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Rigidity and vanishing of basic Dolbeault

cohomology of Sasakian manifolds

Oliver Goertsches, Hiraku Nozawa, and Dirk Töben

The basic Dolbeault cohomology of a Sasakian manifold M is an
invariant of its characteristic foliation F (the orbit foliation of the
Reeb flow). We show some fundamental properties of this coho-
mology, which are useful for its computation. In the first part of
the article, we show that the basic Hodge numbers hp,q(M,F) only
depend on the isomorphism class of the underlying CR structure.
Equivalently, we show that they are invariant under deformations
of type I. This result allows one to reduce their computation to
the quasi-regular case. In the second part, we show a basic version
of the Carrell-Lieberman theorem relating the basic Dolbeault co-
homology of M to that of the union of closed leaves of F . As a
special case, if F has only finitely many closed leaves, then we get
hp,q(M,F) = 0 for p �= q. Combining the two results, we obtain the
same vanishing result if M admits a nowhere vanishing CR vector
field with finitely many closed orbits. As an application of these
results, we compute the basic Hodge numbers for toric Sasakian
manifolds and deformations of homogeneous Sasakian manifolds.
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1. Introduction

1.1. Background

Recently Sasakian manifolds have been studied by Einstein geometers and
physicists as they provide examples of odd dimensional Einstein manifolds
which appear in the AdS/CFT correspondence [BG00a, GMSW04, BGK05,
vCo06, MSY08, FOW09]. We refer to [BG07, Section 14.5] for a brief his-
torical account of the physical background for mathematicians and a list
of references in physics. The basic Dolbeault cohomology of the character-
istic foliation of a Sasakian manifold is a fundamental invariant similar to
the Dolbeault cohomology of a Kähler manifold. This cohomology has good
properties; for example, El Kacimi-Alaoui [EKA90] proved basic versions of
the Hodge and Lefschetz decompositions. In the quasi-regular case, where
all leaves of the characteristic foliation are circles, the computation of this
cohomology reduces to that of complex orbifolds, but only little is known
about how to calculate it in the irregular case. One of the few examples
is a Kodaira-Akizuki-Nakano-type vanishing theorem ([Got12, Lemma 5.3]
and [Noz14, Theorem 1.2]) which is valid for positive Sasakian manifolds.

In this article we will show fundamental properties of the basic Dolbeault
cohomology described in the abstract, which are useful for computations. In
particular, we compute the basic Hodge numbers of irregular toric Sasakian
manifolds and deformations of homogeneous Sasakian manifolds for the first
time as far as we know. We will now explain our results in more detail.

1.2. Rigidity of the basic Hodge numbers of Sasakian manifolds

1.2.1. A rigidity theorem. Surprisingly, the basic Betti numbers of the
characteristic foliation, i.e., the dimensions of the basic cohomology groups,
are the same for any Sasakian structure on a fixed compact manifold [BG07,
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Theorem 7.4.14], which means that they cannot distinguish Sasakian struc-
tures. In contrast, the basic Hodge numbers can, see Example 3.4 below.
Therefore the question arises on which qualities of a Sasakian structure the
latter groups depend. Our first result is the following:

Theorem. Two Sasakian structures on a compact manifold with isomor-
phic CR structures have the same basic Hodge numbers.

As we explain in Section 1.2.2, this allows to reduce the computation of
basic Hodge numbers to the quasi-regular case.

Remark. Here two CR structures (D1, J1) and (D2, J2) on a manifold
M are called isomorphic if there exists a diffeomorphism of M that maps
(D1, J1) to (D2, J2). Note that the statement is equivalent to the equality of
the basic Hodge numbers of two Sasakian structures with the same under-
lying CR structure.

The above theorem can be also interpreted as the rigidity of the ba-
sic Hodge numbers under certain deformations of Sasakian manifolds: It is
well-known that a Sasakian structure on a manifold M is determined by the
underlying CR structure and the Reeb vector field. Denoting by S(D, J) the
space of Sasakian structures on a compact manifold M with a fixed underly-
ing CR structure (D, J), we therefore see that an element of S(D, J) can be
identified with its Reeb vector field. As proven in [BGS08], see Section 4.1
below, this gives an isomorphism between S(D, J) and an open cone in the
Lie algebra of the CR diffeomorphism group of (D, J). A deformation of type
I [GO98, Bel01] (see also [BG07, Section 8.2.3]) is a deformation of Sasakian
structures inside S(D, J). Since any two Sasakian structures in S(D, J) can
be connected by a deformation of type I, the above theorem is equivalent to
the following rigidity statement.

Theorem. The basic Hodge numbers of a Sasakian structure on a compact
manifold are invariant under deformations of type I.

Remark. The basic Hodge numbers are also invariant under deformations
of type II ([BG07, Definition 7.5.9]), because under such deformations the
characteristic foliation and the transverse holomorphic structure do not
change.

Remark. We actually prove a stronger result, namely Theorem 4.7: the
basic Hodge numbers are constant for a smooth family of Sasakian struc-
tures, if there exists a smooth family of actions of a compact Lie group, such
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that for each parameter value it preserves the CR structure and contains the
Reeb flow.

To prove the rigidity theorem, we want to apply Kodaira-Spencer theory
to the family of basic Laplacians. Unfortunately, we cannot use this theory
directly, because the basic de Rham complex changes discontinuously. To
avoid this difficulty, we consider transverse forms, which are sections of ex-
terior products of the complexified conormal bundles of the characteristic
foliations. Extending the basic Laplacians to strongly elliptic operators act-
ing on them in a way motivated by a construction of El Kacimi-Alaoui and
Hector [EKAH86, EKA90], Kodaira-Spencer theory can be applied to show
the constancy of the basic Hodge numbers; here an additional argument is
needed to go back from the level of transverse forms to that of basic forms.

We wonder if the rigidity holds more generally:

Question. Are the basic Hodge numbers of Sasakian manifolds invariant
under general smooth deformations?

For a description of general deformations of characteristic foliations, we
refer to [BG07, Section 8.2] and references therein. A family of transversely
Hermitian foliations whose basic Hodge numbers change can be obtained by
taking the product with S1 of a family of Riemannian foliations in [Noz12,
Example 7.4]. But we do not know if the basic Hodge numbers of trans-
versely Kähler foliations can change. Kähler manifolds with holomorphic
vector fields have certain rigidity as shown in [AMN12], which makes the
construction of counterexamples difficult.

1.2.2. Corollaries of the rigidity theorem. The rigidity result in the
last section is useful for computations. It is well-known that the subset of
quasi-regular Sasakian structures (i.e., whose Reeb orbits are closed) is dense
in S(D, J). Note that the basic Dolbeault cohomology of a quasi-regular
Sasakian structure is the Dolbeault cohomology of its leaf space as a direct
consequence of the definition. Since the leaf space is a complex projective
orbifold, we get the following corollary:

Corollary. The basic Hodge numbers of a compact Sasakian manifold are
the Hodge numbers of a complex projective orbifold.

The positivity of Sasakian structures (see Definition 3.3) is preserved
under small deformations of type I, because it is an open condition. By the
invariance of basic Hodge numbers and the Kodaira-Akizuki-Nakano-type
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vanishing theorem for quasi-regular Sasakian manifolds [BGN03, Proposi-
tion 2.4], we get the following vanishing result, which was independently
proven in [Got12, Lemma 5.3] and [Noz14, Theorem 1.2]:

Corollary. The (p, 0)-th and (0, q)-th basic Hodge numbers of a positive
compact Sasakian manifold are zero for p > 0 and q > 0.

1.2.3. Deformation of basic Hodge decompositions. Our proof of
the rigidity theorem in Section 1.2 also gives the following result:

Theorem. Within the space S(D, J) of Sasakian structures with the same
CR structure, the Hodge decomposition Hk(M,F) =

⊕
p+q=k H

p,q(M,F)
smoothly depends on the Reeb vector field defining the foliation.

More precisely, this means that the family of harmonic spaces and its
decomposition Hk(M,F) =

⊕
p+q=k Hp,q(M,F) is differentiable in Ω•(M).

Remark. Note that the basic cohomology of the characteristic foliation
does not admit a Hodge structure in the classical sense, because it does not
have any natural integer lattice. One may consider the embeddingHk(M,F)
→ Hk(M ;R), but the intersection Hk(M,F) ∩Hk(M ;Z) may be trivial.

1.3. A Carrell-Lieberman-type vanishing theorem

1.3.1. Localization of the basic cohomology. For a Sasakian man-
ifold (M,η, g), or more generally a K-contact manifold, with characteris-
tic foliation F , the basic cohomology of (M,F) is localized at the union
C of closed leaves of F [GNT12, Theorem 7.11]; namely,

∑
k b

k(M,F) =∑
k b

k(C,F), where bk denotes the basic Betti numbers. This is deduced
from a Borel localization theorem [GT10b] for more general Riemannian
foliations, called Killing foliations (see Section 5.3 for the definition). This
gives us another strategy to compute the basic cohomology, namely by de-
forming the Sasakian structure so that the union of closed leaves of the
characteristic foliation is as simple as possible. In the second part of the
article, we refine this argument to basic Dolbeault cohomology to prove a
Carrell-Lieberman-type theorem [CL73].

1.3.2. Statement of the theorem. We will show a Carrell-Lieberman-
type theorem for general transversely Kähler Killing foliations on compact
manifolds such that the transverse action of their Molino sheaf is equivari-
antly formal, see Theorem 7.5. Since the characteristic foliation of a Sasakian
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manifold is equivariantly formal by [GNT12, Theorem 6.8], we get the fol-
lowing:

Theorem. For a Sasakian structure on a compact manifold M with char-
acteristic foliation F , let C be the union of the closed leaves of F and C/F
the leaf space of (C,F), which admits naturally the structure of a Kähler
orbifold. We have∑

p

hp,p+s(M,F) =
∑
p

hp,p+s(C,F) =
∑
p

hp,p+s(C/F)

for all s. In particular, hp,p+s(M,F) = 0 for |s| > dimCC/F .

This theorem is proven by an adaption of the proof of a Carrell-
Lieberman-type theorem due to Carrell, Kaveh and Puppe [CKP07], based
on equivariant Dolbeault cohomology, to the basic setting by introducing a
notion of equivariant basic Dolbeault cohomology.

Remark 1.1. The Carrell-Lieberman-type theorem in [CKP07] is not a full
generalization of the original theorem of Carrell-Lieberman [CL73], which
is valid for Kähler manifolds with any holomorphic vector field. We do not
know if the original Carrell-Lieberman theorem generalizes to transversely
Kähler foliations with arbitrary holomorphic transverse fields.

1.3.3. Corollaries of the Carrell-Lieberman-type theorem. The
Carrell-Lieberman-type theorem in the last section implies the following
vanishing statement:

Theorem. If the characteristic foliation F of a Sasakian structure on a
compact manifold M has only finitely many closed leaves, then hp,q(M,F) =
0 for p �= q.

This theorem can be applied to toric Sasakian manifolds (see Corol-
lary 8.4), which implies that the basic Hodge numbers are determined by
the basic Betti numbers. Combining this with the computation of basic Betti
numbers of K-contact manifolds in [GNT12, Proposition 6.10] or [GT10b,
Theorem 6.4], this allows us to compute the basic Hodge numbers of toric
Sasakian manifolds. As far as we know, this is the first computation in the
irregular case.

A vector field X on a CR manifold is called CR if the flow generated by
X preserves the CR structure (note that some authors use this terminology



Basic Dolbeault cohomology of Sasakian manifolds 37

in a different sense). In combination with the rigidity theorem in Section 1.2
we obtain:

Theorem. Let (M,η, g) be a compact Sasakian manifold with characteristic
foliation F . If there exists a nowhere vanishing CR vector field on M with
finitely many closed orbits, then hp,q(M,F) = 0 for p �= q.

1.4. Deformations of homogeneous Sasakian manifolds

We illustrate the main theorems in this article with the example of homoge-
neous Sasakian manifolds. Note that it is well-known that any homogeneous
Sasakian manifold is regular, and the total space of a circle bundle over a
generalized flag manifold, which naturally admits the structure of Kähler
manifold.

Theorem. If a compact manifold M admits a homogeneous Sasakian struc-
ture, then M admits also an irregular Sasakian structure whose character-
istic foliation F has only finitely many closed leaves and

hp,q(M,F) = hp,q(G/H) =

{
b2k(G/H) if p = q = k ,

0 if p �= q ,

where G/H is the corresponding generalized flag manifold. The number of
closed leaves of F is χ(G/H), the Euler number of G/H.

Organization of the article. Sections 2, 3 and 5 are devoted to recall
fundamental notions. The results in Section 1.2 are proved in Section 4
(see Section 4.2). Equivariant basic Dolbeault cohomology is introduced in
Section 6 after recalling other cohomologies. The theorems in Sections 1.3.2
and 1.3.3 are deduced in Section 8 from the results in Section 7. The theorem
in Section 1.4 is proved in Section 9.

2. Sasakian manifolds

2.1. Definition of Sasakian manifolds

Let M be an odd-dimensional manifold with a 1-form η and a Riemannian
metric g.
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Definition 2.1. (M,η, g) is called a Sasakian manifold if M × R>0 is a
Kähler manifold with metric r2g + dr ⊗ dr and Kähler form d(r2η) where r
is the standard coordinate of R>0.

The Reeb vector field ξ of η is the vector field on M defined by the
equations η(ξ) = 1 and ιξdη = 0. A Sasakian manifold has an integrable
CR structure (ker η,Φ), where Φ is obtained from the complex structure on
M × R>0.

Remark 2.2. In the book by Boyer-Galicki [BG07], the Sasakian structure
is denoted by (η, ξ,Φ, g) including ξ and Φ following preceding references.
We will omit ξ and Φ from this notation, because these are determined by
η and g.

Example 2.3. The odd-dimensional spheres with round metric and stan-
dard contact form are Sasakian. Other examples of Sasakian manifolds are
the total spaces of circle bundles over Kähler manifolds whose Euler class
is the Kähler class, contact toric manifolds of Reeb type (see [BG00b, The-
orem 5.2]), and links of isolated singularities of hypersurfaces defined by
weighted homogeneous polynomials ([BG07, Chapters 7 and 9] and refer-
ences therein).

Remark 2.4. Sasakian manifolds are examples of K-contact manifolds,
i.e., contact manifolds whose Reeb flow preserve an (adapted) Riemannian
metric. Hence, the results in [GNT12] are applicable in our situation.

2.2. The Reeb flow and the characteristic foliation

The Reeb flow of η is the flow generated by the Reeb vector field ξ of η.

Definition 2.5. The orbit foliation F of the Reeb flow of η is called the
characteristic foliation of (M,η, g).

One can see that the Reeb flow of η leaves η and g invariant by definition.
If M is compact, as we will assume throughout the paper, then the Reeb flow
of η yields a natural torus action on M : the closure T of the Reeb flow in the
isometry group Isom(M, g) of (M, g) is a connected abelian Lie subgroup. As
Isom(M, g) is a compact Lie group by the Myers-Steenrod theorem [MS39],
so is the closed subgroup T , which implies that T is a torus.

Because the Reeb flow preserves η and g, the T -action preserves η and
g by continuity. We say that the characteristic foliation (respectively the
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Sasakian structure) is regular if dimT = 1 and the T -action is free, quasi-
regular if dimT = 1 and the T -action is only locally free, and irregular if
dimT > 1.

3. Basic cohomology of transversely Kähler foliations

3.1. Transversely holomorphic foliations

We recall the definition of transversely holomorphic foliations. A transversely
holomorphic Haefliger cocycle of complex codimension r on a manifold M
is a triple ({Ui}, {πi}, {γij}) consisting of

1) an open covering {Ui} of M ,

2) submersions πi : Ui → Cr,

3) biholomorphic transition functions γij : πj(Ui ∩ Uj) → πi(Ui ∩ Uj) such
that πi = γij ◦ πj .

Two transversely holomorphic Haefliger cocycles on M are said to be equiv-
alent if their union is a transversely holomorphic Haefliger cocycle on M .
A transversely holomorphic foliation of complex codimension r is defined
to be an equivalence class of transversely holomorphic Haefliger cocycles of
complex codimension r.

Remark 3.1. Each transversely holomorphic foliation of codimension r
has an underlying real foliation of codimension 2r, whose restriction to Ui

is defined by the fibers of πi : Ui → Cr. The above three conditions mean
that F is transversely modeled on Cr and that the transition functions are
biholomorphic.

A transversely holomorphic foliation F is called transversely Hermitian
if there is a Hermitian metric hi on πi(Ui) such that γ∗ijhi = hj . F is called
transversely Kähler if the fundamental form ωi = Im(hi) of hi on πi(Ui) is
closed for every i.

The normal bundle νF = TM/TF of a transversely holomorphic folia-
tion has a natural complex structure: for each point x ∈ Ui, we get an iso-
morphism νxF → Tπi(x)C

r induced from πi. The complex structure induced
on νxF from Tπi(x)C

r is independent of i because the transition functions
γij are biholomorphic. So the normal bundle νF has a complex structure J ,
which is called the transverse complex structure of F . In a similar way, the
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normal bundle of a transversely Hermitian foliation has a natural Hermitian
metric called the transverse Hermitian metric of F .

These notions are important in this article mainly because of the follow-
ing well-known fact, see e.g. [BGN03, Section 2]:

Lemma 3.2. The characteristic foliation of a Sasakian manifold (M,η, g)
is transversely Kähler, with fundamental form dη.

3.2. Basic Dolbeault cohomology

Differential forms are valued in C throughout this paper. Let F be a trans-
versely holomorphic foliation of M given by a cocycle ({Ui}, {πi}, {γij}).
A k-form α on M is called basic if for every i there exists a k-form αi on
πi(Ui) such that α|Ui

= π∗
i αi. Since the differential commutes with π∗

i , the
set Ω•(M,F) of basic forms is a subcomplex of (Ω•(M), d). The cohomology
of (Ω•(M,F), d) is called the basic cohomology of (M,F) and denoted by
H•(M,F). The dimension of Hk(M,F) is called the k-th basic Betti number
of (M,F) and denoted by bk(M,F).

We will recall the definition of basic Dolbeault cohomology of F . A k-
form on M is called a basic (p, q)-form if for every i there exists a (p, q)-form
αi on πi(Ui) such that α|Ui

= π∗
i αi. We denote the set of basic (p, q)-forms

on (M,F) by Ωp,q(M,F). We have a canonical decomposition Ωk(M,F) =⊕
p+q=k Ω

p,q(M,F). On Ui, we can decompose dα as

(3.1) dα|Ui
= π∗

i dαi = π∗
i ∂αi + π∗

i ∂αi ,

where ∂αi is a (p+ 1, q)-form on πi(Ui) and ∂αi is a (p, q + 1)-form on πi(Ui).
Since the transition functions γij are biholomorphic, this gives well-defined
basic forms ∂bα and ∂bα, so we obtain the basic Dolbeault operator and its
complex conjugate

(3.2)
∂b : Ω

p,q(M,F) −→ Ωp,q+1(M,F) ,

∂b : Ω
p,q(M,F) −→ Ωp+1,q(M,F) .

The differential complex (Ωp,•(M,F), ∂b) is called the (p-th) basic Dol-
beault complex of (M,F). Its cohomology is called the (p-th) basic Dolbeault
cohomology of (M,F) which is denoted by Hp,•(M,F). The dimension

hp,q(M,F) := dimHp,q(M,F)

is called the (p, q)-th basic Hodge number of F .
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For basic 2-forms on (M,F), positivity (resp., negativity) is defined in
a way analogous to the positivity (resp., negativity) of 2-forms on complex
manifolds. We recall

Definition 3.3. A compact Sasakian manifold (M,η, g) is called positive
(resp., negative) if the basic first Chern class of the normal bundle of the
characteristic foliation (see [EKA90, Section 3.5.2]) is represented by a pos-
itive (resp., negative) basic (1, 1)-form. If the basic first Chern class is pre-
sented by the trivial form, then (M,η, g) is said to be null.

Example 3.4. As mentioned in the introduction, on a fixed compact man-
ifold, the basic Betti numbers of the characteristic foliation of any Sasakian
structure cannot distinguish Sasakian structures [BG07, Theorem 7.4.14].
Let us give an example that the basic Hodge numbers can distinguish dif-
ferent Sasakian structures. Consider M = 21#(S2 × S3), the 21-fold con-
nected sum of S2 × S3. By [BG07, Example 10.3.10], M admits a regular
Sasakian structure as an S1-bundle over a K3 surface, so that h2,0(M,F) =
h0,2(M,F) = 1 and h1,1(M,F) = 20. On the other hand, M also admits
positive Sasakian structures, for example given by the link of the weighted
polynomial z220 + z221 + z222 + z0z3 with weights (1, 1, 1, 21), see [BG07, Ex-
ample 10.3.7], in particular the first line of the table on p. 356. By [BG07,
Proposition 9.6.3] (see also [BG07, Proposition 7.5.25]), this Sasakian struc-
ture is indeed positive. By [Noz14, Theorem 1.2], we have h2,0(M,F) =
h0,2(M,F) = 0 for any positive Sasakian structure on M , and consequently,
h1,1(M,F) = b2(M,F) = 22. Note that Gomez [Gom11] constructed neg-
ative Sasakian structures on M , but we do not know their basic Hodge
numbers.

3.3. Transverse Hodge theory for transversely Kähler foliations

We recall the transverse Hodge theory for transversely Kähler foliations due
to El Kacimi-Alaoui [EKA90]. The transverse Hermitian metric h on the
normal bundle νF of F determines a Hodge star operator �b : ∧•ν∗xFC −→
∧2n−•ν∗xFC on the complexification νFC of νF . Since the bidegree decom-
position of ∧•ν∗xFC (described in more detail in Section 4.4) is preserved at
each point x on M , we get

�b : Ω
p,q(M,F) −→ Ωn−q,n−p(M,F) .
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Define ∂
∗
b = − �b ∂b�b and consider the basic Laplacian

Δb := ∂b∂
∗
b + ∂

∗
b∂b : Ω

p,q(M,F) −→ Ωp,q(M,F) .

For a Riemannian foliation of codimension m on a connected closed
manifold, Hm(M,F) = C or Hm(M,F) = 0 by a result of [EKASH85]. If
Hm(M,F) = C then (M,F) is called homologically orientable. El Kacimi-
Alaoui [EKA90] has generalized the classical Hodge theory for Kähler man-
ifolds to transversely Kähler foliations as follows:

Theorem 3.5 ([EKA90, Théorème 3.3.3]). If F is a transversely Her-
mitian foliation on a compact manifold M , then we have a decomposition

Ωp,q(M,F) = kerΔb ⊕ Image ∂b ⊕ Image ∂
∗
b .

In particular, there is an isomorphism Hp,q(M,F) ∼= kerΔb.

For a transversely Kähler foliation, the Kähler identities for ∂b and ∂
∗
b

on basic forms are reduced to the Kähler identities on each domain πi(Ui)
in Cr. So Theorem 3.5 has the following consequence:

Theorem 3.6 ([EKA90, Théorème 3.4.6]). If F is a homologically ori-
entable transversely Kähler foliation on a compact manifold M , then we have
a basic Hodge decomposition

Hk(M,F) =
⊕

p+q=k

Hp,q(M,F) .

In particular, we have

bk(M,F) =
∑

p+q=k

hp,q(M,F) .

These theorems are relevant in our situation, because the characteris-
tic foliation F of a Sasakian manifold (M2n+1, η, g) is a transversely Kähler
foliation by Lemma 3.2. IfM is compact and connected, F is moreover homo-
logically orientable, since [dη]n is nontrivial in H2n(M,F), as one can easily
see (e.g. [BG07, Proposition 7.2.3]). Alternatively, homological orientability
can also be shown with a result [MS85, Théorème A] of Molino-Sergiescu
from the fact that the Reeb flow is isometric.
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4. Invariance of basic Hodge numbers under deformations
of type I

4.1. The cone of Reeb vector fields

Let (M,η, g) be a compact, connected Sasakian manifold with Reeb vector
field ξ. Let (D, J) be the underlying CR structure of (η, g), where D = ker η
and J is determined by g(X,Y ) = dη(X, JY ). The group Aut(M,η, g) of
diffeomorphisms that preserve η and g is a compact Lie group by Myers-
Steenrod’s theorem [MS39]. The group CR(D, J) of diffeomorphisms that
respect D and J is a Lie group by [CM74, l. 24 on p. 245] and we denote
its Lie algebra by cr(D, J). If M is not CR diffeomorphic to the sphere
with standard CR structure, then CR(D, J) is compact by a theorem of
Schoen [Sch95]. Clearly, we have Aut(M,η, g) ⊂ CR(D, J).

Following [BGS08], we denote by S(D, J) the set of Sasakian structures
on M with underlying CR structure (D, J). Define the convex cone

cr+(D, J) = {ζ ∈ cr(D, J) | η(ζ) > 0} .

By [BGS08, Lemma 6.4], the map S(D, J) → cr+(D, J) sending a Sasakian
structure to its Reeb vector field is a bijection.

We will use this cone in the next lemma.

Lemma 4.1. Assume that the CR diffeomorphism group CR(D, J) of the
underlying CR structure (D, J) of a compact Sasakian manifold (M,η, g)
is a compact Lie group. Then there exists a Sasakian structure (η0, g0) in
S(D, J) such that for any Sasakian structure (η1, g1) in S(D, J), there exists
a smooth family {(ηs, gs)}0≤s≤1 in S(D, J) and a torus T in CR(D, J) such
that

1) T ⊂ Aut(ηs, gs) for any s and

2) the Reeb flow of ηs is a one-parameter subgroup of the T -action.

Proof. By [BGS08, Proposition 4.4] and its proof, averaging the contact form
η with the action of the identity component G = CR0(D, J) of CR(D, J)
gives a new G-invariant Sasakian structure (η0, g0) in S(D, J) such that the
identity component of Aut(η0, g0) is G. Therefore, the Reeb vector field ξ0 of
(η0, g0) belongs to cr+(D, J) and is contained in the center of cr(D, J). Now
for any Sasakian structure (η1, g1) in S(D, J) and the corresponding element
ξ1 ∈ cr+(D, J), let T ⊂ G be a torus whose Lie algebra contains the span of
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ξ0 and ξ1. The line segment from ξ0 to ξ1 lies in cr+(D, J) by convexity, and
for the corresponding family of Sasakian structures (ηs, gs) on M we have
T ⊂ Aut(ηs, gs). This concludes the proof. �

4.2. The statement of the main results of Section 4

Sections 4.3 through 4.5 will be devoted to proving the following rigidity
theorem:

Theorem 4.2. Let {(ηs, gs)}0≤s≤1 be a smooth family of Sasakian struc-
tures on a compact manifold M with characteristic foliations Fs. Assume
that there exists a smooth family of actions {φs : T → Aut(ηs, gs)}0≤s≤1 of
a torus T on M which contains the Reeb flow of ηs as a one-parameter sub-
group for any s. Then the basic Hodge numbers of the Reeb flows of (ηs, gs)
are independent of s.

Remark 4.3. We could have also stated the theorem for an arbitrary com-
pact, connected Lie group instead of a torus. But because the Reeb flow of
each ηs would then be contained in the center of the Lie group, this would
not be more general.

This theorem is trivial for Sasakian structures on real cohomology (2n+
1)-spheres because of the following well-known proposition.

Proposition 4.4. For any Sasakian structure on a real cohomology (2n+
1)-sphere with characteristic foliation F , we get

(4.1) hp,q(M,F) =

{
1 if 0 ≤ p = q ≤ n ,

0 otherwise .

Proof. By the Gysin sequence [Sar85] (Equation (7.2.1) on p. 215 of [BG07])
for the characteristic foliation of any Sasakian structure on M , we get
H•,•(M,F) = C[z]/(zn+1), where z corresponds to dη. Since dη is of bide-
gree (1, 1), the result follows. �

We obtain the following corollary of Theorem 4.2:

Theorem 4.5. Two Sasakian structures on a compact manifold with the
same underlying CR structure have the same basic Hodge numbers.

Proof. If M is diffeomorphic to S2n+1, then the statement follows from
Proposition 4.4. Assume now that M is not diffeomorphic to S2n+1. Then,
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as we have already remarked, the CR diffeomorphism group of the underly-
ing CR structure is a compact Lie group. So Lemma 4.1 and Theorem 4.2
imply the result. �

As already noted in the introduction, Theorem 4.5 is equivalent to the
following:

Theorem 4.6. The basic Hodge numbers of a compact Sasakian manifold
are invariant under deformations of type I.

We have the following strengthening of Theorem 4.2.

Theorem 4.7. Let {(ηs, gs)}0≤s≤1 be a smooth family of Sasakian struc-
tures on a compact manifold M with CR structures (Ds, Js) and charac-
teristic foliations Fs. Assume that there exists a smooth family of actions
{φs : H → CR(Ds, Js)}0≤s≤1 of a compact connected Lie group H on M
which for each s contains the Reeb flow of ηs as a one-parameter subgroup.
Then the hp,q(M,Fs) are independent of s.

Proof of Theorem 4.7 by Theorem 4.2. By averaging each ηs with the H-
action at the parameter s, we get a smooth family {(η′s, g′s)}0≤s≤1 of H-
invariant Sasakian structures on M such that the underlying CR structure
of (η′s, g′s) is the same as (ηs, gs) for any s (see [BGS08, the proof of Propo-
sition 4.4]). Theorem 4.5 therefore implies that the basic Hodge numbers
of (ηs, gs) and (η′s, g′s) are the same. Theorem 4.2, applied to the action of
the center of H, implies that the basic Hodge numbers of the Reeb flows of
(η′s, g′s) are independent of s. �

We will reduce the proof of Theorem 4.2 in Section 4.3 to showing the
upper semi-continuity of the basic Hodge numbers. In Section 4.4 we will
prepare for the proof of the upper-semicontinuity by extending the basic
Laplacian of the characteristic foliation (which is naturally defined on basic
forms) to a self-adjoint elliptic operator on some Hermitian vector bundle in
such a way that the basic Hodge numbers are still encoded in its kernel, see
Equation (4.5). This allows us to apply a slight modification of the classical
deformation theory of Kodaira-Spencer in Section 4.5 to obtain the desired
upper-semicontinuity.

The following is a consequence of the proof of Theorem 4.2, and will be
shown in Section 4.6.
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Theorem 4.8. Within the space of Sasakian structures with a fixed CR
structure on a compact manifold M , the Hodge decomposition Hk(M,F) =⊕

p+q=k H
p,q(M,F) depends smoothly on the corresponding Reeb vector field.

4.3. Reduction to the upper semi-continuity

In this subsection we show that to prove Theorem 4.2 it is sufficient to show
that hp,q(M,Fs) is upper semi-continuous with respect to s, i.e.,

hp,q(M,Fs) ≤ hp,q(M,Fs0)

for s sufficiently close to a fixed s0. By the Hodge decomposition for homo-
logically orientable transversely Kähler foliation on compact manifolds by
El Kacimi-Alaoui, Theorem 3.6 in this paper, we get∑

p+q=k

hp,q(M,Fs) = bk(M,Fs)

for every s where bk(M,Fs) is the k-th basic Betti number of Fs. Thus we
get

(4.2) bk(M,Fs) =
∑

p+q=k

hp,q(M,Fs) ≤
∑

p+q=k

hp,q(M,Fs0) = bk(M,Fs) .

Since bk(M,Fs) is constant with respect to s by [BG07, Theorem 7.4.14],
we get an equality in (4.2). Thus we have hp,q(M,Fs) = hp,q(M,Fs0) for s
sufficiently close to s0. Therefore h

p,q(M,Fs) is locally constant with respect
to s and hence constant.

4.4. Extension of basic Laplacians

Let (M2n+1, η, g) be a compact Sasakian manifold with Reeb field ξ and
characteristic foliation F . We can now decompose the complexification νFC

of the normal bundle νF of F into the
√−1- and −√−1-eigenspace bundles

of the transverse complex structure J as νFC = νF1,0 ⊕ νF0,1. Similarly, we
get a decomposition of the complexified conormal bundle ν∗FC = ν∗F1,0 ⊕
ν∗F0,1, and we define

Ep,q :=

p∧
ν∗F1,0 ⊕

q∧
ν∗F0,1 .
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Note that we have a decomposition

(4.3) Ωk(M) =
⊕

u+p+q=k

C∞
(

u∧
T ∗FC ⊗ Ep,q

)
,

which depends on the metric. Let

Ωp,q := C∞(Ep,q)

be the space of sections of Ep,q. It is easy to see that Ωp,q(M,F) is a subspace
of Ωp,q determined as follows:

Ωp,q(M,F) = {α ∈ Ωp,q |LXα = 0, ∀X ∈ C∞(TF)} = Ωp,qT ,

where T is the closure of the Reeb flow mentioned in Section 2.2. The basic
Dolbeault operator and its conjugate in Equations (3.2) are extended to

∂ : Ωp,q → Ωp,q+1 and ∂ : Ωp,q → Ωp+1,q,

where ∂ (resp., ∂) is the composition of d|Ωp,q with the orthogonal projection
to Ωp,q+1 (resp., Ωp+1,q) with respect to the decomposition (4.3).

Let �b : Ω
p,q → Ωn−q,n−p be the transverse Hodge star operator with

respect to h. We obtain a Hermitian metric on Ωp,q by

〈α, β〉 =
∫
M

η ∧ α ∧ �bβ .

Note that the contact form η is not a transverse form and the wedge-product
η ∧ α ∧ �bβ is taken in Ω•(M).

Lemma 4.9. The adjoint operator ∂
∗
of ∂ : Ωp,q−1 → Ωp,q with respect to

〈·, ·〉 is given by ∂
∗
= − �b ∂�b. In other words,

(4.4) 〈∂α1, α2〉 = 〈α1,− �b ∂ �b α2〉

for α1 ∈ Ωp,q−1 and α2 ∈ Ωp,q.
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Proof.

d(η ∧ α1 ∧ �bα2)

= dη ∧ α1 ∧ �bα2 − η ∧ dα1 ∧ �bα2 + (−1)p+qη ∧ α1 ∧ d �b α2

= − η ∧ ∂α1 ∧ �bα2 + (−1)p+qη ∧ α1 ∧ ∂ �b α2

= − η ∧ ∂α1 ∧ �bα2 − η ∧ α1 ∧ �b(�b∂�b)α2 .

The first summand of the second line is zero, since dη is of bidegree (1, 1)
and α1 ∧ �bα2 of bidegree (n, n− 1). The second equality follows from the
assumption on the bidegrees of α1 and α2 and from the fact that the product
of η and the tangential part of dαi is zero. Now, by applying

∫
M to the first

and last line of the equation, the theorem of Stokes implies (4.4). �

Consequently the basic Laplacian Δb : Ω
p,q(M,F) → Ωp,q(M,F) is naturally

extended to Δb : Ω
p,q → Ωp,q via Δb = ∂ ∂

∗
+ ∂

∗
∂, and the extension is self-

adjoint with respect to 〈·, ·〉. By Theorem 3.5,

hp,q(M,F) = dim(kerΔb|Ωp,q(M,F)) .

Note that Δb is only transversely strongly elliptic. For our later application
of a theorem of Kodaira-Spencer we need a strongly elliptic operator acting
on the space of sections of a Hermitian bundle. We define it by

D := LξLξ −Δb

on Ωp,q = C∞(Ep,q). Note that Lξ respects Ωp,q.

Remark 4.10. This definition is motivated by a construction El Kacimi-
Alaoui and Hector used to prove the transverse Hodge decomposition for
Riemannian foliations [EKAH86, p. 224]; see also [EKA90, p. 82].

Lemma 4.11. The differential operator D is strongly elliptic and self-
adjoint.

Proof. We can take a chart (t, x1, y1, . . . , xq, yq) around any point z of M
such that ξ = ∂/∂t and such that (x1, y1, . . . , xq, yq) is a transverse holo-
morphic chart and {∂/∂xi, ∂/∂yi} is an orthonormal basis of (TzF)⊥. Then
D = ∂2/∂2t−Δb on this chart. For ζ ∈ T ∗

zM , let σζ(P ) ∈ End(Ep,q
z ) be the

symbol of P at ζ, where P = ∂2/∂2t or Δb. For ζ = ζ0dt+
∑n

i=1 ζ2i−1dxi +∑n
i=1 ζ2idyi, we have σζ(∂

2/∂2t) = ζ20 · idEp,q
z
, and since Δb is the transverse
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Laplacian and independent of t, σζ(Δb) = −1
2

(∑2q
i=1 ζ

2
i

)
idEp,q

z
(see, for ex-

ample, [Voi02, Lemma 5.19]). We obtain σζ(D) =
(
ζ20 + 1

2

∑2q
i=1 ζ

2
i

)
idEp,q

z
as

the sum of the symbols of the two operators, thereby implying strong ellip-
ticity of D.

We know already that Δb is self-adjoint, so it remains to show that Lξ

is skew-symmetric. For α1, α2 ∈ Ωp,q we have

Lξ(η ∧ α1 ∧ �bα2) = η ∧ Lξα1 ∧ �bα2 + η ∧ α1 ∧ �bLξα2 ,

because Lξη = 0 and Lξ�b = �bLξ (as ξ is Killing). It therefore suffices to
show that the left hand side is zero. Now

Lξ(η ∧ α1 ∧ �bα2) = dιξ(η ∧ α1 ∧ �bα2) = d(α1 ∧ �bα2) ,

because the αi are horizontal and η(ξ) ≡ 1. The form on the right is a basic
(2n+ 1)-form and therefore zero. �

On basic forms, i.e., sections of Ep,q invariant under the Reeb flow, D
coincides with the basic Laplacian Δb. By the basic Hodge decomposition
(Theorem 3.5), this means the basic Hodge numbers hp,q(M,F) are given
by

(4.5) hp,q(M,F) = dim(kerΔb) = dim(ker
(
D|Ωp,qH

)
) = dim(kerD)H ,

where H is the Reeb flow. In fact, this equality is also true for any connected
Lie subgroup H of the automorphism group Aut(η, g) of the Sasakian struc-
ture whose Lie algebra contains the Reeb field. This is because any Sasaki
automorphism commutes with the Reeb flow, is transversely isometric and
holomorphic, and therefore commutes with Δb, thus mapping a harmonic
basic form to a harmonic basic form. Since H as a connected Lie group acts
trivially on basic Dolbeault cohomology, it fixes harmonic basic forms.

4.5. Proof of the upper semi-continuity

We consider a smooth family Fs of Reeb flows of Sasakian structures given
as in Theorem 4.2. We have a family of actions {H → Aut(ηs, gs)} of a
connected compact Lie group H on M that contains the Reeb flow of ηs
as one-parameter subgroups. We consider the Hermitian vector bundle Ep,q

s

over M with the operator Ds on C∞(Ep,q
s ). This is a smooth family of

strongly elliptic, self-adjoint differential operators with respect to the inner
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product 〈·, ·〉s. We have already mentioned

hp,q(M,Fs) = dim(kerDs)
H .

By the spectral theorem for formally self-adjoint strongly elliptic differ-
ential operators (see [KS60, Theorem 1]), there exists a complete orthonor-
mal system of eigensections {eh,s}∞h=1 of Ds, such that their eigenvalues
λh(s) constitute for each s an ascending sequence in [0,∞) whose unique
accumulation point is ∞.

In the following, we fix a parameter s0. Take an integer k0 so that

{h | λh(s0) = 0} = {h | 1 ≤ h ≤ k0} .

Let Es be the subspace of C∞(Ep,q
s ) spanned by {eh,s}k0

h=1. It is therefore
a sum of eigenspaces of Ds.

Lemma 4.12. There exists an open neighborhood U ′ of s0 in the parameter
space [0, 1] and smooth families {fh,s}k0

h=1 of sections of Ep,q
s such that for

each s ∈ U ′ the subspace of C∞(Ep,q
s ) spanned by {fh,s}k0

h=1 is equal to Es.

Proof. For 1 ≤ h ≤ k0, we extend eh,s0 to a smooth family of sections e′h,s
of Ep,q

s such that e′h,s0 = eh,s0 by partition of unity on M . Choose a circle C
in C centered at 0 so that the closed disk which bounds C contains only 0
among the eigenvalues {λh(s0)}∞h=1 of Ds0 . By [KS60, Theorem 2], λh(s) is
continuous with respect to s. Then there exists an open neighborhood U of
s0 in the parameter space such that none of λh(s) for any h and any s ∈ U
lie on C. This assumption on C shows that Es is the sum of eigenspaces of Ds

corresponding to the eigenvalues λ1(s), . . . , λk0
(s). Moreover, this condition

implies that we can apply [KS60, Theorem 3]: by setting

Fs(C)(f) =
∑

1≤h≤k0

〈f, eh,s〉seh,s

for f ∈ C∞(Ep,q
s ), we obtain a smooth family Fs(C) : C∞(Ep,q

s ) → Es of pro-
jections, that is, Fs(C) maps a smooth family of sections of Ep,q

s to a smooth
family of Es. Thus letting fh,s = Fs(C)(e′h,s) for 1 ≤ h ≤ k0, we get a smooth

family fh,s ∈ Es. Since {fh,s0}k0

h=1 = {eh,s0}k0

h=1 is linearly independent, there

exists an open neighborhood U ′ of s0 ∈ U such that {fh,s}k0

h=1 is linearly
independent for each s ∈ U ′. �
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Lemma 4.13. The space Es is an H-invariant subspace of C∞(Ep,q
s ), and

the dimension of the subspace EH
s of H-fixed elements is constant with respect

to s.

Proof. Since the H-action on C∞(Ep,q
s ) commutes with Ds, the eigenspaces

of Ds are invariant. Thus Es, a sum of eigenspaces of Ds by definition, is
invariant. By Lemma 4.12,

⋃
s∈U ′ Es forms a trivial smooth vector bundle

E → U ′ of rank k0 over U
′ with a smooth trivialization {fh,s}. The existence

of a smooth trivialization of E implies that the H-actions on the Es form
a smooth fiberwise H-action on E . It is well known that representations of
a compact Lie group do not change the isomorphism class under smooth
deformations (see, for example, [GGK02, Proposition B.57]), and therefore
dim EH

s is constant with respect to s. �

We now come to the main goal of this subsection.

Lemma 4.14. dim(kerDs)
H is upper semicontinuous with respect to s at

s0.

Proof. It is sufficient to show that dim(kerDs0)
H ≥ dim(kerDs)

H for s ∈ U ′.
At s = s0, we get (kerDs0)

H = EH
s0 . On the other hand, for any s ∈ U ′ it is

true that kerDs ⊂ Es by construction of Es. Thus we get

(4.6) (kerDs)
H ⊂ EH

s .

Since dim EH
s0 = dim EH

s by the last lemma, we conclude the proof. �

This concludes the proof of Theorem 4.2.

4.6. Proof of Theorem 4.8

EH
s is the space of harmonic forms of bidegree (p, q) and is naturally em-

bedded in Ω•(M). To prove Theorem 4.8 it is sufficient to show that this
embedding depends smoothly on s. Now Theorem 4.2 implies that equality
holds in (4.6). So EH =

⋃
s∈[0,1] EH

s is a smooth vector bundle over [0, 1] and

hence trivial. The span of a trivializing basis field of EH gives a smooth map
of EH → Ω•(M). This proves Theorem 4.8.
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5. Transverse actions on foliated manifolds

5.1. Definition of transverse actions on foliated manifolds

In this section, let us recall transverse actions on foliated manifolds intro-
duced in [ALK08] and related notions.

Let F be a foliation of a manifold M . By Ξ(F) we denote the space
of differentiable vector fields on M that are tangent to the leaves of F .
A vector field X on M is said to be foliate if for every Y ∈ Ξ(F) the Lie
bracket [X,Y ] also belongs to Ξ(F). A vector field is foliate if and only if
its flow maps leaves of F to leaves of F , see [Mol88, Proposition 2.2]. The
set L(M,F) of foliate fields is the normalizer of Ξ(F) in the Lie algebra
Ξ(M) of vector fields on M and therefore a Lie sub-algebra of Ξ(M). We
call the projection of a foliate field X to TM/TF a transverse field. The set
l(M,F) = L(M,F)/Ξ(F) of transverse fields is also a Lie algebra inheriting
the Lie bracket from L(M,F).

Definition 5.1 ([ALK08, Section 2]). A transverse action of a finite-
dimensional Lie algebra g on the foliated manifold (M,F) is a Lie algebra
homomorphism g → l(M,F).

Given a transverse action of g, we will denote the transverse field associated
to X ∈ g by X̃ ∈ l(M,F). If F is the trivial foliation by points, this notion
coincides with the usual notion of an infinitesimal action on the manifold M .

If F is a Riemannian foliation, then a transverse field is called a trans-
verse Killing field if one (and hence all) of its representatives in L(M,F)
leaves invariant the transverse metric. The set of transverse Killing fields
form a Lie subalgebra iso(M,F , g) of l(M,F).

Definition 5.2. If F is a Riemannian foliation, then a transverse action
g → iso(M,F , g) is called isometric.

If F is a transversely holomorphic foliation, then a transverse field X ∈
l(M,F) is said to preserve the transverse complex structure of F if L

˜XJ = 0,
where J is the transverse complex structure of F .

Definition 5.3. If F is a transversely holomorphic foliation, then a trans-
verse action g → l(M,F) is called holomorphic if every X preserves the
transverse complex structure of F .
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5.2. The canonical transverse action on a Sasakian manifold

Let (M,η, g) be a compact Sasakian manifold with characteristic foliation
F . The closure of the Reeb flow is denoted by T . We have already remarked
in Section 3.3 that the characteristic foliation F is transversely Kähler. By
the commutativity of T , the T -action preserves F . Hence there is a canonical
transverse action on (M,F)

(5.1) t/Rξ −→ l(M,F) .

By [BG07, Equation (8.1.4)], the natural transverse action of a = t/R is
isometric and holomorphic.

As recalled in the next section, a more general class of Riemannian foli-
ations called Killing foliations admit natural actions of Abelian Lie algebras
in a similar way.

5.3. The canonical transverse action on Killing foliations

The Molino sheaf C of a Riemannian foliation (M,F) is a locally constant
sheaf of Lie algebras, whose stalks consist of certain local transverse fields.
Precisely, a stalk of C consists of local transverse vector fields on (M,F)
whose natural lifts to the orthonormal frame bundle M1 of (M,F) com-
mute with any global transverse field of (M1,F1), where F1 is the canonical
horizontal lift of F (see [Mol88, Section 4]).

Definition 5.4. A Riemannian foliation is called a Killing foliation if its
Molino sheaf is globally constant.

In particular, Riemannian foliations on simply connected manifolds are
Killing.

Any global section of the Molino sheaf C of a Riemannian foliation
(M,F) is a transverse field on (M,F) which commutes with any global
transverse field of (M,F). So the space a of global sections of C is central
in l(M,F), hence it is an abelian Lie algebra acting transversely on (M,F).
Following [GT10b], for a Killing foliation F the Lie algebra a is called the
structural Killing algebra of F . The orbits of the leaves under the action of
the structural Killing algebra are the leaf closures [Mol88, Theorem 5.2], see
also [GT10b, Section 4.1].
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Example 5.5. By [MS85, Théorème A], the characteristic foliation of a
Sasakian manifold is a Killing foliation. Its Killing algebra is identified with
a = t/R in the last section by [GT10b, Example 4.3].

We have seen that the canonical transverse action on a Sasakian manifold
is isometric and holomorphic. This is more generally true for Hermitian
Killing foliations:

Lemma 5.6. If F is a transversely Hermitian Killing foliation, then the
transverse a-action on (M,F) is isometric and holomorphic.

Proof. Let {Ui} be a covering ofM by foliation chart domains with transver-
sals Ti ⊂ Ui. The holonomy pseudogroup of F acts isometrically and holo-
morphically on the union of the Ti. By [Mol88, p. 287] any X ∈ a is an
infinitesimal transformation of elements in the closure of the holonomy pseu-
dogroup and hence acts isometrically and holomorphically. �

6. Equivariant cohomology

6.1. g-differential graded algebras and the Cartan model

In this section, we recall the Cartan model of equivariant cohomology in the
language of differential graded algebras. Let g be a finite-dimensional Lie
algebra.

Definition 6.1. A g-differential graded algebra (g-dga) is a Z-graded alge-
bra A =

⊕
Ak endowed with the following data: a derivation d : A → A of

degree 1 and derivations ιX : A → A of degree −1 and LX : A → A of degree
0 for all X ∈ g (where ιX and LX depend linearly on X) such that:

d2 = 0 , ι2X = 0 , LX = dιX + ιXd ,

[d, LX ] = 0 , [LX , ιY ] = ι[X,Y ] , [LX , LY ] = L[X,Y ] .

Example 6.2. An infinitesimal action of a finite-dimensional Lie algebra
g on a manifold M , i.e., a Lie algebra homomorphism g → Ξ(M); X �→ X̃,
induces a g-dga structure on the de Rham complex Ω(M) with operators
ιX := ι

˜X and LX := L
˜X.
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The Cartan complex of A is defined as

Cg(A) := (S(g∗)⊗A)g .

Here the superscript denotes the subspace of g-invariant elements, i.e., those
ω ∈ S(g∗)⊗A for which LXω = 0 for all X ∈ g. The grading on the Cartan
complex is given by the natural product grading on S(g∗)⊗A, where we
assign the nonzero elements in g∗ ⊂ S(g∗) the degree 2.

The differential dg of the Cartan complex Cg(A) is defined by

(dgω)(X) = d(ω(X))− ιX(ω(X)) ,

where we consider an element in Cg(A) as a g-equivariant polynomial map
g → A. Now the equivariant cohomology of the g-dga A is defined as

H•
g(A) := H•(Cg(A), dg) .

There is a natural S(g∗)g-algebra structure on H•
g(A). The g-dga A is

called equivariantly formal ifH•
g(A)

∼= S•(g∗)g ⊗H•(A) as a graded S•(g∗)g-
module.

6.2. Equivariant basic cohomology

Let F be a foliation on a manifold M and Ω(M,F) the basic de Rham
complex of (M,F). For X ∈ l(M,F), ιX and LX are well-defined derivations
on Ω(M,F).

Proposition 6.3 ([GT10b, Proposition 3.12]). A transverse action of
a finite-dimensional Lie algebra g on a foliated manifold (M,F) induces the
structure of a g-dga on Ω(M,F).

The Cartan complex Cg(Ω(M,F)) will also be denoted by Ωg(M,F).

Definition 6.4 ([GT10b, Section 3.6]). The equivariant basic cohomol-
ogy of a transverse g-action on (M,F) is defined as

H•
g(M,F) := H•(Ωg(M,F)) .

The g-action is called equivariantly formal if Ω(M,F) is an equivariantly
formal g-dga, i.e., if H•

g(M,F) ∼= S•(g∗)g ⊗H•(M,F) as a graded S•(g∗)g-
module.
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Remark 6.5. Note that for the case of the foliation of M by points, a
transverse action of a finite-dimensional Lie algebra g is nothing but an
ordinary infinitesimal action on M . If such an action is induced by an action
of a compact connected Lie group G, the equivariant basic cohomology of the
g-action is the same as the usual Cartan model of the equivariant cohomology
of the G-action on M .

6.3. Equivariant Dolbeault cohomology of g-differential
graded algebras

Let g be a finite-dimensional Lie algebra. We define equivariant Dolbeault
cohomology for certain bigraded g-dgas. To formalize our argument, we in-
troduce the following object:

Definition 6.6. A g-differential graded algebra of Dolbeault type is a bi-
graded algebra A =

⊕
p,q∈ZA

p,q whose total algebra (defined by Ak =⊕
p+q=k A

p,q) is a g-dga such that

1) d(Ap,q) ⊂ Ap+1,q ⊕Ap,q+1,

2) ιX(Ap,q) ⊂ Ap−1,q ⊕Ap,q−1 for any X ∈ g and

3) LX(Ap,q) ⊂ Ap,q for any X ∈ g.

Remark 6.7. d(Ak) ⊂ Ak+1, ιX(Ak) ⊂ Ak−1 and LX(Ak) ⊂ Ak are satis-
fied for any X ∈ g by definition of g-dgas.

Given a g-dga A of Dolbeault type, we may consider the following natural
bigrading on the Cartan complex Cg(A):

Cp,q
g (A) :=

⊕
l+r=p, l+s=q

(Sl(g∗)⊗Ar,s)g .

In other words: the elements in g∗ ⊂ S•(g∗) are assigned the bidegree (1, 1).
We split d and ιX for X ∈ g as d = d1,0 + d0,1 and ιX = ι−1,0

X + ι0,−1
X , where

the suffix denotes the bidegree. Then the equivariant differential dg splits
into its components of bidegree (1, 0) and (0, 1) as dg = d1,0g + d0,1g , where

(d1,0g ω)(X) = d1,0(ω(X))− ι0,−1
X (ω(X)) ,

(d0,1g ω)(X) = d0,1(ω(X))− ι−1,0
X (ω(X)) .
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Definition 6.8. The equivariant Dolbeault cohomology of A is defined as

Hp,•
g (A) := H•(Cp,•

g (A), d0,1g ) .

A is said to be Dolbeault equivariantly formal if

H•,•
g (A) ∼= S•(g∗)g ⊗H•,•(A, d0,1)

as a bigraded S•(g∗)g-module.

6.4. Equivariant basic Dolbeault cohomology

Let F be a transversely holomorphic foliation on a manifold M of complex
codimension r. Consider a transverse holomorphic action of a Lie algebra
g on (M,F). This transverse action induces the structure of a g-dga on
Ω(M,F) by Proposition 6.3. As in the case of the de Rham complexes of
complex manifolds, the transverse complex structure yields a bigrading

(6.1) Ω(M,F) =
⊕
p,q

Ωp,q(M,F)

on Ω(M,F) whose total complex is Ω•(M,F) =
⊕

k Ω
k(M,F).

Proposition 6.9. The g-dga structure on Ω•(M,F) induces a structure of
g-dga of Dolbeault type on Ω•,•(M,F).

Proof. We see that the three conditions (1), (2) and (3) in Definition 6.6
are satisfied as follows: (1) is satisfied because we have a decomposition
db = ∂b + ∂b as we saw in (3.1). For any X ∈ g the induced transverse vector
field X̃ decomposes as X̃ = Z + Z into its (1, 0)- and (0, 1)-components. We
get ιX = ιZ + ιZ and ιZ and ιZ are the (−1, 0)- and the (0,−1)-components
of ιX , respectively. Then (2) is satisfied. For any X ∈ g the operators LX

respect the bidegree, because the g-action is holomorphic: (3) is also satisfied.
�

Then the equivariant Dolbeault cohomology of Ω•,•(M,F) is defined as ex-
plained in the last section; we will call it the equivariant basic Dolbeault co-
homology of the g-action on (M,F). More precisely, we have the equivariant
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∂-operator ∂g := d0,1g : Ωp,q
g (M,F) → Ωp,q+1

g (M,F), and define the equivari-
ant basic Dolbeault cohomology by

Hp,•
g (M,F) := H•(Ωp,•

g (M,F), ∂g) ,

where Ωp,q
g (M,F) = Cp,q

g (Ω•,•(M,F)) is the bigraded Cartan complex of the
g-dga of Dolbeault type Ω(M,F). Note that we obtain an S•(g∗)g-algebra
H•

g,∂
(M,F) by passing to the total grading:

Hk
g,∂

(M,F) :=
⊕

p+q=k

Hp,q
g (M,F) .

Remark 6.10. Just as in the case of equivariant basic cohomology, if the
foliation in question is the trivial foliation by points, and the g-action is
induced by an action of a compact Lie group by holomorphic transforma-
tions, this notion coincides with ordinary equivariant Dolbeault cohomology
as introduced by Teleman [Tel00, p. 23] and Lillywhite [Lil03, Section 5.1].

7. Hodge decomposition for equivariant basic Dolbeault
cohomology

Let F be a transversely holomorphic Killing foliation on a compact manifold
M . Completely analogously to the case of torus actions on compact Kähler
manifolds treated in [Lil03, Theorem 5.1] one proves

Theorem 7.1 (Equivariant basic Hodge decomposition). Consider
a holomorphic transverse action of an abelian Lie algebra h on (M,F) such
that

(7.1) H(Ω•,•(M,F)h, ∂b) = H•,•(M,F) .

If the h-action is equivariantly formal, then it is also Dolbeault equivariantly
formal, i.e.,

(7.2) H•,•
h (M,F) ∼= S•(h∗)⊗H•,•(M,F)

as a bigraded S•(h∗)-module, and there is a graded S•(h∗)-module isomor-
phism

(7.3) H•
h(M,F) ∼= H•

h,∂
(M,F) .
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Remark 7.2. For the Hodge decomposition for equivariant Dolbeault co-
homology proven by Lillywhite [Lil03], no assumption like (7.1) on the co-
homology of the complex of invariant forms is needed. This is because he
considers actions of compact Lie groups for which an averaging process im-
plies (7.1) (see Corollary 7.4 below).

Proof of Theorem 7.1. The equivariant basic differential dh : Ω•
h(M,F) →

Ω•
h(M,F) decomposes as dh = ∂h + ∂h. We obtain an equivariant Frölicher

spectral sequence with E1-term equal to the equivariant basic Dolbeault
cohomology, and converging to the equivariant basic cohomology H•

h(M,F),
which because of the assumption of equivariant formality is isomorphic to
S•(h∗)⊗H•(M,F).

In turn, the E1-term is the limit of the spectral sequence of the dou-
ble complex obtained by the decomposition ∂h = ∂b + δ, where (δω)(X) =
−ι−1,0

X (ω(X)). Note that Ω•,•
h (M,F) = S•(h∗)⊗ Ω•,•(M,F)h because h is

abelian. By (7.1), this spectral sequence has E1-term

H(S•(h∗)⊗ Ω•,•(M,F)h, ∂b) ∼= S•(h∗)⊗H(Ω•,•(M,F)h, ∂b)
∼= S•(h∗)⊗H•,•(M,F) .

Killing foliations are homologically orientable by [Ser85, Théorème I]. Pass-
ing to the total grading, the basic Hodge decomposition (Theorem 3.6) im-
plies that this E1-term already coincides with the limit of the equivariant
Frölicher spectral sequence above. Hence, both spectral sequences collapse
at the E1-term, which implies (7.2) and (7.3). �

We will see that the assumption (7.1) is satisfied in some important
cases. The proof of the following Lemma is the basic version of [Fin10].

Lemma 7.3. Let h be a Lie algebra acting transversely holomorphically on
(M,F). Then h acts trivially on basic Dolbeault cohomology: H•,•(M,F)h =
H•,•(M,F).

Proof. Killing foliations are homologically orientable by [Ser85, Théorème I].
So, by the basic Hodge decomposition described in Section 3.3, any basic
Dolbeault cohomology class is represented by a form ω ∈ Ωp,q(M,F) that
is closed both with respect to d and ∂b. As the h-action is transversely
holomorphic, L

˜Xω = dι
˜Xω is again a basic (p, q)-form. Thus, decomposing
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X̃ = Z + Z into the (1, 0)- and (0, 1)-components, we get

(7.4) L
˜Xω = ∂b(ιZω) + ∂b(ιZω)

and the other two summands ∂b(ιZω) and ∂b(ιZω) vanish for degree reasons.
As ∂b(ιZω) = 0, we find a basic (p− 1, q − 1)-form η such that ιZω + ∂b η is
d-closed. Thus,

∂b(ιZω) = −∂b ∂b η = ∂b ∂bη ,

and plugging that into (7.4) we get

L
˜Xω = ∂b(ιZω + ∂bη) ,

which shows that the induced action on basic Dolbeault cohomology is triv-
ial. �

Corollary 7.4. Assume that h is equal to the structural Killing algebra a
of (M,F) or the h-action is the infinitesimal action of a holomorphic torus
action. Then the equivariant formality of the h-action implies the Dolbeault
equivariantly formality and (7.3).

Proof. By Lemma 7.3, we see that our condition H(Ω•,•(M,F)h, ∂b) =
H•,•(M,F) of Theorem 7.1 is always satisfied in case the h-action is in-
duced by the action of a torus. Also it is satisfied if h = a is the structural
Killing algebra of F , as in this case we even have Ω•,•(M,F)a = Ω•,•(M,F),
see [GT10b, Lemma 3.15]. Thus Corollary 7.4 follows from Theorem 7.1. �

As a corollary, we obtain a basic version of the Carrell-Lieberman theo-
rem [CL73]. Our proof is same as the proof of [CKP07, Theorem 4.6], which
uses equivariant Dolbeault cohomology, adapted to the basic situation. Let
C be the union of closed leaves of F , and note that C/F naturally admits
the structure of a Kähler orbifold.

Theorem 7.5. Let F be a transversely Kähler Killing foliation on a com-
pact manifold M such that the transverse action of the structural Killing
algebra a is equivariantly formal. Then∑

p

hp,p+s(M,F) =
∑
p

hp,p+s(C,F) =
∑
p

hp,p+s(C/F)

for all s. In particular, for |s| > dimCC/F , we have hp,p+s(M,F) = 0 and
Hp,p+s

a (M,F) = 0.
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Proof. Because the a-action is Dolbeault equivariantly formal by Corol-
lary 7.4, the natural inclusion C → M induces an injective map

H•,•
a (M,F) → H•,•

a (C,F) .

Its cokernel is torsion due to [GT10b, Theorem 5.2] and the equivariant basic
Hodge decomposition. The diagonals

⊕
pH

p,p+s of the left and right hand
side are S•(a∗)-submodules and the cokernels of the map restricted to the
diagonals are again torsion, hence the rank of the corresponding diagonals
as S•(a∗)-modules are equal. By Equation (7.2) these are

∑
p h

p,p+s(M,F)
and

∑
p h

p,p+s(C,F), respectively. hp,p+s(C,F) = hp,p+s(C/F) is a direct
consequence of the definition of basic Dolbeault cohomology.

If |s| > dimCC/F , then hp,p+s(C,F) = 0 for all p. Thus, hp,p+s(M,F) =
0. By (7.2), we have also Hp,p+s

a (M,F) = 0 for all p. �

8. A vanishing theorem for Sasakian manifolds

On a compact Sasakian manifold M , the characteristic foliation F is trans-
versely Kähler and admits a natural transverse action of an Abelian Lie
algebra a as mentioned in Section 5.2. F is Killing and a is regarded as
the structural Killing algebra of F as mentioned in Section 5.3. Since this
a-action is always equivariantly formal by [GNT12, Theorem 6.8], Theo-
rems 7.1 and 7.5 apply. For example:

Theorem 8.1. If the characteristic foliation F of a Sasakian structure on a
compact manifold M has only finitely many closed leaves, then hp,q(M,F) =
0 for p �= q.

As a class of examples where this theorem applies, recall the following
definition:

Definition 8.2. A (2n+ 1)-dimensional contact manifold with a Tn+1-
action preserving the contact structure is called a contact toric manifold.
Moreover, if the Reeb vector field of a contact form generates an R-subaction
of the Tn+1-action, then the contact Tn+1-manifold is called a contact toric
manifold of Reeb type.

Theorem 8.3 ([BG00b]). A contact toric manifold of Reeb type admits
a Sasakian structure.

Thus as a corollary of Theorem 8.1, we get
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Corollary 8.4. For an invariant Sasakian structure on a contact toric
manifold M of Reeb type with characteristic foliation F , we have hp,q(M,F)
= 0 for p �= q.

Finally, we mention that Theorems 4.5 and 8.1 can be combined to the
following statement; recall that a CR vector field by definition is a vector
field whose flow preserves the CR structure.

Theorem 8.5. Let (M,η, g) be a compact Sasakian manifold with charac-
teristic foliation F . If there exists a nowhere vanishing CR vector field X
on M with only finitely many closed orbits, then hp,q(M,F) = 0 for p �= q.

Proof. By Proposition 4.4, it suffices to show the case where M is not diffeo-
morphic to S2n+1. Then the CR diffeomorphism group CR(D, J) is compact
by a theorem of Schoen [Sch95]. By Lemma 4.1, (η, g) can be obtained from
a CR(D, J)-invariant Sasakian structure (η0, g0) under a deformation of type
I. Let ξ0 be the Reeb vector field of (η0, g0) and F0 the characteristic folia-
tion of (η0, g0). Here the flow generated by ξ0 commutes with the CR(D, J)-
action. In particular, the flow generated by ξ0 maps each closed X-orbit to
another closed X-orbit. Then, by the finiteness of the closed X-orbits, each
closed X-orbit is preserved by the flow generated by ξ0. Hence the torus sub-
group S generated by X and ξ0 has only finitely many 1-dimensional orbits.
Then, by a deformation of type I using a generic infinitesimal generator of
the S-action, we get a new Sasakian structure (η1, g1) such that the closed
leaves of the characteristic foliation F1 are equal to the 1-dimensional orbits
of the S-action. By Theorem 8.1, we get hp,q(M,F1) = 0 for p �= q. The-
orem 4.6 implies hp,q(M,F) = hp,q(M,F0) = hp,q(M,F1), which concludes
the proof. �

Example 8.6. Let us consider the well-understood case of a three-
dimensional Sasakian manifold (M,η, g) [Gei97, Bel01], see also [BGM06,
Section 7]. If M is null (resp., negative), then it is, up to covering, a circle
bundle over a complex torus (resp., a Riemann surface of genus at least 2).
In both cases, the only possible deformations of type I are rescalings of the
Reeb vector field. In particular, we cannot find a Sasakian structure with
the same underlying CR structure whose characteristic foliation has only
finitely many closed leaves. This fact is reflected in cohomology, as in both
cases the off-diagonals in basic Dolbeault cohomology do not vanish. Note
that any irregular Sasakian 3-manifold is toric. By [Ler02, Theorem 2.18],
such manifolds are lens spaces.
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Example 8.7. More generally, consider a regular Sasakian structure on
the total space of a circle bundle over a Kähler manifold M obtained by
the Boothby-Wang construction [BW58]. In case the off-diagonals in the
Dolbeault cohomology of M do not vanish, the Sasakian structure does not
admit deformations of type I such that the characteristic foliation of the
deformed Sasakian structure has only finitely many closed leaves.

9. Deformations of homogeneous Sasakian manifolds

As an application of the results in this paper, we calculate the basic Hodge
numbers of Sasakian structures whose characteristic foliation has finitely
many closed leaves constructed by deforming homogeneous Sasakian man-
ifolds. It is well-known that any compact homogeneous Sasakian mani-
fold (M,η, g) is a nontrivial circle bundle over a generalized flag manifold,
see [BG07, Theorem 8.3.6]. Denote the underlying CR structure of (M,η, g)
by (D, J), and the Reeb vector field by ξ. We fix a compact Lie group
G ⊂ Aut(η, g) that contains the Reeb flow of η as a one-parameter sub-
group and acts transitively on M . Then we can write this circle bundle as
M = G/K → G/H, where H is the centralizer of a torus in G (in particu-
lar, rankG = rankH), and G/H is a homogeneous Kähler manifold. Note
that ξ is contained in the center of g and acts trivially on G/H, i.e., is also
contained in h.

Theorem 9.1. M admits an irregular Sasakian structure such that the
characteristic foliation F has a finite number of closed leaves and

(9.1) hp,q(M,F) = hp,q(G/H) =

{
b2k(G/H) if p = q = k ,

0 if p �= q .

The number of closed leaves of F is χ(G/H), the Euler number of G/H.

Remark 9.2. Originally, hp,q(G/H) = 0 for p �= q, the second equality
in (9.1), was shown by Borel-Hirzebruch [BH58, Proposition in 14.10]. It also
follows from the original vanishing theorem of Carrell and Lieberman [CL73].
Here we will deduce it from Theorems 4.5 and 8.1.

Proof of Theorem 9.1. Each element in the open convex cone cr+(D, J) (see
Section 4) is the Reeb vector field of another Sasakian structure on M with
CR structure (D, J). Because ξ ∈ h ∩ cr+(D, J), a small neighborhood of ξ
in g is contained in cr+(D, J). The closed leaves of the characteristic foliation
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of the Sasakian structure corresponding to an element in g ∩ cr+(D, J) are
exactly the preimages under the projection G/K → G/H of the fixed points
of the flow on G/H generated by this element. We therefore need to find an
element in g ∩ cr+(D, J) whose flow has only finitely many fixed points on
G/H.

Let T be a maximal torus in H (which then is also a maximal torus in
G). The fixed point set of the action of T by left multiplication on G/H
is exactly NG(T )/NH(T ), which (because rankG = rankH) is equal to the
quotient of Weyl groups W (G)/W (H), so in particular finite. This means
that the flow of a generic element in t close to ξ has only finitely many fixed
points on G/H.

Theorem 8.1 implies that the associated Sasakian structure satisfies
hp,q(M,F) = 0 for p �= q. By Theorem 4.5, it has the same basic Hodge
numbers as the regular Sasakian structure on M we started with, but the
basic Hodge numbers of that Sasakian structure are the same as the Hodge
numbers of G/H. Since hp,q(G/H) = hp,q(M,F) = 0 for p �= q, we get

hk,k(M,F) =
∑

p+q=2k

hp,q(M,F) =
∑

p+q=2k

hp,q(G/H) = b2k(G/H) .

By [GNT12, Theorem 7.11], the number of closed leaves of the charac-
teristic foliation of the deformed Sasakian structure equals the total basic
Betti number

∑
k b

k(M,F) =
∑

k b
k(G/H). Since Hodd(G/H) = 0, we get∑

k b
k(G/H) = χ(G/H). �
If we now assume that G and H are connected, the Betti numbers of

G/H have been calculated by Borel [Bor53, Theorem 26.1 (c)] in terms of
the Betti numbers of G and H: Let

Pt(G) =

r∏
i=1

(1 + tgi) , Pt(H) =

r∏
i=1

(1 + tli)

be the Poincaré polynomials of G and H, where r = RankG = RankH.
Then the Poincaré polynomial Pt(G/H) of G/H is given by

(9.2) Pt(G/H) =

r∏
i=1

1− tgi+1

1− tli+1
,

which implies that the Euler number χ(G/H) of G/H is

(9.3) χ(G/H) =

r∏
i=1

gi + 1

li + 1
.
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By these formulas, we get the following examples.

Example 9.3. For the case of G = SU(n) and H = S(U(p)×U(n− p)),
we have

Pt(G) =
∏

i∈{3,5,...,2n−1}
(1 + ti) , Pt(H) =

∏
j

(1 + tj) ,

where j runs in {1, 3, 5, . . . , 2(n− p)− 1, 3, 5, . . . , 2p− 1}. Then, by Theo-
rem 9.1 and Equation (9.2), we get an irregular Sasakian structure on a
circle bundle M over G/H whose basic Hodge numbers are determined by
the basic Poincaré polynomial

Pt(M,F) =

n−p∏
i=1

1− t2i+2

1− t2i
·
p−1∏
i=1

1− t2(n−p+1)+2i

1− t2i+2

and, by (9.3), whose number of closed leaves of F equals χ(G/H) = n!
(n−p)!p! .

Example 9.4. For the case of G = E7 and H = E6 · SO(2), we have

Pt(G) =
∏
i

(1 + ti) , Pt(H) =
∏
j

(1 + tj) ,

where i runs in {3, 11, 15, 19, 23, 27, 35} and j runs in {1, 3, 9, 11, 15, 17, 23}.
Then, by Theorem 9.1 and Equation (9.2), we get an irregular Sasakian
structure on a circle bundle M over G/H whose basic Hodge numbers are
determined by the basic Poincaré polynomial

Pt(M,F) =

∏
i∈{3,11,15,19,23,27,35}(1− ti+1)∏
j∈{1,3,9,11,15,17,23}(1− tj+1)

and, by (9.3), whose number of closed leaves of F equals χ(G/H) = 56.
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