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Stein fillings of contact 3-manifolds

obtained as Legendrian surgeries

Amey Kaloti and Youlin Li

In this paper, we classify Stein fillings of an infinite family of con-
tact 3-manifolds up to diffeomorphism. Some contact 3-manifolds
in this family can be obtained by Legendrian surgeries on (S3, ξstd)
along certain Legendrian 2-bridge knots. We also classify Stein fill-
ings, up to symplectic deformation, of an infinite family of con-
tact 3-manifolds which can be obtained by Legendrian surgeries
on (S3, ξstd) along certain Legendrian twist knots. As a corollary,
we obtain a classification of Stein fillings of an infinite family of
contact hyperbolic 3-manifolds up to symplectic deformation.

1. Introduction

A Stein manifold is a complex manifold that admits a proper holomorphic
embedding into CN for some large integer N . According to [10], a Stein
manifold W admits an exhausting plurisubharmonic function ρ : W → R.
For any regular value c of ρ, the complex tangencies define a contact struc-
ture on the level set Mc := {x ∈ W |ρ(x) = c}. We call the manifold Wc :=
{x ∈ W |ρ(x) ≤ c} a Stein filling of the contact manifold Mc.

Given a contact 3-manifold (M, ξ), there are two natural questions one
can ask: Is (M, ξ) Stein fillable? and if yes, then is it possible to classify all
the Stein fillings of (M, ξ)?

The first question has been addressed in terms of open book decomposi-
tions. For example, in [8], Giroux gave a complete characterization of Stein
fillability in terms of open book decomposition, see also [1, 15].

The second question has been answered for some specific contact 3-
manifolds. Here we recall a few results in this direction. In [2], Eliashberg
showed that there is a unique Stein filling, up to symplectic deformation, of
S3 with the standard tight contact structure. In [23], Stipsicz showed that
there is a unique Stein filling, up to homeomorphism, of the Poincaré homol-
ogy sphere Σ(2, 3, 5) and the 3-torus T 3. In [27], Wendl showed that there
is a unique Stein filling, up to symplectomorphism, of the 3-torus T 3. In
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[17], McDuff showed that, for a universally tight contact structure, there is
a unique Stein filling of a lens space L(p, 1) (p �= 4), and there are two Stein
fillings of the lens space L(4, 1), up to diffeomorphism. In [14], Lisca classi-
fied the Stein fillings of universally tight lens spaces up to diffeomorphism.
In [20], Plamenevskaya and Van Horn-Morris showed that there is a unique
Stein filling, up to symplectic deformation, of L(p, 1) with a virtually over-
twisted tight contact structure. In [12], among other classes of manifolds,
the first author classified Stein fillings of virtually overtwisted tight contact
structures on the lens space L(pm+ 1,m) for p,m ≥ 1, up to symplectic
deformation. In [18, 19], Ohta and Ono classified the Stein fillings of some
links of simple singularities. In [21], Schönenberger showed that the Stein
fillings of some contact Seifert fibered spaces are unique up to diffeomor-
phism. In [22], Starkston gave finiteness results and some classifications, up
to diffeomorphism, of minimal strong symplectic fillings of certain contact
Seifert fibered spaces over S2.

In this paper, we classify the Stein fillings, up to diffeomorphism, or
up to symplectic deformation, for an infinite family of contact 3-manifolds
including an infinite number of contact hyperbolic 3-manifolds. This is the
first known classification result for any contact hyperbolic 3-manifolds.

These contact manifolds are supported by particular open books, which
we describe now. Let Σ be a compact planar surface with n+ p+ q + 1
boundary components c0, c1, . . . , cn+p+q as shown in Figure 1, where n, k,
p, q ≥ 1 and n ≥ k. Let Φ be a diffeomorphism which is the composition of
right handed Dehn twists written as

Φ = τm1

1 τm2

2 · · · τmn+q−1

n+q−1 τ
mn+q+1

n+q+1 · · · τmn+p+q

n+p+q τB1
τB2

,

where τi is the positive Dehn twist about a simple closed curve parallel to
the boundary component ci, mi ≥ 0, and τB1

, τB2
are positive Dehn twists

along the simple closed curves B1 and B2 shown in Figure 1.

Theorem 1.1. Let (M, ξ) be the contact 3-manifold supported by the open
book (Σ,Φ). Then the contact 3-manifold (M, ξ) admits a unique Stein filling
up to diffeomorphism.

The open book shown in Figure 1 covers a lot of interesting special cases.
We describe a few of them below. In (S3, ξstd), let L be a Legendrian twist
knot, K−2p, with Thurston-Bennequin invariant −1 and rotation number 0,
where 2p denotes the number of left-handed half twists. If p = 1, then it is a
right handed trefoil. Note that the maximal Thurston-Bennequin invariant
is 1 for the Legendrian twist knot K−2p at hand [5], and one stabilizes it
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Figure 1: A compact planar surface Σ with n+ q + p+ 1 boundary compo-
nents.

twice to obtain the Legendrian knot L and stabilize it further as in Fig-
ure 2. Let n, k ≥ 1 be two integers such that n ≥ k. Let Sn−k

+ Sk−1
− (L) be

the result of n− k positive stabilizations and k − 1 negative stabilizations
of L. Figure 2 depicts a Legendrian link in (S3, ξstd) one of whose compo-
nents is Sn−k

+ Sk−1
− (L). The other components are all Legendrian unknots

with Thurston-Bennequin invariant −1, pushed off mi times, where mi is a
non-negative integer for i = 1, . . . , k − 1, k + 1, . . . , n if k > 1 or n > k. Let
(M ′, ξ′) denote the contact structure obtained by performing Legendrian
surgery along the link given in Figure 2.

Corollary 1.2. The contact 3-manifold (M ′, ξ′) has a unique Stein filling
up to diffeomorphism.

Another application of the above observation is classifying Stein fillings
of manifolds obtained by Legendrian surgeries along some Legendrian 2-
bridge knots. Figure 4 depicts a 2-bridge knot B(p, q), where p, q are positive
integers. If q = 1, then it is the twist knot K−2p.
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mk+1 − 1 mk−1 − 1

mn − 1 m1 − 1

Figure 2: A Legendrian link one of whose components is a Legendrian twist
knot K−2p, where the box consists of 2p− 2 Legendrian tangle S’s which is
depicted below in Figure 3. There are k − 1 upward cusps of the Legendrian
K−2p each of which hooks mi − 1 Legendrian unknots for i = 1, . . . , k − 1.
There are n− k downward cusps of the Legendrian K−2p each of which
hooks mi − 1 Legendrian unknots for i = k + 1, . . . , n.

Figure 3: A Legendrian tangle S.

Corollary 1.3. There is a Legendrian 2-bridge knot B(p, q) with Thurston-
Bennequin invariant −1 and rotation number 0, such that the Legendrian
surgery on (S3, ξstd) along any of its stabilizations yields a contact 3-manifold
with unique Stein filling up to diffeomorphism.

In addition to classifying Stein fillings up to diffeomorphism, we can
classify Stein fillings of Legendrian surgeries along some Legendrian twist
knots up to symplectic deformation. Even though these manifolds admit
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−2q

−2p

Figure 4: A 2-bridge knot B(p, q) with p, q > 0. The boxes containing −2p
and −2q denote 2p and 2q negative half twists, respectively.

open books considered in Theorem 1.1, we include a separate proof here
because the notion of symplectic deformation is stronger than that of dif-
feomorphism.

Theorem 1.4. If L is a Legendrian twist knot K−2p with Thurston-
Bennequin invariant −1 and rotation number 0, then the Legendrian surgery
on (S3, ξstd) along any stabilization of L yields a contact 3-manifold with
unique Stein filling up to symplectic deformation equivalence.

If p > 1, then the twist knot K−2p is hyperbolic. By the hyperbolic Dehn
surgery theorem in [25], Legendrian surgery on (S3, ξstd) along a Legendrian
hyperbolic twist knot with sufficiently many stabilizations yields a contact
hyperbolic 3-manifold. So, immediately, we have

Corollary 1.5. There are infinitely many contact hyperbolic 3-manifolds
each of which admits a unique Stein filling up to symplectic deformation
equivalence.

Rest of the paper is organized as follows. In Section 2 we recall some
basic notions from mapping class groups and contact geometry. In Section 3
we give proofs of all our results.
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2. Background

In this section, we recall some basic notions from mapping class groups and
give an explicit presentation of the planar mapping class groups to be used
throughout. We also describe a technique used to understand surgeries along
Legendrian knots through open books.

2.1. Planar mapping class group

Let Dn denote a sphere with n+ 1 open disks removed. We label the bound-
ary components of Dn as c0, c1, . . . , cn. By fixing an outer boundary com-
ponent, denoted by c0, we can embed Dn in R2. The mapping class group
of Dn is a group of self diffeomorphisms of Dn up to isotopy such that each
diffeomorphism fixes the boundary pointwise. We will denote the mapping
class group by Map(Dn, ∂Dn) and will call it planar mapping class group. It
is a well known fact that the mapping class group of any surface is finitely
presented, see [6]. We use a particular presentation of the mapping class
group of a planar surface due to Margalit and McCommand, [16]. We briefly
describe their presentation.

For this presentation, we assume that the boundary components are
arranged at vertices of a regular n-gon. We call a curve convex, if it is isotopic
to the boundary of a convex hull of a collection of boundary components. A
Dehn twist about a convex curve is called convex Dehn twist. According to
[16], mapping class group of Dn is generated by convex twists. The relations
are given by

1) τAτB = τBτA if and only if A is disjoint from B. Here A and B are
simple closed curves.

2) τAτBτCτA∪B∪C = τA∪BτB∪CτA∪C , where A,B, C are disjoint collections
of boundary components and Dehn twists are convex Dehn twist about
them. In addition, we require that the boundary components are or-
dered such that the cyclic clockwise ordering of boundary components
in A followed by those in B followed by those in C induces the cyclic
clockwise ordering of boundary components in A ∪ B ∪ C.
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Now we define homomorphisms from Map(Dn, ∂Dn) to Z, which de-
fine multiplicities associated to Dehn twists. Similar homomorphisms were
defined in [20]. Recall that Map(D2, ∂D2) is isomorphic to Z3 which is
generated by Dehn twists about each of the boundary components. Let
Φ ∈ Map(Dn, ∂Dn) be a word written as product of positive Dehn twists.
Let ci and cj be any boundary components in Dn other than c0.

Definition 2.1 (Joint Multiplicity). Capping off all the boundary com-
ponents of Dn except ci, cj , c0 with disks, we obtain a map to Z which just
counts the number of Dehn twists about the curve parallel to the outer
boundary c0. We call this the joint multiplicity of boundary components i
and j and denote it by Mi,j(Φ).

Definition 2.2 (Mutiplicity). Cap off all the holes except the bound-
ary components ci and c0. This induces a map from Map(Dn, ∂Dn) to
Map(D1, ∂D1) ∼= Z and the map counts the Dehn twists about the boundary
parallel curve. We call this the multiplicity of the boundary component ci.
Denote it by Mi(Φ).

2.2. Open book decompositions, Lefschetz fibrations and
Stein fillings

We recall briefly notion of open book decompositions. Given a closed oriented
3-manifold M , an embedded open book decomposition of M is a pair (B, π)
where

• B is an oriented link in M called the binding of the open book decom-
position and,

• π : M \B → S1 is a fibration such that π−1(θ) is the interior of a
compact surface Sθ with ∂Sθ = B for all θ ∈ S1.

Given an embedded open book decomposition as above, since π is a
locally trivial fibration over S1, it is completely specified by a diffeomorphism
of the fiber surface S. To see this, think of S1 as the interval [0, 2π], with
end points identified. Since [0, 2π] is contractible any fiber bundle over it is
trivial. Hence, the original fibration π : M \B → S1 can now be obtained
by gluing the surfaces S × {0} and S × {2π}. Hence we get an alternate
description of an open book decomposition for M called an abstract open
book decomposition which is defined as follows.
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• S is an oriented compact surface with boundary called the page of the
open book decomposition.

• φ : S → S is a diffeomorphism of S such that φ|∂S is the identity. The
diffeomorpshim φ is called the monodromy of the open book decom-
position.

Given an abstract open book decomposition (S, φ), we get a 3-manifold
Mφ as S × [0, 1]/ ∼, where ∼ is the equivalence relation (x, 1) ∼ (φ(x), 0)
for x ∈ S, and (y, t) ∼ (y, t′) for y ∈ ∂S, t, t′ ∈ [0, 1].

Note that an abstract open book decomposition (S, φ) determines an
oriented closed manifold Mφ and an embedded open book decomposition
(Bφ, πφ) up to diffeomorphism.

For an embedded open book decomposition (B, π), a positive stabiliza-
tion is an operation of plumbing a positive Hopf band to (B, π). For an
abstract open book decomposition, a positive stabilization changes the page
S by attaching a 1-handle to get a new surface S′. The monodromy of the
open book decomposition changes from φ to φ · τc, where c is curve which in-
tersects the co-core of the attached 1-handle exactly once and φ is extended
to the new surface by identity. For an abstract open book decomposition
(S, φ), a conjugation is an operation to replace the monodromy φ by fφf−1,
where f is a self-diffeomorphism of S which is identity on the boundary.

A contact structure ξ on M is supported by an embedded open book
decomposition (B, π) of M if ξ can be isotoped through contact structures
so that there is a 1-form α for ξ such that:

• α > 0 on B.

• dα is a positive area form on each page Sθ of the open book decom-
position.

A contact 3-manifold is supported by an abstract open book decomposi-
tion (S, φ) of if ξ is supported by an embedded open book decomposition
determined by (S, φ).

Given any abstract, or embedded open book decomposition (B, π) of M ,
according to a construction of Thurston and Winkelnkemper [24], it supports
a contact structure ξ. Giroux proved that given a contact structure ξ on M ,
one can find an embedded open book decomposition of M supporting ξ.

Theorem 2.3 (Giroux 2000, [8]). Let M be a closed oriented 3-manifold.
Then there is a one to one correspondence between the oriented contact
structures on M up to isotopy and the open book decompositions of M up to
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positive stabilization, and there is a one to one correspondence between the
oriented contact structures on M up to isomorphism and the abstract open
book decompositions of M up to positive stabilization and conjugation.

From now on, unless explicitly specified, an open book decomposition
will mean the abstract one.

Following Theorem 2.3, Giroux [8], Loi-Piergallini [15], Akbulut-Ozbagci
[1] showed that a contact manifold (M, ξ) is Stein fillable if and only if there
exists an open book decomposition (S, φ) supporting (M, ξ) such that the
monodromy is written as a product of positive Dehn twists. The proof of
this result tells us how to construct a Stein filling from (S, φ) and a given a
positive factorization of φ. We briefly recall it here. To do so we first need
to recall a few facts about Lefschetz fibrations. We refer the reader to [9] for
more details.

SupposeX is an oriented 4-manifold, andD2 is an oriented 2-dimensional
disk. The smooth map f : X → D2 is a Lefschetz fibration if df is onto with
finitely many exceptional points in the interior of D2, the map f is locally
trivial in the complement of these exceptional points, and around each of
the exceptional points, f can be modelled in some choice of complex co-
ordinates by f(z1, z2) = z21 + z22 . If x ∈ D2 is a regular value, then f−1(x)
is a compact smooth surface S. This surface S is called the regular fiber.
At each critical value p ∈ D2, f−1(p) is a singular surface with exactly one
positive transverse self-intersection point, we call it a singular fiber. One can
assume that all the critical values, p1, . . . , pn are isolated and monodromy
of the fibration around each critical value pi, is specified by an element of
Map(S, ∂S). This element is given by a right handed Dehn twist about a
non trivial curve αi ⊂ S. The global monodromy of the fibration is given by
the product of Dehn twists τα1

, τα2
, . . . , ταn

.
For positive factorizations, a Hurwitz move is defined by

τα1
· · · ταi

ταi+1
· · · ταn

∼ τα1
· · · ταi+1

ττ−1
αi+1 (αi)

ταi+2
· · · ταn

,

for 1 ≤ i < n. Two positive factorizations are Hurwitz equivalent if one of
them can be obtained from the other by finitely many Hurwitz moves.

In addition, to remove the dependence on choice of the reference fiber,
the Dehn twists are thought of as elements of the mapping class of an ab-
stract surface S. This requires the choice of an identification diffeomorphism
and induces an equivalence relation on the set of mapping class group fac-
torizations: global conjugation. It is defined as

τα1
τα2

· · · ταn
∼ τf(α1)τf(α2) · · · τf(αn),
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where f is a diffeomorphism of Σ which is an element of Map(S, ∂S).
Given an abstract open book decomposition (S, φ) of the manifold (M, ξ)

and a positive factorization of φ by τα1
· · · ταn

, where α1, . . . , αn are nontriv-
ial curves in S, one can construct a Lefschetz fibration X which has global
monodromy τα1

· · · ταn
, and is diffeomorphic to (S ×D2)

⋃
(∪n

i=1Hi), where
Hi is a 4-dimensional 2-handle attached along αi in a fiber of S × ∂D2 →
∂D2 with relative framing −1. Note that the diffeomorphism type of X is
unique up to Hurwitz equivalence and global conjugation of the positive
factorization of φ. According to [3], X admits a Stein structure, and ∂X is
diffeomorphic to M . Furthermore, the contact structure on M induced by
this Stein filling agrees with the contact structure supported by the open
book decomposition (S, φ) through the Giroux correspondence. Hence, X
gives a Stein filling of (M, ξ).

Conversely, given a Stein filling, X, of (M, ξ), one can construct a Lef-
schetz fibration of X (see [1, 15]) such that ∂X = M has a natural open
book decomposition with monodromy written as a positive factorization
and supports ξ. Hence to get an upper bound on the number of Stein fill-
ings of (M, ξ), one will have to find all compatible open books and then
find all possible ways of factorizing a given monodromy in terms of positive
Dehn twists. But in the case of manifolds supported by planar open book
decompositions this problem is approachable due to the following theorem
of Wendl.

Theorem 2.4 (Wendl 2010, [27]). Suppose (M, ξ) is supported by a pla-
nar open book decomposition. Then every strong symplectic filling (X,ω) of
(M, ξ) is symplectic deformation equivalent to a blow-up of an allowable Lef-
schetz fibration compatible with the given open book decomposition of (M, ξ).

So in case of contact manifolds supported by planar open book decom-
positions, this theorem tells us that we need to find all possible ways of
factorizing the given monodromy in terms of positive Dehn twists, to get an
upper bound on the number of Stein fillings. Then one can try to classify
the Stein fillings by realizing this upper bound. This approach to classifying
Stein fillings has proved to be successful in [12, 20].

2.3. Open book decompositions for manifolds obtained by
surgery along knots.

It follows from Giroux correspondence that any Legendrian knot L in (M, ξ)
can be embedded in a page of an open book supporting ξ as an essential
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simple closed curve, see [4]. One can prove that if L is a Legendrian knot
on a page of open book (S, φ) supporting (M, ξ) and (M(−1)(L), ξL) is the
contact structure obtained from (M, ξ) by Legendrian surgery along L, then
(M(−1)(L), ξL) is supported by the open book decomposition (S, φ · τL). Here
L is thought of as a simple closed curve embedded in the surface S.

Given a Legendrian knot L, there is a natural operation called posi-
tive/negative stabilization of L that can be used to get another Legendrian
knot in the same knot type. For a Legendrian knot in R3 with its stan-
dard contact structure, positive (resp. negative) stabilization is achieved by
adding a zigzag to the front projection of the Legendrian knot such that
rotation number of the Legendrian knot increases (resp. decreases) by 1.
Stabilization is a well-defined operation, that is, it does not depend on the
point at which zigzags are added. See [4] for details and proof of the following
lemma.

Lemma 2.5. Let (S, φ) be an open book decomposition supporting the con-
tact structure ξ on M . Suppose L is a Legendrian knot in M that lies in the
page S. If we stabilize (S, φ) as shown in Figure 5, then we may isotope the
page of the open book so that positive (negative) stabilization of L appears
on the page S as shown in Figure 5.

+
+

Figure 5: Stabilizing the knot on the page of an open book. Middle figure
shows a Legendrian knot on a page of open book. Left figure shows how to
stabilize the knot positively while the right figure shows how to stabilize the
knot negatively.
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3. Classification of Stein fillings

We begin by observing a purely combinatorial lemma. The purpose of this
lemma is to get restrictions on the curves which can appear in any positive
factorization of the given monodromy in terms of Dehn twists. Refer to
Figure 1 for the notation used below.

Lemma 3.1. Any positive factorization of Φ must be given by the product
of Dehn twists τm1

1 , τm2

2 , . . . , τ
mn+q−1

n+q−1 , τ
mn+q+1

n+q+1 , . . . , τ
mn+p+q

n+p+q , and the Dehn
twists τB′1 and τB′2 where B′1 encloses the same holes as B1, and B′2 the same
holes as B2.

Proof. Recall from Section 2 that, Mi,j denotes the joint multiplicity of the
mapping class Φ about the ith and jth boundary components, andMi denotes
the multiplicity of the mapping class Φ about the ith boundary component.

Since Mn+q = 2 and Mi,n+q = 2 for i ∈ {k, k + 1, . . . , k + q − 1}, there
are exactly two monodromy curves, say B′1 and B′2, enclosing cn+q and
ci for i ∈ {k, k + 1, . . . , k + q − 1}. Since Mn+q,j = 0 for j ∈ {n+ q + 1, n+
q + 2, . . . , n+ q + p},Mr,n+q = 1 for r ∈ {1, . . . , k − 1, k + q, . . . , n+ q − 1},
and Ms,t = 0 for s ∈ {1, . . . , k − 1} and t ∈ {k + q, . . . , n+ q − 1}, the two
monodromy curvesB′1 andB′2 enclose {ck, . . . , ck+q−1, ck+q, . . . , cn+q−1, cn+q}
and {c1, . . . , ck−1, ck, . . . , ck+q−1, cn+q} respectively.

For j ∈ {n+ q + 1, n+ q + 2, . . . , n+ q + p}, Mj = mj and Mi,j = 0 for
any i ∈ {1, 2, . . . , n+ q + p} and i �= j. So cj is enclosed solely by mj bound-
ary parallel monodromy curves.

For i ∈ {1, . . . , n+ q − 1}, there are no non-boundary-parallel mono-
dromy curves, other than B′1 and B′2, enclosing ci. Suppose otherwise, then
for some j, h ∈ {1, . . . , n+ q − 1}, there is a monodromy curve, other than
B′1 and B′2, enclosing cj and ch. If either j or h does not belong to {k, k +
1, . . . , k + q − 1}, then j and h cannot belong to {1, . . . , k − 1} and {k +
q, . . . , n+ q − 1}, respectively. So Mj,h ≥ 2. However, from the original pos-
itive decomposition of Φ, we have Mj,h = 1. So we arrive at a contradiction.
If both j and h belong to {k, k + 1, . . . , k + q − 1}, then Mj,h ≥ 3. However,
also from the original positive decomposition of Φ, we have Mj,h = 2. So we
arrive at a contradiction as well.

Hence for i ∈ {1, . . . , n+ q − 1}, there are mi boundary parallel mon-
odromy curves enclosing ci. �

Remark 3.2. With the notation as in above lemma, any other factorization
of Φ can be written as τm1

1 τm2

2 · · · τmn+q−1

n+q−1 τ
mn+q+1

n+q+1 · · · τmn+p+q

n+p+q τB′1τB′2 up to
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Hurwitz equivalence. To see this, recall that since boundary Dehn twists
commute with every diffeomorphism we can move them all to the left in the
factorization as written above. Now product of Dehn twists τB′1 and τB′2 is
on the right side of this positive factorization. Hurwitz move on the product
of Dehn twists can potentially change the homotopy class of both the curves
B′1 and B′2, to say B′′1 and B′′2 . But still B′′i enclose the same set of holes as
B′i for i = 1, 2. With abuse of notation we still call these new set of curves
as B′1 and B′2, as Lemma 3.1 only specifies the curves B′1 and B′2 up to
the set of holes enclosed by each of these curves. So using commutativity
of boundary parallel Dehn twists and Hurwitz moves one can arrange the
factorization as above.

In our case, since we only have two non boundary parallel monodromy
curves, a Hurwitz move is also a global conjugation.

3.1. Positive factorizations.

In this subsection, we prove that τB1
τB2

has at most 2 different positive
factorizations, up to a global conjugation, in Map(Σ, ∂Σ) for some simple
cases of the surface Σ. We will reduce the above factorization problem to
these simple cases later.

In proving these results, first step will be to get restrictions on intersec-
tion number of curves B′1 and B′2. To make sense of intersection numbers of
curves, we assume for the rest of the paper that any two curves are isotoped
to intersect minimally.

Lemma 3.3. Let Σ be the surface in Figure 1 with k = 1 and n = 1. Sup-
pose p = q = 1. Then τB1

τB2
∈ Map(D3, ∂D3) has at most two positive fac-

torizations up to a global conjugation.

Proof. Since k = n = 1, there is no hole which is enclosed by B2 but not by
B1, and there is no hole which is enclosed by B1 but not by B2.

By Lemma 3.1, any positive factorization of τB1
τB2

is τB′1τB′2 up to a
global conjugation, where B′1 and B′2 enclose the same set of holes as B1

and B2, respectively.
We would like to get more information about the curves B′1 and B′2. To

do that, we use a theorem by Thurston [26, Theorem 7]. This was suggested
by Dan Margalit to us.

We assume that each of the boundary components is filled by a disk
with one puncture. To avoid confusion, we will call this surface D3 still.
Note that the curves B1 and B2 fill the surface D3. As explained in [7,
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Exposé 13], one can construct a singular flat Euclidean structure and a
representation of the subgroup of Map(D3, ∂D3) generated by τB1

and τB2
.

Precisely (see [26, Theorem 7], and [6, Theorem 14.1]), suppose I(B1, B2)
denote the geometric intersection number of B1 and B2, then there is a
representation ρ : 〈τB1

, τB2
〉 → PSL(2,R) given by

τB1
�→

[
1 I(B1, B2)
0 1

]
, τB2

�→
[

1 0
−I(B1, B2) 1

]

with the following properties:

1) An element g ∈ 〈τB1
, τB2

〉 is periodic, reducible, or pseudo-Anosov ac-
cording to whether ρ(g) is elliptic, parabolic, or hyperbolic.

2) When ρ(g) is hyperbolic the pseudo-Anosov mapping class g has stretch
factor equal to the larger of the absolute values of the two eigenvalues
of ρ(g).

The matrix ρ(g) is called an affine representative for g. So τB1
has

affine representative given by

[
1 4
0 1

]
, and τB2

has an affine representative[
1 0
−4 1

]
. Thus, we obtain an affine representative for τB1

τB2
. It is

[−15 4
−4 1

]
.

This matrix has trace −14, so τB1
τB2

has a pseudo-Anosov representative
with stretch factor the larger of the absolute values of the two eigenval-
ues, that is 7 + 4

√
3. Note that the stretch factor of a pseudo-Anosov rep-

resentative of a pseudo-Anosov diffeomorphism is in fact an invariant of
the pseudo-Anosov diffeomorphism. This is because two homotopic pseudo-
Anosov representatives are conjugate by a diffeomorphism isotopic to the
identity ([7, Théorème 12.5]), and any two conjugate pseudo-Anosov repre-
sentatives have the same stretch factors ([6, Page 406]).

Since τB′1τB′2 , as a conjugation of τB1
τB2

, is also pseudo-Anosov, B′1
and B′2 have to intersect and fill the surface D3. Otherwise there is a non-
boundary-parallel simple closed curve which is invariant by τB′1τB′2 . This is
impossible for a pseudo-Anosov diffeomorphism.

Assume that I(B′1, B′2) = z, where z is a non-negative integer. As above
we obtain the affine representative for τB′1τB′2 . It is

[
1 z
0 1

] [
1 0
−z 1

]
=

[
1− z2 z
−z 1

]
.

Since τB′1τB′2 and τB1
τB2

are conjugate, they have the same stretch factors

([6, Page 406]). So 1
2(z

2 − 2 + z
√
z2 − 4) = 7 + 4

√
3, and z = 4.
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Now we conjugate τB′1τB′2 by a diffeomorphism which takes B′1 to B1,
and B′2 to a curve B′′2 . We know that B′′2 and B1 intersect in exactly 4 points.
Since B′′2 and B2 represent the same homology classes in H1(D3), we know
that the algebraic intersection number of B′′2 and B2 with each nontrivial
arc in the surface is the same. In particular, for the arc γ shown in the left
of Figure 6, the algebraic intersection number of B′′2 and γ is 0, and the
geometric intersection number of B′′2 and γ is even.

If I(B′′2 , γ) = 0, then it is easy to see that B′′2 is isotopic to B1. This is
impossible by the above argument.

0

1 23

γ

0

3

1 2

Figure 6: Arc γ along which the surface is cut open is shown in the left
picture. The right picture shows the cut open surface.

Suppose I(B′′2 , γ) ≥ 2. We cut the surface D3 open along the arc γ, and
think of the resulted surface as a pair of pants with the outer boundary
drawn as a rectangle. See the right of Figure 6. Under this operation, B′′2 is
cut into a collection of properly embedded arcs which are pairwise disjoint.
Each of these arcs is one of the following three types.

• Type I: Both end points of the arc are on the left edge of the rectangle.

• Type II: Both end points of the arc are on the right edge of the
rectangle.

• Type III: The arcs have one end point on the left edge and the other
on the right edge of the rectangle.

Since B1 is parallel to the outer boundary of the rectangle, each of Type
I, II and III arcs intersects the curve B1 in 2 points or is disjoint with B1.
It is easy to see that each of Type I, II, and III arcs intersects the curve B1

in exactly 2 points.
For B′′2 to be a simple closed curve enclosing holes c1 and c2, there is at

least one arc of Type I and at least one arc of Type II. Since I(B′′2 , B1) = 4,
B′′2 is cut open into a Type I arc and a Type II arc.
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If the Type I arc encloses the hole c1 with the left edge of the rectangle,
and the Type II arc encloses the hole c2 with the right edge of the rectangle,
then some power of τB1

will send B′′2 to be the one which is formed by the
two arcs shown in the right of Figure 6. Hence τB1

τB′′2 is conjugate to τB1
τB2

.

0

1 2

3

0

3

12

Figure 7: Another choice of the arc for the curve B′′2 shown in the left. The
right one is obtained from the left one by a diffeomorphism moving the hole
c1 to the right and the hole c2 to the left.

If the Type I arc encloses the hole c2 with the left edge of the rectangle,
and the Type II arc encloses the hole c1 with the right edge of the rectangle,
then some power of τB1

will send B′′2 to be the one which is formed by the
two arcs shown in the left of Figure 7. So there are at most two choices
for the curve B′′2 up to conjugation. Hence, there are at most two different
factorizations of τB1

τB2
up to a global conjugation. �

Lemma 3.4. Let Σ be the surface in Figure 1 with k = 1 or 2, and n = 2.
Suppose p = q = 1. Then τB1

τB2
∈ Map(D4, ∂D4) has at most two positive

factorizations up to a global conjugation.

Proof. If k = 1 and n = 2, then there is no hole which is enclosed by B2 but
not by B1, and there is one hole which is enclosed by B1 but not by B2. If
k = n = 2, then there is no hole which is enclosed by B1 but not by B2, and
there is one hole which is enclosed by B2 but not by B1. By symmetry, we
can only prove for the first case.

By Lemma 3.1, any positive factorization of τB1
τB2

is τB′1τB′2 up to a
global conjugation, where B′1 and B′2 enclose the same set of holes as B1

and B2, respectively.
The curves B1 and B2 fill the surface D4. Following exactly the same

argument we get that B′1 and B′2 intersect in exactly 4 points. Now we
conjugate τB′1τB′2 by a diffeomorphism which takes curve B′1 to B1. This will
change τB′1τB′2 to τB1

τB′′2 , where B′′2 is a curve which encloses the same set
of holes as B2.
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Let γ be an arc connecting holes c4 and c0, see the left of Figure 8. Then,
by the proof of Lemma 3.3, B′′2 intersects γ in 2 points minimally. We cut
the surface D4 open along the arc γ, and think of the resulted surface with
the outer boundary drawn as a rectangle. See the right of Figure 8. So B′′2
becomes two arcs one of which has two endpoints belong to the left edge
and encloses one hole of c1 and c3, and the other of which has two endpoints
belong to the right edge and encloses the other hole of c1 and c3.

Exactly as in the proof of Lemma 3.3, we get that up to a diffeomor-
phism preserving orientation and commuting with τB1

, there are at most
two choices for the curve B′′2 . Hence, there are at most two different positive
factorizations of τB1

τB2
up to a global conjugation. �

0

1

2

34

γ

0

4

1 2 3

Figure 8: Arc γ along which the surface is cut open is shown in the left
picture. The right picture shows the cut open surface.

Lemma 3.5. Let Σ be the surface in Figure 1 with k = 2 and n = 3. Sup-
pose p = q = 1. Then τB1

τB2
∈ Map(D5, ∂D5) has at most two positive fac-

torizations up to a global conjugation.

Proof. Since k = 2 and n = 3, there is one hole which is enclosed by B2 but
not by B1, and one hole which is enclosed by B1 but not by B2.

By Lemma 3.1, any positive factorization of τB1
τB2

is τB′1τB′2 up to a
global conjugation, where B′1 and B′2 enclose the same set of holes as B1

and B2, respectively.
The curves B1 and B2 fill the surface D5. Following exactly the same

argument as in the proof of Lemma 3.3, we get that B′1 and B′2 intersect in
exactly 4 points. Now we conjugate τB′1τB′2 by a diffeomorphism which takes
curve B′1 to B1. This will change τB′1τB′2 to τB1

τB′′2 , where B′′2 is a curve
which encloses the same set of holes as B2.

If we fill each hole of D5, including the outer boundary, by a disk with a
marked point, then we get a 2-sphere with 6 marked points. The two curves
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γ11 γ21

γ12 γ22

Figure 9: Arcs γ1 and γ2 along which the surface is cut open is shown in
the left picture. The right picture shows the cut open surface, where γ1i and
γ2i are two copies of γi, for i = 1, 2.

B1 and B′′2 give a cell decomposition of the 2-sphere. It has four vertices,
eight edges and six 2-cells. Each 2-cell contains a boundary component of
D5. There are four 2-cells which are bigons containing c0, c2, c4, and c5,
respectively. There are two 2-cells which are squares containing c1 and c3,
respectively. Each square has exactly one common edge with each of the
four bigons. So there is a properly embedded arc γ′1 in S which connects
holes c1 and c5, has exactly one intersection point with the common edge of
the square containing c1 and the bigon containing c5, and is disjoint with
B1. There is a properly embedded arc γ′2 in S which connects holes c1 and
c0, has exactly one intersection point with the common edge of the square
containing c1 and the bigon containing c0, and is disjoint with B1. Note that
γ′1 and γ′2 correspond to two coedges of the cell decomposition. It is easy to
make sure that we can choose the arcs γ′1 and γ′2 to be disjoint.

There is a diffeomorphism of D5 which takes γ′1 and γ′2 to γ1 and γ2,
respectively, where γ1 and γ2 are as shown in the left of Figure 9 and keeps
B1 invariant. Such a diffeomorphism exists because the arcs γ′1 and γ′2 are
chosen to be disjoint from the curve B1. We denote the image of B′′2 under
this diffeomorphism by B′′2 still. Then I(B′′2 , γi) = 1 for i = 1, 2.

We cut the surface D5 open along γ1 ∪ γ2, and think of the resulting
surface with the outer boundary drawn as a rectangle. To avoid confusion
with other terminology used, we will denote this cut open surface by R. See
the right of Figure 9. The curve B′′2 is cut open into two arcs. One of them
has both endpoints in the left edge of R, and the other of them has both
endpoints in the right edge of R. Since B1 is parallel to the outer boundary
of R, each of the two arcs are either disjoint with B1 or has exactly two
intersection points with B1. Since I(B1, B

′′
2 ) = 4, both of the two arcs have

exactly two intersection points with B1. One of them encloses one hole of c2
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and c4 with a subarc of the left edge of R. The other of them encloses the
other hole of c2 and c4 with a subarc of the right edge of R.

Just as in the proofs of Lemma 3.3 and Lemma 3.4, we get that there
are at most two choices for B′′2 . Hence, τB1

τB2
has at most two positive

factorizations up to a global conjugation. �

3.2. Stein fillings of certain planar open books

Now we go back to the proof of Theorem 1.1.

0 1

2

3

45

0 1

2

3

45

•

••

• •

•

••

••

B′′2

B1

B′′2

B1

Figure 10: The left two figures indicate the two choices of the curve
B′′2 . The upper left figure is (Σ, τ1τ2τ3τ5τB1

τB′′2 ). The lower left figure is
(Σ, τ1τ2τ3τ5τB1

τB′′2 ) which is conjugate to (Σ, τ1τ2τ3τ5τB′′2 τB1
). The right two

figures are their corresponding Kirby diagrams for the Stein filling, where
each dotted circle is a 4-dimensional 1-handle, and all other circles have
surgery coefficients −1. These two Kirby diagrams denote two diffeomor-
phic 4-manifolds.

Proof. Suppose a1, . . . , ak−1 are k − 1 properly embedded pairwise disjoint
arcs in Σ which satisfy that: 1) ai connects the boundary components ci
and ci+1, 2) ai is disjoint with B1 and B2. Suppose bk+q, . . . , bn+q−2 are
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n− k − 1 properly embedded pairwise disjoint arcs in Σ which satisfy that:
1) bi connects the boundary components ci and ci+1, 2) bi is disjoint with
B1 and B2.

If p = q = 1, then by Lemma 3.1, any other positive factorization of Φ
must be the product of τm1

1 , τm2

2 , . . ., τmn
n , τ

mn+2

n+2 , τB′1 and τB′2 , where the
curves B′1 and B′2 enclose the same set of holes as curves B1 and B2, respec-
tively. In particular, either τB1

τB2
= τB′1τB′2 or τB1

τB2
= τB′2τB′1 . Without

loss of generality, we assume that τB1
τB2

= τB′1τB′2 .
Since the curves B1 and B2 do not intersect any of the arcs ai, the dif-

feomorphism τB1
τB2

does not move them. It follows that the diffeomorphism
τB′1τB′2 does not move any of the arcs ai as well. We claim that the curves
B′1 and B′2 do not intersect any of the arcs ai. Suppose one of the curves
B′1, B′2 intersects the arc ai for some i. Without loss of generality we can
assume that curve to be B′2. In this case, since any positive Dehn twist is
right veering(see [11]), the diffeomorphism τB′2 will move the arc ai strictly
to the right. Hence, τB′1 should move the arc ai strictly to the left, which is
impossible. Similarly, the curves B′1 and B′2 do not intersect any of the arcs
bi.

Since the arcs ai and bi are not moved by the diffeomorphism τB′1τB′2 , we
can cut along arcs ai and bi. If we do that we are left with the surface D3, D4

or D5, depending on k and n. We still denote the curves by B1, B2, B
′
1, B

′
2 in

this new surface. As before, there is a diffeomorphism which sends B′1 to B1,
and B′2 to B′′2 . Now from Lemmas 3.3, 3.4 and 3.5 it follows that there are
at most two factorizations, up to a global conjugation, of the monodromy
given by two different choices for the curve B′′2 .

From the Kirby diagrams, see Figure 10 for an example, we know that
for both of these two choices of the curve B′′2 , the manifold supported by the
open book decomposition

(Σ, τm1

1 τm2

2 · · · τmn
n τ

mn+2

n+2 τB1
τB′′2 )

is diffeomorphic to the original oriented 3-manifold, and their corresponding
Stein fillings are diffeomorphic. According to Theorem 2.4, Theorem 1.1
holds in this special case.

Now we are left to prove the general case. Any other factorization of Φ
is

τm1

1 τm2

2 · · · τmn+q−1

n+q−1 τ
mn+q+1

n+q+1 · · · τmn+p+q

n+p+q τB′1τB′2

up to a global conjugation, where B′1 and B′2 enclose the same boundary
components as B1 and B2, respectively. In particular, either τB1

τB2
= τB′1τB′2
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or τB1
τB2

= τB′2τB′1 . Without loss of generality, we assume that τB1
τB2

=
τB′1τB′2 .

Suppose un+q+1, . . . , un+q+p−1 are p− 1 properly embedded pairwise dis-
joint arcs in Σ which satisfy that: 1) ui connects the boundary components
ci and ci+1, 2) ui is disjoint with B1 and B2. Suppose vk, . . . , vk+q−2 are
q − 1 properly embedded pairwise disjoint arcs in Σ which satisfy that: 1)
vi connects the boundary components ci and ci+1, 2) vi is disjoint with B1

and B2.
Note that the diffeomorphism τB1

τB2
does not move any of the arcs

un+q+1, . . . , un+q+p−1, vk, . . . , vk+q−2 and so τB′1τB′2 does not move these
arcs either. By the same argument as in previous paragraph, the curves B′1
and B′2 do not intersect arcs un+q+1, . . . , un+q+p−1, vk, . . . , vk+q−2.

Hence, to factorize Φ we need to specify curves B′1 and B′2 in the com-
plement of arcs un+q+1, . . . , un+q+p−1, vk, . . . , vk+q−2. So we cut the surface
along arcs un+q+1, . . . , un+q+p−1, vk, . . . , vk+q−2, and what left is a planar
surface with n+ 3 boundary components. Also, there is a diffeomorphism
which sends B′1 to B1, and B′2 to B′′2 .

By Lemma 3.3, Lemma 3.4 and Lemma 3.5, there are at most two fac-
torizations, up to a global conjugation, of the monodromy given by two dif-
ferent choices for the curve B′′2 . Considering the Kirby diagrams, we know
that the two Stein fillings are diffeomorphic. This finishes the proof by The-
orem 2.4. �

3.3. Proofs of the corollaries

Proof of Corollary 1.2. Let L′ be a Legendrian twist knot K−2p with
Thurston-Bennequin invariant −n and rotation number n− 2k + 1. Accord-
ing to [13], we can embed the Legendrian link in Figure 2 into a page of an
embedded open book supporting (S3, ξstd). See Figure 11. In the figure, L′

denotes a Legendrian twist knot K−2p and U1, . . . , Uk−1, Uk+1, . . . , Un de-
note Legendrian unknots with tb = −1 and rot = 0 embedded in the page
of an open book decomposition supporting (S3, ξstd).

Lemma 3.6. The embedded open book supporting (S3, ξstd) depicted in Fig-
ure 11 can be transformed into an abstract version (Σ, φ) shown in Figure 1,
with q = 1 and

φ = τ1τ2 · · · τk−1τkτk+1 · · · τnτn+2 · · · τn+p+1τB1
.
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Figure 11: An embedded open book decomposition supporting (S3, ξstd)
with a twist knot K−2p shown in the figure by L′. Curves
U1, . . . , Uk−1, Uk+1, . . . , Un denote Legendrian unknots embedded in the page
of open book decomposition. The boundary components of the page are la-
belled by 0, 1, . . . , n+ p+ 1. The shaded region in the figure shows the page
of the open book decomposition. This open book is obtained from the open
book in Figure 3 in [13] by plumbing some positive Hopf bands.

Proof. The embedded open book depicted in Figure 11 can be obtained
from the open book supporting (S3, ξstd), whose binding is an unknot, by
plumbing finitely many positive Hopf bands successively. It is easy to see that
an embedded open book with an unknot as binding can be transformed to an
abstract version whose page is a disk and monodromy is the identity. Recall
that plumbing a positive Hopf band either increases the genus of the page
by 1 or increases the number of boundary components by 1, depending on
the way in which the 1-handle is attached. See [4] for details. In this proof,
each plumbing is done so that we increase only the number of boundary
components. With this set up, one can plumb the positive Hopf bands in
the order that creates the boundary components c1, . . ., ck−1, ck, ck+1, . . .,
cn, cn+2, . . ., cn+p+1, and cn+1 one after another.
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Suppose an embedded open book (∂S1, π1) with page S1 supporting
(S3, ξstd) is transformed into an abstract version (Σ1, φ) through a diffeo-
morphism from S1 to Σ1, and an embedded open book (∂S2, π2) with page
S2 is obtained from (∂S1, π1) by plumbing a positive Hopf band along a
properly embedded arc a ⊂ S1. By the definition of plumbing, the positive
Hopf band is attached at the two end points of the arc a, so that the union
of arc a and the core of the positive Hopf band is a simple closed curve which
can be pushed away from the page S1 and does not link with ∂S1. Note that
the isotopy class of the resulted embedded open book (∂S2, π2) does not
depend on the choice of the interior of a. We denote by a, still, the properly
embedded arc in the page of abstract open book (Σ1, φ) which is the image
of the arc a in S1. Then we can transform the embedded open book (∂S2, π2)
into an abstract version (Σ2, φ · τc), where Σ2 is obtained from Σ1 by adding
a 1-handle at the two end points of the arc a, and the simple closed curve
c ⊂ Σ2, called a stabilizing curve, is the union of the arc a ⊂ Σ1 and the core
of the attached 1-handle. The abstract open book (Σ2, φ · τc) is a positive
stabilization of (Σ1, φ).

It is easy to draw the arcs along which the positive Hopf bands are
plumbed to obtain the embedded open book in Figure 11. Following the
local transformation process in the order of plumbing mentioned above, we
obtain an abstract version of the open book decomposition in Figure 11 as
shown in Figure 12, with L′ being a Legendrian twist knot K−2p in (S3, ξstd).
By definition, each positive Hopf band corresponds to a stabilizing curve. For
i = 1, . . . , n, n+ 2, . . . , n+ p+ 1, there is a stabilizing curve for open book
decomposition supporting (S3, ξstd) which is parallel to the i-th boundary
component. Moreover, the curve α is also a stabilizing curve for open book
decomposition supporting (S3, ξstd) which corresponds to the top positive
Hopf band in Figure 11 that creates the boundary component cn+1.

It is easy to see that there is a diffeomorphism taking the surface in
Figure 12 to the one in Figure 1 when q = 1. Under this diffeomorphism the
curves L′, α in Figure 12 become the curves B2, B1 in Figure 1. �

So the contact structure (M ′, ξ′) is supported by the open book (Σ,Φ)
with q = 1 and

Φ = τm1

1 τm2

2 · · · τmk−1

k−1 τkτ
mk+1

k+1 · · · τmn
n τn+2 · · · τn+p+1τB1

τB2
,

where mi ≥ 1 for i = 1, . . . , k − 1, k + 1, . . . , n.
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Figure 12: An abstract open book decomposition supporting (S3, ξstd)
with a twist knot K−2p shown in the figure by L′. Curves
U1, . . . , Uk−1, Uk+1, . . . , Un denote Legendrian unknots embedded in the page
of open book decomposition. The boundary components of the page are la-
belled by 0, 1, . . . , n+ p+ 1. In particular, the boundary component encir-
cled by Ui is labelled by i for i = 1, . . . , k − 1, k + 1, . . . , n.

By Theorem 1.1, (M ′, ξ′) admits a unique Stein filling up to diffeomor-
phism. �

Proof of Corollary 1.3. The open book

(Σ, τ1τ2 · · · τn+q−1τn+q+1 · · · τn+p+qτB1
)

corresponds to (S3, ξstd). If we transform it to the embedded version which is
similar to Figure 11, then B2 can be realized as a Legendrian 2-bridge knot
B(p, q) topologically shown in Figure 4. By Lemma 2.5, it is the result of
n− k positive stabilizations and k − 1 negative stabilizations of a Legendrian
2-bridge knot B(p, q) with Thurston-Bennequin invariant −1 and rotation
number 0. So by Theorem 1.1, the contact 3-manifold which is obtained by
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Legendrian surgery on (S3, ξstd) along the Legendrian B2 admits a unique
Stein filling up to diffeomorphism. �

3.4. Uniqueness of certain Stein fillings up to symplectic
deformation equivalence

Proof of Theorem 1.4. Since L is a Legendrian twist knot K−2p with
Thurston-Bennequin invariant −1 and rotation number 0, we can embed
Sn−k
+ Sk−1

− (L) into a page of an embedded open book decomposition sup-
porting (S3, ξstd) as in Figure 11, where the page is a compact planar sur-
face with n+ p+ 2 boundary components. By Lemma 3.6, we can transform
this embedded open book decomposition into an abstract version (Σ, φ) with
q = 1 and

φ = τ1τ2 · · · τnτn+2 · · · τn+p+1τB1
.

The Legendrian surgery on (S3, ξstd) along the stabilization Sn−k
+ Sk−1

− (L)
yields a contact structure ξk on the 3-manifold S3−1−n(K−2p), which is sup-
ported by the open book decomposition (Σ,Φ) with q = 1 and

Φ = τ1τ2 · · · τnτn+2 · · · τn+p+1τB1
τB2

.

By Lemma 3.1, any positive factorization of Φ has to be the product of
τ1, τ2, . . ., τn, τn+2, . . ., τn+p+1, τB′1 , τB′2 , where B

′
1 and B′2 enclose the same

set of holes as B1 and B2, respectively.
The open book decomposition

(Σ, τ1τ2 · · · τnτn+2 · · · τn+p+1τB′1)

also supports (S3, ξstd). We think of B′2 as a knot in (S3, ξstd).
We claim that B′2 is isotopic to the twist knot K−2p. There is an element

f ∈ Map(Σ, ∂Σ) which sends B′1 to B1. We denote f(B′2) by B′′2 . According
to the proof of Theorem 1.1, the given monodromy Φ has at most two
different positive factorizations, up to a global conjugation, depending on
the two choices for B′′2 . Both of the two choices of B′′2 are isotopic to the
twist knot K−2p. So B′2 is isotopic to the twist knot K−2p.

We compute the page framing of B′2 in the open book decomposition

(Σ, τ1τ2 · · · τnτn+2 · · · τn+p+1τB′1).
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To this end, we compute the linking number of B′′2 and its push-off in the
page of open book decomposition

(Σ, τ1τ2 · · · τnτn+2 · · · τn+p+1τB1
)

shown in Figure 11. For both of the two choices of B′′2 , it is routine to check
that the linking numbers of B′′2 and its push-off in the page are −n. So B′2
has page framing −n with respect to the Seifert framing.

Since B′2 is not null-homologous in Σ, we can Legendrian realize it. Ac-
cording to the definition of open book decomposition, we know that the
Thurston-Bennequin invariant of B′2 is the difference between the page fram-
ing and the Seifert framing, that is, −n.

Therefore, the Lefschetz fibration X over D2, with fiber Σ, correspond-
ing to the positive factorization τ1τ2 · · · τnτn+2 · · · τn+p+1τB′1τB′2 of Φ is diffeo-
morphic toD4, with its standard complex structure, and a 2-handle attached
along a (−1− n)-framed twist knot K−2p. Also, X has a Stein structure
that arises from the Legendrian surgery along the Legendrian realized B′2.
By a theorem of Eliashberg [3], we can extend the Stein structure uniquely
to this new manifold. Since there is a unique Legendrian twist knot K−2p
with Thurston-Bennequin invariant −n and rotation number n− 2k + 1,
[5], we know that the only Legendrian twist knot K−2p that can produce
(S3−1−n(K−2p), ξk) is S

n−k
+ Sk−1

− (L). This implies that all Stein structures on
X are symplectic deformation equivalent. So X has a unique Stein structure
up to symplectic deformation.

According to Theorem 2.4, every Stein filling of (S3−1−n(K−2p), ξk) is
symplectic deformation equivalent to a Lefschetz fibration compatible with
the given planar open book decomposition (Σ,Φ). So there is a unique Stein
filling on (S3−1−n(K−2p), ξk), up to symplectic deformation. �

References

[1] Selman Akbulut and Burak Ozbagci, Lefschetz fibrations on compact
Stein surfaces, Geom. Topol., 5(2001), 319–334 (electronic), MR1825664
(2003a:57055).

[2] Yakov Eliashberg, Filling by holomorphic discs and its applications,
from: “Geometry of low-dimensional manifolds, 2 (Durham, 1989)”, (SK
Donaldson, CB Thomas, editors), London Math. Soc. Lecture Note Ser.,
151, Cambridge Univ. Press (1990), 45–67. MR1171908 (93g:53060)



Uniqueness of Stein fillings 145

[3] Yakov Eliashberg, Topological characterization of Stein manifolds of
dimension > 2, Internat. J. Math., 1 (1990), no. 1, 29–46. MR1044658
(91k:32012).

[4] John B. Etnyre, Lectures on open book decompositions and contact
structures, Floer homology, gauge theory, and low-dimensional topol-
ogy, Clay Math. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 2006,
pp. 103–141. MR2249250 (2007g:57042)

[5] John B. Etnyre, Lenhard Ng, and Vera Vértesi, Legendrian and
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