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Upper bound for the Gromov width of

flag manifolds

Alexander Caviedes Castro

We find an upper bound for the Gromov width of coadjoint orbits of
U(n) with respect to the Kirillov-Kostant-Souriau symplectic form
by computing certain Gromov-Witten invariants. The approach
presented here is closely related to the one used by Gromov in his
celebrated non-squeezing theorem.

1. Introduction

The Darboux theorem in symplectic geometry states that around any point
of a symplectic manifold there is a system of local coordinates such that
the symplectic manifold looks locally like R2n with its canonical symplectic
form. A natural and fundamental problem in symplectic geometry is to know
how far we can extend symplectically these coordinates in the symplectic
manifold. This is how the concept of Gromov’s width arises. The Gromov
width of a symplectic manifold (M2n, ω) is defined as

Gwidth(M2n, ω) := sup {πr2 : ∃ a symplectic embedding B2n(r) ↪→M2n},

where B2n(r) denotes the open ball of radius r and center the origin in R2n

endowed with the standard symplectic form.
The Gromov non-squeezing theorem gives us insights of how restrictive is

the Gromov width from above. It says that if there is a symplectic embedding
of the ball B2n(r) ⊂ R2n of radius r into a cylinder B2(λ)× R2n−2 of radius
λ with respect to the standard symplectic forms, then r ≤ λ. In particular,

Gwidth(B2(λ)× R2n−2) = πλ2.

Gromov’s non-squeezing theorem was proven in [5], where the connec-
tion between J-holomorphic curves and sympletic geometry is established.
Since then, several authors have used Gromov’s method for bounding the
Gromov width of other families of symplectic manifolds, such as G. Lu for
symplectic toric manifolds in [14]; G. Lu, and Karshon and Tolman for
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746 Alexander Caviedes

complex Grassmannians manifolds in [13], and in [10], respectively; and
Zoghi for regular coadjoint orbits in [22] (see also McDuff and Polterovich
[15], Biran [2]).

In this paper, we want to find upper bounds for the Gromov width of
unitary orbits on Hermitian matrices. For λ = (λ1, . . . , λn) ∈ Rn, let

Hλ := {A ∈Mn(C) : A∗ = A, spectrumA = λ}.

The set of Hermitian matrices Hλ can be identified with a coadjoint orbit
of U(n) and we can endow Hλ with a symplectic form ωλ coming from the
Kostant-Kirillov-Souriau symplectic form defined on the coadjoint orbit.
The next is the main result obtained in this paper:

Main Theorem. Let λ = (λ1, . . . , λn) ∈ Rn. Suppose that there are inte-
gers 1 ≤ i, j ≤ n such that any difference of eigenvalues λi′ − λj′ is an inte-
ger multiple of λi − λj , then

Gwidth(Hλ, ωλ) ≤ |λi − λj |.

In his Ph.D thesis [22], Zoghi has shown the inequality appearing in
the Main Theorem when all components of λ ∈ Rn are pairwise different.
In this paper, we extend Zoghi’s theorem when λ ∈ Rn is not necessarily of
this form.

This paper is organized as follows: we first introduce the J-holomorphic
tools that we will use throughout the text and explain how they are related
with the Gromov width of a symplectic manifold. Then we show how to
bound from above the Gromov width of a Grassmannian manifold by compu-
ting certain Gromov-Witten invariant. Finally, we explain how to determine
upper bounds for the Gromov width of flag manifolds by computing Gromov-
Witten invariants on holomorphic fibrations whose fibers are isomorphic to
Grassmannian manifolds.

We suggest to the reader to compare our results with the ones obtained
by Pabiniak in [17] and [18], where she has considered the problem of deter-
mining lower bounds for the Gromov width of flag manifolds. In her papers,
Pabiniak has proved that for any λ = (λ1, . . . , λn) ∈ Rn,

Gwidth(Hλ, ωλ) ≥ min
λi 6=λj

|λi − λj |.

This result together with the Main Theorem implies that the upper
bound that we found is indeed the Gromov width of (Hλ, ωλ).
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Upper bound for the Gromov width of flag manifolds 747

2. J-holomorphic curves

In this section we give a short review of pseudoholomorphic theory and
Gromov-Witten invariants, and we show how they are related with the Gro-
mov width of a symplectic manifold. Most of the material presented here is
adapted from McDuff and Salamon [16].

Let (M2n, ω) be a symplectic manifold. An almost complex structure J
of (M,ω) is a smooth operator J : TM → TM such that J2 = −Id. We say
that an almost complex structure J is compatible with ω if the formula

g(v, w) := ω(v, Jw)

defines a Riemannian metric. We denote the space of ω-compatible almost
complex structures by J (M,ω).

Let (CP1, j) be the Riemann sphere with its standard complex structure
j. Let J ∈ J (M,ω). A map u : CP1 →M is called a J-holomorphic curve
of genus zero or simply a J-holomorphic curve if

J ◦ du = du ◦ j.

A curve u : CP1 →M is said to be multiply covered if it is the compos-
ite of a holomorphic branched covering map (CP1, j)→ (CP1, j) of degree
greater than one with a J-holomorphic map CP1 →M. It is simple if it is
not multiply covered.

Given a compact symplectic manifold (M2n, ω), a compatible almost
complex structure J ∈ J (M,ω), and a second homology classA ∈ H2(M,Z),
we define the moduli space of simple J-holomorphic curves of degree
A as

M∗A(M,J) := {u : CP1 →M : J ◦ du = du ◦ j, u∗[CP1] = A, u is simple}.

The moduli space of simple J-holomorphic curves of degree A with
k-marked points is defined by

M∗A,k(M,J) :=M∗A(M,J)×PSL(2,C) (CP1)k

where PSL(2,C) acts on the right factor by its natural action on CP1 and
on the left factor by reparametrization. When k = 0, we defineM∗A,0(M,J)
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748 Alexander Caviedes

as being equal toMA(M,J)/PSL(2,C). We also have an evaluation map

evkJ :M∗A,k(M,J)→Mk

[u, (z1, . . . , zk)] 7→ (u(z1), . . . , u(zk)).

Let Jreg(M,ω) ⊂ J (M,ω) denote the set of regular almost complex
structures (see e.g. McDuff and Salamon [16, Definition 3.1.4]). The set
Jreg(M,ω) is residual in the set J (M,ω) of compatible almost complex
structures, i.e., it contains a countable intersection of open dense sets with re-
spect to the C∞ topology. For J ∈ Jreg(M,ω), the moduli spaceM∗A,k(M,J)
is a smooth oriented manifold of dimension equal to dimM + 2c1(A) + 2k −
6, where c1 denotes the first Chern class of the bundle (TM, J) (see e.g. Mc-
Duff and Salamon[16, Theorem 3.1.5]).

Remark 2.1. If (M,ω, J) is a compact Kähler manifold and G is a Lie
group that acts transitively on M by J-holomorphic diffeomorphism, then
the almost complex structure J is regular (McDuff and Salamon [16, Propo-
sition 7.4.3]).

The Gromov width of a symplectic manifold (M2n, ω) is defined as

Gwidth(M2n, ω) = sup {πr2 : ∃ a symplectic embedding B2n(r) ↪→M2n},

where B2n(r) denotes the open ball of radius r and center the origin in R2n

endowed with the standard symplectic form.
The Darboux theorem implies that the Gromov width of a symplectic

manifold is always positive. Moreover, if the symplectic manifold is compact,
its Gromov’s width is finite.

The following statement shows the relation between pseudoholomorphic
curves and Gromov’s widths:

Theorem 2.2. Let (M2n, ω) be a compact symplectic manifold, and A ∈
H2(M,Z)\{0} a second homology class. Suppose that for a dense subset of
smooth ω-compatible almost complex structures, the evaluation map

ev1
J :M∗A(M,J)×PSL(2,C) CP1 →M

is onto. Then for any symplectic embedding B2n(r) ↪→M, we have

πr2 ≤ ω(A),
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Upper bound for the Gromov width of flag manifolds 749

where ω(A) denotes the symplectic area of A. In particular,

Gwidth(M,ω) ≤ ω(A).

Proof. See e.g. Zoghi [22, Proposition 3.6]. �

A homology class B ∈ H2(M) is spherical if it is in the image of the
Hurewicz homomorphism π2(M)→ H2(M). A homology class B ∈ H2(M)
is ω-indecomposable if it does not decompose as a sum B = B1 + · · ·+Bk
of spherical classes such that ω(Bi) > 0.

A symplectic manifold (M2n, ω) is semipositive if, for a spherical ho-
mology class A with positive symplectic area, c1(A) ≥ 3− n implies c1(A)
≥ 0.

If we assume that either the symplectic manifold (M,ω) is semiposi-
tive or the homology class A ∈ H2(M,Z) is ω-indecomposable, for a regular
almost complex structure J ∈ Jreg(M,ω), the evaluation map

evkJ :M∗A,k(M,J)→Mk

represents a pseudocycle, i.e., its image can be compactified by adding a
set of codimension at least two. This pseudocycle can be used to define
the Gromov-Witten invariants: If ai ∈ H∗(M,Z) are cohomology classes
Poincaré dual to compact oriented submanifolds Xi ⊂M, the Gromov-
Witten invariant GWJ

A,k(a1, . . . , ak) is the number of J-holomorphic curves
in the classA passing through the submanifoldsXi (after possibly perturbing
them) and counted with appropriate signs. More precisely, if

∑k
i=1 deg ai =

dimM∗A,k(M,J) and if the moduli space M∗A,k(M,J) is endowed with a
suitable orientation (see e.g. McDuff and Salamon [16, Section A.2]); the
Gromov-Witten invariant is defined as the oriented intersection number

GWJ
A,k(a1, . . . , ak) := ] evkJ t (X1 × · · · ×Xk).

Gromov-Witten invariants GWJ
A,k are well-defined, finite and independent

of the regular almost complex structure J when we assume that either the
symplectic manifold (M,ω) is semipositive or A is ω-indecomposable (Mc-
Duff and Salamon [16, Theorem 7.1.1, Lemma 7.1.8]).
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Remark 2.3. If there exist cohomology classes a1, . . . , ak ∈ H∗(M,R) and
a regular almost complex structure J such that

GWJ
A,k(a1, . . . , ak) 6= 0

and a1 is Poincaré dual to the fundamental class of a point, then for generic
almost complex structure J ′ ∈ J (M,ω), the evaluation map

ev1
J ′ :M∗A,1(M,J ′)→M

is onto, which, by Theorem 2.2, implies that

Gwidth(M,ω) ≤ ω(A).

Remark 2.4. Gromov-Witten invariants for symplectic manifolds can be
defined in wide generality by associating to the moduli spaces of J-
holomorphic curves virtual fundamental classes with rational coefficients (Li
and Tian [12], Fukaya and Ono [4], Ruan [19], Siebert [20], Hofer,Wysocki
and Zehnder [8], [9]). We will make no use of this definition since we want
to keep as simple and self-contained as possible the presentation of this
paper. However, with this definition we would not need to assume that
either the symplectic manifold is semipositive or the homology class A is
ω-indecomposable, and the results of Theorem 5.3 can be extended to any
coadjoint orbit of type A.

3. Flag manifolds

In this section we recall some general statements about coadjoint orbits and
unitary orbits on Hermitian matrices. Most of the material shown here can
be found in the classical literature such as Kirillov [11].

Let G be a compact Lie group, g be its Lie algebra, and g∗ be the dual
of the Lie algebra g. The compact Lie group G acts on g∗ by the coadjoint
action. Let ξ ∈ g∗ and Oξ be the coadjoint orbit passing through ξ.

The coadjoint orbit Oξ carries a symplectic form defined as follows: for
ξ ∈ g∗ we define a skew bilinear form on g by

ωKKSξ (X,Y ) = 〈ξ, [X,Y ]〉.

The kernel of ωKKSξ is the Lie algebra gξ of the stabilizer of ξ ∈ g∗ for the

coadjoint representation. In particular, ωKKSξ defines a nondegenerate skew-
symmetric bilinear form on g/gξ, a vector space that can be identified with
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Tξ(Oξ) ⊂ g∗. The bilinear form ωKKSξ induces a closed, invariant, nonde-
generate 2-form on the orbit Oξ, therefore defining a symplectic structure
on Oξ. This symplectic form is known as the Kostant-Kirillov-Souriau
form of the coadjoint orbit.

Let us assume now that G = U(n). Let u(n) be the Lie algebra of U(n),
u(n)∗ be its dual and H := {A ∈Mn(C) : A∗ = A} be the set of Hermitian
matrices.

The group of unitary matrices U(n) acts by conjugation on H. The Her-
mitian matrices H have real eigenvalues and are diagonalizable in a unitary
basis, so that the orbits of this action correspond to sets of matrices in H
with the same spectrum. Let λ = (λ1, . . . , λn) ∈ Rn and

Hλ := {A ∈Mn(C) : A∗ = A, spectrumA = λ}

be the U(n)-orbit of the matrix diagonal(λ1, . . . , λn) in H.
We identify U(n)-orbits in H with adjoint orbits in u(n) by sending a

matrix A ∈ H to the matrix iA ∈ u(n). The pairing in u(n) = iH defined by

(X,Y ) = Trace(XY )

allows us to identify u(n) with u(n)∗, and adjoint orbits in u(n) with coad-
joint orbits in u(n)∗. So that, the U(n)-orbits Hλ in H can be identified with
the coadjoit orbits in u(n)∗.

The coadjoint orbit associated with Hλ is regular when all the com-
ponents of λ ∈ Rn are pairwise different, otherwise the coadjoint orbit is
non-regular.

We identify Hλ with a coadjoint orbit in u(n)∗ and define on it a sym-
plectic form ωλ by pulling back the Kirillov-Kostant-Souriau form defined on
the coadjoint orbit. We also endow Hλ with a complex structure Jλ, coming
from the presentation of Hλ as a quotient of complex Lie groups Sl(n,C)/P,
where P ⊂ Sl(n,C) is a parabolic subgroup of block upper triangular ma-
trices. The triple (Hλ, ωλ, Jλ) is a Kähler manifold.

Let {ei}ni=1 denote the standard basis of Rn. Let T = U(1)n ⊂ U(n) be
the standard maximal torus of U(n) and t ∼= Rn be its Lie algebra. We
identify t∗ with t via its standard inner product so that the standard ba-
sis {ei}ni=1 of t ∼= Rn is identified with the standard basis of projections of
t∗, which is also the standard basis (as a Z-module) of the weight lattice
Hom(T, S1) ⊂ t∗.
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The restricted action of T ⊂ U(n) onHλ is Hamiltonian with momentum
map

µ : Hλ → t∗ ' Rn

(aij) 7→ (a11, . . . , ann).

The image of the momentum map is the convex hull of the momentum images
of the fixed points of the action of T on Hλ, i.e., the image of µ is the convex
hull of all possible permutations of the vector (λ1, . . . , λn) ∈ t∗ ∼= Rn (see,
e.g., Audin [1, Chapter III], Guillemin [7]).

The U(n)-orbit Hλ together with the torus T action is a GKM space,
i.e., the closure of every connected component of the set

{x ∈ Hλ : dimC (T · x) = 1}

is a sphere (see e.g. Tymoczko [21], Guillemin, Holm and Zara [6]). The
closure of {x ∈ Hλ : dimC (T · x) = 1} is called the 1-skeleton of Hλ. The
moment graph or GKM graph of Hλ is the image of its 1-skeleton under
the momentum map. The vertices and edges of this graph are in corre-
spondence with the T -fixed points of Hλ and the closures of the connected
components of the 1-skeleton of Hλ, respectively.

Two T -fixed points F, F ′ ∈ Hλ are connected by one connected compo-
nent of the 1-skeleton of Hλ if and only if they differ by one transposition.
We denote by S2

F,F ′ ⊂ Hλ the corresponding sphere associated to them.

We now want to compute the symplectic area of S2
F,F ′ ⊂ Hλ with respect

to ωλ in terms of λ. Let us suppose that F and F ′ differ by the transposition
(i, j) ∈ Sn and the (i, i)-th component Fi ∈ {λ1, . . . , λn} of F is greater than
its (j, j)-th component Fj ∈ {λ1, . . . , λn}. If T ′ ⊂ T is the codimension one
torus that fixes S2

F,F ′ , there exists a torus of dimension one S ⊂ T such
that T ∼= T ′ × S. We will use the identification S := R/Z, which induces
an isomorphism Lie(S) ∼= R leading to Lie(S)∗ ∼= R, mapping the lattice
Hom(S, S1) ⊂ Lie(S)∗ isomorphically to Z ⊂ R.

The action of S on S2
F,F ′ is Hamiltonian with momentum map

ι∗ ◦ µ|S2
F,F ′

: S2
F,F ′ → Lie(S)∗ ∼= R,

where ι : S ↪→ T is the inclusion map. The momentum image of S2
F,F ′ under

ι∗ ◦ µ|S2
F,F ′

is the segment line that joins ι∗(µ(F )) with ι∗(µ(F ′)). Note that

the weight of T on TFS
2
F,F ′ is equal to ei − ej , thus the weight of the action

of S on TFS
2
F,F ′ is ι∗(ei − ej), an integer number.
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Let γ : [0, 1]→ S2
F,F ′ ↪→ Hλ be any smooth path from F to F ′ and c :

[0, 1]× S → S2
F,F ′ be the map defined by c(t, s) := s · γ(t). Then,

∫
[0,1]×S

c∗(ωλ|S2
F,F ′

) =

∫ 1

0
γ∗(ιξS2

F,F ′
ωλ) = ι∗(µ(F ))− ι∗(µ(F ′)).

Note that the integral
∫
[0,1]×S c

∗ωλ is equal to the symplectic area of S2
F,F ′

times the weight ι∗(ei−ej). Since F−F ′=(Fi−Fj)(ei−ej), and ι∗(µ(F ))−
ι∗(µ(F ′)) = (Fi − Fj)ι∗(ei − ej), we conclude that the symplectic area of
S2
F,F ′ is equal to Fi − Fj .

Figure 1: Moment graph of H(λ1,λ2,λ3) and some of its edges labeled with
theirs corresponding symplectic areas.

Let λb1 , λb2 , . . . , λbl be the pairwise different components of λ ∈ Rn with
multiplicities m1,m2, . . . ,ml, respectively. Let us assume without lost of
generality that λ is equal to

(λb1 , . . . , λb1︸ ︷︷ ︸
m1 times

, λb2 , . . . , λb2︸ ︷︷ ︸
m2 times

, . . . , λbl , . . . , λbl︸ ︷︷ ︸
ml times

)

Let a be the strictly increasing sequence of integers 0 = a0 < a1 < a2 <
· · · < al = n defined by aj =

∑j
i=1mi and let Fl(a;n) be the set of increasing

filtrations of Cn by complex subspaces

0 = V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V l = Cn

such that dimC V
i = ai.

Note that there is a naturally defined action of Sl(n,C) on Fl(a;n).
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For a flag V = (V 1, . . . , V l) ∈ Fl(a;n), denote by Pj = Pj(V ) : Cn → Cn
the orthogonal projection onto Vj . We can form the Hermitian operator

Aλ(V ) =
∑
j

λbj (Pj − Pj−1).

The correspondence V 7→ Aλ(V ) defines a diffeomorphism between Fl(a;n)
and Hλ. This diffeomorphism defines by pullback a U(n)-invariant symplec-
tic form on Fl(a;n). It also defines an integrable almost complex structure
on Fl(a;n), and it allows us to define an action of Sl(n,C) on Hλ so the
map Aλ : Fl(n,C)→ Hλ is a Sl(n,C)-equivariant biholomorphism.

The homology of Fl(a, n) (and hence the homology of Hλ) can be com-
puted from the CW-structure of Fl(a;n) coming from its Schubert cell de-
composition.

Let Sn be the group of permutations of n elements. Recall that the
length of a permutation is, by definition, equal to the smallest number of
adjacent transpositions whose product is the permutation. Let Wa ⊂ Sn be
the subgroup generated by the simple transpositions si = (i, i+ 1) for i /∈
{a1, . . . , al}. Let W a ⊂ Sn be the set of minimal length coset representatives
of Sn/Wa. Let F ∈ Fl(a;n) be the partial flag defined by

F := Ca1 ⊂ Ca2 ⊂ · · · ⊂ Can = Cn

and B be the standard Borel subgroup of Sl(n,C) of upper triangular ma-
trices.

For a permutation w ∈W a, the Schubert cell Cw is the orbit of the
induced action of B ⊂ Sl(n,C) on Fl(a;n) through w · F. The Schubert
variety Xw is by definition the closure of the Schubert cell Cw.

For w ∈W a, the Schubert cell Cw is isomorphic to an affine space of
complex dimension equal to the length of w. The Schubert cells {Cw}w∈W a

define a CW-complex for Fl(a;n) with cells occurring only in even dimen-
sion. Thus, the fundamental classes [Xw] of Xw, w ∈W a, are a free basis of
H∗(Fl(a;n),Z) as a Z-module. Likewise, the Poincaré dual classes of [Xw],
w ∈W a, are a free basis of H∗(Fl(a;n),Z) as a Z-module.

The diffeomorphism Aλ : Fl(a;n)→ Hλ maps the Schubert cells Cw ∈
Fl(a;n), w ∈W a, to the B-orbits of w · diagonalλ in Hλ. By abusing nota-
tion, we will denote the B-orbits of w · diagonalλ in Hλ by Cw and their
closures by Xw and refer to them as the Schubert cells and Schubert varieties
associated to w ∈W a in Hλ, respectively.
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Remark 3.1. Note that Aλ maps the Schubert varieties X(aj ,aj+1) ⊂
Fl(a;n) to the spheres S2

λ,(aj ,aj+1)·λ ⊂ Hλ. Thus, the fundamental classes

of S2
λ,(aj ,aj+1)·λ, 1 ≤ j ≤ l, conform a free Abelian basis of the homology

group H2(Hλ,Z).

4. Upper bounds for the Gromov width of Grassmannian
manifolds

Karshon and Tolman [10] have found upper bounds for the Gromov width
of Grassmannian manifolds by computing a Gromov-Witten invariant. In
this section, we review this idea. This will allow us later to determine up-
per bounds for the Gromov width of flag manifolds by computing Gromov-
Witten invariants on holomorphic fibrations whose fibers are isomorphic to
Grassmannian manifolds

Now, we establish the convention that would be used during this section.
Let G(k, n) be the Grassmannian manifold of k-planes in Cn. Let λ ∈ Rn
with k components equal to λ1, and the other n− k equal to λ2, and Hλ =
{A ∈Mn(C) : A∗ = A, spectrumA = λ}. The set of Hermitian matrices Hλ
is diffeomorphic to the Grassmannian manifold G(k, n).

Let (ωλ, Jλ) be the Kähler structure ofHλ ∼= G(k, n) defined in Section 3.
By Remark 3.1, the second homology group H2(G(k, n),Z) has one free
abelian generator with positive symplectic area, let A be this generator. Let

MA(G(k, n), Jλ)={u : CP1 → G(k, n) : u is Jλ-holomorphic, u∗[CP1] = A}

be the moduli space of Jλ-holomorphic curves of degree A defined on G(k, n).
We call any element of this moduli space a holomorphic line of the Grass-
mannian manifold G(k, n).

For a holomorphic line u : CP1 → G(k, n), we define the kernel of u as
the intersection of all the subspaces V ⊂ Cn that are in the image of u.
Similarly, the span of u is the linear span of these subspaces:

ker(u) =
⋂

V ∈u
(
CP1
)V, span(u) =

∑
V ∈u

(
CP1
)V.

The kernel and span of u are of dimension k − 1 and k + 1, respectively; and
they determine the holomorphic line up to parametrization, i.e., if there is a
holomorphic line v : CP1 → G(k, n) such that ker(u) = ker(v) and span(u) =
span(v), then there exists g : CP1 → CP1 ∈ PSL(2;C) such that v = u ◦ g.
Moreover, u(CP1) = {V k ∈ G(k, n) : ker(u) ⊂ V k ⊂ span(u)} ⊂ G(k, n) (see



i
i

“1-376” — 2016/3/7 — 14:59 — page 756 — #12 i
i

i
i

i
i

756 Alexander Caviedes

e.g. Buch, Kresch and Tamvakis[3]). So

MA,0(G(k, n), Jλ) :=MA(G(k, n), Jλ)/PSL(2,C) ' Fl(k − 1, k + 1;n),

where Fl(k − 1, k + 1;n) denotes the partial flag manifold of complex sub-
spaces sequences

V k−1 ⊂ V k+1 ⊂ Cn.

For V = (V k−1, V k+1) ∈ Fl(k − 1, k + 1;n), we will denote by uV the (un-
parameterized) holomorphic line

CP1 ' uV = {V k ∈ G(k, n) : V k−1 ⊂ V k ⊂ V k+1} ⊂ G(k, n).

Let us consider the evaluation map

ev2
Jλ :MA(G(k, n), Jλ)×PSL(2,C) (CP1)2 → G(k, n)2.

We want to find a compact complex submanifold X ⊂ G(k, n) such that
for a generic point p in G(k, n) the evaluation map ev2

Jλ
would be trans-

verse to ({p} ×X) ⊂ G(k, n)2, dimC(MA(G(k, n), Jλ)×PSL(2,C) (CP1)2) +
dimCX would be equal to 2 dimCG(k, n), and the number of holomorphic
lines in MA,0(G(k, n), Jλ) that pass through p and X would be different
from zero. If so, the Gromov-Witten invariant GWJλ

A,2(PD[p] ,PD[X]) would
be different from zero and by Theorem 2.2 and Remark 2.3, we will have
that

Gwidth(Hλ, ωλ) ≤ ωλ(A) = |λ1 − λ2|.

We claim that X = {V k ∈ G(k, n) : C ⊂ V k ⊂ Cn−1} ∼= G(k − 1, n− 2)
⊂ G(k, n) satisfies all these conditions.

Proving that the evaluation map ev2
Jλ

is transverse to ({p} ×X) ⊂
G(k, n)2 can be obtained as a consequence of the Bertini-Kleiman Transver-
sality Theorem:

Theorem 4.1. Let f : U → V be a smooth map between smooth manifolds
and let G be a Lie group that acts transitively on V. Let Z be an arbitrary
submanifold of V and Greg be the set of elements g ∈ G for which f is
transverse to gZ. Then, Greg is a set of the second category in G.

Proof. See proof of Proposition 7.4.5 in McDuff and Salamon [16] �

We now prove that indeed the Gromov-Witten invariant GWJλ
A,2(PD[p],

PD[X]) is different from zero.
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Lemma 4.2. Let X = {V k ∈ G(k, n) : C ⊂ V k ⊂ Cn−1} ' G(k − 1, n− 2)
and p ∈ G(k, n). Then

GWJλ
A,2(PD[p] ,PD[X]) = 1.

Proof. The complex dimension of X is equal to (n− k − 1)(k − 1) and as a
consequence X satisfies the dimensional constraint:

dimC(MA,2(G(k, n), Jλ)) + dimCX

= dimC Fl(k − 1, k + 1;n) + 2 + dimCX

=
n2 − (k − 1)2 − 22 − (n− k − 1)2

2
+ 2 + (n− k − 1)(k − 1)

= 2 dimCG(k, n).

Assume now that p = W k is a k-dimensional subspace of Cn that does
not contain C and transversally intersects Cn−1. We claim that (ev2

Jλ
)−1({p}

×X) consists of just one element, i.e., there is a unique (unparameterized)
holomorphic line in G(k, n) that intersects X and passes through W k.

Let V = (V k−1, V k+1) ∈ Fl(k − 1, k + 1;n) be such that the holomor-
phic line uV passes through both X and p. So there exists V k ∈ X (that is,
C ⊂ V k ⊂ Cn−1) and V k−1 ⊂ V k ⊂ V k+1. Moreover we have V k−1 ⊂W k ⊂
V k+1 (W k is p).

Note that, we have inclusions V k−1 ⊂ Cn−1 and V k−1 ⊂W k. Thus V k−1

⊂W k ∩ Cn−1. But W k ∩ Cn−1 is a (k − 1)-dimensional vector subspace be-
cause the intersection is transverse. Thus V k−1 = W k ∩ Cn−1. The inter-
section V k−1 = W k ∩ Cn−1 does not contain C. So there exists a unique k-
dimensional vector space Uk such that V k−1 ⊂ Uk and C ⊂ Uk ⊂ Cn−1. This
vector space is Uk = V k−1 ⊕ C. Thus, V k = V k−1 ⊕ C. The vector space
V k+1 contains W k and V k = V k−1 ⊕ C. Observe that V k is different from
W k because V k contains C and W k does not. Therefore V k+1 = W k + V k.

In conclusion (V k−1, V k+1) = (W k ∩ Cn−1,W k + ((W k ∩ Cn−1)⊕ C)),
which determines a unique holomorphic line that intersects X and passes
through W k. The figure shown below illustrates graphically the idea of this
argument.

Note that if p = W k is a k-dimensional subspace of Cn that either con-
tains C or is contained in Cn−1, then (ev2

Jλ
)−1({p} ×X) consists of an infi-

nite number of elements.
We now prove that the evaluation map

ev2
Jλ :MA,2(Jλ)→ G(k, n)2
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Figure 2: The vector spaces between V k−1 and V k+1 (green) corresponds to
the unique holomorphic line in the Grassmannian manifold G(k, n) passing
through the generic point W k (blue) and X (red). The intersection of the
holomorphic line with X is the k-dimensional vector spanned by V k−1 and
C (black).

is transverse to ({p} ×X) ⊂ G(k, n)2. The group Sl(n,C) acts transitively
and holomorphically on G(k, n) so as a consequence there exists h ∈
Sl(n,C) such that ev2

Jλ
t ({h · p} ×X) ⊂ G(k, n)2 and thus the preimage

(ev2
Jλ

)−1({h · p} ×X) consists of just one point (the number of elements of
the preimage (ev2

Jλ
)−1({h · p} ×X) is either one or infinite, but if the eval-

uation map is transverse to {h · p} ×X it has to be necessarily one), by
Proposition 7.4.5 of Mcduff and Salamon [16] the Gromov-Witten invariant
GWJλ

A,2(PD[p],PD[X]) is positive, so in conclusion

GWJλ
A,2(PD[p],PD[X]) = GWJλ

A,2(PD[h · p],PD[X]) = 1

�

We have proved that for Grassmannian manifolds there is a non-vanishing
Gromov-Witten invariant with one of its constrains being Poincaré dual to
the class of a point. This would imply that the Gromov width of a Grass-
mannian manifold is bounded from above by the symplectic area of any line
of the Grassmannian manifold. In summary, we have the following result:

Theorem 4.3 (Karshon-Tolman, G. Lu). Let λ ∈ Rn with k compo-
nents equal to λ1, and the other n− k equal to λ2. Let

Hλ = {A ∈Mn(C) : A∗ = A, spectrumA = λ}
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and let ωλ be the Kirillov-Kostant-Souriau form defined on Hλ. Then,

Gwidth(Hλ, ωλ) ≤ |λ1 − λ2|.

Proof. First notice that the fundamental class A of any line in G(k, n) is ωλ-
indecomposable. This is because the homology group H2(G(k, n),Z) is cyclic
generated by this fundamental class. Thus, the Gromov-Witten invariant
GWA,2 is well defined and independent of the almost complex structure.
The result now follows from Remark 2.3 and Lemma 4.2, and the fact that
the symplectic area of A with respect to ωλ is equal to |λ1 − λ2|. �

5. Upper bounds for the Gromov width of flag manifolds

In his Ph.D thesis Zoghi [22] has considered the problem of determining the
Gromov width of regular coadjoint orbits of compact Lie groups. We start
this section by first stating Zoghi’s results, and then we show how to extend
his results to coadjoint orbits that may not be necessarily regular.

Let λ = (λ1, . . . , λn) ∈ Rn, Hλ = {A ∈Mn(C) : A∗=A, spectrumA=λ}
and (ωλ, Jλ) be the Kähler structure ofHλ defined in Section 3. The following
Theorem appears in Zoghi’s Ph.D thesis [22] as one of its main results:

Theorem 5.1 (Zoghi). Let us assume that all the components of λ ∈ Rn
are pairwise different and suppose that there are integers 1 ≤ i, j ≤ n such
that any difference of eigenvalues λi′ − λj′ is an integer multiple of λi − λj ,
then

Gwidth(Hλ, ωλ) ≤ |λi − λj |.

Now we show how to extend Zoghi’s result to sets of coadjoint orbits
that are not necessarily regular. But first we state the following lemma:

Lemma 5.2. Let B ⊂ Sl(n,C) be the Borel subgroup of upper triangular
matrices and P ⊂ Sl(n,C) be any parabolic subgroup of block upper trian-
gular matrices. Let X be an algebraic B-variety and π : X → Sl(n,C)/P
be a B-equivariant map. If Ω is the B-stable open dense Schubert cell of
Sl(n,C)/P, then π is a trivial fibration over Ω.

Proof. Let x0 ∈ Ω be any point and U ⊂ B be the unipotent radical of P.
The map s : U → Ω defined by g 7→ g · x0 is an isomorphism. Let t : Ω→ U
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be the inverse function of s. The map

ψ : Ω× π−1(x0)→ π−1(Ω)

(x, y) 7→ t(x) · y

is an isomorphism with inverse given by

ψ−1 : π−1(Ω)→ Ω× π−1(x0)
m 7→ (π(m), t(π(m))−1 ·m).

�

Theorem 5.3. Let λ = (λ1, . . . , λn) ∈ Rn. Suppose that there are integers
1 ≤ i, j ≤ n such that any difference of eigenvalues λi′ − λj′ is an integer
multiple of λi − λj , then

Gwidth(Hλ, ωλ) ≤ |λi − λj |.

Proof. The idea of the proof is, as before, to prove that a certain Gromov-
Witten invariant, with one of its constraints being Poincaré dual to the
fundamental class of a point, is different from zero.

Let λb1 , λb2 , . . . , λbl be the pairwise different components of λ ∈ Rn with
multiplicities m1,m2, . . . ,ml, respectively. Let us assume without lost of
generality that λ is equal to

(λb1 , . . . , λb1︸ ︷︷ ︸
m1 times

, λb2 , . . . , λb2︸ ︷︷ ︸
m2 times

, . . . , λbl , . . . , λbl︸ ︷︷ ︸
ml times

)

After reordering the components of λ if necessary, we will assume that
any difference of the form λi′ − λj′ is an integer multiple of λb2 − λb1 .

We know that Hλ ' Fl(a;n), where a is the strictly increasing sequence
of integers 0 = a0 < a1 < · · · < al = n defined by ak =

∑k
r=1mr, for 1 ≤

k ≤ l.
We will endow Fl(a;n) with a Kähler structure coming from its identi-

fication with Hλ. This Kähler structure and the one defined on Hλ would
be denoted indistinguishably by (ωλ, Jλ).

Let a′ be the sequence of integer numbers a2 < · · · < al = n, and Fl(a′;n)
be the corresponding partial flag manifold. Let Wa ⊂ Sn be the subgroup
generated by the simple transpositions si = (i, i+ 1) for i /∈ {a1, . . . , al}.
Let W a ⊂ Sn be minimal length coset representatives of Sn/Wa. Likewise,
we define Wa′ and W a′

. Schubert varieties of Fl(a;n) and Fl(a′;n) are
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parametrized by W a and W a′
, respectively. To avoid confusions, we will de-

note the Schubert varieties in Fl(a;n) by X• and the Schubert varieties in
Fl(a′;n) by X

′

•. A similar thing will be done with the Schubert cells.
For the permutation (a1, a1 + 1) ∈W a, let X(a1,a1+1) be the standard

Schubert variety in Fl(a;n) associated to it and let A be the the fundamental
class of this Schubert variety. Note that, by assumption, the symplectic area
ωλ(A) = |λb2 − λb1 | is a generator of the cyclic image ωλ(H2(Fl(a;n),Z)),
which implies that A is a ωλ-indecomposable homology class. As a conse-
quence, the Gromov-Witten invariant GWA,k is well defined.

We have a holomorphic projection

π : Fl(a;n)→ Fl(a′;n)

V a1 ⊂ V a2 ⊂ · · · ⊂ V al = Cn 7→ V a2 ⊂ · · · ⊂ V al = Cn

whose fibers are isomorphic to the Grassmanian manifold G(a1, a2).
The set of minimal length representatives W a

a′ of Wa′ on Wa parameter-
izes Schubert varieties on a fiber of π. Note that (a1, a1 + 1) ∈W a

a′ , so in
particular π∗(A) = 0.

Let w̃ be the permutation in W a
a′ that represents in a fiber a Grassman-

nian manifold isomorphic to G(a1 − 1, a2 − 2). Let w′ be the longest element
in W a′

. The Schubert cell C
′

w′ is open and dense in Fl(a′;n). By the previous
Lemma, the restriction map

π|Xw′w̃ : Xw′w̃ → Fl(a′;n)

is a trivial fibration over C
′

w′ with fiber isomorphic to G(a1 − 1, a2 − 2).
Now we want to count the number of holomorphic curves of degree A

passing through a generic point p ∈ Fl(a;n) and Xw′w̃ ⊂ Fl(a;n). Let u :
CP1 → Fl(a;n) be one of such holomorphic curves. The composition π ◦ u is
holomorphic and (π ◦ u)∗[CP1] = π∗(A) = 0. Since Fl(a′;n) is a compact and
connected Kähler manifold, the map π ◦ u is constant, which means that the
image of u : CP1 → Fl(a;n) lies entirely in the fiber π−1(p) ∼= G(a1, a2) of π :
Fl(a;n)→ Fl(a′;n). Moreover, u : CP1 → π−1(p) ∼= G(a1, a2) ⊂ Fl(a;n) is
a holomorphic line of the fiber π−1(p) ∼= G(a1, a2). If π(p) ∈ Cw′ , then the
fiber π−1(p) intersects Xw′w̃ in a variety isomorphic to G(a1 − 1, a2 − 2).
Since there is just one holomorphic line passing through a generic point and
G(a1 − 1, a2 − 2) in G(a1, a2) (by Lemma 4.2), we conclude that

GWJλ
A,2(PD[p] ,PD[Xw′w̃]) = 1.



i
i

“1-376” — 2016/3/7 — 14:59 — page 762 — #18 i
i

i
i

i
i

762 Alexander Caviedes

Thus, by Theorem 2.2 and Remark 2.3,

Gwidth(Hλ, ωλ) ≤ ωλ(A) = |λb2 − λb1 |.

�

Acknowledgments

I would like to thank Yael Karshon for letting me know about this problem
and for encouraging me during the writing process of this paper. I also would
like to thank Milena Pabiniak for useful conversations and helpful comments
on the first draft.

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada.

References
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