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Exact Lagrangian caps of Legendrian
knots

FRANCEScO LIN

We prove that any Legendrian knot in (S3,&sq) bounds an exact
Lagrangian surface in R* \ B* after a sufficient number of stabiliza-
tions. In order to do this, we define Lagrangian projections, consist-
ing of a knot projection along with some additional information,
and construct a family of combinatorial moves which correspond
to Lagrangian cobordisms between knots.

Introduction

Given a Legendrian knot K in the contact manifold (S2,&q), it is natural
to ask whether or not it bounds an oriented Lagrangian surface L in its
standard (convex) filling (B*,wgq). In [1] it is shown that the existence of
such a surface (which we call a Lagrangian filling of K) implies the identities

th(K) = —x(L)
rot(K) =0

for the Thurston-Bennequin number tb(K') and the rotation number rot(K)
of the Legendrian knot. From the slice Thurston-Bennequin inequality ([12])

th(K) + |rot(K)| < 2g4(K) — 1,

where g4(K) is the 4-ball genus of K, it then follows that such a surface
L realizes the 4-ball genus of K and K has maximal Thurston-Bennequin
invariant within its topological class. Hence there are very restrictive lim-
itations on the existence of such surfaces, even if we do not impose any
exactness condition.

The same technique tells us much less about Lagrangian caps of K, i.e.
Lagrangian surfaces L properly embedded in R*\ B* bounding the given
knot. This is because the constraints on the classical invariants in this case
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are

th(K) = x (L)
rot(K)

I
=

and by applying the slice Thurston-Bennequin inequality again one obtains
the much less restrictive conditions

Before we state the main result of the present paper, we briefly recall
some terminology. A Lagrangian L with Legendrian boundary K is ezact if
the pull-back of the primitive of the symplectic form Agq on L is of the form
df for some function f : L — R with f(K) = 0. This is equivalent to say that
Astd|r, has integral zero along every closed curve on L and every arc with
boundary on K. Moreover, recall that a stabilization of a Legendrian knot K
is a Legendrian knot obtained by performing one of the local moves of Figure
1 in the front projection. The Legendrian isotopy type of the stabilized knot
only depends on the effect of the stabilization on the rotation number (which
is +1).

Figure 1: Stabilization of a Legendrian knot.
The following is the main result we will prove.

Theorem 1. Given any Legendrian knot K in (83, &xq), one can stabilize
it a sufficient number of times so that the final result admits an oriented
exact Lagrangian cap. More precisely, for every Legendrian knot K there is
an n(K) such that a knot K' obtained by stabilizing K more that n(K) times
and such that rot(K’) = 0 admits an exact Lagrangian cap.

Remark 1. The higher dimensional analogue of the problem is governed
by an h-principle, see [6]. In [2], the existence of such caps is used to show the
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existence of non orientable closed embedded exact Lagrangians in C? which
are not uniruled and have infinite Gromov width. We have learned from
[11] that our theorem implies the existence of exact Lagrangian surfaces in
(R*, wsq) with open Whitney umbrella singularities, disproving a conjecture
proposed by Givental in [9)].

Here, and in the rest of the paper, we will work in the equivalent set-
ting (for our problem) of (R3, &q) where R3 has coordinates (z,v, 2), &std =
ker(agtq) with agg = dz + xdy. With this convention the front projection is
the projection on the yz-plane while the Lagrangian projection is the pro-
jection to the xy-plane, rotated clockwise by 90 degrees. We are interested in
searching Lagrangian surfaces in the symplectization (tho x R3, d(elagq))

where the first factor is
R7Y = {t € R|t > 0}.

On the other hand, it will be more convenient for us to work with surfaces
in

Ri ={(,y,t, )| >0} C (RA‘,wStd)
wWetd = dz’ A dy' +dt’ A dZ,

with boundary condition on the hyperplane {t = 0}. In this case, our pre-
ferred primitive for the symplectic form will be the one form

Astd = 2'dy’ + (' +1)d7.

These models are indeed equivalent for our purposes via the symplectomor-
phism

RO xR* - RY
(x,y,t,2) — (etx,y,et —1,2),

which is a strict contactomorphism on the boundary and preserves the fixed
primitives of the symplectic forms. We will always work with the latter, and
drop the apostrophes in the notation.

In order to prove Theorem 1, we study the set of Lagrangian diagrams of
a surface L C ]Ri. A Lagrangian diagram is simply the Lagrangian projec-
tion of a generic slice on which the t-coordinate is constant together with the
assignment to each component of the complement of the knot projection of
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its volume with respect to the standard area form dz A dy. We will introduce
a set of combinatorial moves on such diagrams (up to some identifications)
and prove that they can always be realized by Lagrangian cobordisms, i.e.
properly embedded Lagrangians in R? x [0, 7] such that the restrictions to
R3 x {0} and R3 x {T'} are the given knots. These constructions are inspired
by the techniques developed in [13] to show the existence of immersed exact
Lagrangians in C? with few self-intersections.

With this in hand, the strategy to prove Theorem 1 is the following.
First, we prove that after a sufficient number of stabilizations each knot is
exactly cobordant to the Legendrian unknot in Figure 2, which we denote
by Up. Then we will use the combinatorial moves to explicitly construct an
exact Lagrangian cap of Uy. Also, we prove that if a knot K admits a cap
(hence rot(K') = 0) then also its double stabilization with rotation number
zero admits a cap, justifying the “sufficiently many stabilization” statement
in Theorem 1.

3 o0

Figure 2: A front projection and a Lagrangian diagram of the knot Uj.

Figure 3: A Lagrangian diagram of U.

It is interesting to point out that while in the first part we can restrict
ourselves to Lagrangians such that the generic slice where the ¢ coordinate
is constant is Legendrian, in order to construct a cap we necessarily have
to rely on a wider class of Lagrangians. In fact the slices with ¢ constant
just before the cap closes are not Legendrian knots, but have a Lagrangian
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diagram U; as in Figure 3. This is not the Lagrangian projection of a Leg-
endrian knot because the crossing is the opposite of the one of the standard
Legendrian unknot.

Plan of the paper. In Section 1 we show how to reduce the problem
of constructing a cap to the single Legendrian knot Up. In Section 2 we
define Lagrangian diagrams and construct the combinatorial moves on them
corresponding to Lagrangian cobordisms. In Section 3 we prove an exactness
criterion for the cobordism in terms of the Lagrangian diagrams from which
it arises. Finally in Section 4 we explicitly construct an exact Lagrangian
cap for the knot Up. In Section 5 we discuss some interesting problems that
arise from the combinatorial methods investigated in this paper.
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He would also like to thank Kevin Sackel and the anonymous referee for the
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1. Reduction to U,

In this section we prove the following result.

Proposition 1. Given any Legendrian knot K, there is a Legendrian knot
K’ obtained from K wvia stabilizations such that there exists an exact oriented
Lagrangian cobordism from K’ to the Legendrian unknot Uy of Figure 2.

We will work only using front projections and rely on the moves depicted
in Figure 4, which appear for example in [3].

The moves Ri, Ry and Rg are the Legendrian Reidemeister moves. The
fact that they can be realized by an exact Lagrangian cobordism follows
from a result by Eliashberg and Gromov ([5]) stating that every Legendrian
isotopy can be realized in this way. The handle attachment move H can be
realized starting from Lagrangians in the first jet space J'R? by means of
the following more general construction.

Any front projection (with coordinates (z, y1,y2)) with boundary in y, =
{a, b} such that:
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Figure 4: Moves on front projections.

Y2

U1

Figure 5: A front projection giving rise to the handle attachment move H.

e there are no points with the same y; coordinates and parallel tangent
planes at those points;

e the length of the Reeb chords in the slices with ¢ constant is increasing
at the boundary;

corresponds to an exact embedded Lagrangian cobordism between the Leg-
endrian knots arising as the slices y2 = {a,b}. In particular, the front pro-
jection in Figure 5 corresponds to the move H.
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Remark 2. Notice that in both constructions one does not have any control
on the time interval in which the cobordism is defined. For example, in the
jet space construction a non-trivial change of coordinates (depending on
the front projection itself) is made in order to encode in a simple way the
Legendrian boundary condition.

We are now ready to describe how to construct a Lagrangian cobordism
to Ug.

Proof of Proposition 1. In our description we will add stabilizations along
the way, but it will be clear from the construction that all of them can be
performed at the beginning without affecting the final result. The proof is
divided in various steps.

Step 1. We show that up to stabilizations, every Legendrian knot is
cobordant to one such that every component is an unknot and in the front
projection each component is contained in a disk disjoint from the other
ones. To do so, we perform a sequence of local moves near each crossing.
There are essentially two cases up to orientation reversing (see Figure 6).
In the first case one adds two stabilizations, uses the move H and then Ry

XN-R-&-=
K=o~ 22 -1

Figure 6: The two cases in Step 1.

to resolve the crossing. In the second case one adds two stabilizations and
then performs an Ry move, a handle attachment and another Rs move to
simplify the crossing. It is clear that after performing these moves to every
crossing one obtains a Legendrian link as the claimed one.

Step 2. We show that we can reduce to a standard unknot K(n,m) as
in Figure 7. Here m is number of descending cusps pointing to the right,
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and n is the number of ascending cusps pointing to the left (for example,
the knot in the figure is K(1,2)). In fact, it is a classical consequence (see

Figure 7: A standard form for Legendrian unknots.

for example [8]) of the Thurston-Bennequin inequality and the Eliashberg-
Fraser Theorem ([4]) that every Legendrian unknot is Legendrian isotopic
to some K (n,m) (here in order to construct this isotopy one might need to
use some Legendrian R3 moves). As in our front projection each component
is cointained in a disk disjoint from the other ones, we can put every compo-
nent of our link in such a form. Using then an H move we can connect sum
them along the cusps as in Figure 8 (notice that the orientations match) in
order to obtain a single unknot. The final result can also be isotoped to the
standard model.

Figure 8: Connected sum of K (m,n) knots along cusps.

Step 3. We construct a cobordism to Up. After adding some stabiliza-
tions, we can suppose our knot is a K(n,n) with n > 1. Our goal is to
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construct a cobordism to Uy = K(1,1), and the proof will follow by induc-
tion if we prove that there is a cobordism from K(n,n) to K(n —1,n — 1).
The procedure is shown in Figure 9. We can perform an H move on the top
pair of cusps pointing inward, obtaining a K(0,0) and a K(n —1,n—1).
Then, we can connect sum these two knots along the cusps, and obtain a
K(n—1,n-1). O

The same idea of Step 3 (and in particular the sequence of moves de-
picted in Figure 9) can be exploited to show the following easy lemma.

Lemma 1. Given a Legendrian knot Koy, there is an exact Lagrangian
cobordism from its double stabilization with the same rotation number to
itself.

Figure 9: A cobordism from the double stabilization.

2. The combinatorial moves

As observed in the introduction, in order to construct caps we necessar-
ily have to leave the Legendrian world and allow more general Lagrangian
cobordisms in which the slices are not necessarily Legendrian knots. In this
section we show how to construct these, and we first start defining the class
of combinatorial objects we will be dealing with.

Definition 1. A Lagrangian diagram D is a regular projection of a smooth
link K ¢ R? to the zy-plane, and the assignment to each domain of the
complement of the projection of its area (with respect to the standard area
form).

For example, Figure 2 (on the right) and Figure 3 are Lagrangian dia-
grams of an unknot. It is important to note that the diagram D has to be the
projection of some link K C R3. In order to develop a combinatorial model,
we introduce an identification between Lagrangian diagrams as follows.
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Definition 2. Given a Lagrangian diagram D, define A(D) to be the set of
positive real numbers arising as the collection consisting of all areas appear-
ing in the diagram and all absolute values of differences between distinct
areas. We say that another Lagrangian diagram D’ is commensurate to D
if the following conditions hold:

e the two projections are isotopic as knot diagrams in R?;

e the difference between the two areas assigned to a same domain under

the bijection induced by the isotopy is strictly smaller than any element
in A(D)UA(D').

It is important to remark that being commensurate is not an equivalence
relation on Lagrangian diagrams.

Notation. We can extend Definition 1 allowing for a domain to be assigned
the number 0, which means that its area is much smaller than every non-zero
area and every absolute value of the difference of two distinct areas.

For example, the Lagrangian diagram of Figure 2 is commensurate to the
one on the left in Figure 10, but not to the one on the right. For the diagram
on the left A = {1,1.5,2.5} while for the diagram on the right A = {1,2}.

Figure 10: Non equivalent Lagrangian diagrams.

We now state the main result of the section describing some combina-
torial moves on Lagrangian diagrams that correspond to Lagrangian cobor-
disms between the respective knots.

Proposition 2. Any sequence of local moves as in Figure 11 between La-
grangian diagrams Dy and D1 with A,d > 0 can be realized by an orientable
Lagrangian cobordism in the following sense. Suppose we have a link Kg
with Lagrangian diagram Dg. Then there exists a link K1 with Lagrangian
diagram commensurate to D1 and an orientable Lagrangian L properly em-
bedded in R x [0,e] C (RY,wstq) for some e >0 such that LN {t =0} co-
incides with Ko C R® and LN {t = €} coincides with K, C R3.
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Figure 11: Combinatorial moves on Lagrangian diagrams.

We spell out the meaning of Figure 11 in more detail. If a domain is
not assigned any number then its area remains unchanged when the move is
performed. On the other hand, it will be clear from the construction that the
actual areas of the domains in the projection do change, but this change can
be made arbitrarily small (hence yielding a knot with a Lagrangian diagram
commensurate to the one we want to obtain).

The move Ry (defined for A > 0) is allowed only if the areas of the do-
mains with label —A are bigger than A. The § > 0 in the diagrams for Rs
and Rjs indicates the necessity of the indicated domain to have area strictly
bigger that the one labeled with 0 (and the move can be performed in both
cases also in the case that the symmetric domain is labeled with a ¢). The
moves Ry and R3 work with any choices of the crossings and are reversible
(as the double arrows suggest). Conversely, the remaining moves can be per-
formed only with the crossings shown in Figure 11, and are not reversible.
Notice that in the moves H; and Ho we deal with oriented diagrams. This
is done in order to construct orientable cobordisms.

The rest of the section is dedicated to the construction of the Lagrangian
cobordisms corresponding to the combinatorial moves described in Proposi-
tion 2. We first construct a Lagrangian cobordism Lg defined for some small
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€ > 0 which is topologically a product
Lo = K x [0,¢] C R? x [0,¢],

such that the Lagrangian diagram of K x {e} is commensurate to the one
of K x {0} = K¢. W then modify such a cobordism in a small neighborhood
of the crossing involved in the local move. The whole construction is based
on the following key lemma which appears already in [13] and describes a
way to construct Lagrangian cobordisms starting from a family of immersed
loops in the plane.

Lemma 2. Suppose we are given a smooth map
o(t,9) = (2(t,9),y(t,9)) : [0,T] x S* — R?

such that p(t,—) : St — R? is an immersion with total signed area fived with
respect to t. Then there exists z : [0,T] x S — R such that the map

¢:[0,T] x S* — RY
(t,0) — (2(t,9),y(t,0),t, 2(t,9))

is a Lagrangian immersion. Furthermore, the map @ is an embedding if and
only if whenever p(t,9) = p(t,¥), 2(t,9) # z(t, ).

Proof. By imposing Imp to be isotropic we obtain

0 = §"w(0/0,0/09) = S8 — S0+ o,

Setting

Oz 0y Oz 0y
J9) =550 Y 3500

if for every t one has
/ J(s,9)dd = 0
Sl

then one can define a map ¢ with isotropic image by setting

)

2(t,9) = z(t,¥) +/9 J(t,9)d9

where ¥y € S! is a basepoint and z(—,9g) is any fixed function. On the other
hand if the total signed area of the curves is C' then by Stokes’ theorem we
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have
d d . .
0= %C = i . o (zdy) = o ﬁa/at@t (zdy) =
_ x: . B Ox 0y Oz 0y
= /S1 d(pig arrdy) + /Sl ig/ordr N\ dy = . ta0 0ot dd.

From the expression of d we see that if each curve ¢; is immersed then ¢ will
be an immersion. Finally, the embeddedness criterion is straightforward. [J

Proof of Proposition 2. As previously discussed, we first construct a La-
grangian cobordism Ly between the given knot Ky and a new knot with
Lagrangian diagram commensurate to Dg. This cobordism will be defined
for some small £ > 0 and will be topologically a product. The (parametrized)
knot Ky comes with the function

Jo(9) = dz/dV.

One can find a family of immersions ¢ : [0,1] x S — R? with constant
signed area such that

e the restriction (0, —) is the parametrization of K;

e for the function J defined in Lemma 2, J(0,—) = Jp.

Notice that the function J can be interpreted as the scalar product between
0p/0Y and the 7/2 clockwise rotation of dy/ds so determines only the
component of dyp/dt normal to the curve, hence one can actually arrange
the total change of area to be zero.

After restricting to a smaller time interval [0, €], such a map induces via
the construction of Lemma 2 an embedded Lagrangian cobordism with the
property that all the slices with s constant have Lagrangian diagram com-
mensurate to Dg. In order to prove Proposition 2, we modify this family of
immersions ¢ in a neighborhood of the crossing where each local move is
performed as follows.

Move Ry. This move can be achieved using a family of immersions v as
in Figure 12.

We spell out the meaning of the picture. It refers to a neighborhood of
the crossing where the areas of the domains on which the move decreases the
area is bigger than A. In agreement with our convention, we schematically
represent the map ¢ we start with as the constant diagram on the left of the
picture. We then modify such a map to the new family ¢ = {1} shown in
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K==

Figure 12: Constructing the move Ryp.

the picture. Such a family agrees with ¢; near the boundary of the neighbor-
hood for t € [0,¢] and for ¢ > 0 small in the whole neighborhood. It is clear
that such a family ¢y can be chosen so that the total area remains constant.
Furthermore, we can arrange that the family v still defines an embedded
Lagrangian cobordism. This is because our family ¢ can be chosen so that
it respects the previous requirements and in addition the integral of its J
function along the solid arc before the crossing is bigger for every ¢t than the
corresponding integral for . This implies that at the crossing the z coordi-
nate of the new induced knot will be bigger than the starting one, hence in
particular that the cobordism is embedded. Here we use in a fundamental
way that the crossing is the one depicted in the picture and not the opposite
one. Finally, it is clear that the family can also be chosen so that the area
of the domains changes by A. Notice that the specular construction of the
similar move with A < 0 will in general give rise to a Lagrangian with a
self-intersection.

Mowve Ry. The construction is achieved by the family of immersions de-
picted in Figure 13 (here the orientations are introduced only to describe the
family). In particular, the part of the arcs before the first crossing is pulled to
the left, while a neighborhood of the arcs connecting the two crossing points
are pulled down (for the lower arc) and up (for the upper arc). Such a fam-
ily is chosen as before so that the total area remains constant and coincides
with ¢; near the boundary of the neighborhood for ¢ € [0,¢] and for ¢t > 0
small in the whole neighborhood. We are assured that such a family exists
because the area enclosed by the crossing is much smaller that the area of
the domain towards which we are pulling the arcs. The embeddedness of the
induced cobordism can be arranged exactly as in the construction of move
the Ry. The inverse move is constructed using an analogous family.
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ohdegs

Figure 13: Constructing the move Rs.

Mowe R3. The construction of this move is totally analogous to the pre-
vious ones.

Move H1. The handle attachment moves cannot be achieved by the
same construction, as the topology of the cobordism changes. In order to
construct them, we can rely on the local model shown in Figure 14 provided
by a neighborhood of the Lagrangian submanifold

{(l‘,y,t,Z) | t:Z27y255L‘:2y2} CR4

around the origin. Alternatively, one can also rely on the handle attaching
moves constructed in Section 1 using front projections and jet spaces. As

W-X =X

Figure 14: The local model for a handle attachment.

before, we describe how the local move is performed in a small neighborhood
of the crossing affected by the local move. Suppose we start with a family of
immersions {y;} defined for a time € > 0. After restricting to smaller arcs,
we can obtain a local model for the handle attachment L that can be re-
alized in a time /2 (we just need to restrict the Lagrangian we start with
to a smaller time interval). Pick a neighborhood U of the crossing involved
in the local move. Then, in time £/2 we can construct an isotopy of the
arcs inside this neighborhood so that the induced arcs in R? agree with the
lower boundary of our local attaching model L in a smaller neighborhood
U'. Clearly such a family can be chosen so that it preserves the area and
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coincides with {(;} near the boundary of 2. We just then attach L inside
U’ and modify the family of immersions for ¢ € [¢/2,¢] in U \ U’ so that to-
gether they define a smooth embedded Lagrangian for ¢ € [0, ¢].

Move Hy. The move Hy can be obtained as a combination of the previous
moves as in Figure 15. In particular, one performs a H; move in a small
neighborhood above the crossing such that the resulting pair of crossing
encloses a very small area and then an Ro move.

N =00 =0

Figure 15: Constructing the move Ho.

Finally, it is clear that given a sequence of moves each Lagrangian cobor-
dism can be constructed so that the total result is smooth. This concludes
the proof. O

We conclude this section by constructing caps for the knots with La-
grangian diagram U; and fillings for the knots with the mirror Lagrangian
diagram (i.e. the Lagrangian diagram with the opposite crossing, which is
also the Lagrangian projection of the standard Legendrian unknot).

Lemma 3. Any knot with Lagrangian diagram commensurate to Uy admits
a Lagrangian cap which is topologically a disk. Similarly, any knot with La-
grangian diagram commensurate to the mirror of Uy admits a Lagrangian
filling which is topologically a disk.

Proof. In order to construct a cap we rely on a suitable translation of the
Lagrangian open disk parametrized in polar coordinates by

¥ R? —» R
1
(r,9) — (r cos ¥, rsin 20, —2r, r(sin ¥ — 3 sin® 19)) :
Following the proof of Proposition 2, we can construct a Lagrangian cobor-

dism (which is topologically a cylinder) from the given knot to (a suitable
translation) of one of the curves ¥ (rp, —), and then cap the latter using the
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image via 1 of the disk of radius r¢. The construction of the filling is analo-
gous, as one can use the map obtained from v by changing sign to the last
two coordinates. O

3. An exactness criterion

So far we have constructed embedded Lagrangians which are not necessarily
exact, a condition which is well known to be very restrictive. For instance
it is easy to construct non exact closed embedded Lagrangians in (R*, wgq),
while a celebrated result by Gromov ([10]) tells us that there cannot be
any exact closed embedded Lagrangian. In this section we discuss a crite-
rion on sequences of combinatorial moves that assures that there exists an
eract Lagrangian cobordism corresponding to them. We first introduce a
definition.

Definition 3. Given a Lagrangian cobordism L C R4, we define its nega-
tive boundary to be Ko = LN {t = 0}. If the negative boundary Ky of L is
Legendrian we say that L is exact relative to its negative boundary if Asq|r
is of the form df for a function f: L — R that vanishes on Kj.

Clearly, L is exact relative to its negative boundary if and only if the
integral of X is zero on every closed curve and on every embedded arc with
both endpoints on the negative boundary K. Furthermore, in the case L is
a cap of Ky then L is exact in the sense of the Introduction. The primitive

Astd = xdy + (t + 1)dz

is particularly nice because its integral along a closed curve with constant ¢
coordinate is exactly the area enclosed by its projection to the xy-plane. For
example, the sequence of moves in Figure 16 corresponds to a Lagrangian
torus which is manifestly non exact, and is in fact a standard Clifford torus.
Here the dashed arrow on the left indicates the standard filling constructed
in Lemma 3, and is followed by an Hy move, an H; move and finally one
uses Lemma 3 again to construct the cap.

Before stating our exactness criterion we introduce a simple definition.

Definition 4. Given a projection of a link K, we say that two components
of the link K, Ko are wvertically split if the image of the projection of K can
be covered with two disjoint disks Ay, Ay with K; C A; for i =1, 2.
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Figure 16: A non exact torus in R*.

Proposition 3. Suppose we are given a Legendrian link Ko with Lagrangian
diagram Dgy and a sequence of Lagrangian diagrams related by combinatorial
moves starting at Do such that

e at each stage every component of the link has total signed area zero;

e if a handle attachment move which merges two components is per-
formed, then these components are vertically split for the projection to
the xy-plane.

Then the sequence of combinatorial moves can be realized by a Lagrangian
cobordism which is exact relative to its negative boundary K.

The conditions on the sequence of diagrams imposed by this proposition
are rather strict, but they are general enough to be applied to our case. On
the other hand, there are many subtleties that come in play when one tries
to generalize this result. For example, the sequence of moves in Figure 17
corresponds to a non exact Lagrangian torus in R* such that each compo-
nent of any slice encloses area zero. More in detail, after the usual filling
provided by Lemma 3 one performs an Ry move, an Ry move, an H; move,
an Ro move, an Hy move, an Ry move, an Ry move, an Ry move, an Ry
move and finally one uses the cap from Lemma 3. It is easy to check that
all these moves are compatible with the orientation of the starting unknot.

We will prove that a sequence of Lagrangian diagrams related by a se-
quence of combinatorial moves satisfying the conditions of Proposition 3
can be realized by a Lagrangian cobordism such that the integrals of the
primitive Agq on some fixed curves can be made arbitrary. In particular
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Figure 17: A non exact torus with all enclosed areas zero.

for different choices of these integrals we obtain non-Hamiltonian isotopic
Lagrangians.

Proof of Proposition 3. In order to prove the exactness of a Lagrangian
cobordism L relative to its negative boundary we just need to check that
the integral of A\g;q along a well-chosen collection of closed curves and arcs is
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zero. A possible choice is displayed in Figure 18. In particular the collection
consists of the following:

e for every handle attachment move that creates a new component of
the link, a closed curve «; on which the t coordinate is constant;

e for every handle attachment move that merges two components of
the link, a curve (; which is either closed or properly embedded with
boundary in the negative boundary Kj.

We just need to check the condition on this set of curves because it generates
the homology relative to the negative boundary Ky and Agq vanishes when
restricted to K as this is a Legendrian link by hypothesis.

Sean

0 &1 et

Figure 18: The set of curves on which that we need to check the integral
condition.

The integral condition on the curves «; is exactly the fact that at each
stage every component of the link has total area zero in the hypothesis of
the proposition. It is easy to see that our Lagrangian can be constructed so
that the integral along each of these curves is exactly zero. Hence we just
have to show that it is possible to construct a Lagrangian such that the
integral along each of the curves 3; is zero.

Suppose that we are given a handle attachment cobordism which merges
two components of the link, and let 3; be the corresponding curve. We show
how to modify the construction of such a cobordism exploiting the freedom
of choice of the function z(s,dJp) in Lemma 2. This will change the handle
attachment, but will preserve the Lagrangian projections. Looking again at
the construction of the move H; in the proof of Proposition 2, before the local
model for the handle attachment is glued we have a Lagrangian cobordism
(the tube on the left in Figure 19) induced by a family of immersions

©:[0,e/2] x S' — R2.
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We can suppose without loss of generality that ¢(t, ¥y) gives a parametriza-
tion of the solid subarc v C f3; shown in Figure 19 for ¢ € [0,e/2]. Any choice
of the height function z(¢,9) such that its value agrees with the one we
started with near the endpoints will give rise to a cobordism that agrees
with the original one outside this small tube. Because of the vertical split
hypothesis in the statement of the proposition, by modifying accordingly
also the z functions of the other components of the link which project to the
same disk in the xy-plane we can obtain an embedded cobordism. Further-
more, one has

€/2
/ At = /0 e(t)y/ (£)dt + (¢ + 1)/ (¢, o)) dt

which can be given any desired value for an appropriate choice of the function
z(t,9p). Hence we can arrange that the new Lagrangian cobordism is such
that the total integral along [; is any value we want, and in particular it
can be made exactly zero. O

Figure 19: Perturbing the family of immersions for s € [0,¢/2].

4. An exact Lagrangian cap for U,

In this section we complete the proof of Theorem 1 by constructing an exact
Lagrangian cap for the knot Uy using the set of combinatorial moves we have
previously developed. Before describing the construction, we introduce some
curl moves which will be useful in the construction. This is because there
is not an analogue of the R; move for Lagrangian diagrams, so we cannot
generally get rid of the curls. On the other hand, these moves allow us to
move these curls around the diagram.

Lemma 4. FEach of the moves in Figure 20 can be realized by a Lagrangian
cobordism. For Cy, the two domains on the right need to have area bigger
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than A, while for Co the two upper domains need to have area bigger than A.

Figure 20: The curl moves.

Similarly there are analogous inverse moves, and there are also versions
in which the curl has the opposite crossing.

Proof. We just show how to construct the move C, as the other is analogous.
This is explained in Figure 21. In particular, the moves are the following:

Figure 21: Construction of the move Cf.

e A Ry move such that the new created domains have small area (here
0" indicates a small number bigger that 0);

e An Ry move (here we need the upper right domain to have area bigger
than A, and A" indicates number slightly bigger that A);

e An Ry move crossing (here we need the lower right domain to have
area bigger than A);
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e An R3 move;
e An Ry move. O

Our strategy is to construct an exact Lagrangian cobordism to a union
of a component U; as in Figure 3 together with two standard Legendrian
unknots (whose Lagrangian diagram is isotopic to the mirror of U;). The first
can be easily capped using Lemma 3. To get rid of the other components,
we will use the following unknot trick before constructing the final cap.

Lemma 5. Provided A > B, the move of Figure 22 can be realized by a
Lagrangian cobordism.

(DD~
CORY

Figure 22: The unknot trick. Again, the upper left diagram does not corre-
spond to a Legendrian knot while the lower left one does.

Proof. The proof is contained in Figure 23. The first move is an H; move
(it is straightforward to see that this can be done for any choice of the
orientations). Then one simply performs an Ry and an Ry move as suggested
in the figure. ]

Finally, we are ready to give a proof of Theorem 1.

Proof of Theorem 1. We show how to construct an exact cap for the knot
Up. First, one performs the moves displayed in Figure 24, which are in order
an Ry, an Ry, an Ry, a C1, a (5 and an Hy. One then focuses on the right
component of the result, and use the moves indicated in Figure 25, which
are two Ry moves, two Co moves and an Hy move. At this point, one can
use the unknot trick to get rid of all the Legendrian unknot components and
then cap the remaining one using Lemma 3. We hence obtain an oriented
Lagrangian cap of the knot Up, and we can perform the construction so that
the result is exact by the criterion provided by Proposition 3. This is because
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008 — G°

Figure 23: Proof of the unknot trick.

no handle attachment moves are used in the construction of the curl moves,
and all the handle attachments (including those used for the unknot trick)
are performed on vertically split components. Finally, the theorem follows
from the existence of this cap for Uy and Proposition 1 and Lemma 1 in
Section 1. O

5. Further problems

The combinatorial moves used in order to prove Theorem 1 might be adapted
to other problems related to Legendrian knots. On the other hand, even if it
is easy to construct a Lagrangian projection of a given Legendrian knot form
a front projection (see for example the algorithm in [7]), we are not aware
of any easy way to determine a Lagrangian diagram, i.e. a way to assign
areas to the domains. This is a big limitation for the techniques developed
in the present paper, especially when one tries to work out some practical
examples.

Another interesting task is to find a good generalization of the exactness
criterion provided by Proposition 3, and in particular one that fits in our
combinatorial model. This might be related to very subtle issues in contact
and symplectic geometry, and in fact it is not improbable that one can find
a non exact torus such that all the areas enclosed are zero and the handle
attachment that merges two components is performed on two unlinked (but
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6000 8o

1 1

Figure 24: Constructing a cap for Uy - part 1.

not vertically split) components. This would make the strict requirements
in Proposition 3 look not that excessive.

Finally, there are two more questions that naturally arise from our treat-
ment.

Question 1. Is there any Legendrian knot with an exact Lagrangian cap of
genus 17

While every cap we have constructed in the paper has genus at least 2,
this case is not ruled out by the slice Thurston-Bennequin inequality (while
the genus 0 case is).
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Figure 25: Constructing a cap for Uy - part 2.

Question 2. Is there any not destabilizable Legendrian knot which admits
an ezxact Lagrangian cap?

This is a very interesting question, as it is a fundamental assumption for
Theorem 1 that we can add as many stabilizations as desired.
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