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Singular equivariant asymptotics and the

momentum map. Residue formulae in

equivariant cohomology
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LetM be a differentiable manifold and G a compact, connected Lie
group acting onM by isometries. In this paper, we study the equiv-
ariant cohomology of X = T ∗M , and relate it to the cohomology of
the Marsden-Weinstein reduced space via certain residue formulae.
In case that X is a compact, symplectic manifold with a Hamil-
tonian G-action, similar residue formulae were derived by Jeffrey,
Kirwan et al. [26, 27].
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1. Introduction

Let X be a symplectic manifold carrying a Hamiltonian action of a compact,
connected Lie group G with Lie algebra g, and denote the corresponding
momentum map by J : X→ g∗. In case that X is compact and 0 a regular
value of the momentum map, the cohomology of the Marsden-Weinstein
reduced space Xred = J−1(0)/G was expressed by Jeffrey and Kirwan [27] in
terms of the equivariant cohomology of X via certain residue formulae. If 0 is
not a regular value, similar residue formulae were derived by them and their
collaborators [26] for nonsingular, connected, complex, projective varieties
X. These formulae rely on the localization theorem of Berline-Vergne [3, 4]
and Atiyah-Bott [2], and are related to the non-Abelian localization theorem
of Witten [44]. The intention of this paper is to extend their results to non-
compact situations, and derive similar residue formulae in case that X is
given by the cotangent bundle of a G-manifold.

Let X be a differentiable manifold carrying a smooth action of a con-
nected Lie group G. According to Cartan [10], its equivariant cohomology
can be defined by replacing the algebra Λ(X) of smooth differential forms on
X by the algebra (S(g∗)⊗ Λ(X))G of G-equivariant polynomial mappings

� : g � X �−→ �(X) ∈ Λ(X),

where g denotes the Lie algebra of G. Let X̃ denote the fundamental vector
field on X generated by an element X ∈ g. Defining equivariant exterior
differentiation by

D�(X) = d(�(X))− ιX̃(�(X)), X ∈ g, � ∈ (S(g∗)⊗ Λ(X))G,

where d and ι denote the usual exterior differentiation and contraction, the
equivariant cohomology of the G-action on X is given by the quotient

H∗
G(X) = KerD/ ImD,

which is canonically isomorphic to the topological equivariant cohomology
introduced in [2] in case that G is compact, an assumption that we will
make from now on. The main difference between ordinary and equivariant
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cohomology is that the latter has a larger coefficient ring, namely S(g∗), and
that it depends on the orbit structure of the underlying G-action. Let us now
assume that X admits a symplectic structure ω which is left invariant by G.
By Cartan’s homotopy formula,

0 = LX̃ω = d ◦ ιX̃ω + ιX̃ ◦ dω = d ◦ ιX̃ω,

where L denotes the Lie derivative with respect to a vector field, implying
that ιX̃ω is closed for each X ∈ g. G is said to act on X in a Hamiltonian
fashion, if this form is even exact, meaning that there exists a linear function
J : g→ C∞(X) such that for each X ∈ g the fundamental vector field X̃ is
equal to the Hamiltonian vector field of J(X), so that

d(J(X)) + ιX̃ω = 0.

An immediate consequence of this is that for any equivariantly closed form
� the form given by ei(J(X)−ω)�(X) is equivariantly closed, too. Following
Souriau and Kostant, one then defines the momentum map of a Hamiltonian
action as the equivariant map

J : X −→ g∗, J(η)(X) = J(X)(η).

Assume next that 0 ∈ g∗ is a regular value of J, which is equivalent to
the assumption that the stabilizer of each point of J−1(0) is finite. In this
case, J−1(0) is a differentiable manifold, and the corresponding Marsden-
Weinstein reduced space or symplectic quotient

Xred = J−1(0)/G

is an orbifold with a unique symplectic form ωred determined by the iden-
tity ι∗ ω = π∗ ωred, where π : J−1(0)→ Xred and ι : J−1(0) ↪→ X denote the
canoncial projection and inclusion, respectively. Furthermore, π∗ induces an
isomorphism between H∗(Xred) and H∗

G(J
−1(0)). Consider now the map

K : H∗
G(X)

ι∗−→ H∗
G(J

−1(0))
(π∗)−1

−→ H∗(Xred),

and assume thatX is compact and oriented. In this case, Kirwan [29] showed
that K defines a surjective homomorphism, so that the cohomology of Xred

should be computable from the equivariant cohomology of X. This is the
content of the residue formula of Jeffrey and Kirwan [27], which for any
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� ∈ H∗
G(X) expresses the integral

(1)

∫
Xred

e−iωredK(�) =
∫
Xred

dimXred/2∑
k=0

(−iωred)
k

k!
K(�)[dimXred−2k]

in terms of data of X. More precisely, let T ⊂ G be a maximal torus, and
XT its fixed point set. Then (1) is given by a sum over the components F
of XT of certain residues involving the restriction of � to the G-orbit G · F
and the equivariant Euler form χNF of the normal bundle NF of F . The
departing point of their work is the observation that the integral (1) should
be given by the g-Fourier transform of the tempered distribution

g � X �→
∫
X
ei(J(X)−ω)�(X)

evaluated at 0 ∈ g∗. The mentioned formula of Jeffrey and Kirwan is then
essentially a consequence of the localization formula in equivariant coho-
mology, proved independently by Berline and Vergne [4] and Atiyah and
Bott [2] at approximately the same time. In case that 0 ∈ g∗ is not a reg-
ular value, analogous residue formulae were derived in [26] for nonsingular,
connected, complex, projective varieties X within the framework of geomet-
ric invariant-theoretic quotients, under some weak assumptions about the
group action. In this situation, there is no longer a surjection from equivari-
ant cohomology onto the cohomology of the corresponding quotient, whose
singularities are worse than in the orbifold case. Nevertheless, their is still
a surjection onto its intersection cohomology, which is a direct summand of
the ordinary cohomology of any resolution of singularities of the quotient.
Using a canonical desingularization procedure for such quotients developed
by Kirwan [30] in combination with certain residue operations established
by Guillemin and Kalkman [20], residue formulae for intersection pairings
can then be derived.

Historically, the localization formula emerged as a generalization of a
result of Duistermaat and Heckman [16] concerning the pushforward of the
Liouville measure of a compact, symplectic manifold carrying a Hamiltonian
torus action along the momentum map. As it turns out, this pushforward is a
piecewise polynomial measure, or equivalently, its inverse Fourier transform
is exactly given by the leading term in the stationary phase approximation.
In this context, the image of the momentum map was also intensively studied
[23]. The study of the pushforward of the Liouville measure was motivated by
attempts of finding an asymptotic approximation to the Kostant multiplicity
formula [32] in order to examine the partition function occuring in that
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formula, which otherwise is very difficult to evaluate [21]. On the other side,
the origin of the localization formula can be traced back to a residue formula
for holomorphic vector fields derived by Bott [6], which was inspired by the
generalized Lefschetz formula of Atiyah and Bott [1].

The Duistermaat-Heckman formula was extended to non-compact sym-
plectic manifolds by Prato and Wu [39]. On the other hand, the equivari-
ant cohomology of hyper-Kähler quotients, which are rarely compact, was
studied by Hausel and Proudfoot [22], generalizing a result of Martin for
compact symplectic manifolds, which expresses the cohomology of the quo-
tient by the group in terms of the cohomology of the corresponding quotient
by its maximal torus. Further, Martens [34] combined the Jeffrey-Kirwan
residue formulae with symplectic cuts to obtain residue formulae in certain
non-compact situations.

In this paper, we shall prove a residue formula in case that X = T ∗M is
given by the cotangent bundle of a differentiable, paracompact manifold M
on which a compact, connected Lie group G acts by general isometries. For
this, we shall determine the asymptotic behavior of integrals of the form

Iς(μ) =

∫
g

[∫
X
ei(J(η)−ς)(X)/μa(η,X) dη

]
dX, μ→ 0+,

via the stationary phase principle, where ς ∈ g∗, a ∈ C∞c (X× g) is an ampli-
tude, dη the Liouville measure on X, and dX denotes an Euclidean measure
on g given by an Ad (G)-invariant inner product on g. While asymptotics
for Iς(μ) can be easily obtained for free group actions, one meets with se-
rious difficulties when singular orbits are present. The reason is that, when
trying to examine these integrals in case that ς ∈ g∗ is not a regular value of
the momentum map, the critical set of (J(η)− ς)(X) is no longer smooth,
so that, a priori, the stationary phase principle can not be applied in this
case. Instead, we shall circumvent this obstacle in the case ς = 0 by par-
tially resolving the singularities of the critical set of the momentum map,
and then apply the stationary phase theorem in a suitable resolution space.
By this we are able to obtain asymptotics for I0(μ) with remainder estimates
in the case of singular group actions. This approach was developed first in
[12, 40] to describe the spectrum of an invariant elliptic operator on a com-
pact G-manifold, where similar integrals occur, and used in the derivation of
equivariant heat asymptotics in [38]. The asymptotic description of Iς(μ) in a
neighborhood of ς = 0 then allows us to derive the following residue formula.
Let � ∈ H∗

G(T
∗M) be of the form �(X) = α+Dβ(X), where α is a closed,
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basic differential form on T ∗M of compact support, and β is an equivari-
ant differential form of compact support. Fix a maximal torus T ⊂ G, and
denote the corresponding root system by Δ(gC, tC). Assume that the dimen-
sion κ of a principal G-orbit in M is equal to d = dimR g, and denote the
product of the positive roots by Φ. Let further W be the Weyl group and
H a principal isotropy group of the G-action on M . Denote the principal
stratum of J−1(0) by Reg J−1(0), and put RegXred = Reg J−1(0)/G. Also,
let r : Λ∗+κ(T ∗M)→ Λ∗(Reg J−1(0)) be the natural restriction map, and
consider the mapping

K̃ : Λ∗+κ(T ∗M)
r/volO−→ Λ∗(Reg J−1(0)) π∗−→ Λ∗−d(RegXred),

where π∗ denotes integration along the fibers of the principal G-bundle
Reg J−1(0). Then, by Theorem 7,

(2π)d
∫
RegXred

K̃(e−iω̄α) = |H|
|W | volT Res

(
Φ2

∑
F∈F

uF

)
,

where ω̄(X) = ω − J(X), F denotes the set of components of the fixed point
set of the T -action onX = T ∗M , and the uF are rational functions on t given
by

uF : t � Y �−→ (−2π)rkF/2eiJY (F )

∫
F

e−iω�(Y )

χNF (Y )
,

JY (F ) being the constant value of J(Y ) on F . The definition of the residue
operation, given in Definition 1 and Proposition 7, relies on the fact that the
Fourier transform of uF is a piecewise polynomial measure. Our approach
is in many respects similar to the one of Jeffrey, Kirwan et al., but differs
from their’s in that it is carried out in a C∞-setting and based on the sta-
tionary phase theorem. In a future paper, we intend to extend our results to
general symplectic manifolds, and investigate the relation of the map K̃ to
the Kirwan map K. For this, it will be necessary to implement a desingular-
ization process for general momentum maps, which should be similar, but
more involved than the one developed in this paper for cotangent bundles
of G-manifolds, where the momentum map is given in terms of the Liouville
form.

Acknowledgements. The author wishes to thank Michèle Vergne for
pointing out to him that the results in [40] could be related to equivariant
cohomology, and teaching him many things about the field. Also, he would
like to thank the referee for calling his attention to the work of Prato and
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beginnings by the grant RA 1370/2-1 of the German Research Foundation
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2. Localization in equivariant cohomology

LetX be a 2n-dimensional, paracompact, symplectic manifold with symplec-
tic form ω and Riemannian metric g. Since ω is non-degenerate, ωn/n! yields
a volume form on X called the Liouville form, whose existence is equivalent
to the fact that X is orientable. Define a bundle morphism J : TX→ TX
by setting

gη(JX,Y) = ωη(X,Y), X,Y ∈ TηX,

and assume that J is normed in such a way that J 2 = −1, which defines
J uniquely. J constitutes an almost-complex structure that is compatible
with ω, meaning that

ωη(JX,JY) = ωη(X,Y), ωη(X,JX) > 0.

Furthermore, gη(JX,JY) = gη(X,Y). (X,J , g) is consequently an almost-
Kähler manifold. If J is integrable, (X,J , g) becomes a Kähler manifold.
Next, assume that X carries a Hamiltonian action of a compact, connected
Lie group G of dimension d. In particular, G is a real reductive group. Denote
the corresponding Kostant-Souriau momentum map by

J : X→ g∗, J(η)(X) = JX(η) = J(X)(η).

By definition, dJX + ιX̃ω = 0 for all X ∈ g, where X̃ denotes the vector field
on X given by

(X̃f)(η) =
d

dt
f(e−tX · η)|t=0, X ∈ g, f ∈ C∞(X).

By this choice, the mapping X �→ X̃ becomes a Lie-algebra homomorphism,

so that in particular [̃X,Y ] = [X̃, Ỹ ]. Also note that J is G-equivariant in
the sense that J(g−1η) = Ad ∗(g)J(η).

In what follows, we assume that g is endowed with an Ad (G)-invariant
inner product, which allows us to identify g∗ with g. Let further dX and dξ
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be corresponding measures on g and g∗, respectively, and denote by

Fg : S(g∗)→ S(g), Fg : S ′(g)→ S ′(g∗)

the g-Fourier transform on the Schwartz space and the space of tempered
distributions, respectively. In this paper, we intend to relate the equivariant
cohomology H∗

G(X) of X to the cohomology of the symplectic quotient

Xred = Ω0/G, Ως = J−1(ς).

Following [44] and [27], we consider for this the map

X �−→ Lα(X) =

∫
X
eiJXα, X ∈ g, α ∈ Λc(X),

regarded as a tempered distribution in S ′(g), where Λc(X) denotes the al-
gebra of differential forms on X of compact support. If (X, ω) is a compact
symplectic manifold, G a torus, and α = ωn/n! the Liouville measure, Lα is
the Duistermaat-Heckman integral, and corresponds to the inverse g-Fourier
transform of the pushforward J∗(ωn/n!) of the Liouville form along the mo-
mentum map. In this case, the g-Fourier transform of Lα is exactly J∗(ωn/n!)
and a piecewise polynomial measure on g∗ [16].

We are therefore interested in the g-Fourier transform FgLα of Lα in
general, and particularly, in its description near 0 ∈ g∗. Take an Ad ∗(G)-
invariant function ϕ ∈ C∞c (g∗) with total integral equal to 1 and g-Fourier
transform

ϕ̂(X) = (Fgϕ)(X) =

∫
g∗

e−i〈ξ,X〉ϕ(ξ) dξ,

where we wrote ξ(X) = 〈ξ,X〉. Then ϕε(ξ) = ϕ(ε−1ξ)/εd, ε > 0, constitutes
an approximation of the δ-distribution in g∗ at 0 as ε→ 0, and we consider
the limit

lim
ε→0

〈FgLα, ϕε〉 = lim
ε→0

∫
g

Lα(X)ϕ̂(εX) dX(2)

= lim
ε→0

∫
g

∫
X
eiJX/εα ϕ̂(X)

dX

εd
,

where we took into account that ϕ̂ε(X) = ϕ̂(εX). Next, fix a maximal torus
T ⊂ G of dimension dT with Lie algebra t, and consider the root space
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decomposition

gC = tC ⊕
⊕
γ∈Δ

gγ ,

where Δ = Δ(gC, tC) denotes the set of roots of gC = g⊗R C with respect
to tC = t⊗R C, gC being a reductive Lie algebra over C, and gγ are the
corresponding root spaces. Since dimC gγ = 1, the decomposition implies
d− dT = dimR g− dimR t = |Δ|. Assume that α is such that Lα is Ad (G)-
invariant. Using Weyl’s integration formula [27, Lemma 3.1], (2) can be
rewritten as

(3) lim
ε→0

〈FgLα, ϕε〉 = volG

|W |volT lim
ε→0

∫
t

[∫
X
eiJY α

]
ϕ̂(εY )Φ2(Y )dY,

where Φ(Y ) =
∏

γ∈Δ+
γ(Y ) and Δ+ is the set of positive roots, while W =

W (gC, tC) denotes the Weyl group. Here volG and volT stand for the vol-
umes of G and T with respect to the corresponding volume forms on G
and T induced by the invariant inner product on g and its restriction to t,
respectively. In what follows, we shall express this limit in terms of the set

F T = {η ∈ X : t · η = η ∀ t ∈ T}

of fixed points of the underlying T -action. The connected components of F T

are smooth submanifolds of possibly different dimensions, and we denote the
set of these components by F . Let F ∈ F be fixed, and consider the normal
bundle NF of F . As can be shown, the real vector bundle NF can be given
a complex structure, and splits into a direct sum of two-dimensional real
bundles PF

q , which can be regarded as complex line bundles over F . For

each η ∈ F , the fibers (PF
q )η are T -invariant, and endowing them with the

standard complex structure, the action of t can be written as

(PF
q )η � v �→ iλF

q (Y )v ∈ (PF
q )η, Y ∈ t,

where the λF
q ∈ t∗ are the weights of the torus action [19]. They do not

depend on η. Now, if � is an equivariantly closed form, Le−iω�(Y )(Y ) can be
computed using

Theorem 1 (Localization formula in equivariant cohomology). Let
X be a differentiable n-dimensional manifold acted on by a compact Lie
group G, and � an equivariantly closed form on X with compact support.
For Y ∈ g, let X0 denote the zero set of Y . Then �(Y )[n] is exact outside
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X0, and ∫
X
�(Y ) =

∫
X0

(−2π)rkNX0/2 �(Y )

χNX0
(Y )

,

where NX0 denotes the normal bundle of X0, which has been endowed with
an orientation compatible with the one of X0, and χNX0

is the equivariant
Euler form of the normal bundle.

Proof. The proof is the same as the proof of [3, Theorem 7.13], which con-
sists essentially in a local computation, except for [3, Lemma 7.14] which,
nevertheless, can be easily generalized to equivariantly closed forms with
compact support on non-compact manifolds. �

To apply this theorem in our context, recall that an element Y ∈ t is
called regular, if the set {exp(sY ) : s ∈ R} is dense in T . The set of regular
elements, in the following denoted by t′, is dense in t and

(4)
{
η ∈ X : Ỹη = 0

}
= F T , Y ∈ t′.

We then have the following

Corollary 1. Let � ∈ H∗
G(X) be an equivariantly closed form on X of com-

pact support and Y ∈ t′. Then

Le−iω�(Y )(Y ) =

∫
X
ei(JY−ω)�(Y ) =

∑
F∈F

uF (Y ),

where the uF are rational functions on t given by

(5) uF : t � Y �−→ (−2π)rkNF/2eiJY (F )

∫
F

e−iω�(Y )

χNF (Y )
,

JY (F ) being the constant value of JY on F .

Proof. Since Y �→ ei(JY−ω)�(Y ) defines an equivariantly closed form, the as-
sertion follows immediately from the previous theorem and (4). �



Singular equivariant asymptotics and the momentum map 459

In the last corollary, the equivariant Euler class is given by

χNF (Y ) =
∏
q

(c1(P
F
q ) + λF

q (Y )),

where c1(P
F
q ) ∈ H2(F ) denotes the first Chern class of the complex line

bundle PF
q . Thus,

1

χNF (Y )
=

1∏
q λ

F
q (Y )

∏
q

(
1 +

c1(P
F
q )

λF
q (Y )

)−1

=
1∏

q λ
F
q (Y )

∏
q

∑
0≤rq

(−1)rq
(
c1(P

F
q )

λF
q (Y )

)rq

.

Note that the sum in the last expression is finite, since c1(P
F
q )/λF

q (Y ) is
nilpotent. Consequently, the inverse makes sense. Let us also note that the
set of critical points of JX is given by

Crit JX =
{
η ∈ X : X̃η = 0

}
, X ∈ g,

and is clean in the sense of Bott. Indeed, Crit JX is a smooth submanifold
consisting of possibly several components of different dimensions. On the
other hand, the Hessian of JX is given by the symmetric bilinear form

Hess JX : Tη(X)× Tη(X) −→ R,

(X1,X2) �→ (X̃1)η(X̃2(JX)), η ∈ Crit JX ,

where X̃2(JX) = dJX(X̃2) = −ιX̃ω(X̃2), and X̃ denotes the extension of a
vector X ∈ Tη(X) to a vector field. Now,

X̃i(ω(X̃, X̃j)) = LX̃i
(ιX̃ιX̃j

ω) = ιL
˜Xi

X̃ ιX̃j
ω + ιX̃ LX̃i

(ιX̃j
ω)(6)

= ιL
˜Xi

X̃ ιX̃j
ω + ιX̃ ιL

˜Xi
X̃j
ω + ιX̃ ιX̃j

LX̃i
(ω),

so that at a point η ∈ Crit JX one computes

−Hess JX(X1,X2) = X̃1(ω(X̃, X̃2)) = −ω([X̃, X̃1], X̃2),(7)

since X̃ vanishes on Crit JX . But the Lie derivative X �→ (LX̃X̃)η = [X̃, X̃]η
defines an invertible endomorphism of NηCrit JX . Consequently, the Hessian
of JX is transversally non-degenerate and Crit JX is clean.
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We would like to compute (3) using Corollary 1, but since the rational
functions (5) are not locally integrable on t, one cannot proceed directly.
Instead note that, since Φ2 and ϕ̂ have analytic continuations to tC, Cauchy’s
integral theorem yields for arbitrary Z ∈ t∫

t

[∫
X
ei(JY−ω)�(Y )

]
(ϕ̂εΦ

2)(Y )dY

=

∫
t

[∫
X
ei(JY +iZ−ω)�(Y + iZ)

]
(ϕ̂εΦ

2)(Y + iZ)dY.

Here we took into account that by the Theorem of Paley-Wiener-Schwartz
[25, Theorem 7.3.1] ϕ̂ε(Y + iZ) is rapidly falling in Y . Let now Λ be a proper
cone in the complement of all the hyperplanes

{
Y ∈ t : λF

q (Y ) = 0
}
, so that

Y ∈ Λ necessarily implies λF
q (Y ) = 0 for alle q and F . By the foregoing con-

siderations, uF defines a holomorphic function on t+ iΛ, and for arbitrary
compacta M ⊂ Int Λ, there is an estimate of the form

|uF (ζ)| ≤ C(1 + |ζ|)N , ζ = Y + iZ, Im ζ ∈M,

for some N ∈ N. The functions uFΦ
k, k = 0, 1, 2, . . . , are holomorphic on

t+ iΛ, too, and satisfy similar bounds. Then, by [25, Theorem 7.4.2], there
exists for each k a distribution UΦk

F ∈ D′(t∗) such that

(8) e−〈·,Z〉UΦk

F ∈ S ′(t∗), F−1t (e−〈·,Z〉UΦk

F ) = (uFΦ
k)(·+ iZ), Z ∈ Λ.

We therefore obtain with Corollary 1 for arbitrary Z ∈ Λ and ς ∈ t∗ the
equality ∫

t

[∫
X
ei(JY−ω)�(Y )

]
(e−i〈ς,·〉ϕ̂εΦ

2)(Y )dY(9)

=
∑
F∈F

〈
(uFΦ

2)(·+ iZ), (e−i〈ς,·〉ϕ̂ε)(·+ iZ)
〉

=
∑
F∈F

〈
e−〈·,Z〉UΦ2

F ,F−1t

(
(e−i〈ς,·〉ϕ̂ε)(·+ iZ)

)〉
=

∑
F∈F

〈
UΦ2

F ,F−1t

(
e−i〈ς,·〉ϕ̂ε

)〉
.
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Remark 1. Let us mention that for arbitrary ς ∈ t∗

F−1t (e−i〈ς,·〉ϕ̂ε)(ξ) =
1

εdT
(F−1t ϕ̂)

(
ξ − ς

ε

)
, ξ ∈ t∗,

constitutes an approximation of the δ-distribution in t∗ at ς, since for arbi-
trary v ∈ C∞c (t∗)〈

F−1t (e−i〈ς,·〉ϕ̂ε), v
〉

=

∫
t∗
(F−1t ϕ̂)(ξ)v(εξ + ς) dξ → v(ς)ϕ̂(0) = v(ς), ε→ 0.

Remark 2. Alternatively, each of the summands in (9) can be expressed
as 〈

(uFΦ)(·+ iZ), (e−i〈ς,·〉Φϕ̂ε)(·+ iZ)
〉

= (2π)|Δ+|
〈
F−1t (e−〈·,Z〉UΦ

F ), (e
−i〈ς,·〉Ft(Φϕε))(·+ iZ)

〉
= (2π)|Δ+| 〈UΦ

F , (Φϕε)(· − ς)
〉
,

where we used the equality Φϕ̂ε = ΦFg(ϕε) = (2π)|Δ+|Ft(Φϕε), see [27,
Lemma 3.4], and the fact that (e−i〈ς,·〉Ft(ϕεΦ))(·+ iZ) = Ft(e

〈·,Z〉(ϕεΦ)(· −
ς)), or as 〈

uF (·+ iZ), (e−i〈ς,·〉Φ2ϕ̂ε)(·+ iZ)
〉

= (2π)|Δ+|
〈
F−1t (e−〈·,Z〉UF ), (e

−i〈ς,·〉Ft(DΦ(Φϕε)))(·+ iZ)
〉

= (2π)|Δ+| 〈UF , DΦ(Φϕε)(· − ς)〉 ,

where DΦ denotes the differential operator such that Ft(DΦ(Φϕε)) =
ΦFt(Φϕε).

As a consequence of equations (2), (3), and (9) we arrive at

Proposition 1. Let � be an equivariantly closed differential form. Then

lim
ε→0

〈
Fg

(
Le−iω�(·)(·)

)
, ϕε

〉
= lim

ε→0

∫
g

∫
X
ei(JX/ε−ω)�(X/ε) ϕ̂(X)

dX

εd

=
vol G

|W |vol T lim
ε→0

∑
F∈F

〈
UΦ2

F ,F−1t

(
ϕ̂ε

)〉
.
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In order to further investigate the distributions UΦk

F , note that the func-
tions uFΦ

k are given by a linear combination of terms of the form

eiJY (F )

ΠqλF
q (Y )rq

P (Y ), P ∈ C[t∗].

The crucial observation is now that, due to this fact, the uFΦ
k are tempered

distributions whose t-Fourier transforms are piecewise polynomial measures
[27, Proposition 3.6]. By the continuity of the Fourier transform in S ′ we
therefore have

Ft(uFΦ
k) = Ft

(
lim
t→0

uFΦ
k(·+ itZ)

)
= lim

t→0
Ft(uFΦ

k(·+ itZ)) = lim
t→0

e−〈·,tZ〉UΦk

F = UΦk

F .

Thus, UΦk

F ∈ S ′(t∗) is the t-Fourier transform of uFΦ
k, and, in particular, a

piecewise polynomial measure. Motivated by Proposition 1, we are interested
in the behavior of UΦk

F near the orgin, which leads us to the following

Definition 1. Let ς ∈ t∗ be such that for all F ∈ F the Fourier transforms
UΦk

F are smooth on the segment tς, t ∈ (0, δ). We then define the so-called
residues

ResΛ,ς(uFΦ
k) = lim

t→0
UΦk

F (tς).

Note that the limit defining ResΛ,ς(uFΦ
k) certainly exists, but does de-

pend on ς (and Λ) as UΦk

F is not continuous at the origin. Furthermore, for
arbitrary Z ∈ Λ,

ResΛ,ς(uFΦ
k) = lim

t→0
lim
ε→0

∫
t∗
UΦk

F (ξ)F−1t (e−i〈tς,·〉ϕ̂ε)(ξ) dξ

= lim
t→0

lim
ε→0

〈
F−1t

(
UΦk

F e−〈·,Z〉
)
,
(
e−i〈tς,·〉ϕ̂ε

)
(·+ iZ)

〉
= lim

t→0
lim
ε→0

∫
t

(uFΦ
k)(Y + iZ)e−i〈tς,Y+iZ〉ϕ̂ε(Y + iZ)dY,

in concordance with the definition of the residues in [27, Section 8]. In par-
ticular, this implies∑

F∈F
ResΛ,ς(uFΦ

k)(10)

= lim
t→0

lim
ε→0

∫
t

[∫
X
ei(J−tς)(Y )e−iω�(Y )

]
Φk(Y )ϕ̂(εY ) dY.
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Similarly,

∑
F∈F

UΦk

F (ς) = lim
ε→0

∫
t

[∫
X
ei(J−ς)(Y )e−iω�(Y )

]
Φk(Y )ϕ̂(εY ) dY.

For a deeper understanding of the residues and the limits in Proposition 1
we are therefore led to a systematic study of the asymptotic behavior of
integrals of the form

(11) Iς(μ) =

∫
g

[∫
X
eiψς(η,X)/μa(η,X) dη

]
dX, μ→ 0+,

where g is the Lie algebra of an arbitrary connected, compact Lie group
G, a ∈ C∞c (X× g) is an amplitude, dη = ωn/n! the Liouville measure on
X, and dX an Euclidean measure on g given by an Ad (G)-invariant inner
product on g, while

(12) ψς(η,X) = J(η)(X)− ς(X), ς ∈ g∗.

This will occupy us in the next sections.

3. Stationary phase and resolution of singularities

In what follows, we shall describe the asymptotic behavior of the integrals
Iς(μ) defined in (11) by means of the stationary phase principle. As we shall
see, the critical set of the corresponding phase function is in general not
smooth. We shall therefore first partially resolve its singularities, and then
apply the stationary phase principle in a suitable resolution space. We begin
by recalling

Theorem A (Stationary phase theorem for vector bundles). Let M
be an n-dimensional, oriented manifold, and π : E →M an oriented vector
bundle of rang l. Let further α ∈ Λq

cv(E) be a differential form on E with
compact support along the fibers, τ ∈ Λn+l−q

c (M) a differential form on M
of compact support, ψ ∈ C∞(E), and consider the integral

(13) I(μ) =

∫
E
eiψ/μ(π∗τ) ∧ α, μ > 0.

Let ι : M ↪→ E denote the zero section. Assume that the critical set of ψ
coincides with ι(M) and that the transversal Hessian of ψ is non-degenerate
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along ι(M). Then, for each N ∈ N, I(μ) possesses an asymptotic expansion
of the form

I(μ) = eiψ0/μei
π

4
σψ(2πμ)

l

2

N−1∑
j=0

μjQj(ψ;α, τ) +RN (μ),

where ψ0 and σψ denote the value of ψ and the signature of the transversal
Hessian along ι(M), respectively. The coefficients Qj are given by measures
supported on ι(M), and can be computed explicitly, as well as the remainder
term RN (μ) = O(μl/2+N ).

Proof. See Appendix A. �

If the critical set of the phase function is not smooth, the stationary
phase principle cannot be applied a priori, and one faces serious difficul-
ties in describing the asymptotic behavior of oscillatory integrals. We shall
therefore first partially resolve the singularities of the critical set, and then
apply the stationary phase principle in a suitable resolution space.

To explain our approach, let M be a smooth variety, OM the structure
sheaf of rings of M, and I ⊂ OM an ideal sheaf. The aim in the theory of
resolution of singularities is to construct a birational morphism Π : M̃ →M
such that M̃ is smooth, and the inverse image ideal sheaf Π∗I is locally
principal. This is called the principalization of I, and implies resolution of
singularities. That is, for every quasi-projective variety X , there is a smooth
variety X̃ , and a birational and projective morphism π : X̃ → X . Vice versa,
resolution of singularities implies principalization. If Π∗(I) is monomial, that

is, if for every x̃ ∈ M̃ there are local coordinates σi and natural numbers ci
such that

Π∗(I) · O
x̃,M̃ =

∏
i

σci
i · Ox̃,M̃,

one obtains strong resolution of singularities, which means that, in addition
to the properties stated above, π is an isomorphism over the smooth locus of
X , and π−1(SingX ) a divisor with simple normal crossings. Consider next
the derivative D(I) of I, which is the sheaf ideal that is generated by all
derivatives of elements of I. Let further Z ⊂M be a smooth subvariety, and
π : BZM→M the corresponding blow-up with center Z and exceptional
divisor F ⊂ BZM. Assume that (I,m) is a marked ideal sheaf with m ≤
ordZI. The total transform π∗I vanishes along F with multiplicity ordZI,
and by removing the ideal sheaf OBZM(−ordZI · F ) from π∗I we obtain the
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birational, or weak transform π−1∗ I of I. Take local coordinates (x1, . . . , xn)
on M such that Z = (x1 = · · · = xr = 0). As a consequence,

y1 =
x1
xr

, . . . , yr−1 =
xr−1
xr

, yr = xr, . . . , yn = xn

define local coordinates on BZM, and for (f,m) ∈ (I,m) one has

π−1∗ (f(x1, . . . , xn),m) = (y−mr f(y1yr, . . . yr−1yr, yr, . . . , yn),m).

By the work of Hironaka [24], resolutions are known to exist, and we refer
the reader to [31] for a detailed exposition.

Consider now an oscillatory integral of the form (13) in case that the
critical set C = ι(M) ⊂ E =M of the phase function ψ is not clean. Let IC
be the ideal sheaf of C, and Iψ = (ψ) the ideal sheaf generated by the phase
function ψ. Then D(Iψ) = DC . The essential idea behind our approach to
singular asymptotics is to construct a partial monomialization

Π∗(Iψ) · Ox̃,M̃ = σc1
1 · · ·σck

k Π−1∗ (Iψ) · Ox̃,M̃, x̃ ∈ M̃,

of the ideal sheaf Iψ = (ψ) via a suitable resolution Π : M̃ →M in such
a way that D(Π−1∗ (Iψ)) is a resolved ideal sheaf. As a consequence, the
phase function factorizes locally according to ψ ◦Π ≡ σc1

1 · · ·σck
k · ψ̃wk, and

we show that the corresponding weak transforms ψ̃wk = Π−1∗ (ψ) have clean
critical sets in the sense of Bott [5]. Here σ1, . . . , σk are local variables near

each x̃ ∈ M̃ and ci are natural numbers. This enables one to apply the
stationary phase theorem in the resolution space M̃ to the weak transforms
ψ̃wk with the variables σ1, . . . , σk as parameters. Note that in the algebraic
case Hironaka’s theorem implies that Iψ can always be monomialized. But
in general, this monomialization would not be explicit enough to obtain a
detailed description of the asymptotic behavior of the integrals I(μ). Also,
it should be emphasized that we work in a C∞-framework, while resolution
of singularities is usually carried out in an algebraic or analytic setting.

4. Equivariant asymptotics and the momentum map

We commence now with our study of the asymptotic behavior of the inte-
grals (11) by means of the generalized stationary phase theorem. To deter-
mine the critical set of the phase function ψς(η,X), let {X1, . . . , Xd} be a
basis of g, and write X =

∑d
i=1 siXi. Due to the linear dependence of JX
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in X,

∂si ψς(η,X) = JXi
(η)− ς(Xi),

and because of the non-degeneracy of ω,

JX,∗ = 0 ⇐⇒ dJX = −ιX̃ω = 0 ⇐⇒ X̃ = 0.

Hence,

Crit(ψς) = {(η,X) ∈ X× g : ψς,∗(η,X) = 0}(14)

=
{
(η,X) ∈ Ως × g : X̃η = 0

}
,

where Ως = J−1(ς) is the ς-level of the momentum map. Now, the major
difficulty in applying the generalized stationary phase theorem in our setting
stems from the fact that, due to the singular orbit structure of the underlying
group action, Ως and, consequently, the considered critical set Crit(ψς), are
in general singular. In fact, if the G-action on X is not free, Ως and the
symplectic quotients Ως/Gς are no longer smooth for general ς ∈ g∗, where
Gς denotes the stabilizer of ς under the co-adjoint action. Nevertheless,
both Ως and Ως/Gς have Whitney stratifications into smooth submanifolds,
see Lerman-Sjamaar [41], and Ortega-Ratiu [37, Theorems 8.3.1 and 8.3.2],
which correspond to the stratification ofX into orbit types, see Duistermaat-
Kolk [17].

Note that from the definition of the momentum map it is clear that the
kernel of its derivative is given by

(15) ker J∗,η = (g · η)ω, η ∈ X,

where we denoted the symplectic complement of a subspace V ⊂ TηX by V ω,

and wrote g · η = {X̃η : X ∈ g}. Consequently, if ς ∈ J(X) is a regular value
of the momentum map, meaning that J∗ : TηX→ Tςg

∗ is a surjection for all
η ∈ Ως , Ως is a manifold of codimension d, and TηΩς = ker J∗,η = (g · η)ω,
which is equivalent to the fact that

X̃η = 0 for all η ∈ Ως , 0 = X ∈ g,

compare [36, Chapter 8]. The latter condition means that all stabilizers Gη of
points η ∈ Ως are finite, and therefore either of principal or exceptional type.
In particular, one has dim g · η = d for all η ∈ Ως . Thus, if ς is a regular value,
both Ως and Crit(ψς) = Ως × {0} are differentiable manifolds. In addition,
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in view of the exact sequence

0 −→ TηΩς
ις,∗−→ TηX

J∗−→ Tςg
∗ −→ 0, η ∈ Ως ,

where ις : Ως ↪→ X denotes the inclusion, and the corresponding dual se-
quence, Ως is orientable, X being orientable, compare [33, Chapter XV.6].
We then have the following

Proposition 2. Let X be a paracompact, symplectic manifold of dimension
2n with a Hamiltonian action of a compact Lie group G of dimension d.
Assume that ς ∈ g∗ is a regular value of the momentum map J : X→ g∗,
and let Iς(μ) be defined as in (11). Then, for each N ∈ N, there exists a
constant CN,ψς ,a such that∣∣∣∣∣Iς(μ)− (2πμ)d

N−1∑
j=0

μjQj(ψς , a)

∣∣∣∣∣ ≤ CN,ψς ,a μ
N ,

where the coefficients Qj are given explicitly in terms of measures on Ως .

Proof. As already noted, Cς = Crit(ψς) = Ως × {0} is a differentiable, ori-
entable manifold of codimension 2d, and

T(η,0)Cς � TηΩς = (g · η)ω, N(η,0)Cς = J (g · η)× Rd,

where J : TX→ TX denotes the bundle homomorphism introduced in Sec-
tion 2. By definition, the Hessian of ψς at (η, 0) ∈ Cς is given by the sym-
metric bilinear form

Hessψς : T(η,0)(X× g)× T(η,0)(X× g)→ C, (v1, v2) �→ ṽ1(ṽ2(ψς))(η, 0).

Let {X̃1, . . . , X̃2n} be a local orthonormal frame in TX and {e1, . . . , ed} the
standard basis in Rd corresponding to an orthonormal basis {A1, . . . , Ad} of
g. In the basis

((X̃i)η; 0), (0; ej), i = 1, . . . , 2n, j = 1, . . . , d,

of T(η,X)(X× g) = TηX× Rd, Hessψς is then given by the matrix

A = −
(

0 ωη(Ãj , X̃i)

ωη(Ãi, X̃j) 0

)
= −

(
0 gη(J Ãj , X̃i)

gη(J Ãi, X̃j) 0

)
.
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Indeed, for arbitrary X ∈ g one has X̃i(JX) = dJX(X̃i) = −ιX̃ω(X̃i), and

with (6) we obtain (X̃i)η(ω(0̃, X̃j)) = 0. In order to compute the transver-
sal Hessian of ψς , we have to exhibit a basis for N(η,0)Cς . Let therefore

{B1, . . . , Bd} be another basis of g = g⊥η such that {(B̃1)η, . . . , (B̃d)η} is an
orthonormal basis of g · η. It is then easy to see that

Bk = (J (B̃k)η; 0), B′k = (0; gη(Ã1, B̃k), . . . , gη(Ãd, B̃k)), k = 1, . . . , d,

constitutes a basis of N(η,0)Cς with 〈Bk,Bl〉 = δkl, Bk ⊥ B′l, and 〈B′k,B′l〉 =
(Ξ)kl, where Ξ is given by the linear transformation

(16) Ξ : g · η −→ g · η : X �→
d∑

j=1

gη(X, Ãj)(Ãj)η.

With these definitions one computes

A(Bk) =

(
0;−

2n∑
j=1

gη(J Ã1, X̃j)gη(J B̃k, X̃j), . . .

)
= (0;−gη(J Ã1,J B̃k), . . . ,−gη(J Ãd,J B̃k)) = −B′k,

A(B′k) =
(
−

(
d∑

j=1

gη(J Ãj , X̃1)gη(Ãj , B̃k), . . .

)
; 0

)
= ((gη(Ξ(B̃k)η,J X̃1), . . . ); 0).

Since the {J (B̃1)η, . . . ,J (B̃d)η} form an orthonormal basis of J (g · η), we
obtain

A(B′k) = −(JΞ(B̃k)η; 0) = −
d∑

j=1

gη(JΞ(B̃k)η,J (B̃j)η)Bj .

Thus, the transversal Hessian Hessψς(η, 0)|N(η,0)Cς is given by the non-
degenerate matrix

(17) Atrans =

(
0 −1d

−Ξ|g·η 0

)
.

By the non-stationary principle, we can choose the support of the amplitude
a in the integral Iς(μ) close to Cς . Identifying a tubular neighborhood of Cς
with a neighborhood of the zero section in NCς , the assertion now follows
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from Theorem A by integrating along the fibers of ν : NCς → Cς . The exact
form of the coefficients can be read off from (A.2), in which ψ′′ corresponds
to Atrans. Note that the submersion Pς : Cς → Ως , (η, 0) �→ η is simply the
identity, so that measures on Cς are identical with measures on Ως . �

Let us resume the considerations in Section 2, the notation being the one
introduced previously, and consider the following, more specific oscillatory
integrals.

Lemma 1. Let � = Dβ be an equivariantly exact form on X of compact
support, ς ∈ g∗, and ε > 0. Then∫

g

[∫
X
ei(J−ς)(X)e−iω�(X)

]
ϕ̂ε(X)dX = 0.

Proof. The proof is essentially an elaboration of an argument given in [27,
Equation (8.20)]. In what follows, write ω̄(X) = ω − JX for the extension of
the symplectic form to an equivariantly closed form, and assume that β =∑

θjβj , θj ∈ Sj(g∗), where the βj are differential forms of compact support.
Let further ϕ ∈ C∞c (g∗) and δ = δ(ε) > 0 be such that suppϕε ⊂ B(0, δ).
Define Δδ = {η ∈ X : |J(η)− ς| < δ}, and let Δδ ⊂ Δ′δ be a smooth domain
with smooth boundary ∂Δ′δ. SinceDσ(X)[2n] = d(σ(X)[2n−1]) for any equiv-
ariant differential form σ, one computes∫

g

[∫
X
e−iω̄(X)�(X)

]
e−iς(X)ϕ̂ε(X)dX

=

∫
g

[∫
X
D
(
e−iω̄β

)
(X)

]
e−iς(X)ϕ̂ε(X) dX

=

∫
g

[∫
X
d
(
(e−iω̄β)(X)

)]
e−iς(X)ϕ̂ε(X) dX

=

∫
X
d

(∫
g

e−iς(X)ϕ̂ε(X)(e−iω̄β)(X) dX

)
=

∑
j

∫
X
d

(∫
g

ei(J−ς)(X)ϕ̂ε(X)θj(X) dXe−iωβj
)

=
∑
j

∫
X
d

(∫
g

ei(J−ς)(X)Fg(θj(−i ∂ξ)ϕε)(X) dXe−iωβj
)

= (2π)d
∑
j

∫
Δ′δ

d
(
[(θj(−i ∂ξ)ϕε) ◦ (J− ς)]e−iωβj

)
= (2π)d

∑
j

∫
∂Δ′δ

[(−iθj(∂ξ)ϕε) ◦ (J− ς)]e−iωβj = 0
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since ϕε ◦ (J− ς) vanishes on ∂Δ′δ. Hereby we used the Theorem of Stokes
for differential forms with compact support, see [42, page 119]. �

Proposition 3. Let ς ∈ g∗ be a regular value of J : X→ g∗, α ∈ Λc(X),
and θ ∈ Sr(g∗). Then

lim
ε→0

∫
g

[∫
X
ei(J−ς)(X)α

]
θ(X)ϕ̂(εX) dX =

(2π)dvol G

|HG|
∫
J−1(ς)

ι∗ς (L)
vol OG

for some form L ∈ Λc(X) explicitly given in terms of J, α and θ, where HG

denotes a generic isotropy group of the G-action on Ω, and OG(η) = G · η
the G-orbit through a point η ∈ X, while ις : J

−1(ς) ↪→ X is the inclusion.

Proof. Let ψς(η,X) = (J(η)− ς)(X), so that the limit in question reads

lim
ε→0

1

εd+r

∫
g

[∫
X
eiψς/εα

]
θ ϕ̂ dX.

Proposition 2 yields for the integral above an asymptotic expansion with
leading power εd and coefficients Qr,j given by measures on Cς = Crit(ψς) =
Ως × {0} ≡ Ως . In order to compute them, let {Bk,B′l} be the basis ofN(η,0)Cς
introduced in the proof of Proposition 2, and let {sk, s′l} be corresponding
coordinates in N(η,0)Cς . The transversal Hessian of ψς is given by the ma-
trix (17). By the non-stationary principle, we can choose the support of α
close to Ως . Identify a tubular neighborhood of Ως with a neighborhood of the
zero section in NΩς . Integrating along the fibers of ν : NCς � NΩς × g→ Cς
then yields

∫
g

[∫
X
eiψς/εα

]
θ ϕ̂ dX =

∫
NCς

eiψς/εθ ϕ̂ α dX =

∫
Cς
ν∗
(
eiψς/εθ ϕ̂ α dX

)
.

Assume now that with respect to the trivialization of ν given by the frame
{Bk,B′l} we have

αdX ≡ f ν∗(β) ∧ ds ∧ ds′, β ∈ Λc(Ως),
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for some smooth function f . Applying (A.2) we obtain for arbitrary large
N ∈ N an expansion of the form

ν∗
(
eiψς/εθ ϕ̂ α dX

)
(18)

=
β

det (Atrans(η, 0)/2πiε)1/2∑
p−q<N

∑
2p≥3q

εp−q

p! q! ij 2p
〈A−1transD,D

〉p
(θ ϕ̂ f Hq)(η, 0) +RN ,

where η∈Ως , D=−i(∂s1 , . . . , ∂sd , ∂s′1 , . . . , ∂s′d), (θ ϕ̂)(η, s, s
′)=(θ ϕ̂)(X(s′)),

and

H(η, s, s′) = ψς(η, s, s
′)−

〈
Atrans

( s
s′

)
,
( s

s′
)〉/

2,

ψς(η, s, s
′) = JX(s′)(η, s)− ς(X(s′)),

is a smooth function vanishing at (η, 0) of order 3. The inner sum with p−
q = j therefore corresponds to a differential operator of order 2j acting on
θ ϕ̂ f , since in this case 2p− 3q = 2j − q, the maximal order being attained
for p = j and q = 0. Now, since ψς(η,X) depends linearly on X, derivatives
at s′ = 0 of ψς(η, s, s

′), and consequently of H(η, s, s′), of order greater or
equal 3 vanish, unless exactly one s′-derivative occurs. On the other hand,
θ vanishes at X(s′) = 0 of order r. Furthermore, due to the particular form
of Atrans in (17), 〈A−1transD,D

〉 ≡∑
ckl ∂sk ∂s′l

is a differential operator of first order in the s′-variables. Consequently, the
inner sums in (18) with p < r + q must vanish, and for N = p− q = r, only
terms proportional to ϕ̂(0) occur. Summing up we have shown that

Qr,j = 0, for all j = 0, . . . , r − 1,

the leading term being of order εd+r, and we obtain

lim
ε→0

1

εd+r

∫
g

[∫
X
ei(J−ς)(X)/εα

]
θ(X)ϕ̂(X) dX

= (2π)dϕ̂(0)

∫
J−1(ς)

i∗ς (L)
|det Ξ|1/2 =

(2π)dϕ̂(0) volG

|HG|
∫
J−1(ς)

i∗ς (L)
volOG

,
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where L ∈ Λc(X) is explicitly given in terms of α, J and θ. Here we took
into account that |det Ξ|g·η|1/2 = vol (G · η) |Gη|/volG for η ∈ Ως , c.p. [11,
Lemma 3.6]. Since ϕ̂(0) = 1, the assertion follows. �

Next, let us consider a maximal torus T ⊂ G and the composition JT :
X→ t∗ of the momentum map J with the restriction map from g∗ to t∗,
which yields a momentum map for the T -action on X. Since T is commuta-
tive, the coadjoint action is trivial, so that T = Tς for all ς ∈ t∗. Thus, J−1T (ς)
is T -invariant and J−1T (ς)/Tς � J−1T (ς)/T . Also, for regular ς ∈ t∗ define

(19) KT
ς : H∗

T (X)
ι∗ς,T−→ H∗

T (J
−1
T (ς))

(π∗ς,T )
−1

−→ H∗(J−1T (ς)/T ),

ις,T : J−1T (ς) ↪→ X being the inclusion and πς,T : J−1T (ς)→ J−1T (ς)/T the
canonical projection [20, p. 125]. In what follows, we shall also write ΩT

ς =
J−1T (ς). We then have the following

Corollary 2. Let ς ∈ t∗ and Γς ⊂ t∗ be a conic neigbhorhood of the segment
{tς : 0 < t < 1} such that all UΦ2

F are smooth on Γς , and denote by t∗reg the
set of regular values of JT . Then, if � ∈ H∗

G(X) is an equivariantly closed
form of compact support,

(20)
∑
F∈F

Resς,Λ(uFΦ
2) =

(2π)dT volT

|HT | lim
ς̃→0, ς̃ ∈Γς∩t∗reg

∫
ΩT

ς̃ /T
KT

ς̃ (L),

where L is explicitly given in terms of e−iω�, Φ, and J, and d = dim g =
dim t+ |Δ| = dT + 2|Δ+|.

Proof. Since t∗reg is dense by Sard’s theorem, the assertion is a direct conse-
quence of (10) and the previous proposition. �

Remark 3. Note that if 0 ∈ t∗ is a regular value of JT , the implicit function
theorem implies that the limit in (20) equals∫

ΩT
0 /T

KT
0 (L),

compare [26, Theorem 3, ii)]. In particular,
∑

F∈F Resς,Λ(uFΦ
2) is indepen-

dent of ς. Further, if X is compact, the set of regular values of JT is a
disjoint union of open, convex polytopes, and

∫
ΩT

ς /T
KT

ς (L) is constant on

each polytope [20].
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In order to derive the residue formula mentioned in the introduction,
we are left with the task of evaluating the limits occuring in Proposition 1
and the sum of residues (20) in terms of the reduced spaces Xred = Ω0/G
and ΩT

0 /T , respectively. This amounts to an examination of the asymptotic
behavior of the integrals (11) in case that ς ∈ g∗, and in particular ς = 0, is
a singular value of the momentum map, in which case Crit(ψς) is singular.
From now on, we will only be considering the case ς = 0, and simply write
ψ for ψ0, I(μ) for I0(μ), and so on. As explained in the previous section,
we shall partially resolve the singularities of the critical set Crit(ψ) first,
and then make use of the stationary phase principle in a suitable resolu-
tion space. Partial desingularizations of the zero level set Ω = J−1(0) of the
momentum map and the symplectic quotient Ω/G have been obtained by
Meinrenken-Sjamaar [35] for compact symplectic manifolds with a Hamil-
tonian compact Lie group action by performing blow-ups along minimal
symplectic suborbifolds containing the strata of maximal depth in Ω. In the
context of geometric invariant-theoretic quotients, partial desingularizations
were studied in [30] and [26].

From now on, we will restrict ourselves to the case where X is given by
the cotangent bundle of a Riemannian manifold. For a general symplectic
manifold, the desingularization process should be similar, but more involved,
and we intend to deal with this case at some other occasion. Note that
by a theorem of Weinstein, a symplectic manifold is locally the cotangent
bundle of a Lagrangian submanifold, but in general, the momentum map
of a Hamiltonian action will not be given locally by a Liouville form, c.p.
Remark 4.

LetM be a Riemannian manifold of dimension n. Writing γ : T ∗M →M
for the cotangent bundle, and τ : T (T ∗M)→ T ∗M for the tangent bundle,
we define on T ∗M the Liouville form

Θη(X) = τ(X)[γ∗(X)], X ∈ Tη(T
∗M).

We then regard T ∗M as a symplectic manifold with symplectic form ω = dΘ.
In particular, M might carry a complex structure J : TM → TM . In this
case, M constitutes a complex manifold M c, whose tangent bundle TM c is
C-linear isomorphic to TM endowed with the C-bundle structure induced
by J , so that as C-bundles

TM c � TM1,0, T ∗M c � T ∗M1,0,

where TM ⊗R C = TM1,0 ⊕ TM0,1 is the splitting of the complexification
of TM induced by J , and T ∗M1,0 the C-dual bundle of TM1,0. Furthermore,
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the complex cotangent bundle T ∗M c is a complex manifold with underlying
differentiable manifold T ∗M . In what follows, we will endow T ∗M with the
Sasaki metric g, which is associated to ω by an almost-complex structure J ,
so that (T ∗M,J , g) becomes an almost-Kähler manifold. In this case, the
symplectic volume form ωn/n! and the Riemannian volume density defined
by the Sasaki metric coincide.

Assume now that M carries an isometric action of a compact, connected
Lie group G with Lie algebra g, and define for every X ∈ g the function

JX : T ∗M −→ R, η �→ Θ(X̃)(η).

Note that Θ(X̃)(η) = η(X̃π(η)). The function JX is linear in X, and due to
the invariance of the Liouville form [9] one has

LX̃Θ = dJX + ιX̃ω = 0, ∀X ∈ g,

where L denotes the Lie derivative. Hence, the infinitesimal action of X ∈ g
on T ∗M is given by the Hamiltonian vector field defined by JX , which means
that G acts on T ∗M in a Hamiltonian way. The corresponding symplectic
momentum map is then given by

J : T ∗M → g∗, J(η)(X) = JX(η),

and we put Ω = J−1(0). Note that

(21) η ∈ Ω ∩ T ∗mM ⇐⇒ ηm ∈ Ann(Tm(G ·m)),

where Ann (Vm) ⊂ T ∗mM denotes the annihilator of a vector subspace Vm ⊂
TmM .

Example 1. In case that M = Rn, let (q1, . . . , qn, p1, . . . pn) denote the
canonical coordinates on T ∗Rn � R2n. Let further G ⊂ GL(n,R) be a closed
subgroup acting on T∗Rn by g · (q, p) = (g q, T g−1 p). The symplectic form
reads ω = dθ =

∑n
i=1 dpi ∧ dqi, where θ =

∑
pi dqi is the Liouville form,

and the corresponding momentum map is given by

J : T ∗Rn � Rn × Rn → g∗, J(q, p)(X) = θ(X̃)(q, p) = 〈Xq, p〉 ,

where 〈·, ·〉 denotes the Euclidean inner product in Rn. In this case, for
ς ∈ g∗,

Crit(ψς) =
{
(q, p,X) ∈ Ως × g : X ∈ g(q,p)

}
,
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where Ως = {(q, p) ∈ T ∗Rn : 〈Aq, p〉 − ς(A) = 0 for all A ∈ g} and g(q,p) is
given by the set of all X ∈ g such that Xq = 0, Xp = 0.

Remark 4. Consider a symplectic linear vector space (X, ω) and a sub-
group G of the linear symplectic group acting naturally on X. A coadjoint
equivariant momentum map is then given by

J(v)(X) =
1

2
ω(X̃(v), v), v ∈ X, X ∈ g.

Consequently, the considered G-action is Hamiltonian. For X = T ∗Rn, this
constitutes an example of a Hamiltonian action on a cotangent bundle that
is not simply a lift of a group action on the basis manifold. J is not given in
terms of the Liouville form, and actually represents an example of a general
momentum map.

One now has the following

Lemma 2. Ω has a principal stratum RegΩ which is an open and dense
subset of Ω and a smooth submanifold in T ∗M of codimension equal to the
dimension κ of a principal G-orbit in M . In addition,

(22) Tη(Reg Ω) = [Tη(G · η)]ω = (g · η)ω, η ∈ Reg Ω,

and if κ = d, each η ∈ RegΩ is a regular point of J. Furthermore, the smooth
part of the critical set (14) for the phase function ψ(η)(X) = J(η)(X) cor-
responds to

(23) RegCrit(ψ) = {(η,X) ∈ RegΩ× g : X ∈ gη} ,

and constitutes a submanifold of codimension 2κ, while

(24) T(η,X)RegCrit(ψ) =

{
(X, w) ∈ (g · η)ω × Rd :

d∑
i=1

wi(X̃i)η = [X̃, X̃]η

}
,

where X̃ denotes an extension of X to a vector field 1.

1In the proposition below, we shall actually see that [X̃, X̃]η ∈ g · η for X ∈ gη
and X ∈ (g · η)ω.
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Proof. Denote the principal isotropy type of the G-action on M by (H), and
define

RegΩ = {η ∈ Ω : Gη ∼ H} ,

where Gη denotes the isotropy group of η. By [41, Theorem 2.1], RegΩ
is a smooth manifold. To compute its tangent bundle, let η(t) be a smooth
curve in Reg Ω and write X = η̇(t0) ∈ Tη(t0)Reg Ω. Differentiating the equal-
ity J(η(t))(X) = JX(η(t)) = 0 for arbitrary X ∈ g yields

d

dt
JX(η(t))|t=t0 = dJX(η(t0)) ◦ η̇(t0) = −ω(X̃,X)|η(t0) = 0,

and we obtain (22). Now, let η ∈ Ω ∩ T ∗xM and Gx ∼ H. In view of (21) one
computes for g ∈ Gx and X = XT + XN ∈ TxM = Tx(G · x)⊕Nx(G · x)

(g · η)(X) = η
(
(g−1)∗,x(XN )) = η(X),

where we took into account that Gx acts trivially on Nx(G · x), see [8, Pages
308 and 181]. Since Gη ⊂ Gπ(η) for arbitrary η ∈ T ∗M , we conclude that

η ∈ Ω ∩ T ∗xM, Gx ∼ H =⇒ Gη = Gx.

Consequently, T ∗(RegM) ∩ Ω ⊂ RegΩ, where RegM denotes the stratum
of points of principal orbit type (H) in M . Since by the principal orbit
theorem RegM is open and dense, RegΩ must be open and dense, too.
Furthermore, in view of (21) RegΩ must have codimension κ, and by (15)
this implies that if κ = d each element η ∈ RegΩ is a regular point of J.

Now, the Lie algebra of Gη is given by gη = {X ∈ g : X̃η = 0}, so that
(23) follows from (14). To see (24), let (η(t), X(t)) be a smooth curve in
Reg Ω× g. Writing X(t) =

∑
sj(t)Xj with respect to a basis {X1, . . . , Xd}

of g, one computes for any f ∈ C∞(Reg Ω)

d

dt
X̃(t)η(t)f|t=t0 =

d∑
j=1

d

dt

(
sj(t)(X̃j)η(t)f

)
|t=t0

=

d∑
j=1

ṡj(t0)(X̃jf)(η(t0)) +

d∑
j=1

sj(t0)
d

dt
(X̃jf)(η(t))|t=t0 .
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Writing X = η̇(t0) ∈ Tη(t0)Reg Ω, one has d
dt(X̃jf)(η(t))|t=t0 = X̃η(t0)(X̃jf),

so that if (η(t), X(t)) is a curve in RegCrit(ψ) one obtains

d∑
j=1

ṡj(t0)(X̃j)η(t0)f +

d∑
j=1

sj(t0)[X̃, X̃j ]η(t0)f = 0,

since X̃(t0)η(t0)(X̃f) = 0, and the assertion follows from (22). �

Remark 5. Not that for a general differentiable G-manifold M , the prin-
cipal isotropy types of M , TM and T ∗M might be different. Indeed, for
M = S2 � G/H, G = SO(3), and H = SO(2) the union M(H) of orbits in
M of isotropy type (H) equals M and corresponds to the principal stratum,
while

TM = (TM)({e}) ∪̇ (TM)(H),

where (TM)(H) corresponds to the zero section and (TM)({e}) to its com-
plement, consequently being the principal stratum.

Before we start with the actual desingularization process of the phase
function ψ, let us mention the following

Proposition 4. The mapping P : Reg Crit(ψ)→ Reg Ω, (η,X) �→ η is a
submersion.

Proof. Let η ∈ Reg Ω and X ∈ gη. We show that [X̃, X̃]η ∈ g · η for all X ∈
TηReg Ω. To begin, note that πG : Reg Ω→ Reg Ω/G is a submersion and a
principal fiber bundle with ker(πG)∗,η = g · η [37, Theorem 8.1.1]. If therefore
η(t) ∈ Reg Ω denotes a curve with η(0) = η, η̇(0) = X, and g ∈ Gη, differ-
entiation of πG(g · η(t)) = πG(η(t)) yields X− g∗,η(X) ∈ ker(πG)∗,η = g · η.
Consequently,

(25)
d

dt
(e−tX)∗,ηX|t=0 = lim

t→0
t−1

[
(e−tX)∗,ηX− X

] ∈ g · η,

where we made the identification TX(TηReg Ω) � TηReg Ω. Now, for arbi-
trary Y ∈ g [37, Proposition 4.2.2],

ωη([X̃, X̃], Ỹ ) = −ωη([X̃, Ỹ ], X̃)− ωη([Ỹ , X̃], X̃) = 0,
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since X̃η = 0, and X̃η = X ∈ (g · η)ω. Hence, [X̃, X̃]η ∈ (g · η)ω. Furthermore,
for arbitrary f ∈ C∞(T ∗M),

[X̃, X̃]ηf = X̃η(X̃f) =
d

ds
(X̃f)(η(s))|s=0

=
d

dt

(
d

ds
f(e−tX · η(s))|s=0

)
|t=0

=
d

dt

( ˜(e−tX)∗,ηX|t=0

)
η
f,

so that with (25)

(26) [X̃, X̃]η =
d

dt
(e−tX)∗,ηX|t=0 ∈ g · η.

The previous lemma then implies that P∗,(η,X) : T(η,X)RegCrit(ψ)→
TηReg Ω, (X, w) �→ X is a surjection, and the assertion follows. �

Remark 6. Note that for η ∈ Reg Ω, and X ∈ gη, the previous proposition
implies that the Lie derivative defines a homomorphism

(27) LX : g · η � X �−→ LX̃(X̃)η = [X̃, X̃]η ∈ g · η.

5. The desingularization process

We shall now proceed to a partial desingularization of the critical set of
the phase function (12) for X = T ∗M , ς = 0, and derive an asymptotic de-
scription of the integral (11) in this case. An analogous desingularization
process was already implemented in [40] to describe the asymptotic distri-
bution of eigenvalues of an invariant elliptic operator. The desingularization
employed here constitutes a local version of the latter, and for this reason
is slightly simpler. Indeed, the phase function considered in [40] is a global
analogue of ψ(η,X) = J(η)(X). It should be noticed, however, that these
phase functions are not equivalent in the sense of Duistermaat [15], so that
the corresponding desingularization processes can not be reduced to each
other 2. To begin, we shall need a suitable G-invariant covering of M . In
its construction, we shall follow Kawakubo [28], Theorem 4.20. For a more
detailed survey on compact group actions, we refer the reader to [40], Sec-
tion 3. Thus, let (H1), . . . , (HL) denote the isotropy types of M , and arrange

2Observe that a similar phenomenon occurs in [18].
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them in such a way that

Hj is conjugate to a subgroup of Hi ⇒ i ≤ j.

Let H ⊂ G be a closed subgroup, and M(H) the union of all orbits of type
G/H. Then M has a stratification into orbit types according to

M = M(H1) ∪ · · · ∪M(HL).

By the principal orbit theorem, the setM(HL) is open and dense inM , while
M(H1) is a G-invariant submanifold. Denote by ν1 the normal G-vector
bundle of M(H1), and by f1 : ν1 →M a G-invariant tubular neighbourhood
of M(H1) in M . Take a G-invariant metric on ν1, and put

Dt(ν1) = {v ∈ ν1 : ‖v‖ ≤ t} , t > 0.

We then define the G-invariant submanifold with boundary

M2 = M − f1(
◦
D1/2 (ν1)),

on which the isotropy type (H1) no longer occurs, and endow it with a
G-invariant Riemannian metric with product form in a G-invariant collar
neighborhood of ∂M2 in M2. Consider now the union M2(H2) of orbits in
M2 of type G/H2, a G-invariant submanifold of M2 with boundary, and
let f2 : ν2 →M2 be a G-invariant tubular neighborhood of M2(H2) in M2,
which exists due to the particular form of the metric on M2. Taking a G-
invariant metric on ν2, we define

M3 = M2 − f2(
◦
D1/2 (ν2)),

which constitutes a G-invariant submanifold with corners and isotropy types
(H3), . . . (HL). Continuing this way, one finally obtains for M the decompo-
sition

M = f1(D1/2(ν1)) ∪ · · · ∪ fL(D1/2(νL)),

where we identified fL(D1/2(νL)) with ML. This leads to the covering

M = f1(
◦
D1 (ν1)) ∪ · · · ∪ fL(

◦
D1 (νL)), fL(

◦
D1 (νL)) =

◦
ML .

Let us now start resolving the singularities of the critical set Crit(ψ). For
this, we will set up an iterative desingularization process along the strata
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of the underlying G-action, where each step in our iteration will consist
of a decomposition, a blow-up, and a reduction. For simplicity, we shall
assume that at each iteration step the set of maximally singular orbits is
connected. Otherwise each of the connected components, which might even
have different dimensions, has to be treated separately.

First decomposition

Take 1 ≤ k ≤ L− 1. As before, let fk : νk →Mk be an invariant tubular
neighborhood of Mk(Hk) in

Mk = M −
k−1⋃
i=1

fi(
◦
D1/2 (νi)),

a manifold with corners on which G acts with the isotropy types (Hk),

(Hk+1), . . . , (HL), and put Wk = fk(
◦
D1 (νk)), WL =

◦
ML, so that M = W1 ∪

· · · ∪WL. Write further Sk = {v ∈ νk : ‖v‖ = 1}. Introduce a partion of unity
{χk}k=1,...,L subordinate to the covering {Wk}, and with the notation of (11)
define

Ik(μ) =

∫
T ∗Wk

∫
g

eiψ(η,X)/μ(aχk)(η,X) dX dη,

so that I(μ) = I1(μ) + · · ·+ IL(μ). As will be explained in Lemma 5, the
critical set of ψ is clean on the support of aχL, so that we can apply directly
the stationary phase theorem to compute the integral IL(μ). But if k ∈
{1, . . . , L− 1}, the sets

Ωk = Ω ∩ T ∗Wk,

Critk(ψ) =
{
(η,X) ∈ Ωk × g : X̃η = 0

}
are no longer differentiable manifolds, so that the stationary phase theo-
rem can not a priori be applied in this situation. Instead, we shall resolve
the singularities of Critk(ψ), and after this apply the principle of the sta-
tionary phase in a suitable resolution space. For this, introduce for each
x(k) ∈Mk(Hk) the decomposition

g = gx(k) ⊕ g⊥x(k) ,

where gx(k) denotes the Lie algebra of the stabilizer Gx(k) of x(k), and g⊥x(k) its
orthogonal complement with respect to some Ad (G)-invariant inner prod-
uct in g. Let further A1(x

(k)), . . . , Ad(k)(x(k)) be an orthonormal basis of
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g⊥x(k) , and B1(x
(k)), . . . , Be(k)(x(k)) an orthonormal basis of gx(k) . Consider

the isotropy algebra bundle over Mk(Hk)

isoMk(Hk)→Mk(Hk),

as well as the canonical projection

πk : Wk →Mk(Hk), m = fk(x
(k), v(k)) �→ x(k),

x(k) ∈Mk(Hk), v
(k) ∈ (νk)x(k) ,

where fk(x
(k), v(k)) = (expx(k) ◦γ(k))(v(k)), and

γ(k)(v(k)) =
Fk(x

(k))

(1 +
∥∥v(k)∥∥)1/2 v(k)

is an equivariant diffeomorphism from (νk)x(k) onto its image, Fk : Mk(Hk)→
R being a smooth, G-invariant positive function, see Bredon [8, pages 306-
307]. We consider then the induced bundle

π∗kisoMk(Hk) =
{
(fk(x

(k), v(k)), X) ∈Wk × g : X ∈ gx(k)

}
,

and denote by

Πk : Wk × g→ π∗kisoMk(Hk)

the canonical projection which is obtained by considering geodesic normal
coordinates around π∗k isoMk(Hk), and identifying Wk × g with a neighbor-
hood of the zero section in the normal bundle N π∗k isoMk(Hk). Note that
the fiber of the normal bundle to π∗isoMk(Hk) at a point (fk(x

(k), v(k)), X)
can be identified with g⊥x(k) . Integrating along the fibers of the normal bundle
to π∗k isoMk(Hk) we therefore obtain for Ik(μ) the expression

∫
π∗k isoMk(Hk)

[∫
Π−1

k (m,B(k))×T ∗mWk

eiψ/μaχk Φk d(T ∗mWk) dA
(k)

]
dB(k) dm

(28)

=

∫
Mk(Hk)

[∫
g×π−1

k (x(k))

[∫
T ∗
exp

x(k) v(k)Wk

eiψ/μaχk Φk d(T ∗exp
x(k) v(k)Wk)

]

dA(k) dB(k) dv(k)

]
dx(k),
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where

γ(k)
( ◦
D1 (νk)x(k)

)× g⊥x(k) × gx(k) � (v(k), A(k), B(k))

�→ (expx(k) v(k), A(k) +B(k)) = (m,X)

are coordinates on g× π−1k (x(k)), while dm, dx(k), dA(k), dB(k), dv(k), and

d(T ∗mWk) are suitable measures onWk,Mk(Hk), g
⊥
x(k) , gx(k) , γ(k)(

◦
D1 (νk)x(k)),

and T ∗mWk, respectively, such that

dX dη ≡ Φk d(T
∗
exp

x(k) v(k)Wk)(η)dA
(k) dB(k) dv(k) dx(k),

where Φk is a Jacobian.

First blow-up

Let now k ∈ {1, . . . , L− 1} be fixed. For the further analysis of the integral
Ik(μ), we shall sucessively resolve the singularities of Critk(ψ), until we
are in position to apply the principle of the stationary phase in a suitable
resolution space. To begin with, we perform a blow-up

ζk : BZk
(Wk × g) −→Wk × g

in Wk × g with center Zk = isoMk(Hk). For this, let us write A
(k)(x(k), α(k))

=
∑

α
(k)
i A

(k)
i (x(k)) ∈ g⊥x(k) , B

(k)(x(k), β(k)) =
∑

β
(k)
i B

(k)
i (x(k)) ∈ gx(k) , and

γ(k)(v(k)) =

c(k)∑
i=1

θ
(k)
i v

(k)
i (x(k)) ∈ γ(k)

( ◦
D1 (νk)x(k)

)
,

where {v(k)1 , . . . , v
(k)
c(k)} denotes an orthonormal frame in νk. With respect to

these coordinates we have Zk =
{
T (k) = (α(k), θ(k)) = 0

}
, so that

BZk
(Wk × g) =

{
(m,X, [t]) ∈Wk × g× RPc(k)+d(k)−1 : T (k)

i tj = T
(k)
j ti,

}
,

ζk : (m,X, [t]) �−→ (m,X).

Let us now cover BZk
(Wk × g) with charts

{
(ϕ�

k, U
�
k )
}
, where U�

k =

BZk
(Wk × g) ∩ (Wk × g× V�), V� =

{
[t] ∈ RPc(k)+d(k)−1 : t� = 0

}
, and ϕ�

k is

given by the canonical coordinates on V�. As a consequence, we obtain for
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ζk in each of the θ(k)-charts
{
U�
k

}
1≤�≤c(k) the expressions

ζ�k = ζk ◦ ϕ�
k : (x(k), τk,

�ṽ(k), A(k), B(k))(29)
′ζ�

k�−→ (x(k), τk
�ṽ(k), τkA

(k), B(k))

�−→ (expx(k) τk
�ṽ(k), τkA

(k) +B(k)) ≡ (m,X),

where τk ∈ (−1, 1),
�ṽ(k)(x(k), θ(k))

= γ(k)

((
v(k)� (x(k)) +

c(k)∑
i �=�

θ
(k)
i v

(k)
i (x(k))

)/√
1 +

∑
i �=�

(θ
(k)
i )2

)
∈ γ(k)( �S+

k )x(k) ,

and
�S+

k =
{
v ∈ νk : v =

∑
sivi, s� > 0, ‖v‖ = 1

}
.

Note that for each 1 ≤ � ≤ c(k),

Wk � fk(
�S+

k × (−1, 1))

up to a set of measure zero. Now, for given m ∈M , let Zm ⊂ TmM be a
neighborhood of zero such that expm : Zm −→M is a diffeomorphism onto
its image. Then

(expm)∗,v : TvZm −→ Texpm vM, v ∈ Zm,

and g · expm v = Lg(expm v) = expLg(m)(Lg)∗,m(v). As a consequence, since

B(k) ∈ gx(k) , we obtain

B̃(k)
exp

x(k) τk �ṽ(k) =
d

dt
expx(k)

(
L

e−tB(k)

)
∗,x(k)(τk

�ṽ(k))|t=0

= (expx(k))∗,τk �ṽ(k)

(
λ(B(k))(τk

�ṽ(k))
)

= τk(expx(k))∗,τk �ṽ(k)

(
λ(B(k))( �ṽ(k))

)
,

where we denoted by

λ : gx(k) −→ gl(νk,x(k)), B(k) �→ d

dt
(L

e−tB(k) )∗,x(k)|t=0

the linear representation of gx(k) in νk,x(k) , and made the canonical identi-

fication Tv(νk,x(k)) ≡ νk,x(k) for any v ∈ (νk)x(k) . With π(η) = expx(k) τk
�ṽ(k)



484 Pablo Ramacher

we therefore obtain for the phase function the factorization

ψ(η,X) = η(X̃π(η)) = η
( ˜(τkA(k) +B(k))exp

x(k) τk �ṽ(k)

)
= τk

[
η
(
Ã(k)

exp
x(k) τk �ṽ(k)

)
+ η

(
(expx(k))∗,τk �ṽ(k) [λ(B(k))�ṽ(k)]

)]
.

Similar considerations hold for ζk in the α(k)-charts
{
U�
k

}
c(k)+1≤�≤c(k)+d(k) ,

so that we get on the resolution space

ψ ◦ (id fiber ⊗ ζk) =
(k)ψ̃tot = τk · (k)ψ̃wk,

(k)ψ̃tot and (k)ψ̃wk being the total and weak transform of the phase function
ψ, respectively.

Example 2. In the case M = T ∗Rn and G ⊂ GL(n,R) a closed subgroup,
the phase function factorizes with respect to the canonical coordinates η =
(q, p) according to

ψ(q, p,X) = 〈Xq, p〉 =
〈(

τkA
(k) +B(k)

)
expx(k) τk

�ṽ(k), p
〉

= τk

[〈
A(k)x(k) +B(k) �ṽ(k), p

〉
+ τk

〈
A(k) �ṽ(k), p

〉]
,

where we took into account that in Rn the exponential map is given by
expx(k) v(k) = x(k) + v(k).

Introducing a partition
{
u�k

}
of unity subordinated to the covering

{
U�
k

}
now yields

Ik(μ) =

c(k)∑
�=1

I�k (μ) +

d(k)∑
�=c(k)+1

Ĩ�k (μ),

where the integrals I�k (μ) and Ĩ�k (μ) are given by the expressions∫
BZk

(Wk×g)
u�k(id fiber ⊗ ζk)

∗(eiψ/μaχkdXdη).

As we shall see in Section 9, the weak transform (k)ψ̃wk has no critical
points in the α(k)-charts, which implies that the integrals Ĩk(μ)

� contribute
to I(μ) only with higher order terms. In what follows, we shall therefore
restrict ourselves to the examination of the integrals I�k (μ). Setting a�k =
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(u�k ◦ ϕ�
k)[(aχk) ◦ (id fiber ⊗ ζ�k)] we obtain with (28) and (29)

I�k (μ) =

∫
Mk(Hk)×(−1,1)

[∫
γ(k)((Sk)x(k) )×g

x(k)×g⊥
x(k)

[∫
T ∗
exp

x(k) τkṽ(k)Wk

ei
τk
μ

(k)ψ̃wk

a�k Φ̃
�
k d(T

∗
exp

x(k) τkṽ(k)Wk)

]
dA(k) dB(k) dṽ(k)

]
dτk dx(k),

where dṽ(k) is a suitable measure on the set γ(k)((Sk)x(k)) such that

dX dη ≡ Φ̃�
k d(T ∗exp

x(k) τkṽ(k)Wk) dA
(k) dB(k) dṽ(k) dτk dx

(k),

Φ̃�
k being a Jacobian. Furthermore, a computation shows that Φ̃�

k =

|τk|c(k)+d(k)−1Φk ◦ ′ζ�k .

First reduction

Let us now assume that there exists a m ∈Wk with orbit type G/Hj , and let
x(k) ∈Mk(Hk), v

(k) ∈ (νk)x(k) be such that m = fk(x
(k), v(k)). Since we can

assume thatm lies in a slice at x(k) around the G-orbit of x(k), we have Gm ⊂
Gx(k) , see Kawakubo [28, pages 184-185], and Bredon [8, page 86]. Hence,
Hj � Gm must be conjugate to a subgroup of Hk � Gx(k) . Now, G acts
on Mk with the isotropy types (Hk), (Hk+1), . . . , (HL). The isotropy types
occuring in Wk are therefore those for which the corresponding isotropy
groups Hk, Hk+1, . . . , HL are conjugate to a subgroup of Hk, and we shall
denote them by

(Hk) = (Hi1), (Hi2), . . . , (HL).

Now, for every x(k) ∈Mk(Hk), (νk)x(k) is an orthogonal Gx(k)-space; there-
fore Gx(k) acts on (Sk)x(k) with isotropy types (Hi2), . . . , (HL), cp. Donnelly
[14, pp. 34]. Furthermore, by the invariant tubular neighborhood theorem,
one has the isomorphism

Wk/G � (νk)x(k)/Gx(k) ,

so thatG acts on Sk = {v ∈ νk : ‖v‖ = 1} with isotropy types (Hi2), . . . , (HL)
as well. As will turn out, if G acted on Sk only with type (HL), the critical
set of (k)ψ̃wk would be clean in the sense of Bott, and we could proceed to
apply the stationary phase theorem to compute Ik(μ). But in general this
will not be the case, and we are forced to continue with the iteration.



486 Pablo Ramacher

Second decomposition

Let now x(k) ∈Mk(Hk) be fixed. Since γ(k) : νk → νk is an equivariant dif-
feomorphism onto its image, γ(k)((Sk)x(k)) is a compact Gx(k)-manifold, and
we consider the covering

γ(k)((Sk)x(k)) = Wki2 ∪ · · · ∪WkL,

Wkij = fkij (
◦
D1 (νkij )), WkL = Int(γ(k)((Sk)x(k))L),

where fkij : νkij → γ(k)((Sk)x(k))ij is an invariant tubular neighborhood of

γ(k)((Sk)x(k))ij (Hij ) in

γ(k)((Sk)x(k))ij = γ(k)((Sk)x(k))−
j−1⋃
r=2

fkir(
◦
D1/2 (νkir)), j ≥ 2,

and fkij (x
(ij), v(ij)) = (expx(ij) ◦γ(ij))(v(ij)), x(ij) ∈ γ(k)((Sk)x(k))ij (Hij ),

v(ij) ∈ (νkij )x(ij) , γ
(ij) : νkij → νkij being an equivariant diffeomorphism onto

its image. Let further {χkij} denote a partition of unity subordinated to the
covering

{
Wkij

}
, and define

I�kij (μ) =

∫
Mk(Hk)×(−1,1)

[∫
γ(k)((Sk)x(k) )×g

x(k)×g⊥
x(k)

[∫
T ∗
exp

x(k) τkṽ(k)Wk

ei
τk
μ

(k)ψ̃wk

a�kχkij Φ̃
�
k d(T ∗exp

x(k) τkṽ(k)Wk)

]
dA(k)

dB(k) dṽ(k)

]
dτk dx(k),

so that I�k (μ) = I�ki2(μ) + · · ·+ I�kL(μ). It is important to note that the parti-

tion functions χkij depend smoothly on x(k) as a consequence of the tubular

neighborhood theorem, by which in particular γ(k)(Sk)/G � γ(k)((Sk)x(k))/
Gx(k) , and the smooth dependence in x(k) of the induced Riemannian metric
on γ(k)((Sk)x(k)), and the metrics on the normal bundles νkij . Since Gx(k)

acts on WkL only with type (HL), the iteration process for I�kL(μ) ends here.
For the remaining integrals I�kij (μ) with k < ij < L, let us denote by

iso γ(k)((Sk)x(k))ij (Hij )→ γ(k)((Sk)x(k))ij (Hij )
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the isotropy algebra bundle over γ(k)((Sk)x(k))ij (Hij ), and by πkij : Wkij →
γ(k)((Sk)x(k))ij (Hij ) the canonical projection. For x

(ij) ∈ γ(k)((Sk)x(k))ij (Hij ),
consider the decomposition

g = gx(k) ⊕ g⊥x(k) = (gx(ij) ⊕ g⊥
x(ij)

)⊕ g⊥x(k) .

Let further A
(ij)
1 , . . . , A

(ij)

d(ij)
be an orthonormal basis in g⊥

x(ij)
, as well as

B
(ij)
1 , . . . , B

(ij)

e(ij)
be an orthonormal basis in gx(ij) , and {v(kij)1 , . . . , v

(kij)

c(ij)
} an

orthonormal frame in νkij . Integrating along the fibers in a neighborhood of

π∗kij iso γ
(k)((Sk)x(k))ij (Hij ) ⊂Wkij × gx(k) then yields for I�kij (μ) the expres-

sion

∫
Mk(Hk)×(−1,1)

[∫
γ(k)((Sk)x(k) )ij (Hij

)

[∫
π−1
kij

(x(ij))×g
x(k)×g⊥

x(k)[∫
T ∗
exp

x(k) τk exp
x
(ij)

v
(ij)

Wk

ei
τk
μ

(k)ψ̃wk × a�kχkij Φ
�
kij

d(T ∗
exp

x(k) τk exp
x
(ij)

v(ij)
Wk)

]

dA(k) dA(ij) dB(ij) dv(ij)

]
dx(ij)

]
dτkdx

(k),

where Φ�
kij

is a Jacobian, and

γ(ij)
( ◦
D1 (νkij )x(ij)

)× g⊥
x(ij)

× gx(ij) � (v(ij), A(ij), B(ij))

�→ (expx(ij) v
(ij), A(ij) +B(ij)) = (ṽ(k), B(k))

are coordinates on π−1kij
(x(ij))× gx(k) , while dx(ij), and dA(ij), dB(ij), dv(ij)

are suitable measures in the spaces γ(k)((Sk)x(k))ij (Hij ), and g⊥
x(ij)

, gx(ij) ,

γ(ij)
( ◦
D1 (νkij )x(ij)

)
, respectively, such that we have the equality

Φ̃�
k dB

(k) dṽ(k) ≡ Φ�
kij

dA(ij) dB(ij) dv(ij) dx(ij).

Second blow-up

Let us fix an l such that k < l < L, (Hl) ≤ (Hk), and consider in BZk
(Wk ×

g) a blow-up

ζkl : BZkl
(BZk

(Wk × g)) −→ BZk
(Wk × g)
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with center

Zkl �
⋃

x(k)∈Mk(Hk)

(−1, 1)× iso γ(k)((Sk)x(k))l(Hl).

Let A(l) ∈ g⊥x(l) and B(l) ∈ gx(l) be arbitrary and write A(l)(x(k), x(l), α(l)) =∑
α
(l)
i A

(l)
i (x(k), x(l)) ∈ g⊥x(l) , B

(l)(x(k), x(l), β(l)) =
∑

β
(l)
i B

(l)
i (x(l)) ∈ gx(l) , as

well as

γ(l)(v(l))(x(k), x(l), θ(l)) =

c(l)∑
i=1

θ
(l)
i v

(kl)
i (x(k), x(l)).

Then Zkl �
{
α(k) = 0, α(l) = 0, θ(l) = 0

}
locally, which in particular shows

that Zkl is a manifold. If we now cover BZkl
(BZk

(Wk × g)) with the standard
charts, we shall see again in Section 9 that modulo higher order terms the
main contributions to I�kl(μ) come from the (θ(k), θ(l))-charts. Therefore it
suffices to examine ζkl in one of these charts, in which it reads

ζ�σkl : (x(k), τk, x
(l), τl, ṽ

(l), A(k), A(l), B(l))
′ζ�σ

kl�−→ (x(k), τk, x
(l), τlṽ

(l), τlA
(k), τlA

(l), B(l))

�−→ (x(k), τk, expx(l) τlṽ
(l), τlA

(k), τlA
(l) +B(l)) ≡ (x(k), τk, ṽ

(k), A(k), B(k)),

where

ṽ(l)(x(k), x(l), θ(l)) ∈ γ(l)
(
(S+

kl)x(l)

)
.

Note that Zkl has normal crossings with the exceptional divisor Ek =
ζ−1k (Zk) = {τk = 0}, and that

Wkl � fkl(S
+
kl × (−1, 1))

up to a set of measure zero, where Skl denotes the sphere subbundle in

νkl, and we set S+
kl =

{
v ∈ Skl : v =

∑
viv

(kl)
i , vσ > 0

}
for some σ. Conse-

quently, the phase function factorizes according to

ψ ◦ (id fiber ⊗ (ζ�k ◦ ζ�σkl )) = (kl)ψ̃tot = τk τl · (kl)ψ̃wk,
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which in the given charts reads

ψ(η,X) = τk

[
η
(
τ̃lA(k)

exp
x(k) τk exp

x(l) τlṽ(l)

)
+η

(
(expx(k))∗,τk exp

x(l) τlṽ(l) [λ(τlA
(l) +B(l)) expx(l) τlṽ

(l)]
)]

= τkτl

[
η
(
Ã(k)

exp
x(k) τk exp

x(l) τlṽ(l)

)
+ η

(
(expx(k))∗,τk exp

x(l) τlṽ(l) [λ(A(l)) expx(l) τlṽ
(l)]

)
+η

(
(expx(k))∗,τk exp

x(l) τlṽ(l)

[
(expx(l))∗,τlṽ(l) [(λ(B(l))ṽ(l)]

])]
where we took into account that

λ(B(l)) expx(l) τlṽ
(l) =

d

dt
expx(l)

(
L

e−tB(l)

)
∗,x(k)τlṽ

(l)
|t=0

= (expx(l))∗,τlṽ(l)

(
λ(B(l))τlṽ

(l)
)
.

Since the weak transforms klψ̃wk have no critical points in the (θ(k), α(l))-
charts, modulo lower order terms, I�kl(μ) is given by a sum of integrals of
the form

I�σkl (μ) =

∫
Mk(Hk)×(−1,1)

[∫
γ(k)((Sk)x(k) )l(Hl)×(−1,1)[∫

γ(l)((Skl)x(l) )×g
x(l)×g⊥

x(l)×g⊥
x(k)

[∫
T ∗
m(kl)Wk

× ei
τkτl
μ

(kl)ψ̃wk

a�σkl Φ̃
�σ
kl d(T ∗m(kl)Wk)

]

dA(k) dA(l) dB(l) dṽ(l)

]
dτl dx

(l)

]
dτk dx

(k),

where we wrote m(kl) = expx(k) τk expx(l) τlṽ
(l), a�σkl are smooth amplitudes

with compact support in a (θ(k), θ(l))-chart labeled by the indices �, σ, and
dṽ(l) is a suitable measure in γ(l)((Skl)x(l)) such that we have the equality

dX dη ≡ Φ̃�σ
kl d(T ∗m(kl)Wk) dA

(k) dA(l) dB(l) dṽ(l) dτl dx
(l) dτk dx

(k).

Furthermore, Φ̃�σ
kl = |τl|c(l)+d(k)+d(l)−1Φ�

kl ◦ ′ζ�σkl .
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Second reduction

Now, the group Gx(k) acts on γ(k)((Sk)x(k))l with the isotropy types (Hl) =
(Hij ), (Hij+1

), . . . , (HL). By the same arguments given in the first reduction,
the isotropy types occuring in Wkl constitute a subset of these types, and
we shall denote them by

(Hl) = (Hir1
), (Hir2

), . . . , (HL).

Consequently, Gx(k) acts on Skl with the isotropy types (Hir2
), . . . , (HL).

Again, if G acted on Skl only with type (HL), we shall see later that the
critical set of (kl)ψ̃wk would be clean. However, in general this will not be
the case, and we have to continue with the iteration.

N-th decomposition

Denote by Λ ≤ L the maximal number of elements that a totally ordered
subset of the set of isotropy types can have. Assume that 3 ≤ N < Λ, and
let {(Hi1), . . . , (HiN )} be a totally ordered subset of the set of isotropy
types with i1 < · · · < iN < L. Let fi1 , fi1i2 , Si1 , Si1i2 , as well as x(i1) ∈
Mi1(Hi1), x(i2) ∈ γ(i1)

(
(S+

i1
)x(i1)

)
i2
(Hi2) be defined as in the first two it-

eration steps. Let now j < N , and assume that fi1···ij , Si1···ij , . . . have al-
ready been defined. For each x(iN−1), let γ(iN−1)((Si1···iN−1

)x(iN−1))iN be the
submanifold with corners of the Gx(iN−1)-manifold γ(iN−1)((Si1···iN−1

)x(iN−1))
from which all the isotropy types less than (HiN ) have been removed. Con-
sider the invariant tubular neighborhood

fi1···iN = exp ◦γ(iN ) : νi1···iN → γ(iN−1)((Si1···iN−1
)x(iN−1))iN

of the set of maximal singular orbits γ(iN−1)((Si1···iN−1
)x(iN−1))iN (HiN ), and

define Si1···iN as the sphere subbundle in νi1···iN over

γ(iN−1)((Si1···iN−1
)x(iN−1))iN (HiN ).

Put further Wi1···iN = fi1···iN (
◦
D1 (νi1···iN )) and denote the corresponding in-

tegral in the decomposition of I
�i1
···�iN−1

i1···iN−1
(μ) by I

�i1
···�iN−1

i1···iN (μ). For a point

x(iN ) ∈ γ(iN−1)((Si1···iN−1
)x(iN−1))iN (HiN ) we then consider the decomposition

gx(iN−1) = gx(iN ) ⊕ g⊥x(iN ) ,
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and set d(iN ) = dim g⊥x(iN ), e
(iN ) = dim gx(iN ), yielding the decomposition

g = gx(i1) ⊕ g⊥x(i1) = (gx(i2) ⊕ g⊥x(i2))⊕ g⊥x(i1)(30)

= · · · = gx(iN ) ⊕ g⊥x(iN ) ⊕ · · · ⊕ g⊥x(i1) .

Denote by {A(iN )
r (x(i1), . . . , x(iN ))} a basis of g⊥x(iN ), and by {B(iN )

r (x(i1), . . . ,

x(iN ))} a basis of gx(iN ). For arbitrary elements A(iN ) ∈ g⊥
x(iN ) and B(iN ) ∈

gx(iN ) write

A(iN ) =

d(iN )∑
r=1

α(iN )
r A(iN )

r (x(i1), . . . , x(iN )),

B(iN ) =

e(iN )∑
r=1

β(iN )
r B(iN )

r (x(i1), . . . , x(iN )),

and put

ṽ(iN )(x(iN ), θ(iN ))

= γ(iN )

⎛⎝(
v(i1···iN )
� (x(iN )) +

c(iN )∑
r �=�

θ(iN )
r v(i1···iN )

r (x(iN ))
)/√

1 +
∑
r �=�

(θ
(iN )
r )2

⎞⎠
for some �, where

{
v
(i1···iN )
r

}
is an orthonormal frame in νi1···iN . Finally, we

shall use the notations

m(ij ···iN ) = expx(ij) [τij expx(ij+1)[τij+1
expx(ij+2)[· · ·

[τiN−2
expx(iN−1)[τiN−1

expx(iN ) [τiN ṽ
(iN )]]] · · · ]]],

X(ij ···iN ) = τij · · · τiNA(ij) + τij+1
· · · τiNA(ij+1) + · · ·

+ τiN−1
τiNA

(iN−1) + τiNA
(iN ) +B(iN ),

where j = 1, . . . , N .

N-th blow-up

Let the blow-ups ζi1 and ζi1i2 be defined as in the first two iteration steps,
and assume that ζi1···ij have already been defined for j < N . Consider the
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blow-up

ζi1···iN :BZi1···iN
(BZi1···iN−1

(· · ·BZi1
(Wk × g) · · · ))

−→ BZi1···iN−1
(· · ·BZi1

(Wk × g) · · · )

with center

Zi1···iN �
⋃

x(i1),...,x(iN−1)

(−1, 1)N−1 × isoγ(iN−1)((Si1···iN−1
)x(iN−1))iN (HiN ).

Denote by ζ
�i1

i1
◦ · · · ◦ ζ�i1

···�iN

i1···iN a local realization of the sequence of blow-

ups ζi1 ◦ · · · ◦ ζi1···iN in a set of (θ(i1), . . . , θ(iN ))-charts labeled by the indices
�i1 , . . . , �iN . Now, for an arbitrary element B(i1) ∈ gi1 one computes

(B̃i1))m(i1···iN ) =
d

dt
e−tB

(i1) ·m(i1···iN )
|t=0(31)

=
d

dt
expx(i1)

[
( e−tB

(i1)

)∗,x(i1) [τi1m
(i2···iN )]

]
|t=0

= (expx(i1))∗,τi1m(i2···iN ) [λ(B(i1))τi1m
(i2···iN )].

By iteration we obtain for arbitrary A(ij) ∈ g⊥ij , 2 ≤ j ≤ N ,

(Ãij))m(i1···iN ) =
d

dt
expx(i1)

[
τi1 expx(i2) [· · ·(32)

[τij−1
( e−tA

(ij)

)∗,x(i1)m(ij ···iN )] · · · ]]|t=0

= (expx(i1))∗,τi1m(i2···iN )[
τi1(expx(i2))∗,τi2m(i3···iN ) [· · ·
[τij−1

λ(A(ij))m(ij ···iN )] · · · ]],
and similarly

(B̃iN ))m(i1···iN ) = (expx(i1))∗,τi1m(i2···iN )

[
τi1(expx(i2))∗,τi2m(i3···iN ) [· · ·(33)

[τiNλ(B
(iN ))ṽ(iN )] · · · ]].

As a consequence, the phase function factorizes locally according to

(i1···iN )ψ̃tot = ψ ◦ (id fiber ⊗ (ζ
�i1

i1
◦ · · · ◦ ζ�i1

···�iN

i1···iN ))

= J(ηm(i1···iN ))(X(i1···iN ))

= τi1 · · · τiN (i1···iN )ψ̃wk,
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where in the given charts (i1···iN )ψ̃wk is given by

ηm(i1···iN )

(
Ã(i1)

m(i1···iN )

)
(34)

+

N∑
j=2

ηm(i1···iN )

(
(expx(i1))∗,τi1m(i2···iN )

[
(expx(i2))∗,τi2m(i3···iN )

[ · · ·
(expx(ij−1))∗,τij−1

m(ij ···iN ) [λ(A(ij))m(ij ···iN )] · · · ]])
+ ηm(i1···iN )

(
(expx(i1))∗,τi1m(i2···iN )

[
(expx(i2))∗,τi2m(i3···iN )

[ · · ·
(expx(iN ))∗,τiN ṽ(iN ) [λ(B(iN ))ṽ(iN )] · · · ]]).

Modulo lower order terms, I(μ) is then given by a sum of integrals of the
form

I
�i1
···�iN

i1···iN (μ) =

∫
Mi1

(Hi1
)×(−1,1)

[∫
γ(i1)((Si1

)
x(i1) )i2 (Hi2

)×(−1,1)
· · ·(35) [∫

γ(iN−1)((Si1···iN−1
)
x
(iN−1) )iN (HiN

)×(−1,1)[∫
γ(iN )((Si1···iN )

x(iN ) )×g
x(iN )×g⊥

x(iN )×···×g⊥
x(i1)×T ∗m(i1···iN )Wi1

ei
τ1···τN

μ
(i1···iN )ψ̃wk

a
�i1 ···�iN

i1···iN Φ̃
�i1
···�iN

i1···iN

d(T ∗m(i1···iN )Wi1) dA
(i1) · · · dA(iN ) dB(iN ) dṽ(iN )

]

dτiN dx(iN ) · · ·
]
dτi2 dx

(i2)

]
dτi1 dx

(i1).

Here a
�i1
···�iN

i1···iN are amplitudes with compact support in a system of (θ(i1), . . . ,

θ(iN ))-charts labelled by the indices �i1 · · · �iN , while

Φ̃
�i1
···�iN

i1···iN =

N∏
j=1

|τij |c
(ij)+

∑j
r=1 d

(ir)−1Φ�i1
···�iN

i1···iN ,

where Φ
�i1
···�iN

i1···iN are smooth functions which do not depend on the vari-
ables τij .



494 Pablo Ramacher

N-th reduction

For each x(iN−1), the isotropy groupGx(iN−1) acts on γ(iN−1)((Si1···iN−1
)x(iN−1))iN

by the types (HiN ), . . . , (HL). The types occuring in Wi1···iN constitute a
subset of these, and Gx(iN−1) acts on the sphere bundle Si1···iN over the sub-
manifold γ(iN−1)((Si1···iN−1

)x(iN−1))iN (HiN ) ⊂Wi1···iN with one type less.

End of iteration

As before, let Λ ≤ L be the maximal number of elements of a totally ordered
subset of the set of isotropy types. After maximally N = Λ− 1 steps, the
end of the iteration is reached.

6. Smoothness of the critical sets of the weak transforms

We shall now prove the smoothness of the critical sets of the weak trans-
forms. We continue with the notation of the previous sections, and con-
sider a sequence of local blow-ups ζ

�i1

i1
◦ · · · ◦ ζ�i1

···�iN

i1···iN corresponding to a to-
tally ordered subset {(Hi1), . . . , (HiN )} of non-principal isotropy types that
are maximal in the sense that, if there is an isotropy type (HiN+1

) with
iN < iN+1 such that

{
(Hi1), . . . , (HiN+1

)
}
is a totally ordered subset, then

(HiN+1
) = (HL). For later purposes, let us define certain geometric distribu-

tions E(ij) and F (iN ) on M by setting

E
(i1)

m(i1···iN ) = Span{Ỹm(i1···iN ) : Y ∈ g⊥x(i1)},
E

(ij)

m(i1···iN ) = (expx(i1))∗,τi1m(i2···iN ) · · ·
(expx(ij−1))∗,τij−1

m(ij ···iN ) [λ(g⊥
x(ij)

)m(ij ···iN )],

F
(iN )

m(i1···iN ) = (expx(i1))∗,τi1m(i2···iN ) · · ·
(expx(iN ))∗,τiN ṽ(iN ) [λ(gx(iN ))ṽ(iN )],

(36)

where 2 ≤ j ≤ N . Note that by (30), (32) and (33) we have

Tm(i1···iN )(G ·m(i1···iN ))(37)

= E
(i1)

m(i1···iN ) ⊕
N⊕
j=2

τi1 · · · τij−1
E

(ij)

m(i1···iN ) ⊕ τi1 · · · τiNF (iN )

m(i1···iN ) .

By construction, for τij = 0, 1 ≤ j ≤ N , the G-orbit through m(i1···iN ) is of
principal type G/HL, which amounts to the fact that Gx(iN−1) acts on Si1···iN
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only with the isotropy type (HL), where we understand that Gx(i0) = G. We
then have the following

Theorem 2. Let {(Hi1), . . . , (HiN )} be a maximal, totally ordered subset
of non-principal isotropy types, and ζ

�i1

i1
◦ · · · ◦ ζ�i1 ···�iN

i1···iN a corresponding se-

quence of local blow-ups in a set of (θ(i1), . . . , θ(iN ))-charts labeled by the
indices �i1 , . . . , �iN . Let ηm(i1···iN ) ∈ π−1(m(i1···iN )), and consider the factor-
ization

J(ηm(i1···iN ))(X(i1···iN )) = (i1···iN )ψ̃tot = τi1 · · · τiN (i1···iN )ψ̃wk, pre

of the phase function ψ after N iteration steps, where (i1···iN )ψ̃wk,pre is given
by (34).3 Let further

(i1···iN )ψ̃wk

denote the pullback of (i1···iN )ψ̃wk, pre along the substitution τ = δi1···iN (σ)
given by the sequence of blow-ups

δi1···iN : (σi1 , . . . , σiN ) �→ σi1(1, σi2 , . . . , σiN ) = (σ′i1 , . . . , σ
′
iN )

�→ σ′i2(σ
′
i1 , 1, . . . , σ

′
iN ) = (σ′′i1 , . . . , σ

′′
iN )

�→ σ′′i3(σ
′′
i1 , σ

′′
i2 , 1, . . . , σ

′′
iN ) = · · · �→ · · · = (τi1 , . . . , τiN ).

Then the critical set Crit( (i1···iN )ψ̃wk) of (i1···iN )ψ̃wk is given by all points

(σi1 , . . . , σiN , x
(i1), . . . , x(iN ), ṽ(iN ), A(i1), . . . , A(iN ), B(iN ), ηm(i1···iN ))

satisfying the conditions

(I) A(ij) = 0 for all j = 1, . . . , N , and λ(B(iN ))ṽ(iN ) = 0;

(II) ηm(i1···iN ) ∈ Ann
(
E

(ij)

m(i1···iN )

)
for all j = 1, . . . , N ;

(III) ηm(i1···iN ) ∈ Ann
(
F

(iN )

m(i1···iN )

)
.

Furthermore, Crit( (i1···iN )ψ̃wk) is a C∞-submanifold of codimension 2κ,
where κ = dimG/HL is the dimension of a principal orbit.

3Note that (i1···iN )ψ̃wk,pre was denoted in (34) by (i1···iN )ψ̃wk.
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Proof. To begin with, let σi1 · · ·σiN = 0, so that all τij are non-zero. In this

case, the sequence of blow-ups ζ
�i1

i1
◦ · · · ◦ ζ�i1

···�iN

i1···iN ◦ δi1···iN constitutes a dif-
feomorphism, so that

Crit( (i1···iN )ψ̃tot)σi1
···σiN

�=0

= {(σi1 , . . . , σiN , x(i1), . . . , x(iN ), ṽ(iN ), A(i1), . . . , A(iN ), B(iN ), ηm(i1···iN )) :

(ηm(i1···iN ) , X (i1···iN )) ∈ Crit(ψ), σi1 · · ·σiN = 0}.

Now,

(ηm(i1···iN ) , X(i1···iN )) ∈ Crit(ψ) ⇔ ηm(i1···iN ) ∈ Ω, X̃(i1···iN )
η
m(i1···iN )

= 0.

Furthermore, X̃η = 0 clearly implies X̃π(η) = π∗(X̃η) = 0. Since the point

m(i1···iN ) lies in a slice at x(i1), the condition X̃
(i1···iN )

m(i1···iN ) = 0 means that the

vector field X̃(i1···iN ) must vanish at x(i1) as well. Hence, X(i1···iN ) ∈ gx(i1) ,
since

gm = Lie(Gm) =
{
X ∈ g : X̃m = 0

}
, m ∈M.

Now

gx(iN ) ⊂ gx(iN−1) ⊂ · · · ⊂ gx(i1)

and g⊥
x(ij+1) ⊂ gx(ij) imply

X̃
(i1···iN )
x(i1) = τi1 · · · τiN

∑
α(i1)
r (Ã(i1)

r )x(i1) = 0.

Thus we conclude α(i1) = 0, which gives X(i2···iN ) = X(i1···iN ) ∈ gm(i1···iN ) ,
and consequently X(i2···iN ) ∈ gm(i2···iN ) by (31). A repetition of the above

argument yields that the condition X̃
(i1···iN )

m(i1···iN ) = 0 is equivalent to (I) in the
case that all σij are different from zero. Actually, the same argument shows
that for σij = 0

(38) gm(i1···iN ) = gṽ(iN ) ,

since gṽ(iN ) ⊂ gx(iN ) . Next, ηm(i1···iN ) ∈ Ω means that

J(ηm(i1···iN ))(X) = ηm(i1···iN )(X̃m(i1···iN )) = 0 ∀X ∈ g,
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which by (21) is equivalent to ηm(i1···iN ) ∈ Ann(Tm(i1···iN )(G ·m(i1···iN ))). If
σij = 0 for all j = 1, . . . , N , (II) and (III) imply that

ηm(i1···iN )

(
(expx(i1))∗,τi1m(i2···iN )

[· · · (expx(ij−1))∗,τiN−1
m(iN ) [λ(gx(iN−1))m(iN )] · · · ]) = 0,

since gx(iN−1) = gx(iN ) ⊕ g⊥
x(iN ) . By repeatedly using this argument, we con-

clude with (37) that for σij = 0

(39) (II), (III) ⇐⇒ ηm(i1···iN ) ∈ Ann(Tm(i1···iN )(G ·m(i1···iN ))).

Taking everything together therefore gives

Crit( (i1···iN )ψtot)σi1
···σiN

�=0

(40)

=
{
(σi1 , . . . , σiN , x

(i1), . . . , x(iN ), ṽ(iN ), A(i1), . . . , A(iN ), B(iN ), ηm(i1···iN )) :

σi1 · · ·σiN = 0, (I)-(III) are fulfilled and B̃(iN ),v
η
m(i1···iN )

= 0
}
.

Here Xv
η denotes the vertical component of a vector field X ∈ T (T ∗M) with

respect to the decomposition Tη(T
∗M) = T v ⊕ T h, T v being the tangent

space to the fiber, and T h the tangent space to the zero section at η. We
now assert that

Crit( (i1···iN )ψ̃wk) = Crit( (i1···iN )ψ̃tot)σi1
···σiN

�=0.

To show this, let (κ,O) be a chart onM with coordinates κ(m)=(q1, . . . , qn),
and introduce on T ∗O the coordinates

ηm =
∑

pi(dqi)m, κ̃(η) = (q1, . . . , qn, p1, . . . , pn), η ∈ T ∗O.

Write ηm(i1···iN ) =
∑

pi( dqi)m(i1···iN ) , and still assume that all σij are differ-

ent from zero. Then all τij are different from zero, too, and ∂p
(i1···iN )ψ̃wk = 0

is equivalent to

∂p J(ηm(i1···iN ))(X(i1···iN )) = ( dq1(X̃
(i1···iN )

m(i1···iN )), . . . , dqn(X̃
(i1···iN )

m(i1···iN ))) = 0,

which gives us the condition X̃
(i1···iN )

m(i1···iN ) = 0. By (38) we therefore obtain
condition I) in the case that all σij are different from zero. Let next Nx(i1)(G ·
x(i1)) be the normal space in Tx(i1)M to the orbit G · x(i1), on which Gx(i1)
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acts, and define Nx(ij+1)(Gx(ij) · x(ij+1)) successively as the normal space to
the orbit Gx(ij) · x(ij+1) in the Gx(ij)-space Nx(ij)(Gx(ij−1) · x(ij)), where we
understand that Gx(i0) = G. By Bredon [8, page 308], these actions can be
assumed to be orthogonal. Set

(41) V (i1···ij) =
j⋂

r=1

Nx(ir)(Gx(ir−1) · x(ir)) = Nx(ij)(Gx(ij−1) · x(ij)).

With the identification T0(TmM) � TmM one has

(42) (expm)∗,0 : T0(TmM) −→ TmM, (expm)∗,0 � id ,

and similarly (expx(ij))∗,0 � id for all j = 2, . . . , N . Therefore, if τij = 0 for

all j, then E
(i1)
x(i1) = Tx(i1)(G · x(i1)), and

E
(ij)
x(i1) � Tx(ij)(Gx(ij−1) · x(ij)) ⊂ V (i1···ij−1), 2 ≤ j ≤ N,

while F
(iN )
x(i1) � Tṽ(iN )(Gx(iN ) · ṽ(iN )) ⊂ V (i1···iN ). Therefore E

(ij)
x(i1) ∩ V (i1···ij) =

{0}, so that we obtain the direct sum of vector spaces

(43) E
(i1)
x(i1) ⊕ E

(i2)
x(i1) ⊕ · · · ⊕ E

(iN )
x(i1) ⊕ F

(iN )
x(i1) ⊂ Tx(i1)M.

Let now one of the σij be equal to zero, so that all τij are zero. With the
identification (42) one has

(i1···iN )ψ̃wk =
∑

pi dqi

(
Ã(i1)

x(i1) +

N∑
j=2

λ(A(ij))x(ij) + λ(B(iN ))ṽ(iN )

)
,(44)

and ∂p
(i1···iN )ψ̃wk = 0 is equivalent to

Ã(i1)
x(i1) +

N∑
j=2

λ(A(ij))x(ij) + λ(B(iN ))ṽ(iN ) = 0.

Since x(ij) ∈ γ(ij−1)(Si1···ij−1
)x(ij−1)) ⊂ V (i1···ij−1), we see that for every j =

2, . . . , N

λ

(∑
r

α(ij)
r A(ij)

r

)
x(ij) ∈ Tx(ij)(Gx(ij−1) · x(ij)) ⊂ V (i1···ij−1).
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In addition, (Ã
(i1)
r )x(i1) ∈ Tx(i1)(G · x(i1)), and λ

(∑
r β

(iN )
r B

(iN )
r

)
ṽ(iN ) ∈

V (i1···iN ), so that taking everything together we obtain with (43) for ar-
bitrary σij

∂p
(i1···iN )ψ̃wk = 0 ⇐⇒ (I).

In particular, one concludes that (i1···iN )ψ̃wk must vanish on its critical set.
Since

d( (i1···iN )ψ̃tot) = d(τi1 · · · τiN ) · (i1···iN )ψ̃wk + τi1 · · · τiNd ((i1···iN )ψ̃wk),

one sees that

Crit( (i1···iN )ψ̃wk) ⊂ Crit( (i1···iN )ψ̃tot).

In turn, the vanishing of ψ on its critical set implies

Crit( (i1···iN )ψ̃wk)σi1
···σiN

�=0 = Crit( (i1···iN )ψ̃tot)σi1
···σiN

�=0.

Therefore, by continuity,

(45) Crit( (i1···iN )ψ̃tot)σi1
···σiN

�=0 ⊂ Crit( (i1···iN )ψ̃wk).

In order to see the converse inclusion, let us consider next the α-derivatives.
Clearly,

∂α(i1)
(i1···iN )ψ̃wk = 0 ⇐⇒ ηm(i1···iN )(Ỹm(i1···iN )) = 0 ∀Y ∈ g⊥x(i1) .

For the remaining derivatives one computes

∂
α

(ij)
r

(i1···iN )ψ̃wk = ηm(i1···iN )

(
(expx(i1))∗,τi1m(i2···iN )[ · · · (expx(ij−1))∗,τij−1

m(ij ···iN ) [λ(A(ij)
r )m(ij ···iN )] · · · ]),

from which one deduces that for j = 2, . . . , N

∂α(ij)
(i1···iN )ψ̃wk = 0 ⇐⇒ ∀Y ∈ g⊥

x(ij)

ηm(i1···iN )

(
(expx(i1))∗,τi1m(i2···iN )[ · · · (expx(ij−1))∗,τij−1

m(ij ···iN ) [λ(Y )m(ij ···iN )] · · · ]) = 0.
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In a similar way,

∂β(ij)
(i1···iN )ψ̃wk = 0 ⇐⇒ ∀Z ∈gx(iN )

ηm(i1···iN )

(
(expx(i1))∗,τi1m(i2···iN )

[ · · · (expx(iN ))∗,τiN ṽ(iN ) [λ(Z)ṽ(iN )] · · · ]) = 0.

by which the necessity of the conditions (I)–(III) is established. In order
to see their sufficiency, let them be fulfilled, and assume again that σij = 0
for all j = 1, . . . , N . Then (39) implies that ηm(i1···iN ) ∈ Ann(Tm(i1···iN )(G ·
m(i1···iN ))). Now, if σij = 0, G ·m(i1···iN ) is of principal type G/HL in M ,
so that the isotropy group of m(i1···iN ) must act trivially on Nm(i1···iN )(G ·
m(i1···iN )), compare Bredon [8, page 181]. If therefore X = XT + XN denotes
an arbitrary element in

Tm(i1···iN )M = Tm(i1···iN )(G ·m(i1···iN )))⊕Nm(i1···iN )(G ·m(i1···iN ))),

and g ∈ Gm(i1···iN ) , one computes

g · ηm(i1···iN )(X) = [(Lg−1)∗gm(i1···iN )ηm(i1···iN ) ](X)

= ηm(i1···iN )((Lg−1)∗,m(i1···iN )(XN ))

= ηm(i1···iN )(XN ) = ηm(i1···iN )(X).

In view of λ(B(iN ))ṽ(iN ) = 0 and (38) we therefore get the condition

B̃
(iN ),v
η
m(i1···iN ) = 0. Let us now assume that one of the σij equals zero. Then

(II), (III)⇔
{

ηx(i1) ∈ Ann(Tx(ij)(Gx(ij−1) · x(ij))) ∀ j = 1, . . . , N,

ηx(i1) ∈ Ann(Tṽ(iN )(Gx(iN ) · ṽ(iN ))).
(46)

Lemma 3. The orbit of the point ṽ(iN ) in the Gx(iN )-space V (i1···iN ) is of
principal type.

Proof of the lemma. By assumption, for σij = 0, 1 ≤ j ≤ N , the G-orbit of
m(i1···iN ) is of principal type G/HL in M . The theory of compact group
actions then implies that this is equivalent to the fact that m(i2···iN ) ∈ V (i1)

is of principal type in the Gx(i1)-space V (i1), see Bredon [8, page 181], which
in turn is equivalent to the fact that m(i3···iN ) ∈ V (i1i2) is of principal type
in the Gx(i2)-space V (i1i2), and so forth. Thus, m(ij ···iN ) ∈ V (i1···ij−1) must be
of principal type in the Gx(ij−1)-space V (i1···ij−1) for all j = 1, . . . N , and the
assertion follows. �
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As a consequence of the previous lemma, the stabilizer of ṽ(iN ) must act triv-
ially on Nṽ(iN )(Gx(iN ) · ṽ(iN )). If therefore X = XT + XN denotes an arbitrary
element in

Tx(i1)M �
N⊕
j=1

Tx(ij)(Gx(ij−1) · x(ij))⊕ Tṽ(iN )(Gx(iN ) · ṽ(iN ))

⊕Nṽ(iN )(Gx(iN ) · ṽ(iN )),

we obtain with (46)

g · ηx(i1)(X) = [(Lg−1)∗gx(i1)ηx(i1) ](X) = ηx(i1)((Lg−1)∗,x(i1)(XN ))

= ηx(i1)(XN ) = ηx(i1)(X), g ∈ Gṽ(iN ) .

Collecting everything together we have shown for arbitrary σij that

∂p,α(i1),...,α(iN ),β(iN )
(i1···iN )ψ̃wk = 0 ⇐⇒ (I), (II), (III)(47)

=⇒ B̃(iN ),v
η
m(i1···iN )

= 0.

By (40) and (45) we therefore conclude

(48) Crit( (i1···iN )ψ̃tot)σi1 ···σiN
�=0 = Crit( (i1···iN )ψ̃wk).

Thus we have computed the critical set of (i1···iN )ψ̃wk, and it remains to
show that it is a C∞-submanifold of codimension 2κ. By our previous con-
siderations, we have the characterization

Crit( (i1···iN )ψ̃wk) =

{
A(ij) = 0, λ(B(iN ))ṽ(iN ) = 0,(49)

ηm(i1···iN ) ∈ Ann

(
N⊕
j=1

E
(ij)

m(i1···iN ) ⊕ F
(iN )

m(i1···iN )

)}
.

Note that the condition B̃
(iN ),v
η
m(i1···iN ) = 0 is already implied by the others. Now,

dimE
(ij)

m(i1···iN ) = dimGx(ij−1) · x(ij). Since for σi1 · · ·σiN = 0 the G-orbit of
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m(i1···iN ) is of principal type G/HL in M , one computes in this case with (37)

κ = dimG ·m(i1···iN ) = dimTm(i1···iN )(G ·m(i1···iN ))

= dim

[
E

(i1)

m(i1···iN ) ⊕
N⊕
j=2

τi1 · · · τij−1
E

(ij)

m(i1···iN ) ⊕ τi1 · · · τiNF (iN )

m(i1···iN )

]

=

N∑
j=1

dimE
(ij)

m(i1···iN ) + dimF
(iN )

m(i1···iN ) .

But since the dimension of the spaces E
(ij)

m(i1···iN ) and F
(iN )

m(i1···iN ) does not
depend on the variables σij , we obtain the equality

(50) κ =

N∑
j=1

dimE
(ij)

m(i1···iN ) + dimF
(iN )

m(i1···iN )

for arbitrary m(i1···iN ). Note that, in contrast, the dimension of Tm(i1···iN )(G ·
m(i1···iN )) collapses, as soon as one of the τij becomes zero. Since the annihi-
lator of a subspace of TmM is itself a linear subspace of T ∗mM , we arrive at
a vector bundle with (n− κ)-dimensional fiber that is locally given by the
trivialization(

(σij , x
(ij), ṽ(iN )),Ann

(
N⊕
j=1

E
(ij)

m(i1···iN ) ⊕ F
(iN )

m(i1···iN )

))
�→ (σij , x

(ij), ṽ(iN )).

Consequently, by equation (49) we see that Crit( (i1···iN )ψ̃wk) is equal to the
total space of the fiber product of the mentioned vector bundle with the
isotropy algebra bundle given by the local trivialization

(σij , x
(ij), ṽ(iN ), gṽ(iN )) �→ (σij , x

(ij), ṽ(iN )).

Lastly, since by equation (38) we have gṽ(iN ) = gm(i1,...,iN ) in case that all
σij are different from zero, we necessarily have dim gṽ(iN ) = d− κ, which
concludes the proof of the theorem. �

7. Non-degeneracy of the Hessians of the weak transforms

In this section, we prove the non-degeneracy of the transversal Hessians of
the weak transforms. To begin with, let M be a n-dimensional Riemannian
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manifold, and C the critical set of a function ψ ∈ C∞(M), which is assumed
to be a smooth submanifold in a chart O ⊂M . Let further

α : (x, y) �→ m, β : (q1, . . . , qn) �→ m, m ∈ O,

be two systems of local coordinates on O, such that α(x, y) ∈ C if and only
if y = 0. As one computes, the transversal Hessian is given by

(51) ∂yk
∂yl

(ψ ◦ α)(x, 0) = Hessψ|α(x,0)(α∗,(x,0)(∂yk
), α∗,(x,0)(∂yl

)),

Let us now write x = (x′, x′′), and consider the restriction of ψ onto the
C∞-submanifold

Mc′ =
{
m ∈ O : m = α(c′, x′′, y)

}
.

We write ψc′ = ψ|Mc′ , and denote the critical set of ψc′ by Cc′ , which contains
C ∩Mc′ as a subset. Introducing on Mc′ the local coordinates α

′ : (x′′, y) �→
α(c′, x′′, y), we obtain

∂yk
∂yl

(ψc′ ◦ α′)(x′′, 0) = Hessψc′|α(x′′,0)(α′∗,(x′′,0)(∂yk
), α′∗,(x′′,0)(∂yl

)).

Let us now assume Cc′ = C ∩Mc′ , a transversal intersection. Then Cc′ is a
submanifold of Mc′ , and the normal space to Cc′ as a submanifold of Mc′ at
a point α′(x′′, 0) is spanned by the vector fields α′∗,(x′′,0)(∂yk

). Since clearly

∂yk
∂yl

(ψc′ ◦ α′)(x′′, 0) = ∂yk
∂yl

(ψ ◦ α)(x, 0), x = (c′, x′′),

we thus have proven the following

Lemma 4. Assume that Cc′ = C ∩Mc′. Then the restriction

Hessψ(α(c′, x′′, 0))|Nα(c′,x′′,0)C

of the Hessian of ψ to the normal space Nα(c′,x′′,0)C defines a non-degenerate
quadratic form if, and only if the restriction

Hessψc′(α
′(x′′, 0))|Nα′(x′′,0)Cc′

of the Hessian of ψc′ to the normal space Nα′(x′′,0)Cc′ defines a non-
degenerate quadratic form.

We can now state the main result of this section, the notation being the
same as in the previous ones.
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Theorem 3. Let {(Hi1), . . . , (HiN )} be a maximal, totally ordered subset of
non-principal isotropy types of the G-action on M , and ζ

�i1

i1
◦ · · · ◦ ζ�i1

···�iN

i1···iN
a corresponding sequence of local blow-ups labeled by the indices �i1 , . . . , �iN .
Consider the corresponding factorization

(i1···iN )ψ̃tot = τi1 · · · τiN (i1···iN )ψ̃wk, pre = τi1(σ) · · · τiN (σ) (i1···iN )ψ̃wk

of the phase function (12). Then, for each point of the critical manifold
Crit( (i1···iN )ψ̃wk), the restriction of

Hess (i1···iN )ψ̃wk

to the normal space to Crit( (i1···iN )ψ̃wk) at the given point defines a non-
degenerate symmetric bilinear form.

Note that by construction, for τij = 0, 1 ≤ j ≤ N , the G-orbit through
m(i1···iN ) is of principal type G/HL. For the proof of Theorem 3 we need the
following

Lemma 5. Let (η,X) ∈ Crit(ψ), and π(η) ∈M(HL). Then (η,X) ∈
RegCrit(ψ). Furthermore, the restriction of the Hessian of ψ at the point
(η,X) to the normal space N(η,X)RegCrit(ψ) defines a non-degenerate quad-
ratic form.

Proof. The first assertion is clear from (22) and (23), since

η ∈ Ω, Gπ(η) ∼ HL ⇒ Gη = Gπ(η).

To see the second, note that by the last implication

(52) η ∈ Ω ∩ T ∗M(HL), X̃π(η) = 0 =⇒ X̃η = 0.

Let now {q1, . . . , qn} be local coordinates onM , π(η) = m = m(q), and write
ηm =

∑
pi(dqi)m, X =

∑
siXi, where {X1, . . . , Xd} denotes a basis of g.

Then

ψ(η,X) =
∑

pi(dqi)m(X̃m),

and

∂p ψ(η,X) = 0 ⇐⇒ X̃m = 0, ∂s ψ(η,X) = 0 ⇐⇒ η ∈ Ω.
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As a consequence of (52), on T ∗M(HL)× g we get

∂p,s ψ(η,X) = 0 =⇒ ∂q ψ(η,X) = 0.

Let ψq(p, s) denote the phase function regarded as a function of the coordi-
nates p, s alone, while q is regarded as a parameter. Lemma 4 then implies
that on T ∗M(HL)× g the study of the transversal Hessian of ψ can be re-
duced to the study of the transversal Hessian of ψq. Now, with respect to
the coordinates s, p, the Hessian of ψq is given by(

0 (dqi)m((X̃j)m)

(dqj)m((X̃i)m) 0

)
.

A computation shows that the kernel of the corresponding linear transfor-
mation is isomorphic to

Tp,s(Critψq) �
{
(p̃, s̃) ∈ Rn × Rd :

∑
p̃j(dqj)m(q) ∈ Ann(Tm(q)(G ·m(q))),∑
s̃jXj ∈ gm(q)

}
.

The lemma then follows from the following general observation. Let B be
a symmetric bilinear form on an n-dimensional K-vector space V , and B =
(Bij)i,j the corresponding Gramsian matrix with respect to a basis {v1, . . . ,
vn} of V such that

B(u,w) =
∑
i,j

uiwjBij , u =
∑

uivi, w =
∑

wivi.

We denote the linear operator given by B with the same letter, and write

V = kerB ⊕W.

Consider the restriction B|W×W of B toW×W , and assume that B|W×W (u,w)
= 0 for all u ∈W , but w = 0. Since the Euclidean scalar product in V is
non-degenerate, we necessarily must have Bw = 0, and consequently w ∈
kerB ∩W = {0}, which is a contradiction. Therefore B|W×W defines a non-
degenerate symmetric bilinear form. �

Proof of Theorem 3. As before, let m = m(q1, . . . , qn) be local coordinates
on M , and write ηm =

∑
pi(dqi)m. For σi1 · · ·σiN = 0, the sequence of blow-

ups ζ
�i1

i1
◦ · · · ◦ ζ�i1 ···�iN

i1···iN ◦ δi1···iN constitutes a diffeomorphism, so that by the
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previous lemma the restriction of

Hess (i1···iN )ψ̃tot(σij , x
(ij), ṽ(iN ), α(ij), β(iN ), p)

to the normal space of

Crit( (i1···iN )ψtot)σi1
···σiN

�=0

defines a non-degenerate quadratic form. Next, one computes for the Hessian
of the total transform(

∂2 (i1···iN )ψ̃tot

∂ γk ∂ γl

)
k,l

= τi1(σ) · · · τiN (σ)
(
∂2 (i1···iN )ψ̃wk

∂ γk ∂ γl

)
k,l

+

( (
∂2(τi1 (σ)···τiN (σ))

∂ σirσis

)
r,s

0

0 0

)
(i1···iN )ψ̃wk +R,

where R is a matrix whose entries contain first order derivatives of (i1···iN )ψ̃wk

as factors. But since (i1···iN )ψ̃wk vanishes along its critical set, and

Crit( (i1···iN )ψ̃tot)σi1
···σiN

�=0 = Crit((i1···iN )ψ̃wk)|σi1
···σiN

�=0,

we conclude that the transversal Hessian of (i1···iN )ψ̃wk does not degenerate
along the manifold Crit((i1···iN )ψ̃wk)|σi1

···σiN
�=0. Therefore, it remains to study

the transversal Hessian of (i1···iN )ψ̃wk in the case that any of the σij vanishes.
Now, the proof of Theorem 2, in particular (47), showed that

∂p,α(i1),...,α(iN ),β(iN )
(i1···iN )ψ̃wk = 0

=⇒ ∂σi1 ,...,σiN
,x(i1),...,x(iN ),ṽ(iN )

(i1···iN )ψ̃wk = 0.

If therefore
(i1···iN )ψ̃wk

σij
,x(ij),ṽ(iN )(α

(ij), β(iN ), p)

denotes the weak transform of the phase function ψ regarded as a function
of the variables (α(i1), . . . , α(iN ), β(iN ), p) alone, while the variables (σi1 , . . . ,
σiN , x

(i1), . . . , x(iN ), ṽ(iN )) are kept fixed,

Crit
(
(i1···iN )ψ̃wk

σij
,x(ij),ṽ(iN )

)
= Crit

(
(i1···iN )ψ̃wk

) ∩ {
σij , x

(ij), ṽ(iN ) = constant
}
,
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a transversal intersection. Thus, the critical set of (i1···iN )ψ̃wk
σij

,x(ij),ṽ(iN ) is

equal to the fiber over (σij , x
(ij), ṽ(iN )) of the vector bundle(

(σij , x
(ij), ṽ(iN )), gṽ(iN ) ×Ann

(
N⊕
j=1

E
(ij)

m(i1···iN ) ⊕ F
(iN )

m(i1···iN )

))
�→ (σij , x

(ij), ṽ(iN )),

and in particular a smooth submanifold. Lemma 4 then implies that the
study of the transversal Hessian of (i1···iN )ψ̃wk can be reduced to the study
of the transversal Hessian of (i1···iN )ψ̃wk

σij
,x(ij),ṽ(iN ) . The crucial fact is now

contained in the following

Proposition 5. Assume that σi1 · · ·σiN = 0. Then

kerHess (i1···iN )ψ̃wk
σij

,x(ij),ṽ(iN )(0, . . . , 0, β
(iN ), p)

� T(0,...,0,β(iN ),p)Crit
(
(i1···iN )ψ̃wk

σij
,x(ij),ṽ(iN )

)
for all (0, . . . , 0, β(iN ), p)∈Crit((i1···iN )

ψ̃wk
σij

,x(ij),ṽ(iN )

)
, and arbitrary x(ij), ṽ(ij).

Proof. Let σi1 · · ·σiN = 0. With (34), or directly from (44) one computes or
the second derivatives of the weak transform at a critical point (0, . . . , 0,
β(iN ), p)

∂
α

(i1)
s

∂pr

(i1···iN )ψ̃wk
σij

,x(ij),ṽ(iN ) = dqr((Ã
(i1)
s )x(i1)),

∂
α

(ij)
s

∂pr

(i1···iN )ψ̃wk
σij

,x(ij),ṽ(iN ) = dqr(λ(A
(ij)
s )x(ij)),

∂
β

(iN )
s

∂pr

(i1···iN )ψ̃wk
σij

,x(ij),ṽ(iN ) = dqr(λ(B
(iN )
s )ṽ(iN )),

while all other second derivatives vanish. Thus, for σi1 · · ·σij = 0, the Hes-

sian of the function (i1···iN )ψ̃wk
σij

,x(ij),ṽ(iN ) with respect to the coordinates

p, α(ij), β(ij) is given on its critical set by the matrix⎛⎜⎜⎜⎜⎜⎜⎝
0 dqr((Ã

(i1)
s )x(i1)) · · · dqr(λ(A

(iN )
s )x(ij)) dqr(λ(B

(iN )
s )ṽ(iN ))

dqs((Ã
(i1)
r )x(i1)) 0 · · · 0 0
...

...
...

...
...

dqs(λ(A
(iN )
r )x(ij)) 0 · · · 0 0

dqs(λ(B
(iN )
r )ṽ(iN )) 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Let us now compute the kernel of the linear transformation corresponding
to this matrix. Cleary, the vector (p̃, α̃(i1), . . . , α̃(iN ), β̃(iN )) lies in the kernel
if and only if

(a)
∑

α̃
(i1)
s (Ã

(i1)
s )x(i1) + · · ·+∑

α̃
(iN )
s λ(A

(iN )
s )x(iN ) +

∑
β̃
(iN )
s λ(B

(iN )
s )ṽ(iN )

= 0 ;

(b)
∑

p̃sdqs((Ỹ
(i1))x(i1)) = 0 for all Y (i1) ∈ g⊥x(i1) ,

∑
p̃sdqs(λ(g

⊥
x(ij)

)x(ij)) =
0, 2 ≤ j ≤ N ;

(c)
∑

p̃sdqs(λ(gx(iN ))ṽ(iN )) = 0.

Let E(ij), F (iN ), and V (i1···iN ) be defined as in (36) and (41). Then

∑
α̃(ij)
r (Ã(i1)

r )x(i1) + · · ·+
∑

α̃(iN )
r λ(A(iN )

r )x(iN )

+
∑

β̃(iN )
r λ(B(iN )

r )ṽ(iN ) ∈
N⊕
j=1

E
(ij)
x(i1) ⊕ F

(iN )
x(i1) ,

so that for condition (a) to hold, it is necessary and sufficient that

α̃(ij) = 0, 1 ≤ j ≤ N,
∑

β̃(iN )
r λ(B(iN )

r )ṽ(iN ) = 0.

Condition (b) is equivalent to
∑

p̃s(dqs)x(i1) ∈ Ann(E
(ij)
x(i1)) for al j = 1, . . . , N .

Similarly, condition (c) is equivalent to
∑

p̃s(dqs)x(i1) ∈ Ann(F
(iN )
x(i1)). On the

other hand, by (49),

T(0,...,0,β(iN ),p)Crit
(
(i1···iN )ψ̃wk

σij
,x(ij),ṽ(iN )

)
=

{
(α̃(i1), . . . , α̃(iN ), β̃(iN ), p̃) : α̃(ij) = 0,∑

β̃(iN )
r λ(B(iN )

r ) ∈ gṽ(iN ) ,∑
p̃s(dqs)x(i1) ∈ Ann

(
N⊕
j=1

E
(ij)
x(i1) ⊕ F (iN )

)}
,

and the proposition follows. �
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The previous proposition implies that for σi1 · · ·σiN = 0

Hess (i1···iN )ψ̃wk
σij

,x(ij),ṽ(iN )

(0, . . . , 0, β(iN ), p)|N
(0,...,0,β(iN ),p)

Crit
(

(i1···iN )ψ̃wk

σij
,x

(ij),ṽ(iN )

)
defines a non-degenerate symmetric bilinear form for all points (0, . . . , 0,
β(iN ), p) lying in the critical set of (i1···iN )ψ̃wk

σij
,x(ij),ṽ(iN ) , and Theorem 3 fol-

lows from Lemma 4. �

8. Asymptotics in the resolution space

We are now in position to give an asymptotic description of the integrals
I
�i1
···�iN

i1···iN (μ) defined in (35). Since the considered integrals are absolutely
convergent, we can interchange the order of integration by Fubini, and write

I
�i1
···�iN

i1···iN (μ) =

∫
(−1,1)N

Ĵ
�i1
···�iN

i1···iN

(
μ

τi1 · · · τiN

)
N∏
j=1

|τij |c
(ij)+

∑j
r=1 d

(ir)−1 dτiN · · · dτi1 ,

where we set

Ĵ
�i1
···�iN

i1···iN (ν) =

∫
Mi1 (Hi1 )

[∫
γ(i1)((Si1 )x(i1) )i2 (Hi2 )

· · ·[∫
γ(iN−1)((Si1···iN−1

)
x
(iN−1) )iN (HiN

)[∫
γ(iN )((Si1···iN )

x(iN ) )×g
x(iN )×g⊥

x(iN )×···×g⊥
x(i1)×T ∗m(i1···iN )Wi1

ei
(i1···iN )ψ̃wk,pre/ν a

�i1
···�iN

i1···iN Φ
�i1
···�iN

i1···iN

d(T ∗m(i1···iN )Wi1) dA
(i1) · · · dA(iN ) dB(iN ) dṽ(iN )

]

dτiN dx(iN ) · · ·
]
dτi2 dx

(i2)

]
dτi1 dx

(i1),
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and introduced the new parameter

ν =
μ

τi1 · · · τiN
.

Recall that the amplitudes a
�i1 ···�iN

i1···iN are compactly supported. Now, for an
arbitrary 0 < ε < T to be chosen later we define

1I
�i1 ···�iN

i1···iN (μ) =

∫
((−1,1)\(−ε,ε))N

Ĵ
�i1 ···�iN

i1···iN

(
μ

τi1 · · · τiN

)
N∏
j=1

|τij |c
(ij)+

∑j
r=1 d

(ir)−1 dτiN · · · dτi1 ,

2I
�i1 ···�iN

i1···iN (μ) =

∫
(−ε,ε)N

Ĵ
�i1 ···�iN

i1···iN

(
μ

τi1 · · · τiN

)
N∏
j=1

|τij |c
(ij)+

∑j
r=1 d

(ir)−1 dτiN · · · dτi1 .

Lemma 6. One has c(ij) +
∑j

r=1 d
(ir) − 1 ≥ κ for arbitrary j = 1, . . . , N .

Proof. We first note that for j = 1, . . . , N − 1

c(ij) = dim(νi1···ij )x(ij) ≥ dimGx(ij) ·m(ij+1···iN ) + 1.

Indeed, (νi1···ij )x(ij) is an orthogonal Gx(ij)-space, so that the dimension of
the Gx(ij)-orbit of m(ij+1···iN ) ∈ γ(ij)((Si1···ij )x(ij)) can be at most c(ij) − 1.
Now, under the assumption σi1 · · ·σiN = 0, (30), (32) and (33) imply

Tm(ij+1···iN )(Gx(ij) ·m(ij+1···iN )) � Tm(i1···iN )(Gx(ij) ·m(i1···iN ))

= E
(ij+1)

m(i1···iN ) ⊕
N⊕

k=j+2

τij+1
· · · τik−1

E
(ik)

m(i1···iN ) ⊕ τij+1
· · · τiNF (iN )

m(i1···iN ) ,

where the distributions E(ij), F (iN ) where defined in (36). On then computes

dimGx(ij) ·m(ij+1···iN ) = dimTm(ij+1···iN )(Gx(ij) ·m(ij+1···iN ))

=

N∑
l=j+1

dimE
(il)

m(i1···iN ) + dimF
(iN )

m(i1···iN ) ,



Singular equivariant asymptotics and the momentum map 511

which implies

c(ij) ≥
N∑

l=j+1

dimE
(il)

m(i1···iN ) + dimF
(iN )

m(i1···iN ) + 1

for arbitrary σij . On the other hand, one has

d(ij) = dim g⊥
x(ij)

= dim[λ(g⊥
x(ij)

) · x(ij)]
= dim[λ(g⊥

x(ij)
) ·m(ij ···iN )] = dimE

(ij)

m(i1···iN ) .

For j = 1, . . . , N − 1, the assertion of the lemma now follows from (50). Since

c(iN ) = dim(νi1···iN )x(iN ) ≥ dimGx(iN ) · ṽ(iN ) + 1,

a similar argument yields the assertion for j = N . �

As a consequence of the lemma, we obtain for 2I
�i1
···�iN

i1···iN (μ) the estimate

2I
�i1 ···�iN

i1···iN (μ) ≤ C

∫
(−ε,ε)N

N∏
j=1

|τij |c
(ij)+

∑j
r=1 d

(ir)−1 dτiN · · · dτi1(53)

≤ C

∫
(−ε,ε)N

N∏
j=1

|τij |κ dτiN · · · dτi1 =
2C

κ+ 1
εN(κ+1)

for some C > 0. Let us now turn to the integral 1I
�i1 ···�iN

i1···iN (μ). After perform-
ing the change of variables δi1···iN one obtains

1I
�i1
···�iN

i1···iN (μ) =

∫
ε<|τij (σ)|<1

J
�i1
···�iN

i1···iN

(
μ

τi1(σ) · · · τiN (σ)
)

N∏
j=1

|τij (σ)|c
(ij)+

∑j
r=1 d

(ir)−1 |detDδi1···iN (σ)| dσ,

where J
�i1
···�iN

i1···iN (ν) is defined like Ĵ
�i1
···�iN

i1···iN (ν), but with (i1···iN )ψ̃wk,pre be-

ing replaced by (i1···iN )ψ̃wk
σ , which denotes the weak transform of the phase

function ψ as a function of the variables x(ij), ṽ(iN ), α(ij), β(iN ), p alone, while
the variables σ = (σi1 , . . . , σiN ) are regarded as parameters. The idea is now
to make use of the principle of the stationary phase to give an asymptotic
expansion of J

�i1 ···�iN

i1···iN (ν).
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Theorem 4. Let σ = (σi1 , . . . , σiN ) be a fixed set of parameters. Then, for
every Ñ ∈ N there exists a constant CÑ,(i1···iN )ψ̃wk

σ
> 0 such that∣∣∣∣∣J�i1

···�iN

i1···iN (ν)− (2π|ν|)κ
Ñ−1∑
j=0

|ν|jQj(
(i1···iN )ψ̃wk

σ ; ai1···iNΦi1···iN )

∣∣∣∣∣
≤ CÑ,(i1···iN )ψ̃wk

σ
|ν|Ñ ,

with explicit expressions and estimates for the coefficients Qj. Moreover, the
constants CÑ,(i1···iN )ψ̃wk

σ
and the coefficients Qj have uniform bounds in σ.

Proof. As a consequence of Theorems 2 and 3, together with Lemma 4, the
phase function (i1···iN )ψ̃wk

σ has a clean critical set, meaning that

• the critical set Crit((i1···iN )ψ̃wk
σ ) is a C∞-submanifold of codimension

2κ for arbitrary σ;

• the transversal Hessian

Hess (i1···iN )ψ̃wk
σ (x(ij), ṽ(iN ), α(ij), β(iN ), p)|N

(x
(ij),ṽ(iN ),α

(ij),β(iN ),p)
Crit

((i1···iN )

ψ̃wk
σ

)
defines a non-degenerate symmetric bilinear form for arbitrary σ at
every point of the critical set of (i1···iN )ψ̃wk

σ .

Thus, the necessary conditions for applying the principle of the stationary
phase to the integral Jσi1

,...,σiN
(ν) are fulfilled, and we obtain the desired

asymptotic expansion by Theorem C and Remark D. To see the existence of
the uniform bounds, note that as an examination of the proof of Theorem A
shows, the constants CN,ψ in Theorem C are bounded from above by

sup
m∈C∩supp a

∥∥∥∥(ψ′′(m)|NmC
)−1∥∥∥∥

see also [40, Remark 4.2]. We therefore have

CÑ,(i1···iN )ψ̃wk
σ

≤ C ′
Ñ

sup
x(ij),ṽ(iN ),α(ij),β(iN ),p

∥∥∥∥(Hess (i1···iN )ψ̃wk
σ |NCrit((i1···iN )ψ̃wk

σ )

)−1∥∥∥∥ .
But since by Lemma 4 the transversal Hessian

Hess (i1···iN )ψ̃wk
σ |N

(x
(ij),ṽ(iN ),α

(ij),β(iN ),p)
Crit((i1···iN )ψ̃wk

σ )
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is given by

Hess (i1···iN )ψ̃wk
|N

(σij
,x

(ij),ṽ(iN ),α
(ij),β(iN ),p)

Crit((i1···iN )ψ̃wk),

we finally obtain the estimate

CÑ,(i1···iN )ψ̃wk
σ

≤ C ′
Ñ

sup
σij

,x(ij),ṽ(iN ),α(ij),β(iN ),p

∥∥∥∥(Hess (i1···iN )ψ̃wk
|NCrit((i1···iN )ψ̃wk)

)−1∥∥∥∥
≤ CÑ,i1···iN

by a constant independent of σ. Similarly, one can show the existence of
bounds of the form

|Qj(
(i1···iN )ψ̃wk

σ ; ai1···iNΦi1···iN )| ≤ C̃j,i1···iN ,

with constants C̃j,i1···iN independent of σ. �

Remark 7. Before going on, let us remark that for the computation of the
integrals 1I

�i1 ···�iN

i1···iN (μ) it is only necessary to have an asymptotic expansion

for the integrals J
�i1
···�iN

i1···iN (ν) in the case that σi1 · · ·σiN = 0, which can also
be obtained without Theorems 2 and 3 using only the factorization of the
phase function ψ given by the resolution process, together with Lemma 5.
Nevertheless, the main consequence to be drawn from Theorems 2 and 3 is
that the constants CÑ,(i1···iN )ψ̃wk

σ
and the coefficients Qj in Theorem 4 have

uniform bounds in σ.

As a consequence of Theorem 4, we obtain for arbitrary Ñ ∈ N∣∣J�i1 ···�iN

i1···iN (ν)− (2π|ν|)κQ0(
(i1···iN )ψ̃wk

σ ; ai1···iNΦi1···iN )
∣∣

≤
∣∣∣∣∣J�i1

···�iN

i1···iN (ν)− (2π|ν|)κ
Ñ−1∑
l=0

|ν|lQl(
(i1···iN )ψ̃wk

σ ; ai1···iNΦi1···iN )

∣∣∣∣∣
+ (2π|ν|)κ

Ñ−1∑
l=1

|ν|l|Ql(
(i1···iN )ψ̃wk

σ ; ai1···iNΦi1···iN )|

≤ c1|ν|Ñ + c2|ν|κ
Ñ−1∑
l=1

|ν|l
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with constants ci > 0 independent of both σ and ν. From this we deduce∣∣∣∣∣ 1I�i1
···�iN

i1···iN (μ)− (2πμ)κ
∫
ε<|τij (σ)|<1

Q0

N∏
j=1

|τij (σ)|c
(ij)+

∑j
r=1 d

(ir)−1−κ

|detDδi1···iN (σ)| dσ
∣∣∣∣∣

≤ c3μ
Ñ

∫
ε<|τij (σ)|<1

N∏
j=1

|τij (σ)|c
(ij)+

∑j
r=1 d

(ir)−1−Ñ |detDδi1···iN (σ)| dσ

+ c4μ
κ
Ñ−1∑
l=1

μl

∫
ε<|τij (σ)|<1

N∏
j=1

|τij (σ)|c
(ij)+

∑j
r=1 d

(ir)−1−κ−l

|detDδi1···iN (σ)| dσ

≤ c5μ
Ñ

N∏
j=1

(− log ε)ij max

{
1,

N∏
j=1

εc
(ij)+

∑j
r=1 d

(ir)−Ñ
}

+ c6

Ñ−1∑
l=1

μκ+l
N∏
j=1

(− log ε)ilj max

{
1,

N∏
j=1

εc
(ij)+

∑j
r=1 d

(ir)−κ−l
}
,

where the exponents ij and ilj can take the values 0 or 1. We now set
ε = μ1/N . Taking into account Lemma 6, one infers that the right hand side
of the last inequality can be estimated by

μk+1(log μ)N .

so that for sufficiently large Ñ ∈ N we finally obtain an asymptotic expansion
for I

�i1
···�iN

i1···iN (μ) by taking into account (53), and the fact that

(2πμ)κ
∫
0<|τij |<μ1/N

Q0

N∏
j=1

|τij |c
(ij)+

∑j
r=1 d

(ir)−1−κ dτiN · · · dτi1

= O(μκ+1).

Theorem 5. Let the assumptions of Theorem 2 be fulfilled. Then

I
�i1 ···�iN

i1···iN (μ) = (2πμ)κL
�i1 ···�iN

i1···iN +O(μκ+1(log μ)N ),
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where the leading coefficient L
�i1
···�iN

i1···iN is given by

(54) L
�i1 ···�iN

i1···iN =

∫
Crit((i1···iN )ψ̃wk)

a
�i1
···�iN

i1···iN Φ
�i1
···�iN

i1···iN dCrit((i1···iN )ψ̃wk)

|Hess((i1···iN )ψ̃wk)NCrit((i1···iN )ψ̃wk)|1/2
,

where dCrit((i1···iN )ψ̃wk) denotes the induced measure.

9. Statement of the main result

Let us now return to our departing point, that is, the asymptotic behavior
of the integral (11) in case that ς = 0 is a singular value of the momentum
map. For this, we still have to examine the contributions to I(μ) coming
from integrals of the form

Ĩ
�i1 ···�iΘ

i1···iΘ (μ) =

∫
Mi1

(Hi1
)×(−1,1)

[∫
γ(i1)((Si1

)
x(i1) )i2 (Hi2

)×(−1,1)
· · ·[∫

γ(iΘ−1)((Si1···iΘ−1
)
x
(iΘ−1) )iΘ (HiΘ

)×(−1,1)[∫
γ(iΘ)((Si1···iΘ )

x(iΘ) )×g
x(iΘ)×g⊥

x(iΘ)×···×g⊥
x(i1)×T ∗m(i1···iΘ)Wi1

ei
τ1···τΘ

μ
(i1···iΘ)ψ̃wk

a
�i1
···�iΘ

i1···iΘ Φ̃
�i1
···�iΘ

i1···iΘ

d(T ∗m(i1···iΘ)Wi1)(η) dA
(i1) · · · dA(iΘ) dB(iΘ) dṽ(iΘ)

]

dτiΘ dx(iΘ) · · ·
]
dτi2 dx

(i2)

]
dτi1 dx

(i1),

where {(Hi1), . . . , (HiΘ)} is an arbitrary totally ordered subset of non-
principal isotropy types, while a

�i1
···�iΘ

i1···iΘ is a smooth amplitude which is sup-

posed to have compact support in a system of (θ(i1), . . . , θ(iN−1), α(iN ))-charts
labeled by the indices �i1 · · · �iΘ , and

Φ̃
�i1 ···�iΘ

i1···iΘ =

Θ∏
j=1

|τij |c
(ij)+

∑j
r d

(ir)−1Φ�i1
···�iΘ

i1···iΘ ,
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Φi1···iΘ being a smooth function which does not depend on the variables
τij . Now, a computation of the p-derivatives of (i1···iΘ)ψ̃wk in any of the

α(iΘ)-charts shows that (i1···iΘ)ψ̃wk has no critical points there. By the non-
stationary phase theorem, see Hörmander [25, Theorem 7.7.1], one then
computes for arbitrary Ñ ∈ N

|Ĩ�i1
···�iΘ

i1···iΘ (μ)| ≤ c7μ
Ñ

∫
ε<|τij |<1

Θ∏
j=1

|τij |c
(ij)+

∑j
r d

(ir)−1−Ñdτ + c8ε
Θ(κ+1)

≤ c9max
{
μÑ , μκ+1

}
,

where we took ε = μ1/Θ. Choosing Ñ large enough, we conclude that

|Ĩ�i1
···�iΘ

i1···iΘ (μ)| = O(μκ+1).

As a consequence of this we see that, up to terms of order O(μκ+1), I(μ)
can be written as a sum

I(μ) =

Λ−1∑
N=1

∑
i1<···<iN
�i1

,...,�iN

I
�i1
···�iN

i1···iN (μ) +

Λ−1∑
N=1

∑
i1<···<iN−1<L

�i1
,...,�iN−1

I
�i1 ···�iN−1

i1···iN−1L
(μ),(55)

where the first term is a sum over maximal, totally ordered subsets of non-
principal isotropy types, while the second term is a sum over totally ordered
subsets of non-principal isotropy types. The asymptotic behavior of the in-
tegrals I

�i1
···�iN

i1···iN (μ) has been determined in the previous section, and using

Lemma 5 it is not difficult to see that the integrals I
�i1
···�iN−1

i1···iN−1L
(μ) have anal-

ogous asymptotic descriptions. We can now state the main result of this
paper.

Theorem 6. Let M be a connected Riemannian manifold and G a compact,
connected Lie group G with Lie algebra g acting isometrically and effectively
on M . Consider the oscillatory integral

I(μ) =

∫
T ∗M

∫
g

eiψ(η,X)/μa(η,X) dX dη, μ > 0,

where the phase function

ψ(η,X) = J(η)(X)

is given by the momentum map J : T ∗M → g∗ corresponding to the Hamil-
tonian action on T ∗M , dη is the Liouville measure on T ∗M , and dX an
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Euclidean measure given by an Ad (G)-invariant inner product on g, while
a ∈ C∞c (T ∗M × g). Then I(μ) has the asymptotic expansion

I(μ) = (2πμ)κL0 +O(μκ+1(log μ)Λ−1), μ→ 0+.

Here κ is the dimension of an orbit of principal type in M , Λ the maximal
number of elements of a totally ordered subset of the set of isotropy types,
and the leading coefficient is given by 4

(56) L0 =

∫
Reg C

a(η,X)

|Hessψ(η,X)|N(η,X)Reg C |1/2
d(Reg C)(η,X),

where Reg C denotes the regular part 5 of the critical set C = Crit(ψ) of ψ,
and d(Reg C) the measure induced by dη dX. In particular, the integral over
Reg C exists.

Remark 8. Note that equation (56) in particular means that the obtained
asymptotic expansion for I(μ) is independent of the explicit partial resolu-
tion we used.

Proof. By (55) and Theorem 5 one has

I(μ) = (2πμ)κL0 +O(μκ+1(log μ)Λ−1), μ→ 0+,

where L0 is given by a sum of integrals of the form (54). It therefore re-
mains to show the equality (56). For this, we shall introduce certain cut-off
functions for the singular part Sing Ω of Ω. Choose a Riemmanian metric
on T ∗M , and denote the corresponding distance on T ∗M by d. Let K be a
compact subset in T ∗M , δ > 0, and consider the set

(SingΩ ∩K)δ =
{
η ∈ T ∗M : d(η, η′) < δ for some η′ ∈ SingΩ ∩K

}
.

By using a partition of unity, one can show the existence of a test function
uδ ∈ C∞c ((SingΩ ∩K)3δ) satisfying uδ = 1 on (SingΩ ∩K)δ, see Hörmander
[25, Theorem 1.4.1]. Now, let K be such that suppη a ⊂ K. We then assert

4A more explicit expression for L0 will be given in Proposition 6.
5See Lemma 2.
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that the limit

(57) lim
δ→0

∫
Reg C

[a(1− uδ)](η,X)

|det ψ′′(η,X)|N(η,X)Reg C |1/2
d(Reg C)(η,X)

exists and is equal to L0, where d(Reg C) is the measure on Reg C induced
by dη dX. Indeed, define

Iδ(μ) =

∫
T ∗M

∫
g

e
i

μ
ψ(η,X)[a(1− uδ)](η,X) dX dη.

Since (η,X) ∈ Sing C implies η ∈ SingΩ, a direct application of Theorem C
for fixed δ > 0 gives

(58) |Iδ(μ)− (2πμ)κL0(δ)| ≤ Cδμ
κ+1,

where Cδ > 0 is a constant depending only on δ, and

L0(δ) =

∫
Reg C

[a(1− uδ)](η,X)

|det ψ′′(η,X)|N(η,X)Reg C |1/2
d(Reg C)(η,X).

On the other hand, applying our previous considerations to Iδ(μ) instead of
I(μ), we obtain again an asymptotic expansion of the form (58) for Iδ(μ),
where now the first coefficient is given by a sum of integrals of the form
(54) with a replaced by a(1− uδ). Since the first term in the asymptotic
expansion (58) is uniquely determined, the two expressions for L0(δ) must
be identical. The existence of the limit (57) now follows by the Lebesgue
theorem on bounded convergence, the corresponding limit being given by
L0. Let now a+ ∈ C∞c (T ∗M × g,R+). Since one can assume that |uδ| ≤ 1,
the lemma of Fatou implies that∫

Reg C
lim
δ→0

[a+(1− uδ)](η,X)

|det ψ′′(η,X)|N(η,X)Reg C |1/2
d(Reg C)(η,X)

is mayorized by the limit (57), with a replaced by a+, and we obtain∫
Reg C

a+(η,X)

|det ψ′′(η,X)|N(η,X)Reg C |1/2
|d(Reg C)(η,X)| <∞.

Choosing a+ to be equal 1 on a neighborhood of the support of a, and
applying the theorem of Lebesgue on bounded convergence to the limit (57),
we obtain equation (56). �
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Note that as a result of the desingularization process it follows in par-
ticular that one can interchange the limits

lim
δ→0

lim
μ→0

Iδ(μ)

(2πμ)κ
= lim

μ→0
lim
δ→0

Iδ(μ)

(2πμ)κ
= L0,

the notation being as in the proof of Theorem 6. In the same way, one
deduces

Corollary 3. With the notation as in Theorem 6 assume that κ = dim g,
and consider for arbitrary ς ∈ g∗ the integrals

Iς(μ) =

∫
T ∗M

∫
g

eiψς(η,X)/μa(η,X) dX dη, μ > 0,

where ψς(η,X) = J(η)(X)− ς(X). Denote by g∗reg the set of regular values
of J, which by Sard’s theorem is dense. Then

lim
ς∈g∗reg,ς→0

lim
μ→0

Iς(μ)

(2πμ)d
= lim

μ→0
lim

ς∈g∗reg,ς→0

Iς(μ)

(2πμ)d
= L0.

Proof. In case that ς ∈ g∗reg we proved in Proposition 2 the expansion

Iς(μ) = (2πμ)dQ0(ψς , a) +O(μd+1),

the remainder being independent of ς, while for ς = 0 Theorem 6 yields

I0(μ) = (2πμ)dL0 +O(μd+1(log μ)Λ−1).

Since both expansions are valid for arbitrary μ > 0, and Iς(μ) is manifestly
a continuous function in ς ∈ g∗ for μ > 0, we necessarily must have

lim
ς∈g∗reg,ς→0

Q0(ψς , a) = L0,

and the assertion follows. �

In what follows, we shall compute the leading term (56) in a more explicit
way, and begin by computing the determinant of the transversal Hessian of
the phase function ψ(η,X), the notation being as in Theorem 6.
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Lemma 7. Let (η,X) ∈ Reg C be fixed. Then

detHessψ(η,X)|N(η,X)Reg C = det (Ξ− LX ◦ LX)|g·η,

where LX : g · η → g · η denotes the linear mapping (27) given by the Lie
derivative, and Ξ the linear transformation on g · η defined in (16).

Proof. Let (η,X) ∈ Reg C be fixed and {A1, . . . , Ad} an orthonormal basis
of g such that {A1, . . . , Aκ} is a basis of g⊥η and {Aκ+1, . . . , Ad} a basis of
gη. With respect to the basis

((X̃i)η; 0), (0; ej), i = 1, . . . , 2n, j = 1, . . . , d,

of T(η,X)(T
∗M × g) = Tη(T

∗M)× Rd introduced in the proof of Proposi-
tion 2, the Hessian

Hessψ : T(η,X)(T
∗M × g)× T(η,X)(T

∗M × g)→ C,

(v1, v2) �→ ṽ1(ṽ2(ψ))(η,X)

is given by the matrix

A =

(
ωη([X̃, X̃i], X̃j) −ωη(Ãj , X̃i)

−ωη(Ãi, X̃j) 0

)
.

Indeed, X̃i(JX) = dJX(X̃i) = −ιX̃ω(X̃i), and by (6) we have (X̃i)η(ω(X̃, X̃j))

= −ωη([X̃, X̃i], X̃j), since X̃η = 0. If therefore J : T (T ∗M)→ T (T ∗M) de-
notes the bundle homomorphism introduced in Section 2, we obtain

A =

(
JLX −gη(J Ãj , X̃i)

−gη(J Ãi, X̃j) 0

)
,

where LX : Tη(T
∗M)→ Tη(T

∗M),X �→ [X̃, X̃]η denotes the linear transfor-
mation induced by the Lie derivative, and restricts to a map on g · η by Re-
mark 6. Let {B1, . . . , Bκ} be another basis of g⊥η such that {(B̃1)η, . . . , (B̃κ)η}
is an orthonormal basis of g · η, and recall that by (22) we have TηReg Ω =
(g · η)ω. Taking into account (24) and g · η ⊂ (g · η)ω one sees that

Bk = (J (B̃k)η; 0),

B′k = (LX(B̃k)η; gη(Ã1, B̃k), . . . , gη(Ãκ, B̃k), 0, . . . , 0), k = 1, . . . , κ,
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constitutes a basis of N(η,X)Reg C with 〈Bk,Bl〉 = δkl, Bk ⊥ B′l, and 〈B′k,B′l〉
= (Ξ + LXLX)kl, where Ξ was defined in (16). One now computes

A(Bk) =

(
JLXJ (B̃k)η;−

2n∑
j=1

gη(J Ã1, X̃j)gη(J B̃k, X̃j), . . .

)
= (−LX(B̃k)η;−gη(J Ã1,J B̃k), . . . ,−gη(J Ãκ,J B̃k), 0, . . . , 0)

= −B′k,

A(B′k) =
(
JLXLX(B̃k)η −

(
κ∑

j=1

gη(J Ãj , X̃1)gη(Ãj , B̃k), . . .

)
;

−
2n∑
j=1

gη(J Ã1, X̃j)gη(LX(B̃k)η, X̃j), . . .

)
= (JLXLX(B̃k)η + (gη(Ξ(B̃k)η,J X̃1), . . . );

− gη(J Ã1, LX(B̃k)η), . . . ).

Since LX defines an endomorphism of g · η and g · η ⊂ (g · η)ω we have
gη(J Ã1, LX(B̃k)η) = ωη(Ã1, LX(B̃k)η) = 0. Furthermore, the {J (B̃1)η, . . . ,

J (B̃κ)η} form an orthonormal basis of J (g · η), and we obtain

A(B′k) = (J (LXLX − Ξ)(B̃k)η; 0)

=

κ∑
j=1

gη(J (LXLX − Ξ)(B̃k)η,J (B̃j)η)Bj .

Taking all together, one sees that the transversal Hessian

Hessψ(η,X)|N(η,X)Reg C

is given by the matrix (
0 −1κ

(LXLX − Ξ)|g·η 0

)
,

and the assertion follows. �

Proposition 6. The leading term in (56) is given by

L0 =
volG

volH

∫
RegΩ

[∫
gη

a(η,X) dX

]
d(RegΩ)(η)

vol Oη
,
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where H denotes a principal isotropy group, RegΩ the principal stratum6 of
Ω, and vol Oη the volume of the G-orbit through η, while dX is the measure
on gη induced by the invariant inner product on g.

Proof. The proof is based on the following integration formula, compare
[11, Lemma 3.4]. Let (X, hX) and (Y, hY) be two Riemannian manifolds
and F : X→ Y a smooth submersion. Then, for b ∈ C∞c (X) one has

(59)

∫
X
b(x) dX(x) =

∫
Y

[∫
F−1(y)

b(z)
d(F−1(y))(z)

|det dzF ◦ tdzF )|1/2
]
dY(y),

where d(F−1(y)) denotes the Riemannian measure induced by the one of
X on F−1(y), and the transposed operator of the differential dxF : TxX→
TF (x)Y is given by the operator tdxF : TF (x)Y → TxX which is uniquely
determined by the condition

hX(X, tdxF (Y)) = hY(dxF (X),Y), X ∈ TxX, Y ∈ TF (x)Y.

Consider now the map P : Reg C → Reg Ω, (η,X)→ η, which is a submer-
sion by Proposition 4. In order to apply the previous integration formula, we
have to compute the determinant of d(η,X)P ◦ td(η,X)P at a point (η,X) ∈
Reg C. For this, let G denote the orthogonal complement of g · η in TηReg Ω.
We then assert that

(60) d(η,X)P ◦ td(η,X)P|G = id .

Indeed, let Y ∈ G. As was shown in the proof of Proposition 4, [Ỹ, X̃]η ∈
g · η. On the other hand, the fact that g · η and G are invariant under
Gη, together with (26), imply that [Ỹ, X̃]η ∈ G. Hence [Ỹ, X̃]η = 0. Tak-
ing into account (24) we infer from this that (Y, 0) ∈ T(η,X)Reg C, and con-
sequently tdP(η,X)(Y) = (Y, 0). Thus, d(η,X)P ◦ td(η,X)P (Y) = Y, and (60)
follows. For the computation of the determinant of d(η,X)P ◦ td(η,X)P it
therefore suffices to consider its restriction to g · η, and with the notation as
in Lemma 7 we shall show that

(61) d(η,X)P ◦ td(η,X)P|g·η = (Ξ− LX ◦ LX)−1 ◦ Ξ.

Consider thus an element X ∈ g · η, and write td(η,X)P (X) = (Y, w). Denote
the Ad (G)-invariant inner product in g by 〈·, ·〉, and let again {A1, . . . , Ad}

6See Lemma 2.
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be an orthonormal basis of g such that g⊥η is spanned by the elements
{A1, . . . , Aκ}, and gη by {Aκ+1, . . . , Ad}. From (24) it is clear that for each

j = 1, . . . , κ we have ((Ãj)η; 〈[X,Aj ], A1〉 , . . . , 〈[X,Aj ], Ad〉) ∈ T(η,X)Reg C.
By definition of the transposed we therefore have

g(X, (Ãj)η) = g(Y, (Ãj)η) +

d∑
k=1

wk 〈[X,Aj ], Ak〉 .

Consequently, g(X−Y, (Ãj)η) =
∑d

k=1wk 〈[X,Aj ], Ak〉. If Ξ denotes the lin-
ear transformation introduced in (16), we obtain

Ξ(X−Y) =

κ∑
j=1

d∑
k=1

wk 〈[X,Aj ], Ak〉 (Ãj)η

=

d∑
j=1

d∑
k=1

wk 〈Aj , [Ak, X]〉 (Ãj)η =

d∑
k=1

wk
˜[Ak, X]η.

Let f ∈ C∞(T ∗M). Due to X̃η = 0 we have ˜[Ak, X]ηf = (Ãk)η(X̃f). Com-

bined with the fact that
∑d

k=1wk(Ãk)η = −[Ỹ, X̃]η this implies

−
d∑

k=1

wk
˜[Ak, X]ηf = [Ỹ, X̃]η(X̃f) = [[Ỹ, X̃], X̃]ηf = [X̃, [X̃, Ỹ]]ηf,

and consequently

Ξ(Y− X) = [X̃, [X̃, Ỹ]]η = LX([X̃, Ỹ]η) = LX ◦ LX(Y).

Thus, Y = (Ξ− LX ◦ LX)−1 ◦ Ξ(X), and (61) follows. Taking all together
we have shown that

det d(η,X)P ◦ td(η,X)P = det−1(Ξ− LX ◦ LX) · det Ξ,

and with Lemma 7 and the integration formula (59) we obtain

L0 =

∫
Reg C

a(η,X) d(Reg C)(η,X)

|Hessψ(η,X)|N(η,X)Reg C |1/2

=

∫
RegΩ

[∫
gη

a(η,X) dX

]
d(RegΩ)(η)

|det Ξ|g·η|1/2
,
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where d(RegΩ) denotes the volume form induced by dη dX. The asser-
tion of the proposition now follows by noting that |det Ξ|g·η|1/2 = volOη ·
volGη/volG, compare [11, Lemma 3.6]. �

10. Residue formulae for X = T ∗M

We are now in position to derive residue formulae for the cotangent bundle
of a G-manifold. Thus, let M be an n-dimensional, connected, Rieman-
nian manifold and G a d-dimensional, compact, connected Lie group with
maximal torus T ⊂ G acting on M by isometries. Let Θ be the Liouville
form on X = T ∗M , ω = dΘ the symplectic form, and denote the correspond-
ing momentum map by J : T ∗M → g∗, J(η)(X) = JX(η) = Θ(X̃)(η). Write
Ω = J−1(0), and recall that Ω has a principal stratum RegΩ by Lemma 2.
Let further π : RegΩ→ RegXred = RegΩ/G be the canonical projection,
and consider the map

K̃ : Λ∗+κ(T ∗M)
r/volO−→ Λ∗(RegΩ) π∗−→ Λ∗−d(RegXred),

where r : Λ∗(T ∗M)→ Λ∗−κ(RegΩ) denotes the natural restriction map de-
scribed in (A.4) and π∗ integration along the fibers of the G-principal bundle
RegΩ, while κ is the dimension of a principal G-orbit. As an application of
Theorem 6, we are able to compute the limit (2) in case that κ equals d. It
corresponds to the leading term in the expansion.

Corollary 4. Assume that the dimension κ of a principal G-orbit in M
equals d = dim g. Let α ∈ Λc(T

∗M) and ϕ ∈ C∞c (g∗) have total integral 1.
Then

lim
ε→0

〈FgLα, ϕε〉 = (2π)d vol G

|H|
∫
RegΩ

a(η)
d(RegΩ)(η)

vol Oη

=
(2π)d vol G

|H|
∫
RegΩ

r(α)

vol Oη
,

where H denotes a principal isotropy group of the G-action, and we wrote
α[2n] = a(η)dη, dη being Liouville measure.

Proof. By (2), Theorem 6, and Proposition 6 one deduces

L0 = lim
ε→0

〈FgLα, ϕε〉 = (2π)dvolG

volH

∫
RegΩ

[∫
gη

ϕ̂(X) dX

]
a(η)

d(RegΩ)(η)

vol Oη
.
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Since κ = dim g, we have gη = {0} for all η ∈ RegΩ; in particular, H ∼ Gη

is a finite group. Hence, volH ≡ |H| and ∫
gη

ϕ̂(X) dX = ϕ̂(0) = 1, and we
obtain the first equality. To see the second, assume that α is supported in a
neighborhood of Ω. Let K ⊂ T ∗M be a compact subset such that suppα ⊂
K, and uδ ∈ C∞c ((SingΩ ∩K)3δ) a family of cut-off functions as in the proof
of Theorem 6. Denote the normal bundle to Reg C = RegΩ× {0} ≡ RegΩ
by ν : N Reg C → C, and identify a tubular neighborhood of Reg C with a
neighborhood of the zero section in N Reg C. A direct application of Theo-
rem A then yields with Lemma 7

L0(δ) = lim
ε→0

∫
g

∫
X
eiJX/ε(1− uδ)α ϕ̂(X)

dX

εd

=
(2π)d volG

|H|
∫
RegΩ

r((1− uδ)α)

vol Oη
,

where only the leading term (A.3) is relevant. Repeating the arguments in
the proof of Theorem 6 then shows that

L0 = lim
δ→0

L0(δ) =
(2π)d volG

|H|
∫
RegΩ

r(α)

vol Oη
.

�
Next, let us consider a maximal torus T ⊂ G with corresponding momen-

tum map JT : T ∗M → t∗ and Kirwan homomorphism (19). Let the notation
be as in Section 2 and 4. The following proposition characterizes the sum of
residues (20) in terms of the reduced space ΩT

0 /T , where ΩT
0 = J−1T (0).

Proposition 7. Consider for ς ∈ t∗ the segment {tς : 0 < t < 1}, and as-
sume that all UΦ2

F are smooth on it. Let further κT = dim t = dT . If � ∈
H∗

G(T
∗M) is an equivariantly closed form of compact support which is con-

stant on g, then

∑
F∈F

Resς,Λ(uFΦ
2) =

(2π)dT vol T

|HT |
∫
RegΩT

0 /T
KT

0 (L),

where KT
0 = (π∗0,T )

−1 ◦ i∗0,T is defined over RegΩT
0 /T , and L is explicitly

given in terms of e−iω�, Φ, and J. In particular, the sum of the residues is
independent of ς and Λ, and will be denoted by

Res

(
Φ2

∑
F∈F

uF

)
.
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Proof. In essence, the proposition is a statement about the exchangeability
of the limits occuring in (10). Thus, let Γς ⊂ t∗ be a conic neigbhorhood of
the segment {tς : 0 < t < 1} such that all UΦ2

F are smooth on Γς . By (10)
and Corollary 2,∑
F∈F

ResΛ,ς(uFΦ
2) = lim

t→0
lim
ε→0

∫
t

[∫
X
ei(J−tς)(Y )e−iω�(Y )

]
Φ2(Y )ϕ̂(εY ) dY

=
(2π)dT volT

|HT | lim
ς̃→0, ς̃ ∈Γς∩t∗reg

∫
ΩT

ς̃ /T
KT

ς̃ (L).

On the other hand, as in Corollary 3 one deduces for ς̃ ∈ Γς ∩ t∗reg

(2π)dT volT

|HT |
∫
ΩT

ς̃ /T
KT

ς̃ (L)
ς̃→0−→ (2π)dT volT

|HT |
∫
RegΩT

0 /T
KT

0 (L),

and the assertion follows. �

Corollary 5. Let �∈H∗
G(T

∗M) be an equivariantly closed differential form.
Then

lim
ε→0

〈
Fg

(
Le−iω�(·)(·)

)
, ϕε

〉
=

vol G

|W |vol T Res

(
Φ2

∑
F∈F

uF

)
.

Proof. Since UΦ2

F is a piecewise polynomial measure and F−1t (ϕ̂ε) ∈ S(t∗),〈
UΦ2

F ,F−1t (ϕ̂ε)
〉
=

∫
t∗
UΦ2

F (ες)(F−1t ϕ̂)(ς) dς.

Furthermore, for 0 < ε ≤ 1 and almost every ς ∈ t∗ we have the estimate
|UΦ2

F (ες)(F−1t ϕ̂)(ς)| ≤ C(1 + |ς|)N |(F−1t ϕ̂)(ς)| for some C,N > 0. Taking
into account Remark 1 and the previous proposition an application of Le-
besgue’s theorem on bounded convergence yields

lim
ε→0

∑
F∈F

〈
UΦ2

F ,F−1t (ϕ̂ε)
〉
= lim

ε→0

∫
t∗

∑
F∈F

UΦ2

F (ες)(F−1t ϕ̂)(ς) dς

= ϕ̂(0)Res

(
Φ2

∑
F∈F

uF

)
,

and the assertion follows from Proposition 1. �
After these preparations, we finally arrive at
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Theorem 7. Let � ∈ H∗
G(T

∗M) be of the form �(X) = α+Dν(X), where
α is a closed, basic differential form on T ∗M of compact support and ν an
equivariant differential form of compact support. Assume that the dimension
κ of a principal G-orbit equals d = dim g. Then

(2π)d
∫
RegXred

K̃(e−iω̄α) = |H|
|W | vol T Res

(
Φ2

∑
F∈F

uF

)
,

where ω̄(X) = ω − J(X), and the residue was defined in Definition 1 and
Proposition 7.

Proof. Let α be a basic differential form on T ∗M . By definition, α is G-
invariant and satisfies ιX̃α = 0 for all X ∈ g. It is therefore a constant map
from g to Λ(T ∗M), and belongs to (S(g∗)⊗ Λ(T ∗M))G. Furthermore, Dα =
0 iff dα = 0, so that α ∈ H∗

G(T
∗M). The assertion is now a consequence of

Corollaries 4 and 5, together with Lemma 1, by which

volG

|W | volT Res

(
Φ2

∑
F∈F

uF

)
= lim

ε→0

〈
Fg

(
Le−iω�(·)(·)

)
, ϕε

〉
=

(2π)d volG

|H|
∫
RegΩ

r(e−iωα)
vol Oη

=
(2π)d volG

|H|
∫
RegXred

K̃(e−iω̄α),

since ω̄(X) = ω on Ω. �

Remark 9. In order to fully describe the cohomology of the quotient
RegXred, it would still be necessary to consider more general forms � ∈
H∗

G(T
∗M) than the ones examined in Theorem 7. For this, one would need

a full asymptotic expansion for the integrals studied in Theorem 6, and we
intend to tackle this problem in a future paper. Nevertheless, the considered
forms � are already quite general in the following sense. Let G act locally
freely on a smooth manifold X, which means that all stabilizer groups are
finite. As a consequence, X/G is an orbifold, and one has the isomorphism

H∗
G(X) � H∗(X/G),

which implies that any equivariantly closed differential form � can be written
in the form

�(X) = α+Dν(X),
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where α is a closed, basic differential form on T ∗M of compact support, and
ν is an equivariant differential form of compact support [19, Section 3].

Let X be a 2n-dimensional, paracompact, symplectic manifold with a
Hamiltonian G-action. For general, not necessarily equivariantly closed α ∈
Λc(X), no similar formulae can be expected, and non-local remainder terms
will occur. To see this, let us first deduce an expansion for Lα(X) using the
stationary phase principle. For this, recall that for fixed X ∈ g the critical
set of JX is clean in the sense of Bott, and equal to F T in case that X ∈ t′

is a regular element.

Lemma 8. Let X ∈ g, and suppose that suppα ∩ Crit JX = ∅. Then Lα ∈
S(g).

Proof. Let (γ,O) be a Darboux chart on X, so that the symplectic form ω
and the corresponding Liouville form read

ω ≡
n∑

i=1

dpi ∧ dqi,
ωn

n!
≡ dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn.

Assume that α[2n] = f · ωn

n! ∈ Λc(X) is supported in O, so that∫
X
eiJXα =

∫
γ(O)

ei(JX◦γ−1)(q,p)(f ◦ γ−1)(q, p) dq dp,

where JX ◦ γ−1(q, p) depends linearly on X. Let now suppα ∩ Crit JX = ∅.
Writing

eiJX◦γ−1

=
1

i|(JX ◦ γ−1)′|2
n∑

j=1

(
∂

∂ qj
(JX ◦ γ−1) ∂

∂ qj
+

∂

∂ pj
(JX ◦ γ−1) ∂

∂ pj

)
ei(JX◦γ−1),

and integrating by parts we obtain Lα(X) = O(|X|−∞) on g. Similarly, if
{X1, . . . , Xd} denotes a basis of g, and X =

∑
siXi, the same arguments

yield for arbitrary multi-indices γ the estimate ∂γ
s Lα(X) = O(|X|−∞) on g,

and the assertion follows. �
Next, let Y ∈ t′ be a regular element, so that CritJY = F T , F ∈ F a

connected component of F T , and ν : NF → F the normal bundle of F . As
usual, we identify a neighborhood of the zero section of NF with a tubular
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neighborhood of F , and assume in the following that the support of α is
contained in that neighborhood. Integration along the fiber yields

Lα(Y ) =

∫
F
ν∗(eiJY α).

To obtain a localization formula for Lα(Y ) via the stationary phase prin-
ciple, consider an oriented trivialization {(Uj , ϕj)}j∈I of ν : NF → F . Let
{s1, . . . , sl} be the fiber coordinates on NF|Uj

given by ϕj , and Assume that
α is given on ν−1(Uj) by

αj = fj(x, s) (ν
∗βj) ∧ ds1 ∧ · · · ∧ dsl, βj ∈ Λ2n−l(Uj), x ∈ Uj ,

where fj is compactly supported. The cleanness of CritJY implies that the
function s �→ JY (x, s) = JY ◦ ϕ−1j (x, s) has a non-degenerate critical point
at s = 0 for each x ∈ Uj , so that by choosing the support of fj sufficiently
small we can assume that there are no other critical points. Define now the
function HY (x, s) = JY (x, s)− 〈J ′′Y (x, 0)s, s〉 /2, which depends linearly on
Y . As in the proof of Theorem A one computes for any N ∈ N

ν∗(eiJY αj) =
1

det (J ′′Y (x, 0)/2πi)1/2

[ ∑
r−k≤N

∑
3k≤2r

(
1

r!k!(〈
Ds,

J ′′Y (x, 0)
−1

2i
Ds

〉r

(iHY (x, ·))kfj(x, ·)
))

(x, 0)

+Rj,N+1(Y )

]
βj ,

whereRj,N+1 is an explicitly given smooth function on t′ of orderO(|Y |−N−1)
given by

Rj,N+1(Y ) =
βj

det (J ′′Y (x, 0)/2πi)1/2

∞∑
k=0

∫
Rl

∞∑
r=3N+1

(
1

(2π)lk!r!(〈
J ′′Y (x, 0)

−1ξ, ξ
〉

2i

)r )
F(

HY (x, ·)kfj(x, ·)
)
(ξ) dξ.

As a consequence, we obtain the desired localization formula.
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Proposition 8. Let α ∈ Λc(T
∗M), and Y ∈ t′. Then, for arbitrary N ∈ N,

Lα(Y ) =
∑
F∈F

∑
j

∫
F

1

det (J ′′Y (x, 0)/2πi)1/2

[ ∑
r−k≤N

∑
3k≤2r

(
1

r!k!(〈
Ds,

J ′′Y (x, 0)
−1

2i
Ds

〉r

(iHY (x, ·))kfj(x, ·)
))

(x, 0)

]
βj

+RN+1(Y ),

where RN+1 is an explicitly given, smooth function on t′ of order O(|Y |−N−1).

The limit (3) can now be studied taking into account (7) and Cauchy’s in-
tegral theorem, together with the theorems of Paley-Wiener-Schwartz, lead-
ing to corresponding residue formulae with non-local terms.

Appendix A. The generalized stationary phase theorem

In this appendix, we include a proof of the generalized stationary phase
theorem in the setting of vector bundles. It is a direct consequence of the
projection formula and the stationary phase approximation, and implies the
classical generalized stationary phase theorem for manifolds. Sketches of
proofs for the latter can also be found in Combescure-Ralston-Robert [13,
Theorem 3.3], as well as Varadarajan [43, pp. 199].

Theorem A (Stationary phase theorem for vector bundles). Let M
be an n-dimensional, oriented manifold, and π : E →M an oriented vector
bundle of rank l. Let further α ∈ Λq

cv(E) be a differential form on E with
compact support along the fibers, τ ∈ Λn+l−q

c (M) a differential form on M
of compact support, ψ ∈ C∞(E), and consider the integral

I(μ) =

∫
E
eiψ/μ(π∗τ) ∧ α, μ > 0.

Let ι : M ↪→ E denote the zero section. Assume that the critical set of ψ co-
incides with ι(M), and that the transversal Hessian Hesstrans ψ of ψ is non-
degenerate along ι(M). Then, for each N ∈ N, I(μ) possesses an asymptotic
expansion of the form

(A.1) I(μ) = eiψ0/μe
iπ

4
σψ(2πμ)

l

2

N−1∑
j=0

μjQj(ψ;α, τ) +RN (μ),
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where ψ0 and σψ denote the value of ψ and the signature of the transversal
Hessian along ι(M), respectively. The coefficients Qj are given by measures
supported on M , and can be computed explicitly, as well as the remainder
term RN (μ) which is of order O(μl/2+N ).

Proof. Let π∗ : Λ∗cv(E)→ Λ∗−l(M) denote integration along the fiber in E,
which lowers the degree by the fiber dimension. By the projection formula
[7, Proposition 6.15] one has

∫
E
eiψ/μ(π∗τ) ∧ α =

∫
M

τ ∧ π∗(eiψ/μα).

Let {Uj}j∈I be an open covering of M and {(Uj , ϕj)}j∈I , ϕj : π
−1(Uj)

∼−→
Uj × Rl, an oriented trivialization of π : E →M . Write s1, . . . , sl for the fiber
coordinates on E|Uj

given by ϕj . Since I(μ) vanishes if q < l, we assume in
the following that q ≥ l and that α is given on π−1(Uj) by

αj = (fj ◦ ϕj) (π
∗βj) ∧ ds1 ∧ · · · ∧ dsl, βj ∈ Λq−l(Uj), x ∈ Uj ,

where the function fj ∈ C∞(Uj × Rl) is compactly supported along the fibers.
By assumption, s �→ ψ(x, s) = ψ ◦ ϕ−1j (x, s) has a non-degenerate critical
point at s = 0 for each x ∈ Uj , so that in view of the non-stationary phase
theorem [25, Theorem 7.7.1] we can assume that there are no other crit-
ical points by choosing the support of fj sufficiently small. Then, letting
ψ(x, 0) = 0 and setting H(x, s) = ψ(x, s)− 〈ψ′′(x, 0)s, s〉 /2 one computes
on π−1(Uj)

π∗(eiψ/μαj)x =

∫
Rl

eiψ(x,s)/μfj(x, s)ds · βj

=

∫
Rl

ei〈ψ
′′(x,0)s,s〉/2μeiH(x,s)/μfj(x, s)ds · βj

=

∞∑
k=0

ik

μkk!

∫
Rl

ei〈ψ
′′(x,0)s,s〉/2μH(x, s)kfj(x, s)ds · βj .

Note that it is permissible to interchange the order of summation and inte-
gration, since H(x, s)=O(|s|3), so that under the hypothesis supps fj(x, ·)⊂
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B(0, 1) one has for suitable C > 0 the estimate∣∣∣∣∣fj(x, ·)
Ñ∑
k=0

H(x, ·)k
μkk!

∣∣∣∣∣ ≤ C|fj(x, ·)|
Ñ∑
k=0

1

μkk!

≤ Ce1/μ|fj(x, ·)|, Ñ ∈ N,

yielding an integrable majorand. Put Dk = −i ∂k. Taking into account∫
Rl

〈
ξ, ψ′′(x, 0)−1ξ

〉r F(
H(x, ·)kfj(x, ·)

)
(ξ) dξ

= (2π)l
( 〈

Ds, ψ
′′(x, 0)−1Ds

〉r
H(x, ·)kfj(x, ·)

)
(0)

we obtain with Parseval’s formula for arbitrary Ñ ∈ N

π∗(eiψ/μαj)x

=
βj

det (ψ′′(x, 0)/2πμi)1/2
∞∑
k=0

ik

(2π)lμkk!

∫
Rl

e−iμ〈ψ
′′(x,0)−1ξ,ξ〉/2F(

H(x, ·)kfj(x, ·)
)
(ξ) dξ

=
βj

det (ψ′′(x, 0)/2πμi)1/2

∞∑
k=0

ik

μkk!

[
Ñ−1∑
r=0

(−iμ)r
2rr!

(〈
Ds, ψ

′′(x, 0)−1Ds

〉r
H(x, ·)kfj(x, ·)

)
(0)

+

∫
Rl

∞∑
r=Ñ

(−iμ)r
(2π)l2rr!

(〈
ψ′′(x, 0)−1ξ, ξ

〉)r F(
H(x, ·)kfj(x, ·)

)
(ξ) dξ

]
.

Note that interchanging integration and summation in the last term is in
general not possible due to the lack of an integrable majorand. Since H(x, s)
vanishes of third order at s = 0, the local terms are zero unless 3k ≤ 2r.
Consequently, for general ψ and arbitrary N ∈ N we arrive at

π∗(eiψ/μαj)x(A.2)

=
eiψ(x,0)/μ · βj

det (ψ′′(x, 0)/2πμi)1/2

[ ∑
r−k≤N

μr−k ∑
3k≤2r

(
1

r! k! 2r ir−k(〈
Ds, ψ

′′(x, 0)−1Ds

〉r
H(x, ·)kfj(x, ·)

))
(0) +Rj,N+1

]
,
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where Rj,N+1 is explicitly given by

Rj,N+1 =
eiψ(x,0)/μ · βj

det (ψ′′(x, 0)/2πμi)1/2

∞∑
k=0

ik

μkk!∫
Rl

∞∑
r=3N+1

(−iμ)r
(2π)l2rr!

(〈
ψ′′(x, 0)−1ξ, ξ

〉)r F(
H(x, ·)kfj(x, ·)

)
(ξ) dξ.

Moreover, by [25, Theorem 7.7.5] one has Rj,N+1 = O(μN+1). The assertion
now follows by integrating over M , and by taking det (ψ′′(x, 0)/2πμi)1/2 =
(2πμ)−l/2|detψ′′(x, 0)|1/2e−iπ

4
σψ into account. In particular, the leading co-

efficient is given by

(A.3) Q0(ψ;α, τ) =

∫
M

τ ∧ r(α)

|(detHesstrans ψ) ◦ ι|1/2
,

where the restriction map r : Λq(E)→ Λq−l(M) is locally given by

(hj ◦ ϕj) (π
∗γj) ∧ dsσ(1) ∧ · · · ∧ dsσ(p)(A.4)

�−→
{
(−1)sgnσι∗(hj ◦ ϕj) γj , p = l,

0, p < l,

γj ∈ Λq−p(Uj), hj ∈ C∞(Uj × Rl), σ being a permutation in p variables. �

Remark B. (1) In the proof of the last theorem, one can also use the
lemma of Morse. This simplifies the proof, but gives less explicit expressions
for the coefficients Qj , since the Morse diffeomorphism is not given explicitly.
Indeed, by Morse’s Lemma, we can choose the trivialization of π : E →M
in such a way that

ψ(x, s) =
1

2
〈s, Sxs〉 , Sx ∈ Sym(l,R), detSx = 0,
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where the symmetric matrix Sx depends smoothly on x ∈ Uj . Parseval’s
formula then yields

π∗(eiψ/μαj)x

=

∫
Rl

eiψ(x,s)/μfj(x, s)ds · βj

=
eiπ sgnSx/4μl/2

(2π)l/2|detSx|1/2
∫
Rl

e−iμ〈S
−1
x ξ,ξ〉/2F(

fj(x, ·)
)
(ξ) dξ · βj

=
eiπ sgnSx/4μl/2

(2π)l/2|detSx|1/2
[
(2π)l

N−1∑
r=0

μr

r!

(〈
Ds,

S−1x

2i
Ds

〉r

fj(x, ·)
)
(x, 0)

+

∫
Rl

∞∑
r=N

μr

r!

(〈S−1x ξ, ξ
〉

2i

)rF(
fj(x, ·)

)
(ξ) dξ

]
· βj .

By integrating over M , the assertion of Theorem A follows.
(2) In general, it is not possible to say anything about the conver-

gence of the sum in (A.1) as N →∞, and consequently, about the limit
limN→∞RN (μ), due to the lack of control of the growth of the derivatives
∂α
s fj(x, 0) as |α| → ∞.

From Theorem A we can now infer the classical generalized stationary
phase theorem.

Theorem C (Generalized stationary phase theorem for manifolds).
Let M be a n-dimensional, orientable Riemannian manifold with volume
form dM , ψ ∈ C∞(M) a real valued phase function, μ > 0, and set

I(μ) =

∫
M

eiψ(m)/μa(m) dM(m),

where a(m) ∈ C∞c (M) denotes a compactly supported function on M . Let

C =
{
m ∈M : ψ∗ : TmM → Tψ(m)R is zero

}
be the critical set of the phase function ψ, and assume that C is clean in the
sense that

1) C is a smooth submanifold of M of dimension p in a neighborhood of
the support of a;

2) for all m ∈ C, the restriction ψ′′(m)|NmC of the Hessian of ψ at the
point m to the normal space NmC is a non-degenerate quadratic form.
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Then, for all N ∈ N, there exists a constant CN,ψ > 0 such that∣∣∣∣∣I(μ)− eiψ0/μe
iπ

4
σψ(2πμ)

n−p

2

N−1∑
j=0

μjQj(ψ; a)

∣∣∣∣∣ ≤ CN,ψμ
N sup

l≤2N

∥∥∥Dla
∥∥∥
∞,M

,

where Dl is a differential operator on M of order l and ψ0 the constant
value of ψ on C, while σψ denotes the constant value of the signature of
the transversal Hessian Hessψ(m)|NmC on C. The coefficients Qj can be

computed explicitly, and for each j there exists a constant C̃j,ψ > 0 such
that

|Qj(ψ; a)| ≤ C̃j,ψ sup
l≤2j

∥∥∥Dla
∥∥∥
∞,C

.

In particular,

Q0(ψ; a) =

∫
C

a(m)

|detHessψ(m)|NmC |1/2
dσC(m),

where dσC is the induced volume form on C.

Proof. Due to the non-stationary phase principle, we can assume that a dM
is supported in a tubular neighborhood of C. Identifying the latter with
the total space NC of the normal bundle of C, the assertion follows from
Theorem A. �

Remark D. It should be noted that an analogue version of the gener-
alized stationary phase theorem exists also for non-orientable Riemannian
manifolds M and densities, see [40, Theorem 4.1].
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