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structures
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We show that for any coboundary Poisson Lie group G, the Poisson
structure on G∗ is linearizable at the group unit. This strengthens a
result of Enriquez-Etingof-Marshall [22] who had established for-
mal linearizability of G∗ for quasi-triangular Poisson Lie groups
G. We also prove linearizability properties for the group multipli-
cation in G∗ and for Poisson Lie group morphisms, with similar
assumptions.
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1. Introduction

Let (M,π) be a Poisson manifold. If the Poisson bivector field π vanishes
at some given point x0 ∈ M , then the tangent fiber Tx0

M at that point ac-
quires a linear Poisson structure π0. The Poisson structure on M is called
linearizable at x0 if there exists a Poisson linearization, i.e., a germ of a Pois-
son diffeomorphism f : Tx0

M → M whose differential at zero is the identity
map of Tx0

M .

227



228 A. Alekseev and E. Meinrenken

Any linear Poisson structure on a vector space arises as the Lie–Poisson
structure for a Lie bracket on the dual space. For a Poisson structure van-
ishing at x0, one calls T

∗
x0
M , with the Lie bracket defined by π0, the isotropy

Lie algebra at x0. Weinstein [35] proved that if the isotropy Lie algebra is
semisimple, then π is formally linearizable at x0, but need not be smoothly
linearizable. Using hard estimates of Nash-Moser type, Conn [11] proved an-
alytic linearizability in the semisimple case and smooth linearizability in the
compact semisimple case [12]. A soft proof of Conn’s linearizability theorem
was obtained more recently by Crainic and Fernandes [15]. See [21, 23, 34, 36]
for further results on the linearizability problem.

If G is a Poisson Lie group, then the group unit e is a zero of the Poisson
structure. Hence, its Lie algebra g has a linear Poisson structure, correspond-
ing to a Lie bracket on g∗. Cahen-Gutt-Rawnsley [7] showed that if G is a
compact simply connected Lie group equipped with the Lu-Weinstein Pois-
son structure, then G is not linearizable at e unless it is a product of SU(2)’s.
On the other hand, by the Ginzburg-Weinstein theorem [25] the dual Poisson
Lie group G∗ is linearizable – in fact it is globally Poisson diffeomorphic to
g∗. Further examples of linearizable and non-linearizable Poisson Lie group
structures were obtained by Chloup-Arnould [10].

In 2005, Enriques-Etingof-Marshall [22] proved that if G is a factorizable
quasi-triangular Poisson Lie group, then G∗ is formally linearizable. In this
paper, we will strengthen this result to smooth linearizability, for the larger
class of coboundary Poisson Lie groups. We also prove linearizability proper-
ties of the group multiplication in G∗ and for Poisson Lie group morphisms,
with similar assumptions.

To explain our results in more detail, let G be a Poisson Lie group.
By Drinfeld’s theory, the Lie bialgebra structure on g is equivalent to a
Manin triple (d, g, h). Here d is a quadratic Lie algebra, with an invariant
non-degenerate symmetric bilinear form (‘metric’) 〈·, ·〉, and g and h are
transverse Lagrangian Lie subalgebras. The bilinear form on d identifies d/g
with the dual space g∗.

Suppose for a moment that the Lie algebra Manin triple (d, g, h) inte-
grates to a triple of Lie groups (D,G,H) such that G,H ⊂ D are closed Lie
subgroups and the product map H ×G → D is a global diffeomorphism.
Then there is a well-defined quotient map D → D/G = H = G∗. The action
of G by left multiplication on D descends to the dressing action on G∗. As is
well-known, the symplectic leaves of G∗ are the orbits of the dressing action.
Hence, any linearization map should take the dressing orbits in G∗ to the
coadjoint orbits in g∗.
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In the general case, we may take D,G,H to be simply connected Lie
groups integrating d, g, h. The projection D → H = G∗ need not be globally
well-defined (e.g., the subgroup of D integrating h ⊂ d need not be simply
connected), but it is defined on a neighborhood of the group unit (hence
as a germ of a map), since the product map H ×G → D, (u, g) �→ ug is a
diffeomorphism near the group units.

As noted by Drinfeld (see Section 3), a coboundary structure on the Lie
bialgebra g is equivalent to a g-equivariant splitting of the sequence

0 → g → d → g∗ → 0.

We stress that the image of the splitting g∗ → d is usually different from h
(which need not be g-invariant). Define

Exp: g∗ → G∗

by the composition g∗ → d → D → G∗, where exp : d → D is the exponential
map. Strictly speaking, since the projection D → G∗ is only well-defined on
some neighborhood of the group unit, the map Exp is only defined near
0 ∈ g∗, or as a germ of a smooth map. We think of Exp as a ‘modified
exponential map’. In contrast to the usual exponential map exp : g∗ → G∗,
it intertwines the coadjoint action with the dressing action, hence it takes
symplectic leaves to symplectic leaves.

A smooth map φ : g∗ → G will be called a bisection if A(φ) : g∗→g∗, μ �→
φ(μ).μ is a diffeomorphism of g∗. The name comes from an interpretation
of φ as a bisection of the symplectic groupoid T ∗G ⇒ g∗. Our first result is
the following theorem:

Theorem 1.1. Let g be a coboundary Lie bialgebra, and G∗ the Poisson
Lie group with Lie bialgebra g∗. Then G∗ is smoothly linearizable at e. In
fact there exists a germ of a bisection φ : g∗ → G, with the property that

Exp ◦A(φ)−1

is a Poisson linearization of G∗ at e.

Our next result is a functoriality property for the Poisson linearizations.
It generalizes a similar result for Ginzburg-Weinstein maps obtained in [4].

Theorem 1.2. Let g1 → g2 be a morphism of Lie bialgebras, with dual
morphism τ : g∗2 → g∗1 exponentiating to the Poisson Lie group morphism
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T : G∗
2 → G∗

1. Suppose that g1 and g2 have coboundary structures, determin-
ing equivariant maps Expi : g

∗
i → G∗

i , i = 1, 2 as above. If φ1 : g
∗
1 → G1 is a

germ of a bisection such that Exp1 ◦A(φ1)
−1 is Poisson, then it is possible

to choose a bisection φ2 : g
∗
2 → G2 such that Exp2 ◦A(φ2)

−1 is Poisson, and
such that furthermore

T ◦ (Exp2 ◦A(φ2)
−1) = (Exp1 ◦A(φ1)

−1) ◦ τ.

In [4], we used the functoriality property to show that in the case of
G = U(n), the Gelfand-Zeitlin completely integrable system on g∗ = u(n)∗

defined by Guillemin-Sternberg [26] is isomorphic to the completely inte-
grable system defined on G∗ = U(n)∗ by Flaschka-Ratiu [24].

By definition of a Poisson Lie group, the multiplication in G∗ is a Poisson
morphism

MultG∗ : G∗ ×G∗ → G∗

as is the addition map Addg∗ : g∗ × g∗ → g∗. We have

Theorem 1.3. Let g be a coboundary Lie bialgebra, and G∗ the Poisson
Lie group with Lie bialgebra g∗. Let ψ : g∗ → G be a germ of a bisection
for which Exp ◦A(ψ)−1 is Poisson. Then it is possible to choose a germ of
a bisection φ : g∗ × g∗ → G×G such that the map (Exp×Exp) ◦ A(φ)−1 is
Poisson, and furthermore

MultG∗ ◦ ((Exp×Exp) ◦ A(φ)−1) = Exp ◦(A(ψ)−1 ◦Addg∗).

It is thus possible to choose the Poisson linearizations of G∗ and of
G∗ ×G∗ in such a way that the multiplication in G∗ becomes the addition
in g∗. In the case of a compact Lie group G with Lu-Weinstein Poisson
structure, the result holds globally, not only on the level of germs. It has
the following interesting corollary: let O1,O2 ⊂ g∗ be coadjoint orbits and
D1 = Exp(O1),D2 = Exp(O2) be the corresponding dressing orbits. Then,

Exp(O1 +O2) = D1D2.
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Conventions. The flow Ft of a time dependent vector field vt on a manifold
M is defined in terms of the action on functions by the equation

L(vt) ◦ (F−1
t )∗ =

∂

∂t
(F−1

t )∗;

equivalently

(1.1)
∂

∂t
− L(vt) = (F−1

t )∗ ◦ ∂

∂t
◦ F ∗

t

as operators on t-dependent functions. The same formula applies to the
action on t-dependent differential forms or other tensor fields.

Given a bivector field π on a manifold M , we denote by π� : T ∗M → TM
the bundle map μ �→ ι(μ)π = π(μ, ·). For a 2-form ω we denote by ω� the
bundle map TM → T ∗M, v �→ ω(v, ·).

An action of a Lie algebra g on a manifold M is a Lie algebra mor-
phism g → Γ(TM), ξ �→ ξM to the Lie algebra of vector fields such that
the action map M × g → TM is smooth. An action of a Lie group G on
M is a Lie group morphism A : G → Diff(M) such that the action map
G×M → M, (g,m) �→ g.m := A(g)(m) is smooth. A Lie group action de-
fines an action of its Lie algebra g by ξM (f) = ∂

∂t |t=0f(exp(−tξ).m). The
coadjoint action of G on g∗ is denoted Ad∗; thus Ad∗(g) = (Ad(g−1))∗. Sim-
ilarly we write ad∗(ξ) = − ad(ξ)∗ for the coadjoint representation of g on g∗.

2. Moser method for Poisson manifolds

It is a well-known fact that Lie algebra structures on a vector space g are
in 1-1 correspondence with linear Poisson structures on the dual space g∗.
If ea is a basis of g, defining structure constants f c

ab with [ea, eb] =
∑

c f
c
abec,

then the corresponding Lie–Poisson structure πg∗ on g∗ reads as

πg∗ = −1

2

∑
abc

f c
abμ

c ∂

∂μa
∧ ∂

∂μb
.

The vector fields ξg∗ = −π�
g∗〈dμ, ξ〉, ξ ∈ g, are the generators for the coad-

joint action. In this paper, we will study Poisson Lie groups (G, πG) whose
dual (G∗, πG∗) is linearizable, i.e. Poisson diffeomorphic to (g∗, πg∗) near the
group unit. Our main technique in proving linearizability are gauge trans-
formations [6], together with the Moser method for Poisson manifolds [3–5].
We will find it convenient to develop this theory within the frameworks of
Dirac geometry [2, 6, 14] and symplectic groupoids [13, 28, 37].
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2.1. Dirac geometry

For any manifold M , let TM = TM ⊕ T ∗M with the metric

〈(v1, α1), (v2, α2)〉 = α1(v2) + α2(v1).

The space of sections Γ(TM) comes equipped with the Courant bracket

(2.1) [[(v1, α1), (v2, α2)]] = ([v1, v2],Lv1
α2 − ιv2

dα1)

for vector fields v1, v2 and 1-forms α1, α2. A maximal isotropic subbundle
E ⊂ TM whose space of sections is closed under this bracket is called a
Dirac structure on M . A Poisson structure π defines a Dirac structure given
by the graph of π

Gr(π) = {(π�(α), α)| α ∈ T ∗M};

conversely, any Dirac structure with E ∩ TM = 0 defines a Poisson structure
in this way.

Suppose F : M → M ′ is a smooth map and σ ∈ Ω2(M) a closed 2-form.
Given (v, α) ∈ TM = TM ⊕ T ∗M and (v′, α′) ∈ TM ′ = TM ′ ⊕ T ∗M ′, we
write

(2.2) (v, α) ∼(F,σ) (v
′, α′) ⇔ v′ = TF (v) and (TF )∗α′ = α+ ι(v)σ.

Given Dirac structures E ⊂ TM and E′ ⊂ TM ′, we say that (F, σ) defines
a (strong) Dirac morphism if every element of E′

F (m) is (F, σ)-related to a

unique element of Em. In the case of Poisson structures E = Gr(π), E′ =
Gr(π′) we will call (F, σ) a twisted Poisson map. (It is an ordinary Poisson
map for σ = 0.)

The composition of two morphisms (F, σ) : M → M ′ and (F ′, σ′) : M ′ →
M ′′ is given as

(F ′, σ′) ◦ (F, σ) = (F ′ ◦ F, σ + F ∗σ′).

In particular, if F is invertible, then so is (F, σ) with inverse (F−1,−(F−1)∗σ).

2.2. Gauge transformations

Similar to (2.2) one has a notion of relation between sections of TM and
TM ′. The relation of sections is compatible with the metric and with the
Courant bracket. Hence, the semi-direct product Diff(M)� Ω2

closed(M) acts
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by automorphisms of TM , preserving the Courant bracket and the metric.
In particular, it takes Dirac structures to Dirac structures.

Let (M,π) be a Poisson manifold. A closed 2-form σ on M is said to
define a gauge transformation [6] of π if the image of Gr(π) under the mor-
phism (idM , σ) is transverse to TM , hence is again a Poisson structure πσ.
The transversality condition is equivalent to invertibility of the bundle map
I + σ� ◦ π�, and one has

(2.3) (πσ)� = π� ◦ (I + σ� ◦ π�)−1.

This Poisson structure πσ has the same symplectic leaves as π, but with
the symplectic form on the leaves changed by the pull-back of σ. Note also
that a morphism (F, σ) between two Poisson manifolds M,M ′ is a σ-twisted
Poisson map if and only if σ defines a gauge transformation of π, and F is
an ordinary Poisson map F : (M,πσ) → (M ′, π′).

2.3. Hamiltonian actions on Poisson manifolds

Let g∗ be the dual of a Lie algebra, equipped with the Lie-Poisson structure.
As is well-known, the cotangent Lie algebroid T ∗g∗ is canonically isomorphic
to the action Lie algebroid for the coadjoint action. The isomorphism is given
by the map eg∗ : g → Γ(Gr(πg∗)), where

eg∗(ξ) = (ξg∗ ,−〈dμ, ξ〉)

for ξ ∈ g. If Φ: M → g∗ is a Poisson map, then there are uniquely defined
sections eM (ξ) of Gr(π) such that

eM (ξ) ∼(Φ,0) eg∗(ξ).

Write eM (ξ) = (ξM ,−〈dΦ, ξ〉). Then ξ �→ ξM defines a Hamiltonian g-action
on M , with Φ as its moment map. That is, Φ is g-equivariant and

ξM = −π�
M 〈dΦ, ξ〉

for all ξ ∈ g. For example, the addition map Add: g∗ × g∗ → g∗ satisfies
eg∗×g∗(ξ, ξ) ∼Add eg∗(ξ), hence it is the moment map for the diagonal g-
action on g∗ × g∗.

Given Hamiltonian g-actions onM andM ′, with moment maps Φ: M →
g∗ and Φ′ : M ′ → g∗, we say that (F, σ) is a twisted morphism of Hamiltonian
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g-spaces if

eM (ξ) ∼(F,σ) eM ′(ξ)

for all ξ ∈ g. This is equivalent to the g-equivariance of Φ together with
the following moment map property of σ, ι(ξM )σ = −d〈F ∗Φ′ − Φ, ξ〉. (In
particular, σ must be invariant.)

2.4. Moser flows

Let σt be a smooth family of closed 2-forms on the Poisson manifold (M,π),
with σ0 = 0, defining gauge transformations πt = πσt for all t. Suppose fur-
thermore that

(2.4)
∂

∂t
σt = −dat

for a smooth family of 1-forms at. We call at the Moser 1-form, and vt =
−π�

t(at) the corresponding Moser vector field. The flow Ft of the Moser
vector field (called the Moser flow) intertwines the Poisson structures (see,
e.g., [4]):

(2.5) πt = (Ft)∗π.

Suppose that we are also given a Hamiltonian g-action on M , with moment
map Φ: M → g∗. Let eM (ξ) ∈ Γ(Gr(π)) be the sections defined by the con-
dition eM (ξ) ∼(Φ,0) eg∗(ξ), ξ ∈ g. Suppose Φt : M → g∗ is a family of maps
with Φ0 = Φ and

(2.6) eM (ξ) ∼(Φt,σt) eg∗(ξ),

for all t. That is, Φt is a moment map for the same action, relative to the
gauge transformed Poisson structure πt. If the family of 1-forms at satisfies
the two conditions

(2.7)
∂

∂t
σt = −dat,

∂

∂t
〈Φt, ξ〉 = ι(ξM )at

(which in particular implies the invariance of at), then the Moser flow of vt
intertwines not only the bivector fields but also the moment maps:

Φt = (F−1
t )∗Φ.

Remark 2.1. In general, the time dependent vector field vt need not be
complete, hence its flow may not exist for all t. Global existence of the flow
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of vt is guaranteed if the symplectic leaves of M are compact (since vt is
tangent to the leaves).

2.5. Symplectic groupoids

In this section we interpret the Moser method for Poisson manifolds in terms
of symplectic groupoids. In this context, the Moser flow will be given by an
action of bisections. Let us first recall some definitions.

Let G ⇒ M be a Lie groupoid, with source and target map s, t : G → M
and unit map i : M → G. We denote by G(2) ⊂ G × G the submanifold of
composable elements, by MultG : G(2) → G, (γ1, γ2) �→ γ1γ2 the multiplica-
tion, and by InvG : G → G the inversion. An embedded submanifold of G on
which both s and t restrict to diffeomorphisms is called a bisection of G. The
set Γ(G) of bisections is a group under groupoid multiplication 1, with group
unit the identity bisection M ⊂ G. The Lie algebroid AG of G is defined as
follows: As a vector bundle, AG = ν(M,G) is the normal bundle of M inside
G; the Lie bracket is induced from the group commutator on Γ(G), and the
anchor a : AG → TM is induced from the difference T t− T s : TG → TM .

From now on we will regard bisections as sections φ : M → G of the
source map (i.e., s ◦ φ = idM ), with the additional property that

(2.8) A(φ) := t ◦ φ

is a diffeomorphism of M . Note that A : Γ(G) → Diff(M) is a group action.
In addition, there are two commuting actions AL, AR : Γ(G) → Diff(G) on
the groupoid G:

AL(φ)(γ) = φ(t(γ)) γ, AR(φ)(γ) = γ φ(s(γ))−1.

These satisfy

t ◦ AL(φ) = A(φ) ◦ t, t ◦ AR(φ) = t,

s ◦ AL(φ) = s, s ◦ AR(φ) = A(φ) ◦ s.

The groupoid inversion interchanges the actions AL and AR. We will also
consider the adjoint action

Ad(φ)(γ) = φ(t(γ))γφ(s(γ))−1;

1If G is a bundle of Lie groups, so that the source and target map coincide, then
a bisections is just an ordinary section.
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this action is by automorphisms of the Lie groupoid G, with underlying map
A(φ). It induces an action by Lie algebroid automorphisms of AG, which is
again denoted by φ �→ Ad(φ).

A differential form ω ∈ Ω(G) on the groupoid is called multiplicative if
it has the property

(2.9) Mult∗Gω = pr∗1 ω + pr∗2 ω

where pri : G(2) → G are the two projections. A groupoid with a multiplica-
tive symplectic 2-form ω ∈ Ω2(G) is called a symplectic groupoid [13, 28, 37].
For any symplectic groupoid, the inclusion i : M → G is a Lagrangian em-
bedding, and the tangent spaces to the t-fibers and to the s-fibers are ω-
orthogonal:

ker(T t)ω = ker(T s).

The manifold M inherits a Poisson structure π = πM for which the target
map t is Poisson and the source map s is anti-Poisson. That is,

πG ∼t π, πG ∼s −π,

where πG is the Poisson structure on G given by π�
G ◦ ω� = id. One calls the

symplectic groupoid (G, ω) an integration of the Poisson manifold (M,π).
SinceM ⊂ G is Lagrangian, the symplectic form on G gives a non-degenerate
pairing between TM and ν(M,G) = AG, thus identifying AG ∼= T ∗M in such
a way that the following diagram commutes:

(2.10)

TG|M ω�

−−−−→ T ∗G|M⏐⏐� ⏐⏐�
AG −−−−→∼=

T ∗M

The anchor map for the resulting cotangent Lie algebroid is the map π� :
T ∗M → TM .

Proposition 2.2. Suppose (G, ω) integrates (M,π), and σ ∈ Ω2(M) is a
closed 2-form defining a gauge transformation of π. Then

ω + t∗σ, ω − s∗σ, ω + t∗σ − s∗σ

are all symplectic. Furthermore, (G, ω + t∗σ − s∗σ) integrates (M,πσ).
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Proof. Since σ defines a gauge transformation of π, and t is a Poisson map,
the pull-back t∗σ defines a gauge transformation of πG . Similarly, −s∗σ de-
fines a gauge transformation. By definition, the gauge transformed Poisson
structure on G is again non-degenerate. From πG(s∗α, t∗β) = 0 one obtains
that π�

G ◦ t∗ = (π−s∗σ
G )� ◦ t∗, hence t∗π

−s∗σ
G = π. We may hence iterate the

gauge transformations, obtaining a well-defined and non-degenerate Pois-
son structure (t∗π

−s∗σ
G )t

∗σ = πt∗σ−s∗σ
G , with corresponding symplectic form

ω + t∗σ − s∗σ. Since the latter is multiplicative, the proof is complete. �

Remark 2.3. While Poisson manifolds need not admit an integration to a
symplectic groupoid, there always exists an integration to a local symplec-
tic groupoid, unique up to isomorphism. Local Lie groupoids G ⇒ M are
defined similar to local Lie groups [33]: Roughly, instead of a globally de-
fined multiplication MultG : G(2) → G, the map MultG is only defined on an
open neighborhood of (M × G) ∪ (G ×M) ⊆ G(2), and the axioms are only
required for elements on which the products are defined. A nice geometric
construction of the local symplectic groupoid integrating a Poisson manifold
was obtained by Crainic and Marcut [16]. The considerations in this section
apply to the local symplectic groupoids with simple modifications.

2.6. Action of bisections on cotangent algebroid

Proposition 2.4. For any symplectic groupoid (G, ω) over (M,π), the group
Γ(G) of bisections acts on (M,π) by twisted Poisson automorphisms, via the
group homomorphism

(2.11) Γ(G) → Diff(M)� Ω2(M), φ �→ (A(φ), σφ)

where

(2.12) σφ = φ∗ω

Similarly, each of the following maps defines actions of Γ(G) on G by twisted
Poisson automorphisms:

(2.13)
φ �→ (AL(φ), t∗σφ), φ �→ (AR(φ), −s∗σφ),

φ �→ (Ad(φ), t∗σφ − s∗σφ).
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Proof. The claim that (2.13) are twisted Poisson automorphisms amounts
to the following identities:

(2.14)
AL(φ)∗ω = ω + t∗σφ, AR(φ)∗ω = ω − s∗σφ,

Ad(φ)∗ω = ω + t∗σφ − s∗σ.

SinceAL(φ) = MultG ◦ (φ ◦ t, idG), the multiplicativity property (2.9) shows
that AL(φ)∗ω = ω + t∗ ◦ φ∗ω = ω + t∗σφ proving the first identity in (2.14).
The second is obtained similarly, and the third follows by iteration

Ad(φ)∗ω = AR(φ)∗AL(φ)∗ω = AR(φ)∗(ω + t∗σ) = ω + t∗σ − s∗σ

and since t ◦ AR(φ) = t. Applying the map A(φ−1)∗ ◦ t∗ = t∗ ◦ AL(φ−1)∗ to
πG one obtains

A(φ−1)∗π = A(φ−1)∗ ◦ t∗πG = t∗ ◦ AL(φ−1)∗πG = t∗π
t∗σφ

G = πσφ

proving that (A(φ), σφ) is a twisted Poisson automorphism. �

The Proposition shows that the action of Γ(G) on TM , given by φ �→
(A(φ), σφ), preserves the sub-bundle Gr(π) ⊂ TM . It hence defines an action
by automorphisms of the cotangent Lie algebroid T ∗M ∼= Gr(π) (where the
identification is given by α �→ (π�(α), α)). On the other hand, we have the
adjoint action of Γ(G) on the Lie algebroid AG. The two actions agree:

Proposition 2.5. The isomorphism AG ∼= T ∗M given by ω intertwines the
adjoint action of Γ(G) on AG with the action on the cotangent Lie algebroid.

Proof. Let us first derive a formula for the natural action on T ∗M . The image
α′ of an element α ∈ T ∗M under the action of φ ∈ Γ(G) is determined by
(π�(α), α) ∼(A(φ),σφ) (π

�(α′), α′). Hence

A(φ)∗α′ = α+ ι(π�(α))σφ = (1 + σ�
φ ◦ π�)(α).

This shows that the action of Γ(G) on T ∗M is given by

φ �→ (A(φ)−1)∗ ◦ (1 + σ�
φ ◦ π�).

Recall next that the isomorphism ω� : TG → T ∗G descends to an isomor-
phism

AG = (TG|M )/TM → (T ∗G|M )/ ann(TM) ∼= T ∗M.
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The adjoint action of φ on AG is induced by T Ad(φ) on TG. We first transfer
this action to T ∗G using ω�:

ω� ◦ T Ad(φ) ◦ π�
G = (Ad(φ)−1)∗ ◦ (Ad(φ)∗ω)� ◦ π�

G
= (Ad(φ)−1)∗ ◦ (ω + t∗σ − s∗σ)� ◦ π�

G
= (Ad(φ)−1)∗ ◦

(
1 + (t∗σ − s∗σ)� ◦ π�

G
)
.

To compute the induced action on T ∗M , we compose the equation above
with the projection i∗ : T ∗G → T ∗M (the kernel of this projection is exactly
ann(TM)) from the left and any right inverse to i∗ from the right. It is
convenient to take the latter to be t∗. Using T t ◦ π�

G ◦ t∗ = π� and T s ◦ π�
G ◦

t∗ = 0 we find

i∗ ◦ ω� ◦ T Ad(φ) ◦ π�
G ◦ t∗ = (A(φ)−1)∗ ◦ i∗ ◦

(
1 + (t∗σφ − s∗σφ)

� ◦ π�
G
)
◦ t∗

= (A(φ)−1)∗ ◦
(
1 + σ�

φ ◦ (T t− T s) ◦ π�
G ◦ t∗

)
= (A(φ)−1)∗ ◦

(
1 + σ�

φ ◦ π�
)

as desired. �

Example 2.6. If K is a Lie group, then the cotangent bundle T ∗K is a
symplectic groupoid integrating k∗ with the Lie–Poisson structure. Using
left trivialization T ∗K ∼= K × k∗, the groupoid structure is that of an action
groupoid for the coadjoint action. In this case, bisections may be viewed
as maps φ : k∗ → K. (We stress that in this context, Γ(T ∗K) refers to the
bisections as a groupoid T ∗K ⇒ k∗, rather than the sections as a bundle
T ∗K → K.) The symplectic form on T ∗K reads as ω = d〈μ, θL〉, where θL ∈
Ω1(K, k) is the left-invariant Maurer-Cartan form, and μ ∈ Ω0(k∗, k∗) is the
identity map of k∗. Hence,

σφ = d〈μ, φ∗θL〉.

Remark 2.7. A bisection φ of a symplectic groupoid is called Lagrangian
if the corresponding submanifold φ(M) ⊆ G is a Lagrangian submanifold,
or equivalently σφ = 0. As an immediate consequence of the Proposition,
the Lagrangian bisections form a subgroup, and the maps A(φ) are Poisson.
More generally, A(φ) is a Poisson automorphism of (M,π) if the lifted map
Ad(φ) is an automorphism of the symplectic groupoid (G, ω), that is, if
t∗σφ = s∗σφ. Bisections with this property form a subgroup, which is usually
larger than the group of Lagrangian bisections. (Consider for example the
case π = 0.)
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2.7. Moser flows and bisections

Given a symplectic groupoid G ⇒ M integrating the Poisson manifold (M,π),
the Moser method has the following interpretation in terms of bisections.

Proposition 2.8. Suppose that (G, ω) is a symplectic groupoid integrating
(M,π), and let φt be a family of bisections of G, with φ0 = id. Then there
is a family of 1-forms at satisfying dat = − ∂

∂tσφt
, and with the following

properties:

1) at is a Moser 1-form for the family of Poisson structures πt =
(A(φt)

−1)∗π on M , with Ft = A(φt)
−1 as the Moser flow.

2) t∗at is a Moser 1-form for the family of Poisson structures πG,t =
(AL(φt)

−1)∗πG on G, with FG,t = AL(φt)
−1 as the corresponding Moser

flow.

Conversely, suppose σt is a family of closed 2-forms on M , with σ0 = 0,
defining gauge transformations πt = πσt of the Poisson structure on on M .
Suppose at is a Moser 1-form. Then t∗at are Moser 1-forms for the family
of Poisson structures πG,t = πt∗σt

G on G. If the corresponding Moser vector
field is complete, defining a flow FG,t, then φt = (FG,t)−1 ◦ i defines bisections
with

σφt
= σt.

Proof. Given φt, let ṽt be the time dependent vector field generating the
flow t �→ AL(φt)

−1, and put

(2.15) ωt = AL(φt)
∗ω = ω + t∗σφt

.

Taking the t-derivative of the equation ω = (AL(φt)
−1)∗ωt, we find

(2.16)
∂

∂t
ωt = dι(ṽt)ωt = −dãt.

where

(2.17) ãt = −ι(ṽt)ωt ∈ Ω1(G).

We claim that ãt is t-basic, so that ãt = t∗at for a family of 1-forms at on M .
Equation (2.17) then shows that t∗at is a Moser 1-form on G for the family
of Poisson structures πG,t, with AL(φt)

−1 as the corresponding Moser flow.
Equation (2.16) and ∂

∂tωt = t∗ ∂
∂tσφt

show that dat = − ∂
∂tσφt

.
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To prove the claim note that ṽt is tangent to s-fibers, since AL preserves
the s-fibers. Recall that the tangent spaces to s-fibers and t-fibers are ω-
orthogonal. Since AL acts by automorphisms of both the t-fibration and the
s-fibration, the tangent spaces to s-fibers and t-fibers are also ωt-orthogonal.
It follows that ãt = −ι(ṽt)ωt vanishes on vectors tangent to t-fibers, i.e., it
is t-horizontal. On the other hand, if ψ is a bisection,

AR(ψ)∗ãt = −ι(ṽt)AL(φt)
∗AR(ψ)∗ω

= −ι(ṽt)AL(φt)
∗(ω − s∗σψ)

= ãt − ι(ṽt)s
∗A(φt)

∗ω = ãt.

This proves the claim, and hence completes the proof of part (b). Letting vt
be the time dependent vector field generating t �→ A(φt)

−1, we have ṽt ∼t vt,
hence vt = −π�

t(at), which proves part (a). Note φt = AL(φt) ◦ i = (FG,t)−1 ◦
i.

Suppose conversely that σt and at are given, as in the second part of
the proposition. Then t∗σt defines gauge transformations πG,t, with Moser
1-forms ãt = t∗at. Its Moser vector field ṽt is t-related to the Moser vector
field vt of at; hence its flow F̃t satisfies t ◦ F̃t = Ft ◦ t. Since ṽt isAR-invariant,
the flow F̃t commutes with AR. It follows that F̃t = AL(φt)

−1 where φt =
F̃−1
t ◦ i. Since A(φt)

∗ω = ω + t∗σφt
, and since t is a submersion, we have

σt = σφt
. �

Remark 2.9. By a similar discussion, −s∗at is a Moser 1-form on G for
the family of Poisson structures AR(φt)

−1
∗ πG , with AR(φt)

−1 as the corre-
sponding Moser flow. The corresponding Moser vector field commutes with
that for t∗at, since the flows (given in terms of the actions AL and AR) com-
mute. This implies that t∗at − s∗at is again a Moser 1-form, for the family
of Poisson structures Ad(φt)

−1
∗ πG with Ad(φt) as the Moser flow.

Proposition 2.8 extends to the equivariant case: Consider the setting
from the end of Section 2.4; in particular eM (ξ) ∼(Φt,σt) eg∗(ξ) and the Moser
1-forms at satisfy (2.7). Then the bisections φt satisfy

(2.18) (Φt, σt) ◦ (A(φt), σφt
)−1 = (Φ0, 0).

Indeed, this identity is equivalent to the two conditions σt = σφt
and F ∗

t Φt =
(A(φt)

−1)∗Φt = Φ0.



242 A. Alekseev and E. Meinrenken

Remark 2.10. It is clear that this proposition, and its proof, has a local
counterpart (working with local groupoids, local flows and so on), as well as
a version for germs.

Remark 2.11. Use the symplectic form ω on G to identify AG ∼= T ∗M .
Informally, the group Γ(G) of bisections may be viewed as the infinite-
dimensional Lie group integrating the Lie algebra Γ(AG) ∼= Γ(T ∗M). From
this perspective, the time dependent bisection φt ∈ Γ(G) is the integration
of the time dependent section at ∈ Γ(T ∗M).

2.8. Linearization

Given a manifold M , we denote by C∞(M)x the algebra of germs at x
of smooth functions. Thus C∞(M)x = colimU C∞(U), where U ranges over
open neighborhoods of x. Similarly, one defines the space C∞(M,N)x of
germs at x of smooth functions to another manifold N , germs of sections of
fiber bundles, and so on. Given F ∈ C∞(M,N)x, we will write F : Mx → Ny

if F (x) = y. Suppose πM is a germ of Poisson structure at x ∈ M , given
by a Poisson bracket on the algebra C∞(M)x. Given another germ of a
Poisson structure πN at y ∈ N , we will say that F : Mx → Ny is Poisson if
the map F ∗ : C∞(N)y → C∞(M)x preserves brackets. If a Poisson structure
πM vanishes at x ∈ M , then the tangent space TxM acquires a linear Poisson
structure.

Definition 2.12. Let (M,πM ) be a Poisson manifold, and x ∈ M a zero
of πM . Then M is called linearizable at x if there exists a germ of a Poisson
diffeomorphism

(2.19) F : (TxM)0 → Mx,

with T0F the identity transformation of TxM . We will refer to F as a Poisson
linearization.

Remark 2.13. 1) There are similar definitions in the formal category,
working with infinite jets of functions rather than germs, and in the
analytic category, requiring that the given data are analytic and work-
ing with germs of analytic functions.

2) There are analogous notions of linearizations of Lie algebroids, with
the Poisson case corresponding to the cotangent Lie algebroid. See
Fernandes-Monnier [23] for a survey and some recent results.
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Suppose πM vanishes at x, and that we have found a germ of a σ-twisted
Poisson linearization

(F, σ) : (TxM)0 → Mx.

Recall that TxM = k∗ with the Lie–Poisson structure, where k is the isotropy
Lie algebra at x. Let st : k

∗ → k∗ be scalar multiplication by t, and define
a family of closed 2-forms σt = t−1s∗tσt. Let at be a family of primitives
of − ∂

∂tσt (e.g., given by the de Rham homotopy operator for Ω(k∗)). The
Moser method determines a family of bisections φt such that φt(0) = e and
σφt

= σt. Put φ = φ1, so that σφ = σ. Then

(F, σ) ◦ (A(φ), σφ)
−1 = (F ◦ A(φ)−1, 0),

so that F ◦ A(φ)−1 is the desired Poisson linearization.

2.9. Coisotropic submanifolds

Recall that a submanifold C ⊂ M of a Poisson manifold is coisotropic if
π�(ann(TC)) ⊂ TC. Equivalently, the conormal bundle ann(TC) ⊂ T ∗M is
a Lie subalgebroid. At least locally, this Lagrangian Lie subalgebroid inte-
grates to a Lagrangian Lie subgroupoid L ⊂ G; see Cattaneo [8] and Xu [38].
Conversely, the base of any Lagrangian Lie subgroupoid L ⇒ C of G ⇒ M
is a coisotropic submanifold.

Proposition 2.14. Suppose that C ⊂ M is a coisotropic submanifold of
the Poisson manifold (M,π), and that the Moser 1-forms at (hence also the
2-forms σt) pull back to 0 on C. Then the Moser vector field vt is tangent
to C. Furthermore, if C ⊂ M integrates to a (local) Lagrangian subgroupoid
of the (local) symplectic groupoid G, then the bisections φt ∈ Γ(G) obtained
from at restrict to bisections of the Lagrangian Lie subgroupoid L.

Proof. By assumption, at restricts to a section of the conormal bundle
ann(TC). Since the bundle automorphism 1 + σ�

t π
� of T ∗M restricts to

identity on ann(TC), we see that C is also coisotropic with respect to πt.
We claim that L is also Lagrangian with respect to ωt = ω + t∗σt. Indeed,
if Y1, Y2 ∈ TxL, then their projections under T t are tangent to C, hence
(t∗σt)(Y1, Y2) = 0. Let ṽt be the vector field defined by ι(ṽt)ωt = −t∗at. For
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all Y ∈ TxL we have

ωt(ṽt|x, Y ) = −〈(Txt)
∗at|x, Y 〉 = −〈at|x, (Txt)(Y )〉 = 0

since (Txt)(Y ) ∈ TxC. This shows that Xt is ωt-orthogonal to the tangent
spaces of L, hence it is itself tangent to L and its flow F̃t preserves L. We
conclude that the bisections φt = F̃−1

t ◦ i restrict to bisections of L over C.
�

This result implies the following functorial aspects of Moser flows. Recall
that a map f : M1 → M2 between Poisson manifolds is Poisson if and only
if its graph is a coisotropic submanifold

C = Gr(f) ⊆ M = M2 ×M1,

where M1 signifies M1 with the opposite Poisson structure −π1. Hence, if
Gi are the (local) symplectic groupoids integrating Mi, we obtain a (lo-
cal) Lagrangian subgroupoid L ⊂ G2 × G1 over C. This L is the graph of
a comorphism of Lie groupoids [27]; it integrates the Lie algebroid comor-
phism between T ∗M1 and T ∗M2. (See Cattaneo-Dherin-Weinstein [9] for
a general discussion of the integration of comorphisms.) In particular we
have a pull-back map of (local) bisections, integrating the pull-back map for
1-forms. Applying Proposition 2.14 to this situation, we obtain:

Proposition 2.15. Suppose f : (M1, π1) → (M2, π2) is a Poisson map, and
let ai,t be families of 1-forms on Mi, defining Moser vector fields vi,t. If a1,t =
f∗a2,t, then v1,t ∼f v2,t. Hence, f intertwines the Moser flows. Furthermore,
if Gi are the (local) symplectic groupoids integrating Mi, then the (local)
bisections φi,t ∈ Γ(Gi) are related by pull-back.

Proof. This is a direct application of Proposition 2.14 to M = M2 ×M1,
with at = (a2,t,−a1,t). �

3. Coboundary Poisson Lie groups

We review some aspects of the theory of Lie bialgebras and Poisson Lie
groups, due to Drinfeld [18–20].

3.1. Lie bialgebras

A Lie bialgebra is a Lie algebra g together with a linear map λ : g → g⊗ g
such that
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(i) the map λ defines a Lie coalgebra structure (i.e., it defines a Lie bracket
on g∗), and

(ii) λ is a Lie algebra 1-cocycle with coefficients in the g-module g⊗ g,
i.e.,

λ([ξ, η]) = adξ λ(η)− adη λ(ξ)

for all ξ, η ∈ g.

The structure of a Lie bialgebra is equivalent to that of a Manin triple
(d, g, h), given by a Lie algebra d with a non-degenerate invariant metric
〈·, ·〉 and a pair of transverse Lagrangian Lie subalgebras g, h. The pairing
identifies g∗ ∼= h, and g acquires a Lie bialgebra structure, with cobracket
dual to the Lie bracket on h. The Lie algebra d is called the double of the Lie
bialgebra g. In the special case λ = 0, the double is the semi-direct product
d = g� g∗ with respect to the coadjoint action, with h = g∗.

A Lie bialgebra g is called a coboundary Lie bialgebra if λ is the cobound-
ary of some element r ∈ g⊗ g, that is,

λ(ξ) = adξ r

for all ξ ∈ g. The choice of r for a given λ will be referred to as a coboundary
structure for the Lie bialgebra g. For any r ∈ g⊗ g, let r� : g∗ → g denote
the map r�(μ) = r(μ, ·).

Lemma 3.1 (Drinfeld [20]). Let g be a Lie bialgebra, with double d =
g⊕ g∗. There is a 1–1 correspondence between

• coboundary structures r ∈ g⊗ g,

• g-equivariant splittings j : g∗ → d of the sequence

0 → g → d → g∗ → 0.

Under this correspondence, j(μ) = μ− r�(μ) for μ ∈ g∗.

Proof. Let r ∈ g⊗ g and j : g∗ → d be related as above. The map j is g-
equivariant if and only if the expression

A(ξ, μ) = [ξ, j(μ)]d − j(ad∗ξ μ)

= [ξ, μ− r�(μ)]d − ad∗ξ μ+ r�(ad∗ξ μ)

= − ad∗μ ξ − [ξ, r�(μ)]g + r�(ad∗ξ μ)
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vanishes for all ξ ∈ g and μ ∈ g∗. Note that A(ξ, μ) ∈ g. Hence its vanishing
is equivalent to the vanishing of

〈ν,A(ξ, μ)〉 = 〈ν,− ad∗μ ξ − [ξ, r�(μ)]g + r�(ad∗ξ μ)〉
= 〈[μ, ν]g∗ , ξ〉+ r(ad∗ξ μ, ν) + r(μ, ad∗ξ ν)

= 〈μ⊗ ν, λ(ξ)− adξ r〉.

for all ξ ∈ g and μ, ν ∈ g∗. Hence, g-equivariance of j is equivalent to λ(ξ) =
adξ r, as required. �
Note that the image of the inclusion p = j(g∗) ⊂ d is a g-invariant comple-
ment to g in d.

Remark 3.2. The set of coboundary structures for a Lie bialgebra g is
either empty, or is an affine space with underlying vector space (g⊗ g)g.
In terms of the splitting j : g∗ → d, this follows since any two g-equivariant
splittings differ by an element of

Homg(g
∗, g) ∼= (g⊗ g)g.

The affine space of coboundary structures is preserved under the involution
σ : ξ1 ⊗ ξ2 �→ ξ2 ⊗ ξ1 of g⊗ g. In terms of splittings it amounts to replacing
j : μ �→ μ− r�(μ) with j̃ : μ �→ μ+ σ(r)�(μ). In terms of complements, the
involution takes p to p⊥. Halfway between p and p⊥, one hence finds an
invariant Lagrangian complement. It corresponds to the choice of a skew-
symmetric r (that is, σ(r) = −r). Note that if p is an invariant Lagrangian
complement, then

[g, p] ⊆ p, [p, p] ⊆ g

so that (d, g) is a symmetric pair. Let κ be the Lie algebra automorphism
of d, equal to +1 on g and to −1 on p. It exponentiates to a Lie group
automorphism κ of the simply connected Lie group D integrating d. The
identity component of its fixed point set is a closed Lie subgroup G ⊂ D
integrating g. Similarly, the identity component of the fixed point set of
the anti-involution d �→ κ(d)−1 of D is a closed submanifold P ⊆ D with
exp(p) ⊆ P .

Remarks 3.3. 1) Suppose g is a Lie algebra, and r ∈ g⊗ g. Then r de-
fines a coboundary Lie bialgebra structure on g if and only if the sym-
metric part of r, r + r21 ∈ g⊗2 and the element YB(r) = [r12, r13] +
[r12, r23] + [r13, r23] ∈ g⊗3 are both g-invariant. (A proof, as well as an
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explanation of the notation, may be found in [31, Chapter 8].) The
coboundary structure r, or the Lie bialgebra g itself, is called quasi-
triangular if YB(r) = 0 (classical Yang-Baxter equation), and factor-
izable if furthermore the symmetric part r + r21 is non-degenerate. As
noted in [20], a quasi-triangular structure on g is equivalent to j being
a morphism of Lie algebras, i.e., to p = j(g∗) being a complementary
ideal to g in d.

2) If λ defines a Lie bialgebra structure on g, then so does λt = tλ for
all t ∈ R. Hence, any Lie bialgebra structure may be regarded as a
deformation of the trivial one. Coboundary structures may be scaled
accordingly as rt = tr.

3) Every non-abelian Lie algebra admits a non-trivial coboundary Lie
bialgebra structure [17].

3.2. Poisson Lie groups

A Poisson Lie group is a Lie group G together with a Poisson structure
such that the group multiplication is a Poisson map. The Poisson tensor
of a Poisson Lie group vanishes at the group unit, hence g = TeG acquires
a linear Poisson structure, defining a Lie bracket on g∗. The compatibility
with the given Lie bracket is such that g becomes a Lie bialgebra. Drinfeld’s
theorem [18] gives a bijective correspondence between Lie bialgebras and
simply connected Poisson Lie groups. A Poisson Lie group will be called
coboundary if its tangent Lie bialgebra is of this type.

Example 3.4 (Lu-Weinstein Poisson structure). Let G be a compact
Lie group, and D = GC its complexification, regarded as a real Lie group.
Choose a maximal torus T ⊂ G and a system of positive roots, and consider
the decomposition

d = g⊕ a⊕ n

where n ⊂ gC is the sum of positive root spaces, and a =
√
−1t. On the group

level, this is the Iwasawa decomposition D = GAN . Let B be a positive
definite invariant symmetric bilinear form on g, and let the bilinear form 〈·, ·〉
on d be the imaginary part of its complexification BC. Then (d, g, h) with
h = a⊕ n is a Manin triple, defining the Lu-Weinstein Poisson structure on
G. The subspace p =

√
−1g is a g-invariant Lagrangian complement to g in

d, and D = GP by the Cartan decomposition. Hence g is a coboundary Lie
bialgebra. The corresponding coboundary structure r is given in terms of
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root vectors eα (normalized such that e−α = e∗α and B(eα, e−α) = 2) by

r =
i

2

∑
α>0

(e−α ⊗ eα − eα ⊗ e−α)

where the sum is over the set of positive roots.

3.3. G∗-valued moment maps

Let (d, g, h) be a Manin triple, D a Lie group integrating d, and let G and
H be Lie subgroups (not necessarily closed), integrating g and h. We will
refer to (D,G,H) as a Manin triple of Lie groups integrating (d, g, h). The
Lie algebra d acts on H = G∗ by the (left) dressing action, ζ �→ ζG∗ where

ι(ζG∗)θLG∗ |h = − prg∗(Adh−1 ζ),

Here prg∗ : d → g∗ is the projection to the first summand in d = h⊕ g. (If
the multiplication map defines a global diffeomorphism G∗ ×G → D, then
this infinitesimal action integrates to the natural D-action on G∗ regarded
as a homogeneous space G∗ = D/G.) One knows (see e.g., [29]) that the
symplectic leaves of G∗ are exactly the orbits of this dressing action of
g ⊂ d. The cotangent Lie algebroid T ∗G∗ ∼= Gr(πG∗) has the structure of an
action Lie algebroid for this action. In fact, there is a bracket preserving
linear map eG∗ : d → Γ(TG∗) given by

eG∗(ζ) = (ζG∗ ,−〈θRG∗ , ζ〉) ∈ Γ(TG∗),

and Gr(πG∗) is spanned by the sections eG∗(ξ) for ξ ∈ g. Given a Poisson
manifold (M,π) and a Poisson map Ψ: M → G∗, one obtains unique sections
eM (ξ), ξ ∈ g of Gr(π) ⊂ TM such that eM (ξ) ∼(Ψ,0) eG∗(ξ). The vector field
component ξM of eM (ξ) defines a g-action on M , with

(3.1) ξM = −π�
M 〈Ψ∗θRG∗ , ξ〉.

This action is a Lie bialgebra action, with Ψ as its moment map, in the
sense of J.-H. Lu [29]. For example, the identity map from G∗ to itself is a
moment map for the dressing action, while the inclusion of dressing orbits
is a moment map for the action on these orbits.
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The Lie group D is itself a Poisson Lie group, with Manin triple

(d⊕ d, dΔ, h⊕ g).

Here d is equal to d as a Lie algebra, but with the opposite metric, and
dΔ ⊂ d⊕ d is a copy of d embedded diagonally. One refers to D with this
Poisson structure as a Drinfeld double of G. The anti-diagonal in d⊕ d is a
Lagrangian dΔ-invariant complement, defining a coboundary structure onD.
The inclusion g → d ∼= dΔ is a morphism of Lie bialgebras, defining a mor-
phism of Poisson Lie groups G ↪→ D. The dual map d∗ = h⊕ g → g∗ = h is
simply projection to the first factor. Let us describe the resulting morphism
of Poisson Lie groups prG∗ : D∗ → G∗ = H. Note first that D∗ is the Poisson
Lie group

D∗ = H ×G = G∗ ×G,

with Poisson structure defined by the Manin triple (d⊕ d, h⊕ g, dΔ). Con-
sider the dressing action of d⊕ d on D∗. Given (ζ, ζ ′) ∈ d⊕ d we have

prh⊕g(ζ, ζ
′) = (prh(ζ − ζ ′), prg(ζ

′ − ζ)),

hence

((ζ, ζ ′)D∗)(θLH + θLG) =
(
− prh(Adh−1 ζ −Adg−1 ζ ′),(3.2)

prg(Adh−1 ζ −Adg−1 ζ ′)
)
.

The graph of πD∗ is thus spanned by the sections eD∗(ζ) := eD∗(ζ, ζ) for
ζ ∈ d, where

eD∗(ζ, ζ ′) =
(
(ζ, ζ ′)D∗ , −〈θRH , ζ〉+ 〈θRG, ζ ′〉

)
for (ζ, ζ ′) ∈ d⊕ d. We see that eD∗(ξ) ∼(prG∗ ,0) eG∗(ξ) for ξ ∈ g.

3.4. The Lu-Weinstein double groupoid

According to Lu-Weinstein [30], any Poisson Lie group is integrated by a
symplectic double groupoid G. If (D,G,G∗) is a Manin triple of Lie groups
integrating (d, g, g∗), one has

G = {(u, g, g′, u′) ∈ G∗ ×G×G×G∗| ug = g′u′}.

As a groupoid over G∗, the source and target map take (u, g, g′, u′) to u′

and u, respectively, and the groupoid multiplication of composable elements
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reads as

(u1, g1, g
′
1, u

′
1)(u2, g2, g

′
2, u

′
2) = (u1, g1g2, g

′
1g

′
2, u

′
2).

See [30] for a description of the symplectic structure, and further details. The
map G → D∗, (u, g, g′, u′) �→ (u, (g′)−1) is Poisson, hence it is a moment
map for an action d → X(G), ζ �→ ζG . The map G → D, (u, g, g, u′) �→ ug
intertwines ζG with −ζR.

4. Linearization of Poisson Lie group structures

In this section, we will prove that the Poisson structure on the the dual of
a coboundary Poisson Lie group G∗ is linearizable at the group unit. Our
argument will depend on the existence of a germ of an equivariant map
Exp: g∗ → G∗ and a germ of a closed 2-form σ on g∗ such that the pair
(Exp, σ) gives a twisted Poisson linearization (g∗, πg∗) to (G∗, πG∗). The
construction will involve a twisted Poisson linearization of D∗, the dual of
the Drinfeld double.

Throughout this section, we take (d, g, h) to be a Manin triple, and
(D,G,H) a corresponding Manin triple of Lie groups.

4.1. The Dirac Lie group structure of D

As we recalled earlier, the Drinfeld double D of a Poisson Lie group is itself
a Poisson Lie group. Using only the invariant metric on d, it also has another
structure as a Dirac Lie group, as follows. Let ζD = ζL − ζR, ζ ∈ d be the
vector fields generating the conjugaction action, denote by θL and θR ∈
Ω1(D, d) the left-invariant and the right-invariant Maurer-Cartan forms on
D, and let

eD(ζ, ζ
′) =

(
(ζ ′)L − ζR,−1

2
〈θL, ζ ′〉 − 1

2
〈θR, ζ〉

)
∈ Γ(TD).

for ζ, ζ ′ ∈ d. The sections eD(ζ) := eD(ζ, ζ) span the so-called Cartan-Dirac
structure. It is a Dirac structure for a modified Courant bracket [[·, ·]]η on
Γ(TD), where η is the Cartan 3-form

η =
1

12
〈θL, [θL, θL]〉 ∈ Ω3(D).
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For further details, see e.g., [2, 14]. The Cartan 3-form has the following
property

(4.1) ι(ζD)η = −1

2
d〈θL + θR, ζ〉, ζ ∈ d.

Let Mult : D ×D → D be the group multiplication, and

ς =
1

2
〈pr∗1 θL, pr∗2 θR〉 ∈ Ω2(D ×D).

Then (Mult, ς) is a morphism of Dirac structures. In fact,

(4.2) Mult∗η = pr∗1 η + pr∗2 η − dς

and (eD(ζ), eD(ζ)) ∼(Mult,ς) eD(ζ).

4.2. Poisson linearization of D∗

Using the metric, we may identify d with d∗; hence we have the sections
ed(ζ) = (ζd,−〈dμ, ζ〉), ζ ∈ d as in Section 2.3. Let � ∈ Ω2(d) be the image
of exp∗ η under the standard homotopy operator Ωq(d) → Ωq−1(d), for the
linear retraction onto the origin. An explicit formula for � may be found in
[32, Appendix C].

Proposition 4.1. [2] The morphism (exp, �) satisfies

ed(ζ) ∼(exp,
) eD(ζ)

for all ζ ∈ d. Away from the critical points of exp, the morphism (exp, �) is
a Dirac morphism, for the Lie-Poisson structure on d = d∗ and the Cartan-
Dirac structure on D.

We may think of (exp, �) as defining a twisted Dirac linearization of the
Dirac Lie group D. We will use this to obtain a twisted Poisson linearization
of the Poisson Lie group D∗.

As it turns out, there is a close relation between the Cartan-Dirac struc-
ture on D and the Poisson structure on D∗. Define

F : D∗ = H ×G → D, (h, g) �→ hg−1,

and put

ε =
1

2
〈θLH , θLG〉 ∈ Ω2(D∗).
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Note that F has bijective differential, but is not necessarily surjective.

Proposition 4.2. The morphism (F, ε) : D∗ → D is a Dirac morphism,
relative to the Poisson structure on D∗ and the Dirac Lie group structure
on D. In fact

eD∗(ζ, ζ ′) ∼(F,ε) eD(ζ, ζ
′)

for all ζ, ζ ′.

Proof. We have F ∗η = dε, as a consequence of the formula for Mult∗η and
the fact that η pulls back to 0 on the subgroups H and G. Let us verify that
the map F intertwines the dressing action of d⊕ d with the usual action on
D, (ζ, ζ ′) �→ (ζ ′)L − ζR. To see this, we will verify

F ∗ι((ζ ′)L − ζR)θLD = ι((ζ, ζ ′)D∗)F ∗θLD.

At d = F (h, g) = hg−1,

Adg−1 ι((ζ ′)L − ζR)θLD = Adg−1 ζ ′ −Adh−1 ζ.

On the other hand, Adg−1(F ∗θLD) = θLH − θLG, hence the result coincides
with (3.2). Similarly,

1

2
F ∗(〈θLD, ζ ′〉+ 〈θRD, ζ〉) =

1

2
〈Adg−1 ζ ′ +Adh−1 ζ, θLH − θLG〉.

while on the other hand

ι((ζ, ζ ′)D∗)ε =
1

2
〈Adg−1 ζ ′ −Adh−1 ζ, θLG + θLH〉

The sum is −〈ζ ′, θRG〉+ 〈ζ, θLH〉 as desired. �
The map F : D∗ = H ×G → D is a diffeomorphism on a neighborhood

of the group unit. Hence, the germ of this map is invertible, and

(4.3) (F, ε)−1 ◦ (exp, �) = (F−1 ◦ exp, � − exp∗(F−1)∗ε) : d∗ = d → D∗

is a well-defined twisted Poisson map, on a neighborhood of 0 ∈ d∗. To sum-
marize, we have shown

Proposition 4.3. Let (d, g, h) be a Manin triple, with corresponding Manin
triple of Lie groups (D,G,H). Then (4.3) defines a twisted Poisson lin-
earization of the dual Poisson Lie group D∗ = H ×G.
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4.3. Twisted Poisson linearization of G∗

Suppose now that g comes with a a coboundary structure, given by an r-
matrix r ∈ g⊗ g or equivalently by a g-equivariant splitting j : g∗ → d. The
equivariance guarantees that eg∗(ξ) ∼(j,0) ed∗(ξ) for all ξ ∈ g ⊂ d, hence

eg∗(ξ) ∼(j,0) ed∗(ξ) ∼(exp,
) eD(ξ) ∼(F,ε)−1 eD∗(ξ) ∼(prG∗ ,0) eG∗(ξ).

Let (Exp, σ) be the composition of these morphisms:

(Exp, σ) = (prG∗ , 0) ◦ (F, ε)−1 ◦ (exp, �) ◦ (j, 0).

Using the multiplication map (h, g) �→ hg to identify D = G∗ ×G (near e),
we have Exp(μ) = prG∗(exp(j(μ))). Note T0 Exp = Idg∗ . The notation is
meant to suggest that we think of Exp as a replacement2 for the exponential
map, exp: g∗ → G∗. The relation

(4.4) eg∗(ξ) ∼(Exp,σ) eG∗(ξ)

says that Exp is g-equivariant, and the closed 2-form σ satisfies

(4.5) ι(ξg∗)σ = 〈dμ, ξ〉 − Exp∗〈θRG∗ , ξ〉.

In particular, (Exp, σ) : (g∗)0 → (G∗)e is a twisted Poisson linearization.
As explained at the end of Section 2.8, the Moser method guarantees the
existence of a germ of a bisection ψ ∈ Γ(T ∗G)0 such that σψ = σ. Then,
(Exp, σ) ◦ (A(ψ), σψ)

−1 = (Exp ◦A(ψ)−1, 0), and we have shown:

Theorem 4.4. Let G∗ be the dual Poisson Lie group of a coboundary Pois-
son Lie group G. Then there exists a germ of a bisection ψ ∈ Γ(T ∗G)0 of
T ∗G ⇒ g∗ such that

Exp ◦A(ψ)−1 : (g∗)0 → (G∗)e

is a Poisson linearization.

Remarks 4.5. 1) The explicit choice of ψ depends on the choice of a
family of closed 2-forms σt interpolating between 0 and σ. As we shall
see in Section 4.5 below, the choice σt = t−1s∗tσ, where st : g

∗ → g∗ is
multiplication by t, has a nice geometric interpretation.

2If j(g∗) = p is a g-invariant Lagrangian complement, then the resulting map
g∗ → D/G is indeed the standard notion of exponential map for a symmetric space.
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2) For the special case that G is a compact Lie group with the Lu-
Weinstein Poisson structure, the Poisson diffeomorphism Exp ◦A(ψ)−1

is in fact globally defined (rather than just as a germ). Indeed, Exp :
g∗ → G∗ is a global diffeomorphism, as a consequence of the Iwa-
sawa and Cartan decompositions GC = GAN = GP . Furthermore, the
Moser vector field used in the construction of ψ is complete, due
to compactness of the symplectic leaves of g∗. This is the explicit
Ginzburg-Weinstein diffeomorphism constructed in [1] (see [4] for the
formulation involving bisections).

3) As mentioned in the introduction, the formal counterpart of this result
was proved by Enriques-Etingof-Marshall in [22], for a more restrictive
class of Poisson Lie groups. Note however that the results in [22] are
stated for arbitrary fields of characteristic zero. It should be possible
to generalize our methods in that direction, using a formal version of
the Moser argument.

4.4. Linearization of the symplectic groupoid

Let G0 = T ∗G ⇒ g∗ and G ⇒ G∗ be the symplectic groupoids of g∗ and of
G∗, respectively. Proposition 2.2 shows that the symplectic groupoid for the
gauge transformed Poisson structure πσ

g∗ is G0, with the symplectic form
modified by t∗σ − s∗σ. Since Exp: g∗ → G∗ is Poisson with respect to πσ

g∗ ,
it lifts to a germ of an isomorphism G0 → G. To make this explicit, let us
regard G0 as the action groupoid G× g∗ for the coadjoint action, and G as
the action groupoid G×G∗ for the dressing action. (In general, the latter
is an identification of local groupoids, since the dressing action may not be
globally defined.) Define a germ (at (e, 0)) of a groupoid isomorphism

Ẽxp: G0 → G, (g, μ) �→ (g,Expμ).

Proposition 4.6. We have the following equality of germs of 2-forms:

Ẽxp
∗
ωG = ωG0

+ t∗σ − s∗σ,

where s, t are the source and target map of G0.

Proof. For ξ ∈ g, let ξG be the vector field on G corresponding to the left
dressing action (see Section 3.4), and similarly ξG0

. These actions have the
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respective target maps of the groupoids G0 and G as moment maps:

ι(ξG0
)ωG0

= −t∗〈dμ, ξ〉, ι(ξG)ωG = −t∗〈θRG∗ , ξ〉.

Since the target map t : G0 → g∗ is equivariant with respecti to the coadjoint
action, we have

ι(ξG0
)t∗σ = t∗ι(ξg∗)σ = t∗

(
〈dμ, ξ〉 − Exp∗〈θR, ξ〉

)
.

The source map is equivariant relative to the trivial action which implies
ι(ξG0

)s∗σ = 0. This shows that

ι(ξG0
)
(
Ẽxp

∗
ωG − ωG0

− t∗σ + s∗σ
)
= 0.

The form inside the parentheses is closed and g-horizontal. Hence, it is g-
basic and it suffices to show that its pull-back to the unit bisection g∗ ⊂ G0

vanishes.
Recall that the unit bisection of a symplectic groupoid is Lagrangian.

Hence, the pull-back of ωG0
to g∗ vanishes. Under Ẽxp, the unit section of G0

is mapped to the unit section of G. Hence, the same argument applies to the
form Ẽxp

∗
ωG . Finally, on the unit section s∗σ = t∗σ = σ which completes

the proof. �

4.5. G∗ as a deformation of g∗

The bisection ψ in Theorem 4.4, as obtained from the Moser method, de-
pends on the choice of a family of closed 2-forms σt interpolating between
0 and σ. While it is possible to simply take σt = tσ, we will show that the
choice

σt = t−1s∗tσ,

where st : g
∗ → g∗ is multiplication by t, has the following interesting feature:

the family of Moser 1-forms at is given by a simple scaling law at = t−2s∗ta1.
Let (d, g, h) be a Manin triple, and (D,G,H) a corresponding Manin

triple of Lie groups. Let gt be the Lie bialgebra, obtained from g by rescaling
the cobracket by a factor t ∈ R (while keeping the Lie bracket unchanged). If
g has a coboundary structure r, then gt has a coboundary structure rt = t r.
We denote by (dt, g, ht) the resulting family of Manin pairs, and by Dt, Ht =
G∗

t the Lie groups corresponding to dt and h = g∗t . In particular, for t = 0
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we obtain the zero cobracket, with

d0 = g� g∗, G∗
0 = g∗, D0 = G� g∗.

The bracket [·, ·]t on dt = g⊕ g∗ reads as

[ξ1, ξ2]t = [ξ1, ξ2],

[μ1, μ2]t = t[μ1, μ2],

[ξ, μ]t = ad∗ξ μ+ t r�(ad∗ξ μ)− t adξ r
�(μ),

for ξ, ξ1, ξ2 ∈ g and μ, μ1, μ2 ∈ g∗. Let σt ∈ Ω2(g∗)0 be the counterpart of the
2-form σ, and πt = πσt

g∗ the resulting gauge transformations of the Poisson
structure. Denote by at ∈ Ω1(g∗)0 the family of 1-forms obtained by applying
the standard homotopy operator to − ∂

∂tσt.

Proposition 4.7. The Poisson bivector fields πt, the 2-forms σt, the Moser
1-forms at and the bisection φt scale according to

πt = t s∗tπ1, σt = t−1s∗tσ1, at = t−2s∗ta1, φt = s∗tφ1,

for t �= 0.

Proof. The rescaling map st : g
∗ → g∗ extends to a Lie algebra morphism

st : dt → d, ξ + μ �→ ξ + tμ.

The inclusions jt : g
∗ → dt defined by jt(μ) = μ+ t r�(μ) satisfy st ◦ jt = j ◦

st. Hence st for t �= 0 is an isomorphism of Manin triples with coboundary
structure, up to rescaling of the metric. In fact, the isomorphism st changes
the metric by a factor of t:

〈st(ξ1 + μ1), st(ξ2 + μ2)]〉 = t〈ξ1 + μ1, ξ2 + μ2〉.

Thus, the metric on dt is 〈·, ·〉t = t−1s∗t 〈·, ·〉. From our construction, it is im-
mediate that multliplication of the metric on d by some scalar amounts to
multiplication of the form σ by the same scalar. This shows σt = t−1s∗tσ.
Let At = 1 + σ�

t ◦ π�
0 so that π�

t = π�
0 ◦A−1

t . The Lie–Poisson structure satis-

fies π0 = t (s∗t )π0, that is, (st)∗ ◦ π�
0 ◦ s∗t = t π�

0. Using σ�
t = t−1 s∗t ◦ σ�

1 ◦ (st)∗
this shows that At ◦ s∗t = s∗t ◦A1, and consequently πt = t s∗tπ1. The scal-
ing behavior of the 2-forms σt implies that the derivative σ̇t =

∂σ
∂t scales as

σ̇t = t−2s∗t σ̇1. (Cf. [4, Section 2.1].) This then implies the scaling property
of at.
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In order to show that the family of bisections φt satisfies the property
φt = s∗tφ1, we note that the map st lifts to a groupoid automorphism (de-
noted again by st) of the groupoid T ∗G ⇒ g∗. This automorphism can ve
viewed as the dilation by the factor of t on the fibers of the cotangent bundle
T ∗G → G. In the left trivialization, we have st : (g, μ) �→ (g, tμ). The bisec-
tion φt is defined such that the family of maps FG,t : (g, μ) → (φt(μ)g, μ) in-
tegrates the Moser flow of the 1-form ãt = t∗at on G. By Proposition 2.8 and
Equation (2.15), the symplectic form on G ∼= T ∗G is given by ωt = ω0 + t∗σt
(here ω0 is the canonical symplectic form on T ∗G). Since ω0 = t−1s∗tω0

and σt = t−1s∗tσ1 we have ωt = t−1s∗tω1. The Moser 1-form ãt = t∗at ver-
ifies ãt = t−2s∗t ã1 which implies the scaling ṽt = t−1s∗t ṽ1 of the Moser vector
field ṽt on G. And this implies the desired property φt = s∗tφ1. �

5. Functorial properties of linearization

Suppose f : (M1, πM1
)x1

→ (M2, πM2
)x2

is a germ of a Poisson map, where
πM1

vanishes at x1 and πM2
vanishes at x2. Then one can look for Poisson

linearizations of M1 and M2 in which the map f becomes the linear map
Tx1

f . In particular, one can consider this problem for morphisms of Poisson
Lie groups.

5.1. Morphisms of coboundary Poisson Lie groups

A morphism of Lie bialgebras is a Lie algebra morphism ν : g1 → g2 preserv-
ing cobrackets. It then follows that the dual map

τ : g∗2 → g∗1

is both a Poisson map and a morphism of Lie bialgebras. It exponentiates
to a morphism of the simply connected Poisson Lie groups

T : G∗
2 → G∗

1.

The following result shows that in the coboundary case, we may choose
Poisson linearizations of G∗

1, G
∗
2 such the map T : G∗

2 → G∗
1 becomes the

linear map τ : g∗2 → g∗1.

Theorem 5.1. Suppose g1 and g2 are coboundary Lie algebras, and let
τ : g∗2 → g∗1 be a morphism of the dual Lie bialgebras which integrates to a
Poisson Lie group morphism T : G∗

2 → G∗
1. Let Expi : (g

∗
i )0 → (G∗

i )e be the



258 A. Alekseev and E. Meinrenken

germs of maps determined by the coboundary structures. Given a germ of
a bisection ψ1 such that σ1 = σψ1

, one can choose a germ of a bisection ψ2

such that σ2 = σψ2
and the diagram

(5.1)

(g∗2)0 −−−−→
τ

(g∗1)0

Exp2 ◦A(ψ2)−1

⏐⏐� ⏐⏐�Exp1 ◦A(ψ1)−1

(G∗
2)e −−−−→

T
(G∗

1)e

commutes.

Proof. We denote by ν : g1 → g2 the Lie bialgebra morphism dual to τ0. For
all ξ ∈ g1,

eg∗
2
(ν(ξ)) ∼(Exp2,σ2) eG∗

2
(ν(ξ)) ∼(T ,0) eG∗

1
(ξ) ∼(Exp1,σ1)−1 eg∗

1
(ξ).

Define σ′
2 by the composition

(5.2) (Exp1, σ1)
−1 ◦ (T , 0) ◦ (Exp2, σ2) = (Exp−1

1 ◦T ◦ Exp2, σ′
2).

That is, eg∗
2
(ν(ξ)) ∼(Exp−1

1 ◦T ◦Exp2,σ
′
2)
eg∗

1
(ξ), which means that Exp−1

1 ◦T ◦
Exp2 is a moment map relative to the σ′

2-gauge transformed Poisson struc-
ture, generating the usual coadjoint action of g1 on g∗2. Since τ is a moment
map for the original Poisson structure, the equivariant Moser method gives
a germ of a bisection ψ′

2 ∈ Γ(T ∗G2)0 relating (5.2) with (τ, 0):

(Exp1, σ1)
−1 ◦ (T , 0) ◦ (Exp2, σ2) ◦ (A(ψ′

2), σψ′
2
)−1 = (τ, 0).

Let ψ′′
2 ∈ Γ(T ∗G2)0 be the ‘pull-back’ of the given bisection ψ1 ∈ Γ(T ∗G1)0

under the groupoid morphism lifting τ . This bisection satisfies

(τ, 0) ◦ (A(ψ′′
2), σψ′′

2
)−1 = (A(ψ1), σψ1

)−1 ◦ (τ, 0).

Letting ψ2 = ψ′′
2ψ

′
2, we calculate:

(Exp1 ◦A(ψ1)
−1 ◦ τ, 0)

= (Exp1, σ1) ◦ (A(ψ1), σψ1
)−1 ◦ (τ, 0)

= (Exp1, σ1) ◦ (τ, 0) ◦ (A(ψ′′
2), σψ′′

2
)−1

= (T , 0) ◦ (Exp2, σ2) ◦ (A(ψ′
2), σψ′

2
)−1 ◦ (A(ψ′′

2), σψ′′
2
)−1

= (T , 0) ◦ (Exp2, σ2) ◦ (A(ψ2), σψ2
)−1
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This identity is equivalent to the two equations, T ◦ Exp2 ◦A(ψ2)
−1 =

Exp1 ◦A(ψ1)
−1 ◦ τ and σ2 − σψ2

= 0. �

Remark 5.2. A similar result was obtained in [4] for morphisms of com-
pact Lie groups with the Lu-Weinstein Poisson structure. For the group G =
U(n), it was used to prove an isomorphism between the Gelfand-Zeiltin com-
pletely integrable system on g∗ = u(n)∗ defined by Guillemin-Sternberg [26]
and the completely integrable system on G∗ = U(n)∗ defined by Flaschka-
Ratiu [24].

6. Addition versus multiplication

Suppose G is a coboundary Poisson Lie group. In this section, we will show
that it is possible to choose the Poisson linearizations ofG∗ and ofG∗ ×G∗ in
such a way that the multiplication map becomes the addition in g∗. We will
use a technique similar to that for the functoriality property (Theorem 5.1),
by comparing two moment maps.

6.1. Twisted diagonal action

Let (d, g, h) be a Manin triple, and (D,G,H) a corresponding triple of Lie
groups. The group multiplication

Mult : G∗ ×G∗ → G∗

ofH = G∗ is a moment map for the twisted diagonal action on G∗ ×G∗. This
may be computed as follows: Let etwG∗×G∗(ξ) be the section of Gr(πG∗×G∗) ⊂
T(G∗ ×G∗) defined by the property

etwG∗×G∗(ξ) ∼(Mult,0) eG∗(ξ).

At any given point (u1, u2), this coincides with etwG∗×G∗(ξ) = (eG∗(ξ1), eG∗(ξ2))
for some ξ1, ξ2 ∈ g (depending on u1, u2). By considering the pull-back of
〈θRG∗ , ξ〉 under Mult, we see that ξ1 = ξ and ξ2 = Ad∗

u−1
1

ξ.

In the coboundary case, we can change the twisted diagonal action
into the usual diagonal action, corresponding to the generators eG∗×G∗(ξ) =
(eG∗(ξ), eG∗(ξ)):

Proposition 6.1. Suppose g has a coboundary structure. Then there is a
germ of a bisection χ of the the symplectic groupoid G × G of G∗ ×G∗, with
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the property

eG∗×G∗(ξ) ∼(A(χ),σχ) e
tw
G∗×G∗(ξ)

for all ξ ∈ g.

A proof of this fact is deferred to the end of this Section.

6.2. Addition versus multiplication

We are now in position to prove:

Theorem 6.2. Let g be a Lie bialgebra with a coboundary structure, and
fix a germ at 0 of a bisection ψ ∈ Γ(T ∗G)0 with σψ = σ. Then there exists a
germ at 0 of bisection φ ∈ Γ(T ∗(G×G))0 with σφ = pr∗1 σ + pr∗2 σ, and such
that the following diagram commutes:

(g∗ × g∗)0 −−−−→
Add

(g∗)0

(Exp×Exp)◦A(φ)−1

⏐⏐� ⏐⏐�Exp ◦A(ψ)−1

(G∗ ×G∗)e −−−−→
Mult

(G∗)e

Note that all maps in this diagram are Poisson.

Proof. For all ξ ∈ g, we have

eg∗×g∗(ξ) ∼(Exp×Exp, pr∗1 σ+pr∗2 σ) eG∗×G∗(ξ)

∼(A(χ),σχ) e
tw
G∗×G∗(ξ)

∼(Mult,0) eG∗(ξ)

∼(Exp,σ)−1 eg∗(ξ).

Let (m,σ′) be the composition of these morphisms:

(m,σ′) = (Exp, σ)−1 ◦ (Mult, 0) ◦ (A(χ), σχ) ◦ (Exp×Exp, pr∗1 σ + pr∗2 σ).

The relation eg∗×g∗(ξ) ∼(m,σ′) eg∗(ξ) shows that m is a moment map rel-

ative to the gauge transformed Poisson structure πσ′
g∗×g∗ , for the standard
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(diagonal) coadjoint action of g. On the other hand, we have

eg∗×g∗(ξ) ∼(Add,0) eg∗(ξ)

The equivariant Moser method for the bisection σ′ gives a germ of a bisection
φ′ with

(m,σ′) ◦ (A(φ′), σφ′)−1 = (Add, 0).

Let φ′′ be the ‘pull-back’ of the given bisection ψ ∈ Γ(T ∗G)0 under the map
Add, thus

(A(ψ), σψ)
−1 ◦ (Add, 0) = (Add, 0) ◦ (A(φ′′), σφ′′)−1.

Finally, let χ̃ be the ‘pull-back’ of the bisection χ under Exp×Exp, so that

(A(χ), σχ) ◦ (Exp×Exp, pr∗1 σ + pr∗2 σ)

= (Exp×Exp, pr∗1 σ + pr∗2 σ) ◦ (A(χ̃), σχ̃).

Put φ = φ′′ ◦ φ′ ◦ χ̃−1. We obtain

(Exp ◦A(ψ)−1 ◦Add, 0)

= (Exp, σ) ◦ (A(ψ), σψ)
−1 ◦ (Add, 0)

= (Exp, σ) ◦ (Add, 0) ◦ (A(φ′′), σφ′′)−1

= (Exp, σ) ◦ (m,σ′) ◦ (A(φ′), σφ′)−1 ◦ (A(φ′′), σφ′′)−1

= (Mult, 0) ◦ (Exp×Exp, pr∗1 σ + pr∗2 σ)

◦ (A(χ̃), σχ̃) ◦ (A(φ′), σφ′)−1 ◦ (A(φ′′), σφ′′)−1

= (Mult, 0) ◦ (Exp×Exp, pr∗1 σ + pr∗2 σ) ◦ (A(φ), σφ)
−1

=
(
Mult ◦ (Exp×Exp) ◦ A(φ)−1, (A(φ)−1)∗(pr∗1 σ + pr∗2 σ − σφ)

)
.

Hence Mult ◦ (Exp×Exp) ◦ A(φ)−1 = Exp ◦A(ψ)−1 ◦Add and pr∗1 σ +
pr∗2 σ − σφ = 0, as required. �

Remark 6.3. If G is a compact Poisson Lie group with the Lu-Weinstein
Poisson structure, the assertions of the Theorem 6.2 are valid globally, not
only on the level of germs. As mentioned earlier, this is due to the fact
that Exp is a global diffeomorphism in this case, and since the symplectic
leaves are compact. A related result was obtained in [5]. In more detail, let
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O1,O2 ⊂ g∗ be two coadjoint orbits and let

O1 +O2 = {x1 + x2; x1 ∈ O1, x2 ∈ O2} ⊂ g∗.

Since the map Exp : g∗ → G∗ is equivariant, D1 = Exp(O1) and D2 =
Exp(O2) are dressing orbits and we define

D1D2 = {u1u2; u1 ∈ D1, u2 ∈ D2} ⊂ G∗.

Theorem 6.2 implies that

Exp(O1 +O2) = D1D2.

In particular, sinceO1 +O2 = O2 +O1, we obtain an equalityD1D2 = D2D1.

Remark 6.4. The proof of Theorem 6.2 is similar to an argument used in
the proof from [3] of the Kashiwara-Vergne conjecture for quadratic Lie alge-
bras. In fact, one may use the Theorem to obtain a Kashiwara-Vergne type
result for G∗, comparing the convolution of germs of invariant distributions
on g∗ to the convolution of germs of invariant distributions on G∗.

6.3. Proof of Proposition 6.1

The left dressing action ξ �→ ξG∗ of g on G∗ integrates to a local action • of
the group G. Dually, we have a local action ∗ of G∗ on G. The two actions
are related by the formula

gu = (g • u)(u−1 ∗ g)

for u ∈ G∗ and g ∈ G sufficiently close to the group unit. Using the inclusion
j : g∗ → d, define a germ of a map

λ : G∗
e → Ge,

by the property λ(u) = u−1 exp(j(μ)) for u = Expμ. Since the map j is
equivariant with respect to the (co)adjoint action, we have

(6.1) λ(g • u) = (g • u)−1Adg(uλ(u)) = (u−1 ∗ g)λ(u)g−1,

for g ∈ G and u ∈ G∗ close to the group unit. Identify the (local) symplectic
groupoid G ⇒ G∗ with the (local) action groupoid for the dressing action,
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and let χ be the germ of bisection of G × G ⇒ G∗ ×G∗ given as

χ(u1, u2) = (e, λ(u1)).

Its action on G∗ ×G∗ is given by A(χ) : (u1, u2) �→ (u1, λ(u1) • u2).

Lemma 6.5. The map A(χ) intertwines the diagonal action with the twisted
diagonal action.

Proof. The twisted diagonal action of g on G∗ ×G∗ integrates to the local
group action g • (u1, u2) := (g • u1, (u−1

1 ∗ g) • u2), for g ∈ G and u1, u2 ∈
G∗ close to the group unit. Using (6.1) we find

A(χ)(g • u1, g • u2) = (g • u1, (λ(g • u1)g) • u2)
=

(
g • u1, ((u−1

1 ∗ g)λ(u1)) • u2
)

= g • (u1, λ(u1) • u2)
= g • A(χ)(u1, u2). �

The Lemma shows that the generating vector fields for the diagonal and
twisted diagonal action are A(χ)-related: ξG∗×G∗ ∼A(χ) ξ

tw
G∗×G∗ . Proposi-

tion 6.1 strengthens this result to a relation eG∗×G∗(ξ) ∼(A(χ),σχ) e
tw
G∗×G∗(ξ)

between sections of the cotangent Lie algebroid. By Proposition 2.5, the ac-
tion of the group of bisections on the cotangent Lie algebroid Gr(πG∗×G∗) ∼=
T ∗(G∗ ×G∗) coincides with the adjoint action on the Lie algebroid A(G ×
G), which in this case is an action Lie algebroid for the dressing action.
Hence, Proposition 6.1 follows from the following result:

Lemma 6.6. The action of Ad(χ) on the action Lie algebroid (G∗ ×G∗)×
(g× g) takes the constant section (ξ, ξ) to the section (ξ,Ad∗

u−1
1

ξ).

Proof. We have χ−1(u1, u2) = (e, λ(u1)
−1). Hence, the adjoint action on the

action groupoid takes (u1, u2; g1, g2) to

Ad(χ)(u1, u2; g1, g2) =
(
g1 • u1, g2 • u2; e, λ(g1 • u1)

)(
u1, u2; g1, g2

)(
u1, λ(u1) • u2; e, λ(u1)−1

)
=

(
u1, λ(u1) • u2; g1, λ(g1 • u1)g2λ(u1)−1

)
For g1 = g2 = g, this simplifies using the equivariance property of λ:

Ad(χ)(u1, u2; g, g) = (u1, λ(u1) • u2; g, u−1
1 ∗ g).

The infinitesimal version of this action is as stated in the Lemma. �
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groups, Astérisque, 327 (2009), 131–199.

[3] A. Alekseev and E. Meinrenken, Poisson geometry and the Kashiwara–
Vergne conjecture, C. R. Math. Acad. Sci. Paris, 335 (2002), no. 9,
723–728.

[4] A. Alekseev and E. Meinrenken, Ginzburg-Weinstein via Gelfand-
Zeitlin, J. Differential Geom., 76 (2007), no. 1, 1–34.

[5] A. Alekseev, E. Meinrenken, and C. Woodward, Linearization of Pois-
son actions and singular values of matrix products, Ann. Inst. Fourier
(Grenoble), 51 (2001), no. 6, 1691–1717.

[6] H. Bursztyn, On gauge transformations of Poisson structures, Quantum
field theory and noncommutative geometry, Lecture Notes in Phys., vol.
662, Springer, Berlin, 2005, pp. 89–112.

[7] M. Cahen, S. Gutt, and J. Rawnsley, Nonlinearizability of the Iwasawa
Poisson Lie structure, Lett. Math. Phys., 24 (1992), no. 1, 79–83.

[8] A. Cattaneo, On the integration of Poisson manifolds, Lie algebroids,
and coisotropic submanifolds, Lett. Math. Phys., 67 (2004), no. 1, 33–
48.

[9] A. Cattaneo, B. Dherin, and A. Weinstein, Integration of Lie algebroid
comorphisms, Port. Math., 70 (2013), 113–144.

[10] V. Chloup-Arnould, Linearization of some Poisson-Lie tensor, J. Geom.
Phys., 24 (1997), no. 1, 46–52.

[11] J. F. Conn, Normal forms for analytic Poisson structures, Ann. of Math.
(2), 119 (1984), no. 3, 577–601.

[12] J. F. Conn, Normal forms for smooth Poisson structures, Ann. of Math.
(2), 121 (1985), no. 3, 565–593.

[13] A. Coste, P. Dazord, and A. Weinstein, Groupöıdes symplectiques, Pub-
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E-mail address: anton.alekseev@unige.ch

Department of Mathematics, University of Toronto

40 St George Street, Toronto, Ontario M5S 2E4, Canada

E-mail address: mein@math.toronto.edu

Received November 16, 2013




