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G-gerbes, principal 2-group bundles and

characteristic classes

Grégory Ginot and Mathieu Stiénon

Let G be a Lie group and G→ Aut(G) be the canonical group
homomorphism induced by the adjoint action of a group on itself.
We give an explicit description of a 1-1 correspondence between
Morita equivalence classes of, on the one hand, principal 2-group
[G→ Aut(G)]-bundles over Lie groupoids and, on the other hand,
G-extensions of Lie groupoids (i.e. between principal [G→Aut(G)]-
bundles over differentiable stacks and G-gerbes over differentiable
stacks). This approach also allows us to identify G-bound gerbes
and [Z(G)→ 1]-group bundles over differentiable stacks, where
Z(G) is the center of G. We also introduce universal characteris-
tic classes for 2-group bundles. For groupoid central G-extensions,
we introduce Dixmier–Douady classes that can be computed from
connection-type data generalizing the ones for bundle gerbes. We
prove that these classes coincide with universal characteristic
classes. As a corollary, we obtain further that Dixmier–Douady
classes are integral.

1. Introduction

This paper is devoted to the relation between groupoid G-extensions and
principal Lie 2-group bundles and to their characteristic classes.

A Lie 2-group is a Lie groupoid Γ2 ⇒ Γ1, whose spaces of objects Γ1 and
of morphisms Γ2 are Lie groups and all of whose structure maps are group
morphisms. One shall note that in this paper we are interested in strict Lie
2-groups only, though we believe all our results can be extended to weak ones
as well. A crossed module (G

ρ−→ H) is a Lie group morphismG
ρ−→ H together

with an action of H on G satisfying suitable compatibility conditions. It is
standard that Lie 2-groups are in bijection with crossed modules [2, 15, 46].

In this paper, [G
ρ−→ H] denotes the 2-group corresponding to the crossed

module (G
ρ−→ H).
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1002 G. Ginot and M. Stiénon

Lie 2-groups arise naturally in mathematical physics. For instance, in
higher gauge theory [3, 5], Lie 2-group bundles provide a well suited frame-
work for describing the parallel transport of strings [1, 3, 38]. Several recent
works have approached the concept of bundles with a “structure Lie 2-group”
over a manifold from various perspectives [1, 3, 6, 50, 58]. Here we take an
alternative point of view and give a definition of principal Lie 2-group bun-
dles of a global nature (i.e. not resorting to a description explicitly involving
local charts and cocycles) and which allows for the base space to be a Lie
groupoid. In other words, we consider 2-group principal bundles over differ-
entiable stacks [8]. Our approach immediately leads to a natural construction
of “universal characteristic classes” for principal 2-group bundles.

Let us start with Lie (1-)groups. A principal G-bundle P over a manifold
M canonically determines a homotopy class of maps from M to the classi-
fying space BG of the group G. In fact, the set of isomorphism classes of
G-principal bundles over M is in bijection with the set of homotopy classes of

maps M
f−→ BG [17, 53, 54]. Pulling back the generators of H∗(BG) (the uni-

versal classes) through f , one obtains characteristic classes of the principal
bundle P over M . These characteristic classes coincide with those obtained
from a connection by applying the Chern–Weil construction [21, 42].

There is an analogue but much less known, differential geometric rather
than purely topological, point of view: a principal G-bundle over a manifold
M can be thought of as a “generalized morphism” (in the sense of Hilsum
& Skandalis [30, 47]) from the manifold M to the Lie group G both con-
sidered as 1-groupoids. To see this, recall that a principal G-bundle can be
defined as a collection of transition functions gij : Uij → G on the double
intersections Uij of some open covering {Ui}i∈I of M , satisfying the cocy-
cle condition gijgjk = gik. These transition functions constitute a morphism
of groupoids from the Čech groupoid

∐
Uij ⇒

∐
Ui associated to the open

covering {Ui}i∈I to the Lie group G⇒ ∗. Hence we have a diagram

(M ⇒M)
∼←−
(∐

Uij ⇒
∐

Ui

)
→ (G⇒ ∗)

in the category of Lie groupoids and their morphisms whose leftward arrow
is a Morita equivalence, in other words a generalized morphism from the
manifold M to the Lie group G.

This second point of view, or more precisely its generalization to the 2-
groupoid context, constitutes the foundation on which our approach is built.
The generalization of the concept of “generalized morphism” to 2-groupoids
is straightforward: a generalized morphism of Lie 2-groupoids Γ ∆ is a
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diagram Γ
φ←−
∼

E
f−→∆ in the category 2Gpd of Lie 2-groupoids and their

morphisms, where φ is a Morita equivalence (a “smooth” equivalence of
2-groupoids). It is sometimes useful to think of two Morita equivalent Lie
2-groupoids as two different choices of an atlas (or open cover) on the same
geometric object (which is a differentiable 2-stack [8, 13]). We define a prin-

cipal [G
ρ−→ H]-bundle over a Lie groupoid Γ to be a generalized morphism

from Γ to [G
ρ−→ H] (up to equivalence). See Section 2.3.

The concept of (geometric) nerve of Lie groupoids extends to the 2-
categorical context as a functor from the category of Lie 2-groupoids to
the category of simplicial manifolds [55]. By convention, the cohomology
of a 2-groupoid is the cohomology of its nerve, which can be computed
via a double complex (for instance, see [25]). Crucially, Morita equivalences
induce isomorphisms in cohomology. Therefore, any generalized morphism

of 2-groupoids Γ
F
 [G→ H] defining a principal [G→ H]-bundle B over

the groupoid Γ yields a pullback homorphism F ∗ : H•([G→ H])→ H•(Γ)
in cohomology, which is called the cohomology characteristic map (charac-
teristic map for short). The cohomology classes in H•([G→ H]) [25] should
be viewed as universal characteristic classes and their images by F ∗ as the
characteristic classes of B.

Lie 2-group principal bundles are closely related to non-abelian gerbes.
Geometrically, non-abelian G-gerbes over differentiable stacks can be con-
sidered as groupoid G-extensions modulo Morita equivalence [33]. By a
groupoid G-extension, we mean a short exact sequence of groupoids 1→
M ×G i−→ Γ̃

φ−→ Γ→ 1, where M ×G is a bundle of groups.
One of our main results is an equivalence between (strict) G-gerbes over

a differentiable stack and principal bundles over the 2-group [G→ Aut(G)].
More precisely, we establish an explicit 1-1 correspondence between groupoid
G-extensions up to Morita equivalence (i.e. strict G-gerbes over differen-
tiable stacks) and principal [G→ Aut(G)]-bundles over Lie groupoids mod-
ulo Morita equivalence (i.e. [G→ Aut(G)]-principal bundles over differen-
tiable stacks). This is Theorem 3.4. Note that a restricted version of this
correspondence is highlighted in [34, Theorem 4].

It is known that Giraud’s second non abelian cohomology groupH2(X, G)
classifies the G-gerbes over a differentiable stack X [26] while Dedecker’s
H1(X, [G→ Aut(G)]) classifies the principal [G→ Aut(G)]-bundles [18, 19].
In [12, 14], Breen showed that these two cohomology groups are isomorphic.
In some sense, our theorem above can be considered as an explicit geomet-
ric proof of Breen’s theorem in the smooth context. Indeed, one of the main
motivations behind the present paper is the relation between G-extensions
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and 2-group principal bundles. We believe our result throws a bridge between
the groupoid extension approach to the differential geometry of G-gerbes
developed in [33] and the one based on higher gauge theory due to Baez &
Schreiber [3]. This will be investigated somewhere else.

An important class of G-extensions is formed by the so called central G-
extensions [33], those for which the structure 2-group [G→ Aut(G)] reduces
to the 2-group [Z(G)→ 1] (where Z(G) stands for the center of G). They
correspond to G-gerbes with trivial band or G-bound gerbes [33]. Each such
extension determines a principal [Z(G)→ 1]-bundle over the base groupoid
Γ. In [8], Behrend & Xu gave a natural construction associating a class in
H3(Γ) to a central S1-extension of a Lie groupoid Γ. When the base Lie
groupoid is Morita equivalent to a smooth manifold (viewed as a trivial
2-groupoid), a central S1-extension is what has been studied by Murray
and Hitchin under the name bundle gerbe [31, 45]. The Behrend–Xu class
of a bundle gerbe coincides with its Dixmier–Douady class, which can be
described by the 3-curvature. In the present paper, we extend the construc-
tion of Behrend & Xu and define a Dixmier–Douady class DD(α) ∈ H3(Γ)⊗
Z(g) for any central G-extension, where G is connected with a reductive Lie
algebra. Since a central G-extension induces a [Z(G)→ 1]-principal bundle
over Γ, there is also a charateristic map H3([Z(G)→ 1])→ H3(Γ). Dualiz-
ing, one obtains a class CCφ ∈ H3(Γ)⊗ Z(g). We prove that the Dixmier–
Douady class DD(α) coincides with the characteristic class CCφ. In a cer-
tain sense, this is the gerbe analogue of the Chern–Weil isomorphism for
principal bundles [21, 42].

The paper is organized as follows. Section 2 is devoted to generalized
morphisms of Lie 2-groupoids and to 2-group bundles and recalls some stan-
dard material on Lie 2-groupoids. The main feature of Section 3 is Theo-

rem 3.4 on the equivalence of groupoids G-extensions and principal [G
Ad−−→

Aut(G)]-bundles. In Section 4 we define the characteristic map/classes of
principal Lie 2-group bundles, we present the construction of the Dixmier–
Douady classes of groupoid central G-extensions and we prove that the
Dixmier–Douady class of a central G-extension coincides with the universal
characteristic class of the induced [Z(G)→ 1]-bundle — see Theorem 4.18.
Since the universal characteristic map can be defined in cohomology with
integer coefficients, we obtain that the Dixmier–Douady class of a central
G-extension is integral as a corollary of our study. This applies, in particular,
in the classical case of a bundle gerbe.

Note that, whenG is discrete, the relation between groupoidG-extensions
and 2-group principal bundles was also independently studied by Haefliger [27,
28].
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Some of the results of the present paper are related to results announced
by Baez & Stevenson [4]. Recently, Sati, Stasheff & Schreiber have studied
characteristic classes for 2-group bundles by the mean of L∞-algebras [50].
It would be very interesting to relate their construction to ours using inte-
gration of L∞-algebras as in [23, 29].

2. Generalized morphisms and principal Lie 2-group bundles

2.1. Lie 2-groupoids, Crossed modules and Morita morphisms

This section is concerned with Lie 2-groupoids and Morita equivalences. The
material is rather standard. For instance, see [39, 44] for the general theory
of Lie groupoids and [2, 46, 60] for Lie 2-groupoids. We only deal with the
case of strict 2-groupoids and strict 2-groups.

Definition 2.1. A Lie 2-groupoid is a double Lie groupoid

(1)

Γ2
s //
t
//

l
��

u

��

Γ0

id
��

id
��

Γ1
s //
t
// Γ0

in the sense of [15], where the right column Γ0
id //
id
// Γ0 denotes the trivial

groupoid associated to the smooth manifold Γ0. It makes sense to use the
symbols s and t to denote the source and target maps of the groupoid
Γ2 ⇒ Γ0 since s ◦ l = s ◦ u and t ◦ l = t ◦ u.

Remark 2.2. A Lie 2-groupoid is thus a small 2-category in which all
arrows are invertible, the sets of objects, 1-arrows and 2-arrows are smooth
manifolds, all structure maps are smooth and the sources and targets are
surjective submersions.

In the sequel, the 2-groupoid (1) will be denoted Γ2
l //
u
// Γ1

s //
t
// Γ0 or

just Γ. The so called vertical (resp. horizontal) multiplication in the groupoid

Γ2
l //
u
// Γ1 (resp. Γ2

s //
t
// Γ0 ) will be denoted by ? (resp. ∗)

Clearly, a Lie groupoid can be seen as a Lie 2-groupoid Γ1
id //
id
//Γ1

s //
t
//Γ0 .
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A Lie 2-groupoid where Γ0 is the one-point space ∗ is known as a Lie
2-group.

There is a well-known equivalence between Lie 2-groupoids and crossed
modules of groupoids [15].

Definition 2.3. A crossed module of groupoids (X
ρ−→ Γ) is a morphism of

groupoids

X1
ρ //

p

��
p

��

Γ1

s

��
t
��

X0
id
// Γ0

,

from a family of groups X1
p−→ X0 to a groupoid Γ1 ⇒ Γ0 sharing the same

unit space X0 = Γ0, together with a right action by automorphisms (γ, x) 7→
xγ of Γ1 ⇒ Γ0 on X1 → X0 satisfying:

ρ(xγ) = γ−1ρ(x)γ ∀(x, γ) ∈ X1 ×Γ0
Γ1,(2)

xρ(y) = y−1xy ∀(x, y) ∈ X1 ×Γ0
X1.(3)

Note that the equalities (2) and (3) make sense because X1 is a family of
groups.

Example 2.4. Given any Lie group G, we obtain a crossed module by set-
ting X1 = G, Γ1 = Aut(G), Γ0 = ∗ and ρ(g) = Adg (the conjugation by g).

Example 2.5. A Lie groupoid Γ1 ⇒ Γ0 induces a crossed module in the
following way. Let SΓ = {x ∈ Γ1|s(x) = t(x)} be the set of closed loops in
Γ1. Then SΓ is a family of groups over Γ0 and Γ1 acts by conjugation on SΓ.
Therefore, we obtain a crossed module

SΓ
i //

����

Γ1

����
Γ0

id
// Γ0

where i is the inclusion map.

A 2-groupoid Γ2
l //
u
// Γ1

s //
t
// Γ0 determines a crossed module of

groupoids (G
ρ−→ H) as follows. Here the groupoid H is Γ1 ⇒ Γ0, G1 =
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{g ∈ Γ2|l(g) ∈ Γ0 ⊂ Γ1}, ρ is the restriction of u to G1 and the action of
H1 = Γ1 on G1 ⊂ Γ2 is by conjugation. More precisely, if 1h is the unit

over an object h in the groupoid Γ2
l //
u
// Γ1 , then gh = 1h−1 ∗ g ∗ 1h. Con-

versely, given a crossed module of groupoids (X
ρ−→ Γ), one gets a Lie 2-

groupoid X1 n Γ1
l //
u

// Γ1
s //
t
// Γ0 , where X1 n Γ1 ⇒ Γ1 is the transfor-

mation groupoid and X1 n Γ1 ⇒ Γ0 is the semi-direct product of groupoids.
More precisely, for all x, x′ ∈ X1 and γ, γ′ ∈ Γ1, the structures maps are
defined by

l(x, γ) = γ, (x′, γ′) ∗ (x, γ) = (x′xγ
′−1

, γ′γ),

u(x, γ) = ρ(x)γ, (x′, ρ(x)γ) ? (x, γ) = (x′x, γ).

In the sequel, we will denote the Lie 2-groupoid associated to the crossed
module (G

ρ−→ H) by [G
ρ−→ H].

Example 2.6. The crossed module of groups
(
G

Ad−−→ Aut(G)
)

yields the

2-group Gn Aut(G)
l //
u
// Aut(G) // // ∗ with structure maps

l(g, ϕ) = ϕ u(g, φ) = Adg ◦ϕ
(g1,Adg2 ◦ϕ2) ? (g2, ϕ2) = (g1g2, ϕ2)

(g1, ϕ1) ∗ (g2, ϕ2) = (g1ϕ1(g2), ϕ1 ◦ ϕ2)

A (strict) morphism Γ
φ−→∆ of Lie 2-groupoids is a triple (φ0, φ1, φ2) of

smooth maps φi : Γi → ∆i (i = 0, 1, 2) commuting with all structure maps.
Morphisms of crossed modules are defined similarly.

Let ∆ be a Lie 2-groupoid. Given a surjective submersion f : M → ∆0,
we can form the pullback Lie 2-groupoid

∆[M ] : ∆2[M ]
l //
u
// ∆1[M ]

s //
t
//M ,

where

∆i[M ] = {(m, γ, n) ∈M ×∆i ×M s.t. s(γ) = f(m), t(γ) = f(n)},

for i ∈ {1, 2}. The maps s, t are the projections on the first and last factor
respectively. The maps u, l, the horizontal and vertical multiplications are
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induced by the ones on ∆ as follows:

u(m, γ, n) = (m,u(γ), n), (m, γ, n) ∗ (n, γ′, p) = (m, γ ∗ γ′, p),
l(m, γ, n) = (m, l(γ), n), (m, γ, n) ? (m, γ′, n) = (m, γ ? γ′, n).

There is a natural map of groupoids ∆[M ]→∆ defined by m 7→ f(m) and
(m, γ, n) 7→ γ.

Pullback of 2-groupoids yield a convenient definition of a higher analogue
for Lie 2-groupoids of the notion of Morita morphism or weak equivalence
of Lie 1-groupoids. These maps are higher analogues of the notion of a cover
and thus are called hypercovers to agree with the terminology of [59, 60].

Definition 2.7. A morphism of Lie 2-groupoids Γ
φ−→∆ is a hypercover if

φ is the composition of two morphisms

Γ2

����

// ∆2[Γ0]

����

// ∆2

����
Γ1

����

// ∆1[Γ0]

����

// ∆1

����
Γ0

id // Γ0
φ0 // ∆0

such that Γ0 → ∆0 and Γ1 → ∆1[Γ0] are surjective submersions and

Γ2

����

// ∆2[Γ0]

����
Γ1

// ∆1[Γ0]

is a Morita morphism1of 1-groupoids.

Definition 2.8. The (weakest) equivalence relation generated by the hyper-
covers is called Morita equivalence.2 More precisely, two Lie 2-groupoids Γ
and ∆ are Morita equivalent if there exists a finite collection E0,E1, . . . ,En

of Lie 2-groupoids with E0 = Γ and En = ∆, and, for each i ∈ {1, . . . , n},
either a hypercover Ei−1

∼−→ Ei or a hypercover Ei
∼−→ Ei−1.

1Here we follow the terminology of [8, 33]. Moerdijk calls such maps weak equiv-
alences [44].

2By analogy with [8], we will sometimes refer to a hypercover as a Morita mor-
phism since it induces a Morita equivalence.
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In fact, by Lemma 2.17 4), one has the following well-known lemma.

Lemma 2.9. If Γ and ∆ are Morita equivalent, there exits a chain of
hypercovers Γ

∼←− E
∼−→∆ of length 2 in between Γ and ∆.

Remark 2.10. From the categorical point of view, a hypercover φ : Γ
∼−→

∆ is in particular a 2-equivalence of 2-categories preserving the smooth
structures.

We expect that the notion of Morita equivalence introduced here will
help shed light on the integration problem for Courant algebroids [37] and
more specifically on the relation between the different proposed approaches
[36, 40, 52]. It is expected that the objects integrating Courant algebroids
are symplectic 2-stacks [41].

Remark 2.11. Similar to [8], one can define differentiable 2-stacks. Two
Lie 2-groupoids define the same differentiable 2-stack if, and only if, they
are Morita equivalent. In fact a Lie 2-groupoid can be thought of as a choice
of a differentiable atlas on a differentiable 2-stack.

2.2. Generalized morphisms of Lie 2-groupoids

Generalized morphisms of Lie 2-groupoids are a straightforward generaliza-
tion of generalized morphisms of Lie (1-)groupoids [30, 44]. They also have
been considered in [60]. Let 2Gpd denote the category of Lie 2-groupoids
and morphisms of Lie 2-groupoids.

Definition 2.12. A generalized morphism F is a zigzag

Γ
∼←− E1 → · · ·

∼←− En →∆,

where all leftward arrows are hypercovers. We use a squig arrow F : Γ 
∆ to denote a generalized morphism. The composition of two generalized
morphisms is defined by the concatenation of two zigzags.

In fact we are interested in equivalence classes of generalized morphisms:
In the sequel, we will consider two morphisms of 2-groupoids f : Γ→

∆ and g : Γ→∆ to be equivalent if there exists two smooth applications
ϕ : Γ0 → ∆1 and ψ : Γ1 → ∆2 such that, for any x ∈ Γ2 and any pair of
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composable arrows i, j ∈ Γ1, the following relations are satisfied:(
g2(x) ∗ 1ϕ(s(x))

)
? ψ(l(x)) = ψ(u(x)) ?

(
1ϕ(t(x)) ∗ f2(x)

)
,(4)

ψ(j ∗ i) =
(
1g1(j) ∗ ψ(i)

)
?
(
ψ(j) ∗ 1f1(i)

)
.(5)

In other words, f and g are “conjugate” by a (invertible) map ψ compatible
with the horizontal multiplication.

It is easy to check that the conditions (4) and (5) are equivalent to
the data of a natural 2-transformation from f to g [11, 35]. Recall that a
natural 2-transformation is given by the following data: an arrow ϕ(m) ∈ ∆1

for each object m ∈ Γ0, and a 2-arrow ψ(γ) ∈ ∆2 for each arrow γ ∈ Γ1 as
in the diagram

f(s(j))
ϕ(s(j))//

f(j)

��

g(s(j))

g(j)

��
f(t(j))

ϕ(t(j))
//

ψ(j)

5=

g(t(j))

and satisfying obvious compatibility conditions with respect to the compo-
sitions of arrows and 2-arrows.

We now introduce the notion of equivalence of generalized morphisms; it
is the natural equivalence relation on generalized morphisms extending the
equivalence of groupoids morphisms.

Definition 2.13. Equivalence of generalized morphisms is the weakest equiv-
alence relation satisfying the following three properties:

1) If there exists a natural transformation between a pair f, g of homo-
morphisms of 2-groupoids, f and g are equivalent as generalized mor-
phisms.

2) If Γ
φ−→∆ is a hypercover of 2-groupoids, the generalized morphisms

∆
φ←− Γ

φ−→∆ and Γ
φ−→∆

φ←− Γ are equivalent to ∆
id−→∆ and Γ

id−→ Γ,
respectively.

3) Pre- and post-composition with a third generalized morphism pre-
serves the equivalence.

Generalized morphisms can be seen as the 1-morphisms in a bicategory
of fractions 2Gpd[M−1], where we have “formally inverted” the collection
M of hypercovers, and equivalence between generalized morphisms as being
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(invertible) 2-morphisms. We refer to [32, Chapter 7] for details on localiza-
tion of categories with respect to a multiplicative system (see Lemma 2.17
below) and to [48, Chapter 3] and [49, Section 2] for details on the construc-
tion of the two cells of the associated bicategory of fractions. In particular,
the 2-morphisms in the bicategory of fractions 2Gpd[M−1] are represented
by diagrams

F

α

�&

φ1

uu

f1

))
β

x�

Γ E
ε2��

ε1
OO

∆

G
φ2

ii

f2

55

in which φi ◦ εi are Morita morphisms (i.e. hypercovers) and α, β are 2-
transformations as above. See [48, Section 3.2.3] or [49, Section 2].

However, we will essentially only need the 1-category underlying
2Gpd[M−1].

Example 2.14. Let F1 : Γ
φ1←−
∼

E1
f1−→∆ and F2 : Γ

φ2←−
∼

E2
f2−→∆ be two

generalized morphisms. Suppose that there exists a morphism E1
ε−→ E2 such

that the diagram

E1φ1

xx
ε

��

f1

&&
Γ ∆

E2
φ2

ff

f2

88

commutes up to 2-transformations (in particular, φ2 ◦ ε is an hypercover).
Then F1 and F2 are equivalent generalized morphisms.

Example 2.15. By its very definition, a Morita equivalence of groupoids
Γ
∼←− E1

∼−→ · · · ∼←− En
∼−→∆ defines two generalized morphisms F : Γ ∆

and G : ∆ Γ. The compositions F ◦G and G ◦ F are both equivalent to
the identity.

Remark 2.16. As previously mentionned, generalized morphisms are ob-
tained by formally inverting the Morita morphisms (i.e. hypercovers). In
fact, the following Lemma can be checked.

Lemma 2.17. The collection M of all hypercovers of Lie 2-groupoids is
a left multiplicative system [32, Definition 7.1.5] [56, Definition 10.3.4] in
2Gpd. Indeed, the following properties hold:
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1) (Γ
id−→ Γ) ∈M, ∀Γ ∈ 2Gpd;

2) M is closed under composition;

3) given Γ
f−→∆

φ←−
∼

E in 2Gpd with φ ∈M, there exists Γ
ψ←−
∼

Z
g−→ E

in 2Gpd with ψ ∈M such that

Zψ

∼ww
g

''
Γ

f ''

E

φ

∼
ww

∆

commutes;

4) given Γ
φ

∼
//∆

f //
g
// E in 2Gpd with φ ∈M, f ◦ φ = g ◦ φ implies

f = g.

Proof. Properties 2) and 3) follow from [59, Theorem 2.12] or [60, Sec-
tion 2]. Property 4) follows from the fact that the map φ0 : Γ0 → ∆0 is a
surjective submersion and that φ is an equivalence of 2-categories. �

Since M is a left multiplicative system in the category 2Gpd, we can
consider the localization 2GpdM of 2Gpd with respect to M [32, Chap-
ter 7] [56, Section 10.3]. This new category 2GpdM has the same objects as
2Gpd but its arrows are equivalence classes of generalized morphisms. An
isomorphism in 2GpdM corresponds to (the equivalence class of) a Morita
equivalence in 2Gpd.

In particular, the category 2GpdM is the 1-category obtained from the
bicategory 2Gpd[M−1] (by identifying all 1-morphisms that are connected
by 2-morphisms).

Lemma 2.17 3) implies that any generalized morphism can be repre-
sented by a chain of length 2:

Lemma 2.18. Any generalized morphism between two Lie 2-groupoids Γ
and ∆ is equivalent to a diagram

Γ
φ←−
∼

E
f−→∆

in the category 2Gpd in which φ is a hypercover (i.e. φ ∈M).
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Remark 2.19. There is a bijection between maps of (representable) dif-
ferentiable 2-stacks and equivalence classes of generalized morphisms of Lie
2-groupoids up to Morita equivalences.

2.3. Lie 2-group bundles

In this section, we give a definition of Lie 2-group bundles of a global nature
and formulated in terms of generalized morphisms of Lie 2-groupoids.

Definition 2.20. A principal (Lie 2-group) [G→ H]-bundle over a Lie
groupoid Γ1 ⇒ Γ0 is a generalized morphism B from Γ1 ⇒ Γ0 (seen as a Lie
2-groupoid) to the Lie 2-group [G→ H] associated to the crossed module
(G→ H).

In particular, a principal [G→ Aut(G)]-bundle over a groupoid Γ1 ⇒ Γ0

is a generalized morphism from Γ1 ⇒ Γ0 (seen as a Lie 2-groupoid) to the
Lie 2-group [G→ Aut(G)].

Two principal [G→ H]-bundles B and B′ over the Lie groupoid Γ1 ⇒ Γ0

are said to be isomorphic if, and only if, these two generalized morphisms
are equivalent.

A [G→ H]-bundle over a manifold M is a (2-group) [G→ H]-bundle
over the Lie groupoid M ⇒M .

Let B be a [G→ H]-bundle over a Lie groupoid Γ1 ⇒ Γ0. If Γ′1 ⇒ Γ′0
and [G′ → H ′] are Morita equivalent to Γ1 ⇒ Γ0 and [G→ H] respectively,
then the composition

(
Γ′1 ⇒ Γ′0

)
!

(
Γ1 ⇒ Γ0

) B
 [G→ H]! [G′ → H ′].

defines a principal [G′ → H ′]-bundle over Γ′1 ⇒ Γ′0 denoted B by abuse of
notation. Here the left and right squig arrows are the Morita equivalences
seen as invertible generalized morphisms as in Example 2.15.

Definition 2.21. A principal (Lie 2-group) [G→ H]-bundle B over a Lie
groupoid Γ1 ⇒ Γ0 and a principal (Lie 2-group) [G′ → H ′]-bundle B′ over
a Lie groupoid Γ′1 ⇒ Γ′0 are said to be Morita equivalent if, and only if,
Γ′1 ⇒ Γ′0 is Morita equivalent to Γ1 ⇒ Γ0, [G′ → H ′] is Morita equivalent
to [G→ H], and B (viewed as a generalized morphism

(
Γ′1 ⇒ Γ′0

)
 [G′ →

H ′]) and B′ are equivalent generalized morphisms.
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Remark 2.22. When the groupoid is just a manifold, our definition is
equivalent to the usual definition of Lie 2-group bundles in [3, 6, 50, 58] as
suggested by Examples 2.23 and 2.24 below.

Furthermore our notion of isomorphism of principal 2-group bundles over
a fixed manifold agrees with the one of [58] and is in fact a particular case
of the one described in [59], see Remark 2.26.

Example 2.23. Let P
π−→M be a principal H-bundle. Then the diagram

M

����

P ×M Poo

����

// H

����
M

����

P ×M P
φoo

s
��

t
��

f // H

����
M P

πoo // ∗

where s(x, y) = x, t(x, y) = y, π(x) = φ(x, y) = π(y) and x · f(x, y) = y, de-
fines a generalized morphism from the manifold M to the 2-group [1→ H].
Hence, it is a 2-group bundle over M . Note that a principal H-bundle P over
M is Morita equivalent (as a 2-group bundle) to a principal H ′-bundle P ′

over M ′ if, and only if, H and M are isomorphic to H ′ and M ′ respectively
and P and P ′ are isomorphic principal bundles.

Example 2.24. Let M be a smooth manifold and G be a (non-abelian)
Lie group. A non abelian 2-cocycle [18, 19, 26, 43] on M with values in G
relative to an open covering {Ui}i∈I of M is a collection of smooth maps

λij : Uij → Aut(G) and gijk : Uijk → G

satisfying the following relations:

λij ◦ λjk = Adgijk ◦λik
gijlgjkl = giklλ

−1
kl (gijk).

Such a non-abelian 2-cocycle defines a [G→ Aut(G)]-bundle over the man-
ifold M ; for it can be seen as the generalized morphism
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M

����

∐
i,j Uij ×G×Goo

l

��
u

��

f // Gn Aut(G)

����
M

����

∐
i,j Uij ×G

φoo

����

// Aut(G)

����
M

∐
i Ui

oo // ∗

between the manifold M and the 2-group [G→ Aut(G)]. Here

l(xij , g1, g2) = (xij , g1) φ(xij , g) = x

u(xij , g1, g2) = (xij , g2) f(xij , g1, g2) =
(
g2g
−1
1 ,Adg1 ◦λij(x)

)
where xij denotes a point x ∈M seen as a point of the open subset Uij =
Ui ∩ Uj , xi the point x ∈M seen as a point of the open subset Ui, and
g, g1, g2 arbitrary elements of G. The horizontal and vertical multiplications
are given by

(xij , g1) ∗ (xjk, g2) =
(
xik, gijkλ

−1
jk (g1)g2

)
,

(xij , g1, g2) ? (xij , g2, g3) = (xij , g1, g3).

Example 2.25. Let {Ui}i∈I be an open covering of a smooth manifold M .
A family of smooth maps gijk : Uijk → S1 defines a Lie groupoid structure
on
∐
i,j Uij × S1 ⇒

∐
i Ui with multiplication

(xij , e
iϕ) · (xjk, eiψ) = (xik, gijke

i(ϕ+ψ))

if, and only if, gijk is a Čech 2-cocycle. In that case, we get the generalized
morphism of 2-groupoids

M

����

∐
i,j Uij × S1 × S1oo

l
��

u

��

f // S1

����
M

����

∐
i,j Uij × S1oo

����

// ∗

����
M

∐
i Ui

oo // ∗

with f(xij , e
iϕ, eiψ) = ei(ψ−ϕ). It defines an [S1 → ∗]-bundle over M .
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Remark 2.26. Our definition of principal 2-groups bundles over a stack
also agrees with one which was introduced more recently by Wolfson in [59];
more precisely our definition agrees with a special case of principal bundle
over a simplicial Lie group in loc. cit. when the simplicial Lie group is a
strict Lie 2-group (viewed as a special kind of simplicial Lie groups as in [59,

§6]). Indeed, given a generalized morphism
(
Γ1 ⇒ Γ0

) B
 [G→ H], we get

a strict Lie 2-groupoid map U → [G→ H], for some hypercover U
φ−→Γ,

which in turn yields a map between the associated simplicial manifolds.
Pulling back the universal bundle W ([G→ H]) of [59, Definition 6.2] along
this map yields a twisted Cartesian product U ×[G→H] W ([G→ H])→ U
over (the simplicial manifold associated to) U (which is a stack by con-

struction). Since U
φ−→Γ is a hypercover, this is precisely the data of a local

2-bundle which is principal with respect to (the simplicial Lie group associ-
ated to) [G→ H] in the sense of [59, §5].

Furthermore, by choosing a common refinement of two hypercovers, an
isomorphism of principal 2-group bundles in the sense of Definition 2.21
yields an equivalence of local 2-bundles (as twisted cartesian product and as
stacks), since in both cases it boils down to being a collection of equivalences
of local objects of the form E ∼= U × [G→ H].

Example 2.27. Principal 2-group bundles arise whenever one studies group
actions on stacks, which, in general are only weak actions. For instance, there
is a canonical (but subtle) weak action of S1 on the inertia stack of any dif-
ferentiable stack giving rise to a canonical principal bundle, which shall be
detailed elsewhere. For the moment we just explain briefly how it can be
defined in terms of Lie 2-group(oid)s. Let Γ : Γ1 ⇒ Γ0 be a Lie groupoid.
Its inertia groupoid3 ΛΓ : SΓ ×Γ0

Γ1 ⇒ SΓ (where SΓ = {γ ∈ Γ1 s.t. d(γ) =
s(γ)} is the space of loops) has a canonical action of the group stack asso-
ciated to the 2-group [Z→ 1]. This action is given, for (γ, g) ∈ SΓ × Γ1 and
n ∈ Z by (γ, g) · n := (γ, γn · g). Hence it also inherits an action of the group
stack S1 ∼= [Z→ R] (induced by the canonical map R→ 0). One shall note
that this action is almost never represented by a strict action of the group
S1 on the inertia groupoid but really by an action of the 2-group [Z→ R].
Assume the inertia groupoid is a Lie groupoid — which is true if Γ is étale
and proper. It follows from [24, Theorem 0.2] that the quotient of the stack
represented by ΛΓ by the (group stack represented by) S1 ∼= [Z→ R] is a

3The inertia groupoid of a groupoid Γ1 ⇒ Γ0 is a groupoid representing the inertia
stack of the quotient stack [Γ0/Γ1]. See [7] for details on inertia groupoids and
stacks.
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differentiable stack and further a [Z→ R]-principal bundle. Indeed this quo-
tient stack can be presented by a Lie groupoid Γ̃ which is Morita equivalent

to the Lie 2-groupoid ˜̃Γ : SΓ ×Γ0
Γ1 × Z× R⇒ SΓ ×Γ0

Γ1 × R⇒ SΓ. The
horizontal multiplications are given by the product of the Lie (2-)groupoids
structures of Γ and [Z→ R] while vertical mutiplication is induced by the
action of Z on the inertia groupoid described above. The canonical pro-

jection ˜̃Γ→ [Z→ R] = Z× R⇒ R⇒ 1 gives right to the generalized mor-

phism B : Γ̃
∼←− ˜̃Γ→ [Z→ R] defining the bundle structure.

Remark 2.28. There is a nerve functor from Lie 2-groupoids to simplicial
spaces generalizing the nerve for Lie 1-groupoids. For instance, see [16, 51,
55] and Section 4.1 below. Composing it with the (fat) realization functor, we
obtain the classifying space functor Γ 7→ BΓ from Lie 2-groupoids to topo-
logical spaces. Since the realization of a Morita morphism (i.e. hypercover)

is a homotopy equivalence, a generalized morphism Γ
F
 ∆ induces a map

B Γ
BF−−→ B∆ in the homotopy category of topological spaces. In particular,

a [G→ H]-group bundle over a manifold induces a map M → B[G→ H] in
the homotopy category. This is the topological side of generalized morphisms
and 2-group bundles. In fact, using standard arguments on homotopy for
manifolds, it should be possible to prove that [G→ H]-group bundles over
Γ (up to Morita equivalences) are in bijection with homotopy classes of maps
B Γ→ B[G→ H].

3. Groupoid G-extensions

We fix a Lie group G. We recall the following definition (see [33])

Definition 3.1. A Lie groupoid G-extension is a short exact sequence of
Lie groupoids over the identity map on the unit space M

(6) 1→M ×G i−→ Γ̃
φ−→ Γ→ 1

Here both Γ and Γ̃ are Lie groupoids over M and M ×G⇒M is a (trivial)
bundle of groups.

The map φ being a map over the identity map on the unit space M
means that both Γ̃ and Γ have M for unit space and that the restriction of
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φ to M is the identity on M :

Γ̃

����

φ // Γ

����
M

id
//M.

In the sequel, an extension like (6) will be denoted Γ̃
φ−→ Γ⇒M and we

will write gm instead of i(m, g).
Lie groupoidG-extensions can be interpreted in terms of crossed modules

as follows.

Proposition 3.2. The morphism of groupoids Γ̃
φ−→ Γ⇒M is a groupoid

G-extension if, and only if, (M ×G i
↪−→ Γ̃) is a crossed module of groupoids

with quotient groupoid Γ̃/i(M ×G) isomorphic to Γ.

Proposition 3.2 follows easily from Remark 3.7 and Lemma 3.9 below.

Definition 3.3 ([33]). A Morita morphism between Lie groupoid G-exten-
sions is a homomorphism of Lie groupoid G-extensions

Γ̃

f
��

// Γ ////

f

��

M

f

��
∆̃ // ∆ // // N

such that M
f−→ N is a surjective submersion and

Γ

����

f // ∆

����
M

f // N

and

Γ̃

����

f // ∆̃

����
M

f // N

are Morita morphisms4 of 1-groupoids.

As in the Lie 2-groupoid case, the Morita morphisms of Lie groupoid
extensions form a left multiplicative system in the category of Lie groupoid
extensions and homomorphisms of Lie groupoid extensions. Hence, one can

4Weak equivalences in [44] and hypercovers in [59, 60].
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localize this category by its Morita morphisms. Two Lie groupoid extensions
are Morita equivalent if they are isomorphic in the localized category. (As in
the Lie 2-groupoids case, there is a notion of generalized morphisms for Lie
groupoid extensions. In that language, a Morita equivalence is an invertible
generalized morphism.)

Here is our first main theorem.

Theorem 3.4. There exists a bijection between the Morita equivalence
classes of Lie groupoid G-extensions and the Morita equivalence classes of
[G→ Aut(G)]-bundles over Lie groupoids.

Remark 3.5. The above theorem can be regarded as a geometric version
of a theorem of Breen [12], which states that H2(X, G) is isomorphic to
H1(X, (G→ Aut(G))).

The proof of Theorem 3.4 is the object of the next two sections.

3.1. From groupoid G-extensions to [G → Aut(G)]-bundles

Given a Lie groupoid G-extension Γ̃
φ // Γ

a //
b
//M , one can define a Lie

2-groupoid Γ̃×Γ Γ̃
l //
u

// Γ̃
s //
t
//M , where

Γ̃×Γ Γ̃ =
{

(γ̃1, γ̃2) ∈ Γ̃× Γ̃|φ(γ̃1) = φ(γ̃2)
}

l(γ̃1, γ̃2) = γ̃2 u(γ̃1, γ̃2) = γ̃1

s(γ̃) = a
(
φ(γ̃)

)
t(γ̃) = b

(
φ(γ̃)

)
(γ̃1, γ̃2) ? (γ̃2, γ̃3) = (γ̃1, γ̃3)

(γ̃1, γ̃2) ∗ (δ̃1, δ̃2) = (γ̃1 · δ̃1, γ̃2 · δ̃2).

Here · stands for the multiplication in Γ̃⇒M .
The groupoid homomorphism φ naturally induces a Morita morphism

(i.e. hypercover) of 2-groupoids:

(7)

Γ̃×Γ Γ̃

l
��

u
��

// Γ

id
��

id
��

Γ̃

s
��

t
��

φ // Γ

a
��

b
��

M
id //M
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where the 2-groupoid Γ
id //
id
// Γ

a //
b
//M is simply the 1-groupoid Γ

a //
b
//M

seen as a 2-groupoid in the trivial way.
Consider the map Γ̃→ Aut(G) : γ̃ 7→ Adγ̃ defined by

(
Adγ̃ g

)
t(γ̃)

= γ̃ ·
gs(γ̃) · γ̃−1. It gives a morphism of Lie groupoids

(8)

Γ̃
Ad//

����

Aut(G)

����
M // ∗

which, together with the map

Γ̃×Γ Γ̃→ Gn Aut(G) : (γ̃1, γ̃2) 7→ (g,Adγ̃2),

where γ̃1γ̃
−1
2 = gt(γ̃1), defines a homomorphism of Lie 2-groupoids

(9)

Γ̃×Γ Γ̃

����

// Gn Aut(G)

����
Γ̃

����

Ad // Aut(G)

����
M // ∗

Remark 3.6. Note that the induced map

Γ̃×Γ Γ̃

����

// Gn Aut(G)

����
Γ̃ // Aut(G)

is a fully faithful functor.

Remark 3.7. In terms of crossed modules, the above discussion goes as

follows. The extension 1→M ×G i−→ Γ̃
φ−→ Γ→ 1 leads to an action of Γ̃ on

the groupoid M ×G⇒M by conjugation, i.e. via the map γ̃ 7→ Adγ̃ . Then

Γ̃×Γ Γ̃
l //
u

// Γ̃
s //
t
//M is the Lie 2-groupoid corresponding to the crossed

module (M ×G i−→ Γ̃). The projection onto the first factor M ×G→M and



i
i

“6-394” — 2016/3/16 — 11:50 — page 1021 — #21 i
i

i
i

i
i

Principal 2-group bundles 1021

the morphism φ : Γ̃→ Γ induce the Morita equivalence of crossed modules
(M ×G→ Γ̃)→ (M → Γ) corresponding to the map (7). Moreover, the map

Ad : Γ̃→ Aut(G) yields the map of crossed modules
(
M ×G i−→ Γ̃

) (pr2,Ad)−−−−−→(
G→ Aut(G)

)
corresponding to the morphism of Lie 2-groupoids (9).

Proposition 3.8. 1) A Lie groupoid G-extension Γ̃→ Γ⇒M induces
a principal [G→ Aut(G)]-bundle over Γ⇒M , which can be described
explicitly by the following generalized morphism:

Γ

����

Γ̃×Γ Γ̃oo

����

// Gn Aut(G)

����
Γ

����

Γ̃oo

����

// Aut(G)

����
M Moo // ∗

2) If Γ̃→ Γ⇒M and ∆̃→ ∆⇒ N are Morita equivalent G-extensions,
then the corresponding 2-group bundles are Morita equivalent.

Proof. Claim 1) follows from the above discussion. Suppose given a Morita
morphism of G-extensions

Γ̃
f ��

// Γ ////

f ��

M
f ��

∆̃ // ∆ //// N.

Since f commutes with the Γ̃ and ∆̃-actions on G, there is a commutative
diagram

[M → Γ]

(f,f) ∼
��

[M ×G→ Γ̃]

(f×id,f) ∼
��

∼oo (pr2,Ad)// [G→ Aut(G)]

id

��
[N → ∆] [N ×G→ ∆̃]

∼oo
(pr2,Ad)

// [G→ Aut(G)]

,

where p2 denotes the canonical projection on the second component. Now,
Claim 2) follows from Example 2.14. �
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3.2. From [G → Aut(G)]-bundles to groupoid G-extensions

In this section, we show how to reverse the procedure. Starting from a [G→
Aut(G)]-bundle, we recover a groupoid G-extension.

For future reference, we state the following technical result without
proof.

Lemma 3.9. Let

∆2

����

φ2 // Γ2

����
∆1

����

φ1 // Γ1

����
∆0

φ0 // Γ0

be a hypercover of Lie 2-groupoids. And let

L

j
��

φ // K

i
��

∆1
φ1

// Γ1

be the induced map of crossed modules. Then φ maps j−1(1m) onto i−1(1φ(m))

bijectively (for every m ∈ ∆0) and induces a functor from the groupoid ∆1

j(L)

to the groupoid Γ1

i(K) , which is fully faithful and surjective on the objects.5

Now, given a [G→ Aut(G)]-bundle over a Lie groupoid Γ⇒ Γ0, we
proceed with the construction of a Lie groupoid G-extension. Suppose the
[G→ Aut(G)]-bundle is given by the generalized morphism of 2-groupoids

Γ

����

∆2
φ2oo

����

f2// Gn Aut(G)

����
Γ

����

∆1
φ1oo

����

f1 // Aut(G)

����
Γ0 ∆0

φ0oo f0 // ∗

5The crossed modules [1→ ∆1

j(L) ] and [1→ Γ1

i(K) ] are the ‘cokernels’ of the crossed

modules [L
j−→ ∆1] and [K

i−→ Γ1] respectively.
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and let

Γ0

i
��

L
φoo

j

��

f // G

Ad
��

Γ ∆1
φ1

oo
f1
// Aut(G)

be the induced generalized morphism of crossed modules. Hence

L = {α ∈ ∆2|u(α) = 1x for some x ∈ ∆0}

and j : L→ ∆1 is the restriction of the structure map l : ∆2 → ∆1 to L.

Since φ is a hypercover and Γ0
i−→ Γ is an injection, by Lemma 3.9, L

j−→ ∆1

is also injective and

∆1

j(L)

����

φ // Γ
i(Γ0)

����
∆0

φ
// Γ0

is a fully faithful functor. Since Γ
i(Γ0) is diffeomorphic to Γ, the groupoid

∆1

j(L) ⇒ ∆0 is the pullback of Γ⇒ Γ0 through the surjective submersion

∆0
φ−→ Γ0. Therefore ∆1

j(L) = ∆0 ×φ,Γ0,s Γ×t,Γ0,φ ∆0 is a smooth manifold.

Consider the groupoid structure on ∆1 ×G⇒ ∆0 with source s(δ, g) =
s(δ), target t(δ, g) = t(δ), mutliplication

(δ1, g1) · (δ2, g2) =
(
δ1δ2, f1(δ−1

2 )[g1] · g2

)
,

and inverse (δ, g)−1 =
(
δ−1, f1(δ)[g−1]

)
for all δ, δ1, δ2 ∈ ∆1 and g, g1, g2 ∈ G.

The map H : L→ ∆1 ×G defined by H(α) =
(
j(α), f(α−1)

)
is a mor-

phism of groupoids from L⇒ ∆0 to ∆1 ×G⇒ ∆0. One checks that

(δ, g) ·
(
j(α), f(α−1)

)
=
(
j(δ ∗ α ∗ δ−1), f(δ ∗ α ∗ δ−1)−1

)
· (δ, g)

=
(
δ · j(α), f(α−1) · g

)
,

for all δ ∈ ∆1, g ∈ G, and α ∈ L. Thus the image of L under H is a normal
subgroupoid of ∆1 ×G⇒ ∆0. Since j : L→ ∆1 is injective, the action of L
on ∆1 ×G by multiplication from the right

(δ, g) • α = (δ, g) ·
(
j(α), f(α−1)

)
=
(
δ · j(α), f(α−1) · g

)
is free and its orbit space (∆1 ×G)/H(L) is a smooth manifold.
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Now consider the groupoid G-extension ∆1 ×G→ ∆1 ⇒ ∆0. The mor-
phism of groupoids ∆1 ×G 3 (δ, g) 7→ δ ∈ ∆1 intertwines the right action
of L on ∆1 ×G with the right action δ • α = δ · j(α) of L on ∆1, whose
orbit space is the smooth manifold ∆1

j(L) . Therefore, passing to quotients, we
obtain the G-extension of groupoids

(∆1 ×G)/H(L)→ ∆1/j(L)⇒ ∆0.

Note that the corresponding crossed module is(
∆0 ×G→ (∆1 ×G)/H(L)

)
.

Proposition 3.10. 1) Every [G→ Aut(G)]-bundle over a Lie groupoid
Γ⇒ Γ0 induces a Lie groupoid G-extension.

2) Morita equivalent [G→ Aut(G)]-bundles induce Morita equivalent
extensions.

Proof. 1) As was outlined above, a bundle

[Γ0 → Γ]
φ←−∆

f−→ [G→ Aut(G)]

determines a G-extension

(∆1 ×G)/H(L)→ ∆1/j(L)⇒ ∆0,

where j : L→ ∆1 is the restriction of the structure map l : ∆2 → ∆1 to

L = {α ∈ ∆2|u(α) = 1x for some x ∈ ∆0}

and H : L→ ∆1 ×G is the morphism of groupoids from L⇒ ∆0 to ∆1 ×
G⇒ ∆0 defined by H(α) =

(
j(α), f(α−1)

)
.

2) It is sufficient to check that for any diagram

E
φ1

∼ww
ε

��

f1))

[Γ0 → Γ] [G
Ad−−→ Aut(G)]

F
φ2

∼gg
f2

55

commuting up to natural 2-equivalences, the G-extensions corresponding to
the lower and upper generalized morphisms are Morita equivalent. Since
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φ1, φ2 are Morita equivalences, ε is also a Morita equivalence. Therefore,
by Lemma 2.18, we can assume that ε is a hypercover. Then, denoting by
(K → E1) and (L→ F1) the crossed modules corresponding to E and F
respectively, the map ε induces a commutative diagram

(E1 ×G)/H(K)

(ε,id)

��

// E1/j(K) ////

ε

��

E0

ε

��
(F1 ×G)/H(L) // F1/j(L) //// F0

which is a Morita equivalence of extensions by Lemma 3.9. �

3.3. Proof of Theorem 3.4

It remains to prove that the constructions of Section 3.1 and Section 3.2 are
inverse of each other.

Suppose that a [G→ Aut(G)]-principal bundle B over Γ is given by the

generalized morphism Γ
φ←−∆

f−→ [G→ Aut(G)]. Let ∆1×G
H(L) →

∆1

j(L) ⇒ ∆0 be

the induced G-principal extension as in Proposition 3.10 1). The correspond-
ing crossed module is (∆0 ×G→ ∆1×G

H(L) ). We have the following commuta-
tive diagram of crossed modules:

(Γ0 → Γ) (L→ ∆1)
∼oo

��

// (G→ Aut(G))

(∆0 → ∆1

j(L))

∼

OO

(∆0 ×G→ ∆1×G
H(L) )∼

oo

55
,

where (L→ ∆1) is the crossed module corresponding to ∆. It follows that
the generalized morphism

[Γ0 → Γ]
∼←− [L→ ∆1]→ [G→ Aut(G)]

we started from is equivalent to the generalized morphism

[Γ0 → Γ]
∼←− [∆0 ×G→ ∆1×G

H(L) ]→ [G→ Aut(G)]

associated to the G-extension ∆1×G
H(L) →

∆1

j(L) ⇒ ∆0. Hence they represent the

same (G→ Aut(G))-bundle over Γ⇒ Γ0.
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Reciprocally, if Γ̃→ Γ⇒M is a G-extension, then the associated prin-
cipal [G→ Aut(G)]-bundle is given by the generalized morphism

(10) [M → Γ]
φ←− [M ×G→ Γ̃]

(pr2,Ad)−−−−−→ [G→ Aut(G)]

according to Remark 3.7. Direct inspection of the proof of Proposition 3.10
shows that the G-extension induced by the generalized morphism (10) is
exactly Γ̃→ Γ⇒M .

4. Universal characteristic maps and
Dixmier–Douady classes

4.1. Cohomology of Lie 2-groupoids

To each Lie 2-groupoid Γ2 ⇒ Γ1 ⇒ Γ0 is associated a simplicial manifold:
its (geometric) nerve N• Γ. It is the nerve of the underlying 2-category as
defined by Street [55]. In particular, N0 Γ = Γ0, N1 Γ = Γ1, N2 Γ is a sub-
manifold of Γ2 × Γ1 × Γ1 × Γ1 parameterizing the 2-arrows of Γ2 fitting in
a commutative triangle

(11)

A1

f0

  
α

��A0
f1

//

f2
>>

A2

and N3 Γ is a submanifold of (Γ2)4 × (Γ1)6 parameterizing the commutative
tetrahedra like

(12)

A3

A1

f02

OO

α2

W_

α3

��

f03

&&

α0
W_

A0
f13

//

f23 88

f12

EE

α1

RZ

A2

f01

YY

with faces given by elements of N2Γ. By the commutativity of the tetrahe-
dron (12), we mean that (α3 ∗ f01) ? α1 = (f23 ∗ α0) ? α2. For p ≥ 3, NpΓ is
the manifold of all p-simplices such that each subsimplex of dimension 3 is
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a tetrahedron of the form (12) above [22, 55]. The nerve of a Lie groupoid
considered as a Lie 2-groupoid is isomorphic to its usual (1-)nerve [51]. The
nerve N• defines a functor from the category of Lie 2-groupoids to the cat-
egory of simplicial manifolds. Taking the fat realization of the nerve defines
a functor from Lie 2-groupoids to topological spaces.

The de Rham cohomology groups of a Lie 2-groupoid Γ are defined
to be the total cohomology groups of the bicomplex (Ω•(N• Γ), dDR, ∂),
where dDR : Ωp(Nq Γ)→ Ωp+1(Nq Γ) is the de Rham differential and ∂ :
Ωp(Nq Γ)→ Ωp(Nq+1 Γ) is defined by ∂ = (−1)p

∑q+1
i=0 (−1)id∗i , where di :

Nq+1 Γ→ Nq Γ denotes the ith face map. We use the shorter notation Ω•tot(Γ)
for the associated total complex. Hence Ωn

tot(Γ) =
⊕

p+q=n Ωp(Nq Γ) with
(total) differential dDR + ∂. We denote the subspaces of cocycles and cobound-
aries by Z

•

DR(Γ) and B
•

DR(Γ) respectively, and the cohomology of Γ by
H•(Γ).

The following Lemma is folklore (see [20] for a more general statement
with respect to hypercovers).

Lemma 4.1. Let F : Γ→∆ be a hypercover of Lie 2-groupoids. Then F ∗ :
H•(∆)→ H•(Γ) is an isomorphism.

Proof. It is well-known that a natural transformation between two 2-functors
f and g from Γ to ∆ induces a simplicial homotopy between f∗ : N•(Γ)→
N•(∆) and g∗ : N•(Γ)→ N•(∆), for instance see [16, Proposition 4]. In
particular equivalent (topological) 2-categories have homotopic nerves. The
result follows for a hypercover with a section. Since local sections always
exist, the general case reduces to a hypercover Γ[

∐
Ui]→ Γ induced by

pullback along the canonical map
∐
Ui → Γ where (Ui) is a cover of Γ0.

The result follows from a classical Mayer-Vietoris argument as in [10]. �

By Lemma 4.1 above, a generalized morphism F : Γ
φ1←−
∼

E1
f1−→ · · · φn←−

∼

En
fn−→∆ induces a pullback map in cohomology

F ∗ : H•(∆)
f∗n−→ H•(En)

(φ∗n)−1

−−−−→ · · · f
∗
1−→ H•(E1)

(φ∗1)−1

−−−−→ H•(Γ)

Clearly, (F ◦G)∗ = G∗ ◦ F ∗ and, if F is a Morita equivalence, then F ∗ is an
isomorphism.

Lemma 4.2. If F and G are equivalent generalized morphisms from Γ to
∆, the maps F ∗ and G∗, which they induce at the cohomology level, are
equal.
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Proof. A natural transformation between two 2-functors f and g from Γ
to ∆ induces a simplicial homotopy between f∗ : N•(Γ)→ N•(∆) and g∗ :
N•(Γ)→ N•(∆) (see [16]). Therefore the lemma follows from the definition
of equivalence of generalized morphisms and Lemma 4.1. �

Remark 4.3. Note that, for a Lie 2-groupoid Γ : Γ2
l //
u
// Γ1

s //
t
// Γ0 ,

N2 Γ may be identified to Γ2 ×s,Γ0,t Γ1 so that the face maps take the form

d0 : N2 Γ→ N1 Γ : (α, c) 7→ u(α)

d1 : N2 Γ→ N1 Γ : (α, c) 7→ l(α) · c
d2 : N2 Γ→ N1 Γ : (α, c) 7→ c

More precisely,

A2 A1

u(α)

��

l(α)

XX A0
cooα

��

∈ Γ2 ×s,Γ0,t Γ1

is identified to

A1

u(α)

~~
α∗c

��A2 A0
l(α)∗c

oo

c
``

∈ N2 Γ .

Remark 4.4. The singular cohomology H•sing(Γ, R) of Γ with coefficients in
a ring R is defined similarly to the de Rham cohomology. More precisely it is
the cohomology of (C•sing(N• Γ), dsing + ∂) where (C•sing(X,R), dsing) denotes
the singular cochain complex of a space X with coefficients in R. As for
manifolds, for R = R, one has a natural isomorphism H•sing(Γ,R) ∼= H•(Γ).

4.2. Cohomology characteristic map for 2-group bundles

Fix a crossed module G→ H and let B be a principal [G→ H]-bundle over
Γ. In this section we construct a universal characteristic homomorphism
CCB : H•([G→ H])→ H•(Γ) generalizing the usual characteristic classes
of a principal bundle.
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By definition, B is a generalized morphism Γ [G→ H]. Therefore,
passing to cohomology, we obtain the homomorphism

(13) CCB : H•([G→ H])
B∗−−→ H•(Γ)

which we call the characteristic homomorphism of the [G→ H]-bundle B.
It depends only on the isomorphism class of the 2-group bundle.

Proposition 4.5. If B and B′ are isomorphic [G→ H]-bundles over Γ,
then CCB = CCB′ : H•([G→ H])→ H•(Γ).

Proof. It is an immediate consequence of Lemma 4.1 since isomorphic prin-
cipal 2-group bundles are equivalent as generalized morphisms. �

Remark 4.6. By analogy with the case of principal bundles, one can think
of the elements of H•([G→ H]) as universal characteristic classes and their
images in H•(Γ) by CCB as characteristic classes of the [G→ H]-bundle
over Γ.

For instance, it is proved [25, Proposition 6.3] that the characteristic
classes associated to the string 2-group associated to a compact simple Lie
group coincide with the usual ones modulo the Pontryagin class.

Example 4.7. Let P
π−→M be a principal H-bundle. Then, by Exam-

ple 2.23, P induces a structure of [1→ H]-bundle over M . Since H•([1→
H]) ∼= H•(BH), the characteristic map CCP of this bundle coincides with
the classical map H•(BH)→ H•(M) induced by the principal H-bundle
structure on P . In particular, for a compact Lie group H, the characteristic
map coincides with the Chern-Weil map S(h∗)h → H•(M) induced by the
choice of a connection on P .

Example 4.8. From Example 2.27, we know that the inertia groupoid
of a Lie groupoid Γ gives rise to a principal [Z→ R]-bundle. In that case
H•([Z→ R]) ∼= H•(BS1) ∼= R[x] where x is a generator of degree 2. In par-
ticular, we get a characteristic class CCΓ(x) ∈ H2([ΛΓ/S1]) = H2

S1(ΛΓ)
(see [24] for equivariant cohomology of stacks). For instance if Γ is the
groupoid G⇒ 1 with G a simply connected compact Lie group, then its
inertia groupoid is the transformation Lie groupoid G×G⇒ G with G act-
ing on itself by the adjoint action. From the Gysin sequence in equivariant
homology of stacks [24, §8] and the fact that the homology H•(G×G⇒ G)
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is trivial in degrees 1 and 2, we see that CCG×G⇒G(x) is an integral6 gen-
erator of H2([ΛΓ/S1]).

Let Γ
F
 ∆ be a generalized morphism of Lie (1-)groupoids and let B :

∆
φ←−
∼

E
f−→ [G→ H] be a 2-group bundle with base ∆. The pullback F ∗(B)

of the [G→ H]-bundle B from ∆ to Γ by F is the composition B ◦ F of
the two generalized morphisms. It is a principal [G→ H]-bundle over Γ.

The Whitney sum of two 2-group bundles is defined as follows. Let B :

Γ
φ←−
∼

E
f−→ [G→ H] and B′ : Γ

φ′←−
∼

E′
f ′−→ [G′ → H ′] be two 2-group bundles

over the same base Γ. Let F be the “fiber product” 2-groupoid E2 ×Γ2

E′2 ⇒ E1 ×Γ1
E′1 ⇒ E0 ×Γ0

E′0 with the obvious structure maps: s(e, e′) =
(s(e), s(e′)), (x, x′) ∗ (y, y′) = (x ∗ x′, y ∗ y′), etc. The Whitney sum B⊕B′

is the [G×G′ → H ×H ′]-bundle over Γ given by the generalized morphism

Γ
φ=φ′←−−−
∼

F
f×f ′−−−→ [G×G′ → H ×H ′].

By Proposition 4.5, we obtain

Corollary 4.9. 1) CCF ∗(B) = F ∗ ◦CCB.

2) CCB⊕B′ = ∆∗ ◦
(
CCB ×CCB′

)
, where ∆ : Γ→ Γ×Γ is the diag-

onal map and × is the cross-product H•([G→ H])⊗H•([G′ → H ′]) ∼=
H•([G×G′ → H ×H ′]).

Remark 4.10. The result of this section easily extends to singular coho-
mology with any coefficient (see Remark 4.4). In particular the characteristic
map

CCB : H•sing([G→ H],Z)
B∗−−→ H•(Γ,Z)

is defined in cohomology with integer coefficients.

Remark 4.11. By Proposition 3.8, a Lie groupoid G-extension Γ̃
φ−→ Γ⇒

M induces a principal [G→ Aut(G)]-bundle Bφ over the groupoid Γ⇒

M . Hence we obtain the universal characteristic map CCBφ
: H•([G

Ad−−→
Aut(G)])→ H•(Γ). Unfortunately, the cohomology H•([G

Ad−−→ Aut(G)]) is
not known when the center of G is large and it is trivial when the center
of G is of dimension less than three [25]. Therefore one cannot have much
hope of getting interesting characteristic classes except for extensions whose
structure 2-group can be reduced. Indeed, this is the object of the next
section.

6More precisely, it is the image of a generator of the cohomology with integer
coefficients. See Remark 4.10.
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4.3. DD classes for groupoid central G-extensions

Let Γ̃
φ−→ Γ⇒M be a G-extension of Lie groupoids. Let φ′ denote the fac-

torization of the morphism φ through the projection q : Γ̃→ Γ̃/Z(G):

Γ̃
φ //

q
��

Γ

Γ̃/Z(G)

φ′

<<

The extension φ is said to be central [33] if there exists a section σ : Γ→
Γ̃/Z(G) of φ′ such that

(14) xg = gx ∀x ∈ q−1
(
σ(Γ)

)
, ∀g ∈ G

In this case, the subspace Γ̃′ = q−1
(
σ(Γ)

)
of Γ̃ is a central Z(G)-extension

of Γ⇒M .

Remark 4.12. The definition of a central G-gerbe here is taken from [33].
According to loc. cit, it agrees with the one of a G-gerbe with trivial band.

Given γ ∈ Γ̃, there exists x ∈ Γ̃′ such that φ(x) = φ(γ). Thus there exists
k ∈ G such that γ = x · k. Given γ, both x and k are uniquely determined
up to an element of Z(G). Defining a homomorphism of Lie groupoids r :
Γ̃→ G/Z(G) by the relation q(γ) = σ(φ(γ))r(γ), we obtain that, for any
g ∈ G,

gγ = gxk = xgk = xk · k−1gk = γgr(γ)

where gr(γ) denotes the conjugate k−1gk of g by any element k ∈ G such
that kZ(G) = r(γ).

Proposition 4.13. Let Γ̃
φ−→ Γ⇒M be a G-extension of a Lie groupoid

Γ and let B denote the corresponding [G→ Aut(G)]-bundle. The extension
is central if, and only if, the [G→ Aut(G)]-bundle B reduces to a princi-
pal [Z(G)→ 1]-bundle, i.e. there exists a generalized morphism ZB : [M →
Γ]→ [Z(G)→ 1] such that

[M → Γ]
B //

ZB ''

[G→ Aut(G)]

[Z(G)→ 1]
?�

OO

is commutative up to equivalence.



i
i

“6-394” — 2016/3/16 — 11:50 — page 1032 — #32 i
i

i
i

i
i

1032 G. Ginot and M. Stiénon

In particular, being central is invariant under Morita equivalences of Lie
groupoids extension.

Proof. Let Γ̃
φ−→ Γ⇒M be a central G-extension. The corresponding 2-

group bundle B is the generalized morphism [M → Γ]←− [M ×G i−→ Γ̃] −→
[G

Ad−−→ Aut(G)], see Proposition 3.8 and Remark 3.7. Let τ : Γ̃′ → Γ̃ be
the inclusion map. The Z(G)-extension defines the crossed module [M ×
Z(G)

i′−→ Γ̃′] and we have a commutative diagram

(15)

[M → Γ] [M ×G i−→ Γ̃]oo // [G
Ad−−→ Aut(G)]

[M × Z(G)
i′−→ Γ̃′]

gg

τ

OO

// [Z(G)→ 1]
?�

OO

Note that the right square in (15) is commutative because the extension is
central. Diagram (15) implies that the 2-group bundle B reduces.

Reciprocally, assume B reduces. By Proposition 3.10 2), passing to a
Morita equivalent groupoid, we can assume that the G-extension is the

extension corresponding to the generalized morphism [M → Γ]
ZB
 [Z(G)→

1] ↪→ [G→ Aut(G)]. If ZB is the generalized morphism [M → Γ]←− [M ×
L→ ∆] −→ [Z(G)→ 1], the associated extension is, according to Section 3.2,
Γ̃→ Γ⇒M , where Γ̃ =

(
∆×L Z(G)

)
×Z(G) G. Since the composition ∆→

1→ Aut(G) is trivial, Adγ̃ is trivial for all γ̃ ∈ Γ̃. Therefore, the extension
is central. �

Remark 4.14. If G is a Lie group whose Lie algebra g is reductive, its Lie
algebra decomposes as a direct sum g ∼= Z(g)⊕m of ideals, where Z(g) is the
center of g. In the sequel, the symbol pr will denote the induced projection
g→ Z(g), which is a homomorphism of Lie algebras and maps [g, g] onto
0. Moreover, if G is connected, this direct sum decomposition is not only
adZ(g)-invariant but also AdG-invariant and, consequently, pr ◦Adg = pr for
all g ∈ G. Moreover, for any g ∈ G and any smooth path t 7→ ft in G with
f0 = 1 and d

dtft
∣∣
0

= ξ ∈ g, one has

(16) pr
(
d
dtf
−1
t gftg

−1
∣∣
0

)
= pr(Adg ξ − ξ) = pr(ξ)− pr(ξ) = 0
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Proposition 4.15. Let Γ̃
φ−→ Γ⇒M be a central G-extension with G con-

nected and whose Lie algebra is reductive.7 Let α ∈ Ω1(Γ̃; g) be a connection

1-form for the right principal G-bundle Γ̃
φ−→ Γ.

1) Then there exists Ωα ∈ Z3
DR(Γ•;Z(g)) such that pr

(
dα+ ∂α

)
=φ∗(Ωα).

2) Moreover, if α1 and α2 are two different connection 1-forms, then
Ωα1
− Ωα2

∈ B3
DR(Γ•;Z(g)).

We call DD(α) := [Ωα] ∈ H3(Γ)⊗ Z(g) the Dixmier–Douady class of the
G-central extension.

Proof. 1) Being a connection 1-form, α ∈ Ω1(Γ̃; g) enjoys the following two
properties:

R∗gα = Adg−1 ◦α, ∀g ∈ G
α(ξ̂x) = ξ, ∀x ∈M,∀ξ ∈ g

Given any ξ ∈ g and any G-invariant vector field v ∈ X(Γ̃), we get

dα(ξ̂, v) = ξ̂
(
α(v)

)
− v
(
α(ξ̂)

)
− α

(
[ξ̂, v]

)
= ξ̂
(
α(v)

)
− v(ξ)− α(Lξ̂v)

= Lξ̂
(
α(v)

)
= − adξ

(
α(v)

)
since the vector field v is G-invariant and the function α(v) is G-equivariant.
It follows that pr ◦dα(ξ̂, v) = pr[α(v), ξ] = 0 since pr[g, g] = 0. Moreover, we
have

R∗g(dα) = d(R∗gα) = d(Adg−1 ◦α) = Adg−1 ◦dα

for all g ∈ G. Therefore, by Remark 4.14, the 2-form pr ◦dα ∈ Ω2(Γ̃, Z(g))
is basic; there exists ω ∈ Ω2(Γ, Z(g)) such that pr ◦dα = φ∗ω.

Consider

Γ̃2 = Γ̃×s,Γ,t Γ̃ =
{

(x, y) ∈ Γ̃× Γ̃|s(x) = t(y)
}
,

the three face maps

p1(x, y) = x m(x, y) = x · y p2(x, y) = y

7Such Lie groups are called reductive, though this terminology sometimes applies
only to algebraic groups. Examples of Lie groups with reductive Lie algebras include
GLn(R) and all compact Lie groups.
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from Γ̃2 to Γ̃ and the action of G×G on Γ̃2 given by

(x, y)(g,h) = (xgs(x), yhs(y)).

Then we have

pr ◦∂α = ∂(pr ◦α) = p∗2(pr ◦α)−m∗(pr ◦α) + p∗1(pr ◦α).

From pr ◦Adg = pr and R∗gα = Adg−1 α, it follows that R∗g(pr ◦α) = pr ◦α.
This, together with the relations p2 ◦R(g,h) = Rh ◦ p2 and p1 ◦R(g,h) = Rg ◦
p1 implies that p∗2(pr ◦α) and p∗1(pr ◦α) are invariant under the G×G-action
Γ̃2. Given a smooth path t 7→

(
xt, yt

)
in Γ̃2, one also gets

R∗(g,h)m
∗(pr ◦α)

(
d
dt

(
xt, yt

)∣∣
0

)
= (pr ◦α)

(
d
dtxtgyth

∣∣
0

)
= (pr ◦α)

(
d
dtxtytg

r(yt)h
∣∣
0

)
= (pr ◦α)

(
d
dtxtytg

r(y0)h
∣∣
0

)
+ (pr ◦α)

(
d
dtx0y0g

r(yt)h
∣∣
0

)
While the first term of the r.h.s. is equal to m∗(pr ◦α)

(
d
dt

(
xt, yt

)∣∣
0

)
since

(pr ◦α) is G-invariant, the second term vanishes. Indeed, using α(ξ̂) = ξ,
R∗hα = Adh−1 ◦α and pr ◦Adg = pr, we obtain that

(pr ◦α)
(
d
dtx0y0g

r(yt)h
∣∣
0

)
= pr

(
d
dtg

r(yt)(gr(y0))−1
∣∣
0

)
= pr

(
d
dt

(
gr(y0)

)r(y0)−1r(yt)
(gr(y0))−1

∣∣
0

)
and the claim follows from (16). Hence R∗(g,h)m

∗(pr ◦α) = m∗(pr ◦α). There-

fore, pr ◦∂α is (G×G)-invariant.
One also has

pr ◦∂α
(
d
dt(xe

tξ, yetη)
∣∣
0

)
= pr

(
α
(
d
dtye

tη
∣∣
0

)
− α

(
d
dtxe

tξyetη
∣∣
0

)
+ α

(
d
dtxe

tξ
∣∣
0

))
= pr

(
η − α

(
d
dtxye

tAd−1
r(y) ξetη

∣∣
0

)
+ ξ
)

= pr(η −Ad−1
r(y) ξ − η + ξ)

= pr(ξ)− pr(Ad−1
r(y) ξ)

= 0.



i
i

“6-394” — 2016/3/16 — 11:50 — page 1035 — #35 i
i

i
i

i
i

Principal 2-group bundles 1035

Hence the 1-form pr ◦∂α ∈ Ω1
(
Γ̃2, Z(g)

)
is basic with respect to the principal

(G×G)-bundle Γ̃2 → Γ2.

2) Clearly, one has iξ̂(α1 − α2) = 0 and R∗g
(

pr ◦(α1 − α2)
)

= pr ◦(α1 −
α2). Thus pr ◦(α1 − α2) = φ∗A, where A ∈ Ω1

(
Γ;Z(g)

)
. It follows that

φ∗(Ωα1
− Ωα2

) = pr
(
d(α1 − α2) + ∂(α1 − α2)

)
= d(φ∗A) + ∂(φ∗A) = φ∗(dA+ ∂A)

and Ωα1
− Ωα2

= dA+ ∂A ∈ B3
(
Γ•;Z(g)

)
. �

Remark 4.16. The Dixmier–Douady class DD(α) of a central G-extension
identifies with a linear map Z(g)∗ → H3(Γ) by composition with the canon-
ical biduality homomorphism Z(g)→ Z(g)∗∗.

Remark 4.17. When the group G is abelian, then Γ̃/Z(G) = Γ, Γ̃′ = Γ̃

and the projection map g
pr−→ Z(g) = g is the identity. In particular, when

G = S1, the Dixmier–Douady class given by Proposition 4.15 coincides with
the Dixmier–Douady class defined in [8].

4.4. Main theorem

Let Γ̃→ Γ⇒M be a central G-extension of Lie groupoids.
According to Proposition 4.13, we obtain a universal characteristic map

CCΦ : H3([Z(G)→ 1])→ H3(Γ). According to [25], H3([Z(G)→ 1]) is iso-
morphic to Z(g)∗ if G is compact. Thus we obtain a map CCΦ : Z(g)∗ →
H3(Γ) which, by duality, defines the universal characteristic class CCΦ ∈
H3(Γ)⊗ Z(g).

Our main theorem is

Theorem 4.18. Let G be a compact connected Lie group. For any central
G-extension of Lie groupoids Γ̃→ Γ⇒M , the universal characteristic class
coincides with the Dixmier–Douady class.

Remark 4.19. The theorem above may be considered as a higher analogue
of Chern–Weil theory where the characteristic classes of a principal bundle
can be expressed by geometric data such as connection and curvature. In
particular when G is S1, Theorem 4.18 is a higher analogue of the following
well known fact: the Chern class of an S1-bundle can be computed from its
curvature. The latter played an important role in geometric quantization of
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symplectic manifolds. We refer the interested reader to [57] for prequantiza-
tion of symplectic groupoids, which may be interpreted as a construction of
a central S1-extension whose Dixmier–Douady class is the prescribed sym-
plectic form.

As a corollary we obtain

Corollary 4.20. Let G be a compact connected Lie group. The Dixmier–
Douady class of any central G-extension of Lie groupoids is an integral class.

Proof. The singular cohomology with integer coefficients H•(Γ;Z) of a 2-
groupoid Γ is defined as for de Rham cohomology, substituting the singular
cochain complex to the de Rham forms in the constructions of Section 4.1,
see Remark 4.4. Therefore, given any principal [Z(G)→ 1]-bundle B over Γ,
we can construct an integer valued universal characteristic homomorphism
CCB : H•([Z(G)→ 1],Z)→ H•(Γ,Z) as in Section 4.2, see Remark 4.10.
According to the computations in [25], the image of H3([Z(G)→ 1],Z)
under the canonical morphism H3([Z(G)→ 1],Z)→ H3([Z(G)→ 1]) is the
lattice in Z(g)∗ generated by the fundamental classes of each circle compo-
nent of Z(G) ∼= S1 × · · · × S1. Now the result follows from Theorem 4.18.

�

4.5. The case of central S1-extensions

In this section, we establish Theorem 4.18 in the case G = S1.

Assume Γ̃
φ−→ Γ⇒M is a central S1-extension. We consider the following

four 2-groupoids:

A : Γ⇒ Γ⇒M B : Γ̃×Γ Γ̃⇒ Γ̃⇒M

C : Z(G)⇒ ∗⇒ ∗ D : Γ̃⇒ Γ̃⇒M

The central extension φ determines the (generalized) morphisms

D
φ // A and A B

φ

∼
oo f // C

At the nerve level, we get

N2(D)

dD2
��

dD1
��

dD0
��

φ // N2(A)

dA2
��

dA1
��

dA0
��

N2(B)

dB2
��

dB1
��

dB0
��

φoo f // N2(C)

dC2

��
dC1

��
dC0

��
Γ̃

φ // Γ Γ̃
φoo f // ∗
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where, according to Remark 4.3,

N2(A) = Γ×t,Γ0,s Γ, N2(C) = Z(G), N2(D) = Γ̃×t,Γ0,s Γ̃,

N2(B) =
{

(a, b, c) ∈ Γ̃3|φ(a) = φ(b) and s(a) = s(b) = t(c)
}

φ : N2(B)→ N2(A) : (a, b, c) 7→
(
φ(a), φ(c)

)
f : N2(B)→ N2(C) : (a, b, c) 7→ ab−1

and the face maps are given by

dA0 (a, c) = a dA1 (a, c) = ac dA2 (a, c) = c

dB0 (a, b, c) = a dB1 (a, b, c) = bc dB2 (a, b, c) = c

dD0 (a, c) = a dD1 (a, c) = ac dB2 (a, c) = c

We will need one more map:

p13 : N2(B)→ N2(D) : (a, b, c) 7→ (a, c)

Lemma 4.21. One has

dB0 = dD0 ◦ p13, dB2 = dD2 ◦ p13,(17)

and dD1 ◦ p13(a, b, c) = f(a, b, c) · dB1 (a, b, c), ∀(a, b, c) ∈ N2(B).(18)

Lemma 4.22. For any pseudo-connection θ ∈ Ω(Γ̃) on the central S1-

extension Γ̃
φ−→ Γ⇒ Γ0, one has

∂Bθ + f∗(dt) = p∗13(∂Dθ)

Here dt denotes the Maurer-Cartan (or angular) form on S1.

Proof. Since θ
(
d
dt γ̃ · e

it
∣∣
0

)
= 1 and θ is S1-invariant, it follows from (18) that

(19) (dD1 ◦ p13)∗θ = (dB1 )∗θ + f∗dt

Therefore,

∂Bθ − p∗13(∂Dθ) =(dB1 )∗θ − p∗13(dD1 )∗θ by (17),

=− f∗dt by (19).
�

According to Proposition 4.15, the connection θ induces a cocycle Ωθ ∈
Z3

DR(A).
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Theorem 4.23. φ∗[Ωθ] = f∗[dt] in H3(B)

Proof. By construction, the cocycle Ωθ is the sum Ωθ = η + ω, where φ∗(η) =
∂Dθ and φ∗(ω) = dDRθ.

∂Bθ + dθ = p∗13(∂Dθ)− f∗(dt) + dθ by Lemma 4.22

= p∗13(φ∗η)− f∗(dt) + φ∗ω

= φ∗(η + ω)− f∗(dt)
�

Now, Theorem 4.18 in the case G = S1 follows from Theorem 4.23 since
CCφ =

(
φ∗
)−1

(f∗(dt)) and DD(φ) = [Ωθ] (by Proposition 4.15).

4.6. Proof of Theorem 4.18

By [33] (see also Section 4.3), the central G-extension of Lie groupoids
Γ̃→ Γ⇒M induces a central Z(G)-extension Γ̃′ → Γ⇒M , where Γ̃′ =

q−1(σ(Γ)). We recover Γ̃ from Γ̃′ by the formula Γ̃ ∼= Γ̃′×G
Z(G) , where the Z(G)-

action on Γ̃′ ×G is given by (x, g) · z = (x · z−1, z · g) for x ∈ Γ̃′, g ∈ G and
z ∈ Z(G). The natural inclusion τ : Γ̃′ → Γ̃ coincides with the map x 7→
[x, 1G] ∈ Γ̃′×G

Z(G) . Since G is compact, Z(g) is reductive and we have the Lie

algebra morphism pr : g→ Z(g).

Lemma 4.24. Let α ∈ Ω1(Γ̃, g) be a connection 1-form on the right prin-
cipal G-bundle Γ̃→ Γ. Then α′ := pr(τ∗(α)) ∈ Ω1(Γ̃′, Z(g)) is a connection
1-form for the right principal Z(G)-bundle Γ̃′ → Γ.

Proof. Since the inclusion τ : Γ̃′ ↪→ Γ̃ is Z(G)-equivariant, we have

α′(η̂x) = pr ◦α ◦ τ∗(η̂x) = pr ◦α ◦ (η̂τ(x)) = pr(η) = η

for all η ∈ Z(g) and x ∈ Γ̃′. Similarly, for any h ∈ Z(G), we have

R∗h(α′) = R∗h(pr(τ∗(α))) = pr τ∗R∗hα = pr τ∗Adh−1α = α′. �

Since Γ̃′ → Γ⇒M is a Z(G)-central extension, by Lemma 4.24 and
Proposition 4.15, we have the Dixmier–Douady class DD(α′) ∈ H3(Γ)⊗
Z(g).

Proposition 4.25. We have DD(α′) = DD(α).
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Proof. By Lemma 4.24 and Proposition 4.15.(b), we can use the 1-form α′

to calculate the Dixmier–Douady class of Γ̃′ → Γ⇒M . By construction we
have a commutative diagram of groupoid morphisms

Γ̃′

φ′

��
τ
��

Γ̃
φ // Γ.

According to Proposition 4.15.(a), the Dixmier–Douady class DD(α) is
the cohomology class of the cocycle [Ωα] defined by the identity

(20) pr
(
dα+ ∂α

)
= φ∗(Ωα).

Applying τ∗ to Equation (20), we get

τ∗ pr
(
dα+ ∂α

)
= τ∗φ∗(Ωα)

pr
(
d+ ∂

)
τ∗α = φ′

∗
(Ωα)(

d+ ∂
)

pr τ∗α = φ′
∗
(Ωα).

Therefore, by Proposition 4.15, DD(α′) = [Ωα] = DD(α). �

Since G is compact its center is the quotient (Z0(G)× C)/N , where
Z0(G) is the connected component of 1G in Z(G) and C, N are finite. We fix
an isomorphism of Lie groups Z0(G) ∼= S1 × · · · × S1 (with n-factors). We
thus obtain isomorphisms Z(g) ∼= Re1 ⊕ · · · ⊕ Ren and H3([Z(G)→ 1]) ∼=
Rdt1 ⊕ · · · ⊕ Rdtn. Let pri : Z(g)→ Rei (i = 1, . . . , n) be the natural pro-
jection.

Lemma 4.26. We have pri
(
CCΦ

)
= CCΦ(dti) in H3(Γ).

Proof. Let (ξ1, . . . , ξn) be the dual basis of (e1, . . . , en) in Z(g)∗. According
to [25], the generator dti is the left invariant vector field ξLi ∈ Ω1(Z(G)) ⊂
Ω3([Z(G)→ 1]) associated to ξi. The Lemma follows. �

Proposition 4.27. We have CCΦ = DD(α′)

Proof. By linearity and Lemma 4.24, it is sufficient to prove that for all
i = 1, . . . , n, one has

(21) pri
(
DD(θ)

)
= pri

(
CCΦ

)
= CCΦ(dti) (by Lemma 4.26).

The proof of Equation (21) is similar to that of Theorem 4.23. �
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Proof of Theorem 4.18. By Proposition 4.25 and Proposition 4.27 we obtain

CCΦ = DD(α′) = DD(α)

and Theorem 4.18 follows. �

Example 4.28. Let G be a simple compact Lie group and let LG denote its
loop group. Suppose that the Lie algebra g of G is endowed with m invariant
non-degenerate bilinear symmetric forms 〈−,−〉i (i = 1, . . . ,m) and assume
that the Lie algebra 2-cocycle β ∈ Λ2(Lg∗)⊗ Rm defined by

β(X,Y ) =

(
1

2π

∫ 2π

0
〈X(s), Y ′(s)〉1 ds, . . . ,

1

2π

∫ 2π

0
〈X(s), Y ′(s)〉m ds

)
is integral on every factor (i.e. the associated closed 2-form is). It thus gives
rise to a central extension

Tm → L̃G→ LG

of the loop group by a torus Tm of dimension m. The extension being central,
the adjoint action of L̃G on its Lie algebra L̃g = Lg⊕ Rm descends to an
action on Lg (which is compatible with the adjoint action of LG on Lg).
Hence we have a central Tm-extension

(22)
(
L̃G× Lg⇒ Lg

)
−→

(
LG× Lg⇒ Lg

)
of the associated transformation Lie groupoids. Since

(
LG× Lg⇒ Lg

)
is

Morita equivalent8 to the transformation groupoid G×G⇒ G (where G
acts on itself by conjugation), the extension (22) defines a central Tm-gerbe
on G×G⇒ G.

We compute the universal characteristic class of this central gerbe using
the Dixmier–Douady class as follows. Note that the coadjoint action of L̃G
on L̃g

∗
also restricts to Lg∗ (identified with the affine hyperplane {(x, 1, . . . ,

1) s.t. x ∈ Lg}). Let α = α1 ⊕ · · · ⊕ αm ∈ Ω1(L̃G× Lg)⊗ Rm be the direct
sum of the dual (using on each coordinate of Rm the identification of Lg
with Lg∗ given by the form 〈 , 〉i ) of the restriction of the Liouville 1-form on

L̃G× L̃g
∗

to Ω1(L̃G× Lg∗). By Proposition 4.15 and Lemma 4.26, we obtain
that the Dixmier–Douady class of the gerbe is a sum DD(α) = [Ωα1

]⊕ · · · ⊕

8The equivalence is induced by the projection (ev0,Hol), where ev0 is the eval-
uation map which takes a loop in G to its value at 0 and Hol : Lg→ G is the
holonomy.
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[Ωαm ]. By computation (see [9, Proposition 3.2]), we see that each class
[Ωαi ] is equal in H3(G×G⇒ G) to the class of [bi + λi] where λi is the
bi-invariant 3-form coresponding to 1

12〈−, [−,−]〉i ∈ Λ3g∗ and

bi = −1

2
[〈Adx g

∗(θMC), g∗(θMC)〉i + 〈g∗(θMC), x∗(θMC + θrMC)〉i]

∈ Ω2(G×G) ⊂ Ω3(G×G⇒ G),

where θMC and θrMC are respectively the left and right Maurer-Cartan forms
and (g, x) denotes the coordinates on G×G.

Since G is a simple compact group, each 〈−,−〉i is an integer multiple

〈−,−〉i = ai〈−,−〉bas

of the basic form of G. Hence [bi + λi] = ai[bbas + λbas] (where bbas, λbas are
defined as above). Further, [bbas + λbas] is precisely an integral generator of
H3(G×G⇒ G).

It follows that the characteristic class of the gerbe is

DD(α) = a1 ⊕ · · · ⊕ am ∈ Rm.
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Grothendieck Festschrift, Vol. I, Progr. Math., Vol. 86, Birkhäuser
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