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On hofer energy of J-holomorphic curves
for asymptotically cylindrical J

Erkao Bao†

In this paper, we provide a bound for the generalized Hofer energy
of punctured J-holomorphic curves in almost complex manifolds
with asymptotically cylindrical ends. As an application, we prove
a version of Gromov’s Monotonicity Theorem with multiplicity.
Namely, for a closed symplectic manifold (M,ω′)1with a compat-
ible almost complex structure J and a ball B in M, there exists
a constant � > 0, such that any J-holomorphic curve ũ passing
through the center of B for k times (counted with multiplicity) with
boundary mapped to ∂B has symplectic area

´
ũ−1(B)

ũ∗ω′ > k�,

where the constant � depends only on (M,ω′, J) and the radius
of B. As a consequence, the number of times that any closed J-
holomorphic curve in M passes through a point is bounded by a
constant depending only on (M,ω′, J) and the symplectic area of
ũ. Here J is any ω′−compatible smooth almost complex structure
on M . In particular, we do not require J to be integrable.

1. Introduction

Hofer energy is introduced in [10] for J-holomorphic curves in symplectiza-
tion of contact manifolds, and is generalized in [5] for J-holomorphic curves
in the “almost complex manifolds with cylindrical ends”. Here “cylindrical”
means that the almost complex structure J is invariant under translation.
Hofer energy plays an essential role in the study of J-holomorphic curves in
Symplectic Field Theory mainly because of the following two properties: (A)
the asymptotic behavior of a J-holomorphic curve in a noncompact sym-
plectic manifold can be controlled by requiring its Hofer energy to be finite,

1Following the notation in [5] we save ω for something else.
†The author is partially supported by the research fellowship scheme of the Chi-

nese University of Hong Kong.
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and hence a uniform Hofer energy bound gives a Symplectic Field Theory
type of compactification of moduli spaces of J-holomorphic curves; on the
other hand, (B) a uniform Hofer energy bound can be obtained by speci-
fying the behavior the J-holomorphic curves at infinity and bounding their
symplectic areas (see [5, 10]). In [2] the notion of Hofer energy and Property
(A) are further generalized to include J-holomorphic curves in “almost com-
plex manifolds with asymptotically cylindrical ends”. Here “asymptotically
cylindrical” means that the difference between the almost complex structure
J and a translation invariant one is exponentially small. In this paper, we
prove Property (B) in this setting. Property (A) and property (B) together
imply the expected useful compactness results in Symplectic Field Theory.

One of the main advantages of this generalization is that the asymptot-
ically cylindrical J arises naturally. As an application, we prove a version
of Gromov’s Monotonicity Theorem with multiplicity2, namely for a closed
symplectic manifold (M,ω′) with a compatible almost complex structure J
and a ball B in M, there exists a constant � > 0, such that any J-holomorphic
curve ũ passing through the center of B k times (counted with multiplicity)
with the boundary mapped to ∂B has symplectic area

´
ũ−1(B) ũ

∗ω′ > k�,

where the constant � depends only on (M,ω′, J) and the radius of B.
The inequality k < 1

�

´
ũ−1(B) ũ

∗ω′ is closely related to a question asked
in [6], where they study J-holomorphic curves with boundaries lying inside
two clean intersecting Lagrangian submanifolds, and prove that the num-
ber of “boundary switches” at the intersecting loci is uniformly bounded by
the Hofer Energy. Their proof in an essential way relies on the additional
requirement that the almost complex structure J is integrable near the in-
tersecting loci. They ask to what extent their results are still true without
assuming the integrability of J. In this paper, we provide a simple proof for
the closed version of their result for arbitrary J . Namely, the J-holomorphic
curves we consider in this paper have no boundaries. In this case, “boundary
switches” just means that the J-holomorphic curve passes a fixed point in
M. Furthermore, the analysis developed in [2] and this paper can be carried
out to include Lagrangians without difficulty (see for example section 5 in
[2] for the setup).
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2. Asymptotically cylindrical almost complex structure

Let V− be a smooth closed oriented manifold of dimension 2N − 1, and J
be a smooth almost complex structure on W− = R− × V− such that the
orientation of W− induced from J conincides with the one induced from the
standard of orientation of R− and the orientation of V−. Let R be the smooth
vector field on W− defined by R := J

(
∂
∂r

)
, and ξ be the subbundle of the

tangent bundle TW− defined by ξ(r,v) = (JTv ({r} × V−)) ∩ (Tv ({r} × V−)),
for (r, v) ∈W−. Then the tangent bundle TW− splits as TW− = R( ∂

∂r )⊕
R(R)⊕ ξ. Define the 1-forms λ and σ on W− respectively by

λ(ξ) = 0 λ

(
∂

∂r

)
= 0 λ (R) = 1,(1)

σ(ξ) = 0 σ

(
∂

∂r

)
= 1 σ (R) = 0.(2)

Let fs : W− →W− be the translation fs(r, v) = (r + s, v), for s � 0. We
call a tensor on W− translationally invariant if it is invariant under fs.

Definition 1. Under the above notations, J is called asymptotically cylin-
drical at negative infinity, if J satisfies (ACC1)–(ACC5):

• (ACC1) There exist a smooth translationally invariant almost complex
structure J−∞ on W− and constants Kl, δl > 0, such that restricted to
the region (−∞, r]× V−

(3) ‖J − J−∞‖l � Kle
δlr

for all r � 0 and l ∈ Z�0, where ‖·‖k is the Ck-norm defined by ‖ϕ‖k :=

sup
w

∑k
i=0

∣∣∇iϕ(w)
∣∣ and | · | is computed using a translationally invari-

ant metric gW− on W−, for example gW− = dr2 + gV− , and ∇ is the
corresponding Levi-Civita connection.

• (ACC2) i(R−∞)dλ−∞ = 0, where R−∞ := lim
s→−∞

f∗
sR, λ−∞ :=

lim
s→−∞

f∗
s λ, and both limits exist by (ACC1).
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• (ACC3) R−∞(r, v) ∈ Tv({r} × V−), i.e. R−∞ is tangent to the level
sets.

There exists a translationally invariant closed 2-form ω−∞ on W− such that

• (ACC4) i
(

∂
∂r

)
ω−∞ = 0 = i(R−∞)ω−∞.

• (ACC5) ω−∞|ξ−∞(·, J−∞·) is a metric on ξ−∞ := lim
s→−∞

f∗
s ξ.

When we say J is asymptotically cylindrical, we choose ω−∞ without men-
tioning.

Similarly, we could define the notion of J being asymptotically cylindrical
at positive infinity for W+ = R+ × V+.

Notice that this definition is equivalent to the definition given in [2]. In [2]
for J being asymptotically cylindrical, besides (ACC1)-(ACC5) we require
that there exists a 2-form ω on W− such that

• (a) i
(

∂
∂r

)
ω = 0 = i(R)ω.

• (b) ω|ξ(·, J ·) is a metric on ξ.

• (c) There exist constants Kl, δl � 0, such that

(4)
∥∥∥(ω − ω−∞)|(−∞,r]×V−

∥∥∥
l
� Kle

δlr

for all r � 0 and l ∈ Z�0.

Indeed, take

ω(x, y) =
1

2
[ω−∞(πξx, πξy) + ω−∞(Jπξx, Jπξy)]

for x, y ∈ T(r,v)W
−. Then (a) is satisfied. From (ACC1) and (ACC4) we can

see that (c) is satisfied. Notice

ω(Jx, Jy) =
1

2
[ω−∞(πξJx, πξJy) + ω−∞(JπξJx, JπξJy)]

=
1

2
[ω−∞(Jπξx, Jπξy) + ω−∞(πξx, πξy)]

= ω(x, y).
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Hence ω|ξ(·, J ·) is symmetric. For x ∈ ξ(r,v), we have

ω(x, Jx) =
1

2
[ω−∞(πξx, πξJx) + ω−∞(Jπξx, JπξJx)]

=
1

2
[ω−∞(x, Jx) + ω−∞(Jx,−x)]

= ω−∞(x, Jx).

Because that ω−∞(x, J−∞x) is positive on every nonzero vector x ∈ ξ−∞, we
have ω(·, J−∞·)|S > 
 > 0, for some 
, where

S :=
{
(x, y) ∈ ξ−∞ × ξ−∞| ‖x‖gW− = 1, y = J−∞x

}
.

When r is sufficiently negative, by (ACC1), (x, Jx) is uniformly close to S, for
all x∈ξ(r,v). Therefore, for 0 	= x∈ξ(r,v), we obtain ω(x, Jx) = ω−∞(x, Jx) >
0, and hence (b). Since we restrict ourselves to the behaviors of J-holomorphic
curves near infinity, for the purpose of simplifying the notations, we assume
ω satisfies (b) for r � 0.

Remark 2. (ACC1)-(ACC5) imply that (V−, ω−∞) is a stable hamiltonian
structure and (λ−∞, J−∞) is a framing of the stable hamiltonian structure
(See [7] for the definition of stable hamiltonian structure. In this paper we
do not need it).

Definition 3. We say an asymptotically cylindrical almost complex struc-
ture J is of contact type if ω−∞ = dλ−∞.

The following definition is the case considered in [4, 5, 10, 11].

Definition 4. We say J is a cylindrical almost complex structure, if J is
an asymptotically cylindrical almost complex structure and translationally
invariant.

By (ACC2) and (ACC3) we can see that R−∞ is a translationally in-
variant vector field on W− and it is tangent to each level set {r} × V−, so
we can view R−∞ as a vector field on V−. Let φt be the flow of R−∞ on V−,
i.e. φt : V− → V− satisfies d

dtφ
t = R−∞ ◦ φt. Then we have

d

dt
[(φt)∗λ−∞] = (φt)∗(iR−∞dλ−∞ + diR−∞λ−∞) = 0.

Thus φt preserves λ−∞ and hence ξ−∞. Similarly φt preserves ω−∞.



102 Erkao Bao

Let’s denote by P− the set of periodic trajectories, counting their multi-
ples, of the vector field R−∞ restricting to V−. Notice that any smooth family
of periodic trajectories from P− have the same period by Stokes’ Theorem
and (ACC2).

Definition 5. We say that an asymptotically cylindrical J is Morse-Bott if,
for every T > 0 the subset NT ⊆ V− formed by the closed trajectories from
P− of period T is a smooth closed submanifold of V−, such that the rank of
ω−∞|NT

is locally constant and TpNT = ker
(
dφT − Id

)
p
.

In this paper, we assume that J is Morse-Bott. The Morse-Bott condi-
tion is the condition assumed in [2] to guarantee Theorem 6, Lemma 7 and
Theorem 9. For the application in section 4, it is easy to check that this
requirement is satisfied.

Let Σ := R− × S1 be the half cylinder with standard almost complex
structure j, and ũ = (a, u) : (Σ, j)→ (W−, J) be a J-holomorphic curve, i.e.
T ũ ◦ j = J(ũ) ◦ T ũ. The ω-energy and λ-energy of ũ are defined as follows
respectively

Eω(ũ) =

ˆ
Σ
ũ∗ω,

Eλ(ũ) = sup
φ∈C

ˆ
Σ
ũ∗(φ(r)σ ∧ λ),

where C = {φ ∈ C∞(R−, [0, 1])|
´ 0
−∞ φ(x)dx = 1}, and λ and σ are defined

as in (1) and (2). The Hofer energy of ũ is defined by

E(ũ) = Eω(ũ) + Eλ(ũ).

Let’s equip R− × S1 with coordinate (s, t). Here we view S1 as R/Z. It
is easy to check that ũ∗ω and ũ∗(φ(r)σ ∧ λ) are non-negative multiples of
the volume form ds ∧ dt on R− × S1. Actually,

(5) ũ∗ω = ω(πξũs, J(ũ)πξũs)ds ∧ dt,

where πξ is the projection from TW− = R( ∂
∂r )⊕ R(R)⊕ ξ to ξ, and

(6) ũ∗(φ(r)σ ∧ λ) = φ(a)
[
σ(ũs)

2 + λ(ũs)
2
]
ds ∧ dt.

The non-negativity is the main reason that we choose the Hofer energy
in this form.



On Hofer energy of J-holomorphic curves 103

The following theorem is one of the most important theorems in [4, 5, 10,
11] for the case when J is cylindrical, and it is proved in the asymptotically
cylindrical setting in [2].

Theorem 6. Suppose that J is an asymptotically cylindrical almost com-
plex structure on W− = R− × V−. Let ũ = (a, u) : R− × R/Z→W− be a J-
holomorphic curve with finite Hofer energy. Suppose that the image of ũ is
unbounded in W−. Then there exists a periodic orbit γ of R−∞ of period |T |
with T 	= 0, such that

lim
s→−∞

u(s, t) = γ(Tt)(7)

lim
s→−∞

a(s, t)

s
= T(8)

in C∞(S1).

On the other hand, we have

Lemma 7. Suppose that J is an asymptotically cylindrical almost com-
plex structure on W− = R− × V−, and ũ = (a, u) : R− × R/Z→W− is a J-
holomorphic curve. Suppose that there exits a periodic orbit γ of R−∞ of
period |T | such that

lim
s→−∞

a(s, t) = −∞,

lim
s→−∞

u(s, t) = γ(Tt).

Then

lim
s→−∞

a(s, t)

s
= T,

and Hofer energy E(ũ) <∞.

Proof. This follows immediately from the proof of Theorem 2 in [2]. Namely,
from the assumption, we could derive that the convergence in (7) and (8) is
exponentially fast. Then it follows by definition and direct calculation that
E(ũ) <∞. �

Remark 8. Theorem 6 and Lemma 7 also hold for W+.
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3. Almost complex manifolds with asymptotically
cylindrical ends

Now we introduce the notion of almost complex manifolds with asymptoti-
cally cylindrical ends.

Let (E, J) be a 2N dimensional noncompact almost complex manifold,
and W± be an open subset containing the positive (negative) end of E.
Assume that W± is diffeomorphic to R± × V±, where V± is a 2N − 1 dimen-
sional closed manifold. Assume that there exists a J-compatible symplectic
form ω′ on E, and that J |W± is an asymptotically cylindrical almost com-
plex structure at positive (negative) infinity, then we say (E, J) is an almost
complex manifold with asymptotically cylindrical positive (negative) ends.

Let ũ be a J-holomorphic map from a possibly punctured Riemann sur-
face (Σ, j) to (E, J), and then we define for a � 0,

Esymp,a(ũ) =

ˆ
ũ−1(E\W a

+

⋃
W a
−)

ũ∗ω′,

where W a
+ := (a,+∞)× V+ ⊂W+, and W a

− := (−∞,−a)× V− ⊂W−.

Eω(ũ) =

ˆ
ũ−1(W+)

ũ∗ω +

ˆ
ũ−1(W−)

ũ∗ω,

Eλ(ũ) = sup
φ∈C+

ˆ
ũ−1(W+)

ũ∗(φ(r)σ ∧ λ) + sup
φ∈C−

ˆ
w−1(W−)

ũ∗(φ(r)σ ∧ λ),

where

C+ =

{
φ ∈ C∞(R+, [0, 1])|

ˆ
φ = 1

}
,

C− =

{
φ ∈ C∞(R−, [0, 1])|

ˆ
φ = 1

}
,

and
Ea(ũ) = Esymp,a(ũ) + Eω(ũ) + Eλ(ũ).

If lim
a→+∞

Esymp,a(ũ) is finite, we define

Esymp(ũ) = lim
a→+∞

Esymp,a(ũ)

and
E(ũ) = Esymp(ũ) + Eω(ũ) + Eλ(ũ).
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To compactify the moduli space of J-holomorphic curves, we need to in-
clude holomorphic buildings (see [5]). There is no difference between almost
complex manifolds with cylindrical ends and almost complex manifolds with
asymptotically cylindrical ends when it comes to the definition of holomor-
phic buildings and the topology of the moduli space of holomorphic buildings.
We also have the expected compactness theorem for the latter case.

Theorem 9. ([5] for cylindrical case; [2]) For any a � 0, the moduli space
of stable holomorphic buildings with uniformly bounded Hofer energy Ea,
whose domains have a fixed number of arithmetic genus and a fixed number
of marked points, is compact.

The following theorem shows that in the contact case Hofer energy Ea(ũ)
can be uniformly bounded by the Symplectic area Esymp,a(ũ) and the periods
of the periodic orbits of R±∞ that ũ converges to at infinity (compare to 9.2
in [5]).

Theorem 10. Suppose (E, J) is an almost complex manifold with asymp-
totically cylindrical ends of contact type. There exist positive constants C,C ′,
and a such that for any finitely punctured Riemann surface (Σ, j) and any
non-constant J-holomorphic curve ũ : Σ→ E which converges to periodic
orbits γ±’s of R±∞ around the punctures of Σ, we have

Ea(ũ) � C

(
2
∑ˆ

γ∗+λ+∞ −
∑ˆ

γ∗−λ−∞

)
+ C ′Esymp,a(ũ),

where the summations are taken over all the periodic orbits γ±’s of R±∞ to
which ũ converges respectively.

The proof of this theorem is given in the appendix. Roughly speaking, it
follows from Stokes’ theorem.

4. An application to closed symplectic manifolds with a
compatible J

Now we would like to apply the previous results to study the moduli space
of J-holomorphic curves passing through a fixed point in a closed symplectic
manifold. This generalizes some results in [3].

Let M be a closed smooth symplectic manifold of dimension 2N with
symplectic form ω′, and J be a compatible almost complex structure. For
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a sufficiently small neighborhood U of p ∈M, there exists a Darboux coor-
dinate chart ϕ : U → B(O, ε) ⊆ CN such that ϕ(p) = O, ϕ∗J |O = i|O and
ϕ∗ωst = ω′, where O is the origin, B(O, ε) :=

{
z ∈ CN

∣∣ |z| < ε
}

and i is
the standard complex structure on CN , and ωst :=

i
2

∑n
k=1 dzk ∧ dz̄k =∑n

k=1 dxk ∧ dyk is the standard symplectic structure on CN . We identify
B(O, ε)\O with W− := R− × S2N−1 via the map ψ(z) = (log |z| − log ε, z

|z|).
Let us simplify the notation (ψ ◦ ϕ)∗ J by J when there is no confusion.
This gives (M\p, J) the structure of an almost complex manifold with one
asymptotically cylindrical negative end.

Indeed, we define ξ, R, and λ as before. Then λ−∞ := lim
s→−∞

f∗
s λ = Π∗λst,

where

λst =
1

2

N∑
k=1

(xkdyk − ykdxk)

∣∣∣∣∣
S2N−1

is the standard contact 1-form on the unit sphere S2N−1 ⊆ CN , and Π :
R− × S2N−1 → S2N−1 is the projection. We choose ω−∞ = dλ−∞.

Notice that R−∞ := lim
s→−∞

f∗
sR restricted to S2N−1 is exactly the stan-

dard Reeb vector field on S2N−1, so we can see that J is Morse-Bott.
Let (Σ, j) be a Riemann surface with finitely many punctures and ũ :

Σ→M\p be a J-holomorphic curve, i.e. J(ũ) ◦ T ũ = T ũ ◦ j.
We say a puncture q of Σ is removable if around q, ũ converges to a

point in M\p. Otherwise, we say q is non-removable. To clarify the relations
between different concepts we state the following lemma.

Lemma 11. Suppose that all the punctures of Σ are non-removable. Then
the following statements are equivalent.

1) ũ converges to some Reeb orbits of R−∞ at negative infinity around
the punctures of Σ.

2) Ea(ũ) is finite for all a � 0.

3) Ea(ũ) is finite for some a � 0.

4) lim
a→+∞

Esymp,a(ũ) is finite.

5) If we view ũ as a map from Σ to M, then ũ extends smoothly over S,
where S is the smooth Riemann surface associated to Σ.

Proof. It is obvious that (2)⇐⇒ (3). Lemma 7 says (1) =⇒ (3). From The-
orem 6 and Removable Singularity Theorem, we get (3) =⇒ (1). (1) =⇒ (4)
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follows from direct calculation. (4) =⇒ (5) is true by the Removable Singu-
larity Theorem. Finally, (5) =⇒ (1) is guaranteed by Theorem B3 in [14]. �
Assuming any of the (1)-(5) is true, then by (4) and (5) we have

Esymp(ũ) = lim
a→+∞

Esymp,a(ũ) = lim
a→+∞

ˆ
ũ−1(E\W a

−)
ũ∗ω′ =

ˆ
S
ũ∗ω′ < +∞.

Thus, E(ũ) = Esymp(ũ) + Eω(ũ) + Eλ(ũ) is well defined.
The multiplicity of a Reeb orbit γ is the degree of γ as a cover of a simple

Reeb orbit. For each non-removable punctures q of Σ, we can associate a
positive integer which is the multiplicity of the corresponding Reeb orbit
that ũ converges to around q.

Let ũ be a non-constant J-holomorphic curve from a smooth Riemann
surface (S, j) to M. By the Carleman Similarity principle, we know ũ−1(p)
is discrete, and hence finite. Let (Σ, j) be the punctured Riemann surface
(S\ũ−1(p), j). Now ũ can be viewed as a J-holomorphic curve from Σ to
M\p. This means that the condition (4) in Lemma 11 is satisfied, so we have
(1)-(5). An easy modification of the proof of Theorem 10 leads to the next
theorem.

Theorem 12. (Gromov’s Monotonicity Theorem with multiplicity) For a
closed symplectic manifold (M,ω′) with a compatible almost complex struc-
ture J, there exists a constant r0 > 0 and a function �(r) > 0 such that for
any point p ∈M, and any J-holomorphic curve ũ from a Riemann surface
(with boundary) S mapped to M that passes through the point p for k times
(counted with multiplicity), and satisfies ũ(∂S) ∩Br(p) = ∅, for 0 < r < r0,
the following is true. ˆ

ũ−1(Br(p))
ũ∗ω′ > k�(r),

where Br(p) is a ball of radius r centered at p inside M.

The proof of Theorem 12 is given in the appendix. Now it follows imme-
diately that

Corollary 13. There exists a constant C > 0 depending only on (M,ω, J)
such that for any Riemann surface (S, j) and any non-constant J-holomorphic
curve ũ : S→M passing through a point p for k times, we have k�CEsymp(ũ).

3Theorem B is stated for the case of a J-holomorphic strip with Lagrangian
boundary condition, but it is easy to see that it is also true in this closed case.
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Remark 14. After the submission of the arXiv version 1 of this paper, we
were informed that Corollary 13 could also be derived from Corollary 3.6
and the remarks below Corollary 3.6 in [8]. It is very interesting to see that
the methods used in [8] and this paper are quite different. In [8] the technics
from minimal surfaces is used, and a stronger result than Theorem 12 is
achieved. In particular, [8] implies that �(r) is proportional to r2. While,
in this paper, we view M\p as a manifold with asymptotically end, and
Theorem 12 follows roughly from Stokes’ Theorem immediately. (Also see
[3] for a slightly different proof.) However, using this method it is not clear
why �(r) is proportional to r2.

Let Mg(M,J,Q) be the moduli space of stable J-holomorphic curves ũ
in M with genus g and Esymp(ũ) � Q. From Corollary 13 and Theorem 9,
we can compactify Mg(M,J,Q) by including holomorphic buildings (See [3]
for more discussions).

It will be very interesting and useful to generalize the results in this paper
by replacing the fixed point p with an almost complex submanifold.

5. Appendix: Proof of Theorem 10 and Theorem 12

For convenience let us introduce the following terminology.

Definition 15. We say that a 2−form Δ defined on (−∞,−R]× V− is
J-positive (or non-negative), if for a sufficiently large R, Δ is positive (or
non-negative) on any J-complex planes of TW−R := T ((−∞,−R]× V−) . In
other words, Δ(x, Jx) > 0 (or � 0), for all x ∈ TW−R.

Definition 16. We say that a 2−form Δ defined on (−∞,−R]× V− is J-
positively bounded away from 0, if inf Δ(x, Jx) > 0, where the infimum is
taken over all the x ∈ TW−R. with norm ‖x‖gW− = 1 (Recall that gW− is a
translational invariant metric).

Proof. (Theorem 10) Let us deal with the negative end W− first.
For any R > 0, we pick −r ∈ [−2R,−R] such that −r is a regular value of

r ◦ ũ, where r : W− → (−∞, 0) is the projection map. Denote A := ũ−1((−∞,
−r]× V−) ⊆ Σ and B1 := ũ−1({−r} × V−). Let Â be the oriented blow up
of A around all the punctures of A, i.e. Â = A �B2 with B2 := �S1 being
the disjoint union of circles introduced by the oriented blow up. Hence we
have ∂Â = B1 �B2. We choose the orientation of B1 to be the boundary
orientation from Â, while we choose the orientation of B2 to be the reverse
orientation of the boundary orientation from Â.
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For x ∈ TW− = R( ∂
∂r )⊕ R(R−∞)⊕ ξ−∞, we can write x as x =

dr(x) ∂
∂r + λ(x)R−∞ + πξ−∞x. Then for any constants P,Q > 0, we have

[Pdλ−∞ +Qdr ∧ λ−∞] (x, J−∞x)

= Pdλ−∞(πξ−∞x, J−∞πξ−∞x) +Q [dr(x)]2 +Q [λ(x)]2 .

Because dλ−∞(·, J−∞·) defines a metric on ξ−∞, we get Pdλ−∞ +Qdr ∧
λ−∞ is J−∞−positively bounded away from 0. Denote

S :=
{
(x, y) ∈ TW− × TW−| ‖x‖gW− = 1, y = J−∞x

}

and

T−R :=
{
(x, y) ∈ TW−R × TW−R| ‖x‖gW− = 1, y = Jx

}
.

Let Δ be the smooth map TW− × TW− → R defined by applying Pdλ−∞ +
Qdr ∧ λ−∞. The fact that Pdλ−∞ +Qdr ∧ λ−∞ is J−∞−positively bounded
away from 0 means that Δ|S > 
 > 0 for some enough small 
. By (ACC1)
there exists R large enough, such that Δ|T−R

> 1
2
 > 0. Therefore, we get

that Pdλ−∞ +Qdr ∧ λ−∞ is J-positively bounded away from 0.
Since J − J−∞ is exponentially small by (ACC1), there exist constants

C1, κ1 > 0 such that

(9) |dλ−∞(x, (J − J−∞)x)| � 1

2
C1e

κ1r,

for all x ∈ TW−R with ||x||gW− = 1.
From now on let us pick gW− to be

〈x, y〉gW− = (dr ∧ λ−∞ + dλ−∞) (x, J−∞y)

for convenience. Notice that by (ACC1) again, for all x ∈ TW−R with ||x||gW−
= 1, we get

(dr ∧ λ−∞ + dλ−∞) (x, Jx)(10)
= (dr ∧ λ−∞ + dλ−∞) (x, J−∞x)

+ (dr ∧ λ−∞ + dλ−∞) (x, (J − J−∞)x)

� ‖x‖gW− −K0e
δ0r

>
1

2
.
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Hence (9) and (10) imply

[dλ−∞ + C1e
κ1r (dr ∧ λ−∞ + dλ−∞)] (x, Jx)

> dλ−∞(x, J−∞x) + dλ−∞(x, (J − J−∞)x) +
1

2
C1e

κ1r

� dλ−∞(x, J−∞x)

� 0,

where the last inequality comes from the fact that dλ−∞ is J−∞−non-
negative. Hence

dλ−∞ + C1e
κ1r (dr ∧ λ−∞ + dλ−∞)

is J-positive, so is

dλ−∞ +
C1e

κ1r

1 + C1eκ1r
dr ∧ λ−∞.

Similarly, by varying C1 and κ1 if necessary, we can get that

|dr ∧ λ−∞(x, (J − J−∞)x)| � 1

2
C1e

κ1r,

for all x ∈ TW−R with ||x||gW− = 1. As before, we have

[dr ∧ λ−∞ + C1e
κ1r (dr ∧ λ−∞ + dλ−∞)] (x, Jx)

> dr ∧ λ−∞(x, J−∞x) + dr ∧ λ−∞(x, (J − J−∞)x) +
1

2
C1e

κ1r

� dr ∧ λ−∞(x, J−∞x)

� 0.

This implies
dr ∧ λ−∞ + C1e

κ1r (dr ∧ λ−∞ + dλ−∞)

is J-positive, so is

dr ∧ λ−∞ +
C1e

κ1r

1 + C1eκ1r
dλ−∞.

From Equation (4) and the fact ω−∞ = dλ−∞, we get ω − dλ−∞ is ex-
ponentially small. Because J − J−∞ is also exponentially small, by varying
C1 and κ1 if necessary, we can get that

(11) |(ω − dλ−∞) (x, Jx)| � 1

2
C1e

κ1r,

for all x ∈ TW−R with ||x||gW− = 1.
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Therefore, by (4) and (10) we have

ω(x, Jx) � dλ−∞(x, Jx) + C1e
κ1r (dr ∧ λ−∞ + dλ−∞) (x, Jx).

When restricted to J-complex planes in TW−R for large R, we get

ω � dλ−∞ + C1e
κ1r (dr ∧ λ−∞ + dλ−∞)(12)

� (1 + C1e
κ1r)

(
dλ−∞ +

C1e
κ1r

1 + C1eκ1r
dr ∧ λ−∞

)

� C2

(
dλ−∞ +

C1e
κ1r

1 + C1eκ1r
dr ∧ λ−∞

)
,

where C2 = 1 + C1e
−κ1R < 2.

Similarly, for all x ∈ TW−R with ||x||gW− = 1, we have

(13) |(σ ∧ λ− dr ∧ λ−∞) (x, Jx)| � 1

2
C1e

κ1r.

Hence when restricted to J-complex planes in TW−R for large R, by (10)
and (13) we have

σ ∧ λ � dr ∧ λ−∞ + C1e
κ1r (dr ∧ λ−∞ + dλ−∞)(14)

� C2

(
C1e

κ1r

1 + C1eκ1r
dλ−∞ + dr ∧ λ−∞

)
.

On the other hand, since ω + σ ∧ λ is J - positively bounded away from
0, when restricted on J-complex planes in TW−R for large R, we get

|dr ∧ λ−∞| � |dr ∧ λ−∞ − σ ∧ λ|+ σ ∧ λ(15)
� C1e

κ1r (ω + σ ∧ λ) + σ ∧ λ

� C1e
κ1rω + C2σ ∧ λ

and

|dλ−∞| � |dλ−∞ − ω|+ ω(16)
� C1e

κ1r (ω + σ ∧ λ) + ω

� C2ω + C1e
κ1rσ ∧ λ,

by modifying C1 and κ1.
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Therefore, we have

ˆ
ũ−1(W−)

ũ∗ω(17)

�
ˆ
Â
ũ∗ω +

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ω

� C2

ˆ
Â
ũ∗

(
dλ−∞ +

C1e
κ1r

1 + C1eκ1r
dr ∧ λ−∞

)
+

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ω

= C2

ˆ
B1

ũ∗λ−∞ − C2

ˆ
B2

ũ∗λ−∞

+ C2

ˆ
Â
ũ∗

(
C1e

κ1r

1 + C1eκ1r
dr ∧ λ−∞

)
+

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ω.

While,

∣∣∣∣
ˆ
Â
ũ∗

(
C1e

κ1r

1 + C1eκ1r
dr ∧ λ−∞

)∣∣∣∣(18)

�
ˆ
Â

∣∣∣∣ũ∗
(

C1e
κ1r

1 + C1eκ1r
dr ∧ λ−∞

)∣∣∣∣
� C1

ˆ
Â
|ũ∗eκ1r (C1e

κ1rω + C2σ ∧ λ)|

� 1

4
Eω(ũ|W−) + C1C2κ

−1
1 e−κ1r

ˆ
Â
ũ∗

(
κ1e

κ1(r+r)σ ∧ λ
)
.

Since
´ −r
−∞ κ1e

κ1(r+r)dr = 1, we have

ˆ
Â
ũ∗

(
κ1e

κ1(r+r)σ ∧ λ
)
� Eλ(ũ).

Therefore, by picking R sufficiently large, we can make r sufficiently large,
and then (18) implies

(19)
∣∣∣∣
ˆ
Â
ũ∗

(
C1e

δ1r

1 + C1eδ1r
dr ∧ λ−∞

)∣∣∣∣ � 1

4
Eω(ũ|W−) +

1

4
Eλ(ũ|W−).
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Let Φ(r) =
´ r
−∞ φ(t)dt, for φ ∈ C, and then we get

ˆ
ũ−1(W−)

ũ∗ (φ(r)σ ∧ λ)(20)

�
ˆ
Â
ũ∗ (φ(r)σ ∧ λ) +

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ (φ(r)σ ∧ λ)

� C2

ˆ
Â
ũ∗

(
φ(r)dr ∧ λ−∞ +

C1e
κ1r

1 + C1eκ1r
φ(r)dλ−∞

)

+

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ (φ(r)σ ∧ λ)

� C2

ˆ
Â
ũ∗d(Φ(r)λ−∞)− C2

ˆ
Â
ũ∗(Φ(r)dλ−∞)

+ C2C1

ˆ
Â
ũ∗

(
eκ1r

1 + C1eκ1r
φ(r)dλ−∞

)

+

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ (φ(r)σ ∧ λ)

� C2

ˆ
Â
ũ∗d(Φ(r)λ−∞)

− C2

{ˆ
Â
ũ∗

[
Φ(r)dλ−∞ +Φ(r)

C1e
κ1r

1 + C1eκ1r
dr ∧ λ−∞

]}

+ C2C1

ˆ
Â
ũ∗

(
Φ(r)

eκ1r

1 + C1eκ1r
dr ∧ λ−∞

)

+ C2C1

ˆ
Â
ũ∗

(
eκ1r

1 + C1eκ1r
φ(r)dλ−∞

)

+

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ (φ(r)σ ∧ λ)

� C2

ˆ
Â
ũ∗d(Φ(r)λ−∞) + C2C1

ˆ
Â
ũ∗

(
Φ(r)

eκ1r

1 + C1eκ1r
dr ∧ λ−∞

)

+ C2C1

ˆ
Â
ũ∗

(
eκ1r

1 + C1eκ1r
φ(r)dλ−∞

)

+

ˆ
{Σ\A}∩ũ−1(W )

ũ∗ (φ(r)σ ∧ λ)

= C2

ˆ
B1

ũ∗(Φ(−r)λ−∞) + C2C1

ˆ
Â
ũ∗

(
Φ(r)

eκ1r

1 + C1eκ1r
dr ∧ λ−∞

)

+ C2C1

ˆ
Â
ũ∗

(
eκ1r

1 + C1eκ1r
φ(r)dλ−∞

)

+

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ (φ(r)σ ∧ λ) ,
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where the last inequality follows from the fact that Φ(r)dλ−∞ +Φ(r) C1eκ1r

1+C1eκ1r dr ∧
λ−∞ is J- positive.

While we have

∣∣∣∣C2C1

ˆ
Â
ũ∗

(
Φ(r)

eκ1r

1 + C1eκ1r
dr ∧ λ−∞

)∣∣∣∣(21)

� C2C1

ˆ
Â
ũ∗ |eκ1rdr ∧ λ−∞|

� 1

4
Eω(ũ|W−) +

1

4
Eλ(ũ|W−),

and

∣∣∣∣C2C1

ˆ
Â
ũ∗

(
eκ1r

1 + C1eκ1r
φ(r)dλ−∞

)∣∣∣∣(22)

� C2C1

ˆ
Â
ũ∗eκ1r (C2ω + C1e

κ1rσ ∧ λ)

� 1

4
Eω(ũ|W−) +

1

4
Eλ(ũ|W−).

Therefore, from (17), (19), (20), (21), and (22), we get

E(ũ|W−) := Eω(ũ|W−) + Eλ(ũ|W−)

� 2C2

ˆ
B1

ũ∗λ−∞ − C2

ˆ
B2

ũ∗λ−∞ +
3

4
Eω(ũ|W−) +

3

4
Eλ(ũ|W−)

+

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ω +

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ (φ(r)σ ∧ λ) .

Thus,

E(ũ|W−) � 4C2

(
2

ˆ
B1

ũ∗λ−∞ −
ˆ
B2

ũ∗λ−∞

)
+ 4

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ω(23)

+ 4

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ (φ(r)σ ∧ λ) .

Now we define a function τ by τ(r) = R+r
R−r for −r � r � −R. Since τ(−r) = 1

and τ(−R) = 0, by Stokes’ Theorem we get
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∣∣∣∣∣∣
ˆ

B1

ũ∗λ−∞

∣∣∣∣∣∣ =
∣∣∣∣∣
ˆ
{Σ\A}∩ũ−1([−r,−R]×V−)

ũ∗d (τ(r)λ−∞)

∣∣∣∣∣
�
ˆ
{Σ\A}∩ũ−1([−r,−R]×V−)

|ũ∗d (τ(r)λ−∞)|

� C3

ˆ
{Σ\A}∩ũ−1([−r,−R]×V−)

ũ∗ω′(24)

� C3

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ω′(25)

where C3 is a constant depending on R, and the second inequality follows
from the fact that on any J-complex planes the symplectic form ω′ is positive.
For the same reason, by modifying C3 if necessary, we also have

(26)
ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ω � C3

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ω′

and

(27)
ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ (σ ∧ λ) � C3

ˆ
{Σ\A}∩ũ−1(W−)

ũ∗ω′.

Then (23), (25), (26), (27), and
´
{Σ\A}∩ũ−1(W−)

ũ∗ω′ � Esymp,2R(ũ) together
imply

(28) E(ũ|W−) � C4Esymp,2R(ũ)− 4C2

∑ˆ
γ∗−λ−∞,

where C4 = 8(C2 + 1)C3 is a constant independent of ũ, and the summation
is taken over all the periodic orbits γ−’s of R−∞ to which ũ converges at
negative infinity.

For positive end W+, the estimates are very similar. The only difference
comes from the fact that the orientation of V+ agrees with the boundary
orientation of {+∞}× V+, and the orientation of V− disagrees with the
boundary orientation of {−∞} × V−. One can easily adjust the above es-
timates to W+ case. For example, in (17) the main part is

´
Â ũ∗dλ−∞ =´

B1
ũ∗λ−∞ −

´
B2

ũ∗λ−∞, and in W+-version we replace it by
ˆ
ũ−1(Â+)

ũ∗dλ+∞ =

ˆ
B2+

ũ∗λ+∞ −
ˆ
B1+

ũ∗λ+∞,
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where B1+ := ũ−1({r+} × V+) and B2+ := ũ−1({+∞}× V+); in (20) the
main part is

´
Â ũ∗d(Φ(r)λ−∞) =

´
B1

ũ∗(Φ(−r)λ−∞), and in W+-version we
replace it by

ˆ
ũ−1(Â+)

ũ∗d(Φ+(r)λ+∞) �
ˆ
B2+

ũ∗λ+∞ −
ˆ
B1+

ũ∗(Φ+(r+)λ+∞).

Then a similar estimate as in (25) shows that all the error terms including
−
´
B1+

ũ∗λ+∞ and −
´
B1+

ũ∗(Φ+(r+)λ+∞) can be bounded by a multiple of
Esymp,2R(ũ). Indeed, one can show that

E(ũ|W+
) = Eω(ũ|W+

) + Eλ(ũ|W+
)(29)

� 8C2

∑ˆ
γ∗+λ+∞ + C4Esymp,2R(ũ),

where the summations are taken over all the periodic orbits γ+’s of R+∞ to
which ũ converges at positive infinity.

By (29) and (28), we have Ea(ũ) � C
(
2
∑ ´

γ∗+λ+∞ −
∑ ´

γ∗−λ−∞
)
+

C ′Esymp,a(ũ), where C = 4C2 and C ′ = 2C4. �
Proof. (Theorem 12) We view (M\p, J) as an almost complex manifold with
asymptotically cylindrical negative end W− as described in the beginning of
Section 3, with W− biholomorphic to Br(p)\{p}. Notice that all the estimates
before formula (24) in the proof of Theorem 10 are local, i.e. inside W−. Thus,
we get

E(ũ|W−) � C4

ˆ
ũ−1(W−)

ũ∗ω′ − 4C2

∑ˆ
γ∗−λ−∞

= C4

ˆ
ũ−1(W−)

ũ∗ω′ − 4C2(2kπ).

From the fact that E(ũ|W−) > 0, we get
ˆ
ũ−1(Br(p))

ũ∗ω′ =
ˆ
ũ−1(W−)

ũ∗ω′ >
4C2(2kπ)

C4
.

Now we show that the constant 4C2(2π)
C4

can be chosen to be independent of p.
For each point p ∈M, we can choose a Darboux chart whose size is uniformly
bounded away from 0 and the almost complex structure J at p coincides
with the standard one defined by ∂

∂x �→ ∂
∂y and ∂

∂y �→ − ∂
∂x . Identifying this

neighborhood minus p with the half infinite cylinder as described in the
beginning of Section 4, we get (ACC1)-(ACC5) are satisfied with constants
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Kl bounded by the C l-norm of J and the norm of the Nijenhuis tensor of J
(We only need K0 in this theorem). Since we assume that M is compact, and
ω′ and J are smooth, we can make Kl independent of p. Following the proofs
of Theorem 10 and Theorem 12 carefully, we can see that the constant C2

can be chosen to be close to 1 and C4 can be bounded using K0. Therefore,
we can make 4C2(2π)

C4
independent of p. �

References

[1] M. Audin and J. Lafontaine, Holomorphic curves in symplectic geome-
try, Progress in Mathematics (Birkhauser Boston), Volume 117, (1994).

[2] E. Bao, J-holomorphic curves in manifolds with asymptotically cylindri-
cal ends, arXiv:1207.4855, (2012).

[3] E. Bao, Holomorphic curves at one point, arXiv:1211.5732v1, (2012)

[4] F. Bourgeois, A Morse-Bott approach to Contact Homology, Ph.D. Dis-
sertation, Stanford University, (2002).

[5] F. Bourgeois, Ya. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder,
Compactness results in symplectic field theory, Geom. Topol., (2003), 7,
799–888.

[6] K. Cieliebak, T. Ekholm, and J. Latschev, Compactness for holomor-
phic curves with switching Lagrangian boundary conditions, Journal of
symplectic geometry, (2010), vol. 8, no. 3, pp. 267–298.

[7] Y. Eliashberg, Symplectic field theory and its applications, International
Congress of Mathematicians, Vol. I, 217–246, Eur. Math. Soc., (2007).

[8] J. Fish, Estimates for J-curves as submanifolds, arXiv:0912.4445,
(2010).

[9] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian surgery and
metamorphosis of pseudo-holomorphic polygons.

[10] H. Hofer, Pseudoholomorphic curves in symplectisation with applications
to the Weinstein conjecture in dimension three, Inv. Math., (1993), 114,
515–563.

[11] H. Hofer, K. Wysocki, and E. Zehnder, The asymptotic behavior of a
finite energy plane, Mathematics Subject Classification, (1991), 58G,
53C15.



118 Erkao Bao

[12] H. Hofer, K. Wysocki, and E. Zehnder, Properties of pseudoholomorphic
curves in symplectisations IV: Asymptotics with degeneracies, Contact
and Symplectic Geometry, Cambrige University Press (1996).

[13] Y.-G. Oh, Higher jet evaluation transversality of J-holomorphic curves,
J. Korean Math. Soc., 48 (2011), No. 2, pp. 341–365.

[14] J. Robbin and D. Salamon, Asymptotic behaviour of holomorphic strips,
Annales de l’Institute Poincare - Analyse Nonlineaire, 18 (2001), 573–
612.

Mathematics Department, UCLA
Los Angeles, CA, 90095, USA
E-mail address: baoerkao@gmail.com

Received August 20, 2013


