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Deforming symplectomorphism of certain
irreducible Hermitian symmetric spaces of
compact type by mean curvature flow

GUANGCUN LU AND BANG XI1AO

In this paper, we generalize Medos-Wang’s arguments and results
on the mean curvature flow deformations of symplectomorphisms
of CP" in [MeWa] to complex Grassmann manifold G(n,n + m; C)
and compact totally geodesic Kahler-Einstein submanifolds of it.
We also give an abstract result and discuss the case of complex

tori.
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1. Introduction

A symplectic manifold (M, w) is said to be K&hler if there exists an integrable
almost complex structure J on M such that the bilinear form g(X,Y) =
(X,Y) :=w(X,JY) defines a Riemannian metric on M. The triple (w, J, g)
is called a Kéahler structure on M, g and w are called a Kéhler metric and a
Kahler form, respectively. Such a Kéhler manifold is called a Kdhler-Einstein
manifold if the Ricci form p,, = pg of g satisfies p,, = cw for some constant ¢ €
R. For a Kéhler manifold (M, J, g,w) let Symp(M,w) and Aut(M, J) denote
the group of symplectomorphisms of the symplectic manifold (M,w) and
the group of biholomorphisms of the complex manifold (M, J), respectively.
Their intersection is equal to the group of isometries of the Kéhler manifold
(M, J,g,w), (M, J,g) :={¢ € Aut(M, J) | ¢"g = g}.

Assume that M is closed (i.e. compact and without boundary). It is
well-known that Symp(M,w) is an infinite dimensional Lie group whose Lie
algebra is the space of symplectic vector fields. A lot of symplectic topol-
ogy information of (M, w) is contained in Symp(M,w). (See beautiful books
[Banl, HoZel McSal, [Po] for detailed study). On the other hand I(M, J, g) is
a finite dimensional Lie subgroup of Symp(M,w). Hence in order to under-
stand topology of Symp(M,w), e.g. its homotopy groups, it is helpful to
study the topology properties of the inclusion I(M, J, g) < Symp(M,w). Let
ggé) and wgg denote, up to multiplying a positive number, the Fubini-Study
metric and the associated Kéhler form on the complex projective spaces
CP" respectively, and let i be the standard complex structure on CP".
In his famous paper |Gr] Gromov invented a powerful pseudo-holomorphic
curve theory to study symplectic topology and got:

e For any two area forms w; and wo on CP! with fCPl w1 = f(CPl wo,
Symp(CP! x CP!,w; @ wy) contracts onto I(CP*xCP!, i x i,gl(;ls) @
gl(;ls)) =17/27 extension of SO(3) x SO(3) (|G, §2.4.4;]), and
Symp(CP! x CP!,w; ® ws) cannot contract onto SO(3) x SO(3) if
Jepr w1 # Jopr w2 ([Grl §2.4.C5]). (A simple application of Moser theo-

1 1
rem can reduce these to the case wy = awpg and wy = bwés) for nonzero

a,beR).
. Symp(CP%w%) contracts onto I((CP%Z’,g%) (IGx, §2.4.Bj5)).
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For Symp(S? x 52, wlgs) @ )‘Wb(}s)) with [g, wlgs) = land X # 1, so far some
deep results were made by Abreu [Ab], Abreu and McDuff [AbMc], Anjos
and Granja [AnGr] and others following an approach suggested by Gromov
|Gl §2.4.C5]. (See McDuff’s survey [Mc| for recent developments).

In past ten years a new method (mean curvature flow (MCF) method)
to the above question was developed by Smoczyk and Mu-Tao Wang [Smo2,
SmoWal, Wall, Wa2, Wa3l, [Wadl, Wa5| TsWa, MeWa]. For compact Riemann
surfaces they obtained the desired results (cf. [Wadl [Wabl [Smo2]). Recently
Ivana Medos and Mu-Tao Wang [MeWa] applied the MCF to deform sym-
plectomorphisms of CP" for each dimension m, and obtained a constant
Ao(n) € (1, +00] only depending on n € N, (see for its definition), such
that any A-pinched symplectomorphism of CP™ with

(1.1)
1

sasaioi 3o )] o )]

is symplectically isotopic to a biholomorphic isometry ([MeWal, Cor.5]). Here
a symplectomorphism ¢ of the Kéhler manifold (M,w,J,g) is called A-
pinched if

L,
pgéwgsAQQ

(cf. [MeWa, Def.1]). The constant Ag(n) was introduced above Remark 2 of
[MeWal, p.322], and it was shown that Ag(1) = oo there. For n € N we define
an increasing function [1,00) 3 A — Al by

(1.2) A= [;(A+/1\>]n+\/[;<A+11X)]2n_l‘

(This is obtained from [MeWa, (3.11)] when A; in [MeWal, (3.10)] is replaced
by A.) Then A}, = Ao(n) if A = A1(n) by the proof of [MeWa, Cor.5].

By Cartan’s classification, in addition to two exceptional spaces
Es/(Spin(10) x SO(n + 2)) and E7/(Eg x SO(2)), all irreducible Hermitian
symmetric spaces of compact type (IHSSCT') have the following form of four
types (in the terminology of [Hel p. 518]):

Un+m)/U(n) xU(m), n,m > 1, SO(2n)/U(n), n > 2,
Sp(n)/U(n)n > 2, SO(n+2)/SO(n) x SO(2), n > 3.

They are, respectively, holomorphically equivalent to:
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GY(n,n +m) = G(n,n + m; C) the complex Grassmann manifold which
may be defined as the quotient M (n,n + m;C)/GL(n; C), where GL(n;C)
= {QeC™™|detQ # 0} acts on M (n +m,n;C) := {AcC™ ™) | rankA
= n} freely from the left by matrix multiplication;

G (n, 2n) = {[A] € G(n, 2n;C) ] JA € [A] st A (I(:L Ig) A =0 } :

G (n,2n) = {[A] € G(n,2n; C) ] JA€[A]st A <_(}n Ig) A =0 } :

n

§ : 2 2 2 _
zj T An41 T RFng2 = 0
i=1

GIV(17n+1) - [(z17-'-;zn+2)] S (CPTH_l

(cf. [CaVe] and [Lull Lu2l Lu3]), which are the compact duals (or extended
spaces) of the classical domains D}%m, DI DI and DIV, respectively. Let
h and h; be the canonical Kihler metrics on G(n,n + m;C) and G(n, 2n),
respectively. Denote by hyy and hypp the induced metrics on G (n, 2n) and
G"{(n,2n), respectively. Then both (GY(n,2n), h) and (G*(n,2n), hi)
are totally geodesic Kiihler-Einstein submanifolds of (GY(n,2n), h1). (See the
claim on the page 136 of [Mok] and the proof of Lemma 1 on the page 85 of

[MoK)).

Theorem 1.1. Let w be the Kdhler form corresponding with the canon-
ical metric h on G(n,n+m;C), g =Re(h) and J the standard complex
structure. Then for every A-pinched symplectomorphism ¢ € Symp(G(n,n +
m; C),w) with A € [1, A1(mn)] \ {co} the following holds:

(i) The mean curvature flow ¥; of the graph of ¢ in G(n,n+ m;C) x
G(n,n+ m;C) exists for all t > 0.

(ii) X¢ is the graph of a symplectomorphism ¢, for each t >0, and ¢4
is AL, -pinched along the mean curvature flow, where A, is defined

by .

(iii) ¢+ converges smoothly to a biholomorphic isometry of (G(n,n + m;C),
J,g) ast — oo.

Consequently, each such A-pinched symplectomorphism ¢ € Symp(G(n,n +
m; C),w) is symplectically isotopic to a biholomorphic isometry of (G(n,n +
m;C), J, g).
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Theorem 1.2. Let (M,w,J,g) be a compact Kdhler-Einstein submanifold
of (G(n,n +m;C), h) which is totally geodesic. Set dim M = 2N. Then for
every A-pinched symplectomorphism ¢ € Symp(M,w) with A € [1,A1(N)]\
{o0} the following holds:

(i) The mean curvature flow Xy of the graph of ¢ in M x M exists for all
t>0.

(ii) X¢ is the graph of a symplectomorphism ¢, for each t >0, and ¢4
is Ny-pinched along the mean curvature flow, where A is defined

by .

(iii) ¢¢ converges smoothly to a biholomorphic isometry of (M,J,g) as
t — 00.

Consequently, each such A-pinched symplectomorphism ¢ : (M,w) — (M, w)
is symplectically isotopic to a biholomorphic isometry of (M, J, g).

In particular, this theorem holds for (G(n,2n),hy) and (G (n,2n),
hir) (or SO(2n)/U(n) and Sp(n)/U(n) in the terminology of [He, p. 518]).

Recall that a complex torus of complex dimension 7 is the quotient space
T™ = C"/T', where I is a lattice in C™ generated by 2n vectors {ui, ..., u2,}
in C"™ which are linearly independent over R. It has a natural flat Kahler
metric induced from the flat metric of C”. By Bieberbach theorem (|Chl
page 65]), any compact flat Kéhler manifold is holomorphically covered by
a complex torus ([Be, Example 2.60]). From this and Calabi-Yau theorem it
follows that any compact Kéhler manifold M with the first and the second
(real) Chern class vanishing must be (holomorphically) covered by a complex
torus (|[Be, Cor. 11.27]). Unfortunately, for complex tori we cannot obtain
the corresponding result with (iii) of Theorems and [1.2| yet though other
conclusions are proved under the weaker pinching condition.

Theorem 1.3. Let (M,w, J,g) and (]\7,(1}, J,§) be two real 2n-dimensional
compact Kdhler-Einstein manifolds of constant zero holomorphic sectional

curvature. Then for every A-pinched symplectomorphism ¢ : M — M with
A € (1,Ao(n)) there hold:

(i) The mean curvature flow ¥y of the graph of @ in M x M exists smoothly
for allt > 0;

(ii) Xy is the graph of a symplectomorphism ¢ for each t > 0, and ¢ is
still Ao(n)-pinched along the mean curvature flow.
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(i) If A < Ay for some Ay € (A, Ag(n)), where Ay > 1 is a constant deter-
mined by A1 and n (see Lemma then the flow converges to a
totally geodesic submanifold of M x M as t — oco. (In addition Aq is
more than or equal to

0.1414464x, 0.1414460x, 0.1414464, B
2exp| —— |+ 2exp| ——— exp|l — | —-1—-1] ,
5n 10n 5n

where 6,5, is defined by (@)

It is easily seen that the convergence assertion in Theorem can-
not be derived from [Wa3, Theorem B]. Moreover, it was pointed out in
[Wa2l Remark 8.1] that when M is locally a product of two Riemannian
surfaces of nonpositive curvature the uniform convergence of the flow can
also be proved with the method in [Wad4]. Related to the result K.Smoczyk
and M.-T. Wang [SmoWa] treated the Lagrangian mean curvature flow of
symplectomorphisms between flat tori in case of a length decreasing (hence
pinching) property.

It is possible to generalize the above three theorems to a larger class of
manifolds — compact homogeneous Kéhler-Einstein manifolds. (See Theo-
rem . Recall that a Kéhler manifold (M,w, J,g) is called homogeneous
if I(M, J, g) acts transitively on M. In particular, a simply-connected com-
pact homogeneous Kéhler manifold is called a Kdhler C-space in [W] (or a
generalized flag manifold). However, except the manifolds contained in the
three theorems above we do not find an example satisfying the conditions
of Theorem [E.11

In this paper we follow [KoNo| to define the curvature tensor R of a
Kéhler manifold (M,w, J, g) by

R(X,Y,Z,W)=g(R(X, YW, Z) =g(R(Z, W)Y, X)

for X, Y, Z, W € I'(TM). Then the holomorphic sectional curvature in the
direction X € TM \ {0} is defined by

H(X)=R(X,JX,X,JX)/[g(X, X))

(After extending g and R by C-linearity to TM ®g C, H(X) is equal to
~R(2,Z,2,2)]9(Z,Z))? for Z = (X —/=1JX)/2 € THOM).

The paper is organized as follows. In Section 2 we review differential
geometry of Grassmann manifolds, the key Proposition seems to be new.
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Section 3 is our technical core, where we study evolution along the mean
curvature flow under different pinching conditions for different cases. In Sec-
tion 4 we prove Theorems and Finally, Section 5 gives a general

result under stronger assumptions as a concluding remark.

2. Differential geometry of Grassmann manifolds
2.1. Curvatures

For increasing integers 1 < a1 < -+ < apy <n+mlet {ani1,..., Qnim} be
the complement of {aq,...,a,} in the set {1,2,...,n+ m}. For [A] € G(n,
n+m;C) = M(n,n+m;C)/GL(n;C) write A as (Ai,...,Antm), where
Aty ..., Anym are n x 1 matrices. Set Ag,..q, = (Aays .., Aq,) € C7,
Aciransm = (Aanirs -1 Aany,,) € CPM0 Define U, ..o, = {[A] € G(n,
n+m;C)|detAq,..a, # 0} and Oq, ..., : Uayoa, — C*™ = C™ by

[A] > Z = (Aa,a,) A

Qp41° " Opgm*

We call Z the local coordinate of [A] € G(n,n + m;C), and
{(Uaseans Oaroan) [ 1 < a1 <+ <y <}

the canonical atlas on G(n,n+m; C) ([Lel, Lull Wo2]). The canonical Kahler-
Einstein h on G(n,n 4+ m;C) is given by

(2.1) h = 0dlogdet(I + ZZ)

in the local chart (Uj..,, Z = ©1...,,) as above, where 7' and dZ are the

conjugate transposes of Z and dZ respectively, and 0 = ZZ o azt 6Z8m and

0= diadZe 5= (See [Lull Lu2] ).
If a (real) tangent vector T at the point Z € Uj..., is represented by their
component matrices, i.e., we identify

0 0
_ Kl Kl
(2.2) T =) Re(T ) oxw T > Im(T ) 5y
k.l k.l
with complex matrices (T*) € C"*™ where ZM = Xk 4+ Y k=1,....n
and [ = 1,...,m, then the Riemannian metric g := Re(h) is given by

(2.3) 92(T1, To) = ReTx|[(I + ZZ)'TV(I + Z' 2)~' T3]
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(cf. [Wo2| (2)]). The curvature tensor Rz of g at Z has the expression

RZ(Tl,TQ)T
=T[I+Z2) ' U+2Z)'" i -(I+Z2) ' T (1 +2Z)'Ty]
HIMI+72) B+ 27) =T+ 72 T 1+ 22) T

(cf. [Wo2, (4)]). Here as above the left is a real tangent vector and the right
is the corresponding complex matrix representation of it. Let py € Uj...,, has
coordinate Z(pg) = 0. Then

(24) Rpo (T17T27T37T4)
= gp(Rp(T3,Ty) T, Tt )
= ReTr [(TQTQTng — TQT:;TzLT/l + T3T4Tng — T4T3T2?1)]

for any tangent vectors in T, G(n,n +m;C) as in , T, 1=1,2,3,4,
which are identified with complex matrices (T*) € C™*™, i =1,2,3,4. It
follows that the sectional curvature sits between 0 and 4, and that the holo-
morphic sectional curvature of G(n,n + m;C) at the point py € Uj..., in the
direction T is given by

_AT(ITTT)

(2.5) H(0,T) [Tr(TT/)P

€ [4/ min(n, m), 4]

(cf. [Lull, (2.11)] and [Wo2, page 77]).

Proposition 2.1. For the metric h in let R be the Riemannian curva-
ture tensor R of the Riemannian metric g = Re(h) (extended to TG(n,n +
m; C) @r C in a C-linear way). For 1 <i,j,k,h <n and 1 < «a, 3,7, <m
let

(0 9 9 9
lenjBikyhd 20\ 9zt o 7700 ‘0’ 07k ’0’ 07" ’0

=+ (257 b g ) 5 o )

and others be defined similarly. Then

R0 55078 = Riahshy 58 = ~Pio 6,755

1
= 5(=0ij0kndas3py — dindrjdasdns)
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foralll <i,j,k,l<nandl < a,B,7,0 <m. These and their complex con-
jugates are all component types different from zero.

Proof. By 1} for h = 2009(Z), where ®(Z) = % Indet(I + Z?l)7 from the
well-known formula det A = exp{Tr In A} we have

e (_1)q+1

20(Z) = Trln(I+Z2Z)=Tr | Y (Z2Z')4
q=1 4
. 1 g
SIS 7'“72877° 73 4 (higher order terms)
i, i,5,0,0

for | ZZ'|| < 1. (See also [CaVe, page 493]). From this and the arguments on
the pages 155-159 of [KoNol, it follows that the curvature tensor at Z =0
is given by
'
071097’ 0 zkv07" 12=0
1
= 5(_5ij5kh5a65,8'y — 0in0kj0a80+s)

R0 50y 8 =

for all 1 <i,j,k,l <nand 1 < a,f,7,0 < m. Moreover, from the Bianchi
identity and the fact that the curvature tensor R of Kahler manifold is of
type (2,2) it is not hard to derive that

R0 50y 78 = Riai5 ky 58 = ~ion 18,750y

forall1 <4,j,k,l <nmand1<a,pB,v,6 <m. These and their complex con-
jugates are all component types different from zero. (]

Let h1 be the canonical Kéhler metric on Gin, 2n), which in the coor-
dinate chart Uy, ..., is given by 00 Indet(I + ZZ/) as in (2.1). It induces a
Kihler metric h;p on GY(n, 2n) which in the induced coordinate system

(2.6) G (n,20) NUaya, 3 [l (29(14D)

is given by

(2.7) hiy = 00 Indet(I — Z2Z)
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with Z € C"*" and Z = —Z’; moreover hy induces a Kéhler metric hrp on
G"(n, 2n) which in the induced coordinate system

2. M, 2 wea, DA ZH (A
(2.8) G (1,20) 1 Us o, 3 (4] (214D
is given by

(2.9) hir = 901n det (! + Z?)

with Z € C"*" and Z = 7.
Let hrg be the Fubini-Study metric on CP™*!, which is given by

(2.10) his = 09I (1 + [&1° + - + |€0ra]?)

with & =&([z]) = 25, k=1,...,n+1, [z] € Unpa ={[z1,...,2n42] €

CP™™ | 2,42 # 0}. Then GV (1,n + 1) is a Kihler submanifold of CP™!
with the induced Kéhler metric

(2.11) hry = 901+ &2+ -+ &P+ 1 -2 — - = £2))

on GV (1,n+1)NUpyso from hpg. If Im&, 1 # 0, in the new coordinate
chart on GIV(1,n + 1),

o . 51 fn
(‘517""571)HZ_(ZI’“.’Z“)_ <§n+1+i7“.,fn+1+i>,

the metric hyy has the following expression (cf.[Lull)
(2.12) hry = 00In(1+ |ZZ'|* +227).

All irreducible symmetric spaces of compact type have positive holo-
morphic sectional curvatures (cf. [Bo, [CaVel, [Lull). As in one can give
explicit expressions of holomorphic sectional curvatures Hy(Z,T), Hii(Z,T)
and Hry(0,T) under the above coordinate charts too (cf. [Lull).

Let R! denote the curvature tensor of the metric by = 99 Indet(I + ZZI)
on G'(n,2n). By Proposition at Z = 0 we have

I _pl _pl
(2.13) R 58 k05 = Pia b 75 =~ Tia 5 7B.hy

1
= 5(_51']'619]15@6567 — 0in0kj0apoys)

forall 1 <14,5,k,l,a, 8,7,6 < n. These and their complex conjugates are all
component types different from zero.
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Denote the curvature tensors of (G(n, 2n), k) and (G (n, 2n), hirr) by
R and R™, respectively. Note that at Z = 0 the local coordinate systems
(Ut..n, Z) on G(n, 2n; C) and (2.6)—(2.8)) are normal coordinates (or complex
geodesic coordinates) for the metrics hy, hyp and hrpp. By we have

Proposition 2.2. At Z =0 the curvature tensors R and R are the
restrictions of RY, that is,

n__ _pll____pll_
Za7]67k'7’h5 la7h67k7’]:8 la7h67j/6?kfy

1
= 5(—5@5%50;5537 — 0in0kj6ap0ys)

foralll<i<a<nl<j<pB<nl1<k<y<nl<Il<d<n, and

m_ _ pll _ plll
i, B,ky,hd T T icnhd k3B ia,hd,j8,ky
1

= 5(=0i0k100505y — Oinr;jdapdys)

foralll<i<a<n1<j<f<nl<k<y<n1<I<§<n.

Now we consider (G (1,n + 1), hrv). By (2.12) the Kihler potential
function ®(Z) = 3 In(1 +|ZZ'|* + 2ZZ’) has the following power series ex-
pansion

1 _ 1 -
5 (1l + 221} +227") = 5 (1 + 22]; 2% + | kZ_lzg 2)

n 1 n
S iar+ ;> 2
k=1 k=1

2 n 2
- (Z |Zk|2> + higher order terms
k=1

near Z = 0. Since the coordinates Zj (1 < k < n) are normal coordinates,
the curvature tensor at Z = 0 is given by

v o

Vo T | 9685 — 810w — 0ud;
Rzgkl 8Zi82j8ZkaZl ( k0941 7Okl l ]k)

Z=0

for all 1 <4,4,k,I <n.In particular we get

(2.14) RY.=—2 Vi and RY-=2 Vi#j.

114 iji]



916 G.-C. Lu and B. Xijao

2.2. An expected local coordinate chart

Let J be the standard complex structure on G(n,n + m;C). Forp € G(n,n +
m; C), recall that by {a;, b, i=1,...,n, j=1,...,m} being a unitary
base of (T,G(n,n +m), J,, gp) we mean

aij, bij = Jpaij € T,G(n,n+m;C), i=1,....n, j=1,...,m,

is a unit orthogonal base of (1,G(n,n + m;C), g,). To our knowledge the
following result seems to be new. It is key for us completing the proofs of

Theorems

Proposition 2.3. For anyp € G(n,n + m;C) and a unitary base of (T,G(n,
n + m7 C)? prgp);

aij, bij = Jpai; € T,G(n,n+m;C), i=1,...,n, j=1,...,m,
there exists a local chart around p on G(n,n + m;C),
(2.15) U>q9— Z(q) = X(q) +1iY(q) e C™™

satisfying Z(p) = 0, such that

(i) In this chart the metric h and g = Re(h) are given by and (2.5),
respectively;

_ 0
» bii = gy

(i) aij = 5% P

Proof. Since the isometry group of the Ké&hler manifold (G(n,n 4+ m;C), h),
I(G(n,n+ m;C),h) = SU(n + m), acts transitively on (G(n,n + m;C),h),
for any p € G(n,n + m;C) there exists a 7 € I(G(n,n + m;C), h) such that
T(po) = p. Clearly, we get a coordinate chart around p on G(n,n + m;C),

(2.16) W =U+iV : 7(Un) = C™™, g = Z(77(q)).

Since 7 is a Kéhler isometry, using (2.1)) one easily shows that the metric h
in this chart is given by

h=Te[(I+WW) W (I +WW) law'].
It follows that the Riemannian metric ¢ = Re(h) is given by

gw (T1, To) = ReTx[(I + WW )"y (I + W' W)~ 'Ty ]
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for real tangent vectors T1,To at W € 7(Uq...n,),
Z Re(T 3Ukz T ZI avkl 7
Z R 8Ukl - ZI 8Vkl ’

which are identified with complex matrices (TF!), (T#!) € C**™ respectively.
Define vectors

72(a11,a12,-~-7a1m7a217---aa2m,---aan1,---,anm)7

%

b = (b11,b12, ..., b1ms 021, b2y - b, b)),
i‘ B 0 0 5] 0
oUul, \outtly 779 P OU2L|, "7 Y

0 0 ‘
ount p7 aUnmp ’
i‘ B 0 0 0 0
0 0 ‘
ovnl|y, T gynm|, |-
Since
0 0
— , — =1,... i=1,...
{aUzJ p7 avlj p’ /I’ M ’n7 j ) 7m}

is a unitary base of (T,G(n,n+m;C),Jp,gp), there exists a unique real
matrix © such that

N S NN
2.1 2,.) = ’
(217) (@.7) ( - )
3 'A B nmxnm 3
The matrix © must have form ( ~ B A ) where A, B € R is such

that A + B is a unitary matrix (which is equivalent to

B/A = (A/B)/ = AIB and A/A + BIB = -[nmxnm)
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Note that (2.17)) is equivalent to

(2.18) +ib = %’p—’_zﬁ‘p (A+iB).

Recall that the tensor product or Kronecker product of matrices A = (a;;) €
C™™ and B = (b;j) € CP*? is a (np x mgq)-matrix given by

anB cee almB
anlB cee ant
Define matrices a = (ay;), b = (b;;) and 2|, = (5%51p), 2 |p = (527 |p). It
w3/ v ou 1p U 1p/» 9V IP oV lp
follows from ([2.18)) that there exist unitary matrices R € C"*™ and S €
C™*™ such that

0 0
. _ / - _ )
(2.19) A+iB=R ®8S and a+zb—R<aU‘p+zan>S.

Let R=R;+iRy with Ry, Ro e R™ " and S=.51+15, with S1, 59 e R™*™,
Then

(Rlle)/ = RllRQ and RllRl + R/2R2 = Luxn,

(5152)/ = SiSQ and SiSl + SéSQ = Inxm- }

Moreover, the first equality in implies
A=R|®S5 —R,®S2 and B=R,®51 +R|® 5.
From the local chart (7(Uy...,), W) in (2.16)), we define a new chart
(2.20) U— C™™ g G(q) = E(q) +iF(q) :=R W (g)S™.
Then G(p) = W(p) = 0. Define vectors

W= (W W2 w2 e ),
T = (G, G"2,... .G, G2, G G G,

By [Lu2l page 364, (6)] we get

G 9G

i — —1y/ -1 _ / -1 _ s —1
e2)  Gp= s =R esT =R o8 = (4B
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Writing G = ®(W) and

P ‘ _<a 0 0 0
8Wp anl p7.."aW1mp’aW21 ;za’”‘,aw/ﬂmp,.”7
0 0
avvmp""’awnm)p>’

—
o () e ) ) i)
o, (Wam‘p>,...,q>*<m§nl p)

)
*(owl,))

since w2 |, + i |p = g9 |p, by (2.18) and (2.21)) we get

i’ _ 3 8’ B 8)8W

Gl — T\ awly) T oWl g
— -1 ——
B AR Lo
_W’p<ﬁ> _WIP(A—I—ZB)—CL—FH).

That is, the coordinate chart in (2.20), U — C™"*™, ¢ — G(q), satisfies

0

- 0
ajj S5 =

b; —
p 7 OFU

9y
P

It remains to prove that the transformation
Crm — CV™ W G = (W)

preserves the Kéahler metric

ds® = Te[(I + WW) "W (I + WW)~'aw’]
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on C™*™_ In fact, since

(I+GG) G = (I +R WS 'RIWS )R Ldw S
= ([ +RWWR TR LAWS™
= (RRT+RIWWR TR Ldaw S
=R I+ WW)dws,

I+GG) G = (I+R WS TRIWS )R LdWS T
—([+STWRIR WS HSTaW R T
=S TI+WW)ydawRT

we get
Te[(I + GG ) dG(I + G G)~'dG
= Te[(I + S(W)D(W) )~ HdB(W) (I + &(W)D(W) d(W)) " dd(W) ]
= Te[(I + WW) "W (I + W W)~ aw].

Hence the coordinate chart in (2.20)) satisfies the desired requirements. [
Corollary 2.4. For any p,q € G(n,n +m;C), let

{aljasz ::Jpai]‘7’L’:l,...,n,j:lj‘."m} and

{a;jab;’j = an;ja i=1,...,n,j=1,...,m}
be unitary bases of (T,G(n,n +m;C), Jp, gp) and (T,G(n,n+ m;C), Jy, gq),
respectively. Consider the sequence uy, . .., Usnm whose all odd (resp. even)
terms are given by

A11,Q12y -+, G1lm, 215 - -+, A2my - -+, Anly - - -5 A,
(resp. bn,blz,...,blm,bgl,...,bgm,...,bnl,...,bnm.)

Similarly let the sequence uj,...,us,,, be given by {ai;, by = Jya;, i =
1,...,n, 7=1,...,m}. Then the curvature tensor R of (G(n,n+ m;C),g)

satisfies
(2.22) Ry (e, ug, Uy, us) = Rty g, ur, ug)

for any o, B,7,0 € {1,...,2nm}.
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Proof. This can be directly derived from Propositions 23] We here
give another proof of it with (2.4). Let (U,Z) be a local chart around
p as in . Then aij:%b, bij:%h,, i1=1,...,n, j=1,...,m.
Let (V,W =U +/—1V) be a local chart around ¢ as in . Then

aj; = %L}, bi; = %L}, 1=1,...,n, 7 =1,...,m. Note that according to

the above correspondence the tangent vectors 3 )?M | and 835,, p have matri-

ces representations

0 0 0 0O 0 O
(223) S(k,l) = 0 1(]6,[) 0 and T(S,t) = 0 Z‘(S,t) 0
0 0 0 0 0 O

nxm nxXm

respectively, where the first index (k, ) means that 1 is in the k-th row and I-
th array of the matrix and similarly for other indexes in the sequel. Clearly,
the tangent vectors %b and %b are also represented by these two
matrices. So for any « € {1,...,2nm} both u, and u], have the same matrix
representations. The desired conclusions follow from ({2.4]) immediately. O

This corollary and Proposition [2.1] immediately lead to

Corollary 2.5. Let (M,wM, JM ¢™) be a compact Kihler-Einstein sub-
manifold of (G(n,n + m; C), h) which is totally geodesic (e.g. (G™(n,2n), hyy)
and (G (n,2n), hir1) are such submanifolds of (G(n,2n;C), h1)). Set dim M
=2N. For any p,q € M, let

{agi_l, ag; = Jé\/la%_l, 1= 1, N ,N} and

{ab; 1, ay; = Jéwalzz‘—p i=1,...,N}
be unitary bases of (T, M, géw, JI],W) and (T,M, gé\/[, Jé\/[), respectively. Then
the curvature tensor RM of (M, g) satisfies

RZJ)V[(aa, ag, G, a5) = Réw(a'a, ag, ar,, ag)
for any o, B,7v,6 € {1,...,dim M}.
Proof. Since (T,M, gZ]y ,JI])V[ ) and (T,M, géw ,Jé\/[ ) are Hermitian subspaces

of (I,G(n,n+m;C), hy) and (T,G(n,n + m;C), hy), respectively, we may
extend {ai,...,aon} and {a},...,a)y} into unitary bases

{a1,...,a9nm} and {di,...,db,..}

of (T,G(n,n+m;C), hy) and (T,G(n,n + m;C), hy), respectively. By the
assumptions (M, wM, JM oM ) is a totally geodesic submanifold of (G(n,n +
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m;C),h). RM is equal to the restriction of R to M. Hence the desired
conclusion follows from (2.22)). (Of course it may also be obtained from
Proposition for (GY(n,2n), hy1) and (GM(n, 2n), hinp)). O

Let (U, Z) be the local chart around p on G(n,n + m;C) as in Proposi-
tion 2.3

Proposition 2.6. Forany 1 <k,s,u<n,1 <[ t,v <m we have

R 0 0 0 0 _ 0
OXHM I oXstlpy’ 9XH " gy ly ) —
R< P 9 9 ) ) 1 i“:S#Z$;§:“
ki > st k| v = Yyp=35s=r, =v,
OXHlp  0X=tp" XM Ip X1 p 0 otherwise,
1 ifpu=s#kl=t=v,
R 0 0 0 ‘ 0 )1 dfp=s=kl#t=v,
Xl p’ JY st p’ Xkl p’ oY v |y - 4 Z‘fuzszk;,l:t:y,
0 otherwise.

Consequently, for Sq. 1y and Ty in we get the sectional curvatures

iy )
E

Kyp(Stgys Ssyy) == R

0 ‘ 0
T OX K p’ oY st

K( st)

ifk=s,l#t,

ifk #£s,l=t,

ifk=s,l=t,

ifk #£s,l#t,

0 0 0 0
OXkl ‘p’ OXstly OXk ’p’ 0Xst
ifk=s,l#t,
ifk #£s,l=t,
ifk=s,l=t,
if k # s, 1 #t.

<aXM "oy Sty
1
1
1
0

)

O O = =T

Proof. Since the only possible non-vanishing terms of the curvature com-
ponents are of the form R, 0GB kv o and those obtained from the universal
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symmetries of the curvature tensor, a direct computation leads to

R( 0 0 0 } 0 )
OXFK 1y 0Xstly OXk, 0XHvlp
—R< 0 ‘ N 0 ‘ 0 N 0
VAL P 87kl p’ VAL p aZSt p?
0 0 0 0
VA ‘p * o7" )p’ ozm |, 97" p>
_ R< 0 ’ 0 0 ‘ 0 >
aZk |y 57ty 9Z% |, 977 |

4R 0 0 0 0
VAL p7 87515 p’ 67“ p’ oz P

LR 0 0 0 0
87M p’ VAL p’ VAL p’ 87#1/ P

R 0 0 0 0
578 |y 025t |y 5k |y 9z,
= Rkl,R,kl,W - Rkl,ﬁ,mx,m - Rst,ﬁ,k‘l,w + Rst,ﬁ,w/,m
1 1
= 5[_5k55k,u61u5tl — Okplsk0udn] + 5[6k55ku5115tu + Oki0su0101]
1 1
+ 5[6k35kp5tu(sll + 0501k 01101 ] + 5[_6k35kp5tl6lu — Osk0kp 01101
= —20310k 041011 + OksOkpOty + 05041011,

where the final equality comes from Proposition So we get

R R S
kl| ? st].’ kl| ° v - -2 ™ -
OXlp  OXlp  OXHlp" 0X1 Ip 0 otherwise.
Similarly we may obtain
R 0 7 0 7 0 ? 0 -
8Xkl p 0Xst p anl p oY wv p
R 0 0 0 0
8Xkl ]07 oY st p7 8Xkl p7 oY Hv p
=R 0 ‘ + 0 ‘ i 0 -1 0
- VAL . 87kl p’ o7 st » 678t p’
0 ‘ n 0 ‘ ; 0 _; 0
OZFp ~ g7Mlp 0Zm ly  9ZM" Ip

= 205k0ku04101 + OksOkulty + O5u04101,
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and therefore

1 ifpu=s#kl=t=v,
R( 0 ‘ 0 0 ‘ 0 )_ 1 ifpu=s=kl#t=v,
8Xkl p’aYSt p7anl p’(?YWp 4 if,u:s:k',l:t:u,

0 otherwise.

3. Evolution along the mean curvature flow
3.1. Preliminaries

For convenience we review results in [MeWa, §2]. A real 2N-dimensional
Hermitian vector space is a real 2/N-dimensional vector space V equipped
with a Hermitian structure, i.e. a triple (w,J,g) consisting of a symplectic
bilinear form w : V' x V' — R, an inner product g and an complex structure J
on V satisfying g = wo (Id x J). A Hermitian isomorphism from (V,w, J, g)
to another Hermitian vector space (V,cb,j ,g) of real 2n dimension is a
linear isomorphism L : V — V satisfying: LJ = JL, L*® = w and L*j = g.
Proposition 1 and Corollary 2 in Section 2.1 of [MeWa] can be summarized
as follows.

Proposition 3.1. For any linear symplectic isomorphism L from the real
ON -dimensional Hermitian (V,w,J,g) to (V,&,J,§), let L* : V — V be the
adjoint of L determined by g(L*u,v) = g(a, Lv). Then L*L : V — V is pos-
itive definite, and E := L(L*L)_l/2 gives rise to a Hermitian isomorphism
from (V,w, J,g) to (V,&,J,§). Moreover, there exists an unitary basis {v1,
.t of (Viw, J,g), i.e.,

g(vi,vj) = 0i5 and Jvgp—q = vk, k=1,...,N,

(and hence an unitary basis of (XN/, @, J, 9), {01,...,0an}, where v, = E(vy),
k=1,...,2N), such that

(i) The matriz representations of J and J under them are all Jy given by

(3.1) Jo(@1,y1,- - xn,yn)' = (y1, =21, ... yn, —zN)".
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(ii) The map (L*L)'? has the matriz representation under the basis
{,Ula"'aUZN}7

(L*L)'/? = Diag(A1, A2, - - -, Aav—1, Aan),

where Ao;_1Xo; =1 and Agj_1 <1< Xg;,71=1,...,N.

(iii) Under the bases {v1,...,van} and {01,...,Van} the map L has the
matrix representation L = Diag(A1, A2, ..., Aan—1, A\anN).

Remark 3.2. From the arguments in [MeWa] one can also choose the
{v1,...,van} such that A,k = 1,...,2N in Proposition (ii) satisfy: Ag; <
1<Xy1,i=1,...,N.

Let (M,w,J,g) and (M,(D, J, g) be two real 2N-dimensional Kéhler-
Einstein manifolds, and let 71 : M x M — M and mp : M X M — M be two
natural projections. We have a product Kéhler manifold (M x M,mjw —
50,7, G), where G =nlg+ns§ and J(u,v) = (Ju,—Jv) for (u,v) €
T(M x M). N

For a symplectomorphism ¢ : (M,w) — (M, Q) let

¥ = Graph(p) = {(p, »(p)) | p € M},

and let 3; be the mean curvature flow of ¥ in M x M.

Denote by Q := 7jw”, and by *Q the Hodge star of Q|s;, with respect
to the induced metric on ¥; by G. Then %€ is the Jacobian of the projec-
tion from ¥; onto M, and *Q(q) = Q(e!,...,e?N) for ¢ € ¥; and any ori-
ented orthogonal basis {e!,... ,e2N } of T;%;. The implicit function theorem
implies that x€(q) > 0 if and only if 3; is locally a graph over M at q.

Let ¢ = (p,pt(p)) € Xt C M x M. Set L := Dpypy : TyM — Ty, (,yM and
E = ngot[(ngpt)*Dpcpt]*% :T,M — T¢t(p)M. Since L*L is a positive def-
inite matrix, by the above arguments one can choose a holomorphic local

coordinate system {z',...,2"} around p, 2/ =2/ + iy, j=1,..., N, such
that
(i) {%M,, cee &%N\p, aiyl\p, e %LN’P} is an orthogonal basis of the real

2N-dimensional vector space T, M,

(ii) The complex structure J,, is given by the matrix .Jy in (3.1) with respect
lé)

to the base %,%,...,%,%—N.
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(iii) L*L = Diag(A?,A3,..., A2y 1, A\3y) with respect to these basis, where

Aogii1Ag; =1, Aoy <1< Ay fori=1,...,N. ObViOllSly % = % +
o) o _ 1 o) o]
95 oy = 1\ ~ 927)-

(iv) There exists a Hermitian vector space isomorphism

E: (T,M,wp, Jp, gp) = (T, ()M @, (p)> Jou () T ()

such that under the orthogonal basis of (T%(p)M s 00 (p))s

(5(2) () () ()

j%(p) is also given by the matrix Jy in ||

By the choose of basis, we have

9 i‘ _ (2
g 81:’ p,aijp =9 8y1

9 i‘ _ (2
g Oxtlp’ Oyl lp -9 oy’

0
ay‘> =i

P aij‘z) =5

B 0 0 B B B O
9a=9 @p’@’p = Ya = Ya = Jia = 5
913 = 91d = 0.
For j=1,...,N, set
» 0 - 0
(3.2) a?t=_—"| and o¥=_—"—|.
Oxjlp Oy;lp

Then by (ii) above it holds that
Jy(@¥ Yy =a* and J,(a¥)=—-a¥"!, j=1,...,N.
Let s’ = s+ (=1)*t1 s =1,...,2N, and let J,s := g(Jas, a,). It follows that

0 ifr # ¢,

Jgs = —Jsg and JIrs = { (_1)s+1 ifr=s¢.
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Fori=1,...,2N, let

. 1 . 4
¢' = ——=(a’,\iE(a’)) and
(3.3) vita |
2NFE (Jpat, =\ E(Jyat))

They form an orthogonal basis of T, (M X M ), and
T,%: = span({e',...,e*M)} and N,%; = span({e2NT1 ... V]
and *Q = Q(e!, ..., e2N) =1/ H (1+)\2)

Proposition 3.3 ([MeWa, Prop. 2|). Let (M,g,J,w) and (M,g,i,@)
be two compact Kahler-Einstein manifolds of real dimension 2N, and let
¥t be the mean curvature flow of the graph ¥ of a symplectomorphism
v: (M,w) — (M,w). Then xQ at each point q € ¥y satisfies the following
equation:

d Ripir — /\Rzkzk>
34) L4Q=A%Q++0{ Q0N h
B4 G PR i +Zk:Z 1T+ A2) (A + M)

where

QN hji) = Z hUk 2 Z Z "IN\ (harikhirjk — harjkhgir)
7,k k 1<y

with i =i+ (=1)", and Ry = R(a*,a’,a, a') and ﬁmkl E(E(ai),
E(a?), E(a*), E(al)) are, respectively, the coeﬁiczents of the curvature ten-
sors R and R with respect to the chosen bases of T,M and Tf(p)M as in
Proposition [3.1]

For \ = (A1, ..., Aan) € R?V according to [MeWa), p.322] let

(35) 0y i= inf{Q()\Z,hjkl } hie € R, 1<,k < 2N, S h2y = }
.5,k

that is, the smallest eigenvalue of @) at X, and for A € [1,00) let

1
(3.6) 5A::inf{5x Ag/\igAforizl,...,QN},

(3.7) Ao(N) :=sup{A|A > 1and dp > 0}.
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By Remark 2 and Lemma 4 in [MeWa] (or the proof of [MeWa), Prop. 3]),
Ap(1) = o0, and

Q(L, ..., 1), hiji) = |I1)? =

3—5
6

zgk
7]7

Clearly, dy is continuous in X, and [1,00) © A — §, is nonincreasing. They
imply Ag(IN) > 1. Note that oo > 0 for every A’ € [1,Ag(N)). Indeed, by
the definition of supremum we have al e (AN, Ao(N)) with 5o > 0. So o >
oA > 0. In addition, and (3.6) imply

inf{Q()\Z,hjkl ’ hir €R, S 2, = % <\ < A/}
.,k
— inf{dx % <N < A’} — 6p

for every A’ € [1,Ag(N)). Hence we get:

Proposition 3.4. ([MeWal, Prop. 3]) Let Q(\i, hjri) be the the quadratic
form defined in Proposition [3.3 Then for the constant Ag(N) € (1, +00]
n , which only depends on 2N = dim M, Q(X;, hji) is nonnegative
whenever m <A <Ao(N) for i=1,...,2N. Moreover, for any A €
[1,Ao(N)) it holds that

Q(Nis hjrt) > o Z h?kl
ijk

whenever & < X; < A fori=1,...,2N.

3.2. The case of Grassmann manifolds

Let ¢ : M =G(n,n+m;C) — M = G(n,n 4+ m;C) be a A-pinched sym-
plectomorphism and ¥ = Graph(p). For (p, pi(p)) € 3¢, let o/, j=1,...,
nm, be the chosen unitary base of (7,,G(n,n + m;C), Jp, gp) as in Proposi-
tion 3.1l Then

(3.8) Rijkl = R(aiaajvakaal)a
(3.9) Ez‘jkl = R(E(d"), E(a’), E(d"), E(a"))
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are, respectively, the coefficients of the curvature tensors R and R with

929

respect to the chosen unitary bases of T),GG(n,n +m;C) and T, )G (n,n +

m; C).
From Corollary [2.4] it follows that

(3.10) Rijkl = Rijkl V1 < i,j, k,l < 2nm.

Let (U,Z) be the local chart around p on G(n,n +m;C) as in Proposi-

tion The final two equalities in Proposition show

R< 0 0 0 0 )
(3 11) 8Xkl p, oY st p’ anl p’ oY st p
' —R( 0 1o} 0 ‘ 0 )_45 5
OXH |y oxstly 9xXH |, oxstl,) — TR

Writing 21, Z'2,... ., ztm, Z2Y . Z2m . Z™ . Z7 into 21,22,

2™ we have

and fi, :=d?F = i

0
o 2k—1 _
(3.12) e = a o7 |,

N aﬂ?k ’p

for k =1,...,nm. Then (3.11)) can be written as

R(e(k—1ymts Fs1ymtts €(h1ymtts Fs—1ym
(3.13) (et—1ym+is Fs—1ymrts €b—1yme+ts fis—1yme+)

— R(e(—1)ymt1> €(s—1)mtt> E(—1)m-+1> €(s—1)ym-t) = 40ks0rt

forany 1 < k,s <n and 1 <[,t < m. Clearly, this is equivalent to

(3.14) R(ei, fj, €, fj) — R(ei, ej, €;, ej) = 4(51']' V1 S i,j S nm.

Now for M = M = G(n,n+m;C), by 1D we may rewrite the second

term in the big bracket of (3.4) as follows:

9



930 G.-C. Lu and B. Xijao

zkzk - )\ Rzkzk: zk:zk
(3:15) ZZ 1+>\2 (N + Air) zk:; 1+A2 A + Air)

k i#k

_ Z A25—1( - )\2T_1)R(65,6T,€5,€7~)

AP R G Azr—1) (A2s—1 + A2s)

Z >\2s( 2r 1) (fS?eT7fS7eT)

+
k=2r—1,i=2s (L +23,_1)(A2s—1 + Aas)
+ Z )\25_1(1 _2>\%T)R(655fr7€safr)
peore s (L A%)(A2sm1 4 Az

]. - )\%T)R(fsafrafsva)

A25(
+
kQTiZQS,ryés (1 + A%’r‘)()\QS—l + )\25)

_Z 65,67«,65,67) [)\23 1( )\%,«,1) )\25(1 — )‘%r)
(A2s—1 + Aas) (1+ A3, 1) (1+23,)

(esa f?’a €s, f?")(/\%r - 1)()\28 - )\25—1)
> (oot + o) (1 + A2)

T8

— ()\%r — 1)(>‘2s - )\2571) B
- ; ()\23_1 + )‘25)(1 + )\%r) [R(es’ fr’ €s fr) R(esa €r, €s, er)]

< (1+A3)(1+ A

)
(3.14) A3, —
Z et )El 1)

(1+A3)(1+A3,)
)\28—1)2
_42 12+)\ ek

Hence in the present case (3.4)) becomes

2 2
:Z ()\2T 1)()\28 ) [ ( 57fr7637f7’) - (es’e“es’er)]

d o~ (A3, —1)2
(3.16) o xQ= A*QHQ{Q(AZ,W; ZHA)}

This and Proposition immediately lead to the following generalization
of [MeWal, §3,Cor.4].
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Proposition 3.5. Let Ag = Ag(nm) > 1 be the constant defined by (3.7).
For any A € [1,Ag) it holds that

d (1—A3,)?
S A QSO QITE 450 25
(dt >* AF QI + Z (1+ 22,)2

whenever% <N <A fori=1,...,2nm. Here |I1| is the norm of the second
fundamental form of 3.

Recall that *Q = 1/\/H2m"(1+)\2) =1/11; 0aa >\+>\ on Zt, where i’ =
i+ (=1 fori=1,...,2nm. For A >1and 0 < e < 1/2"" se

1 1

9—mn 9—mn 2
A(mn,e) = P—— + (727”1” — e) — 1.

Then e(mn,A) > 0 and A(mn,e) > 1. Lemmas 5 and 6 in [MeWa] showed

e(mn, A) =

1 1
1 1
—— — e < x() — <N <A , i
S € < x — A g SN S (mn,e) Vi

From these and Proposition we may repeat the proofs of Proposition 4
and Corollary 5 in [MeWal to obtain the following generalization of them.

Proposition 3.6. For some T >0 let [0,T) 5t — 3; be the mean cur-
vature flow of the graph ¥ of a symplectomorphism ¢ : G(n,n +m;C) —
G(n,n+m;C), where G(n,n + m;C) is equipped with the unique (up to x
nonzero factor) invariant Kdhler-Einstein metric. Let xQ(t) be the Jacobian
of the projection 7y : ¥y — G(n,n + m;C). Suppose for some A€ (1, Ag(nm))

that
1 1 1 2A 1 A
2mn_6:2mn_2mn<1_A2+1> omn— 1A2+1§*Q()

Then along the mean curvature flow x€) satisfies

d (1—A3,)?
A x QSO QUIP 450y (280
(dt >* A YT+ Z (1+A2,)2’
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where dp is given in (@, and so miny, () is nondecreasing as a func-
tion in t and 3 is the graph of a symplectomorphism ¢y : G(n,n + m;C) —
G(n,n+m;C). In particular, if ¢ is A-pinched for some A € (1, A1(mn)] \
{o0}, then each ¢y is Al -pinched along the mean curvature flow, where

AL, is defined by (1.4). (Note: A/, = Ag(mn) if A = Aj(mn) < c0.)

Remark 3.7. Let (M,w, J, g) be a compact totally geodesic Ké&hler-Einstein
submanifold  of  (G(n,n+m;C),h) (eg.  (GY(n,2n),h;) and
(G (n,2n), hirp) are such submanifolds of (G(n,2n;C), h)), dim M = 2N.
By Corollary we immediately obtain corresponding results with Propo-
sitions 3.5 and

3.3. The case of flat complex tori

The following proposition is actually contained in the proof of Corollary 3
of [MeWal, p.320]. We still give its proof.

Proposition 3.8. If M and M are real 2n-dimensional Kdihler manifolds
with constant holomorphic sectional curvature ¢ > 0 (hence are Einstein and
have the same scalar curvature), then

i*Q—A*Q+*Q (Aiy h + Z 1_)\2
dt = i) ]kl Ck dd 1+)\2

Proof. With the choice of bases of T,M and T f(p)]\7 , (we shall suppress |,
in %\p and é%‘?’ r=1,...,n for simplicity), it is easily computed that

Ripir = R(ai a’, ak al)
Jo)

R(BT’awaH -) ifi=2r—1,k=2s—1,
R(8 B fi— a1k =2,
) R(2 ’65’8 %) ifi=2r k=2s—1,
R( ,Byg,(;gr,%) if i =2rk=2s.
Plugging 62]- = % + %, 6%- = %(% %) into the above equalities we
get
(317> Rzkzk - Rr§T§ + Rs?s? - RTESF - RSFT§

if (i,k) = (2r —1,2s — 1) or (i, k) = (2r,2s), and

Rikik = _(Rr§r§ + RSFSF + RTEST + RS?T’E)
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if (i,k) = (2r — 1,2s) or (i,k) = (2r,2s — 1). Note that

L 0 0 o 7_7_5ld _ —0
9aqg=9 @a@ _gdl_gdl_gld_?’ 91g = 9i1d =

and that the nonzero components of the Riemannian curvature in the com-

plex local system 2!,..., 2" are exactly R;5i7 and Ry, Moreover,

c
Rijki = _g(gﬁgki + gﬂg;k)

on the Kéhler manifolds of constant holomorphic sectional curvature ¢ (by
Proposition 7.6 of [KoNol p. 169]). From (3.17) we derive

Rik‘ik = { Z%(drs - 1) lf (Z’ k;) = (2T - ]-a 25 - 1) 9r (l,k) — (27“, 28)7
(30ps +1) if (i,k) = (2r — 1,2s) or (i,k) = (2r,2s — 1).

This shows that
c ‘
Ripir = 1(3(51']6/ + 1) Vi 7& k.
Plugging into (3.4]) yields

d 1+35zk’)
L Q= A+ Q40 Q0
dt* * +*{ ]kl ;; 1—|—A2 )\+)\)}
(1)
(1+X7)?
O

As in the proof of [MeWal §3,Cor.4], from this and Proposition we
immediately get the following result.

:A*Q+*Q{ (Ni, hjrr) + Z
odd

Proposition 3.9. Under the assumptions of Proposition for any A €
[1,Ao(n)) it holds that

(3.18) (d A>*Q>5 *Q|II|2+C*QZ(1_/\%)2
: ar = oA 1+ 22
dt o (L AL)
whenever % <N <A fori=1,...,2n. Here |II| is the norm of the second

fundamental form of 3.

From now on we shall assume ¢ = 0. In this case we can improve the
pinching condition.
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Proposition 3.10. Under the assumptions of Proposition[3.8, if c =0 and
@ s A-pinched with A € [1,00) then @, is still A-pinched on [0,T), i.e

>l

vg);()<A } . {/{gx\i(t)gA

., 2n Vi=1,...,2n and Vte|[0,T).

Here [0,T) is the mazimal existence interval of the mean curvature flow,
and T >0 or T = oo.

Proof. Since \;, ¢ = 1,..., are singular values of a linear symplectic map, we
have )% € {A1,..., dap}t for i =1,...,2n. (See Lemma 3 of [MeWa]). So the
question is reduced to prove

Vi=1,...,2n Vi=1,...,2n and Vtel0,T).

We shall use the method in [TsWal Section 4] and [Smo3] to prove this.
Let a/, j =1,...,n be as in Proposition With N =n. Set

. 1 . . . 1
¢ = ——(a*', \jE(a")) and &*"Ti=

V14N V1+ A

for i = 1,...,2n. Identifying the tangent space of M X M with TM @ TM,
let m; and 7o denote the projection onto the first and second factors in the
splitting. Then

(Jpaiv *)‘iE(Jpai))

(ei) ai (e’) AiE(ai)
n = — s, T = .
1 P 1+ A2
' Ja' ; ~\iE(Jab)
2n+1 IMti i

m = s T (& _ 7
for i =1,...,2n. Let us define the following parallel symmetric two-tensor
S by

A? Y)) — (ma(X), ma(Y
S(X,Y) = (m1(X), m(Y)) = (ma(X), ma(Y))

A2+E

for any X,Y € T(M x M ), where = > 0 is a parameter determined later.
Then
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AZHE. \/(1 +A2)(1+ %)

2ty — (A% + A X))0p5 (=1)7*!
AHE. \/(1 +A2)(1+A2)

(A% = XiXj)di

Sij = S(ei,ej) =

Sr(2n+j) = S(er’

)

S(2n+i)(2n+j) = 5(62n+i7 62n+j) =
A2HE . \/(1 +A2)(1+A2)
for ¢,7,r =1,...,2n, and the matrix S = (Sk)1<k,i<4n can be written in the
block form
A B
BT D
: A2—)2 A2=A2,
Where A =D = Dlag(w, ey W) SO
A is positive definite on ¥ if and only if
(3.19) 9 9 ,
A=A >0, i=1,...,2n.
Obverse that el, ..., e?" forms an orthogonal basis for the tangent space of

Y. As in [TsWal, Prop. 3.2], the pullback of S to 3; satisfies the equation

d
(3.20) (@ — A)Sij = —haiHaS1j — hajiHaSii + RiikaSaj + RijkaSai
+ hakihakiSij + hakihakiSi — 2hakihgrjSas
for i,7 =1,...,2n, where A is the rough Laplacian on 2-tensors over ¥,

hiji = G(Vé\?XMej, Jek), and Ryipa = R(eF, e, ¥, e) is the component of
the curvature tensor R of (M x M,G) with J and G = T g+ 75§ as in
Section 3.1.

Consider the 2n x 2n matrix (S;;) := (S(e’, €?)1<;i j<an. By we
only need to prove

(S”) >0att=0—= (Szj) > 0in [O,T).

This can be directly derived from the following analogue of [TsWal, Lemma
4.1]. O
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ops i P 9 9 .o
Proposition 3.11. Letaz"™ =y, i =1,...,n, and g;j = 9(3%, 507), 1] =
1,...,2n. For any given € > 0, there exists a parameter Z > 0 such that the
condition (Tij) := (Si;) — €(gij) > 0 is preserved along the mean curvature

flow.

Proof. Let a =2n+ pand B =2n+ v, u,v = 1,...,2n. Asin [TsWal, (3.20)
yields

d
(3.21) (dt - A> Tij = _haliHale - haleaTli

+ Rkikasaj + Rkjkasai
+ hakthakiTij + hakthak;Tii
+ 25ho¢kihakj - 2hakih,8kjsaﬂ‘

Let N;; denote the right hand side of (3.21). A vector V = (V1,..., V") is
called a null eigenvector V' of the matrix (T3;) if >, T;;V? = 0 Vi. By the
Hamilton’s maximum principle [Hal, Theorem 9.1], if we may prove

> NV >0

]

for any null eigenvector V' of the matrix (7j;), then the fact that (7j;) > 0
at t = 0 implies that (73;) > 0 on [0,T'), i.e. Proposition holds.
By a direct computation we only need to prove that at ¢ =0

(3:22) D> NyVVI = > | 2ehakibari VIV =2 hakihisrjSagV' V7
ij i,5,k,a B
+2 ) RiikaSag V'V
i,5,k,«
>0

for any null eigenvector V = (V1,... V?") of the matrix (T};). It is easily
estimated that
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2 Y hakibsriSasV'V
i7j7k7a76
=2 Z h2n+u,kih2n+u,kjS2n+u,2n+yvivj
0.,k 1,0
—9 Z h2n+u k1h2n+u kj (A2 - )\,u)\u)(swzvzvj

it AR AR+

o A2 = )2
=2) > | D henspkihontprs V'V AFE (14 A2)
: 8

o A2 o )\2
o 1,7 v

<= E honspkihonyui; V'V
4,5,k 1

Here in the first inequality we used the facts
[ Zz(albl) < (Zz CLZ)(ZZ bl) for a; > 0, bl > 0, and
L4 Zi,j h2n+u,kih2n+p,kjvivj = (Zz h2n+u,kivi)2 > 07

and the second one comes from the inequality

A2
Zm ZA2+— <3

So the first sum in the right side of (3.22]) becomes

D | 2€hakihar;VIVI =2 hakihgriSapV VI
1,7,k B

4n
> g hontpkihontp V'V (26 — r)
4,0k.p

because a =2n+pand 8 =2n+v, u,v=1,...,2n.
For a given € > 0 we can choose =
(13.22) is proved if we show

937

/2(; > 0. Then
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E Rkikasajvivj >0
i7j7k7a

for any null eigenvector V' of the matrix (7;;). But this is obvious because
(M x M,G) is flat and hence R = 0. O

From Propositions and we immediately obtain the following
strengthen analogue of Proposition [3.9

Proposition 3.12. For someT >0 let [0,T) >t — ¥; be the mean curva-
ture flow of the graph % of a symplectomorphism ¢ : M — M, where M and
M are Kahler-FEinstein manifolds of constant holomorphic sectional curva-
ture 0. Let xQ(t) be the Jacobian of the projection m : ¥y — M. For the
constant No(n) in and any A € [1,Ao(n)), if ¢ is A-pinched initially,
then x$ satisfies

<jt —A) % Q> 60 x QI

along the mean curvature flow, where d5 is given in (@ In particular,
miny, *€2 is nondecreasing as a function in t.

4. Proofs of Theorems [1.1], and
4.1. Proofs of Theorems

Using Propositions and (resp. Remark and almost repeating the
arguments in §3.3, §3.4 of [MeWa] we can complete the proof of Theorem
(resp. Theorem [1.2]).

4.2. Proof of Theorem [1.3]

4.2.1. The long-time existence. Embedding M X M into some RY iso-
metrically, as in [MeWa] the mean curvature flow equation can be written as
4 F(z,t)=H=H+V in terms of the coordinate function F(z,t) € RV,
where H € Ty, (M x M)/Tgt and H € Tx, RN /TS, are the mean curva-
ture vectors of ¥; in M x M and RY, respectively, and V = —IIj/(eq, €q)-
Suppose by a contradiction that there is a singularity at space time point
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(yo,t0) € RY x R. Let dy; denote the volume form of ¥, and let

- 1 —ly — wol?
Plaoto)(¥>1) = T —gyym P <4(to—t>>

be the backward heat kernel of p(,, ;) at (yo,%0). Under our present assump-
tions, as in [MeWal page 328] we can still use Proposition to derive the
corresponding inequality of [MeWal page 328], that is,

d
% (1 — *Q)p(yo,to)dﬂt
< —0p | #QI1|? d —*Q VI,
> A * HIIH P(yo,to) Mt + (1 * )p(yo,to) 4 Kt
_/(1—*9) ;+F+K2d

Then the expected long-time existence can be obtained by repeating the
remain arguments on the pages 328-330 of [MeWal].

4.2.2. The convergence. Let ¢: M — M be a A-pinched symplecto-
morphism with A € (1, Ag(n)). Take an arbitrary A; € (A, Ag(n)).

Lemma 4.1. (Djokovic inequality):

tan z >$+%$3, \ z:f0<1:<%,
<z+ fla)z, if0<z<a<i,

where f(o) = BR2=0 "in particular f(F) < 5.

The following lemma is key for us.

Lemma 4.2. For every Ay € [1,Ag(n)) there exists a Ay > 1 such that for
every A € (1, A1) we have k,l > 0 to satisfy

(4.1) g.znl>\/(\/ﬁ—3)/2- <A+[I\>nl,

(4.2)

l
(4.3) g>k<2{l>l>k<1l)n> >/ (V21 —3)/2.



940 G.-C. Lu and B. Xijao

Moreover Ay is more than or equal to

0.1414466, 0.1414466, 0.1414466 4, B
2exp| ———— | F2exp | ———— exp|——|—-1-1] .
5n 10n 5n

Its proof will be given at the end of this section.
By the assumption of Theorem we have Ay € (A, Ag) such that A <
A;. Fix this A1 below. By Proposition [3.12| we have
d

(4.4) %*QZA*QMAI-*Q-UI\?.

From [Wa2, Section 7] we also know that

d o o
(4.5) %|H|2 = AII]> = 2|VII* + 2 [(Vo, R)siji. + (Vo, R)skir)] hsij
— ARyijihsikhsij + 8Rs tikhtirhsij
— 4Rpikhsiihsij + 2Rspirvijhsij

2
+ 2 Z (Z(hszkhtmk - hsmkhtzk))

s,t,0.m k

2

s (zhsijhsmg ,
i?j?m7k 8

where R is the curvature tensor and V is the covariant derivative of the
ambient space, s = 2n + s. Now on one hand

2 2
(46) 2> (Z(hmkhtmk—hmkhm) +2 ) (Zhsijhsmk>

s,tyi,m k i,9,m.k s

. 4;71[(; ,hsik‘z) (Zk: \htmﬁ) 4 <Zk: |hsmk!2> (Zk: rhm-k!Q)]
()

Z‘,j,m,k s
_ § : 2 § : 2 § : 2 § : 2
=38 hsik h‘tmk +2 hsij hsmk:
8,k t,m,k $,4,J s,m,k

= 8|II* 4 2|11|* = 10|1T|*,
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where the first inequality comes from

2
(Z(hsikhtmk - hsmkhtzkz ) (Z |hszkhtmk| + |hsmkhtzk|)>

. ((kzk:hk2> (Z!htmk!2> + !hsmkp)é (Zk:htw)é)g

E
e () (o) ()

This and (4.5)—(4.6]) lead to

=

d
(4.7) %\HF < A|ITP* = 2|VIT|? +10[I1)%

We hope to prove that maxsy, |[I1|> — 0 as t — oco. To this goal, for pos-
itive numbers k, [, s determined later let us compute the evolution equation

of m as follows:

B 1 diII?  s-k-1(xQ)'"YII|? cos(k(*Q)") d * Q
T sin(k(+Q)Y]* dt [sin(k(xQ)!)]sH1 dt -’
1117
> (i)
AT skl 112 - (*Q)1 - cos(k(*Q)1) - A % Q
 [sin(k(xQ)1)]s [sin(k(+Q)!)]s+1

25kl VIII? - Q)1 - cos(k(xQ)!) - V + Q
[sin(k(x)1)]*+!

L5 k212|112 - (xQ)%72 - sin(k(xQ)!) - |V + Q)2
[sin(k(+€2))]s

s-k-1-(1=1)-|IT)% - (xQ)'72 - cos(k(xQ)!) - |V x Q?
[sin(k(+)")]>+
L (s+1)-k2- 12112 - (+Q)%72 - (cos(k(x2)1))% - |V % Q2
[sin(k (+62)")]>+2
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and hence

(4.8) (jt B A) ([SHI(LI(ﬂ;)l)])

_ 1 4 2
= gy (i~ 2) 7
s-k-1- T2 (xQ)'=1 - cos(
B [sin(k(xQ)!)]+1 ( dt )
4 s-k-U-|II|-V|II|- (x0T - cos(k(xQ)!) - V x Q
[sin(k(xQ)!)]sH
s k212 |IT2 - (+Q)%72 - sin(k(*Q)Y) - |V * Q)2
[sin(k(+€2)") ]+
L5 E-l-(1—1)-|11)? - (+2)2 - cos(k(*Q)!) - |V % Q?
k(s
5+ (s 1) K2 2 T2 - ()22 - (cos((x))))? - |V 5 O
[sin(k(+)1)]*+2
B o vir? +10[111 s k-1-0n, - [TI[*- () - cos(k(x0))
[sin(k(xQ)!)]s [sin(k(+Q)!)]s+1
4 s-k-1-|II-V|II|- Q)1 - cos(k(xQ)!) - V * Q
[sin(k(+€2)")]**+
+ (the last three terms)

_ 2P wnlrieiye (Y
= Fn(k(onp O] ([sinw(*ﬂ)l)]s)

— S K-l -*l-cos*l~sin*ls_1$2
k10, - (xQ) - cos(k(+Q)") - [sin(k(xQ)")] <[Sin( ))]S>

k(xQ)!
N 4-s-k-1-|II|-VIII|- (*Q)71 - cos(k(*Q)!) - V % Q
k()1
+ (the last three terms).

Note that the Cauchy-Schwarz inequality implies

2
2n 2n 2
2> e hikiOihg
2 gl 1Y j
VP =% | v Z W :Z< ’ o|11] >
=1 k=1 i—1

2n
Sk
= Z ( J Z (Dihjri) ) < Z (Oihjr)? = |VII|.
i=1 j?kvl

Z'7j7k7l
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The term in (4.8) becomes

4-s-k-1-|II|-V|II|- (*Q) 71 - cos(k(xQ)!) - V % Q
[sin(k(+)")]**1
cAsek L]V - (xQ) 1 cos(k(xQ)!) - |V + Q|
[sin(k(+€2)))]*+!
4 s-k-l-|II|-|VII|-(xQ)"1 - cos(k(xQ)!) - |V % Q

[Sln(k(*Q)l)]Ht 1 l
B 4 sk |[II]- (xQ)" - cos(k(xQ)") - [V« Q]
 [sin(k(xQ)})] [ sin(k(xQ)!) Vil
< 2 [ k212|112 - (5272 - (cos(k(xw)))? - |V + Q)2
= SN (sin(k(x0)D)?

+ \VIIF]
B k22T - (+)272 - (cos(k(x)1)2 - |V % Q)2
N (sm(k:(*Q) ))st2
2|V II[?
[sin(k(+)1)]*

Hence we arrive at

(=) ()
< 10[sin(k(xQ)")])* (W)Q

, . 112 2
Bk (i)
2.2 k212|112 (xQ)272 - (cos(k(xQ)))2 - |V + Q|2
(sin(k(+)"))*+2
s k212|112 - (+Q)%72 - sin(k(xQ)!) - |V Q|2
[sin(k(x)1)]*+!
ek E-l-(1—1)-|IT)% - (xQ)'72 - cos(k(xQ)!) - |V x Q?
[sin(k(+2)))]>+!
s-(s+1)- k212|117 - (xQ)%72 - (cos(k(x2)1))% - |V % Q2
[sin(k(+)1)]*+2

— s k16, - (xQ) - cos(k(Q)"

—_— =
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2 2
~ (i) -l
- [10- sin(k(+Q)!) —s-k-1- 8y, - (+Q)!- cos(k(*Q)Z)]
s-k-1- () 21|V % Q)2
[sin(k(+€2)")]*+2
— k-1 ()L (sin(k(+))2 + (1 — 1) cos(k(*Q)!) sin(k(*Q)1)].

(s —1)- k-1 () (cos(k(xQ)))2

Take s = 1 we obtain

w0 (Ea) (i)

2 2
< <sm(|kzj({l|<Q)l)> . [10 . sin(k(*Q)l) —k-1-6p, - (*Q)l . COS(k(*Q)l)]

k-1 () 2112V % Q)2

[sin(k(xQ)!)]? (k-1 (+Q)" - (sin(k(x2)"))?

+ (I — 1) cos(k(xQ)") sin(k(*Q)l)}.

Claim 4.3. If the positive numbers k,l satisfy f n Lemma
then

10sin(k(Q)) — k- 1- 64, - (+Q)" - cos(k(xQ)!) <0

and
(1—1) - cos(k(xQ)") — k- 1- (+Q)! sin(k(xQ)") < 0,
that s
-1 o L-6a, k- (xQ)
(4.10) e < tan(k(xQ)") < 10
for any *Q € [, ﬁ] with 1 < A < A,.

We put off its proof. Then (4.9)) becomes

(i_A>@mﬂiw>

2 2
< <81n(|lig>’k9)l)> 10 - sin(k(+Q))) — k- 1-6a, - (xQ)!- cos(k:(*Q)l)].
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Let g = % and
K = 0 [max | [10- sin(k(+Q))) — k-1 64, - (xQ)" - cos(k(*Q)l)].
e re=sTits

By Claim [4.3] K; < 0 and

d
4.11 — _A)g< K- ¢
(4.11) (dt )g_ 1-9

Consider the initial value problem

(4.12) —y=K;-y* and y(0) = maxy,g.

dt

The unique solution of it is given by y(¢ R 4.11)—(4.12) the
comparison principle for parabolic equatlons yleici
1117

9= sin(k(xQ)!) <ylt) vi>0

Since (4.3]) implies that the function

(A+1 Ty 2171] 5 #Q — sin(k(*Q)")

is bounded away from zero, we derive

1 y(0)
1P < aE :
I%%X‘ | sm(k(zn)) 1—y(O)K1t_>O’ t — oo

The desired claim is proved. So up to proofs of Lemma and Claim
we have proved that the flow converges to a totally geodesic Lagrangian
submanifold at infinity.

Proof of Claim[{.3 Fix the positive numbers k, ! satisfying (4.1)-(4.3) in

Lemma [4.2] By (4.3)) we have

I l
72r>k<21n) zk.(*ﬂ)lzk-<m> >/ (V21 -3)/2

because *Q € [+, 5] Note that

e

1
(V21 —3)/2 = inf{m(x +5a)21]0<a < 7r/2} ~ 0.8895436175241
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™

sits in [5e577, 35576)- By Lemma (the Djokovic inequality) we get

() (tan(KG))) > k- (4 (k- (+0)' + 5 (k- (D) > 1> L1,

that is, the first inequality in (4.10]). Similarly, the second inequality in (4.10)
follows from (4.2)). Claim is proved. O

Proof of Lemmal[{.2 For conveniences we set 7:=7(A) = A + %, which is

larger than 2 because A > 1. Since § > 1/(v/21 — 3)/2 we may fix a small

€ > 0 such that
g > g —e>1\/(V21—3)/2.

Set a = § — . Then (4.1) holds for any

In <a/ (V21 — 3)/2>

4.13 [ <
( ) nln%

More precisely, such a [ satisfies

a-2">4/(V21-3)/2- "

Hence we can always take k = k; > 0 such that

(V21 =3)/2- " <k <a-2™

or equivalently

l
72T>a2k:'<21n>l>k:~((A+11)n> Z\/m‘

if k- (55)! < . So (4.2) holds if £ > 0 and I > 0 are chosen to satisfy

! 2
%21+f(a)a221+f(a) <k (;))
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or equivalently

(4.14) 1>
oA

. (1 + f(oz)a2) )

1

Hence we can take [ > 0 to satisfy (4.13) and (4.14) if

In (a/ (\/ﬁ—3)/2> 10
> . (1 +f(oz)oz2) .

nln 3 oA

(4.15)

1

Since the function

(1,00) = R, Ai—>A+%

is strictly increasing, log 7 — 0% as A — 17. Hence for a given

g>a>\/(\/ﬁ—3)/2,

there exists the largest Aga) > 1 such that 1} holds for 7 =7, = Aga) +
1A e,

a1n<a/ (@—3)/2) on 7

. = > . —
(4.16) g(@) P— = In 5

Of course, {D also holds for for every 7 = A + % with A € (1, A(la)). Then

A = sup{Aga) ’ V (V21 -3)/2< a < g and (4.15) holds for 7 = Ta}

satisfies the desired condition. In Appendix [A] we shall prove

Claim 4.4. There exists a unique ag € (1/ (V21 —3)/2,5) such that

stan) =sup{gfe) \ VWa-92<a< )

Moreover ag =~ 1.238756 and g(ap) ~ 0.141446.
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Hence Ay > A(O‘O) where A( %) is determined by

” 1
ln Ag 0) + ﬁ — hl 2 s
A
or more precisely

Ag%) — <2 exp(*g(ag,)f“> +2ex p( o) A1>\/ ( 990 6“) —1- 1)
~ <2 eXp(O'Ml;;lG(SAl) + 2exp 0. 1414(1;1166,\1 \/ 0. 1414466A1) 1 1) ‘

This completes the proof of Lemma O

10n
g(ao) = 5

Ay

0=

In summary the proof of Theorem [T.3]is complete.

5. A concluding remark

Carefully checking the proofs of Theorems we find that our real 2n-
dimensional compact Kéhler-Einstein manifolds (M,w, J, g) all satisfy the
following three conditions (A), (B) and (C):

(A) The curvature tensor R is constant on subbundle
{(X,JX,)Y,JY)|g(X,)Y)=0,¢9(X,JY)=0,9(X,X)=1=9g(Y,Y)}.

In other words, for any p,q € M and any unit orthogonal bases of (1),M, J,,
gp) and (T,M, Jy, 94), {ai1,...,a2,} and {d}, ..., d},} with agx = Jpask—1
and a, = Jyab, 4, k=1,...,n, it holds that

R(a;,ag,a;,ax) = R(a, a),a;,a)) V1 <ik<2n.

If (M,w,J,g) is also homogeneous, this is equivalent to the following
weaker

(A’) For any p € M and any unit orthogonal bases of (T, M, Jp, gp), {a1, ...,
asn} and {a},...,ah, } with agy = Jpag,—1 and aly, = Jyab, ., k=1,...,n,
it holds that R(az,ak,az,ak) R(az,ak,az 1) forall 1 <i,k < 2n.

(B) Re(R(X,Y,X,Y)) <0 for any X,Y € T1O M.
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(C) The holomorphic sectional curvature is positive, i.e. 3¢ > 0 such that

R(u, Ju,u, Ju)
u—+v—1Ju uv++v-1Ju v—+—-1Ju v+ +v—1Ju
:_4R< 2 2 2 ’ 2 )ZCO

for any unit vector u € T M.

By Propositions and Corollaries the manifolds (G(n,n
+m;C), h), and (G'(n,2n), hy1) and (G (n,2n), hiyy) satisfy these condi-
tions. On the other hand, from we see that (G (1,n + 1), hry) does
not satisfy the condition (B) though the condition (C) holds for it. Actually,
in addition to irreducible Hermitian symmetric spaces of compact type, there
also exist countably Kéhler C-spaces associated with a complex simple Lie
algebra of classical type that have positive holomorphic sectional curvature.

We may obtain the following theorem, which generalizes Theorems [1.1
and but partially contains

Theorem 5.1. Let (M,w,J,g) and (M,(D, J,§) be two real 2n-dimensional
compact Kdhler-Einstein manifolds satisfying the above conditions (A) and
(B). Then for any A-pinched symplectomorphism ¢ : (M,w) — (M,w) with
A € [1,A1(n)]\ {oo}, where Ai(n) is given by (1.1), the following conclu-
stons hold:

(i) The mean curvature flow 3¢ of the graph of p in M x M exists smoothly
for allt > 0.

(i) X is the graph of a symplectomorphism ¢y for eacht > 0, and py is Al -
pinched along the mean curvature flow, where A, is defined by .

(i) If A < Ay for some Ay € (A, Ay(n)]\ {oco}, where Ay > 1 is a constant

determined by A1 and n (see Lemma , then the flow converges to
a Lagrangian submanifold of M x M as t — oo.

(iv) The flow converges to a totally geodesic Lagrangian submanifold of
M x M and ¢ converges smoothly to a biholomorphic isometry from
M to M ast — oo provided additionally that (M, w, J,g) and (M,&, J,
g) satisfy the condition (C). Consequently, the symplectomorphism ¢ :
M — M s symplectically isotopic to a biholomorphic isometry.

In order to prove it we start with two simple lemmas.

Lemma 5.2. Let R be the curvature tensor of a Kdihler manifold (M,g,J,w)
of real dimension 2N . For any local holomorphic coordinate system (2%,...,2")
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on it, let Ryzs = R(%, ai 2 %) and z2° =2° +v—1y%, s=1,...,n.
Then

g 90 0 0 o o0 0 0
T A A Ay ) T =—4 rsrs
R (8;103’ oy’ Oxs’ 8y7“> R (8333’ dz"’ Ozs’ 8;107“) Re(Brsrs)

for all r;s. In particular, we have

<8888

T a as | = 4Rssss Vs,
Oxs’ Oy’ Oxs’ 8y5> s

i.e., the holomorphic sectional curvature in the direction 623 s given by

5 ARqs55
H < > — _ _ 8888 )
Oz [9( 50+ 5]

Proof. Since the only possible non-vanishing terms of the curvature compo-
nents are of the form R,;,; and those obtained from the universal symmetries
of the curvature tensor, it is not hard to prove that

:R<8 8\/_—1<8 8) 0 B\E(G 8))

FEMPE dor 07 ) 0z 0z dor 07
- - (RT§T§ + Rs?s? + Rr?s? + Rs?r?)

and

g 9 o9 0
<3:US7 o™’ Oz’ 8;167“)
3} o 0 o 0 a 0 0
<azs MR P Al R a)

r5r5 + Rsrst — Rossr — Rsrs.

Note that R,55 = Rsysr = Rersr. It follows from this and (5.1)—(5.2) that
R(2 0 0 0N (0 0 0 o
oxs’ Oy" Oxs’ Oy” Oxs’ 0x" Ox*’ Ox”
= —2R,55 — 2Rgrs7 = _4Re(RT§r§)-

The second equality may be derived from ([5.1)) directly. Lemmais proved.
O
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Lemma 5.3. Under the assumptions of Lemma if (M,g,J,w) also
satisfies the condition (B), then Re(Rys5) <0 for all1 <r,s <n.

Proof. Set X =", ui% and Y = Z?Zl vj% with u;,v; € C. Then

Rwyxy%.ij%,a o 9 a>

Uiz, Vj o= Uk 775 UVl 7
. "0z oI’ ok T o
Z7Jak’l:1
n
= E uiukvjleﬁkz
1,5,k,1=1

and

. n o _ 0 o _ 0
R(Y,XaYaX) = ‘ Z R<Uj8zj’uiazi’vl8zl’ukazk>

n
= E UjUZHinRﬁlE-

Since R ik = Rz’}ki we get

R(X,Y,X,Y)+ R(Y,X,Y,X)

n

= Z (uiuk@jﬂlRiEkz—|—uiuk5j5lRﬁki)
i»jvkvlzl

= R(X,Y,X,Y)+R(X,Y,X,Y)
= 2Re(R(X,Y, X,Y)).

Taking X = %, Y = %, the desired results are obtained. O

The following proposition implies Theorem [5.1{i) and (ii).

Proposition 5.4. Let (M,w, J, g) be a real 2n-dimensional compact Kdhler-
Einstein manifold satisfying the conditions (A) and (B). Then for any sym-
plectomorphism @ : M — M it holds that

d
(5.3) @*Q > Ax Q4 +Q - Q(Ni, ),

along the mean curvature flow ¥y of the graph ¥ of . Furthermore, if o is A-
pinched for some A € (1,A1(n)), then the symplectomorphism @ : M — M,
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whose graph is X, is A, -pinched and

(5.4) %*QZA*Q+5A~*Q]II]2

along the mean curvature flow. In particular, miny, %€ is nondecreasing as
a function in t.

Proof. By (A), Rikir = éz;ﬂk Vi, k. Hence the second term in the big bracket
of 1' can be written as follows (omitting |, in %|p and %]p),

Rigir — A; Rigir) Rikir
(5:5) ZZ 1+ZA2 (N + Air) ZZ 1+A2 A+/\Z)

-y eloh DR (e e e )
(1+)\2r l)()‘2s—1+)\25)

k=2r—1,i=2s—1,r#s

2 o) 0 0 ol
)‘28(1 - )\27" I)R (Ty? o7 dy* 6x“">

' k=2r§i:25 (T4 A3,_1) (Aas—1 + Aos)
Ly Mo 1(1= )R (50 2 o )
k=2r, i=2s—1 (14 A3,)(A2s—1 + Aas)
Ly Aas(1— N3, )R (ay,ayr,ayww
k=2r,i=2s r#s (1+A3,)(A2s—1 + Aas)
— Z 835 ’dg 78(2: ) Jxm ) [)‘25 1(1 )‘27~_1) Aos(1 — )\%T):|
(A2s—1 + Aas) 1+, ) (1+A2)

S (8(25’ 57 372 o ) (A3, = 1)(A2s — A1)

(A2s—1 + Aas) (14 23,)
= (A3, = D(A2s — Aas—1) [R (‘9 0 9 3)
B — (Aas—1+ A2s) (1 + A3,) x5’ Qyr’ dzs’ Ay”
N
0x3’ 0z Ox® Ox”
_Z()\%r—l)(/\%s—l) p(9 0 0 9
TN+ A [ \oa ay 0z By

_p(o 9 9 9
Oxs’ 9x"’ Oxs’ Ox”
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S | N R}
2)0(1+ M%) Oxs’ Oy’ dxs’ Oy"

rs
o o9 o0 0 }

(3w 507 55 B
(A3, —1)(A3,—1) o 9 9 o
T S R v v v o
Gy [* e o e oy
_p(2 0 92 9
oxs’ 0z Oxs’ Ox"

_ 3y 5 DG - 1)
E ; (12—’— A%s)(la‘ )\%r) [_4R’e(R7‘§r§)]

A2 12 -1
i Z:: El2+ A%S;Eﬁ A%«; [—4Re(Rsss3)] = 0

because of Lemmas and our choice that \o;_1 <1< \g;,i=1,...,n.
This leads to (5.3)).

Now if ¢ is A-pinched, then £ <X;(0) <A for i=1,...,2n. Since A (n) <
Ap(n) in the case Ag(n) < oo, by Proposition |3.4 we get

Q(Ai(0), hjr) > oo Z ha

ijk

and hence (4 — A) «Q > 0 at t = 0. Note that Lemma 5 of [MeWa] implies

that 2171 —€e(n,A) < xQ at t =0, where €(n,A) = 2n — (A+1)n. Then repeat-
ing the proof of Proposition 4 and Corollary 5 in [MeWa] we may get (5.4} .
O

Using this proposition we may prove the long-time existence in Theo-
rem [5.1] (i) as in [MeWal, §3.3] (or that of Theorem [L.1)).

The proof of Theorem ( ii1). The idea is similar to that of Theorem
All arguments from the beginning of Section 4.2.2 to in the proof
of convergence in Theorem [I.3] are still valid. Then there exists a positive
number Ky depending on the manifolds M and M such that

2
> (Z[(VakR)szjk + (VafR)skik)O < K

8,8,7 k
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and hence
> 2[(VoR)siji + (Vo,R)gwir)] hsij < Kz + |11]*.

S7i)jik

As there it follows from the boundedness of the curvature that
d
(5.6) £|II|2 < AIT?? = 2|VIT)? + 1011 + K| T + Ko,

where K7 is a nonnegative constant that depends on the dimensions of M
and M. With the same proof we may get the corresponding result of (4 ,
ie.

o0 (i) (wean)

9 2
< (i ) - 10-smEGO)) k16, (40)' - cos(k(:))

k-l (xQ)! 21112V % Q|2
k()0

[~k -1 (+Q)" - (sin(k(x2)"))?

+ (1 — 1) cos(k(xQ)") sin(k(*Q)l)]
|11? Ko

TR e T s

By Claim it follows from (/5.7)) that

d 11?
() (W>
ﬂ . .gin % N _1..7. (% l'COS N l
= (sin(k(*Q)l)> [10 (k(x2)") — k- 1-0p, - (x02) (k(+Q)")]
111 K

RGeSk
Let g = I K, := max —-2 = LE and
sin(k(:Q)7)’ sin(k((2)") sin(u—l >l>
ek
Ky = max [10 - sin(k(+Q)) — k- 1-6a, - (+2)" - cos(k(+)1)].

%)n yom

*Qe {(A% fl]
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By Claim K3 <0 and
(5.8) ((Z—A>ggK3-g2+Kl-g+K4.
Consider the initial value problem

d
(5.9) P Ks-y>+ K -y+ K4 and %(0) = maxy,g.

If y(0) > St K%_4K3K4, the unique solution of lb is given by

2K

y(t) . (K1+\/Kf—4K3K4)~exp(\/K%—4K3K4t+K5)—K1+1 /K?—4K3Ky
- b

—2K3-[exp(\/K%—4K3K4t+K5)—l]

2K3y(0)+K1—+/ K?—4K35K,4 Clearly y(t) _ Ki++v/K?—4K3K, as

2K3y(0)+K1+\/K12—4K3K4 —2K;

where K5 =1In

t — oo.
—Ky—/K?—4K3K,4 _ —Ki—/K?-4K3K,
If y(0) = e , then y(t) = K .
If y(0) < —fs '211({123_4K3K4, then there exists a 7' > 0 such that on [0, 7]

we have y(t) —

K1\ K2 — 4K3K4
D+ — | =— K2 — 4K3K t + K it Siuleldnbuli i
(5004 55 ) = —exy/KE = aara + 1) LS

where K5 = In (—y(())2 - K%io) - %) It follows that

K2—4K3K,
In(Z—="=) — K5 - _ KoK - R ARGE,
VE? —4K3K, 2K 2K '

Hence we can continue this procedure and get

K1\ K2 — 4K3Ky
D+ — | =— \/K? —4AK3K it + K it S
(y( )-l- 2K3) exp( h s K4t + 5)+ 4K§ >0

for all time ¢ > 0. From this we derive

K K2 — 4K3K,
1) = —— — K2 — 4K Kat + K. -1 ens
y(t) 2%, +\/ exp(y/ Kj 3Kt + Ks) + e

K, N K} —AK3Ky  —Ky — /K] — 4K3K,
2K AK? N 2K3

— Ky —/K?—4K; K
—g— <0, and therefore

T =

IN
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if — KL < y(0) < Ky KIZAKKs and

2K3 2K3 ’
K K2 — AK3K,
H)=——1 — [ K2 —4KsKyt+ K5 | + —L—— 324
) = =35, \/ exp(x/ i 3Kt + 5>+ 12
<K
- 2Kj

if 0 <y(0) < -5
By (5.8)—(5.9)) the comparison principle for parabolic equations yields
11?

gszy(t) vt > 0.

Since (4.3)) implies that the function

1

m, 27 > %) — sm(k(*Q)l)
A

is bounded away from zero, we derive

1) 1
2 < qi . < qj - l .
max |[I1|* < sin <k <2n> ) y(t) <sin <k‘(2n) ) L,

where [ = —F%1= ”2I§3_4K3K4 if (0) > _QII<(13’ and L = —211%3 if 0 <y(0) <
K

—35; - Hence |IT]? is uniformly bounded. Namely, we have proved that the
flow converges to a Lagrangian submanifold at infinity provided that the
flow exists for all the time. (Note: Different from the case of tori we cannot
prove maxy, [II|?> — 0 as t — 0o, and hence cannot assert that the limit
submanifold is totally geodesic.)

The proof of Theorem [5.1|(iv). The idea is similar to that of Theorem [1.1]
In the present case we have the following

Proposition 5.5. Under the assumptions of Proposition suppose fur-
ther that (M,w, J, g) also satisfies the condition (C). Then along the mean
curvature flow a similar inequality to that of Proposition[3.5 holds, i.e.

(1— A

d 2
T HEQZ A Q0 TP+ o 50 Y (1+A2)2

k odd
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Proof. Under the further assumption, by (5.5) we have
Z Z zkzk - >\ Rzkzk)
2
s T+ 20N+ M)

A3, —1)(A3, — 1
N Z E1Q+ 22 5211 3 ; [=4Re( Frsrs)]

08, ~ D03~ 1) 08, ~ D03~ V)
L = _4R ssss - : :
+Z (14 A2, 1+A2T)[ o(R COZ 1+ X22)(1+2)

This and Propositions [3.3] [3.4] give the desired inequality. O

As in [MeWa], using this we may prove that \; — 1 and maxy, [I1]*> — 0
as t — oo, and hence that the flow converges to a totally geodesic Lagrangian
submanifold of M x M as t — 0o and that ¢; _converges smoothly to a
biholomorphic isometry ¢oo : M — M. Theorem [5.1|is proved. O

A theorem by Matsushima and Borel-Remmert claimed that every com-
pact homogeneous Kéahler manifold is the Kéahler product of a flat complex
torus (known as the Albanese torus of (M, J)) and a Kéhler C-space (cf.
[Bel, Theorem 8.97]). As a consequence, a compact homogeneous Kéhler
manifold admits a Kéahler-Einstein structure if and only if it is a complex
torus or is simply-connected. If we restrict the manifolds in Theorem to
homogeneous Kéahler-Einstein manifolds, then Theorem has sense only
for simply-connected case (because the better result has been obtained for
complex tori).

Appendix A. Proof of Claim

For simplicity write L := 4/ (v/21 — 3)/2. Then the function g(«) in (4.16
is equal to aln(a/L)/ tan . A direct computation yields

g (a) = — ! 5[sina - cosa - In(a/L) + sina - cos o — aln(a/L)],
(sina) o
(A1) ¢"(e) = (sinla)3 [(sm a)a- “F2 4+ 2acosa- In(a/L)

—2sina — 2sina - In(a/L)|.
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Clearly, limq—,z g(a) = 0 = g(L), and g(a) > 0 on (L, ). Moreover,

1
tan L

g'(§):—gln (=) <0 and ¢(L)=

> 0.

(Note that L ~ 0.8895436175241 sits between z5= and 5457+). Hence g(a)
attains its maximum at some point ag € (L, 7/2) with ¢'(a) = 0. Since any
zero a of ¢’ in (L, 7/2) satisfies the following equation

sina - cosa - In(a/L) +sina - cosa — aln(a/L) = 0,

plugging this into (A.1]) we get

1 [(sinw)?-
g (a) = (Sina)? -(sm a)a % 4 2acosa- In(a/L)

—2sina — 2sina - ln(a/L)}

1 [(sina)?-
= o) (sina)” - cosa —2sina — 2sina - In(a/L)
sin « o

+2cosa- (sina - cosa)(l + ln(a/L))]

sin a)? - cos o
_ 1 . [( ) — 2(sin a)3 — 2(sin a)3 ln(a/L)}

"~ (sina) a
1
= — [Cosa—251na—2sina-ln(a/L)].
sina | «
Observe that the function u(a) = “2% is decreasing on (L, ) because of

W (o) = - _ <2 () From L ~ 0.8895436175241 we derive

cos & Cos cos L
—2sina — 2sina - In(a/L) < —2sina <

—2sin L < 0.
«

™

That is, g"(a) < 0 for any zero a of ¢’ in (L, T). It follows that each zero «

of of ¢" in (L, §) is a local maximum point of g. This implies that ¢’ has a
unique zero ag in (L, §) and that

ao(cos ag)?

g(ap) = (cos a0)2 (1+In(ap/L)) =

ap — sinag - cos o

is the maximum of g in (L, 5). We can compute o =~ 1.238756 and g(cp) ~
0.141446.
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