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Topological complexity of symplectic

4-manifolds and Stein fillings

R. İnanç Baykur and Jeremy Van Horn-Morris

We prove that there exists no a priori bound on the Euler char-
acteristic of a closed symplectic 4-manifold coming solely from the
genus of a compatible Lefschetz pencil on it, nor is there a similar
bound for Stein fillings of a contact 3-manifold coming from the
genus of a compatible open book — except possibly for a few low
genera cases. To obtain our results, we produce the first examples
of factorizations of a boundary parallel Dehn twist as arbitrarily
long products of positive Dehn twists along non-separating curves
on a fixed surface with boundary. This solves an open problem
posed by Auroux, Smith and Wajnryb, and a more general variant
of it raised by Korkmaz, Ozbagci and Stipsicz, independently.

1. Introduction

Following the ground-breaking works of Donaldson [9] and Giroux [12], Lef-
schetz pencils and open books have become central tools in the study of
symplectic 4-manifolds and contact 3-manifolds. An open question at the
heart of this relationship is whether or not there exists an a priori bound
on the topological complexity of a symplectic 4-manifold, imposed by the
genus of a compatible relatively minimal Lefschetz pencil on it. A similar
question inquires if such a bound exists for all Stein fillings of a fixed contact
3-manifold, imposed by the genus and the number of binding components
of a compatible open book — bounding a compatible allowable Lefschetz
fibration on each one of these Stein fillings.

In either case, it is easy to see that there is an upper bound on the
first Betti number and a lower bound on the Euler characteristic in terms of
the genus and the number of boundary components of a regular fiber. Fur-
thermore, the Euler characteristic (equivalently, the second Betti number) is
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known to be bounded above in some low genera cases: the only closed sym-
plectic 4-manifolds admitting genus one Lefschetz pencils are the blow-ups
of the complex projective plane [15, 19] and Smith proved that only finitely
many characteristic numbers are realized by genus two Lefschetz pencils
[22]. On the other hand, Plamenevskaya [21] observed that if a contact 3-
manifold can be supported by a planar open book, the Euler characteristics
and signatures of its Stein fillings constitute a finite set (also see [11, 14, 25]).
Nevertheless, the question on the existence of an upper bound on the Euler
characteristic in terms of the topology of a regular fiber remained as a wide
open question in both cases, and is the main focus of this article.

Let Γs
g denote the orientation-preserving mapping class group of a genus

g orientable surface with s boundary components, and assume that s≥1.
A gentle translation of the problems above gives rise to the following ques-
tion: is there an a priori upper bound on the length of any factorization of
a boundary parallel Dehn twist as a product of positive Dehn twists along
homotopically non-trivial curves in Γs

g? This question was raised by Auroux
[2, Question 3], who attributed it to Smith, and was also discussed by Wa-
jnryb [26]. A more general version of the question for any element in Γs

g was
stated as an open problem by Ozbagci and Stipsicz [20, Conjecture 15.3.5],
who conjectured that such an upper bound exists for any mapping class, by
Korkmaz [16, Problem 2.9], and by Korkmaz and Stipsicz [17, Problem 7.6].

Our main theorem answers all these questions in the negative:

Theorem 1.1. The positive Dehn multitwist along the boundary can be
factorized as a product of arbitrarily large number of positive Dehn twists
along non-separating curves in Γ2

g, provided g ≥ 11.

Recall that a Dehn multitwist along the boundary is nothing but a Dehn
twist performed along each boundary component simultaneously. In partic-
ular we obtain the same result for the boundary parallel Dehn twist in Γ1

g

via the boundary capping homomorphism from Γ2
g to Γ1

g. It therefore follows
that there are many other mapping classes attaining the same property: one
can for instance take higher powers of the boundary parallel positive Dehn
twist tδ, or its product with any given product of positive Dehn twists along
non-separating curves. Not all do though: for example, non-positive powers
of the boundary parallel Dehn twist cannot be written as a product of posi-
tive Dehn twists to begin with. We should also note that by adding (possibly
twisted) one handles to one of the boundary components, we can immedi-
ately extend our results to produce mapping classes with arbitrarily long
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positive Dehn twist factorizations on orientable surfaces with any number
of boundary components, as well as on non-orientable surfaces.

Going back to our original questions, we have the following result re-
garding the topological complexity of closed symplectic 4-manifolds:

Theorem 1.2. For each g ≥ 11, there is a family of relatively minimal
genus g Lefschetz pencils {(Xm, fm)|m ∈ N} such that the Euler character-
istic of the closed symplectic 4-manifold Xm is strictly increasing in m.

The assumptions on the relative minimality and the existence of base points
(equivalently, the existence of a section of square −1 for the Lefschetz fi-
bration obtained after blowing-up the base points) rule out two well-known
ways of inflating the Euler characteristic: one can blow up along the fibers
without destroying the fibration structure or can take non-trivial fiber sums.
The relative minimality, by definition, rules out the former, whereas the lat-
ter is ruled out by a theorem of Stipsicz [24], also see [23]. If there were such
an a priori bound on the genus g relatively minimal Lefschetz fibrations
with −1 sections, it would imply a bound on Euler characteristics of mini-
mal symplectic 4-manifolds admitting genus g Lefschetz pencils. (In fact, an
adjunction argument shows that this holds true even for non-minimal sym-
plectic 4-manifolds, provided the 4-manifold is neither rational nor ruled —
as is the case for our examples above.)

Another result we obtain concerns the topological complexity of Stein
fillings:

Theorem 1.3. For each g ≥ 11, there are infinitely many closed 3-manifolds
admitting genus g open books with connected binding which bound allowable
Lefschetz fibrations over the 2-disk with arbitrarily large Euler characteris-
tics.

Since allowable Lefschetz fibrations can be equipped with Stein struc-
tures inducing the same contact structure as the one induced by the bound-
ary open book [1, 18], from Theorem 1.3 we get infinitely many closed contact
3-manifolds each of which can be filled by Stein manifolds with arbitrarily
large Euler characteristics. Therefore we obtain a new proof of “half” of our
main theorem in [3], without addressing the unboundedness of the signa-
ture this time: namely, we see that there is a new and rather large class of
contact 3-manifolds which admit Stein fillings with arbitrarily large Euler
characteristics. Interested readers should compare Corollary 4.2 below with
Theorem 1.1 in [3]. Nevertheless, this new proof cannot be claimed to be
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all independent of our previous one, since our close analysis of the mon-
odromies of the allowable Lefschetz fibrations over positive genera surfaces
in [3] played a vital role in our discovery of the positive factorizations we
have in the current article.

Lastly, we shall add that we are able to improve all three theorems above
so as to cover any g ≥ 8 instead of g ≥ 11. This improvement however comes
at the expense of complicating our arguments at a mostly technical level,
which we prefer to avoid. We present our proofs for the relatively simpler
case of g ≥ 11 and provide only a brief sketch of how the arguments should
be modified to achieve the better bound g ≥ 8; see Remark 3.9. Although
we cannot get smaller g using our approach (see the discussion in Section 5),
more recently, Dalyan, Korkmaz and Pamuk managed to improve these re-
sults to g ≥ 3 [7].1 Per our discussion above on the genus 1 and 2 cases,
where there exists an a priori bound, the cumulation of these results now
completely settle the problem for all g.

The outline of our paper is as follows:
In Section 2 we review the background material relating mapping class

group factorizations to Lefschetz pencils and open books, and in turn, to
symplectic 4-manifolds and contact 3-manifolds. In Section 3 we prove The-
orem 1.1. Our construction of these monodromies is more geometric than
algebraic: the desired monodromies are built using mapping classes of a sur-
face which swap certain subsurfaces. These swap maps are described as lifts
of natural braid maps which admit quasipositive factorizations, so they ad-
mit factorizations into positive Dehn twists themselves. Furthermore, our
geometric construction allows us to introduce a simple calculus involving
various swap maps. We then custom tailor our monodromies out of these
blocks on a genus g ≥ 11 surface with two boundary components to realize
commutators of maps on a genus two subsurface, which we can in turn ex-
press as arbitrarily long products of positive Dehn twists. (Theorem 3.4 gives
it for some mapping classes and Theorem 1.1 for boundary multitwists.) Sec-
tion 4 is where we derive our results on the topology of closed symplectic
4-manifolds and contact 3-manifolds. Section 5 gathers some final comments
and questions.

1Some of these improvements are obtained independently around the same time
by Naoyuki Monden (unpublished).
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2. Preliminaries

Here we review the connections between symplectic 4-manifolds and Stein
fillings of contact 3-manifolds with positive factorizations in the mapping
class groups of surfaces — via Lefschetz fibrations/pencils and open books.
While we provide a detailed review of descriptions of all versions of Lefschetz
fibrations/pencils and of open books via mapping class group factorizations,
we will assume familiarity with the basic notions of symplectic, Stein, or
contact structures, for which the reader can for instance turn to [13].

All manifolds in this article are assumed to be compact, smooth and
oriented, and all maps are assumed to be smooth.

2.1. Mapping class groups and braid groups

Let Σs
g,r denote a compact oriented surface of genus g with s boundary

components and r marked points in its interior. The mapping class group of
Σs
g,r, denoted by Γs

g,r, is the group of isotopy classes of orientation-preserving
self-diffeomorphisms of Σs

g,r, fixing the points on the boundary and fixing
each marked point individually. The isotopies of Σs

g,r are assumed to fix the
points on the boundary as well as the marked points. For simplicity, we will
often drop r or s from our notation when they are equal to zero.

We denote a positive (right-handed) Dehn twist along an embedded
simple closed curve a on Σs

g by ta, and a negative (left-handed) Dehn twist
by t−1a . Dehn [8] proved that Γs

g is generated by (positive and negative)
Dehn twists. Our focus will be on elements of Γs

g which can be expressed as
a product of positive Dehn twists. Any such expression of an element Φ ∈ Γs

g

will be called a positive factorization of Φ.
Most of the maps and their geometric descriptions we use in this article

will be inferred by lifting diffeomorphisms of the unit 2-disk D2 to a com-
pact orientable surface F , under a double branched covering. So they arise
via a homomorphism from Bn, the n-stranded braid group on D2, to Γs

g

under a fixed identification of F with Σs
g. As usual, we study the n-stranded

braid group Bn by identifying D2 with the unit disk in R2 and looking at
the orientation-preserving self-diffeomorphisms of the latter which preserve
n marked points on the x-axis (or y-axis) setwise, up to isotopies. Bn is gen-
erated by half-twists along embedded arcs in the interior of D2 joining any
pair of marked points, while avoiding the other marked points. (Further,
there are standard generators, half-twists along arcs on the x-axis joining
two consecutive points.) A half-twist is called positive if we exchange the
marked points in a right-handed manner, or equivalently when the square
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of a half-twist is a positive Dehn twist along the boundary of a small disk
containing the arc in the complement of the other marked points. As above,
we will focus on elements of Bn, called the quasipositive braids, which can be
expressed as a product of positive half-twists. We call such a factorization
of an element b ∈ Bn, a quasipositive factorization.

We will also make use of the framed braid group B∗n, isomorphic to
Bn × Zn. One can think of this as an extension of Bn where we keep track
of the twisting around each marked point. To do this, one picks a direc-
tion vector at every marked point and as before, the elements of B∗n are
thought of as orientation-preserving self-diffeomorphisms of D2, preserving
n-marked points on the x-axis and their associated vectors, all considered
up to isotopy preserving said directions. We will prefer to work with an
alternate description of B∗n by considering the orientation-preserving self-
diffeomorphisms of D2 with n disjoint disks along the x-axis removed. Here
we additionally choose a marked point on each interior boundary component
and then require the self-diffeomorphisms to fix the outer boundary point-
wise and preserve the interior boundaries along with their marked points.
(Again this is considered up to isotopies which fix the outer boundary, pre-
serve the interior boundaries, and fix the marked points.) Similar to Bn,
B∗n can be generated by half-twists along arcs connecting two boundary
components and Dehn twists about curves parallel to the interior boundary
components.

Lastly, for each of the groups Γs
g,r, Bn and B∗n, we use the functional

notation induced by a composition of maps, acting from right to left. Com-
patibly, given a braid picture, we will read its action starting from the right.
We will frequently work with representatives of group elements while pre-
senting mapping group relations, which should be understood to hold up to
isotopies of these elements in the actual group.

2.2. Lefschetz fibrations and symplectic 4-manifolds

A Lefschetz fibration is a surjective map f : X → Σ, where X and Σ are 4-
and 2-dimensional compact manifolds, respectively, such that f fails to be
a submersion along a non-empty discrete set C, and around each critical
point in C it conforms to the local model f(z1, z2) = z1z2, compatible with
orientations. When ∂X �= ∅, we assume that C lies in the interior of X.
We will moreover assume that each singular fiber contains only one critical
point, which can always be achieved after a small perturbation of any given
Lefschetz fibration. Lastly, all the Lefschetz fibrations we consider will be
over Σ = S2, unless explicitly stated otherwise. A Lefschetz pencil is then
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defined as a Lefschetz fibration on the complement of a discrete set B in
X (for ∂X = ∅), where f , around each base point in B conforms to the
local model f(z1, z2) = z1/z2. We will often denote a Lefschetz fibration or
a Lefschetz pencil as a pair (X, f).

It turns out that the monodromy of a Lefschetz fibration f : X → D2

over the disk with a single critical point is a positive Dehn twist along
an embedded simple closed curve on a reference regular fiber, called the
vanishing cycle of this critical point. The critical point arises from attaching
a 2–handle, called the Lefschetz handle to the regular fiber with framing −1
with respect to the framing induced by the fiber. The attaching circle of this
handle is the vanishing cycle, which contracts to the corresponding singular
point.

It follows that the monodromy of a Lefschetz fibration f : X → S2 with
n critical points is given by a factorization of the identity element 1 ∈ Γg as

(1) 1 =

n∏
i=1

tvi
,

where vi are the vanishing cycles of the singular fibers and tvi
is the positive

Dehn twist about vi for i = 1, . . . , n. This factorization of the identity is
called the monodromy representation or the monodromy factorization of f .
Conversely, any word

w =

n∏
i=1

tvi

prescribes a Lefschetz fibration over D2, and if w = 1 in Γg we get a Lefschetz
fibration X → S2.

For a Lefschetz fibration f : X → S2, a section is a map σ : S2 → X
so that f ◦ σ = idS2 . Suppose that a fibration f : X → S2 admits a section
σ such that S = σ(Σ) ⊂ X \ C. Then the section S provides a lift of the
monodromy representation π1(Σ \ f(C)) → Γg to the mapping class group
Γg,1. One can then fix a disk neighborhood of this section preserved under
the monodromy, and get a lift of the factorization to Γ1

g, which equals to a
power of the boundary parallel Dehn twist. That is we get a defining word

tmδ =
∏
i

tv′
i

in Γ1
g, where v′i are lifts of vi to Γ1

g, δ is a boundary parallel curve, and m is
the negative of the self-intersection number of the section S. Conversely, any
word in Γ1

g as above prescribes a genus g Lefschetz fibration with vanishing
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cycles vi and with a distinguished section S of self-intersection −m. These
observations generalize in a straightforward fashion when we have r disjoint
sections S1, . . . , Sr ⊂ X \ C, corresponding to r marked points captured in
the mapping class group Γg,r.

One can blow-up all the base points of a genus g Lefschetz pencil (X, f)
and obtain a genus g Lefschetz fibration (X̃, f̃) with r disjoint −1 sections,
that is sections of self-intersection number −1, each corresponding to a base
point in B. In this case one obtains a relation

tδ1 · · · tδr =
∏
i

tv′
i

in Γr
g (once again lifted from a factorization of the identity in Γg,r.). Con-

versely, whenever we have such a relation, we can construct a genus g Lef-
schetz fibration with r disjoint −1 sections, which can be then blown-down
to obtain a genus g Lefschetz pencil on a closed 4-manifold.

We will say a Lefschetz fibration (resp. pencil) (X, f) and a symplectic
form ω on X are compatible if all the fibers are symplectic with respect
to ω away from the critical points (resp. critical points and base points)
and the coorientation on the normal disks agrees with the orientation on
the base. The following theorem, coupled with the above discussion, gives a
combinatorial way to study symplectic 4-manifolds:

Theorem 2.1 (Donaldson [9], Gompf [13]). Any symplectic 4-manifold
(X,ω) admits a compatible Lefschetz pencil, with respect to ω. Conversely,
any Lefschetz fibration (X, f) with a homologically essential fiber admits a
compatible symplectic form ω with respect to which any prescribed collection
of disjoint sections are symplectic.

2.3. Open books and contact 3-manifolds

An open book decomposition B of a 3–manifold Y is a pair (L, f) where L is
an oriented link in Y , called the binding, and f : Y \ L → S1 is a fibration
such that f−1(t) is the interior of a compact oriented surface Ft ⊂ Y and
∂Ft = L for all t ∈ S1. At times we will denote this open book by the pair
(Y, f). The surface F = Ft, for any t, is called the page of the open book. The
monodromy of an open book is given by the return map of a flow transverse
to the pages and meridional near the binding, which is an element μ ∈ Γs

g,
where g is the genus of the page F , and s is the number of components of
L = ∂F .
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Suppose we have a Lefschetz fibration f : X → D2 with bounded reg-
ular fiber F , and let p be a regular value in the interior of the base D2.
Composing f with the radial projection D2 \ {p} → ∂D2 we obtain an open
book decomposition on ∂X with binding ∂f−1(p). Identifying f−1(p) ∼= F ,
we can write

∂X = (∂F × D
2) ∪ f−1(∂D2) .

Thus we view ∂F × D2 as the tubular neighborhood of the binding L =
∂f−1(p), and the fibers over ∂D2 as its truncated pages. The monodromy of
this open book is prescribed by that of the fibration. Any open book whose
monodromy can be written as a product of positive Dehn twists can be filled
by a Lefschetz fibration over the 2-disk. In this case, we say that the open
book (L, f |∂X\L) bounds, or is induced by, the Lefschetz fibration (X, f).

There is an elementary modification of these structures: let f : X → D2

be a Lefschetz fibration with bounded regular fiber F . Attach a 1–handle
to ∂F to obtain F ′, and then attach a Lefschetz 2–handle along an em-
bedded loop in F ′ that goes over the new 1–handle exactly once. This is
called a positive stabilization of f . A Lefschetz handle is attached with
framing −1 with respect to the fiber, and therefore it introduces a pos-
itive Dehn twist on F ′. If the focus is on the 3–manifold, one can for-
get the bounding 4–manifold and view all the handle attachments in the
3-manifold. Either way, stabilizations correspond to adding canceling han-
dle pairs, so diffeomorphism types of the underlying 4− and 3-manifolds do
not change, whereas the Lefschetz fibration and the open book decompo-
sition change in the obvious way. It turns out that stabilizations preserve
more than the underlying topology, as we will discuss shortly.

A contact structure ξ on a 3–manifold Y is said to be supported by an
open book B = (L, f) if ξ is isotopic to a contact structure given by a 1–form
α satisfying α > 0 on positively oriented tangents to L and dα is a positive
volume form on every page. When this holds, we say that the open book
(L, f) is compatible with the contact structure ξ on Y . Giroux proved the
following remarkable theorem regarding compatibility of open books and
contact structures:

Theorem 2.2 (Giroux [12]). Let M be a closed oriented 3–manifold.
Then there is a one-to-one correspondence between oriented contact struc-
tures on M up to isotopy and open book decompositions of M up to positive
stabilizations and isotopy.

We will call a Lefschetz fibration allowable, if all the fibers have non-
empty boundaries, and if no fiber contains a closed embedded surface. The
following theorem brings all these structures together:
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Theorem 2.3 (Loi–Piergallini [18], also see Akbulut–Ozbagci [1]).
An oriented compact 4–manifold with boundary is a Stein surface, up to
orientation-preserving diffeomorphisms, if and only if it admits an allowable
Lefschetz fibration over the 2-disk. Moreover, any two allowable Lefschetz fi-
brations over the 2-disk bounded by the same open book carry Stein structures
which fill the same contact structure induced by the boundary open book.

As shown in [3], one direction of the theorem generalizes to the case of
allowable Lefschetz fibrations over arbitrary orientable surfaces with non-
empty boundaries.

3. Arbitrarily long positive factorizations

In this section we prove Theorem 1.1. Here is the reader’s guide to our proof:

• In Sections 3.1 and 3.2 we study a particular map of a surface of
genus 2g + 1 with two boundary components which exchanges two
genus g subsurfaces. Using a branched cover construction we show
that these maps, which we call swap maps, can be realized as lifts of
quasipositive braids. Proposition 3.1 sums up some properties of the
swap map that are immediate from this very description. Swap maps
will be the building blocks of the monodromies we will construct in
the later subsections.

• In Section 3.3 we picture a genus 11 surface F with two boundary
components as a union of four copies, F1, . . . , F4, of a genus two surface
with two boundary components, attached to two 4-holed disks D1

and D2; see Figure 6. Here we discuss a collection of swap maps as
mapping classes acting on F , exchanging pairs Fi and Fj , along with
their interactions with mapping classes supported on these genus two
subsurfaces (Proposition 3.2).

• In Section 3.4 we review a particular subfamily of relations in Γ2
2, which

were discovered in [6], involving a single (varying) commutator and
having unbounded length as products of positive Dehn twists. We will
then show how to encode this family of commutators on a fixed genus
2 subsurface of Σ2

11 by forming a particular product of swap maps.
This will give us the first example of a map Φ ∈ Γ2

11 with arbitrarily
long positive factorizations; see Theorem 3.4. We also observe that the
same construction hands us similar mapping classes in every Γ2

g with
g = 11 + 4l, l ∈ N.



Topology of symplectic 4-manifolds and Stein fillings 181

• Lastly, in Sections 3.5 and 3.6, we show how to extend the above fac-
torizations of Φ to boundary multitwist in Σ2

11. For this, we introduce
a simple calculus of the swap maps acting on the genus 11 surface F
as before, which includes the relations satisfied by the braid group; see
Proposition 3.6. In particular, we see that it will be enough to under-
stand how the swap maps identify different subsurfaces Fi by keeping
track of how they act as framed 4-braids on the base surfaces D1 and
D2 of F ∼= Σ2

11. We then extend these results to higher genera mapping
classes, which completes the proof of our main theorem.

3.1. The Garside half-twist

The Garside half-twist is a braid Δ which looks like a half-twist placed in
a ribbon: one aligns all the strands of a braid on a ribbon and twists the
ribbon halfway around to the right. The resulting braid is shown in Figure 1.

Figure 1: The Garside half-twist Δ .

The n-stranded Garside half-twist has a standard braid presentation
with bi the braid half-twist that exchanges the i and i+ 1 strands. Reading
the braid from right to left, in Bn we have

Δ = (b1 · b2 · · · bn−2 · bn−1)(b1 · b2 · · · bn−2) · · · (b1 · b2)(b1).(2)

If we think of Δ as acting on the unit disk D2 with marked points
p1, . . . , pn sitting on the x-axis, then we have a geometric picture of the
map: Δ is a rigid, 180◦ counter-clockwise rotation of the disk, followed by
an isotopy supported near the boundary which slides the boundary back in
the clockwise direction to where it started. See Figure 2.

We want to lift Δ along with its factorization and geometric description
to the 2-fold branched cover S = Σ2

g of the 2-disk, to an involution Δ̃ on S,
so we assume n = 2g + 2.

Geometrically, by aligning S in R3 above D2 so that the branched cover
involution on S is a rotation about a line parallel to the x-axis, we can see
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1 2 3 n-1 na b 123n-1na b

Figure 2:

Δ̃ as a 180◦ right-handed rotation about the z-axis, again followed by a
left-handed slide of the top boundary circle and a right-handed slide of the
bottom boundary circle (as viewed and acted from above the xy-plane) back
to where they started. (Because the orientations are opposed when we view
the branched covering from the top or the bottom, these boundary rotations
go in opposite directions, as shown in Figure 3.)

Figure 3: The action of the Garside half-twist on the double branched cover-
ing surface S = Σ2

g, illustrated for g = 5. Notice the two disjoint subsurfaces
of S which are both diffeomorphic to Σ2

2 and are exchanged under this action.

The map Δ̃ then also has a positive Dehn twist factorization by lifting
the braid factorization of Δ. If we let ti denote the lift of bi then

Δ̃ = (t1t2 · · · t2gt2g+1)(t1t2 · · · t2g) · · · (t1t2)(t1).(3)

It is important to note that the square of Δ is a positive full braid twist,
which is isotopic to a positive Dehn twist about a boundary parallel cir-
cle on D2 enclosing all the marked points. Because n is even, this positive
Dehn twist lifts to two positive Dehn twists in S, one about each boundary
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component. Calling this boundary multitwist M∂ , we have an equivalence

Δ̃2 � M∂

up to isotopy in S (fixing ∂S).

3.2. Swap maps

From here on we assume that the genus g of S is odd and write g = 2g′ + 1.
We will work with a decomposition of S as two disjoint copies of Σ2

g′ , denoted
F1 and F2, glued along two pairs of pants. (See Figure 3 for g = 5.) As before,
we will use diffeomorphisms and factorizations coming as lifts of braids and
so we describe this surface as a double branched covering of the 2-disk.
Let D2 be the unit disk and arrange n = 2g + 2 = 4g′ + 4 marked points
p1, . . . , pn along the x-axis. Collect {p1, . . . , p2g′+2} in a smaller disk R1 and
{p2g′+3, . . . , p4g′+4} in R2 so that D \ (R1 ∪R2) is a pair of pants. We can
now see S as the 2-fold branched cover of D2 branched over {p1, . . . , pn},
where R1 and R2 lift to the two disjoint genus g′ subsurfaces, F1 and F2

resp., and D2 \ (R1 ∪R2) lifts to the two disjoint pairs of pants connecting
them.

We will need a slight modification of Δ̃ as follows.2 For S, F1 and F2 as
above, let Mi be the positive Dehn multitwist about the boundary of Fi, for
i = 1, 2. The swap map is then an orientation-preserving self-diffeomorphism
ρ of S defined by

ρ �Δ̃ ·M−1
1 ·M−1

2 ,(4)

which, under an identification of S with Σ2
g descends to an element of the

mapping class group Γ2
g. Later we will impose some additional restrictions

on the map ρ as a diffeomorphism, though we never completely specify
the diffeomorphism. These restrictions serve only to make our explanations
easier.

The definition of ρ (and Δ̃) now allows us to conclude:

2We use ρ rather than Δ̃ mainly because it facilitates our arguments in the last
subsection. It also happens to have a shorter positive factorization than Δ̃.
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Proposition 3.1 (cf. Section 7.4 [5]). The swap map ρ can be factorized
as a product of g + 1 (= 2g′ + 2) positive Dehn twists:

ρ = tγ6
· · · tγ1

where the γi are shown in Figure 5.

Proof. Under the double branched covering, each quasipositive braid half-
twist along an arc between two branch points lifts to a positive Dehn twist
along a curve that covers the arc. The claim follows by observing that ρ is a
lift of a braid which admits a quasipositive factorization. The particular fac-
torization is shown in Figure 4. The arcs αi, i = 1, . . . , 6 in this factorization
and their lifts γi are shown in Figure 5. �

Δ
Δ−2

1

Δ−2
2

�
�

Figure 4: A quasipositive factorization of the 4g′ + 4 stranded braid Δ ·
T−11 · T−12 , which lifts to ρ. Here T1 is a full negative twist along the first
2g + 2′-strands in R1 and T2 in R2. In the first diagram we see the obvious
description of the braid Δ · T−11 · T−12 , in the second we have a ribbon picture
for it after canceling half-twists along R1 and R2. The final image gives the
quasipositive factorization explicitly.
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γ1
γ2γ3

γ4
γ5γ6

α3

Figure 5: The left gives the positive factorization of ρ. The right describes
an arc (α3 is shown) so that a half twist along the arc gives a quasipositive
factor of the factorization shown in Figure 4. This half twist lifts to the Dehn
twist along γ3 (in red) on the left. Using these Dehn twists, ρ = tγ6

· · · tγ1
.

(Cf. [5].)

3.3. Swapping subsurfaces of a genus 11 surface

Let F be a surface diffeomorphic to Σ2
11 and F1, . . . , F4 be disjoint subsur-

faces in F as shown in Figure 6, each diffeomorphic to Σ2
2. This decomposes

F into F1, . . . , F4 and two base surfaces D1 and D2, each a 2-disk with 4
holes, such that each Fi has one boundary component glued to the boundary
of a hole in D1 and the other boundary component to one in D2. The outer
boundaries of D1 and D2 make up the two boundary components of F .

Additionally, there are genus 5 subsurfaces Fij , 1 ≤ i < j ≤ 4, each dif-
feomorphic to Σ2

5, obtained by taking the union of Fi and Fj and strips
connecting the two along the arcs indicated in Figure 6. Each Fij is deter-
mined by a pair of holes and a proper arc aij connecting them in each Di.

In order to keep track of these identifications, we choose a chain of circles
which cut Fi into two annuli, as well as an arc, properly embedded in Fi,
which connects the two boundary components through one of the chain. We
denote these arcs in Fi by ai, and the chain of circles by ci1, . . . , c

i
5 (right to

left in Figure 6, so that ai crosses ci5). These arcs and circles are shown in
Figure 6, along with the strips which connect Fi and Fj . As this gives an
arc decomposition of Fi, any diffeomorphism of Fi is determined by where it
sends this collection. We choose these arcs and circles by considering Fi as
the double branched cover of D2 as before, and then lifting the arcs that lay
on the same axis as the branch points in D2 along with the arc connecting
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Figure 6: The genus 11 surface F , containing genus 2 subsurfaces Fi, i =
1, . . . , 4 and genus 5 subsurfaces Fij ,1 ≤ i < j ≤ 4, where F, Fi, Fij all have
two boundary components. There is a collection of decorated circles on each
Fi which we will use to characterize the action of the swap maps on F .

p1 to the edge of the disk as in Figure 2. Moreover, the two chains in Fi

and Fj along with the proper arcs ai, aj , and aij in Fij give a chain which
identifies Fij with our model surface S from the previous subsection. This
identification sends Fi to F1 and Fj to F2 and sends the chains indicated in
Figure 6 to the chain shown in Figure 3.

Using the chains to identify Fij with the surface S, we can push forward

the diffeomorphisms Δ̃ and ρ to a map on Fij which swaps the two subsur-

faces Fi and Fj . Let Δ̃ij and ρij denote these maps. By construction, each

of Δ̃ij and ρij behaves nicely with respect to the chains in Fi and Fj . In
particular, the identifications of subsurfaces Fij with the subsurfaces F1 and
F2 of S agree for Fi and Fj for all i, j. Thus, for example:

• ρij and Δ̃ij send the curve cik to cjk and similarly cjk to cik

• ρ23ρ12 sends the subsurface F1 to the subsurface F3 in the same way
ρ13 does. That is,

ρ23ρ12
∣∣
F1

=ρ13
∣∣
F1
.(5)

Under the above identifications of subsurfaces Fi, for any mapping class
element A ∈ Γ2

2, let us write Ai for the mapping class element in Γ2
11 acting
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as A on the subsurface Fi and as identity on the rest of F . We then denote
by ρAij , the map AiρijA

−1
i . The map ρAij also exchanges Fi and Fj but it

changes the identifications: ρAij maps Fi to Fj under the map A−1 instead.

Proposition 3.2. For any A ∈ Γ2
2, the maps ρij satisfy the following rela-

tions in Γ2
11

1) Aiρij = ρijAj, Ajρij = ρijAi

2) AiρijA
−1
i = ρAij = A−1j ρijAj

Proof. These properties are obvious from the standard conjugation action
of mapping class elements. �

3.4. Arbitrarily long positive factorizations: simple examples

The goal of this section is to construct the desired monodromies.

d1

d2

δ1

δ2

c1 c3

c2 c4

Figure 7: The curves of the commutator relation.

Lemma 3.3. Let c1, c2, c3, d1, d2 be the simple closed curves on Σ2
2 shown in

Figure 7, where δ1, δ2 are the two boundary curves. For any positive integer
m, the following relation holds in Γ2

2:

1 = TmC(m) ,

where

T = tc2tc3(tc1tc2tc3)
2tc1tc2



188 R. İ. Baykur and J. Van Horn-Morris

is a product of 10 positive Dehn twists, and

C(m) = [ψ−1, tmc1t
−m
d1

]

is a commutator such that ψ is any orientation-preserving self-
diffeomorphism of Σ2

2 compactly supported in the interior of Σ2
2 and mapping

the pair (c1, d1) to (d2, c3). In particular, the above relation does not involve
any twists along δ1 or δ2.

The above family of relations is a slight modification of one of the many
discovered in [6], which express fixed number of commutators and fixed pow-
ers of boundary parallel Dehn twists as arbitrarily long products of positive
Dehn twists. In a way, we have chosen the simplest one: these relations con-
sist of only one commutator and are supported in a genus two surface —
realizing the smallest possible numbers (of the power of a boundary parallel
Dehn twist, fiber genus and base genus, respectively) for such a relation to
hold [6]. Moreover, it does not involve any Dehn twists along δ1 and δ2,
allowing us to extend the mapping classes supported on these pieces in a
rather straightforward way. Lastly, the proof of this particular relation is
the easiest among all the others in [6]. We include the proof below.

Proof. The standard chain relation on Σ2
2 applied to c1, c2, c3 gives

(tc1tc2tc3)
4 = tdl

td2
.

Multiplying both sides with t−1c1 from the left and with t−1c3 from the right
we get:

(tc2tc3) (tc1tc2tc3)
2 (tc1tc2) = t−1c1 td1

td2
t−1c3 .(6)

Let T denote the left hand side of the above equation, and take the n-th
power of both sides.

Since c1, c3, d1, d2 are all pairwise disjoint, Dehn twists along them all
commute with each other, allowing us to rewrite the m-th power of the right
hand side as

t−mc1 tmd1
tmd2

t−mc3 = t−mc1 tmd1
tmψ(c1)t

m
ψ(d1)

= t−mc1 tmd1
ψ((t−mc1 tmd1

)−1)ψ−1 = [ψ−1, tmc1t
−m
d1

],

where ψ is any self-diffeomorphism of Σ2
2 as described in the statement

of the lemma. Such ψ exists, since the surface cut along by c1 and d1 is
homeomorphic to the surface cut along by c2 and d2. �
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We can now prove:

Theorem 3.4. Let Φ = ρ24ρ13ρ34ρ23ρ12 ∈ Γ2
11. For each m ∈ N, Φ can be

written as a product of 10m+ 30 positive Dehn twists. Moreover, for each
l ∈ N there is an element Φl ∈ Γ2

g, g = 11 + 4l, which can be written as a
product of 10m+ 5(2l + 6) positive Dehn twists.

Proof. Let us consider the surface F ∼= Σ2
11 with the four subsurfaces Fi

as before. Using Proposition 3.2 repeatedly, we conclude that the following
relation holds in Γ2

11:

(B−11 A−11 B1)(B
−1
2 A−12 )(B−13 )(ρB24ρ

A
13ρ34ρ23ρ12)(B3)(A2B2)(B

−1
1 A1B1)

= (B−11 A−11 B1A1)ρ24ρ13ρ34ρ23ρ12

= [A1, B1]ρ24ρ13ρ34ρ23ρ12

Now fix a non-negative integer m and let A := ψ−1, B := tmc1t
−m
d1

, and T
be as in Lemma 3.3. The following gives a factorization of Φ:

Tm
1 (B−11 A−11 B1)(B

−1
2 A−12 )(B−13 )(ρB24ρ

A
13ρ34ρ23ρ12)(B3)(A2B2)(B

−1
1 A1B1)

= Tm
1 [A1, B1]ρ24ρ13ρ34ρ23ρ12

= Tm
1 C(m)1ρ24ρ13ρ34ρ23ρ12

= ρ24ρ13ρ34ρ23ρ12

= Φ

The word

Tm
1 (B−11 A−11 B1)(B

−1
2 A−12 )(B−13 )(ρB24ρ

A
13ρ34ρ23ρ12)(B3)(A2B2)(B

−1
1 A1B1)

is itself a positive factorization of Φ; T is already a product of positive Dehn
twists, whereas each ρij has a positive factorization by Proposition 3.1, and
hence so do each of its conjugates.

By Equation 4 and Proposition 3.1, each instance of ρij can be written
as a product of 6 positive Dehn twists. By Lemma 3.3, T is a product of 10
positive Dehn twists. Thus

Tm(B−11 A−11 B1)(B
−1
2 A−12 )(B−13 )(ρB24ρ

A
13ρ34ρ23ρ12)(B3)(A2B2)(B

−1
1 A1B1)

gives a positive Dehn twist factorization of Φ of the stated length, concluding
our proof of the first statement.
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To obtain Φl ∈ Γ2
11+4l, we first replace each Fi with a surface F ′i ∼= Σ2

2+l

connecting an inner hole of D1 to that of D2 so as to get a surface F ′ ∼=
Σ2
11+4l with subsurfaces F ′i ∼= Σ2

2+l, for i = 1, . . . , 4. Note that extending Σ2
2

by repeatedly increasing its genus while keeping track of a preferred genus 2
subsurface, we obtain the same family of relations in Γ2

2+l as in Lemma 3.3
involving the same mapping classes, now understood to be mapping classes
acting on Σ2

2+l which restrict to identity over the complement of the preferred
subsurface. (The chains on these subsurfaces are extended in the obvious
way as well.) We can then define the swap maps ρ′ij in a similar fashion, still
guaranteeing that while exchanging any pair of subsurfaces F ′i and F ′j , they
exchange the subsurfaces Fi and Fj as well. Each ρ′ij can be written as a
product of 2l + 6 positive Dehn twists. Hence, we can run the above proof
mutatis mutandis to produce the positive factorizations of Φl. �

3.5. Swap maps via framed braids

Recall that B∗n denotes the framed n-stranded braid group, which we think
of as the mapping class group of a disk with n holes, each with a marked
point on the boundary, where we require the maps and isotopies to preserve
the set of interior boundaries and their markings. There is a standard split-
ting of B∗n as Bn × Zn. We can associate an n-vector of integral framings
to any framed braid, b: allow an ambient isotopy of D2, fixing ∂D2, sending
b back to the identity, which then moves the interior boundary circles back
to where they were before the action of b. For each boundary circle, we then
count the number of clockwise rotations that boundary makes in its move-
ment under this isotopy. One could just as easily count the counterclockwise
rotations made by b itself considered as the above movie with time reversed.
In addition to absolute framings as integers, we will often keep track of this
information by using arcs connecting each interior boundary circle to the
boundary of D2; see for instance Figures 9 and 10.

Once again, consider the genus 11 surface F and its genus 2 subsurfaces
F1, . . . , F4 as in Figure 6, and the genus 5 subsurfaces Fij , 1 ≤ i < j ≤ 4
obtained by taking the union of Fi and Fj and strips connecting the two
along the arcs indicated in Figure 6.

Each Fij is determined by a pair of holes and a proper arc aij connecting
them in each Di. To make subsequent descriptions simpler, we choose our
arcs aij to be symmetric under an orientation preserving identification of D1

with D2 which preserves the interior boundary identifications. (As drawn,
this symmetry is induced by the hyperelliptic involution evident in Figure 6.)
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F1

a1

c15

c14

c13

c12
c11

f1

F2

a12

a2

c25

c24

c23

c22
c21

f2

Figure 8: Half of the genus 11 surface F ; the genus 5 subsurface F12 and
subsurfaces F1 and F2 with their chains and framing arcs.

As in Section 3.3 we use a collection of arcs and circles to keep track of
the surfaces Fi and the actions of the swap and Garside maps on them. In
addition to the previous collection, we choose a second arc f i in F i which
connect the two boundary components through the other end link of the
chain, ci1. We use f i to keep track of framing information and often write
f i for both the arc in Fi and its extension to a properly embedded arc in
F . These arcs and circles are shown in Figure 8 for the subsurface F12.
As before, we chose these arcs by considering Fi as the double branched
cover of D2, and then lifting the arcs that lay on the same axis as the
branch points in D2 along with the arcs connecting marked points p1 and
pn to the edge of the disk as in Figure 2. The collection of all circles cik,
i = 1, . . . , 4, k = 1, . . . , 5, and framing arcs fi, i = 1, . . . , 4 give an arc and
circle decomposition of the surface F (F cut along this union is a pair of
disks) and so any diffeomorphism of F is determined by how it acts on this
collection.

In order to completely control the behavior of the swap and Garside
maps, we choose Δ̃ij and ρij so that they exchange both the connecting and
framing arcs ai and f i with aj and f j in addition to exchanging the circles
c∗k. This characterizes how each Δ̃ij and ρij act on the union of subsurfaces
F1 ∪ · · · ∪ F4. To specify the maps, then, we need only to determine how
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they act on the base surfaces D1 and D2, preserving the boundaries and
fixing them pointwise up to permutation. Any such map is equivalent to
a framed 4-stranded braid. We give explicit descriptions of these braids in
Figures 9 and 10.

We sum up this discussion in the next lemma, which one should perhaps
treat as something closer to a mantra:

Lemma 3.5. Any composition of the maps Δ̃ij and ρij are determined by
their restriction to D1; that is, they are determined by their induced framed
4-stranded braid.

Proof. We characterized the maps Δ̃ij and ρij on F1 ∪ F2 ∪ F3 ∪ F4 by re-
quiring them to exchange the arc and circle chains of Fi and Fj and to fix

Fk for k �= i, j pointwise. Since Δ̃ij and ρij act the same on D2 as on D1,
we can then focus solely on D1. This allows us to consider the rest of the
map acting on D1, possibly exchanging boundary circles. Since we require
the maps preserve the framing arcs fi in Fi, they also preserve the markings
on the interior boundaries in D1, which are also the boundaries of Fi. Thus
on the complement of F1, . . . , F4, Δ̃ij and ρij act as framed 4-braids. �

With this lemma in hand, we can give visual descriptions of the maps
Δ̃ij and ρij as acting on D1. Figures 9 and 10 describe the maps Δ̃ij and
ρij respectively by their action on D1.

Δ̃12

F1

F2

F3

F4

F2

F1

F3

F4

Figure 9: The framed braid half-twist corresponding to Δ̃12 on D1.

The next proposition collects various properties of ρij acquired from well-
known properties of braids, along with properties in Section 3.3 regarding
their interactions with self-diffeomorphisms of subsurfaces, amounting to a
simple yet extremely helpful calculus of swap maps:
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ρ13

F1

F2

F3

F4

F3

F2

F1

F4

Figure 10: The framed braid half-twist corresponding to ρ13 on D1. Note,
this differs from the Garside half-twist Δ̃13 by negative Dehn twists about
the boundaries of F1 and F3 in D1 — this explains the framing difference
between the two maps Δ̃ij and ρij .

Proposition 3.6 (Properties of swap maps). For any A ∈ Γ2
2 the maps

ρij satisfy the following relations in Γ2
11

1) ρ12ρ23ρ12 = ρ23ρ12ρ23

2) ρ23ρ34ρ23 = ρ34ρ23ρ34

3) ρ13 = ρ−112 ρ23ρ12 = ρ23ρ12ρ
−1
23

4) ρ24 = ρ−123 ρ34ρ23 = ρ34ρ23ρ
−1
34

5) ρijρkl = ρklρij if {i, j} ∩ {k, l} = ∅
6) Aiρij = ρijAj, Ajρij = ρijAi

7) AiρijA
−1
i = ρAij = A−1j ρijAj

Proof. For any one of the first five relations, observe that each diffeomor-
phism acts the same on the collection of parametrized subsurfaces F1, F2,
F3, F4 (in fact with the same induced framed braid on the base disk D1), so
all follow from the properties of the associated 4-stranded braid on D1. �

3.6. Completing the proof of Theorem 1.1

We will now prove our main theorem, by extending our result in Theo-
rem 3.4.
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Lemma 3.7. The maps ρij satisfy the following relations in Γ2
11:

(ρ34ρ23ρ12)
4 = M∂M

−4
4 M−4

3 M−4
2 M−4

1

Proof. Recalling that ρij = Δ̃ijM
−1
j M−1

i , we will proceed by checking the

corresponding factorization for Δ̃ij . Given Proposition 3.6, it is easy to see

that (Δ̃34Δ̃23Δ̃12)
4 acts as a positive full twist on D1. (This is just the usual

factorization of a full twist on 4-strands into the standard braid generators.)
What remains is to determine how it acts on the framings of the inner
boundary components.

To check the framings on the boundary components of D1, we follow
through the product as in Figures 9 and 10. Let us denote the marked
inner boundary component of D1 connected to Fi by ∂i, for i = 1, . . . , 4.
As demonstrated in Figure 9, Δ̃ij exchanges ∂i and ∂j followed by a full

right-handed twist to ∂j , where i < j. Thus Δ̃ij sends ∂j to ∂i with framing

0 and sends ∂i to ∂j with framing +1. In the composition (Δ̃34Δ̃23Δ̃12)
4,

each “strand” ∂i shows up as the top circle involved in a Δ̃ map exchange
exactly three times and as the bottom circle exactly three times as well.
Thus (Δ̃34Δ̃23Δ̃12)

4 acts as a full positive twist (along the outer boundary)
and with framing +3 on each inner boundary component.

Now the boundary twist M∂ acts by a full twist but with framing +1 on
each inner boundary component. So

(Δ̃34Δ̃23Δ̃12)
4 = M∂M

2
4M

2
3M

2
2M

2
1

in Γ2
11, once again under a fixed identification F ∼= Σ2

11.
Since ρij = Δ̃ijM

−1
j M−1

i , we conclude that (ρ34ρ23ρ12)
4 also acts as a

full braid twist but with framing −3 on each inner boundary component
instead — recall that each strand shows up six times in total. So in Γ2

11 we
have

(ρ34ρ23ρ12)
4 = M∂M

−4
4 M−4

3 M−4
2 M−4

1 . �
We also note the following simple fact:

Lemma 3.8 (Inserting equals appending). Let Φ be any mapping class,
and W be a word in positive Dehn twists, so that Φ = W describes a positive
factorization of Φ. If Φ′ is a mapping class with Φ′ = W ′, where W ′ is a word
obtained by inserting positive Dehn twists into W , then there is a positive
word W̃ so that appending W̃ to W gives W ′. That is, we can also write:

W ′ = W̃W
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Proof. Suppose we split W as W2 ·W1, a product of two words and that we
insert a letter w in between. Then W2wW1 = (W2wW

−1
2 )(W2 ·W1) = w̃W

in the mapping class group, where w̃ is again a positive Dehn twist. �
We can now complete the proof of our main theorem.

Proof of Theorem 1.1. By Theorem 3.4 we know there are arbitrarily long
factorizations of the map Φ. To prove Theorem 1.1, we extend these factor-
izations to a factorization of the single positive Dehn multitwist, M∂ , about
the boundary of the genus 11 surface F .

Recall that Φ = ρ24ρ13ρ34ρ23ρ12, and given any m there is a factorization
of Φ:

Φ = Tm
1 (B−11 A−11 B1)(B

−1
2 A−12 )(B−13 )

(ρB24ρ
A
13ρ34ρ23ρ12)(B3)(A2B2)(B

−1
1 A1B1),

where the right hand side can be expressed as a product of 10m+ 30 pos-
itive Dehn twists. Here A, B, T are mapping classes in Γ2

2 coming from
Lemma 3.3. From Proposition 3.6 we have ρ13 = ρ−112 ρ23ρ12 and ρ24 =
ρ−123 ρ34ρ23. So

Φ = ρ−123 ρ34ρ23ρ
−1
12 ρ23ρ12ρ34ρ23ρ12

Now we can insert copies of ρij into this factorization to get the word

(ρ34ρ23ρ12ρ23)ρ
−1
23 ρ34ρ23(ρ

2
12)ρ

−1
12 (ρ34)ρ23ρ12ρ34ρ23ρ12 = (ρ34ρ23ρ12)

4.

Thus by Lemma 3.8, there is some positive word W so that

M∂M
−4
4 M−4

3 M−4
2 M−4

1 = WΦ

and hence:

(7) M∂ = WΦM4
4M

4
3M

4
2M

4
1

By replacing Φ by the aforementioned positive factorizations of length
10m+ 30 we produce arbitrarily long positive factorizations of M∂ .

Now, a similar argument shows how to extend these factorizations to
the boundary twist on any higher genus surface. Let F ′ be a genus g surface
(g > 11) with two boundary components and let F be a non-separating
genus 11 subsurface with two boundary components. Then there is a length
2g + 1 chain for F ′ which contains a chain for F as a subchain. In fact, we
can assume the chain for F consists of standard circles c1, . . . , c23. Letting ti
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be the positive Dehn twist about ci, the standard chain relations on F and
F ′ are M∂ = (t1 · · · t23)24 and M ′

∂ = (t1 · · · t2g+1)
2g+2, where M∂ and M ′

∂ are
the boundary multitwists of F and F ′, resp. We can insert instances of ti into
the word (t1 · · · t23)24 to get (t1 · · · t2g+1)

2g+2 and so again by Lemma 3.8,
there is some positive word W so that M ′

∂ = WM∂ . By replacing M∂ with
the previous factorizations, we get factorizations ofM ′

∂ of unbounded length.
�

Remark 3.9. It is possible through a more involved argument to construct
analogues of swap maps on a surface Σ1

8, this time made of four copies of Σ1
2

and a single 2-disk with four holes, exchanging the different copies of Σ1
2. An

indirect construction of such a map can be seen in Section 7.4 of [5]. This
changes which framings can (or should) be associated to the new swap map
for its interpretation via framed 4-braids. It is then possible to obtain both
Theorem 3.4 and Theorem 1.1 for g = 8 and higher, though the technical
details are more complicated.

4. Applications to symplectic and contact topology

We will now discuss various results on the topology of closed symplectic
4-manifolds and contact 3-manifolds, all originating with Theorem 1.1. We
begin by proving Theorems 1.2 and 1.3 given in the introduction:

Proof of Theorem 1.2. Any relation of the form

tδ = A product of N positive Dehn twists along non-separating curves

in the mapping class group Γ1
g gives rise to a relatively minimal genus g Lef-

schetz fibration (X, f) over the 2-sphere with a section of self-intersection
−1. By Theorem 1.1 we have such a family of relations prescribing a fam-
ily of relatively minimal Lefschetz fibrations {(Xm, fm)|m ∈ N}. The Euler
characteristics of a fixed genus g Lefschetz fibration (X, f) is given by

e(X) = 4− 4g +N ,

and since the number of Dehn twists in (Xm, fm) is strictly increasing in m,
the Euler characteristic is strictly increasing as well. Blowing down one of
the distinguished −1 sections of the above families of Lefschetz fibrations,
we obtain the promised Lefschetz pencils in the theorem. �
Proof of Theorem 1.3. Let (Yk, fk) be the family of genus g open books with
two boundary components given by iterating k times the monodromies we
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obtain in the previous section. Corresponding to the arbitrarily long pos-
itive factorization (parametrized by m) of each open book, there exists a
Lefschetz fibration (Xk,m, Fk,m) with regular fiber F ∼= Σ2

g and base D2.
Since all the vanishing cycles are non-separating, each (Xk,m, Fk,m) is an
allowable Lefschetz fibration. Lastly, since the monodromy of the open book
fk is a product of boundary twists, we easily see that Yk is the Seifert fibered
3-manifold with base genus g and two singular fibers of degree k, which im-
plies that the 3-manifolds Yk, and therefore the family of contact 3-manifolds
{(Yk, ξk) |k ≥ 0} we obtain from the contact structures induced by the open
books in hand are all distinct. Capping off one of the boundary components
yields the promised families with connected binding. �

Remark 4.1. A few comments about the topology of the fillings we have
produced above: Recall that b1 of the page of the open book provides an
upper bound on that of the Stein fillings of a contact 3-manifold. By the
pigeonhole principle, we can therefore take an infinite subfamily of our
fillings which have the same first Betti number. Secondly, all but finitely
many members of any family of closed symplectic 4-manifolds or Stein fill-
ings satisfying the statements of the above theorems can be seen to have
b+ > 1. This is immediate once we invoke the following theorem from [25]:
For any Stein filling (X, J) of a fixed contact 3-manifold (Y, ξ), there is
a lower bound for the sum 2e(X) + 3σ(X) which only depends on (Y, ξ).
That is 4− 4b1(X) + 5b+(X)− b−(X) is bounded from below, and since
|b1(X)| ≤ 2g − 2, large e(X) implies large b+(X). (For closed symplectic 4-
manifolds, we take (Y, ξ) to be the contact 3-manifold induced by the bound-
ary open book obtained after removing a regular fiber and a (−1)-section.)

Thus, we obtain a new proof of our earlier result in [3], albeit for much
more restricted families of contact 3-manifolds and without the extra feature
on signatures3:

Corollary 4.2. There are infinite families of contact 3-manifolds, where
each contact 3-manifold admits a Stein filling with arbitrarily large Euler
characteristic.

Proof. By Theorem 2.3 the total space of the allowable Lefschetz fibration
(Xk(m), fk(m)) we used in the proof of Theorem 1.3 above admits a Stein

3We are unable to reproduce the second part of Theorem 1.1 in [3] on signatures
of fillings, due to the significantly harder task of calculating the signatures of the
filling from the given monodromies when they are not seen to be hyperelliptic.
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structure inducing the same contact structure ξk compatible with the open
book on its boundary Yk, independent of m. Varying k we conclude the
proof. �

Although we see that there are vast families of contact 3-manifolds which
appear as counter-examples to Stipsicz’s conjecture on the boundedness of
the topology of Stein fillings [25], it is plausible that one can invoke Theo-
rem 1.1 to detect which ones can attain this boundedness property. A simple
invariant one can associate to any contact 3-manifold can be described as
follows: Any Φ ∈ Γ1

g can be factorized by Dehn twists, which are all positive
except for the boundary parallel twists. This can be easily seen by looking at
the homomorphism induced by capping off the boundary of Σ1

g, whose kernel
is generated by the boundary parallel Dehn twist tδ. Let bt(Φ) denote the
supremum of the powers of tδ among these “almost” positive factorizations.
Since any contact 3-manifold can be supported by an open book of genus
g ≥ 8 with connected binding, we can now define the boundary twisting
invariant bt of a contact 3-manifold (Y, ξ) as the supremum of all bt(Φ)
such that Φ is the monodromy of such an open book. It follows from [12]
and [18] that

bt : {Stein fillable contact 3-manifolds} → N ∪ {+∞}.

On the other hand, by Theorem 1.1 and the arguments applied in the proof
of Corollary 4.2 above, we conclude that

Corollary 4.3. If there is an upper bound on the Euler characteristics of
Stein fillings of a contact 3-manifold (Y, ξ), then bt(Y, ξ) = 0.

5. Final remarks

We finish with a few remarks and questions.

Further constructions.Our construction of the monodromies in the proofs
of Theorems 1.1 and 3.4 hinges on expressing a single commutator on a
genus g ≥ 2 surface with boundary as arbitrarily long products of positive
Dehn twists and no boundary parallel twists. As demonstrated in [3], there
are many other relations of this sort expressing a fixed number of commuta-
tors, say h many, as arbitrarily long products of positive Dehn twists and k
boundary parallel Dehn twists for any h ≥ 1 and 0 ≤ k ≤ 2h− 2. Using these
relations and a larger variety of swap maps (i.e. exchanging more than four
subsurfaces) instead, one can construct a larger collection of factorizations.
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Arbitrarily long positive factorizations in Γn
g . Our method of con-

structing arbitrarily long positive factorizations requires at least four sub-
surfaces which are translated to each other in a commutator fashion and a
relation supported in one of these subsurfaces expressing a commutator as
an arbitrarily long product of positive Dehn twists. As discussed above, the
latter requires the genus of each one of these subsurfaces to be at least two.
Although it is possible to avoid the extra genera incorporated into our con-
structions as sketched in Remark 3.9 above, we see that our current methods
do not allow us to derive similar factorizations on a surface with genus less
than eight. Finding other ways to produce arbitrarily long positive factor-
izations of mapping classes on surfaces of genus g < 8 would be interesting.
In general, it would be good to determine exactly for which pairs of inte-
gers g and n ≥ 1 is there an element in Γn

g with arbitrarily long positive
factorizations.

Update: Dalyan, Korkmaz and Pamuk improved our results in this paper to
obtain arbitrarily positive factorizations of of mapping classes for g ≥ 2 and
of boundary twist when g = 3, both of which are known to be the smallest
possible values. Further possible n values for each g are studied in [4].

Lefschetz fibrations over surfaces of positive genera. Generalizing
Smith’s question, one can ask for which fixed pairs of non-negative integers
g, h there exists an a priori upper bound on the Euler characteristic of a rel-
atively minimal genus g Lefschetz fibration over a genus h surface admitting
a maximal section, i.e. a section of maximal possible self-intersection −1 if
h = 0 and of 2h− 2 if h ≥ 1. When h ≥ 1, the answer is completely deter-
mined by Korkmaz, Monden, and the first author, who proved that there is
a bound if and only if g = 1 [6]. Combined with the results of this paper,
this question now remains open only for the pairs 3 ≤ g ≤ 7 and h = 0.

Stein fillings with bounded topology. As per our discussion that led to
Corollary 4.3 above, a curious question is the following: Does the vanishing
of the boundary twisting invariant bt (or any variant of it defined for smaller
genus open books as well) determine precisely which Stein fillable contact
3-manifolds have an a priori upper bound on the Euler characteristic of
its Stein fillings? (As seen from Theorem 3.4, there are mapping classes
other than boundary multitwists which also admit arbitrarily long positive
factorizations, suggesting that an affirmative answer to this question may
not be very likely.)
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202 R. İ. Baykur and J. Van Horn-Morris

Department of Mathematics and Statistics, University of Massachusetts

Amherst MA 01003-9305, USA

E-mail address: baykur@math.umass.edu

Department of Mathematical Sciences, The University of Arkansas

Fayetteville, AR 72703, USA

E-mail address: jvhm@uark.edu

Received August 28, 2013


