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Topological contact dynamics III:

uniqueness of the topological Hamiltonian

and C0-rigidity of the geodesic flow

Stefan Müller and Peter Spaeth

We prove that a topological contact isotopy uniquely defines a
topological contact Hamiltonian. Combined with previous results
from [MS15], this generalizes the classical one-to-one correspon-
dence between smooth contact isotopies and their generating
smooth contact Hamiltonians and conformal factors to the group of
topological contact dynamical systems. Applications of this gener-
alized correspondence include C0-rigidity of smooth contact Hamil-
tonians, a transformation law for topological contact dynamical
systems, and C0-rigidity of the geodesic flows of Riemannian man-
ifolds.

1. Introduction

An important characteristic of a Hamiltonian or contact vector field is that
the time evolution of the corresponding dynamical system is determined by
a single function on the underlying manifold, and conversely this function is
unique up to a modest normalization condition. One goal of this sequence of
papers is to extend smooth contact dynamics to topological dynamics, and
to generalize the previously stated correspondence to topological dynamics,
so that invariants of topological contact isotopies can be assigned via their
uniquely corresponding topological contact Hamiltonians. As an application
we establish C0-contact rigidity (Corollary 1.6). We also prove a general-
ized transformation law for topological contact dynamical systems, which
provides a new criterion for the topological conjugacy of smooth contact
dynamical systems. See Corollary 5.3 and Section 5 for additional related

We would like to thank Kaoru Ono for answering a question of ours concerning
the existence of dense Reeb orbits and for pointing out the references in the proof
of Proposition 2.1.
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results. However, applications of the one-to-one correspondence extend be-
yond contact and Hamiltonian dynamics. Using the contact-geometric inter-
pretation of the geodesic flow, we prove a novel C0-rigidity phenomenon of
the geodesic flows of Riemannian manifolds (Theorem 6.1).

Let M be a closed smooth manifold of dimension 2n+ 1 with a contact
structure ξ, and a contact form α such that kerα = ξ and α ∧ (dα)n is a vol-
ume form. A topological contact dynamical system (Φ, H, h) of (M,α) [MS15,
MS14] arises from a sequence Φi = {φt

i} of smooth contact isotopies of (M, ξ)
such that:

• Φi uniformly converges to a continuous isotopy Φ = {φt} of homeo-
morphisms of M ,

• the sequence Hi : [0, 1]×M → R of smooth time-dependent contact
Hamiltonian functions generating the contact isotopies Φi converges
with respect to the norm

‖F‖ =
∫ 1

0

(
max
x∈M

F (t, x)− min
x∈M

F (t, x) +
1∫
M ν

∣∣∣∣∫
M

F (t, x) ν

∣∣∣∣) dt(1.1)

to a time-dependent function H : [0, 1]×M → R, where ν denotes the
canonical measure induced by the volume form α ∧ (dα)n, and

• the sequence hi of smooth time-dependent conformal rescalings of the
contact form α, i.e. the sequence of smooth functions hi : [0, 1]×M →
R satisfying (φt

i)
∗α = eh

t
iα, converges with respect to the uniform

norm

|f | = max{|f(t, x)| | (t, x) ∈ [0, 1]×M}(1.2)

to a continuous function h : [0, 1]×M → R.

In our terminology Φ, H, and h above such that all three conditions simul-
taneously hold are called a topological contact isotopy, a topological contact
Hamiltonian, and a topological conformal factor, respectively. See [MS14]
for examples of non-smooth topological contact dynamical systems of any
(M,α).

Theorem 1.1 is the first result of this paper. After recalling the neces-
sary preliminaries on contact dynamics in Section 2, the proof is given in
Section 3.
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Theorem 1.1. Let (Φ, H, h) be a topological contact dynamical system of
(M,α). If Φ is the constant isotopy at the identity, i.e. φt = id for all t ∈
[0, 1], then Ht = 0 for almost every t ∈ [0, 1].

An obvious feature of contact dynamics that distinguishes itself from
Hamiltonian dynamics is the presence of non-trivial conformal rescaling of
the contact form. We addressed the uniqueness of the topological conformal
factor in [MS15].

Theorem 1.2 ([MS15]). Let (Φ, H, h) be a topological contact dynamical
system of (M,α). If Φ is the constant isotopy at the identity, i.e. φt = id for
all t ∈ [0, 1], then ht = 0 for all t ∈ [0, 1].

Combining Theorems 1.1 and 1.2 yields the following corollary. The proof
is given at the end of Section 2.

Corollary 1.3 (Uniqueness of topological Hamiltonian and confor-
mal factor). Given a contact form α on M , a topological contact isotopy Φ
defines a unique topological contact Hamiltonian H and topological confor-
mal factor h. That is, if (Φ, H, h) and (Φ, F, f) are two topological contact
dynamical systems of (M,α) with the same topological contact isotopy Φ,
then H = F and h = f .

The strategy usually applied to prove a theorem of the type of Theo-
rem 1.1 is to suppose that the conclusion is false, and then derive a contra-
diction with the corresponding ‘uniqueness of the isotopy’ result. This is the
case for topological Hamiltonians of a symplectic manifold [BS13], topolog-
ical basic contact Hamiltonians of a regular contact manifold [BS12], and
the proof of Theorem 1.1. Using different methods however, Viterbo earlier
proved the uniqueness of continuous Hamiltonians of continuous Hamilto-
nian isotopies (i.e. under a stronger convergence hypothesis) of a symplectic
manifold [Vit06].

In [MS15] we proved the uniqueness of the topological contact isotopy
of a topological contact Hamiltonian.

Theorem 1.4 ([MS15]). Let (Φ, H, h) be a topological contact dynamical
system of (M,α). If Ht = 0 for almost every t ∈ [0, 1], then φt = id and
ht = 0 for all t ∈ [0, 1].

Therefore the converse [MS15, Theorem 6.4] to Corollary 1.3 also holds
for topological contact dynamical systems.
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Corollary 1.5 ([MS15] Uniqueness of topological contact isotopy
and conformal factor). Given a contact form α on M , a topological
contact Hamiltonian H defines a unique topological contact isotopy Φ with
unique topological conformal factor h. That is, if (Φ, H, h) and (Ψ, H, f) are
two topological contact dynamical systems of (M,α) with the same topologi-
cal contact Hamiltonian H, then φt = ψt and ht = ft for all t ∈ [0, 1].

The previous results can also be interpreted as smooth contact rigid-
ity results. We prove the first statement (1) below. For the proof of state-
ment (2), see [MS14, Corollary 3.4].

Corollary 1.6 (Contact rigidity). Let (Φ, H, h) be a topological contact
dynamical system of (M,α).

1) If Φ is a smooth isotopy of diffeomorphisms, then H and h are smooth
functions, Φ is the smooth contact isotopy generated by the smooth
contact Hamiltonian H, and φ∗

tα = ehtα.

2) Conversely if H is a smooth function, then both the isotopy Φ and
function h are smooth, Φ is the contact isotopy generated by H, and
φ∗
tα = ehtα.

In both cases the function ht is given by

ht =

∫ t

0
(dHs(Rα)) ◦ φs

H ds.

In fact by [MS15, Lemma 13.1], Corollary 1.6 (1) is equivalent to Corol-
lary 1.3, and Corollary 1.6 (2) is equivalent to Corollary 1.5 by [MS15,
Lemma 7.6]. As mentioned in [MS15], smoothness of the conformal factor
h on the other hand does not imply that Φ or H is smooth; non-smooth
strictly contact dynamical systems (Φ, H, 0) are constructed in [BS12].

Proof of (1). By rigidity of contact diffeomorphisms [MS15, Theorem 1.3],
the limit Φ is a smooth contact isotopy, and the limit h of the conformal
factors hi coincides with the smooth conformal factor of the smooth contact
isotopy Φ. By Corollary 1.3, the topological contact Hamiltonian of the
limit isotopy is equal to the smooth contact Hamiltonian that generates the
isotopy Φ. �

The first part of the paper (Sections 2 and 3) contains background mate-
rial and the proof of Theorem 1.1. Section 4 provides proofs of local versions
of the theorems in the introduction. The final part of the paper (Sections 5
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and 6) concerns applications of the uniqueness theorems to smooth and
topological contact dynamics, and topological rigidity of geodesic flows of
Riemannian manifolds.

2. Preliminaries on smooth and topological contact
dynamics

2.1. Smooth contact dynamics

A smooth completely non-integrable hyperplane sub-bundle ξ ⊂ TM of the
tangent bundle TM of a smooth manifold M is called a contact structure
or a contact distribution on M . A contact structure ξ is locally defined by
a smooth differential 1-form α on M , a contact form, such that ξ = kerα,
and the non-integrability condition satisfied by ξ is equivalent to a non-
degeneracy condition satisfied by α (locally where α is defined),

α ∧ (dα)n �= 0,

where the necessarily odd dimension of M is 2n+ 1. We assume that ξ is
cooriented, so that α is globally defined, and α ∧ (dα)n is a volume form on
M . The choice of contact form α is obviously not unique; any other 1-form
egα, where g : M → R is a smooth function, defines the same cooriented
contact structure and orientation on M , and conversely, if β is another
smooth 1-form that defines the same cooriented contact structure ξ, then
there exists a smooth function g : M → R such that β = egα.

The starting point in smooth contact dynamics is made by fixing the
choice of a contact form α defining ξ. This choice determines the important
Reeb vector field Rα defined by the equations

ι(Rα)dα = 0 and ι(Rα)α = 1,

where ι(X)η denotes the interior product of a differential form η with a
vector field X. One way to construct symmetries of the contact structure is
to begin with a smooth function. Observe that any vector field X on M can
be written as X = HRα + Y for some function H : M → R and section Y
of the contact distribution ξ, and thus the two equations

ι(X)α = H and ι(X)dα = (Rα.H)α− dH(2.1)

possess a unique solution, which we denote XH . Here Rα.H = ι(Rα)dH
denotes the derivative of H along Rα. If LX denotes the Lie derivative along
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a vector field X, then Cartan’s identity yields

LXH
α = d(ι(XH)α) + ι(XH)dα = (Rα.H)α.

Thus a vector field XH defined by (2.1) satisfies LXH
α = μα for a smooth

function μ : M → R, i.e. XH is an infinitesimal automorphism of the contact
structure ξ, or a contact vector field, and H is called its contact Hamiltonian
function. We assume that M is closed, i.e. compact without boundary, and
for simplicity connected. Denote by ΦH = {φt

H} the solution to the corre-
sponding differential equation

d

dt
φt = XH ◦ φt, φ0 = id,

and observe that for each time t,

(φt
H)∗α = ehtα,(2.2)

where

ht =

∫ t

0
(Rα.H) ◦ φs

H ds.(2.3)

Hence at each time t, φt
H is a contact diffeomorphism, i.e. a diffeomorphism

φ of M such that φ∗ξ = ξ. In short, given a choice of contact form α, a
smooth function H : M → R defines a vector field XH whose smooth flow
{φt

H} consists of contact diffeomorphisms for all times t.
The preceding is an example of a smooth contact isotopy, where a smooth

isotopy Φ = {φt}0≤t≤1 of diffeomorphisms ofM is called contact if each time-
t map φt is a contact diffeomorphism, i.e. there exists a smooth family of
functions ht : M → R on M such that (2.2) holds. In fact, if we allow time-
dependent Hamiltonian functions in the previous construction, then every
smooth contact isotopy arises in this way. Let X = {Xt}0≤t≤1 denote the
time-dependent smooth vector field generating a smooth contact isotopy Φ
in the sense that

d

dt
φt = Xt ◦ φt,

and denote by Ht the smooth time-dependent function H : [0, 1]×M → R
defined byHt = α(Xt). An elementary calculation shows that the vector field
Xt satisfies ι(Xt)dα = μtα− dHt, with μt = Rα.Ht, so that (2.1) holds, and
the functions μt and ht are related by (2.3).
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A smooth contact isotopy Φ is called strictly contact with respect to α
if each time-t map φt satisfies φ

∗
tα = α. In this case the conformal factor h

vanishes identically, and the generating Hamiltonian H satisfies Rα.Ht = 0
for every t ∈ [0, 1]. Such a Hamiltonian is called basic. Similarly a contact
diffeomorphism φ is called strictly contact with respect to α if it satisfies
φ∗α = α.

Thus the choice of contact form α produces a one-to-one correspondence
between smooth contact isotopies with their smooth contact Hamiltonians,
and so from this point of view, the choice of contact form may be thought
of as the normalization condition in contact dynamics. We write Φ = ΦH

for a smooth contact isotopy generated by the smooth Hamiltonian H and
with smooth conformal factor h, and such a triple (Φ, H, h) is what we
call a smooth contact dynamical system. We denote the group of smooth
contact dynamical systems by CDS(M,α), while the group of contact dif-
feomorphisms is denoted by Diff(M, ξ), and Diff0(M, ξ) denotes its identity
component. The group SCDS(M,α) of smooth strictly contact dynamical
systems of (M,α) consists of triples (Φ, H, h) where Φ is strictly contact, H
is basic, and h vanishes identically. The group of strictly contact diffeomor-
phisms and its identity component are denoted Diff(M,α) and Diff0(M,α),
respectively.

For some contact manifolds, the collection of basic functions consists
only of functions that depend only on time. This further distinguishes the
study of contact dynamics from Hamiltonian or strictly contact dynamics.

Proposition 2.1. Let (B, g) be a closed simply-connected Riemannian man-
ifold with strictly negative sectional curvature. Then the Reeb vector field on
the unit cotangent bundle with its canonical contact form has a dense orbit.

Proof. By [Ebe73, Theorem 6.4] or [KH95, Theorems 17.6.2 and 18.3.6] the
hypotheses imply the existence of a dense orbit of the geodesic flow on the
unit tangent bundle STB. Under the identification of the unit tangent bun-
dle with the unit cotangent bundle ST ∗B via the metric g, the corresponding
Reeb flow possesses a dense orbit. �
See Section 6 for further details on the identification of the geodesic flow of
STB with the Reeb flow of ST ∗B.

Proposition 2.2. Suppose (M, ξ) is a contact manifold with a contact form
α that admits a dense Reeb orbit O. Then every basic function depends only
on time, and (M,α) admits no strictly contact isotopies other than reparam-
eterizations of the Reeb flow. In particular, for each connected component of
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Diff(M,α) there exists a bijective map to R, and a strictly contact diffeo-
morphism φ is in Diff0(M,α) if and only if there exists a point x ∈M such
that x and φ(x) both lie on O.

Proof. A basic function Ht is constant along Reeb orbits, and since O is
dense, Ht must be constant on M . Thus H generates a reparameterization
of the Reeb flow, and a diffeomorphism φ ∈ Diff0(M,α) is of the form φs

R

for a unique real number s, where ΦR denotes the Reeb flow of (M,α).
Suppose that φ ∈ Diff(M,α), and there exists x ∈M such that x and

φ(x) lie on O. Denote by s the unique real number such that φ(x) = φs
R(x).

Let y ∈M , and choose a sequence yk ∈ O that converges to y. By construc-
tion, yk = φsk

R (x) for some sk ∈ R, and

φ(y) = lim
k→∞

φ(yk)

= lim
k→∞

(
φsk
R ◦ φ ◦ (φsk

R )−1
)
(yk)

= lim
k→∞

φsk
R ◦ φ(x) = lim

k→∞
φsk
R ◦ φs

R(x) = lim
k→∞

φs
R ◦ φsk

R (x)

= lim
k→∞

φs
R(yk)

= φs
R(y),

since strictly contact diffeomorphisms commute with the Reeb flow. �

In some sense manifolds (M,α) that admit a dense Reeb orbit are the
opposite of regular contact manifolds, where every orbit is closed and the
group Diff0(M,α) ∼= Ham(M/S1, ω) is as large as it can be.

2.2. Topological contact dynamics

The extension of smooth contact dynamics to topological dynamics results
from the completion of the group of smooth contact dynamical systems with
respect to the contact metric dα, which encodes the isotopies’ topological and
dynamical data. See [MO07, Mül08] for the case of Hamiltonian dynamics of
a symplectic manifold, and [BS12] for the case of the dynamics of a contact
form.

The contact distance between two smooth contact dynamical systems
(ΦH , H, h) and (ΦF , F, f) of (M,α) is given by

dα((ΦH , H, h), (ΦF , F, f)) = d(ΦH ,ΦF ) + |h− f |+ ‖H − F‖,
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where d denotes a complete metric that induces the C0-topology on the
group of isotopies of homeomorphisms of M , and | · | and ‖ · ‖ denote the
norms in equations (1.2) and (1.1), respectively. The contact metric is stud-
ied in detail in [MS15, MS14], where the relationship between topological
contact and Hamiltonian dynamics is also thoroughly explored. We cau-
tion the reader that the convergence of any two terms in the sequence
(ΦHi

, Hi, hi) of triples does not imply the convergence of the remaining
sequence. Examples are given in [MS15, Section 8].

Recall that a triple (Φ, H, h) is called a topological contact dynamical
system of (M,α) if it is the limit with respect to the contact metric dα of a
sequence (ΦHi

, Hi, hi) of smooth contact dynamical systems of (M,α). Note
that the uniform metric on the group of homeomorphisms (or isotopies of
homeomorphisms) of M is never complete. However, a sequence of isotopies
of homeomorphisms of M that uniformly converges to an isotopy of home-
omorphisms of M is C0-Cauchy and moreover C0-converges to the same
limit. We showed in [MS15] that the collection PHomeo(M, ξ) of topological
contact isotopies of (M, ξ) forms a group, and as the notation suggests does
not depend on the choice of contact form α such that kerα = ξ. See [MS15]
for the precise dependence of other elements of topological contact dynamics
on the contact form α.

The norm (1.2) on the space of conformal factors is complete in the
sense that a Cauchy sequence of smooth conformal factors converges to a
continuous time-dependent function on M . The contact norm (1.1) is also
complete in the following sense. An equivalence class of Cauchy sequences
with respect to the contact norm (1.1) of smooth contact Hamiltonian func-
tions determines a function H, which can be thought of as an element of the
space L1([0, 1], C0(M)) of L1-functions of the unit interval taking values in
the space C0(M) of continuous functions of M . Any two such representa-
tives of the equivalence class are equal almost everywhere in time, and such
a representative function H can be defined to be any continuous function at
the remaining times t belonging to a set of measure zero.

The set T CDS(M,α) of topological contact dynamical systems forms
a group containing the group of smooth contact dynamical systems as a
subgroup. In the case of smooth contact isotopies and contact Hamiltonians
the following identities are simple consequences of standard techniques for
ordinary differential equations. However in the topological setting more so-
phisticated techniques are required. See [MS15, Section 9] for further details
and the proof.
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Theorem 2.3 ([MS15, Theorem 6.5]). The set T CDS(M,α) admits the
structure of a topological group, where for two topological contact dynamical
systems (ΦH , H, h) and (ΦF , F, f) the group operations are given by

(ΦH , H, h) ◦ (ΦF , F, f) = (ΦH ◦ ΦF , H#F, h#f)

and (ΦH , H, h)−1 = (Φ−1
H , H, h),

and where the contact Hamiltonians H#F and H are given respectively at
each time t by

(H#F )t = Ht + (eht · Ft) ◦ (φt
H)−1 and Ht = −e−ht(Ht ◦ φt

H).

The conformal factors h#f and h are defined at each t by

(h#f)t = ft + ht ◦ φt
F and ht = −ht ◦ (φt

H)−1.

Whereas in smooth contact dynamics the group of canonical transforma-
tions (or changes of coordinates) is given by the group Diff(M, ξ) of contact
diffeomorphisms of (M, ξ), in topological contact dynamics this role is played
by the group of topological automorphisms of the contact structure. Recall
[MS15, Definition 6.8 and Theorem 6.9] that a homeomorphism φ of M is a
topological automorphism of the contact structure ξ with unique topological
conformal factor h ∈ C0(M) if there exists a sequence of contact diffeomor-
phisms φj ∈ Diff(M, ξ) that uniformly converges to φ and whose smooth
conformal factors hj uniformly converge to the continuous function h on
M . The group of topological automorphisms is independent of the choice
of contact form α defining ξ [MS15, Proposition 6.12], and will be denoted
Aut(M, ξ).

We proved the following transformation law in [MS15].

Theorem 2.4 ([MS15, Theorem 6.13]). Let (ΦH , H, h) be a topological
contact dynamical system of (M,α) and ϕ ∈ Aut(M, ξ) be a topological auto-
morphism of the contact structure with topological conformal factor g. Then
(ϕ−1 ◦ ΦH ◦ ϕ,Hϕ, hϕ) is a topological contact dynamical system, where

(Hϕ)t = e−g(Ht ◦ ϕ) and (hϕ)t = h ◦ ϕ+ g − g ◦ ϕ−1 ◦ φt
H ◦ ϕ.

In particular, suppose that (ΦH , H, h) and (ΦF , F, f) are topological con-
tact dynamical systems, and that ϕ is a topological automorphism of the
contact structure with topological conformal factor g. Corollary 1.5 implies
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that if H = e−g(F ◦ ϕ), then ΦH = ϕ−1 ◦ ΦF ◦ ϕ. By Corollary 1.3, the con-
verse to this statement holds. See Corollary 5.3. Here by a function of the
form F ◦ ϕ, etc., we mean the time-dependent function given by F (t, ϕ(x))
at (t, x) ∈ [0, 1]×M . Note that the functions h#f , h, and hϕ also depend
on the isotopies ΦH ,ΦF , and Φ−1

H as indicated above.
Assuming Theorem 1.1, we are now prepared to give a proof of Corol-

lary 1.3.

Proof of Corollary 1.3. Suppose that Φ = {φt} is a topological contact iso-
topy of (M, ξ), and that (Φ, H, h) and (Φ, F, f) are both topological contact
dynamical systems of (M,α). The composition law implies that the identity
isotopy Id = Φ−1 ◦ Φ of M has the topological contact Hamiltonian H#F
given by (H#F )t = e−ht((Ft −Ht) ◦ φt), and moreover the topological con-
formal factor associated to Id = Φ−1 ◦ Φ is given by the continuous function
−ht + ft. Theorem 1.1 implies that for almost every t ∈ [0, 1], Ft −Ht = 0,
or in other words the topological contact Hamiltonians F and H are equal.
Finally by Theorem 1.2, for all t ∈ [0, 1], the topological conformal factor
satisfies −ht + ft = 0, that is, ht = ft. �

3. The proof of Theorem 1.1

Buhovsky and Seyfaddini’s use of the space of autonomous null-Hamiltonians
in their uniqueness proof for topological Hamiltonians of a symplectic man-
ifold [BS13] resembles a proof that translation is continuous in Lp for 1 ≤
p <∞ (see e.g. [WZ77, Theorem 8.19]), and we likewise apply this strat-
egy to prove Theorem 1.1. The additional difficulties present for topological
contact Hamiltonians include the fact that translations on R2n+1 do not in
general preserve its standard contact form, and the existence of non-trivial
conformal factors of contact isotopies.

3.1. Null contact Hamiltonians

By Theorem 1.2, the topological conformal factor h of a topological contact
dynamical system of the form (Id, H, h), where Id = {id} denotes the con-
stant isotopy at the identity, satisfies h = 0, and thus the following sets are
equal

{H ∈ L1([0, 1], C0(M)) | (Id, H, h) ∈ T CDS(M,α)}
= {H ∈ L1([0, 1], C0(M)) | (Id, H, 0) ∈ T CDS(M,α)}.
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Therefore we define the set N (M,α) of null contact Hamiltonians of (M,α)
by

N (M,α) = {H ∈ L1([0, 1], C0(M)) | (Id, H, 0) ∈ T CDS(M,α)}.

Also of interest are the time-independent null contact Hamiltonians defined
by

Naut(M,α) = {H ∈ N (M,α) | (∃)F ∈ C0(M) s.t. Ht = F a.e. t ∈ [0, 1]}.

We regard Naut(M,α) as a subspace of C0(M). Then Naut(M,α) ⊂ C0(M)
and N (M,α) ⊂ L1([0, 1], C0(M)) are closed in the C0 and L1-topologies,
respectively. The next lemma captures the algebraic properties of the sets
N (M,α) and Naut(M,α), generalizing [BS13, Lemma 7] to include auto-
morphisms of the contact structure.

Lemma 3.1. The sets N (M,α) and Naut(M,α) are closed under addition,
negation, and transformation by contact automorphisms φ ∈ Aut(M, ξ). Both
of the sets N (M,α) and Naut(M,α) are invariant under time reparametriza-
tions, and Naut(M,α) is a vector space over R.

Proof. The first three claims follow immediately from the identities in The-
orem 2.3 and Theorem 2.4. If H : [0, 1]×M → R is a topological Hamilto-
nian that generates the topological contact isotopy ΦH = {φt

H}, a < b are
real numbers, and ζ : [a, b]→ [0, 1] is a smooth function, then the reparam-
eterized isotopy

ΦHζ = {φt
Hζ}a≤t≤b = {φζ(t)

H }a≤t≤b

is generated by the topological Hamiltonian Hζ : [a, b]×M → R, defined by

Hζ(t, x) = ζ ′(t) ·H(ζ(t), x),(3.1)

where ζ ′ denotes the derivative of ζ. Since φt
Hζ = φ

ζ(t)
H , the conformal factor

hζ of the isotopy ΦHζ is given by hζt = hζ(t). Thus if H ∈ N (M,α) and ζ is
as above, then

(Idζ , Hζ , hζ) = (Id, Hζ , 0) ∈ T CDS(M,α),(3.2)

and therefore Hζ ∈ N (M,α).
In the special case ζ(t) = st for a real number s ∈ [0, 1], we also write

Hζ = Hs. For a time-independent null contact Hamiltonian H ∈ Naut(M,α)
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we have

(ΦHs , Hs, hs) = (Id, Hs, 0) = (Id, sH, 0),(3.3)

and sH ∈ Naut(M,α). It follows that Naut(M,α) is closed under scalar mul-
tiplication. Indeed when r ≥ 0, write r =

∑
sj , 0 ≤ sj ≤ 1, and apply our

previous remarks, so that rH ∈ Naut(M,α) if H ∈ Naut(M,α). Finally, the
case r < 0 follows from the fact that H ∈ Naut(M,α) implies −H = H ∈
Naut(M,α). �

3.2. Translations and convolutions on the Heisenberg group

Recall that in general linear translations do not preserve the standard con-
tact form on R2n+1. Thus we utilize the non-abelian Heisenberg group struc-
ture on R2n+1, cf. [Ste93]. Identifying R2n+1 with Hn = Cn ×R, we write
points x=(x1, . . . , x2n+1) as pairs x=(x′, x2n+1), where x′=(x′1, x′2, . . . , x′n)
with x′j = x2j−1 +

√
−1x2j for j = 1, . . . , n. The group structure on Hn is

defined by

x · y = (x′, x2n+1) · (y′, y2n+1) =

(
x′ + y′, x2n+1 + y2n+1 +

1

2
Im 〈x′, y′〉

)
,

where 〈x′, y′〉 = ∑n
j=1 x

′
j · ȳ′j denotes the standard Hermitian inner product

on Cn, and Im 〈x′, y′〉 denotes its imaginary part.
Let τ = (τ ′, τ2n+1) ∈ Hn. A straightforward calculation shows that the

diffeomorphism Rτ given by right multiplication by τ−1

Rτ : Hn → Hn Rτ (x) = x · τ−1

preserves the contact form

α0 = dx2n+1 −
1

2

n∑
j=1

(x2j−1dx2j − x2jdx2j−1) ,

i.e. R∗
τ α0 = α0. Thus for every t ∈ [0, 1], the map Rtτ is a strictly contact

diffeomorphism, and {Rtτ} defines a strictly contact isotopy. Left transla-
tions are also strictly contact. In Heisenberg coordinates the basic contact
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Hamiltonian that generates {Rtτ} is the function

F τ : Hn → R F τ (x) = −τ2n+1 − Im 〈x′, τ ′〉.(3.4)

Denote by ν0 the measure induced from the volume form α0 ∧ dαn
0 , which

coincides with the usual Lebesgue measure. The convolution of measurable
functions f and g is given by

f ∗ g (x) =
∫
Hn

f(y) g(y−1 · x) ν0(y)(3.5)

whenever (3.5) is finite. We will apply the next lemma in the subsequent sec-
tion. The proof follows from a straightforward adaptation of the Euclidean
case (see for example [WZ77, Chapter 9]) to the Heisenberg group.

Lemma 3.2. Let f ∈ Lp(Hn) be compactly supported, and suppose that K
is a smooth compactly supported function on Hn such that

∫
Hn K ν0 = 1.

For ε > 0, the functions fε = f ∗Kε are smooth and compactly supported,
where Kε(x) = ε−(2n+1)K(x/ε). If 1 ≤ p <∞, then ‖fε − f‖p → 0 as ε→ 0.
When p =∞, fε converges to f at every point of continuity of f , and if f
is continuous, then fε converges to f uniformly.

3.3. Uniqueness of time-independent contact Hamiltonians

The uniqueness of the topological contact isotopy of a topological contact
Hamiltonian, Corollary 1.5, enables us to complete the second step in the
proof of Theorem 1.1, namely that the set Naut(M,α) of time-independent
null contact Hamiltonians consists only of the zero contact Hamiltonian. We
will need the following simple consequence of Darboux’s theorem.

Lemma 3.3. For any two points x and y ∈M , there exists a contact diffeo-
morphism ψ ∈ Diff0(M, ξ) mapping x to y whose conformal factor vanishes
at the point x. If x, y ∈ U ⊂M , and U is connected, then the diffeomorphism
ψ can be constructed with support contained inside U .

Proof. It is well known that there exists a diffeomorphism φ ∈ Diff0(M, ξ)
such that φ(x) = y and φ∗α = ehα, where h : M → R is a smooth function,
and with support in an arbitrarily small neighborhood of any given path
connecting x to y [Gei08, Corollary 2.6.3]. Now consider the contact form
α′ = ehα. By Darboux’s theorem α and α′ are diffeomorphic in a neighbor-
hood of x, i.e. there exists a locally defined contact diffeomorphism γ isotopic
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to the identity such that γ(x) = x, and γ∗α′ = α. After appropriately cut-
ting off the smooth contact Hamiltonian that generates γ, the composition
ψ = φ ◦ γ has the desired properties. �

Lemma 3.4. A smooth null contact Hamiltonian vanishes identically.

Proof. LetH be a smooth null contact Hamiltonian, and denote by (ΦH , H, h)
the smooth contact dynamical system generated byH as in Section 2.1. Since
H is a null contact Hamiltonian, (Id, H, 0) is a topological contact dynamical
system. By Corollary 1.5, ΦH = Id, and thus H = 0. �

Lemma 3.5. An autonomous null contact Hamiltonian vanishes identi-
cally.

Proof. We argue by contradiction that a time-independent null contact
Hamiltonian must be locally constant. Since M is connected, it is then glob-
ally constant, and by Lemma 3.4 it must be identically zero.

Suppose H ∈ Naut(M,α) and there exist points x, y ∈ U , x �= y such
that H(x) �= H(y), where U ⊂M is a Darboux neighborhood with local
coordinates x = (x′, x2n+1) ∈ Hn such that

α|U = dx2n+1 −
1

2

n∑
j=1

(x2j−1dx2j − x2jdx2j−1) .

Let φ ∈ Diff0(M, ξ) be such that φ(x) = y, and with conformal factor g such
that g(x) = 0 as in Lemma 3.3. We may further assume that φ is compactly
supported within U . By Lemma 3.1, the function F = H − e−g(H ◦ φ) is
a null contact Hamiltonian, which is both compactly supported in U and
non-zero. Consider the set

L = Span{F φ | φ ∈ Diff(M, ξ) and supp(φ) ⊂ U} ⊂ C0(M),

where φ∗α = egα and F φ = e−g(F ◦ φ). By Lemma 3.1, L ⊂ Naut(M,α) is
a C0-closed linear subspace.

For K : Hn → R as in Lemma 3.2 and sufficiently small ε > 0, the con-
volution

Fε(x) = F ∗Kε(x) =

∫
Hn

F (y)Kε(y
−1 · x) ν0(y),

is compactly supported in U , where the variables y = (y′, y2n+1) denote
Heisenberg coordinates on Hn as before. By Lemma 3.2, Fε is smooth, and
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C0-converges to F as ε→ 0; thus Fε is non-vanishing for all sufficiently small
ε > 0.

The function Fε can be C0-approximated by a Riemann sum of the form
(cf. [BS13, Section 3])

N∑
j=1

cj · (Rτj )
∗F

with |τj | < ε, which a priori is not an element of L, since the right transla-
tions Rτj are not compactly supported. Let Gj = ρ · F τj , where F τj satis-
fies (3.4), and ρ is a smooth cut-off function supported in U that equals 1
on the set

W = {x · v−1 | x ∈ supp(F ), ‖v‖ < δ} ⊂W ⊂ U

for δ > 0 sufficiently small. Then supp(φt
Gj
) ⊂ U for all t ∈ [0, 1], and if we

further impose that δ < ε, then φt
Gj

coincides with Rtτj on the support of
F . Thus

N∑
j=1

cj · (Rτj )
∗F =

N∑
j=1

cj · (φ1
Gj
)∗F.

The right hand side above is an element of L ⊂ Naut(M,α), and this implies
Fε is a smooth non-vanishing null contact Hamiltonian. This contradicts
Lemma 3.4. �

3.4. Time-dependent null Hamiltonians

The last step in proving Theorem 1.1 is to show that for almost every
t ∈ [0, 1], the restriction Ht of a null contact Hamiltonian is an element
of Naut(M,α). In the present case of contact Hamiltonians on contact mani-
folds, the proof requires a minor modification to the proof concerning Hamil-
tonians of symplectic manifolds from [BS13].

Lemma 3.6. Suppose that H ∈ N (M,α). For almost every t ∈ [0, 1], the
restricted Hamiltonian Ht satisfies Ht ∈ Naut(M,α).

Proof. Fix a value of t ∈ [0, 1), and define

Fj(s, x) =
1

j
·H

(
t+

s

j
, x

)
0 ≤ s ≤ 1

for j sufficiently large. By Lemma (3.1), Fj is a null contact Hamiltonian,
and thus Gj = j · Fj is as well. For the sequence of null Hamiltonians Gj ,
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we have

‖Gj −Ht‖ < 3

∫ 1

0
max
x∈M

|Gj(s, x)−Ht(x)| ds(3.6)

= 3j

∫ t+ 1

j

t
max
x∈M

|H(u, x)−Ht(x)| du,(3.7)

where (3.6) follows from [MS15, Lemma 2.4], which observes that for a
function V : M → R,

max
x∈M

(V (x))− min
x∈M

(V (x)) +
1∫

M ν0

∣∣∣∣∫
M

V ν0

∣∣∣∣ < 3max
x∈M

|V (x)|,

and (3.7) results from the change of variables u = t+ s
j . A version of the

Lebesgue differentiation theorem for L1-maps from the interval [0, 1] to the
Banach space C0(M) of continuous functions on M (see [BS13, Lemma 9])
implies that for almost every t ∈ [0, 1)

lim
h→0+

1

h

∫ t+h

t
max
x∈M

|H(s, x)−Ht(x)| ds = 0,

and thus ‖Gj −Ht‖ → 0 as j →∞. Therefore Ht : M → R is a null contact
Hamiltonian, because N (M,α) is closed with respect to the norm given by
equation (1.1). Since Ht is time-independent by definition, it follows that
Ht ∈ Naut(M,α). �

Proof of Theorem 1.1. Suppose that H ∈ N (M,α). Then for almost all t ∈
[0, 1], Ht ∈ Naut(M,α) by Lemma 3.6. By Lemma 3.5, Ht = 0. Thus H = 0
as an element of the space L1([0, 1], C0(M)). �

4. Local uniqueness results

Recall that we proved the local uniqueness of the conformal factor of a topo-
logical automorphism of the contact structure in [MS15, Proposition 11.4].
This is the precise statement.

Proposition 4.1 ([MS15] Local uniqueness of topological conformal
factor). Let U ⊂M be an open subset of a contact manifold (M, ξ) with
contact form α such that kerα = ξ. Suppose that φi and ψi ∈ Diff(M) are
two sequences of diffeomorphisms such that φ∗

iα = ehiα and ψ∗
i α = egiα on

U , where hi and gi are smooth functions on U .
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Suppose that the sequences φ−1
i ◦ ψi and ψ−1

i ◦ φi converge to the identity
uniformly on compact subsets of U , and that hi and gi converge uniformly
on compact subsets of U to continuous functions h and g, respectively. Then
h = g on U .

The next result is our local reformulation of Theorem 1.4.

Theorem 4.2. Suppose that (ΦH , H, h) is a topological contact dynamical
system of (M,α), and let U ⊂M be open. If for almost every t ∈ [0, 1] the
restriction of the Hamiltonian satisfies Ht|U = 0, then φt

H(x) = x for every
t ∈ [0, 1] and x ∈ U .

In order to prove Theorem 4.2, we will need a local version of the contact
energy-capacity inequality from [MS15, Theorem 1.1].

Theorem 4.3. Let (M, ξ) be a contact manifold with a contact form α such
that kerα = ξ. Suppose that U ⊂M is open and that the time-one map φ1

H ∈
Diff0(M, ξ) of a smooth contact Hamiltonian H : [0, 1]×M → R displaces
the closure V of an open set V such that V ⊂ V ⊂ U . Then there exists a
constant C > 0 independent of the contact isotopy ΦH , its conformal factor
h : [0, 1]×M → R given by (φt

H)∗α = ehtα, and its contact Hamiltonian H
such that if for all 0 ≤ t ≤ 1, φt

H(V ) ⊂ U , then

0 < Ce−|h|V ≤ ‖H‖U

where |h|V = max{|ht(x)| | (t, x) ∈ [0, 1]× V }, and similarly for ‖H‖U .

Proof. Let a < b be distinct real numbers, and consider the product V ×
[a, b] as a subset of the symplectization M ×R of M with its symplectic
structure

ω = −d(eθπ∗
1α),

where π1 : M ×R→M denotes the projection to the first factor, and θ rep-
resents the coordinate on R. Recall that the smooth admissible Hamiltonian
function Ĥ : [0, 1]×M ×R→ R defined by Ĥ(t, x, θ) = eθH(t, x) generates
the admissible smooth Hamiltonian isotopy Φ

̂H of the symplectization given
by

φt
̂H
(x, θ) =

(
φt
H(x), θ − ht(x)

)
for all 0 ≤ t ≤ 1 and all (x, θ) ∈M ×R. Hence the time-one map φ1

̂H
satisfies

φ1
̂H
(V × [a, b]) ∩ (V × [a, b]) = ∅.
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Let W ⊂ U be an open set such that φt
H(V ) ⊂W ⊂W ⊂ U for all 0 ≤

t ≤ 1, and let η be a smooth cut-off function that satisfies η = 1 on W and
η = 0 outside U . Set c = |h|V , and let ρ : R→ [0, 1] be a smooth cut-off
function such that

ρ(θ) =

{
1 if θ ∈ [a− c, b+ c]
0 if θ ∈ R \ [a− c− 1, b+ c+ 1].

By construction the time-t maps φt
ηH and φt

H agree on V ⊂M , and thus if
g denotes the conformal factor of the isotopy ΦηH , then gt(x) = ht(x) for all
0 ≤ t ≤ 1 and x ∈ V .

Consider the compactly supported Hamiltonian isotopy Φ
ρ̂ηH

of M ×R

generated by the Hamiltonian ρ η̂H defined at each (t, x, θ) ∈ [0, 1]×M ×R
by

ρ η̂H(t, x, θ) = ρ(θ)eθη(x)H(t, x).

If x ∈ V and θ ∈ [a, b], then for all 0 ≤ t ≤ 1,

φt
ρ̂ηH

(x, θ) = (φt
ηH(x), θ − ht(x)) = φt

̂H
(x, θ).

In particular

φ1
ρ̂ηH

(
V × [a, b]

)
∩
(
V × [a, b]

)
= ∅,

and the energy-capacity inequality [LM95] implies

0 <
1

2
c(V × [a, b]) ≤ ‖ρ η̂H‖Hofer ≤ eb+c+1‖ηH‖ ≤ eb+c+1‖H‖U ,

where c(V × [a, b]) denotes the Gromov width of V × [a, b], and

‖ρ η̂H‖Hofer =

∫ 1

0

(
max
(x,θ)

(ρ η̂Ht)−min
(x,θ)

(ρ η̂Ht)

)
dt

is the Hofer length of the Hamiltonian isotopy Φ
ρ̂ηH

of M ×R. Thus

0 <
c(V × [a, b])

2eb+1
e−|h|V ≤ ‖H‖U

and the theorem follows. �
Proof of Theorem 4.2. If the conclusion of the theorem is false, then there
exists a point x ∈ U , a time 0 < t0 ≤ 1 such that φt0

H(x) �= x, and φt
H(x) ∈

U for all 0 ≤ t ≤ t0. By continuity of the map φt0
H , there exists an open
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neighborhood V containing x such that φt0
H(V ) ∩ V = ∅, and by shrinking

V if necessary, we may further assume that φt
H(V ) ⊂ U for all 0 ≤ t ≤ t0.

Let (ΦHi
, Hi, hi) be a sequence of smooth contact dynamical systems

that converges to (ΦH , H, h) in the contact metric dα as i→∞. By our
assumption and the C0-convergence of the sequence ΦHi

to ΦH , for all i
sufficiently large, the isotopy ΦHi

satisfies φt0
Hi
(V ) ∩ V = ∅, and φt

Hi
(V ) ⊂ U

for all 0 ≤ t ≤ t0.
We reparameterize, and apply Theorem 4.3 as follows. For each i =

1, 2, 3, . . ., let (ΦFi
, Fi, fi) be the smooth contact dynamical system of (M,α)

generated by the smooth contact Hamiltonian Fi : [0, 1]×M → R defined
by

Fi(s, x) = t0Hi(st0, x).(4.1)

Then for every 0 ≤ s ≤ 1 and x ∈M we have φs
Fi
(x) = φst0

Hi
(x) and

fi(s, x) = hi(st0, x).(4.2)

Hence φ1
Fi
(V ) ∩ V = ∅ and φs

Fi
(V ) ⊂ U for all sufficiently large i, and all

0 ≤ s ≤ 1. Theorem 4.3 implies

0 < Ce−|fi|V ≤ ‖Fi‖U .(4.3)

Equation (4.1) implies ‖Fi‖U ≤ ‖Hi‖U , and (4.2) implies that Ce−|hi|V ≤
Ce−|fi|V , which combined with inequality (4.3) gives

0 < Ce−|hi|V ≤ ‖Hi‖U .

The contradiction that results by letting i→∞ completes the proof. �

Corollary 4.4 (Local uniqueness of topological contact isotopy and
conformal factor). Suppose that (Φ, H, h) and (Ψ, F, f) are topological
contact dynamical systems of (M,α) and that U ⊂M is open. If for almost
every t ∈ [0, 1] the contact Hamiltonian functions satisfy Ht|φt(U) = Ft|φt(U),
then for every t ∈ [0, 1] both φt|U = ψt|U and ht|U = ft|U .

Proof. By Theorem 2.3,

(ΦG, G, g) = (Φ−1 ◦Ψ, H#F, h#f)
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is a topological contact dynamical system, and by assumption for almost
every t ∈ [0, 1], (

H#F
)
t

∣∣
U
= e−ht((Ft −Ht) ◦ φt)

∣∣∣
U
= 0.

Theorem 4.2 implies that φt
G

∣∣
U
= id and thus ψt|U = φt|U . Finally the fact

that ht|U = ft|U follows from Proposition 4.1. �
We next prove the local uniqueness of the topological contact Hamilto-

nian of a topological contact isotopy, or in other words the generalization
of Theorem 1.1 to open subsets of a contact manifold (M, ξ) with contact
form α such that kerα = ξ. The proof is similar to the proof of an analogous
local uniqueness Theorem from [BS13, Theorem 13].

Theorem 4.5. Suppose that (ΦH , H, h) is a topological contact dynamical
system of (M,α), and there exists an open set U ⊂M such that φt

H

∣∣
U
= id|U

for all 0 ≤ t ≤ 1. Then the restriction of Ht to U vanishes for almost every
t ∈ [0, 1].

Proof. Let X = {x0, x1, . . .} be a countable and dense subset of U . For each
i = 1, 2, . . . there exists a contact diffeomorphism ϕi ∈ Diff(M, ξ) with sup-
port in U such that ϕi(xi) = x0, and by Lemma 3.3 we may in addition
assume that the conformal factor hi corresponding to ϕi vanishes at xi.

For every i = 1, 2, . . ., because ϕ−1
i ◦ φt

H ◦ ϕi = φt
H , Corollary 1.3 implies

H = e−hi(H ◦ ϕi) ∈ L1([0, 1], C0(M)), and thus there exists a set Si ⊂ [0, 1]
of measure zero such that if t /∈ Si, then for every x ∈M ,

Ht(x) = e−ht
i(x)Ht(ϕi(x)).

In particular if t /∈ Si, then

H(t, xi) = eh
t
i(xi)H(t, ϕi(xi)) = H(t, ϕi(xi)) = H(t, x0).

The union S = S1 ∪ S2 ∪ · · · ⊂ [0, 1] also has measure zero, and if t /∈ S,
then Ht ∈ C0(M) is constant on the dense subset X ⊂ U . Therefore Ht is
constant on U , or in other words the restriction of H to the open set U is
equal to an L1-function F : [0, 1]→ R. The triple (φχ

R, F, 0) is a topological
contact dynamical system, where φχ

R denotes the reparameterization of the

Reeb flow at time χ(t) =
∫ t
0 F (s) ds. By Corollary 4.4 the isotopy φ

χ(t)
R is the

identity on U . Thus the reparameterization function χ is zero, and F (t) = 0
for almost every t ∈ [0, 1]. �
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Corollary 4.6 (Local uniqueness of topological Hamiltonian and
conformal factor). Let U ⊂M be an open subset of a smooth contact
manifold (M, ξ) with a contact form α such that kerα = ξ. If (Φ, H, h) and
(Ψ, F, f) ∈ T CDS(M,α) satisfy Φ|U = Ψ|U , then Ht = Ft on the open set
φt(U) = ψt(U), and ht|U = ft|U .

Proof. Consider the topological contact dynamical system (Φ, G, g) as in the
proof of Corollary 4.4. �

5. Consequences of the uniqueness of the contact
Hamiltonian

In this section we prove a number of consequences of Corollary 1.3. The
proofs are elementary for smooth contact dynamical systems, and extend
to topological contact dynamical systems by virtue of the uniqueness of
the topological contact Hamiltonian. By Corollary 4.6 local versions of the
results in this section hold as well. The converse statements follow from
Corollary 1.5 and Corollary 4.4. These results are a good indication of the
importance of the one-to-one correspondence established by Corollary 1.3
and Corollary 1.5.

Before stating the results, we extend the definition of a contact dynam-
ical system in a straightforward manner to systems that are defined for all
times t ∈ R. Let H : R×M → R be a smooth function, and XH = {Xt

H}
be the corresponding time-dependent contact vector field. Since M is closed,
the vector field XH generates a unique isotopy ΦH = {φt

H} that is defined
for all t ∈ R, and we call (ΦH , H, h) a smooth contact dynamical system
defined on R. Consider the restriction of such a smooth contact dynamical
system to a closed interval [a, b] ⊂ R. After composition with the contact dif-
feomorphism (φa

H)−1 and a linear reparameterization, we may assume a = 0
and b = 1, and φ0

H = id, thus reducing the case of a general interval [a, b] to
the contact dynamical systems studied in the remainder of this paper. We
call a triple (ΦH , H, h) a topological contact dynamical system defined on R
if there exists a sequence of smooth contact dynamical systems (ΦHi

, Hi, hi)
defined on R, so that the restrictions to each closed interval [a, b] converge
with respect to the metric dα to the restriction of (ΦH , H, h) to the same in-
terval [a, b]. Clearly this is equivalent to the convergence ΦHi

→ Φ, Hi → H,
and hi → h on compact subsets. In light of the uniqueness theorems proved
in this article and in [MS15], this definition is also equivalent to imposing
that the restriction of (ΦH , H, h) to any closed subset [a, b] is a topological
contact dynamical system.
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Corollary 5.1. Let (ΦH , H, h) be a topological contact dynamical system on
R, and suppose that the isotopy ΦH = {φt

H} is a one-parameter subgroup of
Aut(M, ξ). Then the topological contact Hamiltonian H is time-independent,
and moreover H ◦ φt

H = eht ·H for all times t. In particular, the energy
of the system is preserved, i.e. H ◦ φt

H = H for all t, if and only if the
topological conformal factor h vanishes.

An analogous conservation of energy result appears in [Oh10, Theo-
rems 1.9 and 1.10] for continuous Hamiltonian flows, and the proof we give
here follows the same line of argument.

Proof. Let s ∈ R. By hypothesis,

φt
H ◦ φs

H = φt+s
H = φs

H ◦ φt
H(5.1)

for all t, and in particular, φt
H = φt+s

H ◦ (φs
H)−1. It is straightforward to check

that the right-hand side is a topological contact isotopy with topological con-
tact Hamiltonian at time t equal to Ht+s. By uniqueness of the topological
contact Hamiltonian, Corollary 1.3,Ht+s = Ht for almost all t, and therefore
H is time-independent.

Similarly, φt
H = (φs

H)−1 ◦ φt
H ◦ φs

H , and by the transformation law, The-
orem 2.4, the right-hand side is a topological contact isotopy with topolog-
ical contact Hamiltonian e−hs(H ◦ φs

H). Again by Corollary 1.3, e−hs · (H ◦
φs
H) = H, proving the second claim. �

Conversely, if the function H is time-independent, and H ◦ φt
H = eht ·H

for all times t, then the isotopy ΦH = {φt
H} is a one-parameter subgroup

of Aut(M, ξ). See [MS15, Lemma 7.7] for the proof. We point out however
that the smooth contact Hamiltonian H(x, y, z) = z −∑n

i=1 xi · yi on R2n+1

for instance generates a one-parameter subgroup of Diff(M, ξ) ⊂ Aut(M, ξ)
that is not strictly contact. In general, we obtain the following formula for
the topological conformal factor of the topological contact isotopy.

Corollary 5.2. If a topological contact isotopy ΦH = {φt
H} is a one-

parameter subgroup of Aut(M, ξ), then its topological conformal factor sat-
isfies the relation ht+s = ht + hs ◦ φt

H = hs + ht ◦ φs
H for all times s and t.

Proof. The claim follows from equation (5.1) and the uniqueness of the con-
formal factor Corollary 1.5. �

Corollary 5.3. Suppose {φt
H} and {φt

F } are smooth or topological contact
isotopies, and φ is a topological automorphism of the contact structure ξ
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with topological conformal factor g. If {φt
H} = {φ−1 ◦ φt

F ◦ φ}, then H =
e−g(F ◦ φ).

Recall that in our notation this means Ht = e−g(Ft ◦ φ) for almost all t.

Proof. This follows from the transformation law Theorem 2.4 and from
uniqueness of the topological contact Hamiltonian, Corollary 1.3. �

See [MS14, Theorem 4.3] for the converse statement.

Corollary 5.4. If a topological contact isotopy {φt
H} commutes with the

Reeb flow {φs
R} of the contact form α for all times s and t, then its corre-

sponding topological contact Hamiltonian H is basic, i.e. Ht ◦ φs
R = Ht for

all s and t.

Proof. Take F = H and φ = φs
R with g = 0 in the previous theorem. �

See [MS15, Lemma 7.10] for the converse. Similar arguments establish
the following results.

Corollary 5.5. Suppose φ ∈ Aut(M, ξ) is a topological automorphism with
conformal factor g with respect to α, and α′ = efα is another contact form
defining ξ. If {φt

R′} = {φ−1 ◦ φt
R ◦ φ}, then g = f .

Proof. Take H = e−f and F = 1 in Corollary 5.3. �

For the converse refer to [MS15, Proposition 12.2].

Corollary 5.6. If a topological automorphism φ ∈ Aut(M, ξ) commutes
with the Reeb flow {φt

R} for all t, then its topological conformal factor h
vanishes identically.

Proof. We have {φ−1 ◦ φt
R ◦ φ} = {φt

R}, and thus e−h · 1 = 1 by uniqueness
of the topological contact Hamiltonian. �

The converse to this lemma can be found in [MS15, Lemma 12.3].

Corollary 5.7. Suppose φ and ψ are two topological automorphisms of
the contact structure ξ = kerα with topological conformal factors h and g,
respectively, and

φ−1 ◦ φt
R ◦ φ = ψ−1 ◦ φt

R ◦ ψ,
for all t, where {φt

R} again denotes the Reeb flow of α. Then h = g.
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Proof. The transformation law Theorem 2.4 together with uniqueness of the
topological contact Hamiltonian yields e−h · 1 = e−g · 1. �

See [MS15, Lemma 12.4] for the converse statement.

6. Rigidity of the geodesic flow

In this section we prove a rigidity result for the geodesic flow of a Riemannian
manifold. The proof uses the identification of the geodesic flow on the unit
tangent bundle with the Reeb flow on the unit cotangent bundle, and the
uniqueness of the topological contact isotopy corresponding to a topological
Hamiltonian function established by Corollary 1.5.

Let B be a closed smooth manifold with a Riemannian metric g. Recall
that g is complete, and there exists a unique smooth vector field G on
the tangent bundle TB whose trajectories are of the form t �→ (γ(t), γ̇(t)) ∈
Tγ(t)B ⊂ TB, where γ is a geodesic (not necessarily of unit speed) of the
Riemannian metric g. The flow of the geodesic field G is called the geodesic
flow of g. The length (with respect to the Riemannian metric g) of the
tangent vector γ̇ is constant along a geodesic γ, and thus the flow of the
geodesic field G preserves the unit tangent bundle STB defined fiber-wise
by STbB = {v ∈ TbB | gb(v, v) = 1}. In other words, the vector field G is
tangent to STB, and the geodesic flow restricts to a geodesic flow on the unit
tangent bundle. The Riemannian metric g gives rise to a bundle isomorphism
Ψ: TB → T ∗B that is fiber-wise defined by

Ψb : TbB → T ∗
b B, v �→ ι(v)gb = gb(v, ·),

and the unit cotangent bundle ST ∗B is by definition the isomorphic image
of the unit tangent bundle STB. The induced bundle metric on T ∗B is
denoted by g∗.

The Liouville one-form λ on the cotangent bundle T ∗B induces a contact
form α = λ|ST ∗B on the unit cotangent bundle ST ∗B, where λu = u ◦ dπ for
π : T ∗B → B the canonical projection. Its Reeb vector field R is related to
the geodesic field G on STB by the identity Ψ∗G = R, and in particular,
Ψ ◦ φt

G ◦Ψ−1 = φt
R, or

(Ψ−1 ◦ φt
R ◦Ψ)(b, v) = (γ(t), γ̇(t)),

where γ is the unique geodesic (of unit speed) originating in the point γ(0) =
b ∈ B with γ̇(0) = v ∈ STbB. See Sections 1.4 and 1.5 in [Gei08] for further
details.
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A Riemannian metric induces a distance function on the manifold B.
We assume for the remainder of this section that all distances and the re-
sulting notions of convergence are with respect to a fixed reference metric
gref on TB and the induced bundle metric g∗ref on T ∗B and distance func-
tion on B. We say that a sequence of Riemannian metrics gk converges to g
weakly uniformly if for all pairs of vector fields X and Y on B, the functions
gk(X,Y )→ g(X,Y ) uniformly on B. If (gij) denotes the coefficient matrix
of g in a system of local coordinates, this notion of convergence is equivalent
to the uniform convergence of the corresponding coefficient functions gk,ij
of the metrics gk to the functions gij in any system of local coordinates.

Theorem 6.1 (Rigidity of geodesic flow). Let g be a Riemannian met-
ric on a closed manifold B, and gk be a sequence of Riemannian metrics that
converges to g weakly uniformly. Suppose that the geodesic flows {φt

Gk
} of the

metrics gk are uniformly Cauchy on compact subsets of R× TB, where R
denotes the time variable. Then the geodesic flows {φt

Gk
} converge uniformly

on compact subsets of R× TB to the geodesic flow {φt
G} of the metric g.

If the sequence gk of Riemannian metrics C1-converges to g, the conclu-
sion of the theorem follows from a standard continuity theorem in the theory
of ordinary differential equations. That the conclusion of the theorem still
holds under the present weaker hypotheses is less obvious, and follows from
Corollary 1.5. The conclusion of the theorem does not hold without the as-
sumption that the geodesic flows ΦGk

are uniformly Cauchy. To see this,
perturb a Riemannian metric that is flat somewhere in B by a C0-small but
C1-large bump.

Proof. Without loss of generality we may restrict to the geodesic flows de-
fined for time 0 ≤ t ≤ 1 and originating on STB, where STB denotes the
unit tangent bundle of the Riemannian metric g. Denote by SkTB and
SkT

∗B the unit tangent bundle and the unit cotangent bundle of the Rie-
mannian metric gk, respectively, and by Ψk : TB → T ∗B the bundle isomor-
phism v �→ ι(v)gk induced by the metric gk, which restricts to an isomor-
phism SkTB → SkT

∗B. Define a bundle diffeomorphism

Φk : T
∗B \B → T ∗B \B, (b, u) �→

(
b,

√
g∗(b)(u, u)√
g∗k(b)(u, u)

· u
)
,

where g∗k again denotes the bundle metric on T ∗B defined by the iden-
tification of T ∗B with TB via the isomorphism Ψ−1

k and by the metric
gk. Then Φk restricts to a contact diffeomorphism ST ∗B → SkT

∗B with
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Φ∗
kαk =

(
1/
√

g∗k
)
· α, where the contact form αk is the restriction of the

Liouville form λ to SkT
∗B. In local coordinates q = (q1, . . . , qn) on B and

p = (p1, . . . , pn) on the fibers of T ∗B, the Liouville form on T ∗B is given by
λ = p dq =

∑n
i=1 pi dqi, and if the Riemannian metric g is in the above local

coordinates given by gb =
∑

gij(b) · dqi ⊗ dqj , then

g∗b = g∗(b) =
n∑

i,j=1

gij(b) · ∂

∂qi
⊗ ∂

∂qj
,

where (gij(b)) denotes the inverse of the matrix (gij(b)). Moreover,

Φk(q, p) =

⎛⎝q,
√∑n

i,j=1 pi · gij(q) · pj√∑n
i,j=1 pi · g

ij
k (q) · pj

· p1, . . . ,

√∑n
i,j=1 pi · gij(q) · pj√∑n
i,j=1 pi · g

ij
k (q) · pj

· pn

⎞⎠.

If Rk denotes the Reeb vector field of αk, then {Φ−1
k ◦ φt

Rk
◦ Φk} is a smooth

contact isotopy on (ST ∗B,α), generated by the Hamiltonian function
Hk(b, u) =

√
g∗k(b)(u, u), and (Φ−1

k ◦ φt
Rk
◦ Φk)

∗α = ehkα, where

ehk =

√
g∗k

(
(Φ−1

k ◦ φt
Rk
◦ Φk)(b, u), (Φ

−1
k ◦ φt

Rk
◦ Φk)(b, u)

)√
g∗k(b)(u, u)

.

By hypothesis, the metrics gk → g weakly uniformly, and thus g∗k → g∗

weakly uniformly. In particular, the Hamiltonian functions Hk(b, u) =√
g∗k(b)(u, u)→

√
g∗(b)(u, u) = 1 uniformly on ST ∗B, and the conformal

factors hk converge to the zero function uniformly. On the other hand,

Φ−1
k ◦ φt

Rk
◦ Φk = (Φ−1

k ◦Ψk) ◦ φt
Gk
◦ (Φ−1

k ◦Ψk)
−1,

and Φ−1
k ◦Ψk and (Φ−1

k ◦Ψk)
−1 converge to Ψ and Ψ−1, respectively, with

respect to the bundle metrics gref and g∗ref . Moreover, (φt
Gk

)−1(b, v) =

φt
Gk

(b′,−v), where b′ = π(φt
Gk

(b, v)) so that the sequence {Φ−1
k ◦ φt

Rk
◦ Φk}

is in fact C0-Cauchy. Corollary 1.5 implies the C0-convergence of the contact
isotopies {Φ−1

k ◦ φt
Rk
◦ Φk} on ST ∗B to the contact isotopy {φt

R} generated
by the Reeb vector field R of α. Thus

ΦGk
= Ψ−1

k ◦ ΦRk
◦Ψk

= (Ψ−1
k Φk) ◦ (Φ−1

k ΦRk
Φk) ◦ (Φ−1

k Ψk)→ Ψ−1ΦRΨ = ΦG,

i.e. the geodesic flows {φt
Gk
} converge in the C0-sense to the geodesic flow

{φt
G}. �
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One can also prove Theorem 6.1 using the description of the geodesic
flow as the restriction of a Hamiltonian flow on the cotangent bundle to a
sub-level set of a Tonelli Hamiltonian function on T ∗B. For the proof to go
through however one must first generalize the uniqueness theorem for topo-
logical Hamiltonian isotopies to Tonelli Hamiltonians on cotangent bundles.
Using the local uniqueness of the topological contact isotopy associated to
a topological contact Hamiltonian, one can also prove a local rigidity result
for Riemannian metrics that converge uniformly on some open subset of B,
and rigidity of the geodesic flow for complete Riemannian metrics on an
open manifold converging uniformly on compact subsets. Another possible
generalization of Theorem 6.1 is to sub-Riemannian structures.
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