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The Geometry of bk Manifolds

Geoffrey Scott

Let Z be a hypersurface of a manifold M . The b-tangent bundle
of (M,Z), whose sections are vector fields tangent to Z, is used to
study pseudodifferential operators and stable Poisson structures
on M . In this paper we introduce the bk-tangent bundle, whose
sections are vector fields with “order k tangency” to Z. We describe
the geometry of this bundle and its dual, generalize the celebrated
Mazzeo-Melrose theorem of the de Rham theory of b-manifolds, and
apply these tools to classify certain Poisson structures on compact
oriented surfaces.

1. Introduction

Melrose developed the b-calculus to study pseudodifferential operators on
noncompact manifolds ([Me], [G]). Considering the manifold in question as
the interior of a manifold M with boundary, he constructed the b-tangent
bundle bTM whose sections are vector fields on M tangent to ∂M , and the b-
cotangent bundle bT ∗M , whose sections are differential forms with a specific
kind of order-one singularity at ∂M . The authors of [GMP2] applied these
ideas to study global Poisson geometry; in this context, bTM and bT ∗M are
defined on a manifold M with a distinguished hypersurface Z rather than
on a manifold with boundary1, and sections of bTM (and bT ∗M) are vector
fields (and differential forms) tangent to Z (or singular at Z). In this paper,
we generalize this construction so that vector fields and differential forms
with higher order tangency and higher order singularity may also be realized
as sections of bundles.

The construction of these bundles in Section 2 is subtle: although we
wish to begin by defining a bk-vector field as a vector field with an “order

The author was partially supported by NSF RTG grant DMS-1045119.
The author was partially supported by NSF RTG grant DMS-0943832.
1These competing perspectives can be reconciled by viewing a boundary of a

manifold M as a hypersurface in the double of M . In this paper, we follow the
precedent of [GMP2] and define our bundles over manifolds with distinguished
hypersurfaces.
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k tangency to Z,” there is no straightforward way to rigorously define this
notion. To do so, we must include in the definition of a bk-manifold the data
of a (k − 1)-jet of Z. We then define a bk-vector field as a vector field v
such that Lv(f) vanishes to order k for functions f that represent the jet
data, the bk-tangent bundle kTM as the vector bundle whose sections are
bk-vector fields, and the bk-cotangent bundle kT ∗M as its dual. When k = 1,
these are the familiar constructions from [Me] and [GMP2].

In Section 3 we define a differential on the complex of bk-forms (sections
of ∧∗(kT ∗M)) and prove a Mazzeo-Melrose type theorem for the cohomology
kH∗(M) of this complex.

(1) kHp(M) ∼= Hp(M)⊕ (
Hp−1(Z)

)k
However, this isomorphism is non-canonical. By defining the Laurent Series
of a bk-form, which expresses a bk-form as a sum of simpler b�-forms (for � ≤
k), we show that there is a way to construct the isomorphism in Equation 1

so that the
(
Hp−1(Z)

)k
summand of a bk-cohomology class is canonically

defined.
In Section 4, we study bk-forms of top degree. We show that the asymp-

totic behavior near Z of a bk-form of top degree can be encoded by a polyno-
mial, and we define the Liouville volume of the form to be the constant term
of this polynomial — this definition agrees with the definition of Liouville
volume studied in [R] when k = 1. We can also take the Liouville volume
of a degree p bk-form along any p dimensional submanifold of M . Citing
Poincaré duality, we define the smooth part of a bk cohomology class [ω] to
be the de Rham cohomology class whose integrals along p-cycles equal the
Liouville volumes of ω along these cycles. Using these tools, we realize the
abstract isomorphism in Equation 1 with an explicit canonical map. The
image of a bk-form under this map is its Liouville-Laurent decomposition.

In Section 5, we define a symplectic bk-form as a closed bk-form of de-
gree two having full rank (when k = 1, these are also called log symplectic
forms), and prove the classic Moser theorems in the bk category. We also
revisit the classification theorems of stable Poisson structures on compact
oriented surfaces from [R] and [GMP2]. The author of [R] classifies stable
Poisson structures using geometric data, while the authors of [GMP2] use
cohomological data; in this paper, we show how the Liouville-Laurent de-
composition relates the geometric data to the cohomological data.

This paper ends in Section 6 with an example of how the theory of bk-
manifolds can answer questions from outside bk-geometry. Let Π be a Poisson
structure on a manifold M whose rank differs from dim(M) precisely on a
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hypersurface Z. We say that Π is of bk-type if it is dual to a symplectic bk-
form for some choice of jet data. We give a condition for two such Poisson
structures on a compact surface to be isomorphic in terms of the summands
in their respective Liouville-Laurent decompositions.

Acknowledgements. I thank both Daniel Burns and Victor Guillemin
for helpful discussions, and the latter for introducing me to Melrose’s b-
calculus. I also thank the anonymous referee for several helpful comments.
Also, to the staff of 1369 Coffee House who tolerated my near-residence of
their establishment while preparing this paper — thank you. Finally, I am
grateful to Eva Miranda and Ana Rita Pires for catching a mistake in an
early draft of this work.

2. The bk tangent bundle

All manifolds, maps, and vector fields in this paper are assumed to be
smooth. We recall the basic definitions from the theory of b-manifolds. These
ideas were introduced by Melrose (e.g. [Me]); see [GMP2] for a exposition
of these concepts which emphasizes the ideas relevant to this paper.

Definition 2.1. A b-manifold is a pair (M,Z) of a smooth oriented man-
ifold M and an oriented hypersurface Z ⊆ M such that Z = {f = 0} for
some global defining function f : M → R. A b-map from (M,Z) to (M ′, Z ′)
is a map ϕ : M → M ′ such that ϕ−1(Z ′) = Z and ϕ is transverse to Z ′. A
b-vector field on (M,Z) is a vector field v on M such that vp ∈ TpZ for all
p ∈ Z. The b-tangent bundle bTM on (M,Z) is the vector bundle whose
sections are the b-vector fields on (M,Z). The b-cotangent bundle bT ∗M
is the dual bundle of bTM .

Sections of ∧∗(bT ∗M) are differential forms on M with a certain kind
of order-one singularity at Z. To construct bundles of forms with higher-
order singularities, we wish to first define a bk-vector field as a vector field
“tangent to order k on Z.” However, the next example shows that the naive
definition of being “tangent to order k on Z” (as a vector field v such that for
a defining function f of Z, Lv(f) vanishes to order k along Z) is ill-defined.

Example. On (M,Z) = ({(x, y) ∈ R
2}, {y = 0}), two defining functions for

Z are given by y and exy. The vector field v = ∂
∂x satisfies

Lv(y) = 0 and Lv(e
xy) = exy
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so the order of vanishing of the Lie derivative of a defining function depends
on the choice of defining function.

This prevents us from emulating the [GMP2] paper mutatis mutandis;
we must endow our b-manifolds with the data of a (k − 1)-jet along Z to
make possible the definition of a bk-vector field.

Definition 2.2. Let i : Z → M be the inclusion of a hypersurface into a
manifold, let C∞ be the sheaf of smooth functions on M , and let I ⊆ C∞ be
the ideal sheaf of Z. A germ at Z is a global section of the sheaf i−1(C∞),
and a k-jet at Z is a global section of the sheaf i−1(C∞/Ik+1).

We will write Jk to denote the k-jets at Z, and I to denote the global
sections of i−1(I). We write [f ]k to denote the k-jet represented by a smooth
function f defined in a neighborhood of Z. Also, if j is a k-jet, we write f ∈ j
if f is a smooth function in a neighborhood of Z that represents j, and f ∈ Ik

if f represents an element of Ik (equivalently, if [f ]k−1 = 0).

Definition 2.3. For k ≥ 1, a bk-manifold is a triple (M,Z, j) where M is
an oriented manifold, Z ⊆ M is an embedded oriented hypersurface, and j
is an element of Jk−1 that can be represented by a positively oriented local
defining function y for Z (that is, if ΩZ is a positively oriented volume form
of Z, then dy ∧ ΩZ is positively oriented for M). A bk-map from (M,Z, j)
to (M ′, Z ′, j′) is a map ϕ : M → M ′ such that ϕ−1(Z ′) = Z, ϕ is transverse
to Z ′, and ϕ∗(j′) = jZ .

If j ∈ Jk−1 for k > 1, and some f ∈ j is a positively oriented local defin-
ing function for Z, then every f ∈ j is a positively oriented local defining
function for Z. When k = 1, the jet data is vacuous, so the definition of a
b1-manifold agrees with that of a b-manifold.

Lemma 2.4. Given an embedded hypersurface Z ⊆ M , a function f ∈
C∞(M), and a vector field v on M satisfying vp ∈ TpZ for all p ∈ Z, the jet
[Lv(f)]

k−1 depends only on [f ]k−1.

Proof. If [f2]
k−1 = [f1]

k−1, then f2 − f1 = ykg for a local defining function
y and some smooth g. For a vector field v satisfying vp ∈ TpZ,

[Lv(f2)]
k−1 = [Lv(f1) + ykLv(g) + kgyk−1Lv(y)]

k−1 = [Lv(f1)]
k−1. �

Lemma 2.4 shows that the following definition makes sense.
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Definition 2.5. A bk-vector field on (M,Z, jZ) is a vector field v with
vp ∈ Tp(Z) for p ∈ Z such that for any f ∈ jZ , Lv(f) ∈ Ik.

To check whether a vector field v is a bk-vector field, it suffices (by
Lemma 2.4) to check that Lv(f) ∈ Ik for just one local defining function
f ∈ jZ .

Example. On the bk-manifold (Rn, Z = {xn = 0}, [xn]k−1), a vector field
v =

∑n
i=1 vi

∂
∂xi

is a bk-vector field iff Lv(xn) ∈ Ik, which occurs iff vn ∈ Ik.

That is, the bk-vector fields are precisely those of the form

φnx
k
n

∂

∂xn
+

n−1∑
i=1

φi
∂

∂xi

for smooth functions φi.

On a bk-manifold (M,Z, j), each p /∈ Z is contained in a coordinate
neighborhood (U, {x1, . . . , xn}) on which the vector fields { ∂

∂xi
} generate the

space of bk-vector fields over U as a free C∞(U)-module. For points p ∈ Z,
Example 2 shows that on a coordinate neighborhood (U, {x1, . . . , xn}) of p
with xn ∈ j, the vector fields{

∂

∂x1
, . . . ,

∂

∂xn−1
, xkn

∂

∂xn

}
generate the space of bk-vector fields over U as a C∞(U)-module. Conse-
quently, bk-vector fields form a projective C∞ module over M , as well as
a Lie subalgebra of the algebra of vector fields on M , so we can realize
bk-vector fields as the sections of a bundle on M .

We call this bundle kTM the bk-tangent bundle. The dual of this bun-
dle kT ∗M is the bk-cotangent bundle. When k = 1 we recover the classic
definitions of a b-vector field and the b-(co)tangent bundle. We write kΩp(M)
for sections of ∧p(kT ∗M). Elements of kΩp(M) are differential bk-forms.
Similar to the b-manifold case, there are maps between the (co)tangent bun-
dles of M and the bk-(co)tangent bundles of M .

(2)
k

TM � TM kT ∗M ←↩ T ∗M

The bundle kTM is a Lie algebroid over M with bracket given by the stan-
dard Lie bracket of vector fields, and anchor map given by Map 2.
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In a coordinate neighborhood (U, {x1, . . . , xn}) of p ∈ Z with xn ∈ j,
although x−k

n dxn is not defined on Z as a section of T ∗X, its pairing with any
bk-vector field extends smoothly over Z, so x−k

n dxn is an everywhere-defined
section of kT ∗M . The bk-cotangent bundle is trivialized by the sections

{
dx1, . . . , dxn−1

dxn
xkn

}
.

By writing any bk-form using this trivialization, and collecting all terms
containing x−k

n dxn, the following result follows.

Remark 2.6. Let ω be a bk-form of degree p > 0, and let y ∈ j be any
local defining function for Z. There are α ∈ Ωp−1 and β ∈ Ωp such that

(3) ω =
dy

yk
∧ α+ β

The choice of α and β are not unique.

3. De Rham theory and Laurent series of bk-forms

3.1. The residue map

Although the forms α and β appearing in Equation 3 are not uniquely
defined by ω, we will show that i∗(α) is independent of the choice of y, α
and β, where i : Z → M is the inclusion.

Proposition 3.1. On a bk-manifold, if f1, f2 ∈ j are local defining func-
tions for Z, then in a neighborhood U of Z

df1

fk
1

=
df2

fk
2

+ β

for some β ∈ Ω1(U).

Proof. The case k = 1 was covered in [GMP2], so we assume k ≥ 2. Because
[f1]

k−1 = [f2]
k−1, we have f1 = f2(1 + gfk−1

2 ) for a smooth function g. Note
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that (1 + gfk−1
2 )−1 = (1 + g′fk−1

2 ) for g′ = −g(1 + gfk−1
2 )−1. Then

df1

fk
1

= (1 + g′fk−1
2 )k−1df2

fk
2

+ (k − 1)g(1 + g′fk−1
2 )k

df2
f2

+ β′

=
df2

fk
2

+ (k − 1)g′
df2
f2

+ (k − 1)g
df2
f2

+ β′′ =
df2

fk
2

+ β

where

β′ = (1 + g′fk−1
2 )kdg

β′′ = β′ +
k−1∑
i=2

(
k − 1

i

)
(g′fk−1

2 )i
df2

fk
2

+ (k − 1)g
∑
i=1

k

(
k

i

)
(g′fk−1

2 )i
df2
f2

β = β′′ − (k − 1)gg′fk−1
2

df2
f2 �

Corollary 3.2. Given a decomposition of ω ∈ kΩ(M) as in Equation 3,
i∗(α) is independent of the decomposition.

Proof. Let α1 and α2 be the α terms of two such decompositions. Setting
the decompositions equal and applying Proposition 3.1 shows that y−kdy ∧
(α2 − α1) is a smooth form for some local defining function y ∈ j, so i∗(α2 −
α1) = 0. �

This proves the well-definedness of the map

res : kΩp(M) → Ωp−1(Z)(4)

dy

yk
∧ α+ β �→ i∗(α)

3.2. Viewing a b�-form as a bk-form

For any 0 < � ≤ k, the natural map Jk−1 → J �−1 allows us to canonically en-
dow a bk-manifold (M,Z, j) with a b�-manifold structure. Defining 0TM :=
TM and 0T ∗M := T ∗M for notational convenience, a bk-manifold structure
on M defines 2k + 2 different bundles �TM , �T ∗M over M for 0 ≤ � ≤ k.
A bk-vector field will also be a b�-vector field for the induced b�-manifold
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structure. This induces maps

(5) kTM → �TM �T ∗M → kT ∗M ,

the latter of which can be described explicitly in terms of the decompositions
from Equation 3 as

dy

y�
∧ α+ β �→ dy

yk
∧ (yk−�α) + β.

3.3. The bk-de Rham complex

We define a differential d : kΩp(M) → kΩp+1(M) by

d

(
dy

yk
∧ α+ β

)
=

dy

yk
∧ dα+ dβ.

This definition does not depend on the decomposition. Indeed, d(ω) is the
unique extension of the image of the classic de Rham differential d(ω

∣∣
M\Z) ∈

Ωp(M\Z) ∼= kΩp(M\Z) over Z. The bk-de Rham complex is (kΩp(M), d),
with kΩ0(M) := C∞(M), and the bk-cohomology kH∗(M) is its cohomol-
ogy.

Proposition 3.3. The sequence below, with g given by Map (5), is exact

(6) 0 → k−1Ωp(M)
g→ kΩp(M)

res→ Ωp−1(Z) → 0.

Moreover, for any closed α ∈ Ωp−1(Z) and collar neighborhood (y, π) : U →
R× Z of Z with y ∈ j, there is a closed form ω ∈ res−1(α) such that in a
neighborhood of Z,

ω =
dy

yk
∧ π∗(α).

Proof. The only nontrivial part of the exactness claim is that ker(res) ⊆
im(g). The kernel of res consists precisely of those ω that admit some de-
composition ω = y−kdy ∧ α+ β in a neighborhood of Z for which i∗(α) = 0.
Locally around Z, T ∗M splits as T ∗Z + 〈dy〉, so we may replace α by a form
that vanishes on Z without changing ω. Then y−1α is a smooth form, and

dy

yk−1
∧ α

y
+ β

extends over M to a bk−1 form in g−1(ω). Therefore, Sequence 6 is exact.
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Given a closed α ∈ Ωp−1(Z) and a collar neighborhood (y, π) : U →
(−R,R)× Z of Z with y ∈ j, let ỹ ∈ C∞(M) be a function that agrees with
y on (−R/2, R/2)× Z and is locally constant outside U . Then the bk-form
ω = ỹ−kdỹ ∧ π∗(α) extends to a closed bk-form on M that vanishes outside
U and satisfies res(ω) = α. In (−R/2, R/2)× Z,

ω =
dy

yk
∧ π∗(α).

�

The short exact sequence from Proposition 3.3 is a chain map of complexes,
hence induces a long exact sequence

· · · → k−1H∗(M) → kH∗(M) → H∗−1(Z) → k−1H∗+1(M) → · · ·

By Proposition 3.3, the maps kH∗(M) → H∗−1(Z) are surjective, so the
long exact sequence is a collection of short exact sequences

0 → k−1Hp(M) → kHp(M) → Hp−1(Z) → 0(7)

Using induction on k, this proves the following proposition.

Proposition 3.4. The bk-cohomology of a bk-manifold (M,Z, j) satisfies

kHp(M) ∼= Hp(M)⊕ (
Hp−1(Z)

)k
.

So far, the isomorphism in Proposition 3.4 is non-canonical. In Sub-
section 3.4 and Section 4, we will find canonical maps from kHp(M) to
(Hp−1(Z))k and Hp(M), respectively, which will make the isomorphism
canonical.

3.4. The Laurent series of a closed bk-Form

Definition 3.5. A Laurent Series of a closed bk-form ω is an expression
for ω in a neighborhood of Z of the form

ω =

k∑
i=1

dy

yi
∧ α−i + β

where y ∈ j is a positively oriented local defining function and each α−i is
closed.
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Remark 3.6. Every closed bk-form has a Laurent series. In fact, Propo-
sition 3.3 shows that given a collar neighborhood (y, π) : U → (−R,R)× Z
of Z with y ∈ j, every closed bk-form ω can be written (in a neighborhood
of Z) as the sum of a closed bk−1 form and y−kdy ∧ π∗(res(ω)). By apply-
ing induction on the bk−1 form, we arrive at a Laurent series of the form
ω =

∑k
i=1 y

−idy ∧ π∗(γ−i) + β for closed forms γ−i on Z.

Example. Consider the bk-manifold (S1 × S1, Z1 ∪ Z2, [y]
k−1) pictured in

Figure 1.

U1 U2

Z1 Z2

y

R

0

Figure 1: A bk-manifold with disconnected Z

where a collar neighborhood U = U1 ∪ U2 of Z is shaded. Let {(θi, y)} be
coordinates on Ui. Then dθ1 (respectively dθ2) extends trivially over U2

(respectively U1) to a smooth form on all of U . Let ω be a degree two bk-form
on M . On U , it admits a decomposition ω = y−kdy ∧ (fdθ1 + gdθ2) + β for
smooth functions f, g and a smooth form β. Let π : U → Z be the vertical
projection, and for −k ≤ i ≤ −1, let

fi :=
1

(k + i)!

∂k+if

∂yk+i

∣∣∣∣
Z

gi :=
1

(k + i)!

∂k+ig

∂yk+i

∣∣∣∣
Z

.

Then

f = π∗(f−k) + π∗(f−k+1)y + · · ·+ π∗(f−1)y
k−1 + f̃

g = π∗(g−k) + π∗(g−k+1)y + · · ·+ π∗(g−1)y
k−1 + g̃
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for f̃ , g̃ ∈ Ik. Then ω has a Laurent series

ω =

k∑
i=1

y−idy ∧ (π∗(fi)dθ1 + π∗(gi)dθ2) + β′

where β′ is smooth form.

Proposition 3.7. Let ω =
∑k

i=1
dy
yi ∧ α−i + β be a Laurent series of the

closed bk-form ω. The map

kHp(M) → (Hp−1(Z))k(8)

[ω] �→ ([i∗(α−1)], [i
∗(α−2)], . . . , [i

∗(α−k)])

is independent of the choice of Laurent series.

Proof. By Proposition 3.1, we may assume that all our Laurent series are
written with respect to the same local defining function y ∈ j. When k = 1,
then for ω ∈ 1Ωp(M), the class [i∗(α−1)] is the image of [ω] in the map
appearing in Equation 7, and therefore depends only on [ω].

For k > 1, assume the proposition is true for k − 1, and let ω ∈ kΩp(M).
Consider Laurent series of two representatives of [ω],

ω0 =

k∑
i=1

dy

yi
∧ α−i + β and ω1 =

k∑
i=1

dy

yi
∧ α′

−i + β′

Both [i∗(α−k)] and [i∗(α′
−k)] are the image of [ω] in Equation 7, so are equal.

If we can show that

k−1∑
i=1

dy

yi
∧ α−i + β and

k−1∑
i=1

dy

yi
∧ α′

−i + β′

are cohomologous bk−1-forms, then we will be done by induction. That is,
we must show that

(9) ω1 − dy

yk
∧ α′

−k −
(
ω0 − dy

yk
∧ α−k

)
is an exact bk−1-form. Because [ω0] = [ω1], there is a bk-form η with dη =
ω1 − ω0. Moreover, because α−k − α′

−k is a closed form with i∗(α−k − α′
−k)

exact, the relative Poincaré lemma implies that it has a primitive μ. Then
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η + dy
yk ∧ μ is a primitive for the form (9). However, this primitive is a bk-

form; to prove that (9) is exact as a bk−1-form (and in doing so complete the
induction), observe that the map k−1Hp(M) → kHp(M) from Sequence 7 is
injective, so any bk−1-form exact as a bk-form is also exact as a bk−1-form. �

Definition 3.8. Given a bk-form ω, the image of [ω] under Map 8 is the
Laurent Decomposition of [ω].

The result below strengthens Theorem 3.4.

Theorem 3.9. The sequence below, with g, f described by Maps 5 and 8
respectively, is exact.

(10) 0 → Hp(M)
g→ kHp(M)

f→ (Hp−1(Z))k → 0.

Proof. The map g is a composition of the inclusions �−1Hn(M) → �Hn(M)
appearing in the short exact sequence (7) for � ≤ k. Therefore, it itself is an
inclusion. The proof that f is surjective follows from the same trick used to
create a preimage of a closed α ∈ Ωp−1(Z) in the proof of Proposition 3.3.
Exactness at the middle is straightforward. �

4. Volume forms on a bk-manifold

Let (M,Z, j) be a compact bk-manifold, and let ω ∈ kΩdim(M)(M). Because
ω “blows up” along Z, we cannot expect its integral to be finite. If we remove
from M a neighborhood of Z, then the integral of ω over the remainder is
finite, but obviously depends on the choice of neighborhood. In this section,
we extract a useful invariant of ω by studying the behavior of this integral as
the size of the removed neighborhood shrinks. The results from this section
apply even to non-compact manifolds; so that we may state these results in
full generality, we begin by introducing notation for compactly supported
de Rham theory.

Definition 4.1. The subset kΩp
c(M) ⊆ kΩp(M) consists of bk-forms with

compact support. They form a subcomplex of the bk-de Rham complex, the
cohomology of which is denoted kH∗

c (M)
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4.1. Liouville volume of a bk-form

Definition 4.2. Let (M,Z, j) be an n-dimensional bk-manifold. Given ω ∈
kΩn

c (M), ε > 0 small, and a local defining function y ∈ j, define Uy,ε =
y−1([−ε, ε]) and voly,ε(ω) =

∫
M\Uy,ε

ω

In [R], the author proves that for k = 1, limε→0voly,ε(ω) converges and
is independent of y. When k > 1, this limit will not necessarily converge to
a number, but rather to a polynomial in ε−1.

Theorem 4.3. For a fixed [ω] ∈ kHn
c (M) on a bk-manifold (M,Z, j) with

Z compact, there is a polynomial P[ω] for which

(11) lim
ε→0

(
P[ω]

(
ε−1

)− voly,ε(ω)
)
= 0

for any y ∈ j and any ω representing [ω].

The proof of Theorem 4.3 will use the following lemma.

Lemma 4.4. If f(x) : R → R satisfies [f ]k−1 = [x]k−1 (where the bracket
denotes the jet with respect to the hypersurface {0} of R) and has inverse
h : (−ε, ε) → R, then for all i < k

(12)
1

xi
− 1

(−x)i
+

1

h(−x)i
− 1

h(x)i

is a smooth function that vanishes at 0.

Proof. Because [f ]k−1 = [x]k−1, f = (x+ g(x)xk) for some smooth g. Then
because h(x) vanishes at 0 and x = f(h(x)) = h(x) + g(h(x))h(x)k, it follows
that [h]k−1 = [x]k−1, so h(x) = x+ g̃xk for some smooth g̃. Then

s(x) :=
1

xi
− 1

h(x)i
=

(1 + g̃xk−1)i − 1

xi(1 + g̃xk−1)i
=

(
∑i

j=1

(
i
j

)
g̃jxj(k−1)−i)

(1 + g̃xk−1)i

is a smooth function. Because Equation 12 equals s(x)− s(−x), it is a
smooth odd function, hence vanishes at zero. �
Proof. (of Theorem 4.3) We first prove that there is a polynomial P[ω] that
satisfies Equation 11 for a specific y and ω, then we prove that the polyno-
mial is independent of y, then that the polynomial vanishes for exact ω (so
depends only on the bk-cohomology class of ω).
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Fix a local defining function y ∈ j and a closed collar neighborhood
(y, π) : U → [−R,R]× Z of Z. Since ω is compactly supported,

∫
M\U ω <

∞, so to prove the existence of P[ω] it suffices to construct a polynomial for
the case M = U . By Remark 3.6, there exists a Laurent series of ω of the
form ω =

∑k
i=1

dy
yi ∧ π∗(α−i) + β where α−i ∈ Ωn−1(Z). Then

voly,ε(ω) =

∫
U\Uy,ε

k∑
i=1

dy

yi
∧ π∗(α−i) +

∫
U\Uy,ε

β.

Applying Fubini’s theorem (and cancelling log terms), we find that the poly-
nomial

P (t) =

⎛⎜⎝∫
U
β +

k∑
i=2

i even

(−2R1−i

i− 1

)∫
Z
α−i

⎞⎟⎠+

k∑
i=2

i even

(
2

i− 1

∫
Z
α−i

)
ti−1

satisfies Equation 11 for this specific choice of y and ω.
To show that this polynomial does not depend on our choice of y, let

U be a tubular neighborhood (y, π) : U → [−R,R]× Z, with y ∈ j, and let
h ∈ j be another local defining function. It suffices to show that

lim
ε→0

(volh,ε(ω)− voly,ε(ω)) = 0

for the case M = U . To do so, let yh,z : R → R be the function, defined near
zero, inverse to h

∣∣
[−R,R]×{z}. That is, for sufficiently small ε, h(yh,z(ε), z) = ε

and Uh,ε = {(y, z) ∈ [−R,R]× Z | yh,z(−ε) ≤ y ≤ yh,z(ε)}. Then

volh,ε(ω)− voly,ε(ω) =

(∫
U\Uh,ε

−
∫
U\Uy,ε

)
ω

=

(∫
U\Uh,ε

−
∫
U\Uy,ε

)
β +

∫
Z

(
log

∣∣∣∣yh,z(−ε)

yh,z(ε)

∣∣∣∣+ log

∣∣∣∣ ε

−ε

∣∣∣∣)π∗(α−1)+

+

k∑
i=2

1

1− i

∫
Z

(
yh,z(−ε)1−i − (yh,z(ε))

1−i + ε1−i − (−ε)1−i
)
π∗(α−i).

Applying Lemma 4.4 to the functions y and h shows that the limit as ε → 0
of the above expression is zero, which proves that the volume polynomials
for y and h are equal.

To show that the polynomial associated to any exact form is trivial,
suppose ω is exact and let η =

∑k
i=1 y

−idy ∧ π∗η−i + βη be a Laurent series
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of a primitive of ω. Then∫
M\Uy,ε

ω =

∫
∂(M\Uy,ε)

η =

∫
∂(M\Uy,ε)

βη

which approaches 0 as ε → 0. �

Definition 4.5. The polynomial P[ω] described in Theorem 4.3 is the vol-
ume polynomial of [ω]. Its constant term P[ω](0) is the Liouville volume
of [ω].

Given a bk-form ω of degree p < dim(M) and a compact p-dimensional
submanifold Y ⊆ M transverse to Z, the pullback of ω will be a bk-form of
top degree for the induced bk-structure on Y , and therefore has a Louville
volume. By Poincaré duality, this remark inspires the definition of the smooth
part of a bk-form.

Definition 4.6. Let [ω] ∈ kHp(M). The image of [ω] under the map

kHp(M) → (Hn−p
c (M))∗ ∼= Hp(M)(13)

[ω] �→ (
[η] �→ P[ω∧η](0)

)
is its smooth part [ωsm] ∈ Hp(M).

If [ω] is smooth (that is, [ω] ∈Hn(M) ⊆ kHn(M)), then P[ω∧η](0) equals∫
M ω ∧ η, so [ω] = [ωsm]. This shows that Equation 13 splits the short ex-
act sequence from Equation 10, which yields a canonical isomorphism that
realizes the (abstract) isomorphism from Proposition 3.4.

ϕ : kHn(M) ∼= Hn(M)⊕ (
Hn−1(Z)

)k
(14)

[ω] �→ ([ωsm], [α−1], . . . , [α−k])

Definition 4.7. Let ω be a bk-form of top degree. The Liouville-Laurent
decomposition of [ω] is its image under Equation 14, ([ωsm], [α−1], . . . , [α−k]).

The next proposition shows that taking the Liouville-Laurent decompo-
sition of a bk-form commutes with taking its pullback under a bk-map.

Proposition 4.8. Let ϕ : (M,Z, j) → (M ′, Z ′, j′) be a bk-map, and let
[ω′]∈kHp(M ′) have Liouville-Laurent decomposition ([ω′

sm], [α
′−1], . . . , [α

′
−k]).

Then [ϕ∗(ω′)] has Liouville-Laurent decomposition

([ϕ∗(ω′
sm)], [ϕ

∣∣
Z

∗
(α′

−1)], . . . , [ϕ
∣∣
Z

∗
(α′

−k)]).



86 Geoffrey Scott

Proof. Let y′ ∈ j′, and iZ : Z → M , iZ′ : Z
′ → M ′ be the inclusions. By the

definition of a bk-map, y := ϕ∗(y′) represents j. Near Z ′, ω′ can be written
in the form ω′ =

∑k
i=1 y

′−idy′ ∧ π∗α′
−i + β′, and ϕ∗(ω) in the form ϕ∗(ω′) =∑k

i=1 y
−idy ∧ ϕ∗(π∗α′

−i) + ϕ∗(β′), and we see that [ϕ∗(ω′)] has Laurent de-
composition

([i∗Z(ϕ
∗(π∗α′

−1))], . . . , [i
∗
Z(ϕ

∗(π∗α′
−k))]) = ([ϕ

∣∣
Z

∗
(α′

−1)], . . . , [ϕ
∣∣
Z

∗
(α′

−k)]).

To prove [ϕ∗(ω′)sm] = [ϕ∗(ω′
sm)], we show that for all [η] ∈ Hn−p

c (M),

(15) P[ϕ∗(ω′)∧η](0) =
∫
M

ϕ∗(ω′
sm) ∧ η.

First, we introduce an auxiliary family of smooth closed differential forms
ω′
ε ∈ Ωp(M ′) with the property that the Liouville volume of ϕ∗(ω′) ∧ η can

be calculated in terms of the asymptotic behavior of
∫
M ϕ∗(ω′

ε) ∧ η instead of∫
M\Uy,ε

ϕ∗(ω′) ∧ η. For ε > 0 small, let fε : R → [0, 1] be a smooth function
such that

fε
∣∣
R\(−ε,ε)

= 1 and fε
∣∣
(−ε+exp(−ε−1),ε−exp(−ε−1))

= 0

and assume that fε varies smoothly with ε. Define

ω′
ε =

k∑
i=1

fε(y
′)
dy′

y′
∧ π∗α′

−i + β′

and observe that ω′
ε is closed and that

∫
M ϕ∗(ω′

ε) ∧ η approaches voly,ε(ϕ
∗(ω′)

∧ η) as ε → 0.
Next, recall that the pullback map in de Rham cohomology induces (by

Poincaré duality) a pushforward map in compactly supported cohomology;
we will use the notation ϕ∗η for a representative of the pushforward of
[η] ∈ Hn−p

c (M). Using this notation,

0 = limε→0

(
P[ϕ∗(ω′)∧η](ε−1)− voly,ε(ϕ

∗(ω′) ∧ η)
)

= limε→0

(
P[ϕ∗(ω′)∧η](ε−1)−

∫
M ′

ω′
ε ∧ ϕ∗η

)
= limε→0

(
P[ϕ∗(ω′)∧η](ε−1)− P[ω′∧ϕ∗η](ε

−1)
)

so

P[ϕ∗(ω′)∧η](0) =
∫
M ′

ω′
sm ∧ ϕ∗η =

∫
M

ϕ∗(ω′
sm) ∧ η

which proves Equation 15. �
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Although P[ω] depends only on [ω] and not on ω itself, it does depend
on j. That is, if ω is a volume form on M\Z and j, j′ are two jets for which
ω extends to a global bk-form, the terms appearing in P[ω] will depend on

whether j or j′ is used to define the bk-structure. However, the residue term
of P[ω] is unchanged — we study this in Section 6.

4.2. bk orientation

The notion of orientability of a smooth manifold generalizes in a natural
way to the bk-world.

Definition 4.9. A volume bk-form on a bk-manifold is a nowhere van-
ishing bk-form of top degree. A connected bk-manifold is bk-orientable if it
admits a volume bk-form, and a bk-orientation is a choice of one of the two
connected components of the space of volume bk-forms.

For example, if Z ⊆ M is a meridian of the torus S1 × S1, the cor-
responding b1-manifold is not b1-orientable even though M is orientable.
Given a volume bk-form ω, res(ω) is a smooth volume form on Z. In this
way, a bk-orientation on (M,Z, j) induces an orientation on Z which may or
may not agree with the orientation of Z given in the data of a bk-manifold.

Definition 4.10. Let ω be a volume bk-form on (M,Z, j). If the smooth
form res(ω) is positively oriented, we say that ω is a positively oriented
volume bk-form.

If two volume bk-forms ω0, ω1 are cohomologous, then [res(ω0)] and
[res(ω1)] are cohomologous volume forms on Z, hence induce the same ori-
entation on Z. This implies that ω0 and ω1 are in the same connected com-
ponent of ∧n(kT ∗

pM)\{0} for all p ∈ Z (and therefore, for all p ∈ M). There-

fore, cohomologous volume bk-forms induce the same bk-orientation on M .

5. Symplectic and Poisson geometry of bk-Forms

In this section we introduce the notion of a symplectic bk-form, prove Moser’s
theorems in the bk-category, classify symplectic bk-surfaces, and show how
the Liouville-Laurent decomposition of a b-symplectic form on a surface
reconciles a classification theorem from [GMP2] with one from [R].
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Definition 5.1. A symplectic bk-form on a bk-manifold is a closed de-
gree two bk-form having maximal rank at every p ∈ M . A symplectic bk-
manifold (M,Z, j, ω) is a bk-manifold (M,Z, j) with a symplectic bk-form ω.
A bk-symplectomorphism ϕ : (M,Z, j, ω) → (M ′, Z ′, jZ′ , ω′) is a bk-map
satisfying ϕ∗(ω′) = ω.

Theorem 5.2. (relative Moser’s theorem) If ω0, ω1 are symplectic bk-forms
on (M,Z, j) with Z compact, ω0

∣∣
Z
= ω1

∣∣
Z
, and [ω0] = [ω1], then there are

neighborhoods U0, U1 of Z and a bk-symplectomorphism ϕ : (U0, Z, j, ω0) →
(U1, Z, j, ω1) such that ϕ

∣∣
Z
= id.

Proof. Pick a local defining function y ∈ j and Laurent series of ω0, ω1

ω0 =

k∑
i=1

dy

yi
∧ α−i + β, ω1 =

k∑
i=1

dy

yi
∧ α′

−i + β′.

Then each i∗(α′
−i − α−i) ∈ Ω1(Z) is exact, and i∗(α′

−k − α−k) = i∗(β′ − β) =
0. By the relative Poincaré lemma there are primitives μi of (α

′
−i − α−i) and

μβ of (β′ − β) with μ−k

∣∣
Z
= μβ

∣∣
Z
= 0. Then ω1 − ω0 = dμ, where

μ =

k∑
i=1

dy

yi
∧ μ−i + μβ .

Let ωt = tω1 + (1− t)ω0, and observe that dωt/dt = dμ. By shrinking our
neighborhood around Z, we can assume that ωt has full rank for all t, giving a
pairing between bk-vector fields and degree one bk-forms. Because μ vanishes
on Z (since μ−k

∣∣
Z
= 0 and μβ

∣∣
Z
= 0), the vector field vt defined by Moser’s

equation ιvt
ωt = −μ is a bk-vector field that vanishes on Z, the time-one

flow of which is the desired bk-symplectomorphism. �

Theorem 5.3. (global Moser’s theorem) Let (M,Z, j) be a compact bk-
manifold, and ωt := tω1 + (1− t)ω0 a symplectic bk-form for t ∈ [0, 1], with
[ω0] = [ω1]. Then there is an isotopy ρt of bk-maps with ρ∗t (ωt) = ω0 for
t ∈ [0, 1].

Proof. Because dωt/dt = ω1 − ω0 is exact, there is a smooth bk-form μ such
that dμ = ω1 − ω0. Because ωt is a bk-form, it defines an pairing between bk-
vector fields and degree one bk-forms. Therefore, the vector field vt defined



The Geometry of bk Manifolds 89

by Moser’s equation

ιvt
ωt = −μ

is a bk-vector field, so its flow defines an isotopy ρt of b
k-maps with ρ∗t (ωt) =

ω0. �

In [R], the author classifies the space of stable Poisson structures on a
connected, compact surface in terms of geometric data. In [GMP2], the au-
thors demonstrate a correspondence between stable Poisson structures and
b-symplectic forms on a manifold, and classify b-symplectic forms on a con-
nected, compact surface in terms of their b-cohomology class. Proposition 5.4
exhibits a direct connection between the cohomological classification data
in [GMP2] and the geometric classification data in [R].

Proposition 5.4. Let [ω] = ([ωsm], [α−1]) be the Liouville-Laurent decom-
position of a positively oriented b-symplectic form on a connected compact
surface. Let {γr} be the oriented circles that constitute Z. Then the Liouville
volume of ω is

∫
M ωsm, and the period of the modular vector field on γr is∫

γr
α−1

Proof. The fact that the Liouville volume of ω equals
∫
M ωsm follows from

the definition of the smooth part of a bk-form. Let γi be a connected com-
ponent of Z. We can find a collar neighborhood

U = {(y, θ), |y| < R, θ ∈ [0, 1]/ ∼} R > 0

such that on U, ω = cdyy ∧ dθ for some c > 0, where dθ is a positively-oriented
volume form on Z. From [R], we know that the period of the modular vector
field is c, and we calculate that

∫
γi
α−1 =

∫
γi
cdθ = c. �

Theorem 5.5. Let ω0, ω1 be symplectic bk-forms on a compact connected
bk-surface (M,Z, j). The following are equivalent

1) There is a bk-symplectomorphism ϕ : (M,Z, j, ω0) → (M,Z, j, ω1).

2) [ω0] = [ω1]

3) The Liouville volumes of ω0 and ω1 agree, as do the numbers
∫
γr
α−i

for all connected components γr ⊆ Z and all 1 ≤ i ≤ k, where α−i are
the terms appearing in the Laurent decomposition of the two forms.
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Proof.

(1) ⇐⇒ (2): This follows from Theorem 5.3 in dimension 2, using the
fact that two cohomologous volume bk-forms induce the same bk-
orientation to show that the ωt appearing in Theorem 5.3 are non-
degenerate.

(2) ⇐⇒ (3): The cohomology class of a volume bk form is determined
by its Liouville-Laurent decomposition, which in turn is determined
by its Liouville volume and the integrals

∫
γr
α−i.

�

6. Symplectic and Poisson structures of bk type

When the authors of [GMP2] studied the Poisson structures dual to sym-
plectic b-forms, they found that b-symplectomorphisms are precisely Pois-
son isomorphisms of the dual Poisson manifolds. This observation does not
generalize to the bk case: although every symplectic bk-form is dual to a
Poisson bivector, not every Poisson isomorphism (with respect to this bivec-
tor) is realized by a bk-map. Similarly, if (M,Z, j, ω) and (M,Z, j′, ω′) are
two symplectic bk-manifolds, there may be a diffeomorphism of (M,Z) that
restricts to a symplectomorphism (M\Z, ω) → (M\Z, ω′) even if there is no
bk-symplectomorphism (M,Z, j, ω) → (M,Z, j′, ω′). In this section, we show
how to use bk-manifolds to prove statements about objects outside of the
bk-category. We begin by defining the notion of a Poisson (and symplectic)
structure of bk type — these are the Poisson (and symplectic) structures that
are dual to (or equal to) a symplectic bk-form for some choice of jet data.
Then we apply the theory of symplectic bk-forms to classify these structures
on compact connected surfaces.

Definition 6.1. Let Z be an oriented hypersurface of an oriented manifold
M . Let Π be a Poisson structure on M having full rank on M\Z, and let
ω ∈ Ω2(M\Z) be the symplectic form dual to Π

∣∣
M\Z . We say that Π and ω

are of bk type if there is some j ∈ Jk−1 for which (M,Z, j) is a bk-manifold
on which ω extends to a symplectic bk-form.

Remark 6.2. If Π is a Poisson structure of bk type on (M2n, Z) with dual
form ω, then there will be several distinct jets with respect to which ω is
a symplectic bk-form. For example, if j = [y] is one such jet and f : R → R

satisfies f(0) = 0 and f ′(0) > 0, then the jet j′ := [f ◦ y] defines exactly
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the same bk-(co)tangent bundles as j. As such, ω is a symplectic bk-form
with respect to both j′ and j. However, the condition of ωn being positively
oriented (as a volume bk-form in the sense of Definition 4.10) does not depend
upon the chosen jet. We say that Π (or ω) is a positively oriented Poisson
structure (or symplectic form) of bk type if ω extends to a positively oriented
volume bk-form for any choice of jet j for which ω extends to a bk form.

To study Poisson and symplectic structures of bk type, we must under-
stand how a bk-form behaves under diffeomorphisms of (M,Z) that are not
necessarily bk-maps. Of particular interest are diffeomorphisms of M that
restrict to (z, y) �→ (z, P (y)) in a collar neighborhood Z × R of Z, where P
is a polynomial.

Proposition 6.3. Let P be a polynomial with P (0) = 0 and P ′(0) > 0. Let
(M,Z, j) be a bk-manifold with positively oriented local defining function
y ∈ j, and let ϕ : M → M be a diffeomorphism given by id× P (y) in a collar
neighborhood (π, y) : U → Z × R of Z. Then

• If ω is a bk-form, then ϕ∗(ω) is also a bk-form on (M,Z, j).

• If [ω] has Liouville-Laurent decomposition ([ωsm], [α−1], . . . , [α−k]) and
[ϕ∗(ω)] has Liouville-Laurent decomposition ([ω′

sm], [α
′−1], . . . , [α

′
−k]),

then [ϕ∗(ωsm)] = [ω′
sm] and [α−1] = [α′−1].

Proof. In a collar neighborhood, let ω =
∑k

i=1 y
−idy ∧ π∗(α−i) + β be a

Laurent decomposition of ω. Then

(16) ϕ∗(ω) =
k∑

i=1

P ′(y)dy
P (y)i

∧ π∗(α−i) + ϕ∗β.

Notice that each term P ′(y)
P (y)i must have a Laurent series with no exponents

less than −i, so the first claim is proved by replacing each P ′(y)
P (y)i in Equa-

tion 16 with its Laurent series. To prove the second claim, first observe that
for i �= 1,

P ′(y)dy
P (y)i

= d

(
1

−i+ 1
P (y)−i+1

)
so the meromorphic function P ′(y)P (y)−i has no residue. For i = 1 the
function P ′(y)P (y)−1 has a Laurent series with principal part 1/y. There-
fore, by replacing the P ′(y)P (y)−i terms in Equation 16 with their Laurent
series in the variable y, we arrive at a Laurent series of ϕ∗(ω) that has



92 Geoffrey Scott

y−1dy ∧ π∗(α−1) as its residue term, proving that [α−1] = [α′−1]. To prove

that [ϕ∗(ωsm)] = [ω′
sm], let [η] ∈ kHn−p

c (M), where p is the degree of ω and
n = dim(M). It suffices to show that

(17) P[ϕ∗(ω)∧η](0) =
∫
M

ϕ∗(ωsm) ∧ η.

Observe that for ε > 0 small, ϕ(Uy,ε) = Uy,P (ε), so voly,ε(ϕ
∗(ω ∧ (ϕ−1)∗η)) =

voly,P (ε)(ω ∧ (ϕ−1)∗η)). Then letting

ω ∧ (ϕ−1)∗η =

k∑
i=1

dy

y
∧ π∗(α̃−i) + β̃

be a Laurent series of ω ∧ (ϕ−1)∗η,

voly,ε(ϕ
∗(ω) ∧ η)− voly,ε(ω ∧ (ϕ−1)∗η)

=

(∫
M\Uy,P (ε)

−
∫
M\Uy,ε

)
ω ∧ (ϕ−1)∗η

=

∫
Z

(∫ ε

P (ε)
−
∫ −ε

P (−ε)

)
k∑

i=1

dy

yi
π∗(α̃−i) +

(∫
M\Uy,P (ε)

−
∫
M\Uy,ε

)
β̃.

As ε → 0, this limit approaches an odd function of ε. This proves that
P[ϕ∗(ω)∧η](0) = P[ω∧(ϕ−1)∗η](0), from which Equation 17 follows. �

Lemma 6.4. Let (a−1, . . . , a−k) ∈ R
k with a−k > 0. There is a polynomial

P (y) =
∑

piy
i with p0 = 0 and p1 > 0 satisfying

k∑
i=1

a−i
P ′(y)
P (y)i

=
1

yk
+

a−1

y
+Q(y)

where Q(y) is a polynomial.

Proof. Recall from the proof of Proposition 6.3 that for any polynomial P
and i �= 1, the expression P−iP ′ has a Laurent series in y with trivial residue
term and no exponents less than −i. When i = 1, P−iP ′ has principal part
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y−1. Therefore, for any polynomial P ,

(18)

k∑
i=1

a−i
P ′

P i
=

k∑
i=2

b−i

yi
+

a−1

y
+Q(y)

for some b−i ∈ R and some polynomial Q(y). If P (y) = (a−k)
1/(1−k)y, then

a straightforward calculation shows that b−k = 1 in the expression above.
However, we wish to find a polynomial P such that not only does b−k = 1,
but (b−k, b−k+1, . . . , b−2) = (1, 0, . . . , 0). The proof will be inductive: assume
that we can pick P =

∑
piy

i so that P (0) = 0, P ′(0) > 0, and (b−k, b−k+1,
. . . , b−k+j−1) = (1, 0, . . . , 0) in Equation 18 — we aim to find a new P so
that P (0) = 0, P ′(0) > 0, (b−k, b−k+1, . . . , b−k+j) = (1, 0, . . . , 0). For t ∈ R

let P̃ = P + tP j+1. Then for a smooth function g,

k∑
i=1

a−i
P̃ ′

P̃ i
=

k∑
i=1

a−i
P ′

P i

(
1 + (j + 1− i)tpj1y

j + gyj+1
)

=
1

yk
+

k−j∑
i=2

b−i

yi
+

a−1

y
+Q(y)

+

k∑
i=1

a−i
P ′

P i

(
(j + 1− i)tpj1y

j + gyj+1
)
.

If we set t = −b−k+jp
k−j−1
1 /(a−k(j + 1− k)), the y−k+j term of the above

expression vanishes, completing the induction. �
The two results above are the ingredients we need to prove the main

theorem of this section.

Theorem 6.5. Let Z be an oriented hypersurface of a compact connected
oriented surface M . Let Π,Π′ be two positively oriented Poisson structures
of bk type on (M,Z), and ω, ω′ be the dual bk-symplectic forms (with respect
to possibly different bk-structures) with Liouville-Laurent decompositions

[ω] = ([ωsm], [α−1], . . . , [α−k]) [ω′] = ([ω′
sm], [α

′
−1], . . . , [α

′
−k]).

If [ω′
sm] = [ωsm] ∈ H2(M) and [α′−1] = [α−1] ∈ H1(Z), then there is a Pois-

son isomorphism ϕ : (M,Π) → (M,Π′).

Proof. Let j and j′ be the jets of Z with respect to which ω and ω′ respec-
tively are bk-forms with the described Liouville-Laurent decompositions, and
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let y ∈ j, y′ ∈ j′ be positively oriented local defining functions for Z. Let {γ�}
be the oriented circles that constitute the connected components of Z. If

ϕ : U� → R× S
1 = {(y, θ)} ϕ′ : U� → R× S

1 = {(y′, θ)}

are local coordinate charts for a collar neighborhood U� of γ�, then the map
(ϕ′)−1 ◦ ϕ is an orientation-preserving map in a neighborhood of γi, restricts
to the identity on γi, and pulls j′ back to j. As such, the collection of these
maps (one for each γ� ⊆ Z) defines a smooth map in a neighborhood of Z
that extends to a bk-diffeomorphism (M,Z, j) → (M,Z, j′). By replacing ω′

with its pullback under this bk-diffeomorphism and citing Proposition 4.8,
we may assume that ω, ω′ are bk-symplectic forms on the same bk-manifold
(M,Z, j), and that the Liouville-Laurent decomposititons of ω, ω′ with re-
spect to this bk structure are as described by Proposition 4.8.

Let π : U� = {(y, θ�)} → S1 be projection onto the second coordinate.
By Theorem 5.3, we may assume that

ω
∣∣
U�

=

k∑
i=1

dy

yi
∧ aiπ

∗(dθ�) + β0

where ai ∈ R and a−k > 0 (because Π,Π′ are positively oriented). We apply
Lemma 6.4 to find a polynomial P� =

∑
piy

i with p0 = 0, p1 > 0 satisfying

k∑
i=1

a−i
P ′

P i
=

1

yk
+

a−1

y
+Q�(y)

for some polynomial Q�(y). By replacing ω with its pullback under a diffeo-
morphism of (M,Z) that is of the form (y, θ�) �→ (P�(y), θ�) in each U�, we
may assume [ω] has Liouville-Laurent decomposition

([ωsm], [α−1], 0, . . . , 0, [dθ])

where dθ is the form on Z that restricts to dθi on each γi. Similarly, we may
replace ω′ with a form also having this Liouville-Laurent decomposition.
Applying Theorem 5.5 completes the proof. �
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