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Inspired by the work of G. Lu [35] on pseudo symplectic capacities
we obtain several results on the Gromov width and the Hofer–
Zehnder capacity of Hermitian symmetric spaces of compact type.
Our results and proofs extend those obtained by Lu for complex
Grassmannians to Hermitian symmetric spaces of compact type.
We also compute the Gromov width and the Hofer–Zehnder capac-
ity for Cartan domains and their products.

1. Introduction

Consider the open ball of radius r,

(1) B2n(r) =

(x, y) ∈ R2n

∣∣∣∣∣
n∑
j=1

x2
j + y2

j < r2


in the standard symplectic space (R2n, ω0), where ω0 =

∑n
j=1 dxj ∧ dyj . The

Gromov width of a 2n-dimensional symplectic manifold (M,ω), introduced
in [17], is defined as

(2) cG(M,ω) = sup{πr2 | B2n(r) symplectically embeds into (M,ω)}.

By Darboux’s theorem cG(M,ω) is a positive number or ∞. Computa-
tions and estimates of the Gromov width for various examples can be found
in [3], [4], [5], [7], [17], [22], [23], [28], [35], [36], [37], [38], [46], [51].

Gromov’s width is an example of symplectic capacity introduced in [20]
(see also [21]). A map c from the class C(2n) of all symplectic manifolds
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of dimension 2n to [0,+∞] is called a symplectic capacity if it satisfies the
following conditions:

(monotonicity) if there exists a symplectic embedding (M1, ω1)→ (M2,
ω2) then c(M1, ω1) ≤ c(M2, ω2);

(conformality) c(M,λω) = |λ|c(M,ω), for every λ ∈ R \ {0};
(nontriviality) c(B2n(1), ω0) = π = c(Z2n(1), ω0).

Here B2n(1) and Z2n(1) are the open unit ball and the open cylinder in the
standard (R2n, ω0), i.e.

(3) Z2n(r) =
{

(x, y) ∈ R2n | x2
1 + y2

1 < r2
}
.

Note that the monotonicity property implies that c is a symplectic
invariant. The existence of a capacity is not a trivial matter. It is eas-
ily seen that the Gromov width is the smallest symplectic capacity, i.e.
cG(M,ω) ≤ c(M,ω) for any capacity c. Note that the nontriviality property
for cG comes from the celebrated Gromov’s nonsqueezing theorem according
to which the existence of a symplectic embedding of B2n(r) into Z2n(R)
implies r ≤ R. Actually it is easily seen that the existence of any capac-
ity implies Gromov’s nonsqueezing theorem. H. Hofer and E. Zehnder [20]
prove the existence of a capacity, denoted by cHZ which is important in
many respects, for example it plays an important role in the study of Hofer
geometry on the group of symplectomorphisms of a symplectic manifold and
in establishing the existence of closed characteristics on or near an energy
surface. To compute or estimate cHZ is rather difficult even for closed sym-
plectic manifolds. So far the only known examples are closed surfaces where
cHZ is just the area [48], and complex projective spaces and their prod-
ucts. H. Hofer and C. Viterbo [19] proved that cHZ(CPn, ωFS) = π which
has been extended by G. Lu to the product of projective spaces (see The-
orem 1.21 in [35] or (10) below). Lu’s ingenious idea was that of defining
and introducing the concept of pseudo symplectic capacity, more flexible
than that of symplectic capacity, and studying its link with Gromov-Witten
invariants (see Section 3 below). This allows him to obtain several valuable
results, e.g. the Gromov width of Grassmannians and their products and a
lower bound for the Hofer–Zehnder capacity for the product of any closed
symplectic manifold with a Grassmannian. One of the aims of the present
paper is to extend Lu’s results to the case of Hermitian symmetric spaces of
compact type.

Notation: From now on we shall use the shortening HSSCT to denote a
Hermitian symmetric space of compact type. Further, throughout the paper
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Symplectic capacities of Hermitian symmetric spaces 1051

we shall denote by ωFS the canonical symplectic (Kähler) form on an irre-
ducible HSSCT normalized so that ωFS(B) ∈ {−π, π} when B is a generator
of H2(M,Z), and by A the generator for which ωFS(A) = π.

Moreover, we compute the Gromov width and Hofer–Zehnder capac-
ity of Cartan’s domains and their products. In the next section we give a
description of our results and the ideas of their proofs.

2. Statements of the main results

The following three theorems state our results about the Gromov width and
the Hofer-Zehnder capacity of HSSCT.

Theorem 1. Let (M,ωFS) be an irreducible HSSCT. Then

(4) cG(M,ωFS) = π.

Theorem 2. Let (Mi, ω
i
FS), i = 1, . . . , r, be irreducible HSSCT of complex

dimension ni endowed with the canonical symplectic (Kähler) forms ωiFS
normalized as above. Then

(5) cG
(
M1 × · · · ×Mr, ω

1
FS ⊕ · · · ⊕ ωrFS

)
= π.

Moreover, if a1, . . . , ar are nonzero constants, then

(6) cG
(
M1 × · · · ×Mr, a1ω

1
FS ⊕ · · · ⊕ arωrFS

)
≤ min{|a1|, . . . , |ar|}π

and

(7) cHZ
(
M1 × · · · ×Mr, a1ω

1
FS ⊕ · · · ⊕ arωrFS

)
≥ (|a1|+ · · ·+ |ar|)π.

Theorem 3. Let (M,ωFS) be an irreducible HSSCT and (N,ω) be any
closed symplectic manifold. Then, for any nonzero real number a,

(8) cG(N ×M,ω ⊕ aωFS) ≤ |a|π.

Formulas (4) and (5) extend Theorem 1.15 and formula (22) in [35]
respectively (valid for the Grassmannians) to the case of HSSCT. The lower
bounds cG(M,ωFS) ≥ π in Theorem 1 and

cG
(
M1 × · · · ×Mr, ω

1
FS ⊕ · · · ⊕ ωrFS

)
≥ π

in Theorem 2 are obtained by using the results in [11] which imply the exis-
tence of a symplectic embedding of the noncompact dual (Ω, ω0) of (M,ωFS)
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into (M,ωFS) (where ω0 is the standard symplectic form of Ω ⊂ Cn, being n
the complex dimension of M) and by the existence of a symplectic embed-
ding of B2n(1) into (Ω, ω0) (see Sections 4 and 5 below for details). The
upper bounds cG(M,ωFS) ≤ π and

cG
(
M1 × · · · ×Mr, ω

1
FS ⊕ · · · ⊕ ωrFS

)
≤ π

are obtained by the use of Lu’s pseudo symplectic capacities and their esti-
mation in terms of Gromov-Witten invariants. The key ingredient to obtain
these upper bounds is the non vanishing of some genus-zero three-points
Gromov-Witten invariants (cfr. Lemma 16 in Section 6 below). Inequal-
ity (6), which extends (21) in [35] to HSSCT, is a consequence of (8) in
Theorem 3, which in turn extends [35, Corollary 1.31].

When Mj = CP1 for all j = 1, . . . , r, inequality (6) is indeed an equality,
i.e.

(9) cG(CP1 × · · · × CP1, a1ωFS ⊕ · · · ⊕ arωFS) = min{|a1|, . . . , |ar|}π.

(see [40, Example 12.5] for a proof). We do not know the exact value of

cG(CPn1 × · · · × CPnr , a1ω
1
FS ⊕ · · · ⊕ arωrFS)

if ni > 1 or aj 6= 1 for some i = 1, . . . , r or j = 1, . . . , r.

When the Mj ’s are projective spaces it was proved in Theorem 1.21 of
[35] that the inequality (7) is an equality, namely

(10) cHZ(CPn1 × · · · × CPnr , a1ω
1
FS ⊕ · · · ⊕ arωrFS) = (|a1|+ · · ·+ |ar|)π.

In fact, Lu [35] was able to prove that

(11) cHZ(CPn1 × · · · × CPnr , a1ω
1
FS ⊕ · · · ⊕ arωrFS) ≤ (|a1|+ · · ·+ |ar|)π

which, combined with (7), yields (10). To the authors’ best knowledge no
upper bound of cHZ(M,ωFS) is known for HSSCT (M,ωFS), even for the
case of the complex Grassmannians (different from the projective space).
The idea’s of Lu’s proof of the upper bound (11) is sketched in Remark 23,
where we also explain why his argument cannot be used to achieve a similar
upper bound for HSSCT.

We summarize our knowledge on Gromov width and Hofer–Zehnder
capacity of Cartan domains in the following two theorems.
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Symplectic capacities of Hermitian symmetric spaces 1053

Theorem 4. Let (Ω, ω0) be a Cartan domain. Then

(12) cG(Ω, ω0) = π

and

(13) cHZ(Ω, ω0) = π.

Moreover, if Ωi ⊂ Cni, i = 1, . . . , r are Cartan domains of complex dimen-
sion ni equipped with the standard symplectic form ωi0 of R2ni = Cni, then

(14) cG
(
Ω1 × · · · × Ωr, ω

1
0 ⊕ · · · ⊕ ωr0

)
= π.

If a1, . . . , ar are nonzero constants, then

(15) cG
(
Ω1 × · · · × Ωr, a1ω

1
0 ⊕ · · · ⊕ arωr0

)
≤ min{|a1|, . . . , |ar|}π

Theorem 5. Let (Ω, ω0) be a Cartan domain and let (N,ω) be any closed
symplectic manifold. Then

(16) cHZ(N × Ω, ω ⊕ ω0) = π.

The proof of Theorem 4 is based (together with the inclusion B2n(1) ⊂
(Ω, ω0)) on the fact that any n-dimensional Cartan domain (Ω, ω0) sym-
plectically embeds into the cylinder (Z2n(1), ω0) (see Sections 4 and 5 for
details). Our result extends to all Cartan domains, including the exceptional
ones, the results in [36].

Remark 6. Notice that the Cartan domains in this paper are linearly
equivalent to the Cartan domains in the classical terminology (see Section 5
below). Thus, if one compares our results with those in [36] one has to pay
attention to the multiplicative constants involved. For example, the Gromov
width of (RIV (4), ω0) (the fourth Cartan domain in the classical terminol-
ogy) as computed in [36] turns out to be equal to π

2 and the corresponding

Cartan domain Ω (in our terminology) is given by Ω =
√

2RIV (4), in accor-
dance with our Theorem 4.

The organization of the paper is as follows. In Section 3 we summarize
the above mentioned Lu’s work and some of his results needed in this paper.
In Section 4 we briefly recall some tools on Hermitian positive Jordan triple
systems which will be used in Section 5 to construct the above mentioned
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embeddings a) of a Cartan domain into its compact dual, b) of the unit ball
into a Cartan domain and c) of a Cartan domain into the unitary cylinder.
Moreover, in Subsection 5.1 we show how these symplectic embeddings could
be used to estimate the minimal number of Darboux charts needed to cover
a HSSCT. Finally, Section 6 is dedicated to the (conclusion of the) proofs
of our theorems.

Acknowledgments. The authors are indebted to Guy Roos for suggesting
us the idea of the construction of the symplectic embedding of a Cartan
domain into the unitary cylinder via the use of Hermitian positive Jordan
triple systems. The authors would like also to thank Dietmar Salamon for
useful remarks on Gromov–Witten invariants and Giuseppina D’Ambra for
several useful remarks which helped us to improve the exposition.

3. Lu’s pseudo symplectic capacities and
Gromov–Witten invariants

G. Lu [35] defines the concept of pseudo symplectic capacity by weakening
the requirements for a symplectic capacity (see the Introduction) in such a
way that this new concept depends on the homology classes of the symplectic
manifold in question (for more details the reader is referred to [35]). More
precisely, if one denotes by C(2n, k) the set of all tuples (M,ω;α1, . . . , αk)
consisting of a 2n-dimensional connected symplectic manifold (M,ω) and
k nonzero homology classes αi ∈ H∗(M ;Q), i = 1, . . . , k, a map c(k) from
C(2n, k) to [0,+∞] is called a k-pseudo symplectic capacity if it satisfies the
following properties:

(pseudo monotonicity) if there exists a symplectic embedding ϕ :
(M1, ω1)→ (M2, ω2) then, for any αi ∈ H∗(M1;Q), i = 1, . . . , k,

c(k)(M1, ω1;α1, . . . , αk) ≤ c(k)(M2, ω2;ϕ∗(α1), . . . , ϕ∗(αk));

(conformality) c(k)(M,λω;α1, . . . , αk) = |λ|c(k)(M,ω;α1, . . . , αk), for
every λ ∈ R \ {0} and all homology classes αi ∈ H∗(M ;Q) \ {0}, i = 1, . . . , k;

(nontriviality) c(B2n(1), ω0; pt, . . . , pt) = π = c(Z2n(1), ω0; pt, . . . , pt),
where pt denotes the homology class of a point.

Note that if k > 1 a (k − 1)-pseudo symplectic capacity is defined by

c(k−1)(M,ω;α1, . . . , αk−1) := c(k)(M,ω; pt, α1, . . . , αk−1)
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Symplectic capacities of Hermitian symmetric spaces 1055

and any c(k) induces a true symplectic capacity

c(0)(M,ω) := c(k)(M,ω; pt, . . . , pt).

Observe also that (unlike symplectic capacities) pseudo symplectic capacities
do not define symplectic invariants.

In [35] G. Lu was able to construct two 2-pseudo symplectic capacities

denoted by C
(2)
HZ(M,ω;α1, α2) and C

(2o)
HZ (M,ω;α1, α2) respectively (see Def-

inition 1.3 and Theorem 1.5 in [35]), where α1 and α2 are homology classes1

in H∗(M ;Q). The C
(2)
HZ and C

(2o)
HZ are called by Lu pseudo symplectic capac-

ities of Hofer–Zehnder type.
Denote by

CHZ(M,ω) := C
(2)
HZ(M,ω; pt, pt)

(resp. CoHZ(M,ω) := C
(2o)
HZ (M,ω; pt, pt)) the corresponding true symplectic

capacities associated to Lu’s pseudo symplectic capacities. The next lemma
summarizes some properties of the concepts involved so far.

Lemma 7. Let (M,ω) be any symplectic manifold. Then, for arbitrary
homology classes α1, α2 ∈ H∗(M ;Q) and for a nonzero homology class α,
with dimα ≤ dimM − 1, the following inequalities hold true:

C
(2)
HZ(M,ω;α1, α2) ≤ C(2o)

HZ (M,ω;α1, α2)(17)

C
(2)
HZ(M,ω;α1, α2) ≤ CHZ(M,ω) ≤ cHZ(M,ω)(18)

C
(2o)
HZ (M,ω;α1, α2) ≤ CoHZ(M,ω) ≤ coHZ(M,ω)(19)

cG(M,ω) ≤ C(2)
HZ(M,ω; pt, α),(20)

where coHZ(M,ω) is the π1-sensitive Hofer–Zehnder capacity introduced in
[47] (and independently in [34]), cHZ(M,ω) is the Hofer-Zehnder capacity
and cG(M,ω) is the Gromov width of (M,ω). Furthermore, if M is closed
then

CHZ(M,ω) = cHZ(M,ω)

and

CoHZ(M,ω) = coHZ(M,ω).

1In the notations of [35] the generic classes α1 (resp. α2) are called α0 (resp. α∞).
The reason for this notation comes from the concept of hypersurface S ⊂M

separating the homology classes α0 and α∞ (see Definition 1.3 and the (α0, α∞)-
Weinstein conjecture at p.6 of [35]).
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Proof. See Lemma 1.4 and (12) in [35]. �

Remark 8. The last two equalities together with (17) imply that for a
closed symplectic manifold (M,ω)

cHZ(M,ω) ≤ coHZ(M,ω).

It follows that inequality (7) in Theorem 2 holds true also when we replace
cHZ with coHZ .

When the symplectic manifold M is closed the pseudo symplectic capaci-

ties C
(2)
HZ(M,ω;α1, α2) and C

(2o)
HZ (M,ω;α1, α2) can be estimated by other two

pseudo symplectic capacities GW (M,ω;α1, α2) and
GW0(M,ω;α1, α2). These GW and GW0 are defined in terms of Liu–Tian
type Gromov-Witten invariants as follows. Let B ∈ H2(M,Z): the Liu–Tian
type Gromov–Witten invariant of genus g and with k marked points is a
homomorphism

ΨM
B,g,k : H∗(Mg,k;Q)×H∗(M ;Q)k → Q, 2g + k ≥ 3

whereMg,k is the space of isomorphism classes of genus g stable curves with
k marked points. When there is no risk of confusion, we will omit the super-
script M in ΨM

B,g,k. Roughly speaking, one can think of ΨM
B,g,k(C;α1, . . . , αk)

as counting, for suitable generic ω-tame almost complex structure J on
M , the number of J-holomorphic curves of genus g representing B, with
k marked points pi which pass through cycles Xi representing αi, and such
that the image of the curve belongs to a cycle representing C (for details the
reader is referred to the Appendix in [35] and references therein).
In fact, several different constructions of Gromov-Witten invariants appear
in the literature and the question whether they agree is not trivial (see [35]
and also Chapter 7 in [39]). The Gromov–Witten invariants described in the
book of D. McDuff and D. Salamon [39] are the most commonly used: these
are homomorphisms

ΨB,g,m+2 : H∗(M ;Q)m+2 → Q, m ≥ 1

which play an important role in the proofs of this paper. The conditions
under which these invariants agree with the ones considered by Lu are given
in Lemma 10 below.

Let α1, α2 ∈ H∗(M,Q). Following [35], one defines GWg(M,ω;α1, α2) ∈ (0,
+∞] as the infimum of the ω-areas ω(B) of the homology classes B ∈
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H2(M,Z) for which the Liu–Tian Gromov–Witten invariant ΨB,g,m+2(C;
α1, α2, β1, . . . , βm) 6= 0 for some homology classes β1, . . . , βm ∈ H∗(M,Q)
and C ∈ H∗(Mg,m+2;Q) and integer m ≥ 1 (we use the convention inf ∅ =
+∞). The positivity of GWg reflects the fact that ΨB,g,m+2 = 0 if ω(B) < 0
(see, for example, Section 7.5 in [39]). Set

(21) GW (M,ω;α1, α2) := inf{GWg(M,ω;α1, α2) | g ≥ 0} ∈ [0,+∞].

Lemma 9. Let (M,ω) be a closed symplectic manifold. Then

0 ≤ GW (M,ω;α1, α2) ≤ GW0(M,ω;α1, α2).

Moreover GW (M,ω;α1, α2) and GW0(M,ω;α1, α2) are pseudo symplectic
capacities and, if dimM ≥ 4 then, for nonzero homology classes α1, α2, we
have

C
(2)
HZ(M,ω;α1, α2) ≤ GW (M,ω;α1, α2)

C
(2o)
HZ (M,ω;α1, α2) ≤ GW0(M,ω;α1, α2).

In particular, for every nonzero homology class α ∈ H∗(M,Q),

C
(2)
HZ(M,ω; pt, α) ≤ GW (M,ω; pt, α)(22)

C
(2o)
HZ (M,ω; pt, α) ≤ GW0(M,ω; pt, α).(23)

Proof. See Theorems 1.10 and 1.13 in [35]. �

We end this section with the following lemmata fundamental for the proof
of our results. Recall that a closed symplectic manifold is monotone if there
exists a number λ > 0 such that ω(B) = λc1(B) for B spherical (a homology
class is called spherical if it is in the image of the Hurewicz homomorphism
π2(M)→ H2(M,Z)). Further, a homology class B ∈ H2(M,Z) is indecom-
posable if it cannot be decomposed as a sum B = B1 + · · ·+Bk, k ≥ 2, of
classes which are spherical and satisfy ω(Bi) > 0 for i = 1, . . . , k.

Lemma 10. Let (M,ω) be a closed monotone symplectic manifold. Let
B ∈ H2(M,Z) be an indecomposable spherical class, let pt denote the class
of a point in H∗(Mg,m+2;Q) and let αi ∈ H∗(M,Z), i = 1, 2, 3. Then the
Liu–Tian Gromov–Witten invariant ΨB,0,3(pt;α1, α2, α3) agrees with the
Gromov–Witten invariant ΨB,0,3(α1, α2, α3).

Proof. See [35, Proposition 7.6]. �
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Lemma 11. Let (N1, ω1) and (N2, ω2) be two closed symplectic manifolds.
Then for every integer k ≥ 3 and homology classes A2 ∈ H2(N2;Z) and βi ∈
H∗(N2;Z), i = 1, . . . , k,

ΨN1×N2

0⊕A2,0,k
(pt; [N1]⊗ β1, . . . , [N1]⊗ βk−1, pt⊗ βk) = ΨN2

A2,0,k
(pt;β1, . . . , βk).

Proof. See [35, Proposition 7.4]. �

4. Hermitian positive Jordan triple system

We refer the reader to [43] (see also [33]) for more details on Hermitian sym-
metric spaces of noncompact type (HSSNT) and Hermitian positive Jordan
triple systems (HPJTS).

Definitions and notations. A Hermitian Jordan triple system is a pair
(M, {, , }), where M is a complex vector space and { , , } is a map

{, , } :M×M×M→M
(u, v, w) 7→ {u, v, w}

which is C-bilinear and symmetric in u and w, C-antilinear in v and such
that the following Jordan identity holds:

{x, y, {u, v, w}} − {u, v, {x, y, w}}
= {{x, y, u} , v, w} − {u, {v, x, y} , w} .

For x, y, z ∈M consider the operators

T (x, y) z = {x, y, z}
Q (x, z) y = {x, y, z}
Q (x, x) = 2Q (x)

B (x, y) = idM−T (x, y) +Q (x)Q (y) .

The operator B (x, y) is called the Bergman operator. A Hermitian Jordan
triple system is called positive if the sesquilinear form

(24) (u | v) =
1

γ
trT (u, v)

is a Hermitian product, where γ is a positive constant called the genus of
(M, {, , }).
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HSSNT associated to HPJTS. M. Koecher ([25], [26]) discovered that to
every HPJTS (M, {, , }) one can associate an Hermitian symmetric space of
noncompact type, in its realization as circled2 bounded symmetric domain
ΩM centered at the origin 0 ∈M. More precisely, ΩM is defined as the
connected component containing the origin of the set of all u ∈M such
that B (u, u) is positive definite with respect to the Hermitian product (24).

HPJTS associated to HSSNT. The HPJTS (M, {, , }) can be recovered
from its associated HSSNT ΩM by definingM = T0ΩM (the tangent space
to the origin of ΩM) and

{u, v, w} = −1

2
(R0 (u, v) w + J0R0 (u, J0 v)w) ,

where R0 (resp. J0) is the curvature tensor of the Bergman metric (resp. the
complex structure) of ΩM evaluated at the origin. The reader is referred to
Proposition III.2.7 in [2] for details. To learn more on the correspondence
between HPJTS and HSSNT we refer to p. 85 of Satake’s book [45].

0.3cm Spectral decomposition. Let (M, {, , }) be a HPJTS. An ele-
ment c ∈M is called tripotent if {c, c, c} = 2 c. Two tripotents c1 and c2

are called (strongly) orthogonal if T (c1, c2) = 0. Each element v ∈M has a
unique spectral decomposition

v = λ1 c1 + · · ·+ λs cs (λ1 > · · · > λs > 0) ,

where (c1, . . . , cs) is a sequence of pairwise orthogonal (with respect to (24))
tripotents and the λj ’s are real numbers called eigenvalues of v. The integer
s is called the rank of v and is denoted by rk(v). The rank of M is the
positive integer r defined as r = max{rk(z) | z ∈M}. The elements z ∈M
such that rk(z) = r are called regular.

Let us denote by ‖v‖max the largest eigenvalue of v. Due to the convexity
of ΩM, ‖v‖max is a norm on M, called the spectral norm. The following
proposition provides a description of the domain ΩM in terms of its spectral
norm.

Proposition 12. Let ΩM ⊂M be the HSSNT associated to (M, {, , }).
Then

(25) ΩM = {v | ‖v‖max < 1}.

Proof. See [33, Corollary 3.15]. �

2The domain Ω ⊂M is circled if eiθ · Ω = Ω
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5. Cartan domains, their compact duals and some
symplectic embeddings

Let (M, {, , }) be a HPJTS and ΩM be its associated HSSNT. Let n be the
complex dimension of M. By fixing an orthonormal basis e = {e1, . . . , en}
of (M, (· | ·)) we get the identification

(26) M→ Cn, v
e7→ z = (z1, . . . , zn), v = z1e1 + · · ·+ znen,

which induces an isometry between (M, (· | ·)) and (Cn, h0), where h0 is the
canonical Hermitian product on Cn. Under the identification

(z1, . . . , zn) = (x1, y1, . . . , xn, yn)

between Cn and R2n we have h0 = g0 + iω0, where g0 =
∑n

j=1 dx
2
j + dy2

j is

the standard scalar product on R2n and ω0 is the canonical symplectic form
ω0 =

∑n
j=1 dxj ∧ dyj on Cn = R2n. From now on we assumeM to be simple,

which is equivalent to the irreducibility of ΩM. Then, under the previous
identification, the HSSNT ΩM corresponds to a bounded symmetric domain
Ω = e(ΩM) ⊂ Cn. The complex and Riemannian geometry of these domains
is well-known (see, e.g. [24]). Indeed, each of these domains is linearly equiv-
alent to a Cartan domain (see, e.g. [26, Chapter V] for a proof).

Terminology: In the present paper, with a slight abuse of terminology, the
domain Ω = e(ΩM) has been called a Cartan domain.

We describe below some symplectic-geometric properties of Cartan do-
mains and their compact duals which are needed in this paper (for the
concept of compact dual see [18] or [11] and references therein).

Let Ω ⊂ Cn be a Cartan domain and let M be its compact dual. Then
M is an n-dimensional HSSCT. Denote by

(27) BW : M → CPN

the Borel–Weil (holomorphic) embedding. It is well-known (see e.g. [50])
that the pull-back BW ∗ωFS of the Fubini–Study form ωFS of CPN is a
homogeneous Kähler-Einstein form on M (ωFS is the Kähler form which,
in the homogeneous coordinates [z0, . . . , zN ] on CPN , is given by ωFS =
i
2∂∂̄ log(|z0|2 + · · ·+ |zN |2)). Here we denote (with a slight abuse of notation
and terminology) by ωFS the form BW ∗ωFS and call it the Fubini–Study
form on M . The symplectic form ωFS can be equivalently described as the
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symmetric or canonical form on M normalized so that ωFS(B) = ±π when
B is a generator of H2(M,Z).

The domain (Ω, ω0) can be embedded into (M,ωFS).
Let (Ω, ω0), Ω ⊂ Cn, be a Cartan domain equipped with the canonical sym-
plectic form ω0 of R2n and let (M,ωFS) be its compact dual. In [11] the first
author in collaboration with A. J. Di Scala, by an use of HPJTS, construct
an embedding

(28) ΦΩ : Ω→M

such that Φ∗ΩωFS = ω0.
Actually in [11] much more is proved. In particular it is shown that the

embedding ΦΩ induces a global symplectomorphism

ΦΩ : (Ω, ω0)→ (M \ Cut0(M), ωFS)

where Cut0(M) is the cut locus of (M,ωFS) with respect to a fixed point
0 ∈M (see [11, Theorem 1.1]). This diffeomorphism has been christened in
[11] as a symplectic duality due to the fact that, amongst other properties,
it also satisfies Φ∗Ωω0 = ωhyp, where ω0 denotes the standard form on Cn ∼=
M \ Cut0(M) and ωhyp is the hyperbolic metric on Ω (see either [11] or [12]
for details and also [9], [13], [30], [31], [29], [32] and [41] for the construction
of explicit symplectic coordinates.

Remark 13. In [35, Lemma 4.1 in Section 4] it is shown the existence of
a symplectic embedding

(29) ΦΩI [k,n] : ΩI [k, n]→ G(k, n)

from the first Cartan domain ΩI [k, n] ⊂ Ck(n−k) into its compact dualG(k, n)
(where G(k, n) denotes the complex Grassmannian of k dimensional sub-
spaces of Cn). Our result (28) extends Lu’s results to all HSSCT.

The unitary ball (B2n(1), ω0) can be embedded into (Ω, ω0).
Let v = λ1 c1 + · · ·+ λr cr be the spectral decomposition of a regular point
v ∈ ΩM ⊂M, then the distance d0(0, v) from the origin 0 ∈M to v is given
by

(30) d0(0, v) = (v | v)
1

2 =

√√√√ r∑
j=1

λ2
j ,
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(see [43, Proposition VI.3.6] for a proof). Since the set of regular points
of M is dense ([43, Proposition IV.3.1]) we conclude, by (25) and by the
identification ΩM ∼= Ω (induced by (M, (· | ·)) ∼= (Cn, h0)) that

(31) (B2n(1), ω0) ⊂ (Ω, ω0). �

Remark 14. The inclusion (31) has been obtained in [35, Lemma 4.2,
Section 4] for the case of the first Cartan domain, namely B2k(n−k)(1) ⊂
ΩI [k, n] (see also [36] for the case of classical Cartan domains). Combining
this with the symplectic embedding (29) Lu was able (see [35, Theorem 1.35])
to obtain the upper bound

F (G(k, n), ωFS) ≤ [n/k],

where F (N,ω) denotes the Fefferman invariant of a closed symplectic man-
ifold (N,ω), namely the largest integer p for which there exists a symplectic
packing by p open unit balls, and [n/k] is the largest integer less than or
equal to n/k. The authors believe it is an intriguing problem to give a similar
upper bound for all HSSCT by using the techniques of this paper.

The domain (Ω, ω0) can be embedded into (Z2n(1), ω0).
Let Z2n(1) = {(x, y) | x2

1 + y2
1 < 1} be the unitary cylinder in R2n. Let

v = λ1 c1 + · · ·+ λr cr be the spectral decomposition of a regular point v ∈
ΩM ⊂M. By (30) and by the continuity of d0 (the distance function from
the origin 0 ∈M) we see that d0(0, c1) = 1. Set c := c1, by [33, Corollary
4.8] c ∈ ∂ΩM. Since ΩM is convex ([33, Corollary 4.7]), by the supporting
hyperplane property there exists a real hyperplane π of M through c not
intersecting ΩM. Denote by p = e(c) ∈ ∂Ω the image of the tripotent c by
the isometry (26). Hence p ∈ S2n−1, where S2n−1 = ∂B2n(1) is the (2n− 1)-
dimensional unit sphere centered at the origin ofR2n. By (31), B2n(1) ⊂ Ω =
e(ΩM) and hence e(π) = Tp S

2n−1. By applying the same argument to any
tripotent cθ := eiθ · c, we see that Ω is contained in the cylinder Z̃ bounded
by the envelope of the family of real hyperplanes

{
Tpθ S

2n−1, pθ = e(cθ)
}
θ∈R.

Let W ∈ U(n) such that

W · p = (z1, 0, . . . , 0)

for some z1 ∈ C, ‖z1‖ = 1. It follows that W · Z̃ = Z2n(1) and the desired
symplectic embedding of (Ω, ω0) into (Z2n(1), ω0) is given by

(32) Ω ⊂ Z̃ W→ Z2n(1).



i
i

“7-385” — 2016/3/16 — 11:51 — page 1063 — #15 i
i

i
i

i
i

Symplectic capacities of Hermitian symmetric spaces 1063

Remark 15. In [36] a similar (symplectic) embedding (Ω, ω0) ↪→(Z2n(1), ω0)
has been considered for the classical Cartan domains.

5.1. Minimal symplectic atlases of HSSCT

Consider a closed symplectic manifold (M,ω). In [44] Yu. B. Rudyak and
F. Schlenk have introduced the symplectic Lustermik-Schnirelmann category
S(M,ω), defined as

S(M,ω) = min{k | M = U1 ∪ · · · ∪ Uk}

where each Ui is the image Φi(Ui) of a symplectic embedding Φi : Ui → Ui ⊂
M of a bounded subset Ui of (R2n, ω0) diffeomorphic to an open ball in R2n.
From our results one obtains the upper bound

(33) S(M,ωFS) ≤ N + 1

for Lustermik-Schnirelmann category of a Hermitian symmetric space of
compact type (M,ωFS), where N is the dimension of the complex projective
space CPN where the manifold can be Kähler embedded via the Borel–Weil
embedding BW : M → CPN (see (27)). Indeed, as in the case of the com-
plex Grassmannian G(k, n) (where the Borel–Weil embedding is given by

the Plücker embedding P : G(k, n)→ CP(nk )−1), one can define a canonical
atlas on (M,ωFS) using the N + 1 holomorphic charts Ω0, . . . ,ΩN defined
as Ωj = M \ {BW−1(Zj = 0)}, and Zj = 0, j = 0, . . . , N , is the standard
hyperplane of CPN . Each Ωj ⊂ Cn, j = 0, . . . , N , is biholomorphic to the
noncompact dual Ω of M . It follows by (28) that (Ωj , ω0) can be symplecti-
cally embedded into (M,ωFS) for j = 1, . . . , N . On the other hand, each Ω
is a bounded domain diffeomorphic to the ball in R2n and so (33) follows.
Our knowledge of the Gromov width of any HSSCT (M,ωFS) can be used
to estimate and compute the minimal numbers of Darboux charts needed to
cover M . This number, introduced in [44] and denoted there by SB(M,ω),
has been computed and estimated for various symplectic manifolds including
the complex Grassmannian (see [44, Corollary 5.10]). Using the results of
this section, similar computations and related problems (which will appear
in a forthcoming paper) can be done for all HSSCT.

6. The proofs of Theorems 1, 2, 3, 4 and 5

The following lemma is the key ingredient to achieve the upper bound of
Gromov width in Theorems 1, 2 and 3.
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Lemma 16. Let (M,ωFS) be an irreducible HSSCT of complex dimension
n. Then there exist α(M,ωFS) and β(M,ωFS) in H∗(M,Z) such that

dimα(M,ωFS) + dimβ(M,ωFS) = 4n− 2c1(A)

and

(34) ΨA,0,3(pt;α(M,ωFS), β(M,ωFS), pt) 6= 0.

Proof. Since the canonical symplectic form ωFS is Kähler-Einstein, it follows
that (M,ωFS) is monotone, so that Lemma 10 applies under our assump-
tions. We need then to show the existence, for every irreducible HSSCT, of a
non-vanishing Gromov-Witten invariant ΨA,0,3(α(M,ωFS), β(M,ωFS), pt).
This follows from the results about the quantum cohomology of these spaces
proved in [1], [8], [27], [42], [49]. Let us recall that the quantum cohomol-
ogy ring of M is the product H∗(M)⊗Z[q] endowed with the quantum cup
product, defined for any two homology classes α, β ∈ H∗(M) as

(35) α ∗ β =
∑
γ,d

ΨdA,0,3(α, β, γ)γ∗qd,

the sum running over d ∈ Z and γ such that dim(α) + dim(β) + dim(γ) =
4n− 2dc1(A), where γ∗ denotes the dual class of γ.
Looking at the formulas for the quantum product proved in the above-
mentioned references, it is not hard to find a Gromov-Witten invariant
ΨA,0,3(α, β, pt) which does not vanish for some classes α, β. In more details,
when M is the Grassmannian G(k, n), by [49] there exist α ∈ H2k(n−1)(M)
and β ∈ H2n(k−1)(M) such that this holds; by [42] the same is true for suit-
able α = β ∈ H(n−1)(n−2)(SO(2n)/U(n)); by Corollary 8 in [27] α and β can
be taken of codimension n and 1 when M is the Lagrangian Grassmannian
LG(n, 2n); in [8] (see the formulas in Sections 5.1 and 5.2) it is shown that
for the Cayley plane (resp. for the Freudenthal variety) one can take for
example α and β of codimensions 8 and 4, (resp. of codimensions 13 and 5).
Finally, in [1] is studied the quantum cohomology of complete intersections,
which in particular gives a non-vanishing Gromov-Witten invariant for the
complex quadric. �

Remark 17. Formulas for quantum products in the homogeneous spaces,
expressed in terms of the combinatorial invariants of the Lie algebra of the
symmetry group of the space (Dynkin diagram and Weyl group), can be
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found in [16] (see also [15], [14]) and could be also used to prove the above
Lemma.

We are now in the position to prove Theorem 1.

Proof of Theorem 1. In order to use Lemma 9 we can assume, without loss of
generality, that dimM ≥ 4. Indeed the only irreducible HSSCT of dimension
< 4 is (CP1, ωFS) whose Gromov width is well-known to be equal to π. Let
A = [CP 1] be the generator of H2(M,Z) as in the Notation at page 1050.
Then the value ωFS(A) = π is clearly the infimum of the ωFS-areas ωFS(B)
of the homology classes B ∈ H2(M,Z) for which ωFS(B) > 0.
By Lemma 16 we have ΨA,0,3(pt; pt, α, β) 6= 0, with α = α(M,ωFS) and β =
β(M,ωFS), and hence, by definition of GWg,

(36) GW (M,ωFS ; pt, γ) = GW0(M,ωFS ; pt, γ) = π

with γ = α(M,ωFS) or γ = β(M,ωFS). It follows by the inequalities (17),
(20), (22) and (23) that

(37) cG(M,ωFS) ≤ C(2)
HZ(M,ωFS ; pt, γ) ≤ C(2o)

HZ (M,ωFS ; pt, γ) ≤ π

with γ = α(M,ωFS) or γ = β(M,ωFS). Combining this with the lower bound
cG(M,ωFS) ≥ π coming from the inclusion B2n(1) ⊂ (Ω, ω0) (cfr. (31)), the
symplectic embedding ΦΩ : (Ω, ω0)→ (M,ωFS) (cfr. (28)) and the mono-
tonicity and nontriviality of cG, one gets:

(38) cG(M,ωFS) = C
(2)
HZ(M,ωFS ; pt, γ) = C

(2o)
HZ (M,ωFS ; pt, γ) = π

with γ = α(M,ωFS) or γ = β(M,ωFS). This concludes the proof of Theo-
rem 1. �

Remark 18. Observe that we have proven more than stated in Theorem 1.
Indeed, we have computed the value of Lu’s pseudo symplectic capacities
evaluated at the homology class of a point and at α(M,ωFS) (or β(M,ωFS)),
namely

cG(M,ω) = C
(2)
HZ(M,ω; pt, α(M,ωFS)) = C

(2o)
HZ (M,ω; pt, α(M,ωFS))

= C
(2)
HZ(M,ω; pt, β(M,ωFS)) = C

(2o)
HZ (M,ω; pt, β(M,ωFS)) = π.

This extends the result obtained by G. Lu for the complex Grassmannian
(cfr. [35, Theorem 1.15] for details) to HSSCT.
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Remark 19. An alternative proof of the upper bound cG(M,ωFS) ≤ π in
Theorem 1 can be achieved by combining Lemma 16 with [23, Proposition 4.1
] which asserts that if (M,ω) is a symplectic manifold of (real) dimension 2n,
B ∈ H2(M,Z) is an indecomposable spherical class and ΦB,0,3(pt, α0, β0) 6=
0, for suitable α0 and β0 in H∗(M,Z) (which necessarily satisfy dimα0 +
dimβ0 = 4n− 2c1(B)) then cG(M,ω) ≤ ω(B).
Actually, the GW invariant ΦB,0,3(pt, α0, β0) 6= 0 for some B ∈ H2(M,Z)
implies that there exists a rational curve of class B through a generic point
in M and hence the inequality cG(M,ω) ≤ ω(B) by the Gromov’s arguments
in [17]; see [23], [7] for details.

In order to prove Theorem 2 we need the following lemma, interesting
on its own sake, which extends Lu’s formula (20) in [35, Theorem 1.16] (for
the Grassmannian) to the case of HSSCT.

Lemma 20. Let (M,ωFS) be a HSSCT and let (N,ω) be any closed sym-
plectic manifold. Then

(39) C
(2o)
HZ (N ×M,ω ⊕ aωFS ; pt, [N ]× γ) ≤ |a|π

for any a ∈ R \ {0} and γ = α(M,ωFS) or γ = β(M,ωFS), with α(M,ωFS)
and β(M,ωFS) given by Lemma 16.

Proof. Since by (34) we have ΨM
A,0,3(pt;α, β, pt) 6= 0, with α = α(M,ωFS)

and β = β(M,ωFS), it follows by Lemma 11 that

ΨN×M
B,0,3 (pt; [N ]× α(M,ωFS), [N ]× β(M,ωFS), pt) 6= 0

for B = 0×A, where 0 denotes the zero class in H2(N,Z). Hence (39) easily
follows from (23) in Lemma 9. �

Proof of Theorem 2. To see (5) we assume r > 1 because of the result in
Theorem 1. It immediately follows from (17) and (20) in Lemma 7 and
by (39) that

cG
(
M1 × · · · ×Mr, ω

1
FS ⊕ · · · ⊕ ωrFS

)
≤ π.

On the other hand, we have the symplectic embeddings

×rj=1B
2nj (1) ⊂ ×rj=1Ωj

ΦΩ1
×···×ΦΩr−→ ×rj=1Mj
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(induced by (31) and (28) respectively) and the natural inclusion

(40) B2n1+···+2nr(1) ⊂ ×rj=1B
2nj (1).

Thus, it follows by the monotonicity and nontriviality of cG that

cG
(
M1 × · · · ×Mr, ω

1
FS ⊕ · · · ⊕ ωrFS

)
≥ π.

Hence (5) follows. As we have already pointed out in the Introduction,
inequality (6) is a straightforward consequence of (8) in Theorem 3.

Inequality (7) follows by (4), by the monotonicity of cHZ and from the
fact that for two compact symplectic manifolds (N1, ω1) and (N2, ω2)

(41) cHZ(N1 ×N2, ω1 ⊕ ω2) ≥ cHZ(N1, ω1) + cHZ(N2, ω2)

(see [35, Lemma 4.3, p. 43] for a proof). This concludes the proof of Theo-
rem 2. �

Remark 21. The upper bound

cG
(
M1 × · · · ×Mr, ω

1
FS ⊕ · · · ⊕ ωrFS

)
≤ π

obtained in the proof of Theorem 2 can also be achieved by using the fact
that HSSCT and their products are uniruled manifolds (see Definition 1.14,
Theorem 1.27 in [35] and the remark following this theorem).

Remark 22. Note that another interesting result shown in [35, Theo-
rem 1.16] is formula (21) in [35]. One can prove the analogous of this formula
using the techniques developed so far. That is

C
(2o)
HZ (×rj=1Mj ,⊕rj=1ajω

j
FS ; pt,×rj=1αj) ≤ (|a1|+ · · ·+ |ar|)π,

for all aj ∈ R \ {0} and αj = αj(Mj , ω
j
FS) or βj = βj(Mj , ω

j
FS).

Remark 23. We do not know if the inequality

cHZ
(
M1 × · · · ×Mr, a1ω

1
FS ⊕ · · · ⊕ arωrFS

)
≤ (|a1|+ · · ·+ |ar|)π.

holds true. Unfortunately, the proof given by Lu in the case of product of
projective spaces [35, Theorem 1.21] does not extend to the general case of
HSSCT. Indeed the Gromov–Witten invariant ΨB,0,m+2(pt, pt, β1, . . . , βm) of
M = M1 × · · · ×Mr does not vanish (for some homology classes β1, . . . , βm)
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if and only if all the Mj ’s are projective spaces, since it is easily checked
that the dimension condition

∑m
j=1 deg(βj) = 2(c1(B)− dim(M)− 1 +m),

necessary for the Gromov-Witten invariant to be nonzero ([39], p. 11), is
satisfied only in this case. For comments and conjectures related to this
problem the reader is referred to [35, Corollary 1.19 and Example 1.20]).

Proof of Theorem 3. From (17) and (20) in Lemma 7 and by (39) it follows
that

cG(N ×M,ω ⊕ aωFS) ≤ C(2o)
HZ (N ×M,ω ⊕ aωFS ; pt, [N ]× γ) ≤ |a|π,

where γ = α(M,ωFS) (or γ = β(M,ωFS)), which yields the desired inequal-
ity (8). �

Proof of Theorem 4. By

(B2n(1), ω0) ⊂ (Ω, ω0)
W→ (Z2n(1), ω0),

(given by (31) and (32) respectively) and the monotonicity and nontriviality
of cG and cHZ we get cG(Ω, ω0) = cHZ(Ω, ω0) = π, namely (12) and (13).
Analogously, let us denote Mj the compact dual of Ωj : by (6) and by the
symplectic embedding

(×rj=1Ωj ,⊕rj=1ajω
j
0)

ΦΩ1
×···×ΦΩr−→ (×rj=1Mj ,⊕rj=1ajω

j
FS)

induced by (28) one obtains (15) which, together with the symplectic embed-
ding ×rj=1B

2nj (1) ⊂ ×rj=1Ωj (induced by (31)) and (40) yields (14). �

In order to prove Theorem 5 we need the following interesting result of Lu.

Lemma 24. Let (N,ω) be any closed symplectic manifold. Then, for any
r > 0 one has

cHZ(N ×B2n(r), ω ⊕ ω0) = cHZ(N × Z2n(r), ω ⊕ ω0) = πr2.

where Z2n(r) is given by (3).

Proof. See [35, Theorem 1.17, p.14]. �
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Proof of Theorem 5. By (B2n(1), ω0) ⊂ (Ω, ω0)
W→ (Z2n(1), ω0) one has the

embeddings

(N ×B2n(1), ω ⊕ ω0) ⊂ (N × Ω, ω ⊕ ω0)
idN×W→ (N × Z2n(1), ω ⊕ ω0)

and so the desired (16), i.e. cHZ(N × Ω, ω ⊕ ω0) = π, follows by Lemma 24
and the monotonicity of cHZ . �

Final remarks on Seshadri constants
Our knowledge of the Gromov width of a HSSCT allows us to obtain an
upper bound of the Seshadri constant of an ample line bundle over a HSSCT
(M,ωFS). Recall that given a compact complex manifold (N, J) and a holo-
morphic line bundle L→ N the Seshadri constant of L at a point x ∈ N is
defined as the nonnegative real number

ε(L, x) = inf
C3x

∫
C c1(L)

multxC
,

where the infimum is taken over all irreducible holomorphic curves C passing
through the point x and multxC is the multiplicity of C at x (see [10] for
details). The (global) Seshadri constant is defined by

ε(L) = inf
x∈N

ε(L, x).

Note that Seshadri’s criterion for ampleness says that L is ample if and only
if ε(L) > 0. P. Biran and K. Cieliebak [6, Prop. 6.2.1] have shown that

ε(L) ≤ cG(N,ωL),

where ωL is any Kähler form which represents the first Chern class of L, i.e.
c1(L) = [ωL]. Consider now an irreducible HSSCT (M,ωFS) and the line
bundle L→M such that c1(L) = [ωFSπ ] (L can be taken as the pull-back via
the Borel–Weil embedding (27) of the universal bundle of CPN ). Therefore,
by using the upper bound cG(M,ωFS) ≤ π and the conformality of cG we
get:

Corollary 25. Let (M,ωFS) be an irreducible HSSCT and let L→M as
above. Then ε(L) ≤ 1.
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