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Four-ball genus bounds and a refinement
of the Ozsvath-Szabé tau invariant

JENNIFER HOM AND ZHONGTAO WU

Based on work of Rasmussen [Ras03], we construct a concordance
invariant associated to the knot Floer complex, and exhibit exam-
ples in which this invariant gives arbitrarily better bounds on the
4-ball genus than the Ozsvath-Szabd 7 invariant.

1. Introduction
The 4-ball genus of a knot K C S is
g4(K) = min{g(¥) | ¥ smoothly embedded in B* with % = K},

where ¢g(X) denotes the genus of the surface ¥. The 4-ball genus gives a lower
bound on the unknotting number of a knot (that is, the minimal number
of crossing changes needed to obtain the unknot). We say knots K; and K3
are concordant if g4(K1# — K3) = 0, where — K> denotes the reverse of the
mirror image of Ko.

In [OS03c], Ozsvath-Szabé defined a concordance invariant, 7, that gives
a lower bound for the 4-ball genus of a knot. This invariant is sharp on torus
knots, giving a new proof of the Milnor conjecture, originally proved by
Kronheimer-Mrowka using gauge theory [KM93]

The knot Floer homology package [OS04a, Ras03] associates to a knot
K a 7 @ Z-filtered chain complex over the ring F[U, U~!], where F denotes
the field of two elements and U is a formal variable. We denote this complex
CFK>(K). The invariant 7 depends only on a single Z-filtration, and for-
gets the module structure. By studying the module structure together with
the full Z @ Z-filtration, we obtain a concordance invariant, v, which gives
a better bound on the 4-ball genus than 7, in the sense that
(1.1) T(K) < vH(K) < g4(K).

Moreover, the gap between 7 and v can be made arbitrarily large.
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306 J. Hom and Z. Wu

Theorem 1. For any positive integer p, there exists a knot K with 7(K) >
0 and

T(K) +p < v (K) = ga(K).

Remark 1.1. The invariant v is closely related to the sequence of local
h invariants of Rasmussen [Ras03, Section 7], which Rasmussen uses to give
bounds on the 4-ball genus; indeed, v corresponds to the first place in the
sequence where a zero appears.

In Proposition 3.7, we also show that the gap between v+ and the knot
signature can be made arbitrarily large.

In the case of alternating knots (or, more generally, quasi-alternating
knots), the invariant v* is completely determined by the signature of the
knot.

Theorem 2. Let K C S? be a quasi-alternating knot. Then,

0 if o(K) >0,
”+(K)_{ —2B) i e(K) < 0.

We also have the following result when K is strongly quasipositive. See
[Hed10] for background on strongly quasipositive knots.

Proposition 3. If K is strongly quasipositive, then

Proof. [Hed10, Theorem 1.2] states that 7(K) = g4(K) = g(K) if and only if
K is strongly quasipositive. Since 7(K) < v (K) < g4(K), the result follows.
O

Organization. In Section 2, we define the invariant v and prove various
properties. In Section 3, we construct an infinite family of knots in order to
prove Theorem 1. Throughout, we work over F = Z/27.
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Region, China (Project No. CUHK 24300714); he would like to thank Hiroshi
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2. The invariant v+

Heegaard Floer homology, introduced by Ozsvéth and Szab6 [OS04b], is an
invariant for closed oriented Spin® 3-manifolds (Y,s), taking the form of a
collection of related homology groups: HF (Y, s), HF*(Y,s),and HF>(Y,s).
There is a U-action on the Heegaard Floer homology groups HF* and
HF*. When s is torsion, there is an absolute Maslov Q-grading on the
Heegaard Floer homology groups. The U-action decreases the grading by 2.

For a rational homology 3-sphere Y with a Spin® structure s, HF* (Y, s)
can be decomposed as the direct sum of two groups: the first group is the
image of HF>(Y,s) 2 F[U,U~'] in HF*(Y,s), which is isomorphic to 7+ =
F[U,U~Y/UF[U], and its minimal absolute Q-grading is an invariant of
(Y,s), denoted by d(Y,s), the correction term [OS03a]; the second group
is the quotient modulo the above image and is denoted by H Fieq(Y,s).
Altogether, we have

HFY(Y,s)=T" ® HFa(Y,s5).
We briefly recall the large N surgery formula of [OS04a, Theorem 4.4].
We use the notation of [NW15]. Let CFK*°(K) denote the knot Floer com-
plex of K, which takes the form of a Z @ Z-filtered, Z-graded chain complex

over F[U,U~!]. The U-action lowers each filtration by one. We will be par-
ticularly interested in the quotient complexes

Al = C{max{i,j —k} >0} and Bt =C{i>0}

where i and j refer to the two filtrations. The complex B is isomorphic to
CF*(S3). There is a map

+ .4+
vy DAL — BT
defined by projection. One can also define a map
+ .4+
hi A — BY
defined by projection to C{j > k}, followed by shifting to C'{j > 0} via
the U-action, and concluding with a chain homotopy equivalence between

C{j > 0} and C{i > 0}. These maps correspond to the maps induced on
HF™ by the two handle cobordism from S%(K) to 3 [0S04a, Theorem 4.4].
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Similarly, one can consider the subquotient complexes
A, =C{max{i,j —k} =0} and B=C{i=0}=CF(?)

and the maps
i)\kzzl\k—>§ and /ﬁkgkﬁg

The invariant 7 is defined in [OS03c] to be
7(K) = min{k € Z | 1, induces a nontrivial map on homology},

where 1, : C{i =0,j <k} — (/TTT(S3) denotes inclusion. A slightly stronger
concordance invariant, v, is defined in [OS11, Definition 9.1] to be

V(K) = min{k € Z |0y : Ay — CF(S?)

induces a nontrivial map in homology}.

The invariant v(K) gives a lower bound for ¢g4(K) and is equal to either
7(K) or 7(K) + 1; in particular, in many cases v gives a better 4-ball genus
than 7.

We can further refine these bounds by considering maps on C'F * rather
than C'F.

Definition 2.1. Define v (K) by
v (K) =min{k € Z|v} : Af — CF*(S%), v (1) =1}.

Here, 1 denotes the lowest graded generator of the subgroup 7' in the
homology of the complex, and we abuse our notations by identifying Az
and CF*(83) with their homologies.

According to [NW15], the definition of v (K) is equivalent to the small-
est k such that V;, = 0, where V} is the U-exponent of v,j at sufficiently high
gradings. We can define Hy, similarly in terms of h;. By [NW14, Equation
(13)] and [HLZ15, Lemma 2.5], the Vs and H}’s satisfy

(2.1) H,=V_
H,=V.+k
Vii=1< Vi1 <V

and are related to the correction terms in the surgery formula [NW15, Propo-
sition 1.6]:
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Proposition 2.2. Suppose p,q >0, and fir 0 <i < p—1. Then
(24) d(Sg/q(K)) Z) = d(L(p, Q)a 7’) —2 maX{Vl_éj ) HL%J }
We have the following properties for v.

Proposition 2.3. The invariant v satisfies:

1) vt is a smooth concordance invariant.
2) vT(K) >0, and the equality holds if and only if Vo = 0.
3) vI(K) >v(K) > 71(K).

Proof. To see 1, note that V’s are determined by the d-invariants of the
surgered manifolds S3(K) [NW15, Proposition 1.6], and the d-invariants are
concordance invariants. To see 2, note that V_1 > H_; = V] > 0 by Equa-
tions (2.1) and (2.2). To see 3, chase the commutative diagram

Ak]—A>Ak+

B

—>jB BT. H

The v invariant can be computed explicitly for quasi-alternating knots,
a generalization of alternating knots introduced in [MOO08|. In fact, Theo-
rem 2 states that v™ is completely determined by the signature of the knot,
just as the 7 invariant:

0 if o(K) > 0
+ K) = )
vT(K) { —2B) it o (K) < 0.

Proof of Theorem 2. Let K be quasi-alternating. By [OS03b, Corollary 1.5]
and [MOO8, Theorem 2], d(S;(K)) =0 when o(K) > 0. This proves that
vT(K) =0 when o(K) > 0. On the other hand, the proof of Theorem 1.4 of
[OS03b], together with [MOO08, Theorem 2], implies that for any s > 0,

H§s+g—2(A;—) = HF;3+%_2(53)-

In particular, if we let s = —0 /2 when o(K) < 0, then

He o(AT) = HFE ,(5%) = 0,
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Here, the gradings of the homology of both sides are inherited from the
grading on CFK®(K). Thus, the element 1 € T+ C H,(Al) has grading
—2V;. In light of the vanishing of the homology group H<_5(AJ), we must
have V, = 0. So

vH(K)<s=—0(K)/2

from the definition. We also know that

vH(K) > 7(K) = —0(K)/2

for a quasi-alternating knot K. Hence, vt (K) = —o(K)/2. O

Next, we show that vT also give a lower bound for the four-ball genus
of a knot.

Proposition 2.4. v (K) < g4(K)

Proof. This follows from [Ras03, Corollary 7.4]. The function hi(K) in
[Ras03] is the same as V}, in [NW15]. O

Remark 2.5. [Ras03, Corollary 7.4] states that g4(K) > Vj, + k for all k <
94(K), so one might wonder if other Vi’s can give stronger 4-ball genus
bounds. However, since Vi, — 1 < Vi1 < Vi, it follows that vt is the best
4-ball genus bound obtainable from the sequence of V}’s.

3. Four-ball genus bound

In this section, we exhibit some examples of knots whose v™ invariant is
arbitrarily better than the corresponding 7 invariant. Hence, the v invari-
ant indeed gives us significantly improved four-ball genus bound for some
particular knots. We will show that for any integer n > 2, there exists a knot
K with 7(K) > 0 and

T(K) +n = v (K) = g(K).

Let K, , denote the (p, g)-cable of K, where p denotes the longitudinal
winding. Without loss of generality, we will assume throughout that p > 0.
Let T, , denote the (p, ¢)-torus knot (that is, the (p, ¢)-cable of the unknot),
and T} g.m,n the (m,n)-cable of T}, ,. We begin with a single example of a
knot for which v gives a better 4-ball genus bound than 7.
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Proposition 3.1. Let K be the knot Ts 9# — T 3.05. We have
T(K) =0, v(K)=1, and v (K)=2.

Proof. The torus knot T 9 is an L-space knot, as is T53.05 [Hed09, Theo-
rem 1.10], so their knot Floer complexes are completely determined by their
Alexander polynomials [OS05, Theorem 1.2] (cf. [Hom14b, Remark 6.6]).
We have that

Ag, () =t5 —t"T+15 O+t - 12—t + 1
and

AT2,3;2‘5 (t) = AT2,3 (t2) : ATzs(t)
=8 T+ttt 41

Furthermore, we have that CFK*°(—K)=CFK>(K)* [OS04a, Section 3.5],
where CFK*(K)* denotes the dual of CFK*(K). Thus, CFK*(—T53.25)
is generated over F[U, U~!] by

[y0>07 _4]7 [y17_17_4]a [yla_L_l]? [y37_3a_1}a [y4a_470]7

where we write [y, 1, j] to denote that the generator y has filtration level
(i,7). The differential is given by

Oyo = 11
0y2 = y1 + 3
0ys = y3.

The complex CFK>(T3g9) is generated by

[33(),0,4], [371,1,4], [1’2,1,3], [.%'3,2,3], [1’4,2,2],
[x5a3a2]7 [l‘6737 1]a [:E7a4a 1]7 {1'874,0]'

The differential is given by

O0x1 = zo + 22
0x3 = x9 + 24
Oxs = x4 + xg
O0x7 = x¢ + 3.
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The complexes CFK*(—T53.05) and CFK> (T 9) are depicted in Fig-
ures 1 and 2, respectively. (More precisely, C F' K consists of the complexes
pictured tensored with F[U,U~!], where U lowers i and j each by 1.) In
particular, we see that 7(—Th3.25) = —4 since yop generates the vertical ho-
mology, and that 7(T»9) = 4 since x( generates the vertical homology. Since
7 is additive under connected sum, it follows that

T(=To3.05#T29) =0,

as desired.

—0

Y3 e ol

Y1 eé—eYo

Figure 1: CFK*(—T53.25)

Toeé—eolq
I eé&—eol3
Tieé—eol5

Tgoeé—el7

]
o
°

Figure 2: CFK*(Tsy)



Four-ball genus bounds and a refinement of tau 313

The knot Floer complex satisfies a Kiinneth formula [OS04a, Theo-
rem 7.1]:

CFKOO(Kl#KQ) = CFKOO(Kl) ®]F[U,U*1] CFKOO(KQ)

In particular, we may compute CFK*(T5 g# — T53.25) as the tensor prod-
uct of CFK>®(Ty9) and CFK*(—Th3.25) , where

[,4,7] @ [y, k, €] = [wy,i+ k,j + 4.

The generators, filtration levels, and differentials in the tensor product
are listed below.

0[x0Y0,0,0] = xoy1
d[z1Y0,1,0] = z1y1 + zoYo + Z2yo

Izayo, 1, —1] = a1
Olz3y0,2, —1] = x3y1 + T2Yo + T4Yo
Olz4yo,2, —2] = x4
Olw5Y0, 3, —2] = T5Y1 + TaYo + T6Yo
Iz6yo, 3, —3] = w61
Olz7yo,4, —3] = T7y1 + T6Yo + TsYo
[
[

Olroy2, —1,3] = xoy1 + zoy3
0[z1y2,0, 3] = z1y1 + z1y3 + Toy2 + T2y2
0|w2y2,0,2] = 22y1 + T2Y3

O[zsyo, 4, —4] = $8y1
Olzoy1, —1,0] =
O[r1y1,0,0] = 3602/1 + T2u1
Olz2y1,0, —1] =
Olrzy1, 1, —1] = 3622/1 + T4
Olwayr, 1, -2] =
Olrsy1,2, —2] = 36491 + Z6Y1
dwey1,2, 3] =
Olz7y1,3, 3] = 36691 + Z8y1
Olzsyr, 3, —4] =
[ ] =
| =
] =
| =
] =

[
Olz3y2, 1, 2] = x3y1 + 23y3 + T2y2 + Tay2
Olxay2, 1,1] = zay1 + x4y3
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Olz5y2,2,1] = w591 + T5Y3 + Tay2 + Tey2

O[z6y2,2,0] = w6y1 + T6Y3

Iz7y2,3,0] = T7y1 + T7Y3 + T6Y2 + T8Y2
Izsys, 3, —1] = $8y1 + w3Yy3

[907314, 0,1} = x7y3 + x6Ys + T8Y4
0lx8ys,0,0] = x5y3

[
Awoys, — ]
dz1y3, —3,3] = ﬂﬁoys + T2y3
O[r2ys3, — ]
Olzsys, —2,2] = 962y3 + Tay3
O[rays, — ]
Izsys, —1,1] = 964y3 + T6Y3
dlxeys, —1,0] =
[x7y3, 0,0] = $6y3 + 78Y3

dzsys, 0, —1]
Iwoys, —4,4] = zoys
Ow1ya, — ] = 21y3 + Toy4 + T2ya
Oways, —3,3] = w2ys
Olr3ys, —2 3] = w3Y3 + Tay4 + TaYs
Olrays, —2,2] = 2ay3
Oy, —1 2] = T5Y3 + T4Ys + TeYs
dweys, —1,1] = z6ys

| =

| =

We perform the following change of basis on CFK* (T 9# — Tr3.25).
In the linear combinations below, we have ordered the terms so that the first
basis element has the greatest filtration and thus determines the filtration
level of the linear combination.

20 = Z0Yo
21 = Tol1
Z9 = ToY2 + T1Y3 + T3Y3 + Tays
23 = T1Y2

Z4 = X2Y2 + T3Y3 + T1Y1 + T4Y4
Z5 = X3Y2 + TsY4 + T1Yo
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26 = T4Y2 + T5Y3 + T3Y1 + TeY4 + T2Yo
27 = TsY2 + Trys + T3Yo
zZ8 = ZTeY2 + T7Ys + T5Y1 + TaYo

29 = X7Y2

210 = T8Y2 + T7Y1 + TaYo + Ts5Y1

211 = T8Y3

212 = T8Y4

Wh = Toi 14 i=0,1,2,3

wh = oy i=0,1,2,3

wh = To;y3 i=0,1,2,3

Wh = T2 41Y3 + Toir2ys ©1=0,1,2,3
wi™ = w2410 i=0,1,2,3
wiH = Toi+1Y1 + T2iYo 1=0,1,2,3
wi™ = 29; 0y i=0,1,2,3
wi™ = T9i4 990 i=0,1,2,3.

See Figure 3.

Notice that the basis elements {z;}!2, generate a direct summand C
of CFK>®(To9# — T 3.25). See Figure 4. Since the total homology of this
summand is non-zero, this summand determines both v and vT. We write
Ag and AT to refer to the associated subquotient complexes of C.

The vertical homology of C is generated by zp. The generator zy in
C{i =0} is not the image of any cycle in Ap. On the other hand, zy is
non-zero in H*(A\l) Hence v(To9# — T2 3.205) = 1.

The cycle zg generates H,(C'). Moreover, the cycle Uzg is non-zero
in H,(A]); see Figure 5. The cycle Uz is a boundary in A5 as in Fig-
ure 6, while the cycle zg is non-zero in H,(AJ). It follows that v+ (T o# —
T 3.25) = 2, as desired. O

Corollary 3.2. Let K = T275#2T273# — T273;275. Then
7(K)=0, v(K)=1, and v7(K)=2.
Proof. By [HKL16, Theorem B.1],

CFK™(Ty5#2T53) = CFK™(T29) @ A,
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wp
w(l] o—o
o‘l' w wh
Wy ‘(_.1.(_.0 29 @ ¢——@ 23

Woy O(—.Q.(_. Zi0é——0Z5

Z60é——0 27

Figure 3: CFK> (T2 9# — T53.25) after a change of basis

154

where A is acyclic (i.e., its total homology vanishes). Since acyclic summands
do not affect 7, v, and v ™, the result follows. Il

Lemma 3.3. Let K = T2’5#2T273# — T273;275. Then g4(K) =2.
Proof. When p,q > 0, the genus of T}, ; is equal to %. We can con-
struct a genus 4 Seifert surface F' for —T5 305 = (—133)—25 by taking two
parallel copies of the genus one Seifert surface for —75 3 and connecting them
with 5 half-twisted bands. The knot —75 3#7"_5 5 sits on F'. To see this, con-
sider one copy of the Seifert surface for —75 3 together with the half-twisted
bands and a small neighborhood of a segment connecting the ends of the
bands.

Take the boundary sum of F' with the genus two Seifert surface for 73 5
and with two copies of the genus one Seifert surface for 753 to obtain a
surface F’. The surface F’ is a genus 8 Seifert surface for K. The genus
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Figure 4: The relevant summand of CFK>(Ty g# — T53:25)

Uzoee——eolUz3

Uzs oo lz

eUzp

Figure 5: The generators {Uz;} in A]

6 slice knot J = =T 3#T o 5# 1> 3# 15 5 sits on this surface. Performing
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Figure 6: The generators {Uz;} in AF

surgery along J on F’ in B* yields a genus two slice surface for K. Since
vH(K)=2and v (K) < g4(K), it follows that g4(K) = 2. O

In order to prove the main theorem, we will consider certain cables of
the knot K = Ty 5#27T5 3# — 15 3.2 5. We first compute 7 of these cables.

Lemma 3.4. Let K be the knot To 5#2T5 3# — 12 3.25. Then

3p(p —1)

T(Kpﬁp—l) = 9

Proof. Recall from [Hom14a, Definition 3.4] that the invariant £(K) is de-
fined to be —1 if 7(K) < v(K). The equality then follows from [Hom1l4a,
Theorem 1], which states that if ¢(K) = —1, then

(1) = pr(x) + LD .

Proposition 3.5. Let K be the knot To 54215 3# — T 3.95. Then

p(3p—1)

1.
5 +

V+(Kp73p—1) = 94(Kp73p—1) =
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Proof. Let p,q > 0. For an arbitrary knot J and its cable J, 4, there is a
reducible surgery

qu(Jp,q) = Sg/p(J)#L(p, q)-
We apply the surgery formula (2.4) for the above knot surgery when J is
the unknot. Note that max{Vj, H;_,,} = V; when 0 < i < Bl since V; = H_;
and H;_ 1 < H;. Thus, we have

(3.1)  d(L(pg,1),i) — 2Vi(Tpq) = d(L(q,p), $1(i)) + d(L(p, q), P2(i))

for all 0 <i < £L.

Here, we identify the Spin® structure of a rational homology sphere by
an integer i as in [NW15], and ¢1(i) and ¢2(i) are the projection of the
Spin® structure to the two factors of the reducible manifold. In particular,
we can identify ¢1 (i) with some integers between 0 and ¢ — 1 and ¢2(7) with
some integers between 0 and p — 1. The maps ¢; and ¢o are independent of
the knot J, and in principle, can be determined from an explicit geometric
description of the reducible surgery (cf [Hed09]). For the purpose of our
argument below, we do not need it.

Similarly, apply (2.4) for an arbitrary knot J. We have

d(L(pg, 1), i) = 2Vi(Jpq)
= d(L(g,p),61(0)) = 2max { V] es0 (/) H ssc0s () }
+ d(L(p,0), ().

for all + < EL.
Compared with Equation (3.1) and using the fact V;(7}, ;) > 0, we deduce
that for all i < Y,

ZmaX{VL%mJ(J),HL%J(J)}

From now on, let us specialize to the case when K = T5 5#2T5 3# —
T53.25 and ¢ = 3p — 1. We claim that

max {VLMJ (K), HL¢1(1’)*QJ (K)} > 0.

To see this, note that Vo(K), V1(K) > 0asvT(K) = 2. When 0 < ¢1 (i) < 2p,

VLMJ(K) > 0. Otherwise, 2p < ¢1(i) < ¢ = 3p — 1, and then HLW“*“J(K)

> 0 since H_j, =V}, and V(K), Vi(K) > 0.
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Hence, Vi(Kp4) > 0 for all i < BL. This implies that

3p—1
v (Kpsp-1) > p(pQ) + 1.
On the other hand,
(p—1D(g-1)

91(Kpg) < pga(K) + 5 :
since one can construct a slice surface for K, , from p parallel copies of a
slice surface for K together with (p — 1)q half-twisted bands. By Lemma 3.3,
94(K) = 2, so when ¢ = 3p — 1, the right-hand side of the above inequality
is p(3p72—1) + 1. Hence

pBp—1) pBp—1)

+1 < v (Kpsp-1) < ga(Kpzp—1) < 5

+1,

s0 v+ (Kpap-1) = 9a(Kpap-1) = "% + 1. O

Note that V+(Kp’3p_1) — T(Kp,?)p—l) =p+1 for K= T2’5#2T273#
— T5 3.9 5. This proves Theorem 1.

A similar argument shows that v gives a sharp four-ball genus bound
for certain other cable knots as well.

Proposition 3.6. Let K be a knot with vt (K) = g4(K) = n, then

2n—1)p—1
v (K n-1yp-1) = 9a(Ep n-1)p-1) = Al 9 -l +1.

Proof. Let ¢ = (2n — 1)p — 1. In the proof of Proposition 3.5, we showed
Vil ) 2 max {V ssco (K), H s (K) }
for all 0 <7 < B We claim that
max {VLMTU)J(K),HL%J(K)} >0,

To see this, note that V;(K) >0 for all i <n. When 0 < ¢1(i) < np,

VLMJ (K)> 0. Otherwise, np<a¢i(i)<g=(2n—1)p—1, and then
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HLm(i)qu(K) > 0. Hence, V;(Kp4) > 0 for all i < BL. This implies that

2 —1)p—1
292q+1:p((n 2)19 ) 1

v (Kpg) >
On the other hand,
94(Kp,q) < pga(K) + (17_1)2@_1)

(p—1D((2n—-1)p—2)

_p(@n-bp-1)
2
So v (Kp,2n-1)p-1) = 94(Kp,2n-1)p-1) = w + 1. O

We conclude by showing that the knot signature cannot detect the four-
ball genus of the knots used in Theorem 1. Recall that

oK) < a(K)

Proposition 3.7. Let K =Ty 5#2153# — T23.25. Then for p > 0,

1
§|U(Kp,3pfl)| +2p —2 < ga(Kp3p—1)-
Proof. We have that o(T54) = 1 — ¢. By [Shi71, Theorem 9],

| o(Tpy) if p is even
o(Kpq) = { o(K)+0(Ty,) if pisodd.

Thus, 0(7%3,2,5) = —4 and since signature is additive under connected sum,

o(Tos#2To3# — Tozos) = —4+2(—2) — (—4)
— 4

We showed in Lemma 3.3 that g4(K) = 2, so for K, the signature is indeed
strong enough to detect the four-ball genus. However, we will now show that
it is not strong enough to detect the four-ball genus of K, 3,—1. We have that

lo(Kp3p—1)] < [o(K)|+ |o(Tp3p-1)]
<4+ (p—1)(3p—2) = 3p*> — 5p +6,
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where the second inequality follows from the fact that when p,q > 0,

0 (Tp,g)| < 294(Tp,q) = (p—1)(g — 1).

On the other hand,
294(Kp,3p—1) = 3p2 —-p+2
SO

’U(Kp,3p—1)| +4p—4< 294(Kp,3p—1)- 0

Recall from Proposition 3.5 that g4(Kp3p—1) = v (Kp3p—1). A conse-
quence of Proposition 3.7 is that the gap between %0’ and T can be made
arbitrarily large.
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