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In this paper, we generalize Medos-Wang’s arguments and results
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1. Introduction

A symplectic manifold (M,ω) is said to be Kähler if there exists an integrable
almost complex structure J on M such that the bilinear form g(X,Y ) =
〈X,Y 〉 := ω(X, JY ) defines a Riemannian metric on M . The triple (ω, J, g)
is called a Kähler structure on M , g and ω are called a Kähler metric and a
Kähler form, respectively. Such a Kähler manifold is called a Kähler-Einstein
manifold if the Ricci form ρω ≡ ρg of g satisfies ρω = cω for some constant c ∈
R. For a Kähler manifold (M,J, g, ω) let Symp(M,ω) and Aut(M,J) denote
the group of symplectomorphisms of the symplectic manifold (M,ω) and
the group of biholomorphisms of the complex manifold (M,J), respectively.
Their intersection is equal to the group of isometries of the Kähler manifold
(M,J, g, ω), I(M,J, g) := {φ ∈ Aut(M,J) |φ∗g = g}.

Assume that M is closed (i.e. compact and without boundary). It is
well-known that Symp(M,ω) is an infinite dimensional Lie group whose Lie
algebra is the space of symplectic vector fields. A lot of symplectic topol-
ogy information of (M,ω) is contained in Symp(M,ω). (See beautiful books
[Ban, HoZe, McSa, Po] for detailed study). On the other hand I(M,J, g) is
a finite dimensional Lie subgroup of Symp(M,ω). Hence in order to under-
stand topology of Symp(M,ω), e.g. its homotopy groups, it is helpful to
study the topology properties of the inclusion I(M,J, g) ↪→ Symp(M,ω). Let

g
(n)
FS and ω

(n)
FS denote, up to multiplying a positive number, the Fubini-Study

metric and the associated Kähler form on the complex projective spaces
CPn respectively, and let i be the standard complex structure on CPn.
In his famous paper [Gr] Gromov invented a powerful pseudo-holomorphic
curve theory to study symplectic topology and got:

• For any two area forms ω1 and ω2 on CP 1 with
∫
CP 1 ω1 =

∫
CP 1 ω2,

Symp(CP 1 × CP 1, ω1 ⊕ ω2) contracts onto I(CP 1×CP 1, i× i, g(1)
FS ⊕

g
(1)
FS ) = Z/2Z extension of SO(3)× SO(3) ([Gr, §2.4.A1]), and

Symp(CP 1 × CP 1, ω1 ⊕ ω2) cannot contract onto SO(3)× SO(3) if∫
CP 1 ω1 6=

∫
CP 1 ω2 ([Gr, §2.4.C2]). (A simple application of Moser theo-

rem can reduce these to the case ω1 = aω
(1)
FS and ω2 = bω

(1)
FS for nonzero

a, b ∈ R).

• Symp(CP 2, ω
(2)
FS ) contracts onto I(CP 2, i, g

(2)
FS ) ([Gr, §2.4.B′3]).
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For Symp(S2 × S2, ω
(1)
FS ⊕ λω

(1)
FS ) with

∫
S2 ω

(1)
FS = 1 and λ 6= 1, so far some

deep results were made by Abreu [Ab], Abreu and McDuff [AbMc], Anjos
and Granja [AnGr] and others following an approach suggested by Gromov
[Gr, §2.4.C2]. (See McDuff’s survey [Mc] for recent developments).

In past ten years a new method (mean curvature flow (MCF) method)
to the above question was developed by Smoczyk and Mu-Tao Wang [Smo2,
SmoWa, Wa1, Wa2, Wa3, Wa4, Wa5, TsWa, MeWa]. For compact Riemann
surfaces they obtained the desired results (cf. [Wa4, Wa5, Smo2]). Recently
Ivana Medos and Mu-Tao Wang [MeWa] applied the MCF to deform sym-
plectomorphisms of CPn for each dimension n, and obtained a constant
Λ0(n) ∈ (1,+∞] only depending on n ∈ N, (see (3.7) for its definition), such
that any Λ-pinched symplectomorphism of CPn with
(1.1)

1 ≤ Λ ≤ Λ1(n) :=

[
1

2

(
Λ0(n) +

1

Λ0(n)

)] 1

n

+

√[
1

2

(
Λ0(n) +

1

Λ0(n)

)] 2

n

−1

is symplectically isotopic to a biholomorphic isometry ([MeWa, Cor.5]). Here
a symplectomorphism ϕ of the Kähler manifold (M,ω, J, g) is called Λ-
pinched if

1

Λ2
g ≤ ϕ∗g ≤ Λ2g

(cf. [MeWa, Def.1]). The constant Λ0(n) was introduced above Remark 2 of
[MeWa, p.322], and it was shown that Λ0(1) =∞ there. For n ∈ N we define
an increasing function [1,∞) 3 Λ 7→ Λ′n by

(1.2) Λ′n :=

[
1

2

(
Λ +

1

Λ

)]n
+

√[
1

2

(
Λ +

1

Λ

)]2n

− 1.

(This is obtained from [MeWa, (3.11)] when Λ1 in [MeWa, (3.10)] is replaced
by Λ.) Then Λ′n = Λ0(n) if Λ = Λ1(n) by the proof of [MeWa, Cor.5].

By Cartan’s classification, in addition to two exceptional spaces
E6/(Spin(10)× SO(n+ 2)) and E7/(E6 × SO(2)), all irreducible Hermitian
symmetric spaces of compact type (IHSSCT) have the following form of four
types (in the terminology of [He, p. 518]):

U(n+m)/U(n)× U(m), n,m ≥ 1, SO(2n)/U(n), n ≥ 2,

Sp(n)/U(n) n ≥ 2, SO(n+ 2)/SO(n)× SO(2), n ≥ 3.

They are, respectively, holomorphically equivalent to:
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GI(n, n+m) = G(n, n+m;C) the complex Grassmann manifold which
may be defined as the quotient M(n, n+m;C)/GL(n;C), where GL(n;C)
= {Q∈Cn×n |detQ 6= 0} acts on M(n+m,n;C) := {A∈Cn×(n+m) | rankA
= n} freely from the left by matrix multiplication;

GII(n, 2n) =

{
[A] ∈ G(n, 2n;C)

∣∣∣ ∃A ∈ [A] s.t A

(
0 In
In 0

)
A′ = 0

}
;

GIII(n, 2n) =

{
[A] ∈ G(n, 2n;C)

∣∣∣ ∃A ∈ [A] s.t A

(
0 In
−In 0

)
A′ = 0

}
;

GIV(1, n+ 1) =

[(z1, . . . , zn+2)] ∈ CPn+1

∣∣∣∣ n∑
j=1

z2
j − z2

n+1 − z2
n+2 = 0


(cf. [CaVe] and [Lu1, Lu2, Lu3]), which are the compact duals (or extended
spaces) of the classical domains DI

n,m, DII
n , DIII

n and DIV
n , respectively. Let

h and hI be the canonical Kähler metrics on G(n, n+m;C) and GI(n, 2n),
respectively. Denote by hII and hIII the induced metrics on GII(n, 2n) and
GIII(n, 2n), respectively. Then both (GII(n, 2n), hII) and (GIII(n, 2n), hIII)
are totally geodesic Kähler-Einstein submanifolds of (GI(n, 2n), hI). (See the
claim on the page 136 of [Mok] and the proof of Lemma 1 on the page 85 of
[Mok]).

Theorem 1.1. Let ω be the Kähler form corresponding with the canon-
ical metric h on G(n, n+m;C), g = Re(h) and J the standard complex
structure. Then for every Λ-pinched symplectomorphism ϕ ∈ Symp(G(n, n+
m;C), ω) with Λ ∈ [1,Λ1(mn)] \ {∞} the following holds:

(i) The mean curvature flow Σt of the graph of ϕ in G(n, n+m;C)×
G(n, n+m;C) exists for all t > 0.

(ii) Σt is the graph of a symplectomorphism ϕt for each t > 0, and ϕt
is Λ′mn-pinched along the mean curvature flow, where Λ′mn is defined
by (1.2).

(iii) ϕt converges smoothly to a biholomorphic isometry of (G(n, n+m;C),
J, g) as t→∞.

Consequently, each such Λ-pinched symplectomorphism ϕ ∈ Symp(G(n, n+
m;C), ω) is symplectically isotopic to a biholomorphic isometry of (G(n, n+
m;C), J, g).



i
i

“4-303” — 2016/3/16 — 11:47 — page 909 — #5 i
i

i
i

i
i

Deforming symplectomorphism of IHSSCT 909

Theorem 1.2. Let (M,ω, J, g) be a compact Kähler-Einstein submanifold
of (G(n, n+m;C), h) which is totally geodesic. Set dimM = 2N . Then for
every Λ-pinched symplectomorphism ϕ ∈ Symp(M,ω) with Λ ∈ [1,Λ1(N)] \
{∞} the following holds:

(i) The mean curvature flow Σt of the graph of ϕ in M ×M exists for all
t > 0.

(ii) Σt is the graph of a symplectomorphism ϕt for each t > 0, and ϕt
is Λ′N -pinched along the mean curvature flow, where Λ′N is defined
by (1.2).

(iii) ϕt converges smoothly to a biholomorphic isometry of (M,J, g) as
t→∞.

Consequently, each such Λ-pinched symplectomorphism ϕ : (M,ω)→ (M,ω)
is symplectically isotopic to a biholomorphic isometry of (M,J, g).

In particular, this theorem holds for (GII(n, 2n), hII) and (GIII(n, 2n),
hIII) (or SO(2n)/U(n) and Sp(n)/U(n) in the terminology of [He, p. 518]).

Recall that a complex torus of complex dimension n is the quotient space
Tn = Cn/Γ, where Γ is a lattice in Cn generated by 2n vectors {u1, . . . , u2n}
in Cn which are linearly independent over R. It has a natural flat Kähler
metric induced from the flat metric of Cn. By Bieberbach theorem ([Ch,
page 65]), any compact flat Kähler manifold is holomorphically covered by
a complex torus ([Be, Example 2.60]). From this and Calabi-Yau theorem it
follows that any compact Kähler manifold M with the first and the second
(real) Chern class vanishing must be (holomorphically) covered by a complex
torus ([Be, Cor. 11.27]). Unfortunately, for complex tori we cannot obtain
the corresponding result with (iii) of Theorems 1.1 and 1.2 yet though other
conclusions are proved under the weaker pinching condition.

Theorem 1.3. Let (M,ω, J, g) and (M̃, ω̃, J̃ , g̃) be two real 2n-dimensional
compact Kähler-Einstein manifolds of constant zero holomorphic sectional
curvature. Then for every Λ-pinched symplectomorphism ϕ : M → M̃ with
Λ ∈ (1,Λ0(n)) there hold:

(i) The mean curvature flow Σt of the graph of ϕ in M × M̃ exists smoothly
for all t > 0;

(ii) Σt is the graph of a symplectomorphism ϕt for each t > 0, and ϕt is
still Λ0(n)-pinched along the mean curvature flow.
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(iii) If Λ < Λ̂1 for some Λ1 ∈ (Λ,Λ0(n)), where Λ̂1 > 1 is a constant deter-
mined by Λ1 and n (see Lemma 4.2), then the flow converges to a

totally geodesic submanifold of M × M̃ as t→∞. (In addition Λ̂1 is
more than or equal to(

2 exp

(
0.141446δΛ1

5n

)
+2 exp

(
0.141446δΛ1

10n

)√
exp

(
0.141446δΛ1

5n

)
−1−1

) 1

2

,

where δΛ1
is defined by (3.6)).

It is easily seen that the convergence assertion in Theorem 1.3 can-
not be derived from [Wa3, Theorem B]. Moreover, it was pointed out in
[Wa2, Remark 8.1] that when M is locally a product of two Riemannian
surfaces of nonpositive curvature the uniform convergence of the flow can
also be proved with the method in [Wa4]. Related to the result K.Smoczyk
and M.-T. Wang [SmoWa] treated the Lagrangian mean curvature flow of
symplectomorphisms between flat tori in case of a length decreasing (hence
pinching) property.

It is possible to generalize the above three theorems to a larger class of
manifolds — compact homogeneous Kähler-Einstein manifolds. (See Theo-
rem 5.1). Recall that a Kähler manifold (M,ω, J, g) is called homogeneous
if I(M,J, g) acts transitively on M . In particular, a simply-connected com-
pact homogeneous Kähler manifold is called a Kähler C-space in [W] (or a
generalized flag manifold). However, except the manifolds contained in the
three theorems above we do not find an example satisfying the conditions
of Theorem 5.1.

In this paper we follow [KoNo] to define the curvature tensor R of a
Kähler manifold (M,ω, J, g) by

R(X,Y, Z,W ) = g(R(X,Y )W,Z) = g(R(Z,W )Y,X)

for X,Y, Z,W ∈ Γ(TM). Then the holomorphic sectional curvature in the
direction X ∈ TM \ {0} is defined by

H(X) = R(X, JX,X, JX)/[g(X,X)]2.

(After extending g and R by C-linearity to TM ⊗R C, H(X) is equal to
−R(Z,Z,Z, Z)/[g(Z,Z)]2 for Z = (X −

√
−1JX)/2 ∈ T (1,0)M).

The paper is organized as follows. In Section 2 we review differential
geometry of Grassmann manifolds, the key Proposition 2.3 seems to be new.
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Section 3 is our technical core, where we study evolution along the mean
curvature flow under different pinching conditions for different cases. In Sec-
tion 4 we prove Theorems 1.1, 1.2 and 1.3. Finally, Section 5 gives a general
result under stronger assumptions as a concluding remark.

2. Differential geometry of Grassmann manifolds

2.1. Curvatures

For increasing integers 1 ≤ α1 < · · · < αn ≤ n+m let {αn+1, . . . , αn+m} be
the complement of {α1, . . . , αn} in the set {1, 2, . . . , n+m}. For [A] ∈ G(n,
n+m;C) = M(n, n+m;C)/GL(n;C) write A as (A1, . . . , An+m), where
A1, . . . , An+m are n× 1 matrices. Set Aα1···αn = (Aα1

, . . . , Aαn) ∈ Cn×n,
Aαn+1···αn+m

= (Aαn+1
, . . . , Aαn+m

) ∈ Cn×m. Define Uα1,...,αn = {[A] ∈ G(n,
n+m;C) | detAα1···αn 6= 0 } and Θα1···αn : Uα1···αn → Cn×m ≡ Cnm by

[A]→ Z = (Aα1···αn)−1Aαn+1···αn+m
.

We call Z the local coordinate of [A] ∈ G(n, n+m;C), and{(
Uα1···αn , Θα1···αn

)
| 1 ≤ α1 < · · · < αn ≤ n

}
the canonical atlas onG(n, n+m;C) ([Le, Lu1, Wo2]). The canonical Kähler-
Einstein h on G(n, n+m;C) is given by

h = ∂∂̄ log det(I + ZZ
′
)(2.1)

in the local chart (U1···n, Z = Θ1···n) as above, where Z
′

and dZ
′

are the
conjugate transposes of Z and dZ respectively, and ∂ =

∑
i,α dZ

iα ∂
∂Ziα and

∂̄ =
∑

i,α dZ
iα ∂
∂Ziα . (See [Lu1, Lu2] ).

If a (real) tangent vector T at the point Z ∈ U1···n is represented by their
component matrices, i.e., we identify

T =
∑
k,l

Re(T kl)
∂

∂Xkl
+
∑
k,l

Im(T kl)
∂

∂Y kl
(2.2)

with complex matrices (T kl) ∈ Cn×m, where Zkl = Xkl + iY kl, k = 1, . . . , n
and l = 1, . . . ,m, then the Riemannian metric g := Re(h) is given by

(2.3) gZ(T1, T2) = ReTr[(I + ZZ
′
)−1T1(I + Z

′
Z)−1T2

′
]
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(cf. [Wo2, (2)]). The curvature tensor RZ of g at Z has the expression

RZ(T1, T2)T

= T
[
(I + Z

′
Z)−1T2

′
(I + ZZ

′
)−1T1 − (I + Z

′
Z)−1T1

′
(I + ZZ

′
)−1T2

]
+
[
T1(I + Z

′
Z)−1T2

′
(I + ZZ

′
)−1 − T2(I + Z

′
Z)−1T1

′
(I + ZZ

′
)−1
]
T

(cf. [Wo2, (4)]). Here as above the left is a real tangent vector and the right
is the corresponding complex matrix representation of it. Let p0 ∈ U1···n has
coordinate Z(p0) = 0. Then

Rp0
(T1, T2, T3, T4)(2.4)

:= gp(Rp(T3, T4)T2, T1)

= ReTr
[
(T2T

′
4T3T 1 − T2T

′
3T4T

′
1 + T3T 4T2T 1 − T4T 3T2T 1)

]
for any tangent vectors in Tp0

G(n, n+m;C) as in (2.2), Ti, i = 1, 2, 3, 4,
which are identified with complex matrices (T kli ) ∈ Cn×m, i = 1, 2, 3, 4. It
follows that the sectional curvature sits between 0 and 4, and that the holo-
morphic sectional curvature of G(n, n+m;C) at the point p0 ∈ U1···n in the
direction T is given by

(2.5) H(0, T ) =
2Tr(TT

′
TT
′
)

[Tr(TT
′
)]2

∈ [4/min(n,m), 4]

(cf. [Lu1, (2.11)] and [Wo2, page 77]).

Proposition 2.1. For the metric h in (2.1) let R be the Riemannian curva-
ture tensor R of the Riemannian metric g = Re(h) (extended to TG(n, n+
m;C)⊗R C in a C-linear way). For 1 ≤ i, j, k, h ≤ n and 1 ≤ α, β, γ, δ ≤ m
let

Riα,jβ,kγ,hδ = R

(
∂

∂Ziα

∣∣∣
0
,

∂

∂Z
jβ

∣∣∣
0
,

∂

∂Zkγ

∣∣∣
0
,

∂

∂Z
hδ

∣∣∣
0

)
= g

(
R

(
∂

∂Ziα

∣∣∣
0
,

∂

∂Z
jβ

∣∣∣
0

)
∂

∂Z
hδ

∣∣∣
0
,

∂

∂Zkγ

∣∣∣
0

)
and others be defined similarly. Then

Riα,jβ,kγ,hδ = Riα,hδ,kγ,jβ = −Riα,hδ,jβ,kγ

=
1

2
(−δijδkhδαδδβγ − δihδkjδαβδγδ)
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for all 1 ≤ i, j, k, l ≤ n and 1 ≤ α, β, γ, δ ≤ m. These and their complex con-
jugates are all component types different from zero.

Proof. By (2.1), for h = 2∂∂̄Φ(Z), where Φ(Z) = 1
2 ln det(I + ZZ

′
), from the

well-known formula detA = exp
{

Tr lnA
}

we have

2Φ(Z) = Tr ln(I + ZZ
′
) = Tr

 ∞∑
q=1

(−1)q+1

q
(ZZ

′
)q


=
∑
i,α

|Ziα|2 − 1

2

∑
i,j,α,β

Z
iα
ZiβZ

jβ
Zjα + (higher order terms)

for ‖ZZ ′‖ < 1. (See also [CaVe, page 493]). From this and the arguments on
the pages 155-159 of [KoNo], it follows that the curvature tensor at Z = 0
is given by

Riα,jβ,kγ,hδ =
∂4Φ

∂Ziα∂Z
jβ
∂Zkγ∂Z

hδ

∣∣∣
Z=0

=
1

2
(−δijδkhδαδδβγ − δihδkjδαβδγδ)

for all 1 ≤ i, j, k, l ≤ n and 1 ≤ α, β, γ, δ ≤ m. Moreover, from the Bianchi
identity and the fact that the curvature tensor R of Kähler manifold is of
type (2, 2) it is not hard to derive that

Riα,jβ,kγ,hδ = Riα,hδ,kγ,jβ = −Riα,hδ,jβ,kγ

for all 1 ≤ i, j, k, l ≤ n and 1 ≤ α, β, γ, δ ≤ m. These and their complex con-
jugates are all component types different from zero. �

Let hI be the canonical Kähler metric on GI(n, 2n), which in the coor-

dinate chart Uα1···αn is given by ∂∂̄ ln det(I + ZZ
′
) as in (2.1). It induces a

Kähler metric hII on GII(n, 2n) which in the induced coordinate system

(2.6) GII(n, 2n) ∩ Uα1···αn 3 [A] 7→
(
Zkl([A])

)
k<l

is given by

(2.7) hII = ∂∂̄ ln det(I − ZZ)
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with Z ∈ Cn×n and Z = −Z ′; moreover hI induces a Kähler metric hIII on
GIII(n, 2n) which in the induced coordinate system

(2.8) GIII(n, 2n) ∩ Uα1···αn 3 [A] 7→
(
Zkl([A])

)
k≤l

is given by

(2.9) hIII = ∂∂̄ ln det(I + ZZ)

with Z ∈ Cn×n and Z = Z ′.
Let hFS be the Fubini-Study metric on CPn+1, which is given by

(2.10) hFS = ∂∂̄ ln(1 + |ξ1|2 + · · ·+ |ξn+1|2)

with ξk = ξk([z]) = zk
zn+2

, k = 1, . . . , n+ 1, [z] ∈ Un+2 = {[z1, . . . , zn+2] ∈
CPn+1 | zn+2 6= 0}. Then GIV(1, n+ 1) is a Kähler submanifold of CPn+1

with the induced Kähler metric

(2.11) hIV = ∂∂̄ ln(1 + |ξ1|2 + · · ·+ |ξn|2 + |1− ξ2
1 − · · · − ξ2

n|)

on GIV(1, n+ 1) ∩ Un+2 from hFS. If Imξn+1 6= 0, in the new coordinate
chart on GIV(1, n+ 1),

(ξ1, . . . , ξn) 7→ Z = (Z1, . . . , Zn) =

(
ξ1

ξn+1 + i
, . . . ,

ξn
ξn+1 + i

)
,

the metric hIV has the following expression (cf.[Lu1])

(2.12) hIV = ∂∂̄ ln(1 + |ZZ ′|2 + 2ZZ̄ ′).

All irreducible symmetric spaces of compact type have positive holo-
morphic sectional curvatures (cf. [Bo, CaVe, Lu1]). As in (2.5) one can give
explicit expressions of holomorphic sectional curvaturesHII(Z, T ),HIII(Z, T )
and HIV(0, T ) under the above coordinate charts too (cf. [Lu1]).

Let RI denote the curvature tensor of the metric hI = ∂∂̄ ln det(I + ZZ
′
)

on GI(n, 2n). By Proposition 2.1, at Z = 0 we have

RI
iα,jβ,kγ,hδ

= RI
iα,hδ,kγ,jβ

= −RI
iα,hδ,jβ,kγ

(2.13)

=
1

2
(−δijδkhδαδδβγ − δihδkjδαβδγδ)

for all 1 ≤ i, j, k, l, α, β, γ, δ ≤ n. These and their complex conjugates are all
component types different from zero.
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Denote the curvature tensors of (GII(n, 2n), hII) and (GIII(n, 2n), hIII) by
RII and RIII, respectively. Note that at Z = 0 the local coordinate systems
(U1···n, Z) on G(n, 2n;C) and (2.6)–(2.8) are normal coordinates (or complex
geodesic coordinates) for the metrics hI, hII and hIII. By (2.13) we have

Proposition 2.2. At Z = 0 the curvature tensors RII and RIII are the
restrictions of RI, that is,

RII
iα,jβ,kγ,hδ

= RII
iα,hδ,kγ,jβ

= −RII
iα,hδ,jβ,kγ

=
1

2
(−δijδkhδαδδβγ − δihδkjδαβδγδ)

for all 1 ≤ i < α ≤ n, 1 ≤ j < β ≤ n, 1 ≤ k < γ ≤ n, l ≤ l < δ ≤ n, and

RIII
iα,jβ,kγ,hδ

= RIII
iα,hδ,kγ,jβ

= −RIII
iα,hδ,jβ,kγ

=
1

2
(−δijδkhδαδδβγ − δihδkjδαβδγδ)

for all 1 ≤ i ≤ α ≤ n, 1 ≤ j ≤ β ≤ n, 1 ≤ k ≤ γ ≤ n, 1 ≤ l ≤ δ ≤ n.

Now we consider (GIV(1, n+ 1), hIV). By (2.12) the Kähler potential
function Φ(Z) = 1

2 ln(1 + |ZZ ′|2 + 2ZZ̄ ′) has the following power series ex-
pansion

1

2
ln(1 + |ZZ ′|2 + 2ZZ̄ ′) =

1

2
ln

(
1 + 2

∑
k

|zk|2 + |
n∑
k=1

z2
k|2
)

=

n∑
k=1

|Zk|2 +
1

2

∣∣∣∣∣
n∑
k=1

Z2
k

∣∣∣∣∣
2

−

(
n∑
k=1

|Zk|2
)2

+ higher order terms

near Z = 0. Since the coordinates Zk (1 ≤ k ≤ n) are normal coordinates,
the curvature tensor at Z = 0 is given by

RIV
ij̄kl̄ =

∂4Φ

∂Zi∂Z̄j∂Zk∂Z̄l

∣∣∣∣
Z=0

= 2(δikδjl − δijδkl − δilδjk)

for all 1 ≤ i, j, k, l ≤ n. In particular we get

(2.14) RIV
īiīi = −2 ∀i and RIV

ij̄ij̄ = 2 ∀i 6= j.
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2.2. An expected local coordinate chart

Let J be the standard complex structure onG(n, n+m;C). For p ∈ G(n, n+
m;C), recall that by {aij , bij , i = 1, . . . , n, j = 1, . . . ,m} being a unitary
base of (TpG(n, n+m), Jp, gp) we mean

aij , bij = Jpaij ∈ TpG(n, n+m;C), i = 1, . . . , n, j = 1, . . . ,m,

is a unit orthogonal base of (TpG(n, n+m;C), gp). To our knowledge the
following result seems to be new. It is key for us completing the proofs of
Theorems 1.1, 1.2.

Proposition 2.3. For any p ∈ G(n, n+m;C) and a unitary base of (TpG(n,
n+m;C), Jp, gp),

aij , bij := Jpaij ∈ TpG(n, n+m;C), i = 1, . . . , n, j = 1, . . . ,m,

there exists a local chart around p on G(n, n+m;C),

(2.15) U 3 q → Z(q) = X(q) + iY (q) ∈ Cn×m

satisfying Z(p) = 0, such that

(i) In this chart the metric h and g = Re(h) are given by (2.1) and (2.3),
respectively;

(ii) aij = ∂
∂Xij

∣∣
p
, bij = ∂

∂Y ij

∣∣
p
, i = 1, . . . , n, j = 1, . . . ,m.

Proof. Since the isometry group of the Kähler manifold (G(n, n+m;C), h),
I(G(n, n+m;C), h) = SU(n+m), acts transitively on (G(n, n+m;C), h),
for any p ∈ G(n, n+m;C) there exists a τ ∈ I(G(n, n+m;C), h) such that
τ(p0) = p. Clearly, we get a coordinate chart around p on G(n, n+m;C),

(2.16) W = U + iV : τ(U1···n)→ Cn×m, q 7→ Z(τ−1(q)).

Since τ is a Kähler isometry, using (2.1) one easily shows that the metric h
in this chart is given by

h = Tr[(I +WW
′
)−1dW (I +W

′
W )−1dW

′
].

It follows that the Riemannian metric g = Re(h) is given by

gW (T1, T2) = ReTr[(I +WW
′
)−1T1(I +W

′
W )−1T2

′
]
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for real tangent vectors T1, T2 at W ∈ τ(U1···n),

T1 =
∑
k,l

Re(T kl1 )
∂

∂Ukl
+
∑
k,l

Im(T kl1 )
∂

∂V kl
,

T2 =
∑
k,l

Re(T kl2 )
∂

∂Ukl
+
∑
k,l

Im(T kl2 )
∂

∂V kl
,

which are identified with complex matrices (T kl1 ), (T kl2 ) ∈ Cn×m, respectively.
Define vectors

−→a = (a11, a12, . . . , a1m, a21, . . . , a2m, . . . , an1, . . . , anm),
−→
b = (b11, b12, . . . , b1m, b21, . . . , b2m, . . . , bn1, . . . , bnm),

−−−→
∂

∂U

∣∣∣
p

=

(
∂

∂U11

∣∣∣
p
, . . . ,

∂

∂U1m

∣∣∣
p
,

∂

∂U21

∣∣∣
p
, . . . ,

∂

∂U2m

∣∣∣
p
, . . . ,

∂

∂Un1

∣∣∣
p
, . . . ,

∂

∂Unm

∣∣∣
p

)
,

−−−→
∂

∂V

∣∣∣
p

=

(
∂

∂V 11

∣∣∣
p
, . . . ,

∂

∂V 1m

∣∣∣
p
,

∂

∂V 21

∣∣∣
p
, . . . ,

∂

∂V 2m

∣∣∣
p
, . . . ,

∂

∂V n1

∣∣∣
p
, . . . ,

∂

∂V nm

∣∣∣
p

)
.

Since {
∂

∂U ij

∣∣∣
p
,
∂

∂V ij

∣∣∣
p
, i = 1, . . . , n, j = 1, . . . ,m

}
is a unitary base of (TpG(n, n+m;C), Jp, gp), there exists a unique real
matrix Θ such that

(2.17) (−→a ,
−→
b ) =

(−−−→
∂

∂U

∣∣∣
p
,

−−−→
∂

∂V

∣∣∣
p

)
Θ.

The matrix Θ must have form

(
A B
−B A

)
, where A,B ∈ Rnm×nm is such

that A+ iB is a unitary matrix (which is equivalent to

B′A = (A′B)′ = A′B and A′A+ B′B = Inm×nm.)
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Note that (2.17) is equivalent to

(2.18) −→a + i
−→
b =

(−−−→
∂

∂U

∣∣∣
p

+ i

−−−→
∂

∂V

∣∣∣
p

)
(A+ iB).

Recall that the tensor product or Kronecker product of matrices A = (aij) ∈
Cn×m and B = (bij) ∈ Cp×q is a (np×mq)-matrix given by

A⊗B = [aijB]n,mi,j=1 =

 a11B · · · a1mB
· · · · · · · · ·
an1B · · · anmB

 .

Define matrices a = (aij), b = (bij) and ∂
∂U |p = ( ∂

∂U ij |p),
∂
∂V |p = ( ∂

∂V ij |p). It
follows from (2.18) that there exist unitary matrices R ∈ Cn×n and S ∈
Cm×m such that

(2.19) A+ iB = R′ ⊗ S and a + ib = R
(
∂

∂U

∣∣∣
p

+ i
∂

∂V

∣∣∣
p

)
S.

Let R=R1+iR2 with R1, R2∈Rn×n, and S=S1+iS2 with S1, S2∈Rm×m.
Then

(R′1R2)′ = R′1R2 and R′1R1 +R′2R2 = In×n,
(S′1S2)′ = S′1S2 and S′1S1 + S′2S2 = Im×m.

}
Moreover, the first equality in (2.19) implies

A = R′1 ⊗ S1 −R′2 ⊗ S2 and B = R′2 ⊗ S1 +R′1 ⊗ S2.

From the local chart (τ(U1···n),W ) in (2.16), we define a new chart

(2.20) U → Cn×m, q 7→ G(q) = E(q) + iF (q) := R−1W (q)S−1.

Then G(p) = W (p) = 0. Define vectors

−→
W = (W 11,W 12, . . . ,W 1m, Z21, . . . ,W 2m, . . . ,Wn1, . . . ,Wnm),
−→
G = (G11, G12, . . . , G1m, G21, . . . , G2m, . . . , Gn1, . . . , Gnm).

By [Lu2, page 364, (6)] we get

(2.21)
∂G

∂W
=
∂
−→
G

∂
−→
W

= (R−1)′ ⊗ S−1 = (R′ ⊗ S)−1 = (A+ iB)−1.
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Writing G = Φ(W ) and

−−−→
∂

∂W

∣∣∣
p

=

(
∂

∂W 11

∣∣∣
p
, . . . ,

∂

∂W 1m

∣∣∣
p
,

∂

∂W 21

∣∣∣
p
, . . . ,

∂

∂W 2m

∣∣∣
p
, . . . ,

∂

∂Wn1

∣∣∣
p
, . . . ,

∂

∂Wnm

∣∣∣
p

)
,

Φ∗

(−−−→
∂

∂W

∣∣∣
p

)
=

(
Φ∗

(
∂

∂W 11

∣∣∣
p

)
, . . . ,Φ∗

(
∂

∂W 1m

∣∣∣
p

)
,Φ∗

(
∂

∂W 21

∣∣∣
p

)
, . . . ,

Φ∗

(
∂

∂W 2m

∣∣∣
p

)
, . . . ,Φ∗

(
∂

∂Wn1

∣∣∣
p

)
, . . . ,

Φ∗

(
∂

∂Wnm

∣∣∣
p

))
,

since
−−→
∂
∂U |p + i

−−→
∂
∂V |p =

−−−→
∂
∂W |p, by (2.18) and (2.21) we get

−−−→
∂

∂G

∣∣∣
p

= Φ∗

(−−−→
∂

∂W

∣∣∣
p

)
=

−−−→
∂

∂W

∣∣∣
p

∂
−→
W

∂
−→
G

=

−−−→
∂

∂W

∣∣∣
p

(
∂
−→
G

∂
−→
W

)−1

=

−−−→
∂

∂W

∣∣∣
p
(A+ iB) = −→a + i

−→
b .

That is, the coordinate chart in (2.20), U → Cn×m, q 7→ G(q), satisfies

aij =
∂

∂Eij

∣∣∣
p
, bij =

∂

∂F ij

∣∣∣
p
, i = 1, . . . , n, j = 1, . . . ,m.

It remains to prove that the transformation

Cn×m → Cn×m, W 7→ G = Φ(W )

preserves the Kähler metric

ds2 = Tr[(I +WW
′
)−1dW (I +W

′
W )−1dW

′
]
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on Cn×m. In fact, since

(I +GG
′
)−1dG = (I +R−1WS−1R−1WS−1

′
)R−1dWS−1

= (I +R−1WW
′R−1

′
)R−1dWS−1

= (R−1R−1
′
+R−1WW

′R−1
′
)R−1dWS−1

= R−1(I +WW
′
)dWS−1,

(I +G
′
G)−1dG

′
= (I +R−1WS−1

′R−1WS−1)R−1dWS−1
′

= (I + S−1
′
W
′R−1

′R−1WS−1)S−1
′
dW

′R−1
′

= S−1
′
(I +W

′
W )dW

′R−1
′

we get

Tr[(I +GG
′
)−1dG(I +G

′
G)−1dG

′
]

= Tr
[
(I + Φ(W )Φ(W )

′
)−1dΦ(W )(I + Φ(W )Φ(W )

′
Φ(W ))−1dΦ(W )

′]
= Tr[(I +WW

′
)−1dW (I +W

′
W )−1dW

′
].

Hence the coordinate chart in (2.20) satisfies the desired requirements. �

Corollary 2.4. For any p, q ∈ G(n, n+m;C), let

{aij , bij := Jpaij , i = 1, . . . , n, j = 1, . . . ,m} and

{a′ij , b′ij := Jqa
′
ij , i = 1, . . . , n, j = 1, . . . ,m}

be unitary bases of (TpG(n, n+m;C), Jp, gp) and (TqG(n, n+m;C), Jq, gq),
respectively. Consider the sequence u1, . . . , u2nm whose all odd (resp. even)
terms are given by

a11, a12, . . . , a1m, a21, . . . , a2m, . . . , an1, . . . , anm,

(resp. b11, b12, . . . , b1m, b21, . . . , b2m, . . . , bn1, . . . , bnm.)

Similarly let the sequence u′1, . . . , u
′
2nm be given by {a′ij , b′ij := Jqa

′
ij , i =

1, . . . , n, j = 1, . . . ,m}. Then the curvature tensor R of (G(n, n+m;C), g)
satisfies

(2.22) Rp(uα, uβ, uγ , uδ) = Rq(u
′
α, u

′
β, u
′
γ , u
′
δ)

for any α, β, γ, δ ∈ {1, . . . , 2nm}.
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Proof. This can be directly derived from Propositions 2.1, 2.3. We here
give another proof of it with (2.4). Let (U , Z) be a local chart around
p as in (2.15). Then aij = ∂

∂Xij |p, bij = ∂
∂Y ij |p, i = 1, . . . , n, j = 1, . . . ,m.

Let (V,W = U +
√
−1V ) be a local chart around q as in (2.15). Then

a′ij = ∂
∂U ij |q, b

′
ij = ∂

∂V ij |q, i = 1, . . . , n, j = 1, . . . ,m. Note that according to

the above correspondence the tangent vectors ∂
∂Xkl |p and ∂

∂Y st |p have matri-
ces representations

S(k,l) =

 0 0 0
0 1(k,l) 0
0 0 0


n×m

and T(s,t) =

 0 0 0
0 i(s,t) 0
0 0 0


n×m

(2.23)

respectively, where the first index (k, l) means that 1 is in the k-th row and l-
th array of the matrix and similarly for other indexes in the sequel. Clearly,
the tangent vectors ∂

∂Ukl |p and ∂
∂V st |p are also represented by these two

matrices. So for any α ∈ {1, . . . , 2nm} both uα and u′α have the same matrix
representations. The desired conclusions follow from (2.4) immediately. �

This corollary and Proposition 2.1 immediately lead to

Corollary 2.5. Let (M,ωM , JM , gM ) be a compact Kähler-Einstein sub-
manifold of (G(n, n+m;C), h) which is totally geodesic (e.g. (GII(n, 2n), hII)
and (GIII(n, 2n), hIII) are such submanifolds of (G(n, 2n;C), hI)). Set dimM
= 2N . For any p, q ∈M , let

{a2i−1, a2i := JMp a2i−1, i = 1, . . . , N} and

{a′2i−1, a
′
2i := JMq a′2i−1, i = 1, . . . , N}

be unitary bases of (TpM, gMp , J
M
p ) and (TqM, gMq , J

M
q ), respectively. Then

the curvature tensor RM of (M, g) satisfies

RMp (aα, aβ, aγ , aδ) = RMq (a′α, a
′
β, a
′
γ , a
′
δ)

for any α, β, γ, δ ∈ {1, . . . ,dimM}.

Proof. Since (TpM, gMp , J
M
p ) and (TqM, gMq , J

M
q ) are Hermitian subspaces

of (TpG(n, n+m;C), hp) and (TqG(n, n+m;C), hq), respectively, we may
extend {a1, . . . , a2N} and {a′1, . . . , a′2N} into unitary bases

{a1, . . . , a2nm} and {a′1, . . . , a′2nm}

of (TpG(n, n+m;C), hp) and (TqG(n, n+m;C), hq), respectively. By the
assumptions (M,ωM , JM , gM ) is a totally geodesic submanifold of (G(n, n+
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m;C), h). RM is equal to the restriction of R to M . Hence the desired
conclusion follows from (2.22). (Of course it may also be obtained from
Proposition 2.2 for (GII(n, 2n), hII) and (GIII(n, 2n), hIII)). �

Let (U , Z) be the local chart around p on G(n, n+m;C) as in Proposi-
tion 2.3.

Proposition 2.6. For any 1 ≤ k, s, µ ≤ n, 1 ≤ l, t, ν ≤ m we have

R

(
∂

∂Xkl

∣∣∣
p
,

∂

∂Xst

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,

∂

∂Y µν

∣∣∣
p

)
= 0,

R

(
∂

∂Xkl

∣∣∣
p
,

∂

∂Xst

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,

∂

∂Xµν

∣∣∣
p

)
=


1 if µ = s 6= k, l = t = ν,
1 if µ = s = k, l 6= t = ν,
0 otherwise,

R

(
∂

∂Xkl

∣∣∣
p
,
∂

∂Y st

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,

∂

∂Y µν

∣∣∣
p

)
=


1 if µ = s 6= k, l = t = ν,
1 if µ = s = k, l 6= t = ν,
4 if µ = s = k, l = t = ν,
0 otherwise.

Consequently, for S(k,l) and T(s,t) in (2.23) we get the sectional curvatures

Kp(S(k,l), T(s,t)) := R

(
∂

∂Xkl

∣∣∣
p
,
∂

∂Y st

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,
∂

∂Y st

∣∣∣
p

)

=


1 if k = s, l 6= t,
1 if k 6= s, l = t,
4 if k = s, l = t,
0 if k 6= s, l 6= t,

Kp(S(k,l), S(s,t)) := R

(
∂

∂Xkl

∣∣∣
p
,

∂

∂Xst

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,

∂

∂Xst

∣∣∣
p

)

=


1 if k = s, l 6= t,
1 if k 6= s, l = t,
0 if k = s, l = t,
0 if k 6= s, l 6= t.

Proof. Since the only possible non-vanishing terms of the curvature com-
ponents are of the form Riα,jβ,kγ,hδ and those obtained from the universal
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symmetries of the curvature tensor, a direct computation leads to

R

(
∂

∂Xkl

∣∣∣
p
,

∂

∂Xst

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,

∂

∂Xµν

∣∣∣
p

)
= R

(
∂

∂Zkl

∣∣∣
p

+
∂

∂Z
kl

∣∣∣
p
,
∂

∂Zst

∣∣∣
p

+
∂

∂Z
st

∣∣∣
p
,

∂

∂Zkl

∣∣∣
p

+
∂

∂Z
kl

∣∣∣
p
,

∂

∂Zµν

∣∣∣
p

+
∂

∂Z
µν

∣∣∣
p

)
= R

(
∂

∂Zkl

∣∣∣
p
,
∂

∂Z
st

∣∣∣
p
,
∂

∂Zkl

∣∣∣
p
,

∂

∂Z
µν

∣∣∣
p

)
+R

(
∂

∂Zkl

∣∣∣
p
,
∂

∂Z
st

∣∣∣
p
,
∂

∂Z
kl

∣∣∣
p
,

∂

∂Zµν

∣∣∣
p

)
+R

(
∂

∂Z
kl

∣∣∣
p
,
∂

∂Zst

∣∣∣
p
,
∂

∂Zkl

∣∣∣
p
,

∂

∂Z
µν

∣∣∣
p

)
+R

(
∂

∂Z
kl

∣∣∣
p
,
∂

∂Zst

∣∣∣
p
,
∂

∂Z
kl

∣∣∣
p
,

∂

∂Zµν

∣∣∣
p

)
= Rkl,st,kl,µν −Rkl,st,µν,kl −Rst,kl,kl,µν +Rst,kl,µν,kl

=
1

2
[−δksδkµδlνδtl − δkµδskδtlδlν ] +

1

2
[δksδkµδllδtν + δkkδsµδtlδlν ]

+
1

2
[δksδkµδtνδll + δsµδkkδtlδlν ] +

1

2
[−δksδkµδtlδlν − δskδkµδtlδlν ]

= −2δskδkµδtlδlν + δksδkµδtν + δsµδtlδlν ,

where the final equality comes from Proposition 2.1. So we get

R

(
∂

∂Xkl

∣∣∣
p
,

∂

∂Xst

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,

∂

∂Xµν

∣∣∣
p

)
=


1 if µ = s 6= k, l = t = ν,
1 if µ = s = k, l 6= t = ν,
0 otherwise.

Similarly we may obtain

R

(
∂

∂Xkl

∣∣∣
p
,

∂

∂Xst

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,

∂

∂Y µν

∣∣∣
p

)
= 0,

R

(
∂

∂Xkl

∣∣∣
p
,
∂

∂Y st

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,

∂

∂Y µν

∣∣∣
p

)
= R

(
∂

∂Zkl

∣∣∣
p

+
∂

∂Z
kl

∣∣∣
p
, i

∂

∂Zst

∣∣∣
p
− i ∂

∂Z
st

∣∣∣
p
,

∂

∂Zkl

∣∣∣
p

+
∂

∂Z
kl

∣∣∣
p
, i

∂

∂Zµν

∣∣∣
p
− i ∂

∂Z
µν

∣∣∣
p

)
= 2δskδkµδtlδlν + δksδkµδtν + δsµδtlδlν



i
i

“4-303” — 2016/3/16 — 11:47 — page 924 — #20 i
i

i
i

i
i

924 G.-C. Lu and B. Xiao

and therefore

R

(
∂

∂Xkl

∣∣∣
p
,
∂

∂Y st

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,

∂

∂Y µν

∣∣∣
p

)
=


1 if µ = s 6= k, l = t = ν,
1 if µ = s = k, l 6= t = ν,
4 if µ = s = k, l = t = ν,
0 otherwise.

�

3. Evolution along the mean curvature flow

3.1. Preliminaries

For convenience we review results in [MeWa, §2]. A real 2N -dimensional
Hermitian vector space is a real 2N -dimensional vector space V equipped
with a Hermitian structure, i.e. a triple (ω, J, g) consisting of a symplectic
bilinear form ω : V × V → R, an inner product g and an complex structure J
on V satisfying g = ω ◦ (Id× J). A Hermitian isomorphism from (V, ω, J, g)
to another Hermitian vector space (Ṽ , ω̃, J̃ , g̃) of real 2n dimension is a
linear isomorphism L : V → Ṽ satisfying: LJ = J̃L, L∗ω̃ = ω and L∗g̃ = g.
Proposition 1 and Corollary 2 in Section 2.1 of [MeWa] can be summarized
as follows.

Proposition 3.1. For any linear symplectic isomorphism L from the real
2N -dimensional Hermitian (V, ω, J, g) to (Ṽ , ω̃, J̃ , g̃), let L? : Ṽ → V be the
adjoint of L determined by g(L?ũ, v) = g̃(ũ, Lv). Then L?L : V → V is pos-
itive definite, and E := L(L?L)−1/2 gives rise to a Hermitian isomorphism
from (V, ω, J, g) to (Ṽ , ω̃, J̃ , g̃). Moreover, there exists an unitary basis {v1,
. . . , v2N} of (V, ω, J, g), i.e.,

g(vi, vj) = δij and Jv2k−1 = v2k, k = 1, . . . , N,

(and hence an unitary basis of (Ṽ , ω̃, J̃ , g̃), {ṽ1, . . . , ṽ2N}, where ṽk = E(vk),
k = 1, . . . , 2N), such that

(i) The matrix representations of J and J̃ under them are all J0 given by

(3.1) J0(x1, y1, . . . , xN , yN )t = (y1,−x1, . . . , yN ,−xN )t.
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(ii) The map (L?L)1/2 has the matrix representation under the basis
{v1, . . . , v2N},

(L?L)1/2 = Diag(λ1, λ2, . . . , λ2N−1, λ2N ),

where λ2i−1λ2i = 1 and λ2i−1 ≤ 1 ≤ λ2i, i = 1, . . . , N .

(iii) Under the bases {v1, . . . , v2N} and {ṽ1, . . . , ṽ2N} the map L has the
matrix representation L = Diag(λ1, λ2, . . . , λ2N−1, λ2N ).

Remark 3.2. From the arguments in [MeWa] one can also choose the
{v1, . . . , v2N} such that λk, k = 1, . . . , 2N in Proposition 3.1(ii) satisfy: λ2i ≤
1 ≤ λ2i−1, i = 1, . . . , N .

Let (M,ω, J, g) and (M̃, ω̃, J̃ , g̃) be two real 2N -dimensional Kähler-

Einstein manifolds, and let π1 : M × M̃ →M and π2 : M × M̃ → M̃ be two
natural projections. We have a product Kähler manifold (M × M̃, π∗1ω −
π∗2ω̃,J , G), where G = π∗1g + π∗2 g̃ and J (u, v) = (Ju,−J̃v) for (u, v) ∈
T (M × M̃).

For a symplectomorphism ϕ : (M,ω)→ (M̃, ω̃) let

Σ = Graph(ϕ) = {(p, ϕ(p)) | p ∈M},

and let Σt be the mean curvature flow of Σ in M × M̃ .
Denote by Ω := π∗1ω

N , and by ∗Ω the Hodge star of Ω|Σt with respect
to the induced metric on Σt by G. Then ∗Ω is the Jacobian of the projec-
tion from Σt onto M , and ∗Ω(q) = Ω(e1, . . . , e2N ) for q ∈ Σt and any ori-
ented orthogonal basis {e1, . . . , e2N} of TqΣt. The implicit function theorem
implies that ∗Ω(q) > 0 if and only if Σt is locally a graph over M at q.

Let q = (p, ϕt(p)) ∈ Σt ⊂M × M̃ . Set L := Dpϕt : TpM → Tϕt(p)M̃ and

E := Dpϕt[(Dpϕt)
?Dpϕt]

− 1

2 : TpM → Tϕt(p)M̃ . Since L∗L is a positive def-
inite matrix, by the above arguments one can choose a holomorphic local
coordinate system {z1, . . . , zN} around p, zj = xj + iyj , j = 1, . . . , N , such
that

(i) { ∂
∂x1 |p, . . . , ∂

∂xN |p,
∂
∂y1 |p, . . . , ∂

∂yN |p} is an orthogonal basis of the real
2N -dimensional vector space TpM ,

(ii) The complex structure Jp is given by the matrix J0 in (3.1) with respect
to the base ∂

∂x1 ,
∂
∂y1 , . . . ,

∂
∂xN ,

∂
∂yN .
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(iii) L∗L = Diag(λ2
1, λ

2
2, . . . , λ

2
2N−1, λ

2
2N ) with respect to these basis, where

λ2i−1λ2i = 1, λ2i−1 ≤ 1 ≤ λ2i for i = 1, . . . , N . Obviously ∂
∂xj = ∂

∂zj +
∂
∂zj ,

∂
∂yj = 1√

−1
( ∂
∂zj −

∂
∂zj ).

(iv) There exists a Hermitian vector space isomorphism

E : (TpM,ωp, Jp, gp)→ (Tϕt(p)M̃, ω̃ϕt(p), J̃ϕt(p), g̃ϕt(p))

such that under the orthogonal basis of (Tϕt(p)M̃, g̃ϕt(p)),{
E

(
∂

∂x1

∣∣∣
p

)
, E

(
∂

∂y1

∣∣∣
p

)
, . . . , E

(
∂

∂xN

∣∣∣
p

)
, . . . , E

(
∂

∂yN

∣∣∣
p

)}
,

J̃ϕt(p) is also given by the matrix J0 in (3.1).

By the choose of basis, we have

g

(
∂

∂xi

∣∣∣
p
,
∂

∂xj

∣∣∣
p

)
= g

(
∂

∂yi

∣∣∣
p
,
∂

∂yj
|p
)

= δij ,

g

(
∂

∂xi

∣∣∣
p
,
∂

∂yj

∣∣∣
p

)
= g

(
∂

∂yi

∣∣∣
p
,
∂

∂xj

∣∣∣
p

)
= 0,

gld = g

(
∂

∂zl

∣∣∣
p
,
∂

∂zd

∣∣∣
p

)
= gdl = gdl = gld =

δld
2
,

gld = gld = 0.

For j = 1, . . . , N , set

(3.2) a2j−1 =
∂

∂xj

∣∣∣
p

and a2j =
∂

∂yj

∣∣∣
p
.

Then by (ii) above it holds that

Jp(a
2j−1) = a2j and Jp(a

2j) = −a2j−1, j = 1, . . . , N.

Let s′ = s+ (−1)s+1, s = 1, . . . , 2N , and let Jrs := g(Jas, ar). It follows that

Js′s = −Jss′ and Jrs =

{
0 if r 6= s′,
(−1)s+1 if r = s′.
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For i = 1, . . . , 2N , let

ei =
1√

1 + λ2
i

(ai, λiE(ai)) and

e2N+i =
1√

1 + λ2
i

(Jpa
i,−λiE(Jpa

i)).
(3.3)

They form an orthogonal basis of Tq(M × M̃), and

TqΣt = span({e1, . . . , e2N )} and NqΣt = span({e2N+1, . . . , e4N})

and ∗Ω = Ω(e1, . . . , e2N ) = 1/
√∏2N

j=1(1 + λ2
j ).

Proposition 3.3 ([MeWa, Prop. 2]). Let (M, g, J, ω) and (M̃, g̃, J̃ , ω̃)
be two compact Kähler-Einstein manifolds of real dimension 2N , and let
Σt be the mean curvature flow of the graph Σ of a symplectomorphism
ϕ : (M,ω)→ (M̃, ω̃). Then ∗Ω at each point q ∈ Σt satisfies the following
equation:

(3.4)
d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω

Q(λi, hjkl) +
∑
k

∑
i 6=k

λi(Rikik − λ2
kR̃ikik)

(1 + λ2
k)(λi + λi′)

 .

where

Q(λi, hjkl) =
∑
i,j,k

h2
ijk − 2

∑
k

∑
i<j

(−1)i+jλiλj(hi′ikhj′jk − hi′jkhj′ik)

with i′ = i+ (−1)i+1, and Rijkl = R(ai, aj , ak, al) and R̃ijkl = R̃(E(ai),
E(aj), E(ak), E(al)) are, respectively, the coefficients of the curvature ten-

sors R and R̃ with respect to the chosen bases of TpM and Tf(p)M̃ as in
Proposition 3.1.

For ~λ = (λ1, . . . , λ2N ) ∈ R2N , according to [MeWa, p.322] let

(3.5) δ~λ := inf
{
Q(λi, hjkl)

∣∣∣ hijk ∈ R, 1 ≤ i, j, k ≤ 2N,
∑
i,j,k

h2
ijk = 1

}
,

that is, the smallest eigenvalue of Q at ~λ, and for Λ ∈ [1,∞) let

δΛ := inf

{
δ~λ

∣∣∣ 1

Λ
≤ λi ≤ Λ for i = 1, . . . , 2N

}
,(3.6)

Λ0(N) := sup{Λ |Λ ≥ 1 and δΛ > 0}.(3.7)



i
i

“4-303” — 2016/3/16 — 11:47 — page 928 — #24 i
i

i
i

i
i

928 G.-C. Lu and B. Xiao

By Remark 2 and Lemma 4 in [MeWa] (or the proof of [MeWa, Prop. 3]),
Λ0(1) =∞, and

Q((1, . . . , 1), hijk) ≥
3−
√

5

6
|II|2 =

3−
√

5

6

∑
i,j,k

h2
ijk.

Clearly, δ~λ is continuous in ~λ, and [1,∞) 3 Λ→ δΛ is nonincreasing. They
imply Λ0(N) > 1. Note that δΛ′ > 0 for every Λ′ ∈ [1,Λ0(N)). Indeed, by
the definition of supremum we have a Λ ∈ (Λ′,Λ0(N)) with δΛ > 0. So δΛ′ ≥
δΛ > 0. In addition, (3.5) and (3.6) imply

inf
{
Q(λi, hjkl)

∣∣∣ hijk ∈ R,
∑
i,j,k

h2
ijk = 1,

1

Λ′
≤ λi ≤ Λ′

}
= inf

{
δ~λ

∣∣∣ 1

Λ′
≤ λi ≤ Λ′

}
= δΛ′

for every Λ′ ∈ [1,Λ0(N)). Hence we get:

Proposition 3.4. ([MeWa, Prop. 3]) Let Q(λi, hjkl) be the the quadratic
form defined in Proposition 3.3. Then for the constant Λ0(N) ∈ (1,+∞]
in (3.7), which only depends on 2N = dimM , Q(λi, hjkl) is nonnegative
whenever 1

Λ0(N) ≤ λi ≤ Λ0(N) for i = 1, . . . , 2N . Moreover, for any Λ′ ∈
[1,Λ0(N)) it holds that

Q(λi, hjkl) ≥ δΛ′
∑
ijk

h2
jkl

whenever 1
Λ′ ≤ λi ≤ Λ′ for i = 1, . . . , 2N .

3.2. The case of Grassmann manifolds

Let ϕ : M = G(n, n+m;C)→ M̃ = G(n, n+m;C) be a Λ-pinched sym-
plectomorphism and Σ = Graph(ϕ). For (p, ϕt(p)) ∈ Σt, let aj , j = 1, . . . ,
nm, be the chosen unitary base of (TpG(n, n+m;C), Jp, gp) as in Proposi-
tion 3.1. Then

Rijkl = R(ai, aj , ak, al),(3.8)

R̃ijkl = R̃(E(ai), E(aj), E(ak), E(al))(3.9)
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are, respectively, the coefficients of the curvature tensors R and R̃ with
respect to the chosen unitary bases of TpG(n, n+m;C) and Tϕt(p)G(n, n+
m;C).

From Corollary 2.4 it follows that

Rijkl = R̃ijkl ∀1 ≤ i, j, k, l ≤ 2nm.(3.10)

Let (U , Z) be the local chart around p on G(n, n+m;C) as in Proposi-
tion 2.3. The final two equalities in Proposition 2.6 show

(3.11)
R
( ∂

∂Xkl

∣∣∣
p
,
∂

∂Y st

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,
∂

∂Y st

∣∣∣
p

)
−R

( ∂

∂Xkl

∣∣∣
p
,

∂

∂Xst

∣∣∣
p
,

∂

∂Xkl

∣∣∣
p
,

∂

∂Xst

∣∣∣
p

)
= 4δksδlt.

Writing Z11, Z12, . . . , Z1m, Z21, . . . , Z2m, . . . , Zn1, . . . , Znm into z1, z2, . . . ,
znm we have

(3.12) ek := a2k−1 =
∂

∂xk

∣∣∣
p

and fk := a2k =
∂

∂yk

∣∣∣
p

for k = 1, . . . , nm. Then (3.11) can be written as

R
(
e(k−1)m+l, f(s−1)m+t, e(k−1)m+l, f(s−1)m+t

)
−R

(
e(k−1)m+l, e(s−1)m+t, e(k−1)m+l, e(s−1)m+t

)
= 4δksδlt

(3.13)

for any 1 ≤ k, s ≤ n and 1 ≤ l, t ≤ m. Clearly, this is equivalent to

(3.14) R(ei, fj , ei, fj)−R(ei, ej , ei, ej) = 4δij ∀1 ≤ i, j ≤ nm.

Now for M = M̃ = G(n, n+m;C), by (3.10) we may rewrite the second
term in the big bracket of (3.4) as follows:
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∑
k

∑
i 6=k

λi(Rikik − λ2
kR̃ikik)

(1 + λ2
k)(λi + λi′)

=
∑
k

∑
i 6=k

λi(1− λ2
k)Rikik

(1 + λ2
k)(λi + λi′)

(3.15)

=
∑

k=2r−1,i=2s−1,r 6=s

λ2s−1(1− λ2
2r−1)R(es, er, es, er)

(1 + λ2
2r−1)(λ2s−1 + λ2s)

+
∑

k=2r−1,i=2s

λ2s(1− λ2
2r−1)R(fs, er, fs, er)

(1 + λ2
2r−1)(λ2s−1 + λ2s)

+
∑

k=2r,i=2s−1

λ2s−1(1− λ2
2r)R(es, fr, es, fr)

(1 + λ2
2r)(λ2s−1 + λ2s)

+
∑

k=2r,i=2s,r 6=s

λ2s(1− λ2
2r)R(fs, fr, fs, fr)

(1 + λ2
2r)(λ2s−1 + λ2s)

=
∑
r 6=s

R(es, er, es, er)

(λ2s−1 + λ2s)

[
λ2s−1(1− λ2

2r−1)

(1 + λ2
2r−1)

+
λ2s(1− λ2

2r)

(1 + λ2
2r)

]
+
∑
r,s

R(es, fr, es, fr)(λ
2
2r − 1)(λ2s − λ2s−1)

(λ2s−1 + λ2s)(1 + λ2
2r)

=
∑
r,s

(λ2
2r − 1)(λ2s − λ2s−1)

(λ2s−1 + λ2s)(1 + λ2
2r)

[R(es, fr, es, fr)−R(es, er, es, er)]

=
∑
r,s

(λ2
2r − 1)(λ2

2s − 1)

(1 + λ2
2s)(1 + λ2

2r)
[R(es, fr, es, fr)−R(es, er, es, er)]

(3.14)
=

∑
r=s

4
(λ2

2r − 1)(λ2
2s − 1)

(1 + λ2
2s)(1 + λ2

2r)

=4
∑
s

(λ2
2s − 1)2

(1 + λ2
2s)

2
.

Hence in the present case (3.4) becomes

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω

{
Q(λi, hjkl) + 4

nm∑
s=1

(λ2
2s − 1)2

(1 + λ2
2s)

2

}
.(3.16)

This and Proposition 3.4 immediately lead to the following generalization
of [MeWa, §3,Cor.4].



i
i

“4-303” — 2016/3/16 — 11:47 — page 931 — #27 i
i

i
i

i
i

Deforming symplectomorphism of IHSSCT 931

Proposition 3.5. Let Λ0 = Λ0(nm) > 1 be the constant defined by (3.7).
For any Λ ∈ [1,Λ0) it holds that(

d

dt
−∆

)
∗ Ω ≥ δΛ ∗ Ω|II|2 + 4 ∗ Ω

nm∑
s=1

(1− λ2
2s)

2

(1 + λ2
2s)

2

whenever 1
Λ ≤ λi ≤ Λ for i = 1, . . . , 2nm. Here |II| is the norm of the second

fundamental form of Σt.

Recall that ∗Ω = 1/
√∏2mn

j=1 (1 + λ2
j ) = 1/

∏
i odd

1
λi+λi′

on Σt, where i′ =

i+ (−1)i+1 for i = 1, . . . , 2nm. For Λ > 1 and 0 < ε < 1/2nm set

ε(mn,Λ) =
1

2mn
− 1

(Λ + 1
Λ)mn

,

Λ(mn, ε) =
2−mn

2−mn − ε
+

√( 2−mn

2−mn − ε

)2
− 1.

Then ε(mn,Λ) > 0 and Λ(mn, ε) > 1. Lemmas 5 and 6 in [MeWa] showed

1

Λ
≤ λi ≤ Λ ∀i =⇒ 1

2mn
− ε(mn,Λ) ≤ ∗Ω,

1

2mn
− ε ≤ ∗Ω =⇒ 1

Λ(mn, ε)
≤ λi ≤ Λ(mn, ε) ∀i.

From these and Proposition 3.5 we may repeat the proofs of Proposition 4
and Corollary 5 in [MeWa] to obtain the following generalization of them.

Proposition 3.6. For some T > 0 let [0, T ) 3 t→ Σt be the mean cur-
vature flow of the graph Σ of a symplectomorphism ϕ : G(n, n+m;C)→
G(n, n+m;C), where G(n, n+m;C) is equipped with the unique (up to ×
nonzero factor) invariant Kähler-Einstein metric. Let ∗Ω(t) be the Jacobian
of the projection π1 : Σt → G(n, n+m;C). Suppose for some Λ∈(1,Λ0(nm))
that

1

2mn
− ε =

1

2mn
− 1

2mn

(
1− 2Λ

Λ2 + 1

)
=

1

2mn−1

Λ

Λ2 + 1
≤ ∗Ω(0).

Then along the mean curvature flow ∗Ω satisfies(
d

dt
−∆

)
∗ Ω ≥ δΛ ∗ Ω|II|2 + 4 ∗ Ω

nm∑
s=1

(1− λ2
2s)

2

(1 + λ2
2s)

2
,
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where δΛ is given in (3.6), and so minΣt ∗Ω is nondecreasing as a func-
tion in t and Σt is the graph of a symplectomorphism ϕt : G(n, n+m;C)→
G(n, n+m;C). In particular, if ϕ is Λ-pinched for some Λ ∈ (1,Λ1(mn)] \
{∞}, then each ϕt is Λ′mn-pinched along the mean curvature flow, where
Λ′mn is defined by (1.2). (Note: Λ′mn = Λ0(mn) if Λ = Λ1(mn) <∞.)

Remark 3.7. Let (M,ω, J, g) be a compact totally geodesic Kähler-Einstein
submanifold of (G(n, n+m;C), h) (e.g. (GII(n, 2n), hII) and
(GIII(n, 2n), hIII) are such submanifolds of (G(n, 2n;C), hI)), dimM = 2N .
By Corollary 2.5 we immediately obtain corresponding results with Propo-
sitions 3.5 and 3.6.

3.3. The case of flat complex tori

The following proposition is actually contained in the proof of Corollary 3
of [MeWa, p.320]. We still give its proof.

Proposition 3.8. If M and M̃ are real 2n-dimensional Kähler manifolds
with constant holomorphic sectional curvature c ≥ 0 (hence are Einstein and
have the same scalar curvature), then

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω

{
Q(λi, hjkl) + c

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2

}
.

Proof. With the choice of bases of TpM and Tf(p)M̃ , (we shall suppress |p
in ∂

∂xr |p and ∂
∂yr |p, r = 1, . . . , n for simplicity), it is easily computed that

Rikik = R(ai, aj , ak, al)

=


R( ∂

∂xr ,
∂
∂xs ,

∂
∂xr ,

∂
∂xs ) if i = 2r − 1, k = 2s− 1,

R( ∂
∂xr ,

∂
∂ys ,

∂
∂xr ,

∂
∂ys ) if i = 2r − 1, k = 2s,

R( ∂
∂yr ,

∂
∂xs ,

∂
∂yr ,

∂
∂xs ) if i = 2r, k = 2s− 1,

R( ∂
∂yr ,

∂
∂ys ,

∂
∂yr ,

∂
∂ys ) if i = 2r, k = 2s.

Plugging ∂
∂xj = ∂

∂zj + ∂
∂zj ,

∂
∂yj = 1

i (
∂
∂zj −

∂
∂zj ) into the above equalities we

get

(3.17) Rikik = Rrsrs +Rsrsr −Rrssr −Rsrrs

if (i, k) = (2r − 1, 2s− 1) or (i, k) = (2r, 2s), and

Rikik = −(Rrsrs +Rsrsr +Rrssr +Rsrrs)



i
i

“4-303” — 2016/3/16 — 11:47 — page 933 — #29 i
i

i
i

i
i

Deforming symplectomorphism of IHSSCT 933

if (i, k) = (2r − 1, 2s) or (i, k) = (2r, 2s− 1). Note that

gld = g

(
∂

∂zl
,
∂

∂zd

)
= gdl = gdl = gld =

δld
2
, gld = gld = 0

and that the nonzero components of the Riemannian curvature in the com-
plex local system z1, . . . , zn are exactly Rij̄kl̄ and Rījk̄l. Moreover,

Rijkl = − c
2

(gijgkl + gilgjk)

on the Kähler manifolds of constant holomorphic sectional curvature c (by
Proposition 7.6 of [KoNo, p. 169]). From (3.17) we derive

Rikik =

{
− c

4(δrs − 1) if (i, k) = (2r − 1, 2s− 1) or (i, k) = (2r, 2s),
c
4(3δrs + 1) if (i, k) = (2r − 1, 2s) or (i, k) = (2r, 2s− 1).

This shows that

Rikik =
c

4
(3δik′ + 1) ∀i 6= k.

Plugging into (3.4) yields

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω

{
Q(λi, hjkl) +

c

4

∑
k

∑
i 6=k

λi(1− λ2
k)(1 + 3δik′)

(1 + λ2
k)(λi + λi′)

}

= ∆ ∗ Ω + ∗Ω

{
Q(λi, hjkl) + c

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2

}
.

�

As in the proof of [MeWa, §3,Cor.4], from this and Proposition 3.4 we
immediately get the following result.

Proposition 3.9. Under the assumptions of Proposition 3.8, for any Λ ∈
[1,Λ0(n)) it holds that

(3.18)

(
d

dt
−∆

)
∗ Ω ≥ δΛ ∗ Ω|II|2 + c ∗ Ω

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2

whenever 1
Λ ≤ λi ≤ Λ for i = 1, . . . , 2n. Here |II| is the norm of the second

fundamental form of Σt.

From now on we shall assume c = 0. In this case we can improve the
pinching condition.
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Proposition 3.10. Under the assumptions of Proposition 3.8, if c = 0 and
ϕ is Λ-pinched with Λ ∈ [1,∞) then ϕt is still Λ-pinched on [0, T ), i.e.

1
Λ ≤ λi(0) ≤ Λ
∀i = 1, . . . , 2n

}
=⇒

{
1
Λ ≤ λi(t) ≤ Λ
∀i = 1, . . . , 2n and ∀t ∈ [0, T ).

Here [0, T ) is the maximal existence interval of the mean curvature flow,
and T > 0 or T =∞.

Proof. Since λi, i = 1, . . ., are singular values of a linear symplectic map, we
have 1

λi
∈ {λ1, . . . , λ2n} for i = 1, . . . , 2n. (See Lemma 3 of [MeWa]). So the

question is reduced to prove

λi(0) ≤ Λ
∀i = 1, . . . , 2n

}
=⇒

{
λi(t) ≤ Λ
∀i = 1, . . . , 2n and ∀t ∈ [0, T ).

We shall use the method in [TsWa, Section 4] and [Smo3] to prove this.
Let aj , j = 1, . . . , n be as in Proposition 3.3 with N = n. Set

ei =
1√

1 + λ2
i

(ai, λiE(ai)) and e2n+i =
1√

1 + λ2
i

(Jpa
i,−λiE(Jpa

i))

for i = 1, . . . , 2n. Identifying the tangent space of M × M̃ with TM ⊕ TM̃ ,
let π1 and π2 denote the projection onto the first and second factors in the
splitting. Then

π1(ei) =
ai√

1 + λ2
i

, π2(ei) =
λiE(ai)√

1 + λ2
i

;

π1(e2n+i) =
Jai√
1 + λ2

i

, π2(e2n+i) =
−λiE(Jai)√

1 + λ2
i

for i = 1, . . . , 2n. Let us define the following parallel symmetric two-tensor
S by

S(X,Y ) =
Λ2〈π1(X), π1(Y )〉 − 〈π2(X), π2(Y )〉

Λ2+Ξ

for any X,Y ∈ T (M × M̃), where Ξ > 0 is a parameter determined later.
Then
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Sij := S(ei, ej) =
(Λ2 − λiλj)δij

Λ2+Ξ ·
√

(1 + λ2
i )(1 + λ2

j )
,

Sr(2n+j) := S(er, e2n+j) =
(Λ2 + λrλj)δrj′(−1)j+1

Λ2+Ξ ·
√

(1 + λ2
r)(1 + λ2

j )
,

S(2n+i)(2n+j) := S(e2n+i, e2n+j) =
(Λ2 − λiλj)δij

Λ2+Ξ ·
√

(1 + λ2
i )(1 + λ2

j )

for i, j, r = 1, . . . , 2n, and the matrix S = (Skl)1≤k,l≤4n can be written in the
block form (

A B
BT D

)
where A = D = Diag

(
(Λ2−λ2

1)
Λ2+Ξ·(1+λ2

1) , . . . ,
(Λ2−λ2

2n)
Λ2+Ξ·(1+λ2

2n)

)
. So

A is positive definite on Σt if and only if

Λ2 − λ2
i > 0, i = 1, . . . , 2n.

(3.19)

Obverse that e1, . . . , e2n forms an orthogonal basis for the tangent space of
Σt. As in [TsWa, Prop. 3.2], the pullback of S to Σt satisfies the equation

(
d

dt
−∆)Sij = −hαliHαSlj − hαjlHαSli +RkikαSαj +RkjkαSαi(3.20)

+ hαklhαkiSlj + hαklhαkjSli − 2hαkihβkjSαβ

for i, j = 1, . . . , 2n, where ∆ is the rough Laplacian on 2-tensors over Σt,

hijk = G(∇M×M̃ei ej ,J ek), and Rkikα = R(ek, ei, ek, eα) is the component of

the curvature tensor R of (M × M̃,G) with J and G = π∗1g + π∗2 g̃ as in
Section 3.1.

Consider the 2n× 2n matrix (Sij) := (S(ei, ej)1≤i,j≤2n. By (3.19) we
only need to prove

(Sij) > 0 at t = 0 =⇒ (Sij) > 0 in [0, T ).

This can be directly derived from the following analogue of [TsWa, Lemma
4.1]. �
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Proposition 3.11. Let xn+i = yi, i = 1, . . . , n, and gij = g( ∂
∂xi ,

∂
∂xj ), i, j =

1, . . . , 2n. For any given ε > 0, there exists a parameter Ξ > 0 such that the
condition (Tij) := (Sij)− ε(gij) > 0 is preserved along the mean curvature
flow.

Proof. Let α = 2n+ µ and β = 2n+ ν, µ, ν = 1, . . . , 2n. As in [TsWa], (3.20)
yields

(
d

dt
−∆

)
Tij = −hαliHαTlj − hαjlHαTli(3.21)

+RkikαSαj +RkjkαSαi
+ hαklhαkiTlj + hαklhαkjTli

+ 2εhαkihαkj − 2hαkihβkjSαβ.

Let Nij denote the right hand side of (3.21). A vector V = (V 1, . . . , V 2n) is
called a null eigenvector V of the matrix (Tij) if

∑
j TijV

j = 0 ∀i. By the
Hamilton’s maximum principle [Ha, Theorem 9.1], if we may prove

∑
ij

NijV
iV j ≥ 0

for any null eigenvector V of the matrix (Tij), then the fact that (Tij) ≥ 0
at t = 0 implies that (Tij) ≥ 0 on [0, T ), i.e. Proposition 3.11 holds.

By a direct computation we only need to prove that at t = 0

∑
ij

NijV
iV j =

∑
i,j,k,α

2εhαkihαkjV
iV j − 2

∑
β

hαkihβkjSαβV
iV j

(3.22)

+ 2
∑
i,j,k,α

RkikαSαjV iV j

≥ 0

for any null eigenvector V = (V 1, . . . , V 2n) of the matrix (Tij). It is easily
estimated that
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2
∑

i,j,k,α,β

hαkihβkjSαβV
iV j

= 2
∑

i,j,k,µ,ν

h2n+µ,kih2n+ν,kjS2n+µ,2n+νV
iV j

= 2
∑

i,j,k,µ,ν

h2n+µ,kih2n+ν,kj(Λ
2 − λµλν)δµνV

iV j

Λ2+Ξ ·
√

(1 + λ2
µ)(1 + λ2

ν)

= 2
∑
k

∑
µ

∑
i,j

h2n+µ,kih2n+µ,kjV
iV j

 Λ2 − λ2
µ

Λ2+Ξ · (1 + λ2
µ)

≤ 2
∑
µ

∑
k

∑
i,j

h2n+µ,kih2n+µ,kjV
iV j

∑
ν

Λ2 − λ2
ν

Λ2+Ξ · (1 + λ2
ν)

≤ 4n

ΛΞ

∑
i,j,k,µ

h2n+µ,kih2n+µ,kjV
iV j .

Here in the first inequality we used the facts

•
∑

i(aibi) ≤ (
∑

i ai)(
∑

i bi) for ai ≥ 0, bi ≥ 0, and

•
∑

i,j h2n+µ,kih2n+µ,kjV
iV j = (

∑
i h2n+µ,kiV

i)2 ≥ 0,

and the second one comes from the inequality

∑
ν

Λ2 − λ2
ν

Λ2+Ξ · (1 + λ2
ν)
≤
∑
ν

Λ2

Λ2+Ξ
≤ 2n

ΛΞ
.

So the first sum in the right side of (3.22) becomes

∑
i,j,k,α

2εhαkihαkjV
iV j − 2

∑
β

hαkihβkjSαβV
iV j


≥
∑
i,j,k,µ

h2n+µ,kih2n+µ,kjV
iV j
(

2ε− 4n

ΛΞ

)
because α = 2n+ µ and β = 2n+ ν, µ, ν = 1, . . . , 2n.

For a given ε > 0 we can choose Ξ > 0 so large that ε− 2n
ΛΞ > 0. Then

(3.22) is proved if we show
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∑
i,j,k,α

RkikαSαjV iV j ≥ 0

for any null eigenvector V of the matrix (Tij). But this is obvious because

(M × M̃,G) is flat and hence R = 0. �

From Propositions 3.9 and 3.10 we immediately obtain the following
strengthen analogue of Proposition 3.9.

Proposition 3.12. For some T > 0 let [0, T ) 3 t→ Σt be the mean curva-

ture flow of the graph Σ of a symplectomorphism ϕ : M → M̃ , where M and
M̃ are Kähler-Einstein manifolds of constant holomorphic sectional curva-
ture 0. Let ∗Ω(t) be the Jacobian of the projection π1 : Σt →M . For the
constant Λ0(n) in (3.7) and any Λ ∈ [1,Λ0(n)), if ϕ is Λ-pinched initially,
then ∗Ω satisfies (

d

dt
−∆

)
∗ Ω ≥ δΛ ∗ Ω|II|2

along the mean curvature flow, where δΛ is given in (3.6). In particular,
minΣt ∗Ω is nondecreasing as a function in t.

4. Proofs of Theorems 1.1, 1.2 and 1.3

4.1. Proofs of Theorems 1.1, 1.2

Using Propositions 3.5 and 3.6 (resp. Remark 3.7) and almost repeating the
arguments in §3.3, §3.4 of [MeWa] we can complete the proof of Theorem 1.1
(resp. Theorem 1.2).

4.2. Proof of Theorem 1.3

4.2.1. The long-time existence. Embedding M × M̃ into some RN iso-
metrically, as in [MeWa] the mean curvature flow equation can be written as
d
dtF (x, t) = H = H + V in terms of the coordinate function F (x, t) ∈ RN ,

where H ∈ TΣt(M × M̃)/TΣt and H ∈ TΣtRN/TΣt are the mean curva-

ture vectors of Σt in M × M̃ and RN , respectively, and V = −IIM (ea, ea).
Suppose by a contradiction that there is a singularity at space time point
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(y0, t0) ∈ RN × R. Let dµt denote the volume form of Σt, and let

ρ(y0,t0)(y, t) =
1

(4π(t0 − t))n
exp

(
−|y − y0|2

4(t0 − t)

)
be the backward heat kernel of ρ(y0,t0) at (y0, t0). Under our present assump-
tions, as in [MeWa, page 328] we can still use Proposition 3.12 to derive the
corresponding inequality of [MeWa, page 328], that is,

d

dt

∫
(1− ∗Ω)ρ(y0,t0)dµt

≤ −δΛ

∫
∗Ω‖II‖2ρ(y0,t0)dµt +

∫
(1− ∗Ω)ρ(y0,t0)

‖V ‖2

4
dµt

−
∫

(1− ∗Ω)ρ(y0,t0)

∥∥∥∥ F⊥

2(t0 − t)
+H +

V

2

∥∥∥∥2

dµt.

Then the expected long-time existence can be obtained by repeating the
remain arguments on the pages 328–330 of [MeWa].

4.2.2. The convergence. Let ϕ : M → M̃ be a Λ-pinched symplecto-
morphism with Λ ∈ (1,Λ0(n)). Take an arbitrary Λ1 ∈ (Λ,Λ0(n)).

Lemma 4.1. (Djokovic inequality):

tanx

{
> x+ 1

3x
3, if 0 < x < π

2 ,
< x+ f(α)x3, if 0 < x < α < π

2 ,

where f(α) = tanα−α
α3 , in particular f(π6 ) < 4

9 .

The following lemma is key for us.

Lemma 4.2. For every Λ1 ∈ [1,Λ0(n)) there exists a Λ̂1 > 1 such that for
every Λ ∈ (1, Λ̂1) we have k, l > 0 to satisfy

π

2
· 2nl >

√
(
√

21− 3)/2 ·
(

Λ +
1

Λ

)nl
,(4.1)

lδΛ1

10
≥

tan
(
k( 1

2n )l
)

k( 1
2n )l

,(4.2)

π

2
> k ·

(
1

2n

)l
> k ·

(
1(

Λ + 1
Λ

)n
)l
≥
√

(
√

21− 3)/2.(4.3)
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Moreover Λ̂1 is more than or equal to(
2 exp

(
0.141446δΛ1

5n

)
+2 exp

(
0.141446δΛ1

10n

)√
exp

(
0.141446δΛ1

5n

)
−1−1

) 1

2

.

Its proof will be given at the end of this section.
By the assumption of Theorem 1.3 we have Λ1 ∈ (Λ,Λ0) such that Λ <

Λ̂1. Fix this Λ1 below. By Proposition 3.12 we have

(4.4)
d

dt
∗ Ω ≥ ∆ ∗ Ω + δΛ1

· ∗Ω · |II|2.

From [Wa2, Section 7] we also know that

d

dt
|II|2 = ∆|II|2 − 2|∇II|2 + 2

[
(∇∂kR)sijk + (∇∂jR)skik)

]
hsij(4.5)

− 4Rlijkhslkhsij + 8Rs tjkhtikhsij

− 4Rlkikhsljhsij + 2Rsktkhtijhsij

+ 2
∑
s,t,i.m

(∑
k

(hsikhtmk − hsmkhtik)

)2

+ 2
∑
i,j,m,k

(∑
s

hsijhsmk

)2

,

where R is the curvature tensor and ∇ is the covariant derivative of the
ambient space, s = 2n+ s. Now on one hand

2
∑
s,t,i,m

(∑
k

(hsikhtmk − hsmkhtik)

)2

+ 2
∑
i,j,m,k

(∑
s

hsijhsmk

)2

(4.6)

≤ 4
∑
s,t,i,m

[(∑
k

|hsik|2
)(∑

k

|htmk|2
)

+

(∑
k

|hsmk|2
)(∑

k

|htik|2
)]

+ 2
∑
i,j,m,k

(∑
s

h2
sij

)(∑
s

h2
smk

)

= 8
∑
s,i,k

h2
sik

∑
t,m,k

h2
tmk + 2

∑
s,i,j

h2
sij

∑
s,m,k

h2
smk


= 8|II|4 + 2|II|4 = 10|II|4,
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where the first inequality comes from

(∑
k

(hsikhtmk − hsmkhtik)

)2

≤

(∑
k

(|hsikhtmk|+ |hsmkhtik|)

)2

≤

(∑
k

|hsik|2
) 1

2
(∑

k

|htmk|2
) 1

2

+

(∑
k

|hsmk|2
) 1

2
(∑

k

|htik|2
) 1

2

2

≤ 2

[(∑
k

|hsik|2
)(∑

k

|htmk|2
)

+

(∑
k

|hsmk|2
)(∑

k

|htik|2
)]

.

This and (4.5)–(4.6) lead to

(4.7)
d

dt
|II|2 ≤ ∆|II|2 − 2|∇II|2 + 10|II|4.

We hope to prove that maxΣt |II|2 → 0 as t→∞. To this goal, for pos-
itive numbers k, l, s determined later let us compute the evolution equation
of |II|2

[sin(k(∗Ω)l)]s as follows:

d

dt

(
|II|2

[sin(k(∗Ω)l)]s

)
=

1

[sin(k(∗Ω)l)]s
d|II|2

dt
− s · k · l(∗Ω)l−1|II|2 cos(k(∗Ω)l)

[sin(k(∗Ω)l)]s+1

d ∗ Ω

dt
,

∆

(
|II|2

[sin(k(∗Ω)l)]s

)
=

∆|II|2

[sin(k(∗Ω)l)]s
− s · k · l · |II|2 · (∗Ω)l−1 · cos(k(∗Ω)l) ·∆ ∗ Ω

[sin(k(∗Ω)l)]s+1

− 2s · k · l · ∇|II|2 · (∗Ω)l−1 · cos(k(∗Ω)l) · ∇ ∗ Ω

[sin(k(∗Ω)l)]s+1

+
s · k2 · l2 · |II|2 · (∗Ω)2l−2 · sin(k(∗Ω)l) · |∇ ∗ Ω|2

[sin(k(∗Ω)l)]s+1

− s · k · l · (l − 1) · |II|2 · (∗Ω)l−2 · cos(k(∗Ω)l) · |∇ ∗ Ω|2

[sin(k(∗Ω)l)]s+1

+
s · (s+ 1) · k2 · l2 · |II|2 · (∗Ω)2l−2 · (cos(k(∗Ω)l))2 · |∇ ∗ Ω|2

[sin(k(∗Ω)l)]s+2
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and hence(
d

dt
−∆

)(
|II|2

[sin(k(∗Ω)l)]s

)
(4.8)

=
1

[sin(k(∗Ω)l)]s

(
d

dt
−∆

)
|II|2

− s · k · l · |II|2 · (∗Ω)l−1 · cos(k(∗Ω)l)

[sin(k(∗Ω)l)]s+1

(
d

dt
−∆

)
∗ Ω

+
4 · s · k · l · |II| · ∇|II| · (∗Ω)l−1 · cos(k(∗Ω)l) · ∇ ∗ Ω

[sin(k(∗Ω)l)]s+1

− s · k2 · l2 · |II|2 · (∗Ω)2l−2 · sin(k(∗Ω)l) · |∇ ∗ Ω|2

[sin(k(∗Ω)l)]s+1

+
s · k · l · (l − 1) · |II|2 · (∗Ω)l−2 · cos(k(∗Ω)l) · |∇ ∗ Ω|2

[sin(k(∗Ω)l)]s+1

− s · (s+ 1) · k2 · l2 · |II|2 · (∗Ω)2l−2 · (cos(k(∗Ω)l))2 · |∇ ∗ Ω|2

[sin(k(∗Ω)l)]s+2

(4.4)
≤ −2|∇II|2 + 10|II|4

[sin(k(∗Ω)l)]s
− s · k · l · δΛ1

· |II|4 · (∗Ω)l · cos(k(∗Ω)l)

[sin(k(∗Ω)l)]s+1

+
4 · s · k · l · |II| · ∇|II| · (∗Ω)l−1 · cos(k(∗Ω)l) · ∇ ∗ Ω

[sin(k(∗Ω)l)]s+1

+ (the last three terms)

=
−2|∇II|2

[sin(k(∗Ω)l)]s
+ 10[sin(k(∗Ω)l)]s

(
|II|2

[sin(k(∗Ω)l)]s

)2

− s · k · l · δΛ1
· (∗Ω)l · cos(k(∗Ω)l) · [sin(k(∗Ω)l)]s−1

(
|II|2

[sin(k(∗Ω)l)]s

)2

+
4 · s · k · l · |II| · ∇|II| · (∗Ω)l−1 · cos(k(∗Ω)l) · ∇ ∗ Ω

[sin(k(∗Ω)l)]s+1

+ (the last three terms).

Note that the Cauchy-Schwarz inequality implies

|∇|II||2 =

2n∑
i=1

∇i
√√√√ 2n∑

j,k,l=1

h2
jkl

2

=

2n∑
i=1

(
2
∑

j,k,l hjkl∂ihjkl

2|II|

)2

≤
2n∑
i=1

∑
j,k,l

h2
jkl

|II|2
∑
j,k,l

(∂ihjkl)
2

 ≤ ∑
i,j,k,l

(∂ihjkl)
2 = |∇II|2.
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The term in (4.8) becomes

4 · s · k · l · |II| · ∇|II| · (∗Ω)l−1 · cos(k(∗Ω)l) · ∇ ∗ Ω

[sin(k(∗Ω)l)]s+1

≤ 4 · s · k · l · |II| · |∇|II|| · (∗Ω)l−1 · cos(k(∗Ω)l) · |∇ ∗ Ω|
[sin(k(∗Ω)l)]s+1

≤ 4 · s · k · l · |II| · |∇II| · (∗Ω)l−1 · cos(k(∗Ω)l) · |∇ ∗ Ω|
[sin(k(∗Ω)l)]s+1

=
4

[sin(k(∗Ω)l)]s

[
s · k · l · |II| · (∗Ω)l−1 · cos(k(∗Ω)l) · |∇ ∗ Ω|

sin(k(∗Ω)l)

]
· |∇II|

≤ 2

[sin(k(∗Ω)l)]s

[
s2 · k2 · l2 · |II|2 · (∗Ω)2l−2 · (cos(k(∗ω)l))2 · |∇ ∗ Ω|2

(sin(k(∗ω)l))2

+ |∇II|2
]

=
2 · s2 · k2 · l2 · |II|2 · (∗Ω)2l−2 · (cos(k(∗Ω)l))2 · |∇ ∗ Ω|2

(sin(k(∗Ω)l))s+2

+
2|∇II|2

[sin(k(∗Ω)l)]s
.

Hence we arrive at

(
d

dt
−∆

)(
|II|2

[sin(k(∗Ω)l)]s

)
≤ 10[sin(k(∗Ω)l)]s

(
|II|2

[sin(k(∗Ω)l)]s

)2

− s · k · l · δΛ1
· (∗Ω)l · cos(k(∗Ω)l) · [sin(k(∗Ω)l)]s−1

(
|II|2

[sin(k(∗Ω)l)]s

)2

+
2 · s2 · k2 · l2 · |II|2 · (∗Ω)2l−2 · (cos(k(∗Ω)l))2 · |∇ ∗ Ω|2

(sin(k(∗Ω)l))s+2

− s · k2 · l2 · |II|2 · (∗Ω)2l−2 · sin(k(∗Ω)l) · |∇ ∗ Ω|2

[sin(k(∗Ω)l)]s+1

+
s · k · l · (l − 1) · |II|2 · (∗Ω)l−2 · cos(k(∗Ω)l) · |∇ ∗ Ω|2

[sin(k(∗Ω)l)]s+1

− s · (s+ 1) · k2 · l2 · |II|2 · (∗Ω)2l−2 · (cos(k(∗Ω)l))2 · |∇ ∗ Ω|2

[sin(k(∗Ω)l)]s+2
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=

(
|II|2

[sin(k(∗Ω)l)]s

)2

· [sin(k(∗Ω)l)]s−1

·
[
10 · sin(k(∗Ω)l)− s · k · l · δΛ1

· (∗Ω)l · cos(k(∗Ω)l)
]

+
s · k · l · (∗Ω)l−2|II|2|∇ ∗ Ω|2

[sin(k(∗Ω)l)]s+2
[(s− 1) · k · l · (∗Ω)l · (cos(k(∗Ω)l))2

− k · l · (∗Ω)l · (sin(k(∗Ω)l))2 + (l − 1) cos(k(∗Ω)l) sin(k(∗Ω)l)].

Take s = 1 we obtain(
d

dt
−∆

)(
|II|2

sin(k(∗Ω)l)

)
(4.9)

≤
(

|II|2

sin(k(∗Ω)l)

)2

·
[
10 · sin(k(∗Ω)l)− k · l · δΛ1

· (∗Ω)l · cos(k(∗Ω)l)
]

+
k · l · (∗Ω)l−2|II|2|∇ ∗ Ω|2

[sin(k(∗Ω)l)]3
[
−k · l · (∗Ω)l · (sin(k(∗Ω)l))2

+ (l − 1) cos(k(∗Ω)l) sin(k(∗Ω)l)
]
.

Claim 4.3. If the positive numbers k, l satisfy (4.1)–(4.3) in Lemma 4.2,
then

10 sin(k(∗Ω)l)− k · l · δΛ1
· (∗Ω)l · cos(k(∗Ω)l) < 0

and

(l − 1) · cos(k(∗Ω)l)− k · l · (∗Ω)l sin(k(∗Ω)l) < 0,

that is

(4.10)
l − 1

l · k(∗Ω)l
< tan(k(∗Ω)l) <

l · δΛ1
· k · (∗Ω)l

10

for any ∗Ω ∈ [ 1
2n ,

1
Λ+ 1

Λ

] with 1 < Λ < Λ̂1.

We put off its proof. Then (4.9) becomes(
d

dt
−∆

)(
|II|2

sin(k(∗Ω)l)

)
≤
(

|II|2

sin(k(∗Ω)l)

)2 [
10 · sin(k(∗Ω)l)− k · l · δΛ1

· (∗Ω)l · cos(k(∗Ω)l)
]
.
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Let g = |II|2
sin(k(∗Ω)l) and

K1 := max
∗Ω∈[ 1

(Λ+ 1
Λ

)n
, 1

2n
]

[
10 · sin(k(∗Ω)l)− k · l · δΛ1

· (∗Ω)l · cos(k(∗Ω)l)
]
.

By Claim 4.3, K1 < 0 and

(4.11)

(
d

dt
−∆

)
g ≤ K1 · g2.

Consider the initial value problem

(4.12)
d

dt
y = K1 · y2 and y(0) = maxΣ0

g.

The unique solution of it is given by y(t) = y(0)
1−y(0)K1t

. By (4.11)–(4.12) the
comparison principle for parabolic equations yields

g =
|II|2

sin(k(∗Ω)l)
≤ y(t) ∀t > 0.

Since (4.3) implies that the function[
1

(Λ + 1
Λ)n

,
1

2n

]
3 ∗Ω→ sin(k(∗Ω)l)

is bounded away from zero, we derive

max
Σt
|II|2 ≤ sin

(
k(

1

2n
)l
)
· y(0)

1− y(0)K1t
→ 0, t→∞.

The desired claim is proved. So up to proofs of Lemma 4.2 and Claim 4.3,
we have proved that the flow converges to a totally geodesic Lagrangian
submanifold at infinity.

Proof of Claim 4.3. Fix the positive numbers k, l satisfying (4.1)–(4.3) in
Lemma 4.2. By (4.3) we have

π

2
> k ·

(
1

2n

)l
≥ k · (∗Ω)l ≥ k ·

(
1

(Λ + 1
Λ)n

)l
≥
√

(
√

21− 3)/2

because ∗Ω ∈ [ 1
(Λ+ 1

Λ
)n
, 1

2n ]. Note that√
(
√

21− 3)/2 = inf
{
x(x+

1

3
x3) ≥ 1

∣∣ 0 < x < π/2
}
≈ 0.8895436175241
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sits in [ π
3.5317 ,

π
3.5316 ]. By Lemma 4.1 (the Djokovic inequality) we get

k · (∗Ω)l(tan(k(∗Ω)l)) > k · (∗Ω)l(k · (∗Ω)l +
1

3
(k · (∗Ω)l)3) ≥ 1 >

l − 1

l
,

that is, the first inequality in (4.10). Similarly, the second inequality in (4.10)
follows from (4.2). Claim 4.3 is proved. �

Proof of Lemma 4.2. For conveniences we set τ := τ(Λ) = Λ + 1
Λ , which is

larger than 2 because Λ > 1. Since π
2 >

√
(
√

21− 3)/2 we may fix a small
ε > 0 such that

π

2
>
π

2
− ε >

√
(
√

21− 3)/2.

Set α = π
2 − ε. Then (4.1) holds for any

(4.13) l ≤
ln

(
α/
√

(
√

21− 3)/2

)
n ln τ

2

.

More precisely, such a l satisfies

α · 2nl ≥
√

(
√

21− 3)/2 · τnl.

Hence we can always take k = kl > 0 such that√
(
√

21− 3)/2 · τnl ≤ k ≤ α · 2nl

or equivalently

π

2
> α ≥ k ·

(
1

2n

)l
> k ·

(
1(

Λ + 1
Λ

)n
)l
≥
√

(
√

21− 3)/2.

By the Djokovic inequality

tan
(
k( 1

2n )l
)

k
(

1
2n

)l ≤ 1 + f(α)

(
k

(
1

2n

)l)2

if k · ( 1
2n )l ≤ α. So (4.2) holds if k > 0 and l > 0 are chosen to satisfy

lδΛ1

10
≥ 1 + f(α)α2 ≥ 1 + f(α)

(
k

(
1

2n

)l)2
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or equivalently

(4.14) l ≥ 10

δΛ1

·
(
1 + f(α)α2

)
.

Hence we can take l > 0 to satisfy (4.13) and (4.14) if

(4.15)

ln

(
α/
√

(
√

21− 3)/2

)
n ln τ

2

≥ 10

δΛ1

·
(
1 + f(α)α2

)
.

Since the function

(1,∞)→ R, Λ 7→ Λ +
1

Λ

is strictly increasing, log τ
2 → 0+ as Λ→ 1+. Hence for a given

π

2
> α >

√
(
√

21− 3)/2,

there exists the largest Λ
(α)
1 > 1 such that (4.15) holds for τ = τα = Λ

(α)
1 +

1/Λ
(α)
1 , i.e.

(4.16) g(α) :=

α ln

(
α/
√

(
√

21− 3)/2

)
tanα

≥ 10n

δΛ1

· ln τα
2
.

Of course, (4.16) also holds for for every τ = Λ + 1
Λ with Λ ∈ (1,Λ

(α)
1 ). Then

Λ̂1 = sup

{
Λ

(α)
1

∣∣∣∣ √(
√

21− 3)/2 < α <
π

2
and (4.15) holds for τ = τα

}
satisfies the desired condition. In Appendix A we shall prove

Claim 4.4. There exists a unique α0 ∈ (
√

(
√

21− 3)/2, π2 ) such that

g(α0) = sup

{
g(α)

∣∣∣∣ √(
√

21− 3)/2 < α <
π

2

}
.

Moreover α0 ≈ 1.238756 and g(α0) ≈ 0.141446.
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Hence Λ̂1 ≥ Λ
(α0)
1 , where Λ

(α0)
1 is determined by

g(α0) =
10n

δΛ1

·

[
ln

(
Λ

(α0)
1 +

1

Λ
(α0)
1

)
− ln 2

]
,

or more precisely

Λ
(α0)
1 =

(
2 exp

(
g(α0)δΛ1

5n

)
+ 2 exp

(
g(α0)δΛ1

10n

)√
exp
(
g(α0)δΛ1

5n

)
− 1− 1

) 1

2

≈

(
2 exp

(
0.141446δΛ1

5n

)
+ 2 exp

(
0.141446δΛ1

10n

)√
exp
(

0.141446δΛ1

5n

)
− 1− 1

) 1

2

.

This completes the proof of Lemma 4.2. �

In summary the proof of Theorem 1.3 is complete.

5. A concluding remark

Carefully checking the proofs of Theorems 1.1, 1.2 we find that our real 2n-
dimensional compact Kähler-Einstein manifolds (M,ω, J, g) all satisfy the
following three conditions (A), (B) and (C):

(A) The curvature tensor R is constant on subbundle

{(X, JX, Y, JY ) | g(X,Y ) = 0, g(X, JY ) = 0, g(X,X) = 1 = g(Y, Y )}.

In other words, for any p, q ∈M and any unit orthogonal bases of (TpM,Jp,
gp) and (TqM,Jq, gq), {a1, . . . , a2n} and {a′1, . . . , a′2n} with a2k = Jpa2k−1

and a′2k = Jqa
′
2k−1, k = 1, . . . , n, it holds that

R(ai, ak, ai, ak) = R(a′i, a
′
k, a
′
i, a
′
k) ∀1 ≤ i, k ≤ 2n.

If (M,ω, J, g) is also homogeneous, this is equivalent to the following
weaker

(A’) For any p ∈M and any unit orthogonal bases of (TpM,Jp, gp), {a1, . . . ,
a2n} and {a′1, . . . , a′2n} with a2k = Jpa2k−1 and a′2k = Jqa

′
2k−1, k = 1, . . . , n,

it holds that R(ai, ak, ai, ak) = R(a′i, a
′
k, a
′
i, a
′
k) for all 1 ≤ i, k ≤ 2n.

(B) Re(R(X,Y ,X, Y )) ≤ 0 for any X,Y ∈ T (1,0)M .
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(C) The holomorphic sectional curvature is positive, i.e. ∃ c0 > 0 such that

R(u, Ju, u, Ju)

= −4R
(u−√−1Ju

2
,
u+
√
−1Ju

2
,
u−
√
−1Ju

2
,
u+
√
−1Ju

2

)
≥ c0

for any unit vector u ∈ TM .
By Propositions 2.1, 2.2 and Corollaries 2.4, 2.5, the manifolds (G(n, n

+m;C), h), and (GII(n, 2n), hII) and (GIII(n, 2n), hIII) satisfy these condi-
tions. On the other hand, from (2.14) we see that (GIV(1, n+ 1), hIV) does
not satisfy the condition (B) though the condition (C) holds for it. Actually,
in addition to irreducible Hermitian symmetric spaces of compact type, there
also exist countably Kähler C-spaces associated with a complex simple Lie
algebra of classical type that have positive holomorphic sectional curvature.

We may obtain the following theorem, which generalizes Theorems 1.1
and 1.2, but partially contains 1.3.

Theorem 5.1. Let (M,ω, J, g) and (M̃, ω̃, J̃ , g̃) be two real 2n-dimensional
compact Kähler-Einstein manifolds satisfying the above conditions (A) and

(B). Then for any Λ-pinched symplectomorphism ϕ : (M,ω)→ (M̃, ω̃) with
Λ ∈ [1,Λ1(n)] \ {∞}, where Λ1(n) is given by (1.1), the following conclu-
sions hold:

(i) The mean curvature flow Σt of the graph of ϕ in M × M̃ exists smoothly
for all t > 0.

(ii) Σt is the graph of a symplectomorphism ϕt for each t > 0, and ϕt is Λ′n-
pinched along the mean curvature flow, where Λ′n is defined by (1.2).

(iii) If Λ < Λ̂1 for some Λ1 ∈ (Λ,Λ1(n)] \ {∞}, where Λ̂1 > 1 is a constant
determined by Λ1 and n (see Lemma 4.2), then the flow converges to

a Lagrangian submanifold of M × M̃ as t→∞.

(iv) The flow converges to a totally geodesic Lagrangian submanifold of

M × M̃ and ϕt converges smoothly to a biholomorphic isometry from
M to M̃ as t→∞ provided additionally that (M,ω, J, g) and (M̃, ω̃, J̃ ,
g̃) satisfy the condition (C). Consequently, the symplectomorphism ϕ :

M → M̃ is symplectically isotopic to a biholomorphic isometry.

In order to prove it we start with two simple lemmas.

Lemma 5.2. Let R be the curvature tensor of a Kähler manifold (M,g,J,ω)
of real dimension 2N . For any local holomorphic coordinate system (z1,...,zn)
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on it, let Rrsrs = R
(
∂
∂zr ,

∂
∂z̄s ,

∂
∂zr ,

∂
∂z̄s

)
and zs = xs +

√
−1ys, s = 1, . . . , n.

Then

R

(
∂

∂xs
,
∂

∂yr
,
∂

∂xs
,
∂

∂yr

)
−R

(
∂

∂xs
,
∂

∂xr
,
∂

∂xs
,
∂

∂xr

)
= −4Re(Rrsrs)

for all r, s. In particular, we have

R

(
∂

∂xs
,
∂

∂ys
,
∂

∂xs
,
∂

∂ys

)
= −4Rssss ∀s,

i.e., the holomorphic sectional curvature in the direction ∂
∂xs is given by

H

(
∂

∂xs

)
= − 4Rss̄ss̄

[g( ∂
∂xs ,

∂
∂xs )]2

.

Proof. Since the only possible non-vanishing terms of the curvature compo-
nents are of the form Rij̄kl̄ and those obtained from the universal symmetries
of the curvature tensor, it is not hard to prove that

R

(
∂

∂xs
,
∂

∂yr
,
∂

∂xs
,
∂

∂yr

)
(5.1)

= R

(
∂

∂zs
+

∂

∂z̄s
,
√
−1

(
∂

∂zr
− ∂

∂z̄r

)
,
∂

∂zs
+

∂

∂z̄s
,
√
−1

(
∂

∂zr
− ∂

∂z̄r

))
= −(Rrsrs +Rsrsr +Rrssr +Rsrrs)

and

R

(
∂

∂xs
,
∂

∂xr
,
∂

∂xs
,
∂

∂xr

)
(5.2)

= R

(
∂

∂zs
+

∂

∂z̄s
,
∂

∂zr
+

∂

∂z̄r
,
∂

∂zs
+

∂

∂z̄s
,
∂

∂zr
+

∂

∂z̄r

)
= Rrsrs +Rsrsr −Rrssr −Rsrrs.

Note that Rrsrs = Rsrsr = Rsrsr. It follows from this and (5.1)–(5.2) that

R

(
∂

∂xs
,
∂

∂yr
,
∂

∂xs
,
∂

∂yr

)
−R

(
∂

∂xs
,
∂

∂xr
,
∂

∂xs
,
∂

∂xr

)
= −2Rrsrs − 2Rsrsr = −4Re(Rrsrs).

The second equality may be derived from (5.1) directly. Lemma 5.2 is proved.
�
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Lemma 5.3. Under the assumptions of Lemma 5.2, if (M, g, J, ω) also
satisfies the condition (B), then Re(Rrsrs) ≤ 0 for all 1 ≤ r, s ≤ n.

Proof. Set X =
∑n

i=1 ui
∂
∂zi and Y =

∑n
j=1 vj

∂
∂zj with ui, vj ∈ C. Then

R(X,Y ,X, Y ) =

n∑
i,j,k,l=1

R

(
ui

∂

∂zi
, vj

∂

∂zj
, uk

∂

∂zk
, vl

∂

∂zl

)

=

n∑
i,j,k,l=1

uiukvjvlRijkl

and

R(Y,X, Y,X) =

n∑
i,j,k,l=1

R

(
vj

∂

∂zj
, ui

∂

∂zi
, vl

∂

∂zl
, uk

∂

∂zk

)

=

n∑
i,j,k,l=1

vjvluiukRjilk.

Since Rjilk = Rijkl we get

R(X,Y ,X, Y ) +R(Y,X, Y,X)

=

n∑
i,j,k,l=1

(
uiukvjvlRijkl + uiukvjvlRijkl

)
= R(X,Y ,X, Y ) +R(X,Y ,X, Y )

= 2Re(R(X,Y ,X, Y )).

Taking X = ∂
∂zr , Y = ∂

∂zs , the desired results are obtained. �

The following proposition implies Theorem 5.1(i) and (ii).

Proposition 5.4. Let (M,ω, J, g) be a real 2n-dimensional compact Kähler-
Einstein manifold satisfying the conditions (A) and (B). Then for any sym-

plectomorphism ϕ : M → M̃ it holds that

d

dt
∗ Ω ≥ ∆ ∗ Ω + ∗Ω ·Q(λi, hjkl),(5.3)

along the mean curvature flow Σt of the graph Σ of ϕ. Furthermore, if ϕ is Λ-
pinched for some Λ ∈ (1,Λ1(n)), then the symplectomorphism ϕt : M → M̃ ,
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whose graph is Σt, is Λ′n-pinched and

d

dt
∗ Ω ≥ ∆ ∗ Ω + δΛ · ∗Ω|II|2(5.4)

along the mean curvature flow. In particular, minΣt ∗Ω is nondecreasing as
a function in t.

Proof. By (A), Rikik = R̃ikik ∀i, k. Hence the second term in the big bracket
of (3.4) can be written as follows (omitting |p in ∂

∂xt |p and ∂
∂yt |p),∑

k

∑
i 6=k

λi(Rikik − λ2
kR̃ikik)

(1 + λ2
k)(λi + λi′)

=
∑
k

∑
i 6=k

λi(1− λ2
k)Rikik

(1 + λ2
k)(λi + λi′)

(5.5)

=
∑

k=2r−1,i=2s−1,r 6=s

λ2s−1(1− λ2
2r−1)R

(
∂
∂xs ,

∂
∂xr ,

∂
∂xs ,

∂
∂xr

)
(1 + λ2

2r−1)(λ2s−1 + λ2s)

+
∑

k=2r−1,i=2s

λ2s(1− λ2
2r−1)R

(
∂
∂ys ,

∂
∂xr ,

∂
∂ys ,

∂
∂xr

)
(1 + λ2

2r−1)(λ2s−1 + λ2s)

+
∑

k=2r,i=2s−1

λ2s−1(1− λ2
2r)R

(
∂
∂xs ,

∂
∂yr ,

∂
∂xs ,

∂
∂yr

)
(1 + λ2

2r)(λ2s−1 + λ2s)

+
∑

k=2r,i=2s,r 6=s

λ2s(1− λ2
2r)R

(
∂
∂ys ,

∂
∂yr ,

∂
∂ys ,

∂
∂yr

)
(1 + λ2

2r)(λ2s−1 + λ2s)

=
∑
r 6=s

R
(
∂
∂xs ,

∂
∂xr ,

∂
∂xs ,

∂
∂xr

)
(λ2s−1 + λ2s)

[
λ2s−1(1− λ2

2r−1)

(1 + λ2
2r−1)

+
λ2s(1− λ2

2r)

(1 + λ2
2r)

]

+
∑
r,s

R
(

∂
∂xs ,

∂
∂yr ,

∂
∂xs ,

∂
∂yr

)
(λ2

2r − 1)(λ2s − λ2s−1)

(λ2s−1 + λ2s)(1 + λ2
2r)

=
∑
r,s

(λ2
2r − 1)(λ2s − λ2s−1)

(λ2s−1 + λ2s)(1 + λ2
2r)

[
R

(
∂

∂xs
,
∂

∂yr
,
∂

∂xs
,
∂

∂yr

)
−R

(
∂

∂xs
,
∂

∂xr
,
∂

∂xs
,
∂

∂xr

)]
=
∑
r,s

(λ2
2r − 1)(λ2

2s − 1)

(1 + λ2
2s)(1 + λ2

2r)

[
R

(
∂

∂xs
,
∂

∂yr
,
∂

∂xs
,
∂

∂yr

)
−R

(
∂

∂xs
,
∂

∂xr
,
∂

∂xs
,
∂

∂xr

)]
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=
∑
r 6=s

(λ2
2r − 1)(λ2

2s − 1)

(1 + λ2
2s)(1 + λ2

2r)

[
R

(
∂

∂xs
,
∂

∂yr
,
∂

∂xs
,
∂

∂yr

)
−R(

∂

∂xs
,
∂

∂xr
,
∂

∂xs
,
∂

∂xr
)

]
+
∑
r=s

(λ2
2r − 1)(λ2

2s − 1)

(1 + λ2
2s)(1 + λ2

2r)

[
R

(
∂

∂xs
,
∂

∂yr
,
∂

∂xs
,
∂

∂yr

)
−R

(
∂

∂xs
,
∂

∂xr
,
∂

∂xs
,
∂

∂xr

)]
=
∑
r 6=s

(λ2
2r − 1)(λ2

2s − 1)

(1 + λ2
2s)(1 + λ2

2r)
[−4Re(Rrsrs)]

+
∑
r=s

(λ2
2r − 1)(λ2

2s − 1)

(1 + λ2
2s)(1 + λ2

2r)
[−4Re(Rssss)] ≥ 0

because of Lemmas 5.2, 5.3 and our choice that λ2i−1≤1≤λ2i, i=1, . . . , n.
This leads to (5.3).

Now if ϕ is Λ-pinched, then 1
Λ≤λi(0)≤Λ for i=1, . . . , 2n. Since Λ1(n)<

Λ0(n) in the case Λ0(n) <∞, by Proposition 3.4 we get

Q(λi(0), hjkl) ≥ δΛ

∑
ijk

h2
jkl

and hence
(
d
dt −4

)
∗ Ω ≥ 0 at t = 0. Note that Lemma 5 of [MeWa] implies

that 1
2n − ε(n,Λ) ≤ ∗Ω at t = 0, where ε(n,Λ) = 1

2n −
1

(Λ+ 1

Λ
)n

. Then repeat-

ing the proof of Proposition 4 and Corollary 5 in [MeWa] we may get (5.4).
�

Using this proposition we may prove the long-time existence in Theo-
rem 5.1 (i) as in [MeWa, §3.3] (or that of Theorem 1.1).

The proof of Theorem 5.1(iii). The idea is similar to that of Theorem 1.3.
All arguments from the beginning of Section 4.2.2 to (4.6) in the proof
of convergence in Theorem 1.3 are still valid. Then there exists a positive
number K2 depending on the manifolds M and M̃ such that

∑
s,i,j

(∑
k

[(∇∂kR)sijk + (∇∂jR)skik)]

)2

≤ K2
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and hence∑
s,i,j,k

2
[
(∇∂kR)sijk + (∇∂jR)skik)

]
hsij ≤ K2 + |II|2.

As there it follows from the boundedness of the curvature that

(5.6)
d

dt
|II|2 ≤ ∆|II|2 − 2|∇II|2 + 10|II|4 +K1|II|2 +K2,

where K1 is a nonnegative constant that depends on the dimensions of M
and M̃ . With the same proof we may get the corresponding result of (4.9),
i.e. (

d

dt
−∆

)(
|II|2

sin(k(∗Ω)l)

)
(5.7)

≤
(

|II|2

sin(k(∗Ω)l)

)2

·
[
10 · sin(k(∗Ω)l)− k · l · δΛ1

· (∗Ω)l · cos(k(∗Ω)l)
]

+
k · l · (∗Ω)l−2|II|2|∇ ∗ Ω|2

[sin(k(∗Ω)l)]3
[
−k · l · (∗Ω)l · (sin(k(∗Ω)l))2

+ (l − 1) cos(k(∗Ω)l) sin(k(∗Ω)l)
]

+K1
|II|2

sin(k(∗Ω)l)
+

K2

sin(k(∗Ω)l)
.

By Claim 4.3, it follows from (5.7) that(
d

dt
−∆

)(
|II|2

sin(k(∗Ω)l)

)
≤
(

|II|2

sin(k(∗Ω)l)

)2

·
[
10 · sin(k(∗Ω)l)− k · l · δΛ1

· (∗Ω)l · cos(k(∗Ω)l)
]

+K1
|II|2

sin(k(∗Ω)l)
+

K2

sin(k(∗Ω)l)
.

Let g = |II|2
sin(k(∗Ω)l) , K4 := max K2

sin(k(∗Ω)l) = K2

sin

(
k( 1

(Λ+ 1
Λ )n

)l
) and

K3 := max
∗Ω∈

[
1

(Λ+ 1
Λ )n

, 1

2n

][10 · sin(k(∗Ω)l)− k · l · δΛ1
· (∗Ω)l · cos(k(∗Ω)l)

]
.
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By Claim 4.3, K3 < 0 and

(5.8)

(
d

dt
−∆

)
g ≤ K3 · g2 +K1 · g +K4.

Consider the initial value problem

(5.9)
d

dt
y = K3 · y2 +K1 · y +K4 and y(0) = maxΣ0

g.

If y(0) >
−K1−

√
K2

1−4K3K4

2K3
, the unique solution of (5.9) is given by

y(t) =
(K1+

√
K2

1
−4K3K4)·exp(

√
K2

1
−4K3K4t+K5)−K1+

√
K2

1
−4K3K4

−2K3·[exp(

√
K2

1
−4K3K4t+K5)−1]

,

where K5 = ln
2K3y(0)+K1−

√
K2

1−4K3K4

2K3y(0)+K1+
√
K2

1−4K3K4

. Clearly, y(t)→ K1+
√
K2

1−4K3K4

−2K3
as

t→∞.

If y(0) =
−K1−

√
K2

1−4K3K4

2K3
, then y(t) ≡ −K1−

√
K2

1−4K3K4

2K3
.

If y(0) <
−K1−

√
K2

1−4K3K4

2K3
, then there exists a T > 0 such that on [0, T ]

we have y(t)− −K1−
√
K2

1−4K3K4

2K3
≤ 0, and therefore(

y(t) +
K1

2K3

)2

= − exp(
√
K2

1 − 4K3K4t+K5) +
K2

1 − 4K3K4

4K2
3

≥ 0

where K5 = ln
(
−y(0)2 − K1y(0)

K3
− K4

K3

)
. It follows that

T =
ln(K

2
1−4K3K4

4K2
3

)−K5√
K2

1 − 4K3K4

≥ 0, y(T ) = − K1

2K3
<
−K1 −

√
K2

1 − 4K3K4

2K3
.

Hence we can continue this procedure and get(
y(t) +

K1

2K3

)2

= − exp(
√
K2

1 − 4K3K4t+K5) +
K2

1 − 4K3K4

4K2
3

≥ 0

for all time t ≥ 0. From this we derive

y(t) = − K1

2K3
+

√
− exp(

√
K2

1 − 4K3K4t+K5) +
K2

1 − 4K3K4

4K2
3

≤ − K1

2K3
+

√
K2

1 − 4K3K4

4K2
3

=
−K1 −

√
K2

1 − 4K3K4

2K3



i
i

“4-303” — 2016/3/16 — 11:47 — page 956 — #52 i
i

i
i

i
i

956 G.-C. Lu and B. Xiao

if − K1

2K3
≤ y(0) <

−K1−
√
K2

1−4K3K4

2K3
, and

y(t) = − K1

2K3
−

√
− exp

(√
K2

1 − 4K3K4t+K5

)
+
K2

1 − 4K3K4

4K2
3

≤ − K1

2K3

if 0 ≤ y(0) < − K1

2K3
.

By (5.8)–(5.9) the comparison principle for parabolic equations yields

g =
|II|2

sin(k(∗Ω)l)
≤ y(t) ∀t > 0.

Since (4.3) implies that the function[
1

(Λ + 1
Λ)n

,
1

2n

]
3 ∗Ω→ sin(k(∗Ω)l)

is bounded away from zero, we derive

max
Σt
|II|2 ≤ sin

(
k

(
1

2n

)l)
· y(t) ≤ sin

(
k(

1

2n
)l
)
· L,

where L =
−K1−

√
K2

1−4K3K4

2K3
if y(0) ≥ − K1

2K3
, and L = − K1

2K3
if 0 ≤ y(0) <

− K1

2K3
. Hence |II|2 is uniformly bounded. Namely, we have proved that the

flow converges to a Lagrangian submanifold at infinity provided that the
flow exists for all the time. (Note: Different from the case of tori we cannot
prove maxΣt |II|2 → 0 as t→∞, and hence cannot assert that the limit
submanifold is totally geodesic.)

The proof of Theorem 5.1(iv). The idea is similar to that of Theorem 1.1.
In the present case we have the following

Proposition 5.5. Under the assumptions of Proposition 5.4, suppose fur-
ther that (M,ω, J, g) also satisfies the condition (C). Then along the mean
curvature flow a similar inequality to that of Proposition 3.5 holds, i.e.

d

dt
∗ Ω ≥ ∆ ∗ Ω + δΛ · ∗Ω|II|2 + c0 · ∗Ω

∑
k odd

(1− λ2
k)

2

(1 + λ2
k)

2
.
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Proof. Under the further assumption, by (5.5) we have

∑
k

∑
i 6=k

λi(Rikik − λ2
kR̃ikik)

(1 + λ2
k)(λi + λi′)

=
∑
r 6=s

(λ2
2r − 1)(λ2

2s − 1)

(1 + λ2
2s)(1 + λ2

2r)
[−4Re(Rrsrs)]

+
∑
r=s

(λ2
2r − 1)(λ2

2s − 1)

(1 + λ2
2s)(1 + λ2

2r)
[−4Re(Rssss)] ≥ c0

∑
r=s

(λ2
2r − 1)(λ2

2s − 1)

(1 + λ2
2s)(1 + λ2

2r)
.

This and Propositions 3.3, 3.4 give the desired inequality. �

As in [MeWa], using this we may prove that λi → 1 and maxΣt |II|2 → 0
as t→∞, and hence that the flow converges to a totally geodesic Lagrangian
submanifold of M × M̃ as t→∞ and that ϕt converges smoothly to a
biholomorphic isometry ϕ∞ : M → M̃ . Theorem 5.1 is proved. �

A theorem by Matsushima and Borel-Remmert claimed that every com-
pact homogeneous Kähler manifold is the Kähler product of a flat complex
torus (known as the Albanese torus of (M,J)) and a Kähler C-space (cf.
[Be, Theorem 8.97]). As a consequence, a compact homogeneous Kähler
manifold admits a Kähler-Einstein structure if and only if it is a complex
torus or is simply-connected. If we restrict the manifolds in Theorem 5.1 to
homogeneous Kähler-Einstein manifolds, then Theorem 5.1 has sense only
for simply-connected case (because the better result has been obtained for
complex tori).

Appendix A. Proof of Claim 4.4

For simplicity write L :=
√

(
√

21− 3)/2. Then the function g(α) in (4.16)

is equal to α ln(α/L)/ tanα. A direct computation yields

g′(α) =
1

(sinα)2

[
sinα · cosα · ln(α/L) + sinα · cosα− α ln(α/L)

]
,

g′′(α) =
1

(sinα)3

[
(sinα)2 · cosα

α
+ 2α cosα · ln(α/L)(A.1)

− 2 sinα− 2 sinα · ln(α/L)

]
.
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Clearly, limα→π

2
g(α) = 0 = g(L), and g(α) > 0 on (L, π2 ). Moreover,

g′(
π

2
) = −π

2
ln
( π

2L

)
< 0 and g′(L) =

1

tanL
> 0.

(Note that L ≈ 0.8895436175241 sits between π
3.5317 and π

3.5316). Hence g(α)
attains its maximum at some point α0 ∈ (L, π/2) with g′(α0) = 0. Since any
zero α of g′ in (L, π/2) satisfies the following equation

sinα · cosα · ln(α/L) + sinα · cosα− α ln(α/L) = 0,

plugging this into (A.1) we get

g′′(α) =
1

(sinα)3

[
(sinα)2 · cosα

α
+ 2α cosα · ln(α/L)

− 2 sinα− 2 sinα · ln(α/L)

]
=

1

(sinα)3

[
(sinα)2 · cosα

α
− 2 sinα− 2 sinα · ln(α/L)

+ 2 cosα · (sinα · cosα)(1 + ln(α/L))

]
=

1

(sinα)3

[
(sinα)2 · cosα

α
− 2(sinα)3 − 2(sinα)3 ln(α/L)

]
=

1

sinα

[
cosα

α
− 2 sinα− 2 sinα · ln(α/L)

]
.

Observe that the function u(α) = cosα
α is decreasing on (L, π2 ) because of

u′(α) = − sinα
α −

cosα
α2 < 0. From L ≈ 0.8895436175241 we derive

cosα

α
− 2 sinα− 2 sinα · ln(α/L) <

cosα

α
− 2 sinα ≤ cosL

L
− 2 sinL < 0.

That is, g′′(α) < 0 for any zero α of g′ in (L, π2 ). It follows that each zero α
of of g′ in (L, π2 ) is a local maximum point of g. This implies that g′ has a
unique zero α0 in (L, π2 ) and that

g(α0) = (cosα0)2 (1 + ln(α0/L)) =
α0(cosα0)2

α0 − sinα0 · cosα0

is the maximum of g in (L, π2 ). We can compute α0 ≈ 1.238756 and g(α0) ≈
0.141446.
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