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Four-ball genus bounds and a refinement

of the Ozsváth-Szabó tau invariant

Jennifer Hom and Zhongtao Wu

Based on work of Rasmussen [Ras03], we construct a concordance
invariant associated to the knot Floer complex, and exhibit exam-
ples in which this invariant gives arbitrarily better bounds on the
4-ball genus than the Ozsváth-Szabó τ invariant.

1. Introduction

The 4-ball genus of a knot K ⊂ S3 is

g4(K) = min{g(Σ) | Σ smoothly embedded in B4 with ∂Σ = K},

where g(Σ) denotes the genus of the surface Σ. The 4-ball genus gives a lower
bound on the unknotting number of a knot (that is, the minimal number
of crossing changes needed to obtain the unknot). We say knots K1 and K2

are concordant if g4(K1#−K2) = 0, where −K2 denotes the reverse of the
mirror image of K2.

In [OS03c], Ozsváth-Szabó defined a concordance invariant, τ , that gives
a lower bound for the 4-ball genus of a knot. This invariant is sharp on torus
knots, giving a new proof of the Milnor conjecture, originally proved by
Kronheimer-Mrowka using gauge theory [KM93]

The knot Floer homology package [OS04a, Ras03] associates to a knot
K a Z⊕ Z-filtered chain complex over the ring F[U,U−1], where F denotes
the field of two elements and U is a formal variable. We denote this complex
CFK∞(K). The invariant τ depends only on a single Z-filtration, and for-
gets the module structure. By studying the module structure together with
the full Z⊕ Z-filtration, we obtain a concordance invariant, ν+, which gives
a better bound on the 4-ball genus than τ , in the sense that

(1.1) τ(K) ≤ ν+(K) ≤ g4(K).

Moreover, the gap between τ and ν+ can be made arbitrarily large.
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Theorem 1. For any positive integer p, there exists a knot K with τ(K) ≥
0 and

τ(K) + p ≤ ν+(K) = g4(K).

Remark 1.1. The invariant ν+ is closely related to the sequence of local
h invariants of Rasmussen [Ras03, Section 7], which Rasmussen uses to give
bounds on the 4-ball genus; indeed, ν+ corresponds to the first place in the
sequence where a zero appears.

In Proposition 3.7, we also show that the gap between ν+ and the knot
signature can be made arbitrarily large.

In the case of alternating knots (or, more generally, quasi-alternating
knots), the invariant ν+ is completely determined by the signature of the
knot.

Theorem 2. Let K ⊂ S3 be a quasi-alternating knot. Then,

ν+(K) =

{
0 if σ(K) ≥ 0,

−σ(K)
2 if σ(K) < 0.

We also have the following result when K is strongly quasipositive. See
[Hed10] for background on strongly quasipositive knots.

Proposition 3. If K is strongly quasipositive, then

ν+(K) = τ(K) = g4(K) = g(K).

Proof. [Hed10, Theorem 1.2] states that τ(K) = g4(K) = g(K) if and only if
K is strongly quasipositive. Since τ(K) ≤ ν+(K) ≤ g4(K), the result follows.

�

Organization. In Section 2, we define the invariant ν+ and prove various
properties. In Section 3, we construct an infinite family of knots in order to
prove Theorem 1. Throughout, we work over F = Z/2Z.
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2. The invariant ν+

Heegaard Floer homology, introduced by Ozsváth and Szabó [OS04b], is an
invariant for closed oriented Spinc 3–manifolds (Y, s), taking the form of a

collection of related homology groups: ĤF (Y, s),HF±(Y, s), andHF∞(Y, s).
There is a U–action on the Heegaard Floer homology groups HF± and
HF∞. When s is torsion, there is an absolute Maslov Q–grading on the
Heegaard Floer homology groups. The U–action decreases the grading by 2.

For a rational homology 3–sphere Y with a Spinc structure s, HF+(Y, s)
can be decomposed as the direct sum of two groups: the first group is the
image ofHF∞(Y, s) ∼= F[U,U−1] inHF+(Y, s), which is isomorphic to T + =
F[U,U−1]/UF[U ], and its minimal absolute Q–grading is an invariant of
(Y, s), denoted by d(Y, s), the correction term [OS03a]; the second group
is the quotient modulo the above image and is denoted by HFred(Y, s).
Altogether, we have

HF+(Y, s) = T + ⊕HFred(Y, s).

We briefly recall the large N surgery formula of [OS04a, Theorem 4.4].
We use the notation of [NW15]. Let CFK∞(K) denote the knot Floer com-
plex of K, which takes the form of a Z⊕ Z-filtered, Z-graded chain complex
over F[U,U−1]. The U -action lowers each filtration by one. We will be par-
ticularly interested in the quotient complexes

A+
k = C{max{i, j − k} ≥ 0} and B+ = C{i ≥ 0}

where i and j refer to the two filtrations. The complex B+ is isomorphic to
CF+(S3). There is a map

v+k : A+
k → B+

defined by projection. One can also define a map

h+k : A+
k → B+

defined by projection to C{j ≥ k}, followed by shifting to C{j ≥ 0} via
the U -action, and concluding with a chain homotopy equivalence between
C{j ≥ 0} and C{i ≥ 0}. These maps correspond to the maps induced on
HF+ by the two handle cobordism from S3

N (K) to S3 [OS04a, Theorem 4.4].
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Similarly, one can consider the subquotient complexes

Âk = C{max{i, j − k} = 0} and B̂ = C{i = 0} ∼= ĈF (S3)

and the maps

v̂k : Âk → B̂ and ĥk : Âk → B̂.

The invariant τ is defined in [OS03c] to be

τ(K) = min{k ∈ Z | ιk induces a nontrivial map on homology},

where ιk : C{i = 0, j ≤ k} → ĈF (S3) denotes inclusion. A slightly stronger
concordance invariant, ν, is defined in [OS11, Definition 9.1] to be

ν(K) = min{k ∈ Z | v̂k : Âk → ĈF (S3)

induces a nontrivial map in homology}.

The invariant ν(K) gives a lower bound for g4(K) and is equal to either
τ(K) or τ(K) + 1; in particular, in many cases ν gives a better 4-ball genus
than τ .

We can further refine these bounds by considering maps on CF+ rather
than ĈF .

Definition 2.1. Define ν+(K) by

ν+(K) = min{k ∈ Z | v+k : A+
k → CF+(S3), v+k (1) = 1}.

Here, 1 denotes the lowest graded generator of the subgroup T + in the
homology of the complex, and we abuse our notations by identifying A+

k
and CF+(S3) with their homologies.

According to [NW15], the definition of ν+(K) is equivalent to the small-
est k such that Vk = 0, where Vk is the U -exponent of v+k at sufficiently high
gradings. We can define Hk similarly in terms of h+k . By [NW14, Equation
(13)] and [HLZ15, Lemma 2.5], the Vk’s and Hk’s satisfy

Hk = V−k(2.1)

Hk = Vk + k(2.2)

Vk − 1 ≤ Vk+1 ≤ Vk(2.3)

and are related to the correction terms in the surgery formula [NW15, Propo-
sition 1.6]:
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Proposition 2.2. Suppose p, q > 0, and fix 0 ≤ i ≤ p− 1. Then

(2.4) d(S3
p/q(K), i) = d(L(p, q), i)− 2max{V� i

q
�, H� i−p

q
�}.

We have the following properties for ν+.

Proposition 2.3. The invariant ν+ satisfies:

1) ν+ is a smooth concordance invariant.

2) ν+(K) ≥ 0, and the equality holds if and only if V0 = 0.

3) ν+(K) ≥ ν(K) ≥ τ(K).

Proof. To see 1, note that V ’s are determined by the d-invariants of the
surgered manifolds S3

n(K) [NW15, Proposition 1.6], and the d-invariants are
concordance invariants. To see 2, note that V−1 > H−1 = V1 ≥ 0 by Equa-
tions (2.1) and (2.2). To see 3, chase the commutative diagram

Âk
jA−−−−→ A+

k

v̂k

⏐⏐� v+
k

⏐⏐�
B̂

jB−−−−→ B+. �

The ν+ invariant can be computed explicitly for quasi-alternating knots,
a generalization of alternating knots introduced in [MO08]. In fact, Theo-
rem 2 states that ν+ is completely determined by the signature of the knot,
just as the τ invariant:

ν+(K) =

{
0 if σ(K) ≥ 0,

−σ(K)
2 if σ(K) < 0.

Proof of Theorem 2. Let K be quasi-alternating. By [OS03b, Corollary 1.5]
and [MO08, Theorem 2], d(S3

1(K)) = 0 when σ(K) ≥ 0. This proves that
ν+(K) = 0 when σ(K) ≥ 0. On the other hand, the proof of Theorem 1.4 of
[OS03b], together with [MO08, Theorem 2], implies that for any s > 0,

H≤s+σ

2
−2(A+

s )
∼= HF+

≤s+σ

2
−2(S

3).

In particular, if we let s = −σ/2 when σ(K) < 0, then

H≤−2(A+
s )
∼= HF+

≤−2(S
3) ∼= 0.
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Here, the gradings of the homology of both sides are inherited from the
grading on CFK∞(K). Thus, the element 1 ∈ T + ⊂ H∗(A+

s ) has grading
−2Vs. In light of the vanishing of the homology group H≤−2(A+

s ), we must
have Vs = 0. So

ν+(K) ≤ s = −σ(K)/2

from the definition. We also know that

ν+(K) ≥ τ(K) = −σ(K)/2

for a quasi-alternating knot K. Hence, ν+(K) = −σ(K)/2. �

Next, we show that ν+ also give a lower bound for the four-ball genus
of a knot.

Proposition 2.4. ν+(K) ≤ g4(K)

Proof. This follows from [Ras03, Corollary 7.4]. The function hk(K) in
[Ras03] is the same as Vk in [NW15]. �

Remark 2.5. [Ras03, Corollary 7.4] states that g4(K) ≥ Vk + k for all k ≤
g4(K), so one might wonder if other Vk’s can give stronger 4-ball genus
bounds. However, since Vk − 1 ≤ Vk+1 ≤ Vk, it follows that ν+ is the best
4-ball genus bound obtainable from the sequence of Vk’s.

3. Four-ball genus bound

In this section, we exhibit some examples of knots whose ν+ invariant is
arbitrarily better than the corresponding τ invariant. Hence, the ν+ invari-
ant indeed gives us significantly improved four-ball genus bound for some
particular knots. We will show that for any integer n ≥ 2, there exists a knot
K with τ(K) ≥ 0 and

τ(K) + n = ν+(K) = g4(K).

Let Kp,q denote the (p, q)-cable of K, where p denotes the longitudinal
winding. Without loss of generality, we will assume throughout that p > 0.
Let Tp,q denote the (p, q)-torus knot (that is, the (p, q)-cable of the unknot),
and Tp,q;m,n the (m,n)-cable of Tp,q. We begin with a single example of a
knot for which ν+ gives a better 4-ball genus bound than τ .
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Proposition 3.1. Let K be the knot T2,9#− T2,3;2,5. We have

τ(K) = 0, ν(K) = 1, and ν+(K) = 2.

Proof. The torus knot T2,9 is an L-space knot, as is T2,3;2,5 [Hed09, Theo-
rem 1.10], so their knot Floer complexes are completely determined by their
Alexander polynomials [OS05, Theorem 1.2] (cf. [Hom14b, Remark 6.6]).
We have that

ΔT2,9
(t) = t8 − t7 + t6 − t5 + t4 − t3 + t2 − t+ 1

and

ΔT2,3;2,5
(t) = ΔT2,3

(t2) ·ΔT2,5
(t)

= t8 − t7 + t4 − t+ 1.

Furthermore, we have that CFK∞(−K)∼=CFK∞(K)∗ [OS04a, Section 3.5],
where CFK∞(K)∗ denotes the dual of CFK∞(K). Thus, CFK∞(−T2,3;2,5)
is generated over F[U,U−1] by

[y0, 0,−4], [y1,−1,−4], [y1,−1,−1], [y3,−3,−1], [y4,−4, 0],

where we write [y, i, j] to denote that the generator y has filtration level
(i, j). The differential is given by

∂y0 = y1

∂y2 = y1 + y3

∂y4 = y3.

The complex CFK∞(T2,9) is generated by

[x0, 0, 4], [x1, 1, 4], [x2, 1, 3], [x3, 2, 3], [x4, 2, 2],

[x5, 3, 2], [x6, 3, 1], [x7, 4, 1], [x8, 4, 0].

The differential is given by

∂x1 = x0 + x2

∂x3 = x2 + x4

∂x5 = x4 + x6

∂x7 = x6 + x8.



312 J. Hom and Z. Wu

The complexes CFK∞(−T2,3;2,5) and CFK∞(T2,9) are depicted in Fig-
ures 1 and 2, respectively. (More precisely, CFK∞ consists of the complexes
pictured tensored with F[U,U−1], where U lowers i and j each by 1.) In
particular, we see that τ(−T2,3;2,5) = −4 since y0 generates the vertical ho-
mology, and that τ(T2,9) = 4 since x0 generates the vertical homology. Since
τ is additive under connected sum, it follows that

τ(−T2,3;2,5#T2,9) = 0,

as desired.

y4

y3 y2

y1 y0

Figure 1: CFK∞(−T2,3;2,5)

x0 x1

x2 x3

x4 x5

x6 x7

x8

Figure 2: CFK∞(T2,9)
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The knot Floer complex satisfies a Künneth formula [OS04a, Theo-
rem 7.1]:

CFK∞(K1#K2) ∼= CFK∞(K1)⊗F[U,U−1] CFK∞(K2).

In particular, we may compute CFK∞(T2,9#− T2,3;2,5) as the tensor prod-
uct of CFK∞(T2,9) and CFK∞(−T2,3;2,5) , where

[x, i, j]⊗ [y, k, �] = [xy, i+ k, j + �].

The generators, filtration levels, and differentials in the tensor product
are listed below.

∂[x0y0, 0, 0] = x0y1

∂[x1y0, 1, 0] = x1y1 + x0y0 + x2y0

∂[x2y0, 1,−1] = x2y1

∂[x3y0, 2,−1] = x3y1 + x2y0 + x4y0

∂[x4y0, 2,−2] = x4y1

∂[x5y0, 3,−2] = x5y1 + x4y0 + x6y0

∂[x6y0, 3,−3] = x6y1

∂[x7y0, 4,−3] = x7y1 + x6y0 + x8y0

∂[x8y0, 4,−4] = x8y1

∂[x0y1,−1, 0] = 0

∂[x1y1, 0, 0] = x0y1 + x2y1

∂[x2y1, 0,−1] = 0

∂[x3y1, 1,−1] = x2y1 + x4y1

∂[x4y1, 1,−2] = 0

∂[x5y1, 2,−2] = x4y1 + x6y1

∂[x6y1, 2,−3] = 0

∂[x7y1, 3,−3] = x6y1 + x8y1

∂[x8y1, 3,−4] = 0

∂[x0y2,−1, 3] = x0y1 + x0y3

∂[x1y2, 0, 3] = x1y1 + x1y3 + x0y2 + x2y2

∂[x2y2, 0, 2] = x2y1 + x2y3

∂[x3y2, 1, 2] = x3y1 + x3y3 + x2y2 + x4y2

∂[x4y2, 1, 1] = x4y1 + x4y3
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∂[x5y2, 2, 1] = x5y1 + x5y3 + x4y2 + x6y2

∂[x6y2, 2, 0] = x6y1 + x6y3

∂[x7y2, 3, 0] = x7y1 + x7y3 + x6y2 + x8y2

∂[x8y2, 3,−1] = x8y1 + x8y3

∂[x0y3,−4, 3] = 0

∂[x1y3,−3, 3] = x0y3 + x2y3

∂[x2y3,−3, 2] = 0

∂[x3y3,−2, 2] = x2y3 + x4y3

∂[x4y3,−2, 1] = 0

∂[x5y3,−1, 1] = x4y3 + x6y3

∂[x6y3,−1, 0] = 0

∂[x7y3, 0, 0] = x6y3 + x8y3

∂[x8y3, 0,−1] = 0

∂[x0y4,−4, 4] = x0y3

∂[x1y4,−3, 4] = x1y3 + x0y4 + x2y4

∂[x2y4,−3, 3] = x2y3

∂[x3y4,−2, 3] = x3y3 + x2y4 + x4y4

∂[x4y4,−2, 2] = x4y3

∂[x5y4,−1, 2] = x5y3 + x4y4 + x6y4

∂[x6y4,−1, 1] = x6y3

∂[x7y4, 0, 1] = x7y3 + x6y4 + x8y4

∂[x8y4, 0, 0] = x8y3

We perform the following change of basis on CFK∞(T2,9#− T2,3;2,5).
In the linear combinations below, we have ordered the terms so that the first
basis element has the greatest filtration and thus determines the filtration
level of the linear combination.

z0 = x0y0

z1 = x0y1

z2 = x0y2 + x1y3 + x3y3 + x4y4

z3 = x1y2

z4 = x2y2 + x3y3 + x1y1 + x4y4

z5 = x3y2 + x5y4 + x1y0
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z6 = x4y2 + x5y3 + x3y1 + x6y4 + x2y0

z7 = x5y2 + x7y4 + x3y0

z8 = x6y2 + x7y3 + x5y1 + x4y0

z9 = x7y2

z10 = x8y2 + x7y1 + x4y0 + x5y1

z11 = x8y3

z12 = x8y4

wi
0 = x2i+1y4 i = 0, 1, 2, 3

wi
1 = x2iy4 i = 0, 1, 2, 3

wi
2 = x2iy3 i = 0, 1, 2, 3

wi
3 = x2i+1y3 + x2i+2y4 i = 0, 1, 2, 3

wi+4
0 = x2i+1y0 i = 0, 1, 2, 3

wi+4
1 = x2i+1y1 + x2iy0 i = 0, 1, 2, 3

wi+4
2 = x2i+2y1 i = 0, 1, 2, 3

wi+4
3 = x2i+2y0 i = 0, 1, 2, 3.

See Figure 3.
Notice that the basis elements {zi}12i=0 generate a direct summand C

of CFK∞(T2,9#− T2,3;2,5). See Figure 4. Since the total homology of this
summand is non-zero, this summand determines both ν and ν+. We write
Âs and A+

s to refer to the associated subquotient complexes of C.
The vertical homology of C is generated by z0. The generator z0 in

C{i = 0} is not the image of any cycle in Â0. On the other hand, z0 is
non-zero in H∗(Â1). Hence ν(T2,9#− T2,3;2,5) = 1.

The cycle z6 generates H∗(C). Moreover, the cycle Uz6 is non-zero
in H∗(A+

1 ); see Figure 5. The cycle Uz6 is a boundary in A+
2 as in Fig-

ure 6, while the cycle z6 is non-zero in H∗(A+
2 ). It follows that ν

+(T2,9#−
T2,3;2,5) = 2, as desired. �

Corollary 3.2. Let K = T2,5#2T2,3#− T2,3;2,5. Then

τ(K) = 0, ν(K) = 1, and ν+(K) = 2.

Proof. By [HKL16, Theorem B.1],

CFK∞(T2,5#2T2,3) ∼= CFK∞(T2,9)⊕A,
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z0
z1

z2 z3

z4 z5

z6 z7

z8 z9

z10z11

z12

w0
0

w0
1

w0
2

w0
3 w1

0

w1
1

w1
2

w1
3 w2

0

w2
1

w2
2

w2
3

w5
0w5

1

w5
2

w5
3

w6
0w6

1

w6
2

w6
3

w7
0w7

1

w7
2 w7

3

Figure 3: CFK∞(T2,9#− T2,3;2,5) after a change of basis

where A is acyclic (i.e., its total homology vanishes). Since acyclic summands
do not affect τ , ν, and ν+, the result follows. �

Lemma 3.3. Let K = T2,5#2T2,3#− T2,3;2,5. Then g4(K) = 2.

Proof. When p, q > 0, the genus of Tp,q is equal to (p−1)(q−1)
2 . We can con-

struct a genus 4 Seifert surface F for −T2,3;2,5 = (−T2,3)−2,5 by taking two
parallel copies of the genus one Seifert surface for −T2,3 and connecting them
with 5 half-twisted bands. The knot −T2,3#T−2,5 sits on F . To see this, con-
sider one copy of the Seifert surface for −T2,3 together with the half-twisted
bands and a small neighborhood of a segment connecting the ends of the
bands.

Take the boundary sum of F with the genus two Seifert surface for T2,5

and with two copies of the genus one Seifert surface for T2,3 to obtain a
surface F ′. The surface F ′ is a genus 8 Seifert surface for K. The genus
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z0z1

z2 z3

z4 z5

z6 z7

z8 z9

z10z11

z12

Figure 4: The relevant summand of CFK∞(T2,9#− T2,3;2,5)

Uz2 Uz3

Uz4 Uz5

Uz6
Uz7

Uz8 Uz9

Uz10

Figure 5: The generators {Uzi} in A+
1

6 slice knot J = −T2,3#T−2,5#T2,3#T2,5 sits on this surface. Performing
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Uz2 Uz3

Uz5

Uz6
Uz7

Uz8 Uz9

Uz10

Figure 6: The generators {Uzi} in A+
2

surgery along J on F ′ in B4 yields a genus two slice surface for K. Since
ν+(K) = 2 and ν+(K) ≤ g4(K), it follows that g4(K) = 2. �

In order to prove the main theorem, we will consider certain cables of
the knot K = T2,5#2T2,3#− T2,3;2,5. We first compute τ of these cables.

Lemma 3.4. Let K be the knot T2,5#2T2,3#− T2,3;2,5. Then

τ(Kp,3p−1) =
3p(p− 1)

2
.

Proof. Recall from [Hom14a, Definition 3.4] that the invariant ε(K) is de-
fined to be −1 if τ(K) < ν(K). The equality then follows from [Hom14a,
Theorem 1], which states that if ε(K) = −1, then

τ(Kp,q) = pτ(K) +
(p− 1)(q + 1)

2
. �

Proposition 3.5. Let K be the knot T2,5#2T2,3#− T2,3;2,5. Then

ν+(Kp,3p−1) = g4(Kp,3p−1) =
p(3p− 1)

2
+ 1.
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Proof. Let p, q > 0. For an arbitrary knot J and its cable Jp,q, there is a
reducible surgery

S3
pq(Jp,q)

∼= S3
q/p(J)#L(p, q).

We apply the surgery formula (2.4) for the above knot surgery when J is
the unknot. Note that max{Vi, Hi−pq} = Vi when 0 ≤ i ≤ pq

2 since Vi = H−i
and Hi−1 ≤ Hi. Thus, we have

(3.1) d(L(pq, 1), i)− 2Vi(Tp,q) = d(L(q, p), φ1(i)) + d(L(p, q), φ2(i))

for all 0 ≤ i ≤ pq
2 .

Here, we identify the Spinc structure of a rational homology sphere by
an integer i as in [NW15], and φ1(i) and φ2(i) are the projection of the
Spinc structure to the two factors of the reducible manifold. In particular,
we can identify φ1(i) with some integers between 0 and q − 1 and φ2(i) with
some integers between 0 and p− 1. The maps φ1 and φ2 are independent of
the knot J , and in principle, can be determined from an explicit geometric
description of the reducible surgery (cf [Hed09]). For the purpose of our
argument below, we do not need it.

Similarly, apply (2.4) for an arbitrary knot J . We have

d(L(pq, 1), i)− 2Vi(Jp,q)

= d(L(q, p), φ1(i))− 2max
{
V�φ1(i)

p
�(J), H�φ1(i)−q

p
�(J)

}
+ d(L(p, q), φ2(i)).

for all i ≤ pq
2 .

Compared with Equation (3.1) and using the fact Vi(Tp,q) ≥ 0, we deduce
that for all i ≤ pq

2 ,

Vi(Jp,q) = Vi(Tp,q) + max
{
V�φ1(i)

p
�(J), H�φ1(i)−q

p
�(J)

}
≥ max

{
V�φ1(i)

p
�(J), H�φ1(i)−q

p
�(J)

}
From now on, let us specialize to the case when K = T2,5#2T2,3#−

T2,3;2,5 and q = 3p− 1. We claim that

max
{
V�φ1(i)

p
�(K), H�φ1(i)−q

p
�(K)

}
> 0.

To see this, note that V0(K), V1(K) > 0 as ν+(K) = 2. When 0 ≤ φ1(i) < 2p,
V�φ1(i)

p
�(K) > 0. Otherwise, 2p ≤ φ1(i) < q = 3p− 1, and then H�φ1(i)−q

p
�(K)

> 0 since H−k = Vk and V0(K), V1(K) > 0.
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Hence, Vi(Kp,q) > 0 for all i ≤ pq
2 . This implies that

ν+(Kp,3p−1) ≥
p(3p− 1)

2
+ 1.

On the other hand,

g4(Kp,q) ≤ pg4(K) +
(p− 1)(q − 1)

2
,

since one can construct a slice surface for Kp,q from p parallel copies of a
slice surface for K together with (p− 1)q half-twisted bands. By Lemma 3.3,
g4(K) = 2, so when q = 3p− 1, the right-hand side of the above inequality

is p(3p−1)
2 + 1. Hence

p(3p− 1)

2
+ 1 ≤ ν+(Kp,3p−1) ≤ g4(Kp,3p−1) ≤

p(3p− 1)

2
+ 1,

so ν+(Kp,3p−1) = g4(Kp,3p−1) =
p(3p−1)

2 + 1. �

Note that ν+(Kp,3p−1)− τ(Kp,3p−1) = p+ 1 for K = T2,5#2T2,3#
− T2,3;2,5. This proves Theorem 1.

A similar argument shows that ν+ gives a sharp four-ball genus bound
for certain other cable knots as well.

Proposition 3.6. Let K be a knot with ν+(K) = g4(K) = n, then

ν+(Kp,(2n−1)p−1) = g4(Kp,(2n−1)p−1) =
p((2n− 1)p− 1)

2
+ 1.

Proof. Let q = (2n− 1)p− 1. In the proof of Proposition 3.5, we showed

Vi(Kp,q) ≥ max
{
V�φ1(i)

p
�(K), H�φ1(i)−q

p
�(K)

}
for all 0 ≤ i ≤ pq

2 . We claim that

max
{
V�φ1(i)

p
�(K), H�φ1(i)−q

p
�(K)

}
> 0.

To see this, note that Vi(K) > 0 for all i < n. When 0 ≤ φ1(i) < np,
V�φ1(i)

p
�(K) > 0. Otherwise, np ≤ φ1(i) < q = (2n− 1)p− 1, and then
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H�φ1(i)−q

p
�(K) > 0. Hence, Vi(Kp,q) > 0 for all i ≤ pq

2 . This implies that

ν+(Kp,q) ≥
pq

2
+ 1 =

p((2n− 1)p− 1)

2
+ 1.

On the other hand,

g4(Kp,q) ≤ pg4(K) +
(p− 1)(q − 1)

2

= pn+
(p− 1)((2n− 1)p− 2)

2

=
p((2n− 1)p− 1)

2
+ 1.

So ν+(Kp,(2n−1)p−1) = g4(Kp,(2n−1)p−1) =
p((2n−1)p−1)

2 + 1. �

We conclude by showing that the knot signature cannot detect the four-
ball genus of the knots used in Theorem 1. Recall that

1

2
|σ(K)| ≤ g4(K).

Proposition 3.7. Let K = T2,5#2T2,3#− T2,3;2,5. Then for p > 0,

1

2
|σ(Kp,3p−1)|+ 2p− 2 ≤ g4(Kp,3p−1).

Proof. We have that σ(T2,q) = 1− q. By [Shi71, Theorem 9],

σ(Kp,q) =

{
σ(Tp,q) if p is even
σ(K) + σ(Tp,q) if p is odd.

Thus, σ(T2,3;2,5) = −4 and since signature is additive under connected sum,

σ(T2,5#2T2,3#− T2,3;2,5) = −4 + 2(−2)− (−4)
= −4.

We showed in Lemma 3.3 that g4(K) = 2, so for K, the signature is indeed
strong enough to detect the four-ball genus. However, we will now show that
it is not strong enough to detect the four-ball genus of Kp,3p−1. We have that

|σ(Kp,3p−1)| ≤ |σ(K)|+ |σ(Tp,3p−1)|
≤ 4 + (p− 1)(3p− 2) = 3p2 − 5p+ 6,
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where the second inequality follows from the fact that when p, q > 0,

|σ(Tp,q)| ≤ 2g4(Tp,q) = (p− 1)(q − 1).

On the other hand,

2g4(Kp,3p−1) = 3p2 − p+ 2,

so

|σ(Kp,3p−1)|+ 4p− 4 ≤ 2g4(Kp,3p−1). �
Recall from Proposition 3.5 that g4(Kp,3p−1) = ν+(Kp,3p−1). A conse-

quence of Proposition 3.7 is that the gap between 1
2σ and ν+ can be made

arbitrarily large.
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ical invariants for closed three-manifolds, Ann. of Math. (2), 159
(2004), no. 3, 1027–1158.
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rational surgeries, Algebr. Geom. Topol., 11 (2011), no. 1, 1–68.

[Ras03] Jacob Rasmussen, Floer homology and knot complements, Ph.D.
thesis, Harvard University, 2003.

[Shi71] Yaichi Shinohara, On the signature of knots and links, Trans.
Amer. Math. Soc., 156 (1971), 273–285.

Department of Mathematics, Columbia University

New York, NY 10027, USA

E-mail address: hom@math.columbia.edu

Department of Mathematics, The Chinese University of Hong Kong

Shatin, Hong Kong

E-mail address: ztwu@math.cuhk.edu.hk

Received May 14, 2014




