X2)) = —w([X, X1], X2),

since X vanishes on Crit Jx. But the Lie derivative X (E)?i)n =X, %],7
defines an invertible endomorphism of N, Crit Jx. Consequently, the Hessian
of Jx is transversally non-degenerate and Crit Jx is clean.
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We would like to compute (3) using Corollary 1, but since the rational
functions (5) are not locally integrable on t, one cannot proceed directly.
Instead note that, since ®2 and ¢ have analytic continuations to t©, Cauchy’s
integral theorem yields for arbitrary Z € t

J{[f;e“JY“%KY3]<¢E©2MYvdyf
:/t[/x ei(Jy+izw)Q<Y+iZ):| (6.82)(Y +iZ)dY.

Here we took into account that by the Theorem of Paley-Wiener-Schwartz
[25, Theorem 7.3.1] @< (Y + iZ) is rapidly falling in Y. Let now A be a proper
cone in the complement of all the hyperplanes {Y et: )\F = 0} so that
Y € A necessarily implies )\F (Y) # 0 for alle ¢ and F. By the foregomg con-
siderations, up defines a holomorphic function on t+ A, and for arbitrary
compacta M C Int A, there is an estimate of the form

up(Q) <CA+[C)N, (=Y +iZ Im(e M,

for some N € N. The functions up®”, k =0,1,2,..., are holomorphic on
t + A, too, and satisfy similar bounds. Then, by [25, Theorem 7.4.2], there
exists for each k a distribution UL € D'(t*) such that

8) e AUR e S, Fl(e HPDUR) = (upd®F)(-+iZ), ZeA.

We therefore obtain with Corollary 1 for arbitrary Z € A and ¢ € t* the
equality

) [t om)| e panay
= > (r®?)(- +i2), (e (- +i2))

FeF

== <e*<'vZ>U<I’2,f;l((e*“ﬂ@a)(. + iZ))>

FeF

=Y (UR F (%))

FeF
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Remark 1. Let us mention that for arbitrary ¢ € t*

Fo e 00.)(6) = (Frle) (5 - g) . cer

€

constitutes an approximation of the J-distribution in t* at ¢, since for arbi-
trary v € C°(t")

<]_~;1(e—i<g,.>¢s)7 ’U>
= [ FOE(e+ ) d > v0p(0) = o), =0

Remark 2. Alternatively, each of the summands in (9) can be expressed
as

((wr®)( +i2). (7 Pp)( +i2))
= 2m) & (FrH (e AR (T F(@p0)) (- +i2))
= 2m)A+ (TR, (@p:)(- — 0)),

where we used the equality ®¢p. = ®F;(¢:) = (27r)‘A+|.7-"t(<I>g0€), see [27,
Lemma 3.4], and the fact that (e =) Fi(0.®))(- +iZ) = F(e2) (p. @) (- —
G)), or as

<UF( +iZ), (e—i<c,~)¢,2¢€)(. + Zz)>

(277)|m|< Fl e 0D, (e—i<c,~>}-t(pq>(<p%)))(.+Z'Z)>

= (2m)2+ (UF, Do (D) (- = <)) ,
where Dg denotes the differential operator such that Fi(Dg(Py:)) =
DF(Pepe ).

As a consequence of equations (2), (3), and (9) we arrive at

Proposition 1. Let o be an equivariantly closed differential form. Then

;i_)r%<fg([jefwg(.)(. _il—rf(l)// i(Jx /e~ w) o(X/e) p(X )7
vol G

D -1+
IleozTili% F<U I (%)>‘



462 Pablo Ramacher

In order to further investigate the distributions ng, note that the func-
tions up®* are given by a linear combination of terms of the form

¢iy (F)

————P(Y) P e CltY].

Hq/\{f (Y)ra '

The crucial observation is now that, due to this fact, the up®* are tempered
distributions whose t-Fourier transforms are piecewise polynomial measures
[27, Proposition 3.6]. By the continuity of the Fourier transform in S’ we
therefore have

Filupd*) = ]-"t(lim upd* (- + z’tZ))
t—0

= lim F(up®*(- +itZ)) = lime" A UR" = UL".
t—0 =0
Thus, U}’k € S'(t*) is the t-Fourier transform of ur®*, and, in particular, a
piecewise polynomial measure. Motivated by Proposition 1, we are interested
in the behavior of U}?k near the orgin, which leads us to the following

Definition 1. Let ¢ € t* be such that for all F' € F the Fourier transforms
Ug’k are smooth on the segment ts, t € (0,0). We then define the so-called
residues

Res™ (up®*) = PH(I] U (tc).
%

Note that the limit defining Res™* (up®*) certainly exists, but does de-
pend on ¢ (and A) as UL" is not continuous at the origin. Furthermore, for
arbitrary Z € A,

ResA’c(upr’k) = lim lim Ul?k (5)}—;1(6—1‘(&,-)@6)(6) dg

t—=0e—=0 J¢«

= lim lim (F (U e=02)), (e73.) (- +i2))

t—0e—0

= lim lim [ (up®*)(Y +iZ)e YT 23 (v 4+ iZ)dY,

t—0e—0 ¢

in concordance with the definition of the residues in [27, Section 8]. In par-
ticular, this implies

(10) D Res™ (upd")
FeF

= lim lim { /X V) g (v | 98 (V)@ (eY) dY.

t—0e—0 t
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Similarly,

> UR(s) = lim [ / e““)(‘/)eiwg(y)] F(Y)p(eY) dY.
FeF 0/ lUx

For a deeper understanding of the residues and the limits in Proposition 1
we are therefore led to a systematic study of the asymptotic behavior of
integrals of the form

) = [ | [0 @] ax. w0,
g X

where g is the Lie algebra of an arbitrary connected, compact Lie group
G, a € C(X x g) is an amplitude, dn = w"/n! the Liouville measure on
X, and dX an Euclidean measure on g given by an Ad (G)-invariant inner
product on g, while

(12) Ye(n, X) =I(n)(X) —<(X), <ceg"

This will occupy us in the next sections.

3. Stationary phase and resolution of singularities

In what follows, we shall describe the asymptotic behavior of the integrals
I.(u) defined in (11) by means of the stationary phase principle. As we shall
see, the critical set of the corresponding phase function is in general not
smooth. We shall therefore first partially resolve its singularities, and then
apply the stationary phase principle in a suitable resolution space. We begin
by recalling

Theorem A (Stationary phase theorem for vector bundles). Let M
be an n-dimensional, oriented manifold, and w: E — M an oriented vector
bundle of rang l. Let further oo € A2,(E) be a differential form on E with
compact support along the fibers, T € A?H_q(M) a differential form on M
of compact support, 1p € C*(E), and consider the integral

(13) I(p) = /Eew/“(w*ﬂ A a, > 0.

Let v : M — E denote the zero section. Assume that the critical set of
coincides with (M) and that the transversal Hessian of 1 is non-degenerate
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along 1«(M). Then, for each N € N, I(u) possesses an asymptotic expansion
of the form

N-1

I(M) _ ezd’u/ﬂeuff«p 27T,u é Z JQ] ¢’a 7—) +RN( )
7=0

where 1y and oy, denote the value of ¢ and the signature of the transversal
Hessian along 1(M), respectively. The coefficients Q; are given by measures
supported on (M), and can be computed explicitly, as well as the remainder
term Ry (p) = O(pt/?+N),

Proof. See Appendix A. O

If the critical set of the phase function is not smooth, the stationary
phase principle cannot be applied a priori, and one faces serious difficul-
ties in describing the asymptotic behavior of oscillatory integrals. We shall
therefore first partially resolve the singularities of the critical set, and then
apply the stationary phase principle in a suitable resolution space.

To explain our approach, let M be a smooth variety, O the structure
sheaf of rings of M, and I C O an ideal sheaf. The aim in the theory of
resolution of singularities is to construct a birational morphism I : M — M
such that M is smooth, and the inverse image ideal sheaf II*I is locally
principal. This is called the principalization of I, and implies resolution of
singularities. That is, for every quasi-projective variety X, there is a smooth
variety X, and a birational and projective morphism 7 : X — X'. Vice versa,
resolution of singularities implies principalization. If IT*(/) is monomial, that
is, if for every & € M there are local coordinates o; and natural numbers c¢;
such that

(1) 0, 5= o 0,

(2

one obtains strong resolution of singularities, which means that, in addition
to the properties stated above, 7 is an isomorphism over the smooth locus of
X, and 7~!(Sing X) a divisor with simple normal crossings. Consider next
the derivative D(I) of I, which is the sheaf ideal that is generated by all
derivatives of elements of I. Let further Z C M be a smooth subvariety, and
m: ByM — M the corresponding blow-up with center Z and exceptional
divisor F' C Bz M. Assume that (I,m) is a marked ideal sheaf with m <
ordzI. The total transform w*I vanishes along F' with multiplicity ordz/,
and by removing the ideal sheaf Op,r(—ordzI - F') from 7*I we obtain the
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birational, or weak transform 7711 of I. Take local coordinates (x1,...,z,)
on M such that Z = (x1 =--- =z, = 0). As a consequence,
z LTyr—1
Y= —"--Yr—1= —Yr =Tp,...,Yn = Tnp
Ty Ty

define local coordinates on Bz M, and for (f,m) € (I, m) one has

W;l(f(l'l, ey xn)7m) = (y;mf(yly’f? o Yr=1Yrs Yy - - 7yn)7m)'

By the work of Hironaka [24], resolutions are known to exist, and we refer
the reader to [31] for a detailed exposition.

Consider now an oscillatory integral of the form (13) in case that the
critical set C = (M) C E = M of the phase function v is not clean. Let I¢
be the ideal sheaf of C, and I, = (¢) the ideal sheaf generated by the phase
function ¢. Then D(I,;) = D¢. The essential idea behind our approach to
singular asymptotics is to construct a partial monomialization

I (Iy) - O, gz = o5t o TN (1) - O, 7, G € M,
of the ideal sheaf I, = (1) via a suitable resolution II : M — M in such
a way that D(II;(I;)) is a resolved ideal sheaf. As a consequence, the
phase function factorizes locally according to 1 oIl = of* - - - o}* vk and
we show that the corresponding weak transforms % = II; L(x) have clean
critical sets in the sense of Bott [5]. Here 01, ..., 0} are local variables near
each Z € M and ¢; are natural numbers. This enables one to apply the
stationary phase theorem in the resolution space M to the weak transforms
Q;U’k with the variables o1, ..., 0} as parameters. Note that in the algebraic
case Hironaka’s theorem implies that I, can always be monomialized. But
in general, this monomialization would not be explicit enough to obtain a
detailed description of the asymptotic behavior of the integrals I(u). Also,
it should be emphasized that we work in a C*-framework, while resolution
of singularities is usually carried out in an algebraic or analytic setting.

4. Equivariant asymptotics and the momentum map

We commence now with our study of the asymptotic behavior of the inte-
grals (11) by means of the generalized stationary phase theorem. To deter-
mine the critical set of the phase function ¥¢(n, X), let {X1,..., X4} be a
basis of g, and write X = Zle s;X;. Due to the linear dependence of Jx
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in X,
6375 wc(ﬁ, X) = Jx, (77) - C(Xi)a
and because of the non-degeneracy of w,

IJx =0 <= dJX:—L;(w:O <— X =0.
Hence,

(14) Crit(ihg) = {(n, X) € X x g: ¥ «(n, X) = 0}
:{(n,X)EQCXQ:)ZUZO},

where Q. = J_l(g) is the ¢-level of the momentum map. Now, the major
difficulty in applying the generalized stationary phase theorem in our setting
stems from the fact that, due to the singular orbit structure of the underlying
group action, )¢ and, consequently, the considered critical set Crit(v.), are
in general singular. In fact, if the G-action on X is not free, )¢ and the
symplectic quotients ). /G, are no longer smooth for general ¢ € g*, where
G denotes the stabilizer of ¢ under the co-adjoint action. Nevertheless,
both Q¢ and Q. /G, have Whitney stratifications into smooth submanifolds,
see Lerman-Sjamaar [41], and Ortega-Ratiu [37, Theorems 8.3.1 and 8.3.2],
which correspond to the stratification of X into orbit types, see Duistermaat-
Kolk [17].

Note that from the definition of the momentum map it is clear that the
kernel of its derivative is given by

(15) kerJ.p=(g-n)“,  neX,

where we denoted the symplectic complement of a subspace V' C T;, X by V¢,
and wrote g-n = {)N(n : X € g}. Consequently, if ¢ € J(X) is a regular value
of the momentum map, meaning that J. : 7, X — T.g* is a surjection for all
n € Q, Q¢ is a manifold of codimension d, and T,Q; = ker J,,, = (g-n)*,
which is equivalent to the fact that

X, #0 forallneQ, 0#X g,

compare [36, Chapter 8]. The latter condition means that all stabilizers G, of
points 1 € ()¢ are finite, and therefore either of principal or exceptional type.
In particular, one has dim g - n = d for all n € Q.. Thus, if ¢ is a regular value,
both Q. and Crit(¢c) = Q¢ x {0} are differentiable manifolds. In addition,
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in view of the exact sequence
0— T,0 =5 T,X 25 Tg — 0, 7€9Q,

where (¢ : ¢ — X denotes the inclusion, and the corresponding dual se-
quence, ) is orientable, X being orientable, compare [33, Chapter XV.6].
We then have the following

Proposition 2. Let X be a paracompact, symplectic manifold of dimension
2n with a Hamiltonian action of a compact Lie group G of dimension d.
Assume that ¢ € g* is a regular value of the momentum map J: X — g*,
and let Ic(p) be defined as in (11). Then, for each N € N, there exists a
constant Cn y_q such that

N-1
L) = @ru)® Y 1 Q(ve,a)| < O a i,
7=0

where the coefficients Q; are given explicitly in terms of measures on €).

Proof. As already noted, C. = Crit(¢)¢) = Q¢ x {0} is a differentiable, ori-
entable manifold of codimension 2d, and

T(n,o)cc ~T,Q = (g-1)*, N(n,O)C< =J(g-n) x Rda

where J : TX — T'X denotes the bundle homomorphism introduced in Sec-
tion 2. By definition, the Hessian of 1. at (n,0) € C. is given by the sym-
metric bilinear form

Hess 1) : T;,0)(X x g) X T(.0)(X x g) = C, (v1,v2) = 01(T2(¥s)) (1, 0).

Let {3~€1, e ,izn} be a local orthonormal frame in TX and {eq,...,e4} the
standard basis in RY corresponding to an orthonormal basis {41, ..., A4} of
g. In the basis

((X4)n30), (05€5), i1=1,...,2n, j=1,...,d,

of Ty, x)(X x g) = T;; X x R?, Hess 1. is then given by the matrix

A= _ 0 w45 X)) 0 g(JA;X) .
wy (A, X5) 0 gn (T Ai, X5) 0
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Indeed, for arbitrary X € g one has X;(Jx) = dJx (X;) = —Liw(%i), and
with (6) we obtain (%z)n(w(ﬁ, %])) = 0. In order to compute the transver-
sal Hessian of 1)¢, we have to exhibit a basis for N, )C. Lez therefore
{B1,...,Bq} be another basis of g = g;- such that {(B1)y, ..., (Ba),} is an
orthonormal basis of g - 7. It is then easy to see that

By, = (T (Bi)y;0),  Bj, = (0;94(A1, By), ..., 95(Ag, By)), k=1,....d,
constitutes a basis of N, 0Cc with (By, Bj) = 6, B L B}, and (B}, B)) =
(2)k1, where Z is given by the linear transformation

d ~ ~
(16) Zigon—raen: X Y gn(XA)(A)),.
j=1

With these definitions one computes

2n
.A(Bk) == (O; — Zgn(jgl,.%j)gn(jgk,%j), .. )
J=1

= (0;—94(T A1, TB), ..., —gy(T Aa, TBy)) = B},
d
A(By) = (— (ZgnUAj,xl)gn(Aj,Bk),...);o>
j=1

= ((Qn(E(Ek)n, 5%1), ...);0).

Since the {j(él)n, . ,j(gd)n} form an orthonormal basis of J(g-n), we
obtain

d
A(BL) = ~(TE(Br)y; 0) = = 3 ga(TE(Br)y. T (Bj)n) Bj.
j=1
Thus, the transversal Hessian Hess¢(n,0), NoyoC. 18 given by the non-
degenerate matrix

0 -1
(17) Atrans - (: 0 d> .
=lan

By the non-stationary principle, we can choose the support of the amplitude
a in the integral I.(u) close to C.. Identifying a tubular neighborhood of C¢
with a neighborhood of the zero section in NC., the assertion now follows
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from Theorem A by integrating along the fibers of v : NC; — C.. The exact
form of the coefficients can be read off from (A.2), in which ¢” corresponds
to Agrans- Note that the submersion P : Cc — €, (n,0) — 7 is simply the
identity, so that measures on C¢ are identical with measures on €).. O

Let us resume the considerations in Section 2, the notation being the one
introduced previously, and consider the following, more specific oscillatory
integrals.

Lemma 1. Let o= Df be an equivariantly exact form on X of compact
support, ¢ € g*, and € > 0. Then

/ MW‘”‘X%‘WMX) $:(X)dX = 0.
g

Proof. The proof is essentially an elaboration of an argument given in [27,
Equation (8.20)]. In what follows, write w(X) = w — Jx for the extension of
the symplectic form to an equivariantly closed form, and assume that 8 =
>-6,8;,0; € S7(g*), where the B; are differential forms of compact support.
Let further ¢ € C(g*) and § = () > 0 be such that supp . C B(0,9).
Define As = {n € X : |J(n) —<| < 0}, and let A5 C A§ be a smooth domain
with smooth boundary d Aj. Since Do (X )2y = d(0(X)2,—1)) for any equiv-
ariant differential form o, one computes

/g [ /. e—wog(X)] e g (X)dx
- [ o(s)e0] e smacax
_ /g [ /X d(<e—i%>(x))] e~ g, (X) dX
- [ [ a0 s ix)
- [ ( / U=, (X)6;(X) dXe—"“’ﬂj)

=5 [a( [ 90z 0, -ivep 00 xe s,

g

—em' Y [ d((6s(-i9ehe) o (0 - e 5;)
~

-e'S

[(_iaj(aﬁ)@e) o (J — §)]€_iwﬂj =0
— Jon,
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since ¢, o (J — <) vanishes on 9 A§. Hereby we used the Theorem of Stokes
for differential forms with compact support, see [42, page 119]. OJ

Proposition 3. Let ¢ € g* be a regular value of J : X — g*, a € A(X),
and 0 € S™(g*). Then

- /g [ /X eimma} B(X) (e X) dx = (2P0l G /J 1(2)

e—0 |HG| “1() vol OG

for some form £ € A.(X) explicitly given in terms of J, o and 6, where Hg
denotes a generic isotropy group of the G-action on §, and Og(n) =G -n
the G-orbit through a point n € X, while 1. : J71(s) < X is the inclusion.

Proof. Let ¥c(n, X) = (J(n) —¢)(X), so that the limit in question reads

1 )
1 i /e A
im(l)gdr/g[/e a]@godX.

Proposition 2 yields for the integral above an asymptotic expansion with
leading power £? and coefficients Q,.; given by measures on C. = Crit(1) =
Q¢ x {0} = Q. In order to compute them, let {By, B;} be the basis of N, ¢)C¢
introduced in the proof of Proposition 2, and let {s, s;} be corresponding
coordinates in N, 0)C. The transversal Hessian of ¢ is given by the ma-
trix (17). By the non-stationary principle, we can choose the support of «
close to (). Identify a tubular neighborhood of €2c with a neighborhood of the
zero section in N{). Integrating along the fibers of v : NC. ~ NQ¢ x g — C¢
then yields

/[/ ei%/aa}ﬁgbdX: ew*/eﬁgéadX:/ V*<ei¢</69g5adX).
g LUX NC, C.

Assume now that with respect to the trivialization of v given by the frame
{By, B} we have

adX = fv*(B)AdsAds', B EA(Q),
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for some smooth function f. Applying (A.2) we obtain for arbitrary large
N € N an expansion of the form

(18) v (e padX)
_ p
det (Aprans (7, )/ 27Ti€)1/ ?
S Y kD DY 05 00 + B,

p—q<N 2p>3q

where n€€Q¢, D=—i(0s,,...,0s,,04,...,0s), 0)(n,s,s)=(0@)(X(s)),

and
H(s) = 0.5 = (A 3)-(5)) /2
Pe(n,8,8") = Tx(sy(n,8) = s(X(5")),

is a smooth function vanishing at (7,0) of order 3. The inner sum with p —
q = j therefore corresponds to a differential operator of order 2; acting on
0 ¢ f, since in this case 2p — 3¢ = 2j — ¢, the maximal order being attained
for p = j and ¢ = 0. Now, since 9.(n, X ) depends linearly on X, derivatives
at s =0 of ¥(n,s,s’), and consequently of H(n,s,s’), of order greater or
equal 3 vanish, unless exactly one s’-derivative occurs. On the other hand,
6 vanishes at X (s") = 0 of order r. Furthermore, due to the particular form
of Atrans in (17),

<At:r;nsD’ D> = Z Ckl ask 852

is a differential operator of first order in the s’-variables. Consequently, the
inner sums in (18) with p < r + ¢ must vanish, and for N = p — ¢ = r, only
terms proportional to ¢(0) occur. Summing up we have shown that

QT‘,jZO’ fOI‘aHjZO,--~7T_1’

the leading term being of order %", and we obtain

1 .
i(J=5)(X) /e 5
gl—>05d+7’/g[/xe a} 0(X)p(X)dX

. 2(8)  _ (2m)9e(0) vol G ic(£)
— (90)95(0 / i = / R
( 7T) SD( ) J*l(g) |det 5’1/2 |-HG| 371(g) VOIOG
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where £ € A.(X) is explicitly given in terms of «, J and . Here we took
into account that |det E|9~n‘1/2 =vol (G - n)|Gy|/vol G for n € Q, c.p. [11,

Lemma 3.6]. Since ¢(0) = 1, the assertion follows. O

Next, let us consider a maximal torus 7' C G and the composition Jr :
X — t" of the momentum map J with the restriction map from g* to t*,
which yields a momentum map for the T-action on X. Since T is commuta-
tive, the coadjoint action is trivial, so that T' = T¢ for all ¢ € t*. Thus, J;(s)
is T-invariant and J.'(¢)/Te =~ J'(s)/T. Also, for regular ¢ € t* define

o % [ T— (o)™t

(19) K& Hp(X) =5 Hp(Jp' (<)) == H*(J7'(s)/T),
ter : J71(s) = X being the inclusion and 7 r:J-'(s) = J;'(s)/T the
canonical projection [20, p. 125]. In what follows, we shall also write Q? =
J71(s). We then have the following

Corollary 2. Let¢ € t* andI'c C t* be a conic neigbhorhood of the segment
{tc:0 <t <1} such that all UL are smooth on T, and denote by the, the

set of reqular values of Jp. Then, if o € H5(X) is an equivariantly closed
form of compact support,

27) % vol T
e X Restupet) = L [ Te)
FeF | Hr| $=0,¢elinty, Jor T

where £ is explicitly given in terms of e o, ®, and J, and d = dimg =
dimt+ |A| =dp + 2|A4|.

Proof. Since t;,, is dense by Sard’s theorem, the assertion is a direct conse-

quence of (10) and the previous proposition. O

Remark 3. Note that if 0 € t* is a regular value of Jr, the implicit function
theorem implies that the limit in (20) equals

/ KI(9),
Qr /T

compare [26, Theorem 3, ii)]. In particular, 3 .. » Res®* (up®?) is indepen-
dent of ¢. Further, if X is compact, the set of regular values of Jp is a
disjoint union of open, convex polytopes, and fQ? /T ICgT(,S) is constant on
each polytope [20].
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In order to derive the residue formula mentioned in the introduction,
we are left with the task of evaluating the limits occuring in Proposition 1
and the sum of residues (20) in terms of the reduced spaces X,.q = Qo/G
and Qg /T, respectively. This amounts to an examination of the asymptotic
behavior of the integrals (11) in case that ¢ € g*, and in particular ¢ = 0, is
a singular value of the momentum map, in which case Crit(¢.) is singular.
From now on, we will only be considering the case ¢ = 0, and simply write
Y for vy, I(p) for Ip(w), and so on. As explained in the previous section,
we shall partially resolve the singularities of the critical set Crit(¢)) first,
and then make use of the stationary phase principle in a suitable resolu-
tion space. Partial desingularizations of the zero level set Q = J~1(0) of the
momentum map and the symplectic quotient /G have been obtained by
Meinrenken-Sjamaar [35] for compact symplectic manifolds with a Hamil-
tonian compact Lie group action by performing blow-ups along minimal
symplectic suborbifolds containing the strata of maximal depth in §2. In the
context of geometric invariant-theoretic quotients, partial desingularizations
were studied in [30] and [26].

From now on, we will restrict ourselves to the case where X is given by
the cotangent bundle of a Riemannian manifold. For a general symplectic
manifold, the desingularization process should be similar, but more involved,
and we intend to deal with this case at some other occasion. Note that
by a theorem of Weinstein, a symplectic manifold is locally the cotangent
bundle of a Lagrangian submanifold, but in general, the momentum map
of a Hamiltonian action will not be given locally by a Liouville form, c.p.
Remark 4.

Let M be a Riemannian manifold of dimension n. Writing v : T*M — M
for the cotangent bundle, and 7 : T(T*M) — T*M for the tangent bundle,
we define on T* M the Liouville form

0,(X) = r(X) (X)), X e T,(T"M).

We then regard T* M as a symplectic manifold with symplectic form w = d©.
In particular, M might carry a complex structure J : TM — TM. In this
case, M constitutes a complex manifold M€, whose tangent bundle T'M¢ is
C-linear isomorphic to T'M endowed with the C-bundle structure induced
by J, so that as C-bundles

TM®¢ ~TM", T*M® ~ T* MO,

where TM @r C = TM'0 @ TM®! is the splitting of the complexification
of TM induced by J, and T* MY the C-dual bundle of TM"?. Furthermore,
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the complex cotangent bundle T*M¢ is a complex manifold with underlying
differentiable manifold 7* M. In what follows, we will endow T M with the
Sasaki metric g, which is associated to w by an almost-complex structure 7,
so that (T*M,J,g) becomes an almost-Kéahler manifold. In this case, the
symplectic volume form w”/n! and the Riemannian volume density defined
by the Sasaki metric coincide.

Assume now that M carries an isometric action of a compact, connected
Lie group G with Lie algebra g, and define for every X € g the function

Jx :T"M — R, 1 O(X)(n).

Note that ©(X)(n) = 7](55”(77)). The function Jx is linear in X, and due to
the invariance of the Liouville form [9] one has

E)Z—@Zdjx-i-bg—w:o, VX € g,

where £ denotes the Lie derivative. Hence, the infinitesimal action of X € g
on T*M is given by the Hamiltonian vector field defined by Jx, which means
that G acts on T*M in a Hamiltonian way. The corresponding symplectic
momentum map is then given by

J:T°M — g*, I(n)(X) = Jx(n),
and we put Q = J1(0). Note that
(21) neQNTyM <= 1y, <€ Ann(T,(G-m)),

where Ann (V,,,) C T M denotes the annihilator of a vector subspace V,;, C
TmM.

Example 1. In case that M =R", let (¢1,...,qn,P1,-..pn) denote the
canonical coordinates on T*R"™ ~ R?". Let further G C GL(n,R) be a closed
subgroup acting on T*R™ by g - (¢,p) = (g9q, Tg~' p). The symplectic form
reads w=df =", dp; A dg;, where 0 =" p;dg; is the Liouville form,
and the corresponding momentum map is given by

J:T"R" ~R" xR" = g*,  J(q,p)(X) =0(X)(q,p) = (Xq,p),

where (-,-) denotes the Euclidean inner product in R™. In this case, for
cegh,

Crit(ve) = {(¢:p. X) € U x g: X € gigp) )
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where Q¢ = {(q,p) € T*R" : (Aq,p) —s(A) =0 for all A€ g} and g, is
given by the set of all X € g such that Xq =0, Xp = 0.

Remark 4. Consider a symplectic linear vector space (X,w) and a sub-
group G of the linear symplectic group acting naturally on X. A coadjoint
equivariant momentum map is then given by

J)(X) = zw(X(v),v), veX, X eg.
Consequently, the considered G-action is Hamiltonian. For X = T*R", this
constitutes an example of a Hamiltonian action on a cotangent bundle that
is not simply a lift of a group action on the basis manifold. J is not given in
terms of the Liouville form, and actually represents an example of a general
momentum map.

One now has the following

Lemma 2. Q has a principal stratum Reg ) which is an open and dense
subset of Q2 and a smooth submanifold in T*M of codimension equal to the
dimension k of a principal G-orbit in M. In addition,

(22) Ty(Reg Q) = [T(G-n)]* = (g-n)“,  n€Reg Q,

and if Kk = d, each n € Reg € is a regular point of J. Furthermore, the smooth
part of the critical set (14) for the phase function ¥ (n)(X) = J(n)(X) cor-
responds to

(23) Reg Crit(¢) = {(n,X) € RegQ x g: X € gy},

and constitutes a submanifold of codimension 2k, while
d ~ ~ ~
(24) Tjyx)Reg Crit(1) = {(36, w) € (g xRS wi(Ki), = [X,aan},
i=1

where X denotes an extension of X to a vector field *.

'In the proposition below, we shall actually see that [)N(, %]77 €g-nfor X cg,
and X € (g-n)“.
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Proof. Denote the principal isotropy type of the G-action on M by (H), and
define

RegQ={neQ:G,~H},

where G, denotes the isotropy group of n. By [41, Theorem 2.1], RegQ
is a smooth manifold. To compute its tangent bundle, let 7(¢) be a smooth
curve in Reg  and write X = (to) € T)),)Reg Q. Differentiating the equal-
ity J(n(t))(X) = Jx(n(t)) = 0 for arbitrary X € g yields

d . =
21X () ji=1, = dJx (1(t0)) 0 1i(t0) = —w (X, X)jyz) = 0,

and we obtain (22). Now, let n € QN T; M and G, ~ H. In view of (21) one
computes for g € Gy and X = X7+ Xy € T, M =T,(G - x) ® N (G - x)

(g-m(X) =1((g7)wa(Xn)) = n(X),

where we took into account that G, acts trivially on N (G - ), see [8, Pages
308 and 181]. Since G, C G, for arbitrary n € T*M, we conclude that

neEQNTIM, G,~H = G,=0G,.

Consequently, T*(Reg M) N Q2 C Reg (2, where Reg M denotes the stratum
of points of principal orbit type (H) in M. Since by the principal orbit
theorem Reg M is open and dense, Reg () must be open and dense, too.
Furthermore, in view of (21) Reg{2 must have codimension s, and by (15)
this implies that if x = d each element 7 € Reg(2 is a regular point of J.

Now, the Lie algebra of G, is given by g, = {X € g: X, = 0}, so that
(23) follows from (14). To see (24), let (n(t), X(¢)) be a smooth curve in
Reg © x g. Writing X (t) = > s;(t)X; with respect to a basis {X1,..., X4}
of g, one computes for any f € C*°(Reg Q)

d

d = d Y.
£X(t)n(t)f|t:to = Z %<Sj(t)(xj)n(t)f> —
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Writing X = fj(to) € Ty, Reg €, one has & (X;0)0(0))ji=t, = Tyieo) (X5,
so that if (n(¢), X (¢)) is a curve in Reg Crit(¢)) one obtains

||M&

d
Z SJ (to

Jj=1

t() %X ()f:O,

since X (to)n( (.’{ f) =0, and the assertion follows from (22). O

Remark 5. Not that for a general differentiable G-manifold M, the prin-
cipal isotropy types of M, T'"M and T*M might be different. Indeed, for
M = 5%~ G/H, G =S50(3), and H = SO(2) the union M (H) of orbits in
M of isotropy type (H) equals M and corresponds to the principal stratum,
while

TM = (TM)({e}) U (TM)(H),

where (T'M)(H) corresponds to the zero section and (T'M)({e}) to its com-
plement, consequently being the principal stratum.

Before we start with the actual desingularization process of the phase
function v, let us mention the following

Proposition 4. The mapping P : Reg Crit(¢)) — Reg Q, (n, X) — 1 is a
submersion.

Proof. Let n € Reg Q and X € g,,. We show that [%,)?}n e€g-nforall Xe
T, Reg 2. To begin, note that 7 : Reg 2 — Reg /G is a submersion and a
principal fiber bundle with ker(7g)+, = g -7 [37, Theorem 8.1.1]. If therefore
n(t) € Reg 2 denotes a curve with n(0) =7, 7(0) = X, and g € G,, differ-
entiation of mg(g-n(t)) = ng(n(t)) yields X — g« n(X) € ker(mg)sn =g - 0.
Consequently,

d, _ix 1y —tX
(e enFymo = lim i [(¥)sp% K] €0 m,

(25) 7

where we made the identification T%(T;Reg Q) ~ T;,Reg Q. Now, for arbi-
trary Y € g [37, Proposition 4.2.2],

wﬁ([%a X]aY) = _wn([X7Y]>'%) —wn([Y,%],X) =0,
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since )N(n =0, and %n =X € (g-n)”. Hence, [X, X], € (g-n)*. Furthermore,
for arbitrary f € C*(T*M),

& Ko = By(XF) = (XN 05))jemo
d (d t d iy
=7 (dsf(@_ X 77(5))3=0> o = a((e X)*,n:{\tzo)nfa
so that with (25)
(26) % K]y = S nXyo € 51,

The previous lemma then implies that P, , x): T, x)Reg Crit(y) —
T,Reg Q, (X,w) — X is a surjection, and the assertion follows. O

Remark 6. Note that for n € Reg 2, and X € g,, the previous proposition
implies that the Lie derivative defines a homomorphism

(27) Lx:g-12 X Lg(X), =X, X, cqn.
5. The desingularization process

We shall now proceed to a partial desingularization of the critical set of
the phase function (12) for X = T*M, ¢ = 0, and derive an asymptotic de-
scription of the integral (11) in this case. An analogous desingularization
process was already implemented in [40] to describe the asymptotic distri-
bution of eigenvalues of an invariant elliptic operator. The desingularization
employed here constitutes a local version of the latter, and for this reason
is slightly simpler. Indeed, the phase function considered in [40] is a global
analogue of 1(n, X) = J(n)(X). It should be noticed, however, that these
phase functions are not equivalent in the sense of Duistermaat [15], so that
the corresponding desingularization processes can not be reduced to each
other 2. To begin, we shall need a suitable G-invariant covering of M. In
its construction, we shall follow Kawakubo [28], Theorem 4.20. For a more
detailed survey on compact group actions, we refer the reader to [40], Sec-
tion 3. Thus, let (Hy),..., (H1) denote the isotropy types of M, and arrange

2Observe that a similar phenomenon occurs in [18].
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them in such a way that
Hj is conjugate to a subgroup of H; = <.

Let H C G be a closed subgroup, and M (H) the union of all orbits of type
G/H. Then M has a stratification into orbit types according to

M =M(H)U---UM(Hp).

By the principal orbit theorem, the set M (Hp, ) is open and dense in M, while
M(H;) is a G-invariant submanifold. Denote by v; the normal G-vector
bundle of M (H;), and by f1 : v1 — M a G-invariant tubular neighbourhood
of M(H;) in M. Take a G-invariant metric on vy, and put

Di(11) ={v e :||v]| <t}, t > 0.

We then define the G-invariant submanifold with boundary

My = M — fi(Dy 2 (),

on which the isotropy type (Hj) no longer occurs, and endow it with a
G-invariant Riemannian metric with product form in a G-invariant collar
neighborhood of 0 My in M. Consider now the union Ms(Hs) of orbits in
My of type G/Hj, a G-invariant submanifold of M, with boundary, and
let fo : v — My be a G-invariant tubular neighborhood of Ms(Hs) in M,
which exists due to the particular form of the metric on Ms. Taking a G-
invariant metric on o, we define

Mz = My — fo(Dy 2 (1)),

which constitutes a G-invariant submanifold with corners and isotropy types
(H3),...(Hp). Continuing this way, one finally obtains for M the decompo-
sition

M = fi(Dyo(v1)) U -+ U fr(Dy/2(vr)),
where we identified f(D;/o(v)) with M. This leads to the covering

o

M= fi(Di () U---U fo(Dy (1)), fu(Di (vi)) =M .

Let us now start resolving the singularities of the critical set Crit(v). For
this, we will set up an iterative desingularization process along the strata
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of the underlying G-action, where each step in our iteration will consist
of a decomposition, a blow-up, and a reduction. For simplicity, we shall
assume that at each iteration step the set of maximally singular orbits is
connected. Otherwise each of the connected components, which might even
have different dimensions, has to be treated separately.

First decomposition

Take 1 < k < L —1. As before, let f: vy — My be an invariant tubular
neighborhood of My(Hy) in

k—1

My, = M — | fi(Dyys (00)),
=1

a manifold with corners on which G acts with the 1s0tropy types (Hy),
(Hk:+1) ((Hy), and put Wy, = f(Dy (), Wi, =My, so that M = W U
-UWrL. erte further S, = {v € v} : ||v]| = 1}. Introduce a partion of unity

{Xk}k:1 ..z, subordinate to the covering {W} }, and with the notation of (11)
define

L() = / ; / X (ax,) (n, X) dX d,
*We Jg

so that I'(p) = I1i(p) + -+ -+ Ir(p). As will be explained in Lemma 5, the
critical set of 1 is clean on the support of axy, so that we can apply directly

the stationary phase theorem to compute the integral I (u). But if k €
{1,...,L — 1}, the sets

Q. =Q N TW,,
Crity(¢) = {(n,X) €O xg: X, = o}

are no longer differentiable manifolds, so that the stationary phase theo-
rem can not a priori be applied in this situation. Instead, we shall resolve
the singularities of Critg(¢), and after this apply the principle of the sta-
tionary phase in a suitable resolution space. For this, introduce for each
%) € My (H},) the decomposition

g=0,0 D gjm,

where g, denotes the Lie algebra of the stabilizer G of 2*), and g;k) its
orthogonal complement with respect to some Ad (G)-invariant inner prod-
uct in g. Let further A;(z®),..., Ayu (™) be an orthonormal basis of
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92, and Bi(z™®),..., By () an orthonormal basis of g,u . Consider
the isotropy algebra bundle over My (Hy)

is0 Mk(Hk) — Mk(Hk),
as well as the canonical projection

Wi — Mk(Hk)7 m = fk(l‘(k),v(k)) — I'(k),
l‘(k) c Mk(Hk), U(k) c (I/k)l,(k),

where fk(ac(k), v(k)) = (expy OV(k))(U(k))a and

F(@®)

(k) (py(B)y — _ Tk\" ")
Y (0) (1+HU(1€)H)1/2U

is an equivariant diffeomorphism from (v ), onto its image, Fy : My (Hy) —
R being a smooth, G-invariant positive function, see Bredon [8, pages 306-
307]. We consider then the induced bundle

tiso My (Hy) = {(fk(x(k),v(k)),X) EWpxg:Xe gxm},
and denote by

Hk : Wk Xg— 7T;;i§0 Mk(Hk)

the canonical projection which is obtained by considering geodesic normal
coordinates around 7} iso My (Hy), and identifying W}, x g with a neighbor-
hood of the zero section in the normal bundle N 7} iso M} (H}). Note that
the fiber of the normal bundle to 7*iso My (H},) at a point (fi(z*),v(*)), X)
can be identified with g;k). Integrating along the fibers of the normal bundle
to m} iso M}, (Hy,) we therefore obtain for (1) the expression

(28)

/ [/ e haxy, &, d(TFWy,) dAP)
wriso My (Hy) | /11 (m, B&) X T Wy,

= /Mk(Hk) [/QXﬂ'kl(x(k)) [/T*

exp_(j) v(*)

dB®) dm

. eitb/ﬂan Dy d(TgXme) ,U(k)Wk)]
k

dA®) gB®) dva)] da®),
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where

YF (D1 (Uk)p) X gy X gaw D (0, AW BR))
— (expLm v(k), Ak 4 B(k)) = (m,X)

are coordinates on g x 7Tl€_1(.1‘(k)), while dm, dz®, dA® dB®) dv®) and

d(T;;,W},) are suitable measures on Wy, My (H}), 0, 8200, ~ (k) (1091 (Vk)pm),
and T Wy, respectively, such that

dX dn = S d(Tsy, oo W) (n)dA®) aB® dv®) dz®),

where ®;, is a Jacobian.

First blow-up

Let now k € {1,...,L — 1} be fixed. For the further analysis of the integral
I.(1), we shall sucessively resolve the singularities of Critg (1)), until we
are in position to apply the principle of the stationary phase in a suitable
resolution space. To begin with, we perform a blow-up

Cp: Bz, Wi x g) — Wi x g

in Wy x g with center Zj, = iso My(Hy). For this, let us write A% (z(F) o(F)
= SaPAP ) € g, BOED,50) = 350 B (209) € go, and

(0

Ze(k ) € A )( D1 (Vk):cww),

where {vgk), Ce c<k>} denotes an orthonormal frame in v. With respect to
these coordinates we have 7 = {T k) = (o) 9(’“ = 0} so that

By, (Wi x 8) = { (m, X, [t]) € Wy, x g x RP< #4071 70y — g,
Ck 2 (m, X, [t]) — (m, X).

Let us now cover By (Wj x g) with charts {(¢f,U2)}, where UZ =
k k

By, (Wi x @) N (Wi x g x V,), V, = {[t] e RpeW+dM -1 ¢ o o}, and ¢ is

given by the canonical coordinates on V,. As a consequence, we obtain for
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¢, in each of the 8()-charts {Ulf}lgggc(k) the expressions

(29) 2=Gowh: (@, oo™, AR, B
Sy (@), 7 258, 7, AR), B

— (expyo 1 200, 7 AR 4 BR)Y = (m, X)),
where 7, € (—1,1),

05(h) (F), glk)

(k)
= y®) <(v£,k) (@) + 00 @) [ 1+ Z(eg’”)?) € YW (28 )z,
i i

and
95’2‘: {UGVkZU:ZSiUi78Q>07HUH :1}'

Note that for each 1 < g < ¢(F),
Wi = fi( 28 x (=1,1))

up to a set of measure zero. Now, for given m € M, let Z,, C T, M be a
neighborhood of zero such that exp,, : Z,, — M is a diffeomorphism onto
its image. Then

(expy)sp : ToZm — Toxp, oM, v € Zy,

and g - exp,, v = Lg(exp,, v) = expy,_(m)(Lg)s,m(v). As a consequence, since
B%) € g4, we obtain
é(vk) _ 4 ) 05 (k)
exp, (k) Tk 20 = % €XP (k) ( e—tB(®) )*J(k) (Tk v )|t:0
= (expw(k,) )*7Tk o (k) (/\(B(k))(Tk Qﬁ(k)))

= T (€XPy) )x r, 058 ()\(B(’“))( Q@(k)))7
where we denoted by

) d

At gum — gl(vm), B® - 21 Lemes® )a a0

the linear representation of g, in Vg ()5 and made the canonical identi-
fication T, (Vg z)) = Vg g for any v € (vg) 0. With m(n) = expyo) T og5(k)
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we therefore obtain for the phase function the factorization

w(nv X) = 77()2#(77)) = n((TkA(k) + B(k)>expm(k) Tk Qﬁ(k))
— T [”(A(k)expm o) T 1((€XPy0 ) a,r, 0500 [/\(B(k))%(k)])]

Similar considerations hold for ¢ in the a®)-charts { U,f }

C(k)JrlSQSC(k)er(k) ?
so that we get on the resolution space

¥ o (id fiper ® G) = Bt = 1 . Kjwk

(B)qptot and (K)qjwk being the total and weak transform of the phase function
1, respectively.

Example 2. In the case M = T*R"™ and G C GL(n,R) a closed subgroup,
the phase function factorizes with respect to the canonical coordinates n =
(q,p) according to

¥(g,p, X) = (Xq,p) = <(TkA(k) + B exp, 7 %(’“)7p>
=7 K AW () 4 pk) oj(k) p> . < AW o). p>] ’

where we took into account that in R™ the exponential map is given by
expx(k) v(k) — gj(k) + ’U(k)

Introducing a partition {ui} of unity subordinated to the covering {U,f }
now yields

o) d
L(w) =D I+ Y Iw),
o=1 o=c(F)+1

where the integrals I? (1) and I{(u) are given by the expressions
/ ui(id Fiber @ Ck)*(eiw/“andan).
Bz, (Wi xg)

As we shall see in Section 9, the weak transform ®)¢®F has no critical
points in the a¥)-charts, which implies that the integrals I & (p)? contribute
to I(u) only with higher order terms. In what follows, we shall therefore
restrict ourselves to the examination of the integrals I (). Setting af =
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(uf o @P)[(axk) o (id fiper @ ()] We obtain with (28) and (29)

= | / [ /
Mi(H)x(~1,1) | Jy01((80),00) %8, x84 | /T oW

exp_ () Th1
Tk (k)»(z)'wk 0 Fo %
e ~ ak (I)k d(T XD, (1) ka)(k)Wk‘)

€

dA®) gB*) d@<k>] dr dz™®),

where di(®) is a suitable measure on the set y*)((Sy),m) such that
dX dn = F d(Thy, o Wi) AW aBW a5 ® dr, dz®),

@i being a Jacobian. Furthermore, a computation shows that ®2 =
) L q(k)
|Tk’c +d 1 (I)k O/C]g'

First reduction

Let us now assume that there exists a m € W), with orbit type G/H;, and let
z®) € My.(Hy),v®) € (1), be such that m = fi.(x*), v*)). Since we can
assume that m lies in a slice at z(®) around the G-orbit of z*), we have G,,, C
G, see Kawakubo [28, pages 184-185], and Bredon [8, page 86]. Hence,
H; ~ G, must be conjugate to a subgroup of Hj ~ G w). Now, G acts
on My, with the isotropy types (Hy), (Hg41),- .., (Hr). The isotropy types
occuring in Wy are therefore those for which the corresponding isotropy
groups Hy, Hyy1, ..., H are conjugate to a subgroup of Hy, and we shall
denote them by

(Hy) = (H;,),(Hy,),...,(HL).

Now, for every z*) € My, (H}), (v4)zm is an orthogonal G -space; there-
fore G, acts on (Sg),m with isotropy types (H;,), ..., (Hp), cp. Donnelly
[14, pp. 34]. Furthermore, by the invariant tubular neighborhood theorem,
one has the isomorphism

Wi /G =~ (V)0 [ Gr,

so that G acts on Sy, = {v € vy : ||v|| = 1} with isotropy types (H;,), ..., (Hr)
as well. As will turn out, if G acted on Sy only with type (Hr), the critical
set of ®* would be clean in the sense of Bott, and we could proceed to
apply the stationary phase theorem to compute Ii(u). But in general this
will not be the case, and we are forced to continue with the iteration.
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Second decomposition

Let now z®) e M;.(Hy) be fixed. Since &)y — 1y is an equivariant dif-
feomorphism onto its image, Y*) ((Sy)ym ) is a compact G -manifold, and
we consider the covering

V(k)((sk)m(“) = Wi, U---UWyp,
Whi;, = fri, (D1 (Vkiy)), Wiz, = Int(v®) ((Sk) o)1),

where fr; @ Vi, — y(k)((Sk)xm)ij is an invariant tubular neighborhood of
Y B ((Sk)a)i, (Hi,) in

7—1
YO ((SK)zw)i; = Y (Sk)ew) = | fri,(Drj2 (vha,)s 5> 2,
r=2

and  fr;, (20),00)) = (exp i,y 0yW))(v0)),  2) € AW ((Sy) )i, (Hi)),
vls) e (Vki; ) i) i) Vki, — Vki, being an equivariant diffeomorphism onto
its image. Let further {x4;, } denote a partition of unity subordinated to the
covering {Wkij}, and define

= [ [ / [ /
! My (Hi)x(=1,1) | Jy®((Sk) )X 8,00 X875y | /T Wi

exp_ (1) 7500 (K)

cTk (k) 2wk =~
e'n v aiinj (I>]€ d(T:xpm(k) T ) W) dA®

dB®) df)(k)] dry, dz'®,

so that I7(u) = I}, (u) + -+ + I (u)- It is important to note that the parti-
tion functions x4;, depend smoothly on z®) as a consequence of the tubular
neighborhood theorem, by which in particular v*)(S})/G ~ ) ((Sk)zm)/
G, and the smooth dependence in z®) of the induced Riemannian metric
on Y*)((Sy)ym), and the metrics on the normal bundles ki, Since Gy
acts on Wy, only with type (Hp,), the iteration process for I}, (1) ends here.
For the remaining integrals I}Sz‘,- () with k <i; < L, let us denote by

is0 'y(k)((sk);,;(k))ij (Hz7) — ’Y(k)((skr)x(k))ij (sz)
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the isotropy algebra bundle over 'y(k)((Sk)x(m)ij (H;,), and by mp;, « Wy, —
Y E)((Sk)p)i, (H;,) the canonical projection. For 2(5) € v ((Sy) )i, (Hs, ),
consider the decomposition

9= o0 @ Gyin = (8,00 S Griiyy) S Bt

Let further Agij) Ail(‘) be an orthonormal basis in g7 s as well as
Biij) B(ij ) be an orthonormal basis in 9,6, , and {vlk”), U i”]))} an

orthonormal frame in vy, . Integrating along the fibers in a nelghborhood of
T}, 150 YE (k) w0 )i, ( ZJ) C Whi, X gz then yields for I,fij (1) the expres-
sion

/Mk(Hk) x(=1,1) [ /7<’“)((5k)z<k> )i; (Hiy) [ /7ij (1)@, ) X 0L )

i Tk (k) ofywhk
e YT adxpi. ®°. d(T* i Wg)
kARY = ki exPp_(k) Tk €XP (i) V7
T (i) W ’ o

expm(k) Tk expw“j) v
dA® g A B dv(ij)] dx(ij)] drpdz™®),
where @gij is a Jacobian, and
ry(Z])( D]. (Vkij)z(lj)) X gi_(ij) X gx(i]> =Y (v(17)’A(21)7B(21))
= (exp, o) A6 4 B(ij)) - (5(16),3(16))

are coordinates on Trk,_lj (2(13)) % gy, while dz(%), and dA() dBU) dylis)
are suitable measures in the spaces v*)((Sk),m )i, (H;,), and gi(ij), 9,655

’Y(i-j)( 10?1 (Vkij)x(ij)), respectively, such that we have the equality
ég aB® gz*) = (I)ii dA%) dB) qois) g0
Second blow-up

Let us fix an [ such that k < < L, (H;) < (Hy), and consider in By, (W}, x
g) a blow-up

Ckl : BZkl(BZk (Wk X g)) — BZk (Wk X g)
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with center

Zu~ |J  (=1,1) xisoy® ((Sk)zw )i (H)).
I(k)EMk(Hk)

Let AD ¢ g;l) and BY € g o be arbitrary and write A l)(a:(k z®), (l))
S o AP @®),20) € gl BOE®, 20, 80) = 387 B (21) € gy, as

well as

RO
YO @O)(®, 10,90 = 37 g0 p*) (4 70

i=1

Then Zj; ~ {oz(k) =0, a) =0, 00 = 0} locally, which in particular shows
that Zj; is a manifold. If we now cover By,, (Bz, (W) x g)) with the standard
charts, we shall see again in Section 9 that modulo higher order terms the
main contributions to I};(x) come from the (0%, 9")-charts. Therefore it
suffices to examine (i; in one of these charts, in which it reads

(2™, 7, 20, 7,50, 7, 4% 7,40 BO)
— (™) 7., expyo oW, AR 7 AD 4 BOY = (48 7 50 AR B

i,

where
f,(l)(x(k),x(l)’g(l)) (l)((Skl)x“))

Note that Zj; has normal crossings with the exceptional divisor Ej =
¢, H(Zy) = {m = 0}, and that

Wig = fra(Siy x (=1,1))
up to a set of measure zero, where Si; denotes the sphere subbundle in

Vi, and we set S = {U €ESp:v= vagkl), Vg > 0} for some o. Conse-
quently, the phase function factorizes according to

W0 (id piver @ (G 0 GF)) = M1 = 1y - (D Gk,



Singular equivariant asymptotics and the momentum map 489

which in the given charts reads

P(n, X) =1k [77 <T/lz(k/)expm<k) Thexp_ () mjm)
+77((expm(k>)*m exp, @y oD A AY + BO) exp,a Tlﬁ(l)])}
=TT {77 (xmexpw(k) T €XP, (1) mﬂ”)
+1n <(eXPx<k> )74 exp, 1y T® ANADY exp,o) m”;(l)])

+n ((expxm )*Jk exp, @y 1HW) [(expxu>)*7m~)(z> [()\(B(l))f)(l)]] )}

where we took into account that

- d (1
)\(B(l)) €XPLm Tlv(l) — % €XPLm (Le_tB(z) )*,m(kﬂ—lv\(t):o

— (exprm )*77_117(1) ()\(B(l))’fl’ﬁ(l)) ]

Since the weak transforms ¥4** have no critical points in the (8%, a()-
charts, modulo lower order terms, [ ,fl(u) is given by a sum of integrals of
the form

= [ /
M (Hi)x(=1,1) YE((Sk) 00 )i (H) x (=1,1)

[/Y(Z)((Skl)z(l))ng(l) ng(l) ng(k) [/TTL(M)

m

Wi

Z'Tk"l (kl)wwk

X e » ag? (iz? d(T,;;(M) Wk‘)]

dA® gA® gB® df)(l)] d da:(l)] dry, dz®),

where we wrote m*h = eXP (k) Tk €XPyp) oW, a,ﬁ? are smooth amplitudes
with compact support in a (9(]“), 0(1))—Chart labeled by the indices g, o, and
dio® is a suitable measure in 4" ((Sk;),m ) such that we have the equality

dX dny = ] (T, W) dA® dAY aB® apV) dry dzV dry, da®).

H00 _ cW4d®) 4-dO 150 100
Furthermore, ®) = |7 7 0'CY
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Second reduction

Now, the group G acts on 4 *)((Sg),w ), with the isotropy types (H;) =
(Hi,), (Hi,,,),- ., (Hg). By the same arguments given in the first reduction,
the isotropy types occuring in Wy, constitute a subset of these types, and
we shall denote them by

(H;) = (Hi,,), (Hi,,), -, (HL)-

Consequently, Gy acts on Sy with the isotropy types (Hj,),...,(HL).
Again, if G acted on Sy, only with type (Hp), we shall see later that the
critical set of *))"* would be clean. However, in general this will not be

the case, and we have to continue with the iteration.

N-th decomposition

Denote by A < L the maximal number of elements that a totally ordered
subset of the set of isotropy types can have. Assume that 3 < N < A, and
let {(Hj,),...,(H;y)} be a totally ordered subset of the set of isotropy
types with iy <--- <iy < L. Let fi,, fijio, Siys Siyi,, as well as () ¢
M; (H;,), 2 ¢ v(il)((SZ)x(il>)i2(Hi2) be defined as in the first two it-
eration steps. Let now j < N, and assume that f; ..;;, Si..i,, ... have al-
ready been defined. For each z(v-1)| let ’y(iN*I)((Sil...iN_l)x(iN_ﬂ)iN be the
submanifold with corners of the Gy _,)-manifold ’y(iNfl)((Sil...iN_l)xuN_ﬁ)
from which all the isotropy types less than (H;, ) have been removed. Con-
sider the invariant tubular neighborhood

Firin = expoy ™) sy i OV (S5 ) i i

of the set of maximal singular orbits %=1 ((S;, iy ) in_ )iy (Hiy), and
define S, ...;, as the sphere subbundle in v;,...;,, over

y(iNil) ((Sil'--izv—l )m(iN‘l) )iN (HZ )

Put further Wi, ..iy = fi, iy (D1 (Vi,..iy)) and denote the corresponding in-
tegral in the decomposition of Iiﬁf.iiﬁfl (1) by Iilf_ilfw” (). For a point
a0n) € yN=1)((S; i )otn_ )iy (Hiy) We then consider the decomposition

o 1
G 6n—1) = Pplin) ) [V INCINOR
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and set d(¥) = dim g+ eliv) = dim 02(iy), yielding the decomposition

zlin )’

(30) g = 0,610 &) gj;(’il) = (gz(iz) @ gj;(iz)) D gj?_(il)
= =gt @gaJ;_(iN) DD gj:_(il)‘

Denote by {AgN)(x(il), ..., zU"))} a basis of gw(Z » and by {B,giN)(x(il), cee
()} a basis of 02(iy)- For arbitrary elements A(“V) € g;im and BU~) e
O Write

dCin)
A6 = 3 liv) A (o0 gl
r=1

elin)

Z ﬁTzN T'l 7’1) c ’x(iN))’

and put

i) (a;(iz\f)7 g(iN))

c(inN)

= 7(“’) (véil“'izv)(:r(i”)) + Z HﬁiN)U£i1'~~iN)(x(iN))>/ 1+ Z(Qyw)y
r#o r#o

(iy-i

for some p, where {U,« N)} is an orthonormal frame in v;,..;, . Finally, we
shall use the notations

mUi i) = XD, [Ti; €XPay, 1) [Tij 41 €XPrtiy [

[Tin s GXPMN,l)[ﬁN,I eXPyin) [TiN@(iN)H] Il
X (5 in) — Ti, .TZ.NA(%') + Tisen Tin Altiva) 4

+ Tiy iy AV 7y AN 4 Bl

where j =1,..., N.
N-th blow-up

Let the blow-ups (;, and (;,;, be defined as in the first two iteration steps,
and assume that (;,...;, have already been defined for j < N. Consider the
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blow-up

Cil“'iN : BZi,l---tN (thl-»-iN_l ( o BZLI (Wk‘ X 9) e ))
— By BZ”(Wng))

il"'iN—l(

with center

Ziix = | LDV g0y (S i) ginn i (Hiy).
x(il)’._.7$(7"N—1>
Denote by Cigfl 0---0 (i@;_{_;;fi” a local realization of the sequence of blow-
ups G, 0 --- 0, .iy in aset of (001, ... #0))-charts labeled by the indices
Qiys- -+, 0in- Now, for an arbitrary element Bl1) ¢ g;, one computes

. d o -
(31> (Bh))m(il“'iN) - % € B ’ m|(Z=01N)
d —tBG1) ool
_ % eXPin) [( e tB )*71«(1‘1) [Tilm(w ’LN)]] =0

= (expx(il))*’Tilm(iz...,iN) [)\(B(il))nlm(ig---m)].
By iteration we obtain for arbitrary A®%) e gilj, 2<j <N,

o d
(32) (Alj))m(ilmz'N) = @ €XPg(ir) [Til €XPy(ig) [ ..

AU
(i, (7 477)

*,xul)m(z’j...m)] =i =0
= (eXqun)*mlm(i?.,im

[, (€XDatin) o, s [+

iy AACT 5]

and similarly

(33) (BiN))m(il“‘iN> = (eXpac(il))*,'rilm“?“‘iN) [Th (expx(b))*7T¢2m(i3‘“iN) [ o

[1i  A(BE))0N)] . 1]
As a consequence, the phase function factorizes locally according to

(il---iN)'l;tOt = T/J o (ld fiber ® (Cl.QlLl oo Ciill]le))
- J(nm(hz]\,))(X(leN))

:Til...TiN(l N)/(/} ,
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where in the given charts (il"'iN)z;w’c is given by
(34) nm(f’l"'iN) (A(il)m(ir--iN))
N

+ Z NmGrin) ((expx(il))*VTilm(iz“'iN) [(expz(ifz))*771327—”(1'3"'1'1\1) [ s
=2

m

(ex})‘,][/,uj,l))*77_”71 (ij-in) [)\(A(ZJ))m(ZJzN)] .. ”)

+ MpGinind ((esz(m)*77i1m<i2---z‘m [(exp;p(iz))*’Ti2m(i3"'iN) [ -

(expaj(iN))*,friN@(iN) [)\(B(’LN))@@N)] .. H)

Modulo lower order terms, I(u) is then given by a sum of integrals of the
form

(35) I/ 0 (n) =

Mll(H -11) [[y(i1>((Sil)m(il>)i2(Hi2)><(171)

T~

Gn— 1)( i1 iN — 1) (iN_l))iN(HiN)X(_I’l)

[[y(w) Siyin (1N))><g in) X G (lN)>< -Xg (71)><T (i1 ZN>W

7-1 “TN (iq-- 7N)r¢)“’k Qil"'QiN (D'Qll 911\7

e [FRIR SN (SRR

AT iy gy Wiy ) dAE) o g AN) gBEY) G W]

dr dzl™) .. ] dri, dx@'z)] dri, dz™,

Here agl}“ilfw are amplitudes with compact support in a system of (0(“), cees

§(~x))-charts labelled by the indices g;, - - - 0, , while

N

F0i Qi _ ‘
Qi = H |7,

J=1

30y A —1 0 lin

11 ZN )

where @511215” are smooth functions which do not depend on the vari-
ables ;..
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N-th reduction

For each z(i~-1) the isotropy group G,y _,) acts on fy(iN—l)((Sil...iNfl)xuN,l))iN
by the types (H;,),...,(Hr). The types occuring in W; constitute a
subset of these, and G LGn_1 acts on the sphere bundle S;,..;, over the sub-
manifold ~(~- 1)((511...2N71)x(m,1>) v (Hiy) C Wi, ..i\ with one type less.

1IN

End of iteration

As before, let A < L be the maximal number of elements of a totally ordered
subset of the set of isotropy types. After maximally NV = A — 1 steps, the
end of the iteration is reached.

6. Smoothness of the critical sets of the weak transforms

We shall now prove the smoothness of the critical sets of the weak trans-
forms. We continue with the notation of the previous sections, and con-
sider a sequence of local blow-ups Cf:l 0---0 gﬁ’ﬁ;i’” corresponding to a to-
tally ordered subset {(Hj,),...,(Hi,)} of non-principal isotropy types that
are maximal in the sense that, if there is an isotropy type (H;,,,) with
in < in+1 such that {(H ., (Hiy,,)} is a totally ordered subset, then
(Hiy,,) = (Hp). For later purposes, let us define certain geometric distribu-

tions E() and F(~) on M by setting

E(ll) in) T Span{ifm(il“'iN) 1Y € gi_(il)}7

mi1in

(45)
Em](H iN) T (epr(ll))* \Tiq mlizin) °

(36) (expmurl))*mjilm(ij...im [)\(gjc-(ij))m(@..,.z‘]\,)]7
T(fzé\l,l) AN) T (expw“'l))*,‘rilm(iz---z‘N) cee
(XDt i) A (B )T,

where 2 < j < N. Note that by (30), (32) and (33) we have

(37) Tiirein (G - m@'l"'iN) )

- E(Zl(fl AN S @7—11 “Tij_y Z]) SRR TZNF(ZN)

m(l1 AN mGi-in)*

By construction, for 7;, # 0, 1 < j < N, the G-orbit through miin) g of
principal type G /Hp,, which amounts to the fact that G in-1 acts on S;

1IN
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only with the isotropy type (H), where we understand that G, = G. We
then have the following

Theorem 2. Let {(H;,),...,(Hiy)} be a mazimal, totally ordered subset

of mon-principal isotropy types, and CQ” o) fl” p oix a corresponding se-
quence of local blow-ups in a set of (0 (“),...,9( N))-charts labeled by the
indices 0, - .., 0in - Let Npir-iny € 7 1m0 and consider the factor-
1zation

J(anzN))(X(hZN)) = (i1"'iN)1;tOt =Ti; Ty (i1“'iN)q;’wk’,pT‘e

of the phase function v after N iteration steps, where (il"'iN)@Z)wk’p”e s given
by (34).3 Let further

denote the pullback of (- ix)ywk-pre glong the substitution T = ;,...i\ (o)
given by the sequence of blow-ups

(51'1...1'1\, : (Uil,...,UZ'N) — 02‘1(1,02'2,...,0'1'1\,) = (Ugl,...,U;N)
|—>0£2(0§1,1,.. UgN):(Jg/l,...,Ugv)
s 0 (07l LGl = = (T i)

Then the critical set Crit( i)Wk of in)ywh s given by all points
i u @) 56 4G 4l Bl

satisfying the conditions

(1) AW =0 forall j=1,...,N, and N\(B"))3(iv) = 0;
(1) i € Ann(EY) ) forall j=1,...,N;

mi1iN)

(IIT) 90 1N>6Ann( pliv) )

mi1-inN)

Furthermore, Crit((il"'iN)@Z;wk) is a C*®-submanifold of codimension 2k,

where k = dim G /Hp, is the dimension of a principal orbit.

3Note that (i1 iv)wkpre wag denoted in (34) by (i1 in)gwk,
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Proof. To begin with, let o;, --- 0y, # 0, so that all 7;, are non-zero. In this
case, the sequence of blow—ups G, %1o.. .0 Cfl” Z.NQ”V ) 621 iy constitutes a dif-
feomorphism, so that

Crit((iln.iN)d;tOt)ml"' Tin 70
:{(Uil,...,UiN,x(il), ac( ~)

17( )A( ) A(ZN) B(iN),nm(il“'iN)>:
(nm(il"'iN)aX(il ) € Crlt( ) 04, "Oin # O}

)

Now,
(nm(il...iN),X(ilmiN)) € Crit(’lﬁ) S M) € Q )((l1 ZN,) = 0.

Furthermore, X,, = 0 clearly implies X w(n) = T (X,) = 0. Since the point

m1x) lies in a slice at (), the condition X(l1 ZNI)V) = 0 means that the
vector field X(4i~) must vanish at 201 as Well. Hence, Xv) € g ),
since

gm:Lie(Gm):{Xeg:Xm:0}, m € M.

Now

Grtind C gw(iz\f—l) c---C Patin)

J_ .
and 96500 C 800 imply

X(Zl i) = Tiy " Tin Za A(Zl x( 1) — =0.

201
Thus we conclude a(®) =0, which gives X (2iv) = X (irin) ¢ Onti1in s
and consequently X (2i~) ¢ G liain) by (31). A repetition of the above
argument yields that the condition X Z}q“\f A)]) = 0 is equivalent to (I) in the
case that all oy, are different from zero. Actually, the same argument shows
that for oy, # 0

(38) Imb1in) = g@(iN),

since gsin) C Gu6n - Next, 1,614 € ) means that

I ) (X) = Do) (X i) =0 VX € g,
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which by (21) is equivalent to 7,6,y € AnN(T),01in (G - miv))) Tf
oi, # 0 forall j =1,..., N, (II) and (III) imply that

NimGrin) ((eprul))*,Tilmuz-«im
[+ (@XD 60 )amy o NG ]) =0,

since g, y_1 = Gutin) D g;im. By repeatedly using this argument, we con-
clude with (37) that for o;, # 0

(39) (I1), (II1) <= N1 € Ann(T), 6, (G.m(ir“iw)))‘
Taking everything together therefore gives
(40)

Cl‘it( (il.“ZN)wtOt)O'il‘“O'iN #0

= {(Jil,...,aiN,x(il),...,x(iN) TGN GV A(iN) B(iN) 1N ) -
oi, -+ 0y 7 0, (I)-(III) are fulfilled and B ZN o T =0}.

Here X} denotes the vertical component of a vector field X € T'(T* M) with
respect to the decomposition T,(T*M) =TV o T", b TV being the tangent
space to the fiber, and T" the tangent space to the zero section at 1. We
now assert that

Crit( (™)) = Crit(Gorim) oty . .

To show this, let (k, Q) be a chart on M with coordinates k(m)=(qi, ..., qn),
and introduce on T*O the coordinates

nmzzpz(dQZ)m> ’%(77) = (q17>Q7L7p177pn)7 UGT*O

Write 7,,61-ix) = Y Pi(dgi)meiin), and still assume that all o, are differ-
ent from zero. Then all 7;, are different from zero, too, and 9, (irin 1/1“”“ =0
is equivalent to

B T (cer w0 ) (X E )Y = (dgy (X)L dg (X)) = o,

mi1in) mi1in)
which gives us the condition X (Z} 1ZN])V) = 0. By (38) we therefore obtain
condition I) in the case that all o, are different from zero. Let next Ny.) (G-
ZC(il)) be the normal space in T,y M to the orbit G - :U(il), on which Gy
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acts, and define N_u,, ) (G i) - z(i5+1)) successively as the normal space to
the orbit G ) - @ “%+1) in the G ap-space N i (G a0 -2(13)), where we
understand that G, = G. By Bredon [8, page 308], these actions can be
assumed to be orthogonal. Set

j
(41) i) = m Ny (Goitrsy - 25)) = Ny (Goyy - ().

r=1

With the identification Ty(7;,, M) ~ T,,, M one has
(42) (eXPm)*,O : TO(TmM) — TmMa (eXPm)*,O = ld)

and similarly (exp, ., )«0 ~id for all j =2,..., N. Therefore, if 7;, = 0 for
all j, then B = T,y (G - ™), and

EU) o T (Guoyn - 2®) c Vi) 2 < <N,

while FUY) & Ty (G - 80)) € Vi3 Therefore B2 Vi) —
{0}, so that we obtain the direct sum of vector spaces

(43) Eg(;<13> D E§23> G- D Eg(c< 1)) @ F(mz C Tyin M.

Let now one of the o;, be equal to zero, so that all 7;, are zero. With the
identification (42) one has

(44) (rindywk = N ", dqz< i) i) +ZA W) 4+ \(B ))@(m)>7
and J,, (il"'iN)ﬁwk = 0 is equivalent to
2t + Z)\ () 4 /\(B(“V)) (in) — .

Since z(5) € 4Gi-(8; i ), a,0) C V1) we see that for every j =
2.....N

<Za i A(l ) )ET( (G0 20 )) c V0aii-1),
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In addition, (/L(jl))x(il) € Txul)(Gw(il)), and )\(ZT ﬁﬁiN)BﬁiN))ﬁ(”) €
V0iin) g0 that taking everything together we obtain with (43) for ar-
bitrary oy,

8, ik — 0 — (1),

In particular, one concludes that (1 ¥)wk must vanish on its critical set.
Since

d( (il.l.iN)thot) _ d(’fil . 'TiN) . (ilmiN)Tzwk + 1, - "TiNd<(i1miN)T;wk)a
one sees that

Crrit( () why € Crit( (riv)gior),
In turn, the vanishing of ¢ on its critical set implies

Crit( (ilmiN)J}wk)ail'--mN#O = Crit( (ilmiN)dN}tOt)ml'--aiN#O-

Therefore, by continuity,

(45) Crit( ()it 5, g, 0 C Crit( (M) guh),

In order to see the converse inclusion, let us consider next the a-derivatives.
Clearly,

8a(i1) (zlzN)&wk — 0 ﬁ nm(il“‘iN) (Ym(il"'iN)) = 0 VY E gi(il)‘
For the remaining derivatives one computes
6afjj) (il‘..iN)@Z}wk — nm“l“‘iN) ((expl‘(il))*,Tilm(iT”iN)
[. .. (expx(i]’—l))*7Tij71m(ij.-.iN) [)\(A&l]))m(hw)] .. ])7

from which one deduces that for j =2,..., N

) (in) vk — ) «— VY € gi“ﬂ

N Gir-in) ((expxul))*mlm<iz-~-im
iy A )m] -}) —0.

[. . (expx(ijfﬂ)*,nrl
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In a similar way,

85(1j) (ilmiN)lz)wk =0 <= VZeg,um

ThmGi1in) ((expx(ﬁ>)*,Ti1m(’72"'iN) [ v (expﬂiN))*,TiNf)(iN) P‘(Z)ﬁ(ZN)] o }) =0.

by which the necessity of the conditions (I)—(III) is established. In order
to see their sufficiency, let them be fulfilled, and assume again that o;, # 0
for all j =1,...,N. Then (39) implies that 7,,¢,-ix) € Ann(T,,¢1-ix) (G -
m(il"'iN))). Now, if oy, # 0, G - m(1iv) g of principal type G/Hp in M,
so that the isotropy group of m{* i) must act trivially on N, v (G
m(18)) - compare Bredon [8, page 181]. If therefore X = X7 + X denotes
an arbitrary element in

T,

m

(711---1,N)M = Tm(il---iN) (G . m(“lN))) ) Nm<i1...7~,N> (G . m(“ZN))>,
and g € G,,6,-iy), ONE computes

9 Mtz (X) = [(Lg=1) gcia-in) Mt ] (X)
= Nyiriw) ((Lg=1) s mtiain0 (XN))
= i in) (XN) = Nptin iz (X))

In view of A(B)3(ix) =0 and (38) we therefore get the condition
Bl~N)vY

M (ireiny = 0 Let us now assume that one of the o;, equals zero. Then

Npty € Ann(T i) (G ;1) - 2))) ¥j=1,... N,
46) (I1), (III) & pramA ey
( ) ( ) ( ) { Nyptin) € Ann(Tﬁ(iN)(G:ﬁ(iN) . U(lN))).

Lemma 3. The orbit of the point 3~) in the G ,n) -Space V0N s of
principal type.

Proof of the lemma. By assumption, for o;, # 0, 1 < j < N, the G-orbit of
m(iv) is of principal type G/Hp in M. The theory of compact group
actions then implies that this is equivalent to the fact that m(2i~) ¢ V(@)
is of principal type in the G,)-space V1), see Bredon [8, page 181], which
in turn is equivalent to the fact that m(s~) e V(i1%2) ig of principal type
in the Gz -space V(1%2) and so forth. Thus, m(iv) ¢ V@%-1) must be
of principal type in the G, ,)-space V0ti-1) for all j =1,... N, and the
assertion follows. O
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As a consequence of the previous lemma, the stabilizer of 5(%) must act triv-
ially on Ny (Gyiin - 17(”)). If therefore X = X7 + X denotes an arbitrary
element in

N
Tx(il)M - @ Tx(ij) (G‘T(’ij_l) ’ x(l7)) S5 Tf)(iN) (Ga;(iN) . ﬁ(ZN))
j=1
@ Nr[;(iN) (Gm(’iN) . @(ZN))7

we obtain with (46)

9+ Nxin (X) = [(Lg=1) g0 Mein ] (X) =m0 (Lg=1) s wtin (X))
=0 (XN) = Npan (%), g€ Gsin-

Collecting everything together we have shown for arbitrary o;, that

(A7) Dpatin,atw go YR =0 = (T), (ID), (IID)
— B(“V)V =0.

AN

By (40) and (45) we therefore conclude

(48) Crit( (i) tot), -, s = Crit( (- N)gk),

Thus we have computed the critical set of (1 ~)¢wk and it remains to
show that it is a C*°-submanifold of codimension 2x. By our previous con-
siderations, we have the characterization

(49) Crig( (1 i)gk) — {A(ij) =0, BN =,

Mmtia-in) € AHH(@EE;< ipin) D Ff,j??m) }

7j=1
Note that the condition B#N() = 0 is already implied by the others. Now,
dim Eﬁ:j,)l i =dimG e,y - ;1:( ). Since for oy, --- 04, # 0 the G-orbit of
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m(iiv) ig of principal type G /Hp, in M, one computes in this case with (37)

k= dim G - m ) = dim Ty op (G - ml))

m(71 AN mi1in)

_a; ij) (in)
= dim m<n iy @ @7‘21 “Ti;_y DTy TinE

N
— Z im E(”) + dim Fln)

(G1-+iN) mi1in)*
J:

But since the dimension of the spaces E(I’() iy and F(lé\,’) vy does not
mitl N mitl N

depend on the variables o;,, we obtain the equality

(50) K= Z dim E(Z() + dim F( ~)

i1iN) (i1-+in)
7j=1

for arbitrary m(iiv) Note that, in contrast, the dimension of T},,¢,-ix) (G -
m(1iv)) collapses, as soon as one of the 7;, becomes zero. Since the annihi-
lator of a subspace of T,,, M is itself a linear subspace of T} M, we arrive at
a vector bundle with (n — k)-dimensional fiber that is locally given by the
trivialization

N
<(Uij,x(i1)’f)(iN))7Ann< Ef:;(zl R Jalk m) w))) — (O—ij’x(ij)’ 5(%’1\/)).
j=1

Consequently, by equation (49) we see that Crit( (" i¥)¢)"k) is equal to the
total space of the fiber product of the mentioned vector bundle with the
isotropy algebra bundle given by the local trivialization

(0s,, 209, 50N go)) = (o7, 2, 50)
Lastly, since by equation (38) we have gzin) = @pe1....iy) I case that all

oi, are different from zero, we necessarily have dimgziy) = d — K, which
concludes the proof of the theorem. O

7. Non-degeneracy of the Hessians of the weak transforms

In this section, we prove the non-degeneracy of the transversal Hessians of
the weak transforms. To begin with, let M be a n-dimensional Riemannian
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manifold, and C' the critical set of a function ¢) € C>°(M), which is assumed
to be a smooth submanifold in a chart O C M. Let further

a:(x,y) —m, B:(q1y.-- qn) — m, m € O,

be two systems of local coordinates on O, such that a(x,y) € C' if and only
if y = 0. As one computes, the transversal Hessian is given by

(51) 8yk 8yz (77[) o O‘)(x’ 0) = Hess 7vb\cv(m,o) (a*,(m,O) (ayk)7 Ay (2,0) (ayz ))7

Let us now write x = (2/,2”), and consider the restriction of 1) onto the
C*°-submanifold

M. = {me (’):m:a(c’,x”,y)}.

We write ¢ = 5z, , and denote the critical set of 1 by C,, which contains
C' N M, as a subset. Introducing on M, the local coordinates o : (2", y)
a(d, 2" y), we obtain

Dy, Oy, (e 0 ') (2", 0) = Hess s (2 0) (a;,(xfgo)(ayk)a a;,(xn,o) (Oy,))-

Let us now assume C. = C'N M., a transversal intersection. Then C. is a
submanifold of M., and the normal space to C. as a submanifold of M. at
a point o/(z”,0) is spanned by the vector fields o, (a 0)(6yk). Since clearly

ayk ayz (¢C’ © O/)(IL‘H, O) = 8yk ayz (77[) © Oé)(l‘, 0)? T = (Clv lﬂ)a
we thus have proven the following
Lemma 4. Assume that C. = C N M. Then the restriction

Hess w(a(cl7 ‘THJ 0))|Na(c’,z”,0)c

of the Hessian of 1 to the normal space Ny 4 0)C defines a non-degenerate
quadratic form if, and only if the restriction

Hess e (' (2”,0)) N, v o Cu

of the Hessian of e to the normal space Ny (zr0)Ce defines a non-
degenerate quadratic form.

We can now state the main result of this section, the notation being the
same as in the previous ones.
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Theorem 3. Let {(H;,),...,(Hiy)} be a maximal, totally ordered subset of
non-principal isotropy types of the G-action on M, and Cfl“ 0---0 fllzlff"

a corresponding sequence of local blow-ups labeled by the indices g;,, ..., Oiy -
Consider the corresponding factorization

(iwin) ot — 7. .

iy Ty OTIPURPTE — 1 () gy (o) (i) gk

of the phase function (12). Then, for each point of the critical manifold
Crit( (i) wk) the restriction of

Hess (7177iv) wk

to the normal space to Crit((il“'iN)i/;w’f) at the given point defines a non-
degenerate symmetric bilinear form.

Note that by construction, for 7;, # 0, 1 < j < N, the G-orbit through
m(iv) g of principal type G/Hp,. For the proof of Theorem 3 we need the
following

Lemma 5. Let (n,X) € Crit(¢), and w(n) € M(Hr). Then (n,X) €
Reg Crit()). Furthermore, the restriction of the Hessian of ¢ at the point
(1, X) to the normal space N, x)Reg Crit(¢)) defines a non-degenerate quad-
ratic form.

Proof. The first assertion is clear from (22) and (23), since
ne, Grpy~Hr = G;=Gqy-
To see the second, note that by the last implication
(52) neQNT*M(HL), X,y =0 = X, =0.
Let now {q1, ..., g} belocal coordinates on M, w(n) = m = m(q), and write

D = > pi(dgi)m, X =5 8;X;, where {Xj,..., X} denotes a basis of g.
Then

1?(777 X) - sz(dQZ)m(Xm)a

and

pp(n,X)=0 <= X, =0, Dsh(n, X) =0 <= neq.
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As a consequence of (52), on T*M (H) x g we get
Ops (N, X)=0 = 04¢(n,X)=0.

Let 14(p, s) denote the phase function regarded as a function of the coordi-
nates p, s alone, while ¢ is regarded as a parameter. Lemma 4 then implies
that on T*M (Hp,) x g the study of the transversal Hessian of ¢ can be re-
duced to the study of the transversal Hessian of 1,. Now, with respect to
the coordinates s, p, the Hessian of 1), is given by

0 (dgi)m ((X7)m) > '

( (de)m((Xi)m) 0

A computation shows that the kernel of the corresponding linear transfor-
mation is isomorphic to

TP,S(Crit 1/}11) = {(ﬁv §) € R™ x Rd :Zﬁj(d%)m(q) € Ann(Tm(q)(G : m(Q)))7
Z 5jXj € gm(fl)}'

The lemma then follows from the following general observation. Let B be
a symmetric bilinear form on an n-dimensional K-vector space V', and B =
(Bij)i,; the corresponding Gramsian matrix with respect to a basis {vy,...,
vn} of V such that

B(u,w) = g wjw;Bij, U= E vy, W= E W;0;.
i7j

We denote the linear operator given by B with the same letter, and write
V=kerBg W.

Consider the restriction By, of B to W x W, and assume that By, (u, w)
=0 for all uw € W, but w # 0. Since the Fuclidean scalar product in V is
non-degenerate, we necessarily must have Bw = 0, and consequently w €
ker BN W = {0}, which is a contradiction. Therefore Bjy .y defines a non-
degenerate symmetric bilinear form. O

Proof of Theorem 3. As before, let m = m(qi,...,q,) be local coordinates
on M, and write 1y, = Y pi(dg;)m. For ;, - - - 0;,, # 0, the sequence of blow-

ups Cfl“ 0.0 Cf;_{_;;f”" 0 8;,...;, constitutes a diffeomorphism, so that by the
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previous lemma the restriction of
to the normal space of

Crit( (ilmiN)d)tOt)ail 0N 70

defines a non-degenerate quadratic form. Next, one computes for the Hessian
of the total transform

82 (il"'iN)r(ztOt ( ) ( ) 82 (il"'iN)qu)k
- @ — 7-1-1 ag)--- TiN o -
Owdn ), oXel R ekl "l

(11 (0)-Tiy (9))
+ ( 0004 >7‘,s 0 (ilmiN)&wk + Ra
0 0

where R is a matrix whose entries contain first order derivatives of (i1 in)ywh
as factors. But since ("~))"k vanishes along its critical set, and

Crit( (ilmiN)itOt)ml"'J«iN#O = Crit((ilmiN)'J}wk)\ml"'Uz'N7é07

we conclude that the transversal Hessian of (il'”iN)d;wk does not degenerate
along the manifold Crit((il"'” )@E“’k)‘oil R Therefore, it remains to study
the transversal Hessian of (il"'iN)l/;wk in the case that any of the o;, vanishes.
Now, the proof of Theorem 2, in particular (47), showed that

Q10 Twk
ap7a(i1)a“')a(i1\])75(”\1) (1 " /I/J =

0
= Do, .00y 2D, 2 lin) 6N (i) gk
If therefore

(ilmiN)@Zi]:,x<fﬂj>,g<iN> (a(ij)’ B(iN),p)

denotes the weak transform of the phase function v regarded as a function
of the variables (™), ..., al'~) 30~) p) alone, while the variables (o;,, . . .,
oiy,x ™) x2ln) 5v)) are kept fixed,

Crlt( (il"‘iN)&;i]:’x(ij)’ﬁ(iN))
= Crit( (il"'iN)z/NJw’“) N {Jij,x(ij),f)(iN) = constant} ,
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a transversal intersection. Thus, the critical set of (““'ZN)"L/J;"’“ S0 piin) 18
L )

equal to the fiber over (o, 203) 5(v)) of the vector bundle

((O'ij’x(ij) (IN)) Gptin) X Ann(@Er(:(ll AN @F( (11) 7'N)>>

j=1
— (O'ij,m(ij)7'ﬁ(iN)),

and in particular a smooth submanifold. Lemma 4 then implies that the
study of the transversal Hessian of (1i)¢wk can be reduced to the study
of the transversal Hessian of (iin wwk 29 im0 The crucial fact is now

contained in the following
Proposition 5. Assume that o;, --- 04, = 0. Then
ker Hess (il"'iN)z,Zi’:’xuj)’ﬁ(iN) (0,...,0,80%) p)

. 3 (lllN) Twk
(07"'7016(1N)7p)cr1t( wO}jj ,x(‘a),{;(zN))

~

for all (O,...,O,ﬁ( N, )ECrlt((l1 in) W"k ) and arbitrary £05) | 5.

;17(1 ) ~(1N)

Proof. Let o, - - 0;, = 0. With (34), or directly from (44) one computes or
the second derivatives of the weak transform at a critical point (0,...,0,

B, p)
aagm apr (ilmiN)’l/;;U.iliz(ij)’@(iN) qu((A( ))m(il))y
aafjﬂapr (il...z‘N)qzwk ) 5wy = dqr()\(A(z‘j))x(ij))7

i) 'U(LN) S
D yin) Dy, 17N w“’k = dg, (A\(BE))5()y,

v(’N)

while all other second derivatives vanish. Thus, for o;, --- 0y, = 0, the Hes-
sian of the function (ilmiN)”l/}ka L) 6y With respect to the coordinates

p, alti) Bl ig given on its critical set by the matrix

~0_ dQT((Agil))z(zn) s dqr()\(AgiN))l‘(iJ)) dq,«()\(BgiN))ﬁ(iN))
dgs (A ,00) 0 ... 0 0
dgs(A(AF)z) 0 . 0 .

dgs(A(BF™)3) 0 0 0
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Let us now compute the kernel of the linear transformation corresponding
to this matrix. Cleary, the vector (p, atl &(iN),ﬁ(iN)) lies in the kernel
if and only if

(8) LA ANy 4+ D EIINAL )2 4 5 FABEY) )

(b) X2 Bsdgs (V) pr) = 0 for all YO € gy, 32 Bodas(Mgp,) o) =
0,2<j<N;

(c) Zﬁsd%(/\(gx“m)ﬁ(m)) = 0.
Let E() FGv) and V(1iv) be defined as in (36) and (41). Then
S A ) 4 A0

+251N ZN (ZN)GGBE G @ Fﬁﬁ))a

so that for condition (a) to hold, it is necessary and sufficient that
a™ =0, 1<j<N, D BIINBIV)G = .

Condition (b) is equivalent to ) ps(dgs) e € Ann(E (i(")>) foralj=1,...,N.

Similarly, condition (c) is equivalent to > ps(dgs) ¢ € Ann(F (( 1?) On the
other hand, by (49),

T(O,...,O,ﬁ“N%p) Crlt( (il.“iN)zﬁg)iljvx(ij)’ﬁ(iN))
B {(d(“)’ Tt d(zN)ag(ZN)aﬁ) : d(%) = 07
Z ﬁ ) e 956N,
N .
Zﬁs(d%)x(m € Ann( Ei’(dﬁ) ) F(“")> }7

j=1

and the proposition follows. O
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The previous proposition implies that for o;, - -0y, =0

N

Hess (il'”iN)q/;”“"k

oi;,@ 0N

(0,..-707/8(lN)7p)|N Crit((ilmil\/)";w}c

aiv,m(ij>,ﬁ(iN))
J

defines a non-degenerate symmetric bilinear form for all points 0,...,0,
B(iN),p) lying in the critical set of (il“'iN)d}ik e and Theorem 3 fol-

lows from Lemma 4. O

i) BN

8. Asymptotics in the resolution space
We are now in position to give an asymptotic description of the integrals

igl'i_l_'l:;fm (1) defined in (35). Since the considered integrals are absolutely
convergent, we can interchange the order of integration by Fubini, and write

I‘Qil'j'QiN _ / jchlQlN Kk
11N (/’I’) (_1’1)1\7 11 UN Til “e e TZ-N

N
H |7—i.7’

j=1

(i5) J (i)
cJ +Zr:l d 1 dT’iN oo dTil?

where we set
20iy +0i
Ji1-1-~iN N(l/) = /

i (11N pwhpre [1, Qi) -0 Qiy Qi
2 v 1 N 1 N
€ Qi iy q)i1~~~iN

i (Hiy) [/y(il)((sh)m(il) )ig (Hiy)

£

(iNil)((Sﬁ"'iN_l)w(iN_l))iN(HiN)

S~ 5

(iN)((Sil'“iN)z(iN))ng(iz\r) ng(iN) X“'ng(il) XT:L('LI-«-iN)Wil

mitin)

d(T* Wi,) dAW) ... dAG~) BO~) d@(l’w)]

driy da(i~) .. ] dr;, dx(i"‘)] dr;, d:r:(il),
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and introduced the new parameter

Recall that the amplitudes aff}.%}fw are compactly supported. Now, for an

arbitrary 0 < € < T to be chosen later we define

Qiy iy 7Qi1 " Qip /'L
e = | e
(=L D\(=ee))™ Tiy * " Tiy

N
H’Tia'
j=1
2 7Qiy " 0i 20iq "0 K

I 1’ N — J 1’ N

iy (M) /(—s,a)N fin (Til"'TiN>

N
H 173,

J=1

(ij) J (ir)
c''i +Zr:1d 1 dTiN . d7_i17

G4SN glir —
Y di =1 dri, - dri,.

Lemma 6. One has ¢(%) + Zizl d) —1 > k for arbitrary j=1,...,N.
Proof. We first note that for j =1,...,N —1

i) = dim(v4,...4,) pip = dim G i) o (lin) g
Indeed, (v,..,),, is an orthogonal G ;) -space, so that the dimension of
the G ,-orbit of m+i=in) ¢ fy(l )((SZ1 4,),6) can be at most c(t) — 1.
Now, under the assumption oy, - - - 03, # 0, (30), (32) and (33) imply

T mlij+1 iN)(G (i) * (ij“miN)) ~ Tm(i14~4iN)(Gz(ij) . m(“lN))

= E(Zj(jll N D @ 7—17+1 Ty 1E(Z() D T1J+1 s TlNF(ZN)

i1--iN) m1in)
k=j+2

where the distributions F(4), F(~x) where defined in (36). On then computes
dim Gw(ij) . m(i“'lmiN) =dim7T i1 N (Gr(ij) . m(ij'*'lmiN))

Z dim B (»1 @N>+dlmF(<q) N
I=j+1
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which implies

clis) > Z dim B +dim F) 4

(i1--+in) mGiin)
l=j+1

for arbitrary o;,. On the other hand, one has

d) = dim gjiﬁ = dim[)‘(giﬁw) )
= dim{A(g,)) - m© ) = dim B,
For j =1,..., N — 1, the assertion of the lemma now follows from (50). Since

C(iN) = dim(l/l'l...iN)x(iN) > dim Gx(iN) . ’LN)(iN) + 1,

a similar argument yields the assertion for j = V. U

As a consequence of the lemma, we obtain for I o i’”( ) the estimate

clig) J dlir) —
20— 1 driy - d,

(53) L7 (p) < C / H|
EE ] 1

2
< C/ H |7, |" driy -+ dTy, = LEN(“H)
ce) K+1

for some C' > 0. Let us now turn to the integral lligli.l,,;;fw (u). After perform-

ing the change of variables 9;,...;, one obtains

170i " Qiy . Qi Qin M
Iil"‘iN (1) = / le in (Til(o')"‘TiN(U)>

e<|ri; (0)|<1

N
IEAG
j=1

c<ij)+Zi:1 dtir) 1 |det D(SzllN (J)| dO',

where Ji"f;f"“ (v) is defined like ji’f.;;f”\’(u), but with (in)gwkpre pe
ing replaced by (v )J}gk , which denotes the weak transform of the phase
function 1 as a function of the variables z(5), 5% a(i) 8in) 4 alone, while
the variables o = (0y,,. .., 0, ) are regarded as parameters. The idea is now
to make use of the principle of the stationary phase to give an asymptotic
expansion of J , g”\’ (v).



512 Pablo Ramacher

Theorem 4. Let 0 = (04,,...,0iy) be a fized set of parameters. Then, for
every N € N there exists a constant CN (1) ke > 0 such that

1IN

N—-1
T8N (v) = @al))* Y P Qi( IR g, iy i i)
7=0

< CN7(i1"'iN)1;;uk |V’

with explicit expressions and estimates for the coefficients Q ;. Moreover, the
constants Cﬁym---im@;u« and the coefficients Q; have uniform bounds in o.

Proof. As a consequence of Theorems 2 and 3, together with Lemma 4, the
phase function (“'“’N)Qp},“k has a clean critical set, meaning that

e the critical set Crit(( ¥k} is a C°°-submanifold of codimension
2k for arbitrary o;

e the transversal Hessian

IN)

Hess (il"'iN)J}Z}Uk ($(ij)’ ﬁ(iN)’ ali) ’ ,B(iN),p)

LG
|N(m<z:_7‘>Wﬂ(iN)Y@(iij(iN)’p)Cnt(

Pur)
defines a non-degenerate symmetric bilinear form for arbitrary o at
every point of the critical set of (““'W)wg’k.

Thus, the necessary conditions for applying the principle of the stationary
phase to the integral J,, 5 (v) are fulfilled, and we obtain the desired
asymptotic expansion by Theorem C and Remark D. To see the existence of
the uniform bounds, note that as an examination of the proof of Theorem A
shows, the constants Cy  in Theorem C are bounded from above by

(¢/,(m)|ch) -

see also [40, Remark 4.2]. We therefore have

sup
meCNsupp a

CN,(il"'iNMLg’k
/ (ir-in ) Tk -1
Lein )
< CN ‘ sup (Hess Yy |NCrit((i1“'iN>w;“k))
203 50N o) BEN) p

But since by Lemma 4 the transversal Hessian

Hess (7177iv) ywk (1N ) T
o ‘N(m(ij),ﬁ(iN),u(ij),5(1'N),p)cr1t(( 1 N)wgk)



Singular equivariant asymptotics and the momentum map 513

is given by

(ir-in), Twk N
Hess lb |N Crit((il---iN)wwk)j

(0,23 5N 0E5) 56N )
J

we finally obtain the estimate

CN,(il"'iN)'[Zy};ik
-1
! i in), Twk
< CN sup (HesS( 1 N)¢ |NCrit((i1"'iN)1Z,wk))
T ,m(ij)j(izv)’a(ij)’ﬁ(i,]\,)m
< CNyil"'iN

by a constant independent of o. Similarly, one can show the existence of
bounds of the form

|Qj( e ZN)wa ) @y - ZN(I)il"'iN)| S Cj,il"'iN?
with constants CN'le...iN independent of o. ]

Remark 7. Before going on, let us remark that for the computation of the
integrals 1] 2i1 ziw () it is only necessary to have an asymptotic expansion
for the 1ntegrals Jg” , QW( ) in the case that oy, -+ 0y, # 0, which can also
be obtained Wlthout Theorems 2 and 3 using only the factorization of the
phase function 1 given by the resolution process, together with Lemma 5.
Nevertheless, the main consequence to be drawn from Theorems 2 and 3 is
that the constants CN,“&---Z'NML;M and the coefficients @; in Theorem 4 have

uniform bounds in o.
As a consequence of Theorem 4, we obtain for arbitrary NeN

| T2 (1) — (27 |y])" Qo((“ DIPER: i @i i)

11N

11" TN

N—
< 7 () = albl) S QUG oy B
=0

N—-1
+ (27|v|) ”ZM Qi) gk ;i B )]
=1
: N-1
< alv[N + eolv|” Z !
=1
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with constants ¢; > 0 independent of both ¢ and v. From this we deduce

4, dr) 1k

N
R ) - ) [ Qo [] I17,()
5<|7'ij(0)|<1 j=1

\det D5i1~-~iN (J)| do

< eap / Hm )| N (et DSy ()| do
e<|ri, (U)\<1

) +309_ dn) —1—k—1

N—-1
+C4NKZMl/ H’z]
=1 €<|T (o‘)|<1

|det D6, ...i (0)| do

N N i
< csp H log €)% max {1 H e d(i"')_N}
J 1 Jj=1
c6 Z it H(— log £)" max {17 H e+ d(m'{l}
=1 j=1 j=1

where the exponents i; and 4;; can take the values 0 or 1. We now set
e = p"/N . Taking into account Lemma 6, one infers that the right hand side
of the last inequality can be estimated by

" (log po)N.

so that for sufficiently large N € N we finally obtain an asymptotic expansion
for I7 "~ (1) by taking into account (53), and the fact that

21 ’L

GHS gl _
(277#)”/0 e Qo | | |7 z]\c T d 1= dry - dmy
<|Ti, |<p =1

— O(Mmrl).
Theorem 5. Let the assumptions of Theorem 2 be fulfilled. Then

12970 () = (2mp) L2370 + O(pr (log ),

21N i1 lN
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“Vin

where the leading coefficient LQ’1 iv | is given by
iy Qi 3 0y 0 k
(54) L'Q11 iy :/ all ZNN(I)ZI N Y dCI‘lt( fa-i) ww )
iy Crit(G1-in) k) |Hess((in 1/11”’“)Ncm(<7:1...m)1;wk)\ /2

where dCrit(( ) wk) denotes the induced measure.

9. Statement of the main result

Let us now return to our departing point, that is, the asymptotic behavior
of the integral (11) in case that ¢ = 0 is a singular value of the momentum
map. For this, we still have to examine the contributions to I(x) coming
from integrals of the form

jﬁ;lz@&e (,U,) :/ !/ . .
Miy (Hiy )< (=1,1) | JyC0((Si1) (1) )in (Hip )X (=1,1)

[/y(i®_1>((8i1mie1 )1(77(-)—1))77@ (H’i@)x(_lvl)

[/'y(i@)((sil.,.ie)m(ie))xgm(ie) ng(ie) X-"Xgi(’il) XT;(i1~-~i@)Wi1

jILTe (11"'73(—))1217“’“

e m a@ﬂl Qig (ng Qig

111e 111e

AT iy i Wiy ) (1) dAE) - g AlI0) gBlie) gg(ie)
drig dz'®®) .. ] dri, d:c@é)] dri, dz'™),

where {(Hj;,),...,(Hi,)} is an arbitrary totally ordered subset of non-
principal isotropy types, while a _g © is a smooth amplitude which is sup-
posed to have compact support 1n a system of (G(il), o, Bl a(iN))—charts
labeled by the indices g;, - - - 05, and

i) 43707 dlin) — 1(1)@1 Qig

i1l )

©
0y Qi .
(IDM ‘ie H‘TZJ'

Jj=1
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®;,...i, being a smooth function which does not depend on the variables
7;,- Now, a computation of the p-derivatives of (il"'i"‘))z/;wk in any of the
alie)_charts shows that (il"'i@)ﬂw’“ has no critical points there. By the non-
stationary phase theorem, see Hormander [25, Theorem 7.7.1], one then
computes for arbitrary N € N

©
2 e ()] < erp / e

8<|Tij ‘<1 j=1

< cg max {MN, u““} :

) 43507 d(i'”—l—NdT + CSE@(H—!—I)

where we took € = ;!/©. Choosing N large enough, we conclude that

15250 (W] = O,

i1 ie

As a consequence of this we see that, up to terms of order O(u~*1), I(p)
can be written as a sum

A-1 A-1
011 0; Qiy " Qin
(55) I('u) - Z Z IllllN N(M) + Z Z Iil'l"iNj]Ll (/'L)’
N=1 i1<-<in N=1 i1<-<iny_1<L
Qiqy--Qip Qi sesQin

where the first term is a sum over maximal, totally ordered subsets of non-
principal isotropy types, while the second term is a sum over totally ordered
subsets of non-principal isotropy types. The asymptotic behavior of the in-

tegrals If;_{_;fw (1) has been determined in the previous section, and using
Qin

Lemma 5 it is not difficult to see that the integrals I i i.l..iNA I (1) have anal-
ogous asymptotic descriptions. We can now state the main result of this

paper.

Theorem 6. Let M be a connected Riemannian manifold and G a compact,
connected Lie group G with Lie algebra g acting isometrically and effectively
on M. Consider the oscillatory integral

I(p) = / /62'”("’)()/%(777)() dXdn,  p>0,
*MJg

where the phase function

P(n, X) = J(n)(X)

s given by the momentum map J : T*M — g* corresponding to the Hamil-
tonian action on T*M, dn is the Liouville measure on T*M, and dX an
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Euclidean measure given by an Ad (G)-invariant inner product on g, while
a € CX(T*M x g). Then I(p) has the asymptotic expansion

I(p) = (27p)" Lo + O (log w)* ), — 0%,

Here k is the dimension of an orbit of principal type in M, A the maximal
number of elements of a totally ordered subset of the set of isotropy types,
and the leading coefficient is given by *

U H X 1/2
Rege [Hess¥(n, X) N, « Regcl

(56) d(RegC)(n, X),

where Reg C denotes the reqular part 5 of the critical set C = Crit(s)) of 1,
and d(RegC) the measure induced by dndX. In particular, the integral over
RegC exists.

Remark 8. Note that equation (56) in particular means that the obtained
asymptotic expansion for I(u) is independent of the explicit partial resolu-
tion we used.

Proof. By (55) and Theorem 5 one has
I(p) = (27p)" Lo + O™ (log ) ), p— 0,

where Lg is given by a sum of integrals of the form (54). It therefore re-
mains to show the equality (56). For this, we shall introduce certain cut-off
functions for the singular part Sing () of 2. Choose a Riemmanian metric
on 1% M, and denote the corresponding distance on T*M by d. Let K be a
compact subset in T*M, 6 > 0, and consider the set

(SingQNK)s={neT"M:d(n,n') <6 for some ' € SingQNK}.
By using a partition of unity, one can show the existence of a test function

us € C°((Sing 2 N K)3s) satisfying us = 1 on (Sing Q2 N K)s, see Hormander
25, Theorem 1.4.1]. Now, let K be such that supp, a C K. We then assert

4A more explicit expression for Ly will be given in Proposition 6.
See Lemma 2.
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that the limit

(57) lim [a(1 — us)](n, X)

d(RegC)(n, X)
6=0 JRege ’det wu(mX)\N(n,X)RegCP/Q

exists and is equal to Lo, where d(RegC) is the measure on RegC induced
by dndX. Indeed, define

Is(p) = / ) / 500 (1 )] (1, X) dX dn.
* g

Since (1, X') € Sing C implies i € Sing 2, a direct application of Theorem C
for fixed 6 > 0 gives

(58) |I5(n) — (2mp)" Lo(9)| < Csp™*,

where C5 > 0 is a constant depending only on §, and

[a(1 — us)](n, X)
Lo(8) = P
0( ) /RegC ‘det w”(mX)|N(n,x)RegC‘1/2 ( 8 )(77 )

On the other hand, applying our previous considerations to I5(u) instead of
I(u), we obtain again an asymptotic expansion of the form (58) for I5(u),
where now the first coefficient is given by a sum of integrals of the form
(54) with a replaced by a(l — ug). Since the first term in the asymptotic
expansion (58) is uniquely determined, the two expressions for Ly(d) must
be identical. The existence of the limit (57) now follows by the Lebesgue
theorem on bounded convergence, the corresponding limit being given by
Ly. Let now a™ € C°(T*M x g,R"). Since one can assume that |us| <1,
the lemma of Fatou implies that

(1 - X
| im (01— wllnX) _yRegc)(n, X)
RegC‘SHO |det (0 (777X)|N(7,,X>Reg6| /

is mayorized by the limit (57), with a replaced by a™, and we obtain

a*(n, X)

/RegC |det 7/’”(77:X)|N(,,,X)RegC‘1/2 |d(Reg C)(n, X)| < oc.

Choosing a* to be equal 1 on a neighborhood of the support of a, and
applying the theorem of Lebesgue on bounded convergence to the limit (57),
we obtain equation (56). O
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Note that as a result of the desingularization process it follows in par-
ticular that one can interchange the limits

tim Tim 20 gy i 200
6—0pu—0 (2mp)®  p—06—0 (2mp)"

0

the notation being as in the proof of Theorem 6. In the same way, one
deduces

Corollary 3. With the notation as in Theorem 6 assume that kK = dim g,
and consider for arbitrary ¢ € g* the integrals

I(p) = /T*M/ew“(”’x)/"a(n,X)dX dn,  p>0,

where Pc(n, X) = J(n)(X) — <(X). Denote by g;., the set of regular values
of J, which by Sard’s theorem is dense. Then

I, I,
TR T (1) I TR T 11 C)
CEQr,s—0p—0 (2mp)d  p=0cegr, =0 (2mp)?

Proof. In case that ¢ € gy, we proved in Proposition 2 the expansion

I(p) = (QWM)dQO(wO a) + O(Nd+1)7

the remainder being independent of ¢, while for ¢ = 0 Theorem 6 yields

Io(p) = (2mp)" Lo + O(u™ (log 1) * ).

Since both expansions are valid for arbitrary u > 0, and /(1) is manifestly
a continuous function in ¢ € g* for p > 0, we necessarily must have

lim  Qo(v,a) = Lo,

SEQGrey,s—0
and the assertion follows. O

In what follows, we shall compute the leading term (56) in a more explicit
way, and begin by computing the determinant of the transversal Hessian of
the phase function (7, X), the notation being as in Theorem 6.
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Lemma 7. Let (n,X) € RegC be fized. Then

det Hess 1(1, X)|n,,  Regc = det (E — Lx o Lx)|g.p,

where Lx :g-n— g-n denotes the linear mapping (27) given by the Lie
derivative, and Z the linear transformation on g-n defined in (16).

Proof. Let (n,X) € RegC be fixed and {41, ..., Ay} an orthonormal basis
of g such that {A;,..., A.} is a basis of g# and {Ax41,...,Aq} a basis of
gy. With respect to the basis

((X4)30), (05€5), i=1,...,2n, j=1,...,d,

of T, x)(T*M x g) =T, (T*M) x R¢ introduced in the proof of Proposi-
tion 2, the Hessian

Hess ) : Ty x) (T M x g) x T(p x)(T"M x g) — C,
(v1,v2) = 01(02(¥))(n, X)

is given by the matrix

Indeed, X;(Jx) = dJx(X;) = —ng(ii), and by (6) we have (%Z)n(w()z, ij))
= —wy([X, X], X;), since X,, = 0. If therefore J : T(T*M) — T(T*M) de-
notes the bundle homomorphism introduced in Section 2, we obtain

. JLx  —g)(TA; %)
—gn(JT Ai, X5) 0 ’

where Lx : T, (T*M) — T,,(T*M), X — X, .’%]77 denotes the linear transfor-
mation induced by the Lie derivative, and restricts to a map on g -7 by Re-
mark 6. Let { By, ..., B, } be another basis of g# such that {(B1)y, ..., (Bx)y}
is an orthonormal basis of g - 1, and recall that by (22) we have T),Reg Q2 =
(g -n)“. Taking into account (24) and g-n C (g-n)“ one sees that

Bi. = (J(Bk)y; 0),
B;c = (LX(Bk)n;g’q(AlaBk); N 7g77(AmBk)7O; .. .,0), k = 1, ey Ry
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constitutes a basis of N, x)RegC with (B, B;) = w1, By L By, and (B;, B;)
= (E+ LxLx)k, where Z was defined in (16). One now computes

= (—Lx(Bi)y; gn(jAl,JBk) s =gn(T A, TBy),0,...,0)
__Bk,
-A(B;c):<u7LXLX(Bk (Zgn T A, %1)9y(Aj, B), .. )
7=1

_Zg” jAlj gn(LX(Bk)n,% ),)

= (jLXLX(Bk)n + (99(E(Br)y, TX1), ... );
— (T A1, Lx(By)y), - . .).

Since Lx defines an endomorphism of g-»n and g-7n C (g-1)* we have
9n(JT A1, Lx (Bg)y) = wy(A1, Lx(Bg)y) = 0. Furthermore, the {J(B1)y, -,
J(By)y} form an orthonormal basis of J(g-7), and we obtain

A(B,) = (J(LxLx — Z)(By)y; 0)

= Zgn(j(LXLX - E)(Ek)mj(Bj)n) Bj'

Taking all together, one sees that the transversal Hessian

Hess (1, X)|n,, x)Reg C

0 ~1,
(LxLx —E)jgy 0 )’

and the assertion follows. O

is given by the matrix

Proposition 6. The leading term in (56) is given by

volG d(Reg Q)(n)
Ly = X)dX| ——————=
07 volH Reg [/Qn a(n, X)d

vol O
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where H denotes a principal isotropy group, Reg Q the principal stratum® of
2, and vol O, the volume of the G-orbit through n, while dX is the measure
on g, wnduced by the invariant inner product on g.

Proof. The proof is based on the following integration formula, compare
[11, Lemma 3.4]. Let (X, hx) and (Y, hy) be two Riemannian manifolds
and F': X — Y a smooth submersion. Then, for b € C2°(X) one has

. aAF W)
59 [ bw)dX(e) = [ [/F o M s | YW

where d(F~!(y)) denotes the Riemannian measure induced by the one of
X on F~(y), and the transposed operator of the differential d,F : T,X —
Tr)Y is given by the operator td, F - Tp@)Y — T X which is uniquely
determined by the condition

hx(:{, tdxF(@)) = hY(dxF(%)vg)) Xel,X, e TF(:E)Y

Consider now the map P : Reg C — Reg €, (7, X) — 7, which is a submer-
sion by Proposition 4. In order to apply the previous integration formula, we
have to compute the determinant of d, x)P o td(mX)P at a point (1, X) €
Reg C. For this, let G denote the orthogonal complement of g - 7 in T;,Reg (2.
We then assert that

(60) diyx)P o 'dy x)Pg = id.

Indeed, let @ € G. As was shown in the proof of Proposition 4, @,X In €
g-7n. On the other hand, the fact that g-n and G are invariant under
Gy, together with (26), imply that [9), X], € G. Hence [9), X],, = 0. Tak-
ing into account (24) we infer from this that (9),0) € 7|, x)RegC, and con-
sequently *dP, xy(9) = (,0). Thus, d(, x)P o 'd, x)P(Y) =9, and (60)
follows. For the computation of the determinant of d, x)P o td(mX)P it
therefore suffices to consider its restriction to g - 7, and with the notation as
in Lemma 7 we shall show that

(61) diyx)P o 'diyx)Play = (E = Lx o Lx) ™ o .

Consider thus an element X € g - 7, and write 'd(,, x)P(X) = (9, w). Denote
the Ad (G)-invariant inner product in g by (-, ), and let again {A4,..., A4}

6See Lemma 2.
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be an orthonormal basis of g such that g# is spanned by the elements
{A1,..., Ag}, and gy by {Ax1,..., Ag}. From (24) it is clear that for each
7=1,...,k we have ((Aj)n; <[X, Aj],A1> sy <[X, Aj], Ad>) S T(,%X)Reg C.
By definition of the transposed we therefore have

d

9%, (A5)y) = 9(D, (A))n) + > wi (X, Aj], Ap) .
k=1

Consequently, g(X — 9), (/L)n) = ZZ:1 wy ([ X, Aj], Ag). If Z denotes the lin-
ear transformation introduced in (16), we obtain

K d
EE-0) =D wi (X, Ayl A (4)y
=1 k=1
d d ~ d e~
= Zzwk (Aj, [Ar, X]) (Aj)y = Zwk[Ak’X]n'
=1 k=1 k=1

e~

Let f € C®(T*M). Due to X,, = 0 we have [Ay, X],f = (Az),(X f). Com-

)

bined with the fact that ZZ:1 wk(gk)n = —[9), X],) this implies

d _ ~ ~ ~ ~ ~ ~ ~ ~ o~
*Zwk[AkaX]nf = [@aX]n(Xf) = [[ijX}vX]nf = [X, [X,@]]nfv

k=1

and consequently

2 - X) = [X,[X, D)), = Lx([X,D],) = Lx 0 Lx (D).

Thus, 9) = (E— Ly o Lx) ! 0 Z(X), and (61) follows. Taking all together
we have shown that

det d(, xyP o 'dg, x)P =det (2 Ly o Lx)-detZ,

and with Lemma 7 and the integration formula (59) we obtain

Iy :/ a(n, X) d(Reg C)(n, X)
RegC |HeSSw(mX)\N(T,,X)RegCP/Q

/Reg Q

d(Reg )(n)
EE e

/ a(n, X) dX

9n
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where d(Reg) denotes the volume form induced by dndX. The asser-
tion of the proposition now follows by noting that |det E|9~n|1/ 2 = vol O, -
vol G, /vol G, compare [11, Lemma 3.6]. O

10. Residue formulae for X = T*M

We are now in position to derive residue formulae for the cotangent bundle
of a G-manifold. Thus, let M be an n-dimensional, connected, Rieman-
nian manifold and G a d-dimensional, compact, connected Lie group with
maximal torus 7" C G acting on M by isometries. Let © be the Liouville
form on X = T"M, w = d© the symplectic form, and denote the correspond-
ing momentum map by J: T*M — g*, J(n)(X) = Jx(n) = O(X)(n). Write
Q = J1(0), and recall that  has a principal stratum Reg by Lemma 2.
Let further 7 : RegQ — Reg X,..q = Reg /G be the canonical projection,
and consider the map

Ko At (T M) T

A*(Reg Q) 5 A*_d(Reg Xred)a

where r : A*(T*M) — A*7"(Reg2) denotes the natural restriction map de-
scribed in (A.4) and 7, integration along the fibers of the G-principal bundle
Reg 2, while k is the dimension of a principal G-orbit. As an application of
Theorem 6, we are able to compute the limit (2) in case that x equals d. It
corresponds to the leading term in the expansion.

Corollary 4. Assume that the dimension k of a principal G-orbit in M
equals d =dimg. Let a € A(T*M) and ¢ € CX(g*) have total integral 1.
Then

T d’UO €
ing (FoLin o) = T [ ) SRR
eg

0 |H | vol Oy,
~ (2m)wol G / r(a)
‘H‘ Reg vol 0777

where H denotes a principal isotropy group of the G-action, and we wrote
Qan) = a(n)dn, dn being Liouville measure.

Proof. By (2), Theorem 6, and Proposition 6 one deduces

[ e dX] R

Ly = lim (FyLq, pe) =
e—0 an

(27)%vol G
vol H Reg O
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Since £ = dim g, we have g, = {0} for all 1 € RegQ in particular, H ~ G,
is a finite group. Hence, vol H = |H| and f X)dX = ¢(0) =1, and we
obtain the first equality. To see the second, assume that « is supported in a
neighborhood of Q. Let K C T*M be a compact subset such that supp a C
K, and us € C°((Sing 2 N K)3s) a family of cut-off functions as in the proof
of Theorem 6. Denote the normal bundle to RegC = Reg x {0} = Reg2
by v: N RegC — C, and identify a tubular neighborhood of RegC with a
neighborhood of the zero section in N RegC. A direct application of Theo-
rem A then yields with Lemma 7

dxX

— ij/é ~ o

glgtl)// us) @ p(X) ed
(27m)4vol G / r((1 — ug)a)
‘H‘ Reg vol 077 ’

where only the leading term (A.3) is relevant. Repeating the arguments in
the proof of Theorem 6 then shows that

) (27)%vol G / r(a)
Lo =1lim Ly()) = ——— .
0= 550 o(9) |H | Reg2 VOl Oy

0

Next, let us consider a maximal torus T" C G with corresponding momen-
tum map Jr : T*M — t* and Kirwan homomorphism (19). Let the notation
be as in Section 2 and 4. The following proposition characterizes the sum of
residues (20) in terms of the reduced space QF' /T, where Qf = J-*(0).

Proposition 7. Consider for ¢ € t* the segment {t<:0 <t < 1}, and as-
sume that all Ug’g are smooth on it. Let further kp =dimt=dp. If 0 €
H:(T*M) is an equivariantly closed form of compact support which is con-
stant on g, then

214 pol T
Rty = B )
FeF T Reg Q' /T

where K§ = (74 7) 1o ior is defined over Reg QL /T, and £ is explicitly
given in terms of e o, ®, and J. In particular, the sum of the residues is

independent of ¢ and A, and will be denoted by

es ((I’Q Z uF)
FeF
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Proof. In essence, the proposition is a statement about the exchangeability
of the limits occuring in (10). Thus, let I'c C t* be a conic neigbhorhood of
the segment {tc:0 <t < 1} such that all UL" are smooth on T'.. By (10)
and Corollary 2,

D Res™*(up®?) = lim lim [ / ei(‘]_tg)(y)e_i“’g(Y)} PX(Y)p(eY) dY
Fer t—=0e—0 /¢ X

2m)4rvol T
_ (71')7‘70 ) th / /Cg(ﬂ)
‘HT‘ ¢—0,delinty,, QT /T

On the other hand, as in Corollary 3 one deduces for ¢ € I'c N ¢,

reg
21)%rvol T - 2m)rvol T
L s ()
|Hr| Qr/T |Hr| Reg QT /T
and the assertion follows. O

Corollary 5. Let oe Hj(T* M) be an equivariantly closed differential form.
Then

lim (Fo(Leseotr () 0 ) = |W|Z(Z;T (qﬁpzw)
eF

Proof. Since U” is a piecewise polynomial measure and F; () € S(t),

(U8 70 0) = [ U F D) d

Furthermore, for 0 < e <1 and almost every ¢ € t* we have the estimate
UE () (F@)(9)] < CA+ [sN|(F'@)(s)| for some C,N > 0. Taking
into account Remark 1 and the previous proposition an application of Le-
besgue’s theorem on bounded convergence yields

lim <U FON @) _hm/ZUF ) (FA9)(<) de

e—0 e—0
FeF
(0) Res (@2 Z uF>
FeF
and the assertion follows from Proposition 1. ]

After these preparations, we finally arrive at
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Theorem 7. Let o € H(T*M) be of the form o(X) = o+ Dv(X), where
« s a closed, basic differential form on T*M of compact support and v an
equivariant differential form of compact support. Assume that the dimension
k of a principal G-orbit equals d = dim g. Then

o H]
27 d/ Kle7™a) = |7Res P2 up |,
( ) Reg X req ( ) |W| 'UOl T ( Z

FeF

where w(X) =w — J(X), and the residue was defined in Definition 1 and
Proposition 7.

Proof. Let « be a basic differential form on T*M. By definition, « is G-
invariant and satisfies t o = 0 for all X € g. It is therefore a constant map
from g to A(7T*M), and belongs to (S(g*) ® A(T*M))“. Furthermore, Do =
0 iff doe = 0, so that a € HE(T*M). The assertion is now a consequence of
Corollaries 4 and 5, together with Lemma 1, by which

vol G '
W]vol T " (‘1’2 gw) = lim (Fy Loy () 02)

_ (2n)¢volG / (e~ a)

‘H‘ Reg vol 077
27)% vol ~
_ (2m)%vo G/ K(e®a),
|H| Reg X,ca
since w(X) = w on Q. O

Remark 9. In order to fully describe the cohomology of the quotient
Reg X,cq, it would still be necessary to consider more general forms p €
H}(T*M) than the ones examined in Theorem 7. For this, one would need
a full asymptotic expansion for the integrals studied in Theorem 6, and we
intend to tackle this problem in a future paper. Nevertheless, the considered
forms p are already quite general in the following sense. Let G act locally
freely on a smooth manifold X, which means that all stabilizer groups are
finite. As a consequence, X /G is an orbifold, and one has the isomorphism

He(X) = H(X/G),

which implies that any equivariantly closed differential form g can be written
in the form

o(X) = a+ Dv(X),
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where « is a closed, basic differential form on 7*M of compact support, and
v is an equivariant differential form of compact support [19, Section 3].

Let X be a 2n-dimensional, paracompact, symplectic manifold with a
Hamiltonian G-action. For general, not necessarily equivariantly closed a €
Ac(X), no similar formulae can be expected, and non-local remainder terms
will occur. To see this, let us first deduce an expansion for L, (X) using the
stationary phase principle. For this, recall that for fixed X € g the critical
set of Jx is clean in the sense of Bott, and equal to F7 in case that X € ¢/
is a regular element.

Lemma 8. Let X € g, and suppose that supp a N Crit Jx = 0. Then L, €
S(g)-

Proof. Let (,0) be a Darboux chart on X, so that the symplectic form w
and the corresponding Liouville form read

n
w= Z dp; N dg,
i—1

n
depl/\dql/\--J\dpn/\dqn.

Assume that ajg, = f - ¢t € Ac(X) is supported in O, so that
/ o= / e/ Nan)(f o y71)(q, p) dq dp,
X 7(0)

where Jx oy~ 1(q,p) depends linearly on X. Let now supp a N Crit Jx = ().
Writing
1 1

—|(Ix o)

- 0 0 0 0 - -1
—(Ixoy e+ —(Jxoy ! )a“xw ),
;(aqju g + g Uk 07 )5

eiJX oy~

and integrating by parts we obtain L, (X) = O(]X|™*°) on g. Similarly, if
{X1,..., X4} denotes a basis of g, and X = 5;X;, the same arguments
yield for arbitrary multi-indices v the estimate 9] L,(X) = O(]X|™*°) on g,
and the assertion follows. U

Next, let Y € ¢ be a regular element, so that CritJy = F', F € F a
connected component of FT, and v : NF — F the normal bundle of F. As
usual, we identify a neighborhood of the zero section of NF' with a tubular
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neighborhood of F', and assume in the following that the support of « is
contained in that neighborhood. Integration along the fiber yields

Lo(Y) = /F v (e a).

To obtain a localization formula for L,(Y) via the stationary phase prin-
ciple, consider an oriented trivialization {( ],cpj)}] cr of vi NF — F. Let
{s1,..., 81} be the fiber coordinates on N Fjy, given by ¢;, and Assume that
a is given on v~ 1(U;) by

aj = fi(z,s) (VB;) Adsy A+~ Ads;, B € NNy, zeUj,

where f; is compactly supported. The cleanness of Crit.Jy implies that the
function s — Jy(z,s) = Jy o go;l(m, s) has a non-degenerate critical point
at s = 0 for each x € Uj, so that by choosing the support of f; sufficiently
small we can assume that there are no other critical points. Define now the
function Hy (z,s) = Jy(x,s) — (J{/(x,0)s,s) /2, which depends linearly on
Y. As in the proof of Theorem A one computes for any N € N

iy 1
vele ) = det (J{(x,0)/2mi) 1/2[ Z Z < k!

r—k<N 3k<2r
" -1 T
({0 20D, ity (o) s ) ) (2,0
+ Rjn+1(Y) | By,

where Rj n1 is an explicitly given smooth function on ¥’ of order O(|Y |~V 1)
given by

Z ( 2m) k!r!

R, Y
sn+1(Y) = det (J”(x 0 /27m 1/22/ vt

(o 71
<<Jy( ’0. §’§>> )f(Hy(:E,-)kfj(fva'))(f)df'

21

As a consequence, we obtain the desired localization formula.
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Proposition 8. Let o € A(T*M), andY € . Then, for arbitrary N € N,

ZZ/ det ( J”xO/Qm 1/2[ 2 ( Il

FeF j —k<N 3k<2r

<<D&J¥C;f>1I%>TUEB%$kaEﬁ%J>>(%04ﬁ%

+ Ry11(Y),

where Ry 11 is an explicitly given, smooth function ont' of order O(|Y|~N71).

The limit (3) can now be studied taking into account (7) and Cauchy’s in-
tegral theorem, together with the theorems of Paley-Wiener-Schwartz, lead-
ing to corresponding residue formulae with non-local terms.

Appendix A. The generalized stationary phase theorem

In this appendix, we include a proof of the generalized stationary phase
theorem in the setting of vector bundles. It is a direct consequence of the
projection formula and the stationary phase approximation, and implies the
classical generalized stationary phase theorem for manifolds. Sketches of
proofs for the latter can also be found in Combescure-Ralston-Robert [13,
Theorem 3.3], as well as Varadarajan [43, pp. 199].

Theorem A (Stationary phase theorem for vector bundles). Let M
be an n-dimensional, oriented manifold, and w: E — M an oriented vector
bundle of rank I. Let further o € AL,(E) be a differential form on E with
compact support along the fibers, T € A?H*(I(M) a differential form on M
of compact support, b € C*(E), and consider the integral

I(p) = / eV (TT) A a, w> 0.
E

Let v : M — E denote the zero section. Assume that the critical set of 1 co-
incides with (M), and that the transversal Hessian Hessyrqns ¥ of 1 is non-
degenerate along 1(M). Then, for each N € N, I(11) possesses an asymptotic
expansion of the form

(A1) AWFJW%W2wéZ]%wﬂT+MU
7=0
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where o and oy, denote the value of 1 and the signature of the transversal
Hessian along «(M), respectively. The coefficients QQ; are given by measures
supported on M, and can be computed explicitly, as well as the remainder
term Ry (u) which is of order O(ul/>+N).

Proof. Let . : A%, (E) — A*~!(M) denote integration along the fiber in E,
which lowers the degree by the fiber dimension. By the projection formula
[7, Proposition 6.15] one has

/ VT YN o = / T AT (e a).
E

M

~

Let {U;};c; be an open covering of M and {(Uj, ¢;)},crs @5 =Y U;) =
Uj x R!, an oriented trivialization of 7 :  — M. Write s1, ..., s; for the fiber
coordinates on Ey, given by ;. Since I(u) vanishes if ¢ < I, we assume in
the following that ¢ > [ and that « is given on 7~ (U;) by

Qi Z(ij(pj) (W*Bj>/\d81/\---/\d81, Bj GAq_l(Uj), xr € Uj

where the function f; € C°°(U; x R) is compactly supported along the fibers.
By assumption, s +— ¢(z,s) =1 o cpj_l(:r,s) has a non-degenerate critical
point at s = 0 for each = € Uj;, so that in view of the non-stationary phase
theorem [25, Theorem 7.7.1] we can assume that there are no other crit-
ical points by choosing the support of f; sufficiently small. Then, letting
¥(z,0) =0 and setting H(z,s) = ¢(z,s) — (¢"(z,0)s,s) /2 one computes
on 7 1(U;)

7T*(ﬁiw/uo@.)m — / eiw(vc,s)/ufj(%.7 s)ds - B
R!

_ / (0 @059 2 H @) 0 £ (3 Vs - )
Rl

0o .
Zk

prE!

[0 o 5)E o, )ds - 5
k=0 R!

Note that it is permissible to interchange the order of summation and inte-
gration, since H(z,s)=0(]s|?), so that under the hypothesis supp, f;(z, ) C
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B(0,1) one has for suitable C' > 0 the estimate

N N 1
< -
00 Y B <oy i
k=0
< Ot f(x, )y N €N,
yielding an integrable majorand. Put Dy = —i 0. Taking into account

/ (€0 (2, 0) 1) F(H(z, ) £ (x, ) (€) de
= (@m)'((Dy,9"(2,0)7Dy)" H(z, ) fi(z,)) (0)

we obtain with Parseval’s formula for arbitrary N € N
W*(eiw/uaj)x
det (" (x,0) /27 i) /2

e .
Zk

WM/RL e—iu(d’”(:c,O)*IE,Q/?f(H(x’_)kfj(x’_))(g) d¢

_ Bj
 det (¢ (x,0)/2mpi)!/?

00 ’Lk N-1
kZ kk,[Z(W ({Ds, 0" (2,007 D,)" H(w, ) fy(a,-)) (0)

/]Rl Z 277 lerl <¢” Z, 0 15 §>) ( (x,)kf](x,))(f) df]

k=0

Note that interchanging integration and summation in the last term is in
general not possible due to the lack of an integrable majorand. Since H(z, s)
vanishes of third order at s = 0, the local terms are zero unless 3k < 2r.
Consequently, for general ¢ and arbitrary N € N we arrive at

(A.2) T (e ay),
U (,0) /1, B, 1
~ det (¢"(x,0)/2mui)t/2 [r ;N,u 3I<:Z<2r (7‘! kl2rqr—Fk

)

(.00 D) HGo ) F5(0) ) 0+ R
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where R; n41 is explicitly given by

0/w. 8.
R, 4
PN e t(l/)”(l‘ 0)/2m i)t/ Z pk k!

/ > 2;7;. (6" (,0)726,€))" F(H ()t (. )) (€) de.

r= 3N+1

Moreover, by [25, Theorem 7.7.5] one has R; y11 = O(uNT1). The assertion
now follows by integrating over M, and by taking det (4" (z,0)/2mpi)'/? =
(2 p)~V/2|det " (,0)|/2e 3% into account. In particular, the leading co-
efficient is given by

T AT(a)
det Hessypans ¥) o t|1/2’

(A3) Qoltsa,7) = /M ;

where the restriction map 7 : AY(E) — A9~!(M) is locally given by

(A.4) (hj o wj) (T yj) Ndsyay A+ A dsg )
. (=187 (hj o p;)vj, p=1,
0, p<lI,

vj € A7P(U;), hj € C*(U; x RY), o being a permutation in p variables. [

Remark B. (1) In the proof of the last theorem, one can also use the
lemma of Morse. This simplifies the proof, but gives less explicit expressions
for the coefficients (), since the Morse diffeomorphism is not given explicitly.
Indeed, by Morse’s Lemma, we can choose the trivialization of 7w : £ — M
in such a way that

1
¢(:C7 S) = 5 <87 Sx5>7 Sx € Sym(l>R)’ det SI 7é 07
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where the symmetric matrix S, depends smoothly on x € U;. Parseval’s
formula then yields

T (eiw/uaj)x

= /Rl ei¢($’5)/“fj(x,s)ds - B;

eiﬂ’sgnSI/4Ml/2 -
= S{STE 2 (£ N
= e o & O e ) € de

ei7rsgnS,,c/4Ml/2 [ N—

(27)/2|det S| 1/2 (2m) 2% % <<DS§Z1 s>rfj(xw)> (z,0)
+ S (B Y Ry o) 6
R —N

By integrating over M, the assertion of Theorem A follows.

(2) In general, it is not possible to say anything about the conver-
gence of the sum in (A.1) as N — oo, and consequently, about the limit
limy 00 Ry (), due to the lack of control of the growth of the derivatives
0% fi(x,0) as o — oo.

—_

From Theorem A we can now infer the classical generalized stationary
phase theorem.

Theorem C (Generalized stationary phase theorem for manifolds).
Let M be a n-dimensional, orientable Riemannian manifold with volume
form dM, ¢ € C*°(M) a real valued phase function, u > 0, and set

1) = [ ¥ a(m) ad(m),
M
where a(m) € C(M) denotes a compactly supported function on M. Let

C= {m €M : Y : TinM — Ty)R s zero}

be the critical set of the phase function 1, and assume that C is clean in the
sense that

1) C is a smooth submanifold of M of dimension p in a neighborhood of
the support of a;

2) for all m € C, the restriction ¥"(m)|n,.c of the Hessian of ¢ at the
point m to the normal space Np,C is a non-degenerate quadratic form.
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Then, for all N € N, there exists a constant Cn ., > 0 such that

N—-1
L) = /e T (2mp) " 3 1 Q5(030)| < Oy sup [Dlaf|
=0 I<2N oo, M

where D' is a differential operator on M of order | and 1)y the constant
value of ¢ on C, while oy denotes the constant value of the signature of
the transversal Hessian Hesst(m)n, c on C. The coefficients Q; can be

computed explicitly, and for each j there exists a constant Cj, > 0 such
that

Qi(w5)| < Cypsup || Dla
1<2j o0

In particular,

o a(m)
Qo(;a) = /C et o g0t

where doc is the induced volume form on C.

Proof. Due to the non-stationary phase principle, we can assume that a dM
is supported in a tubular neighborhood of C. Identifying the latter with
the total space NC of the normal bundle of C, the assertion follows from
Theorem A. O

Remark D. It should be noted that an analogue version of the gener-
alized stationary phase theorem exists also for non-orientable Riemannian
manifolds M and densities, see [40, Theorem 4.1].
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