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A refinement of sutured Floer homology

Akram S. Alishahi and Eaman Eftekhary

We introduce a refinement of the Ozsváth-Szabó complex asso-
ciated by Juhász [Ju1] to a balanced sutured manifold (X, τ).
An algebra Aτ is associated to the boundary of a sutured man-
ifold. For a fixed class s of a Spinc structure over the manifold X,
which is obtained from X by filling out the sutures, the Ozsváth-
Szabó chain complex CF(X, τ, s) is then defined as a chain complex
with coefficients in Aτ and filtered by the relative Spinc classes in
Spinc(X, τ). The filtered chain homotopy type of this chain com-
plex is an invariant of (X, τ) and the Spinc class s ∈ Spinc(X).
The construction generalizes the construction of Juhász. It plays
the role of CF−(X, s) when X is a closed three-manifold, and the
role of

CFK−(Y,K; s) =
⊕
s∈s

CFK−(Y,K, s),

when the sutured manifold is obtained from a knot K inside a
three-manifold Y . Our invariants thus generalize both the knot
invariants of Ozsváth-Szabó and Rasmussen and the link invariants
of Ozsváth and Szabó. We study some of the basic properties of
the Ozsváth-Szabó complex corresponding to a balanced sutured
manifold, including the behaviour under boundary connected sum,
some form of stabilization for the complex, and an exact triangle
generalizing the surgery exact triangles for knot Floer complexes.
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1. Introduction

1.1. Introduction and background

The introduction of Heegaard Floer homology by Ozsváth and Szabó ([OS5],
[OS6]) for closed three dimensional manifolds around the beginning of the
millennium resulted in very powerful tools for the study of various structures
in low dimensional topology. In particular, invariants for knots (c.f. [OS1],
[Ras1] and [Ef3]), for links [OS9], and for contact structures [OS11] were
constructed using the fundamental idea of associating a chain complex to
a pointed Heegaard diagram. Moreover, four-manifold invariants were con-
structed as some TQFT type homomorphisms between the homology groups
of the chain complexes associated with the positive and negative boundary
components [OS12]. The Ozsváth-Szabó complexes associated with a closed
three-manifold come in different flavours. These are typically called hat,
minus, plus and infinity modules. The other versions may be re-constructed
from the minus chain complex if one also keeps track of the so called U -
action.

Attempts towards extending the Ozsváth-Szabó invariants to three-
manifolds with boundary, at least when the boundary is equipped with
some extra structure, have been made through two different approaches. If a
parametrization of the boundary surface is fixed, the three-manifold is called
a bordered three manifold. Lipshitz, Ozsváth and Thurston generalize the
hat version of the Ozsváth-Szabó complex for bordered three-manifold by
first constructing a graded differential algebra corresponding to the parame-
terized boundary, and then associating the bordered Floer modules of types
A and D to the bordered manifold, which are respectively an A∞ module
and a module over the differential graded algebra (see [LOT1], [LOT2]).
Gluing of bordered three-manifolds for constructing closed three-manifolds
is translated to an appropriate tensor product construction on the corre-
sponding bordered Floer modules.

In a different direction, if the boundary of a three-manifold X is dec-
orated with a set τ of sutures, Juhász associates a complex, the so called
sutured Floer complex, to the sutured manifold (X, τ) [Ju1], provided that
(X, τ) is balanced. The complex generalizes the hat versions of the Ozsváth-
Szabó complexes associated with closed three-manifolds and links inside
three-manifolds. The theory of sutured manifolds was introduced in [Gab1]
and developed in [Gab2] and [Gab3] by D. Gabai in order to study the exis-
tence of taut foliations on three-manifolds. Sutured manifolds are oriented
three-manifolds with boundary, together with a set of oriented simple closed
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curves (the sutures) that divide the boundary into positive and negative
parts. Gabai defined the so called sutured manifold decomposition which
consists of cutting the manifold along a properly embedded oriented surface
R and adding one side of R to the plus boundary and the other side to the
minus boundary. He showed that a sutured manifold carries a taut foliation
if and only if there is a sequence of decompositions that result in a prod-
uct sutured manifold. Honda, Kazez, and Matić generalized the theory of
sutured manifold decomposition for the study of tight contact structures on
three-manifolds, and developed the convex decomposition theory [HKM1]. In
addition to the introduction of the sutured Floer complex, Juhász described
how his sutured Floer complex changes through sutured manifold decompo-
sition [Ju2]. As a consequence, he showed that a sutured manifold (X, τ) is
taut if and only if the sutured Floer homology group SFH(X, τ) is non- triv-
ial and X is irreducible. These results suggested a deep connection between
sutured Floer theory of Juhász and the sutured manifold decomposition the-
ory of Gabai, as well as the contact geometry of three-manifolds. Subsequent
developments included the study of the sutured Floer polytope by Juhász
[Ju3] and introduction of contact invariants for contact three-manifolds with
convex boundary by Honda, Kazez and Matić [HKM2]. This last invariant
generalizes the contact invariant of Ozsváth and Szabó for a closed contact
three-manifold defined in [OS11].

1.2. Main results

In this paper, we extend the construction of Juhász and construct a minus
theory associated with a sutured manifold, providing an answer to the first
two questions in problem 1 from [Ju4]. Moreover, we present a connected
sum formula for the sutured Floer complex, which provides partial answer to
the third question in the aforementioned problem. More precisely, let (X, τ)
be a sutured manifold, and assume that the set of sutures does not contain
any toridal components. Let τ = {τ1, . . . , τκ} be the set of sutures. We will
denote ∂X − τ by R(τ) = R+(τ) ∪R−(τ), where R+(τ) and R−(τ) are the
positive and the negative parts of the boundary, respectively. We will further
assume that the Euler characteristics χ(R+(τ)) and χ(R−(τ)) agree. Such
sutured manifolds will be called weakly balanced . Our assumptions for being
balanced are thus weaker than those of Juhász [Ju1].

We first associate an algebra A = Aτ to the boundary of X as follows.
Let us assume that

R−(τ) =
k⋃

i=1

R−
i and R+(τ) =

l⋃
j=1

R+
j ,
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where {R−
i }i and {R+

j }j are the connected components ofR−(τ) andR+(τ),

respectively. Let g−i denote the genus of R−
i and g+j denote the genus of R+

j .
Consider the elements

u−i :=
∏

τj⊂∂R−i

uj , i = 1, . . . , k and u+i :=
∏

τj⊂∂R+
i

uj , i = 1, . . . , l,

in the free Z-algebra Z[κ] := 〈u1, . . . , uκ〉 generated by u1, . . . , uκ. Let A = Aτ

denote the algebra

A :=

〈
u1, . . . , uκ

〉
Z〈

u+(τ)− u−(τ)
〉
+

〈
u+i | g+i > 0

〉
+

〈
u−j | g−j > 0

〉 =
Z[κ]

I(τ) ,

where u−(τ) =
k∑

i=1

u−i and u+(τ) =

l∑
i=1

u+i .

We will denote the set of monomials
∏κ

i=1 u
ai

i by G(A), which forms a set
of generators for A as a module over Z. One may define a natural map from
G(A) to the Z-module H = Hτ := H2(X, ∂X,Z) by

χ : G(A) −→ H = H2(X, ∂X;Z),

χ

(
κ∏

i=1

uai

i

)
:= a1PD[τ1] + · · ·+ aκPD[τκ], ∀ a1, . . . , aκ ∈ Z≥0.

Note that Hτ only depends on X, and τ may thus be dropped from the
notation. However, we will sometimes keep it to highlight the connection of
the the Z-module H to X (where the sutures in τ live).

Let X = X
τ
denote the three-manifold (with boundary) obtained by fill-

ing the sutures of (X, τ) by attaching 2-handles to the sutures in τ . Fix a
(relative) Spinc class s ∈ Spinc(X). Suppose that (Σ,α,β, z) is a Heegaard
diagram for the sutured manifold (X, τ), which is admissible in an appropri-
ate sense (see Section 4 for a precise definition of admissibility). Thus Σ is a
closed Riemann surface, α and β are �-tuples of disjoint simple closed curves,
and z is a set of κ marked points on Σ. If Σ◦ = Σ− nd(z) is the comple-
ment of a neighbourhood of z, X is obtained from Σ◦ × [−1, 1] by attaching
2-handles to α× {−1} and β × {1}, while τ is obtained as (∂Σ◦)× {0}.
The Ozsváth-Szabó chain complex CF(X, τ, s) is then generated, as a free
A-module, by those intersection points of the tori Tα,Tβ ⊂ Sym�(Σ) associ-
ated with α and β which correspond to the Spinc class s ∈ Spinc(X). The
set π+

2 (x,y) of positive homotopy classes of Whitney disks connecting the
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generators x,y ∈ Tα ∩ Tβ is defined as usual, and we have a map

uz :
∐

x,y∈Tα∩Tβ

π+
2 (x,y) −→ G(A)

uz(φ) :=

κ∏
i=1

u
nzi

(φ)
i , ∀ x,y ∈ Tα ∩ Tβ , ∀ φ ∈ π+

2 (x,y).

Here nzi(φ) denotes the coefficient of zi in the domain D(φ) associated with
theWhitney disk φ. We will abuse the notation and denote the class [uz(φ)] ∈
Z[κ]/I(τ) by uz(φ) as well. The differential ∂ of the complex CF(X, τ, s)
is defined by counting holomorphic disks φ of Maslov index 1 connecting
the generators x and y of the complex, with an appropriate sign and with
the weight uz(φ) ∈ A. The assignment of relative Spinc structures to the
intersection points x ∈ Tα ∩ Tβ using z gives CF(X, τ, s) the structure of a
filtered (A,H) chain complex (see Section 3 for a precise definition). The
following is the main result of this paper.

Theorem 1.1. Suppose that (X, τ) is a weakly balanced sutured manifold,
s ∈ Spinc(X) is a Spinc structure on X = X

τ
, and that (Σ,α,β, z) is an

s-admissible Heegaard diagram for (X, τ). Then CF(X, τ), as defined above,
is a filtered (Aτ ,Hτ ) chain complex. The filtered (Aτ ,Hτ ) chain homotopy
type of the filtered (Aτ ,Hτ ) chain complex CF(X, τ, s) is an invariant of the
weakly balanced sutured manifold (X, τ) and the Spinc class s ∈ Spinc(X).
In particular, for any s ∈ s ⊂ Spinc(X, τ) the chain homotopy type of the
summand

CF(X, τ, s) ⊂ CF(X, τ, s) =
⊕
s∈s

CF(X, τ, s)

is also an invariant of (X, τ, s).

For a test ring B, i.e. a coefficient ring which has the structure of a
module over A, the chain homotopy type of the complex

CF(X, τ, s;B) = CF(X, τ, s)⊗A B

is thus an invariant of the sutured manifold (X, τ) as well. If B admits a
filtration by H and the action of A on the A-module B respects the filtration
of the monomials of A by the elements of H, the above complex is equipped
with a filtration by Spinc(X, τ). In this case, it makes sense to talk about
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the following decomposition of CF(X, τ, s;B):

CF(X, τ, s;B) =
⊕

s∈s⊂Spinc(X,τ)

CF(X, τ, s;B).

In particular, the homology groups

HF(X, τ, s;B) = H∗ (CF(X, τ, s;B), ∂) , ∀ s ∈ Spinc(X, τ)

may be defined, and are invariants of the sutured manifold and the relative
Spinc class s ∈ Spinc(X, τ). As a special case, if the sutured manifold is
balanced in the sense of [Ju1], we may take B = Z and let the non-trivial
monomials of A act trivially on Z. We thus obtain a natural A-module
structure on Z. The sutured Floer homology of Juhász is then recovered as:

SFH(X, τ, s) = HF(X, τ, s;Z), ∀ s ∈ Spinc(X, τ).

Consider the quotient Bτ of Aτ defined by setting

Bτ =

〈
u1, . . . , uκ

〉
Z〈

u ∈ G(A) \ {1} ∣∣ χ(u) is torsion〉
Z

.

We call the monomials in the denominator of the above quotient the homo-
logically trivial monomials , when they are considered as elements in Aτ .
Multiplication by homologically trivial monomials respects the filtration by
relative Spinc structures. Clearly, there is a quotient map ρτ : Aτ → Bτ giv-
ing Bτ the structure of an Aτ module.

Proposition 1.2. An irreducible balanced sutured manifold (X, τ) is taut
if and only if the filtered (Bτ ,Hτ ) chain homotopy type of the complex

CF(X, τ ;Bτ ) =
⊕

s∈Spinc(X)

CF(X, τ ; s;Bτ )

is non-trivial.

The above proposition is a refinement of Juhász’s Theorem 1.4 from
[Ju2] in the following sense. If the irreducible balanced sutured manifold
(X, τ) is not taut, not only SFH(X, τ) = 0 by Theorem 1.4 from [Ju2], but
also the chain homotopy type of the complex CF(X, τ ;Bτ ) is trivial.

We find it useful to illustrate some of the above constructions in a few
cases, before moving to the statement of some of the properties of the sutured
Floer complex constructed in this paper.
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Example 1. Suppose that Y is a closed three-manifold and that the sutured
manifold (X, τ = {τ1, . . . , τn}) = Y (n) is obtained by removing n disjoint
balls from Y and placing a suture on each one of the resulting sphere bound-
ary components. In this case we have

k = l = n, g+i = g−i = 0 and u+i = u−i = ui, i = 1, . . . , n.

Thus the algebra A is equal to Z[u1, . . . , un] in this case, and we recover
the multi-pointed Ozsváth-Szabó complex associated with the closed three-
manifold Y . Each ui is a homologically trivial monomial, and the action of
{ui}i on the complex corresponds to the so-called U -action. Note that the
above construction refines the construction of Ozsváth and Szabó in [OS9]
by giving a complex with coefficients in Z rather than Z/2Z.

Example 2. For a link L inside a closed three-manifold Y which has n
connected components, the boundary of the corresponding sutured manifold
(X = Y − nd(L), τ = {τ1, . . . , τ2n}) consists of n tori and τ consists of a pair
of parallel sutures {τ2i−1, τ2i} on the i-th torus. With the above notation,

k = l = n, g+i = g−i = 0 and u+i = u−i = u2i−1u2i, ∀ i = 1, . . . , n.

Thus, the algebra A is equal to Z[u1, u2, . . . , u2n]. In particular, when L is a
knot (i.e. the number of components is just 1) this gives the Z⊕ Z filtration
associated with the knot L inside the three-manifold Y . Note that u2i−1u2i
is a homologically trivial monomial for i = 1, . . . , n. Multiplication by these
monomials gives the U -action on the knot Floer complex. Once again, this
generalizes the construction of [OS9] in several ways (including the fact that
the coefficient ring is improved to Z).

Example 3. Let K be a homologically trivial knot inside a closed three-
manifold Y , and let S be a connected Seifert surface for K of genus g.
The sutured manifold (X, τ = {τ1}) = Y (S) is then obtained by removing a
product neighbourhood of S from Y and adding a copy of K as the single
suture on the boundary of Y − nd(S). In this case we have

k = l = 1, g+1 = g−1 = g and u+1 = u−1 = u1.

If g = 0 and K is thus the unknot, we will have A = Z[u1], while for g > 0,
the corresponding algebra would be Z. In this latter case we recover the
complex of Juhász. However, a slightly stronger version of the construction
allows us to use the coefficient ring Z[u1]/〈u21〉 when the genus g is bigger
than 1 (see Remark 5.9). It is interesting to investigate if the improved
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invariant would help us with distinguishing different Seifert surfaces of the
same knot.

Example 4. Consider three points 0, 1 and ∞ on the standard sphere S2 =
CP1, and denote the boundary of small disjoint disks D0, D1, D∞ around
these points by C0, C1 and C∞, respectively. Let Σ = CP1 \ (D0 ∪D1), and
suppose that X denotes the three-manifold with boundary which is obtained
from Σ× [−1, 1] by attaching a 2-handle to C0 × {−1} and a 2-handle to
C∞ × {1}. The curves τ• = C• × {0} for • ∈ {0, 1} define a sutured manifold
(X, τ = {τ0, τ1}). It is easy to see that X = [0, 1]× S2, and that the bound-
ary ofX consists of a sphere with two parallel sutures on it, which decompose
it into two disks and a cylinders, and a sphere without any sutures on it.
The algebra associated with this sutured manifold is thus equal to

A = Aτ =
Z
[
u0, u1

]〈
(u0 − 1)(u1 − 1)

〉 .
Note that (Σ = CP1,α = {C0},β = {C∞}, z = {0, 1}) is a Heegaard dia-
gram for this sutured manifold. In order to make this Heegaard diagram
admissible, a pair of cancelling intersection points should be created between
C0 and C∞. The chain complex associated with this Heegaard diagram is
thus generated by a pair of generators x and y, corresponding to the copies
Ax and Ay of A. The differential is defined by

∂(x) = (u1 − 1)y and ∂(y) = (u0 − 1)x.

Thus the chain complex has non-trivial chain homotopy type. This illustrates
one of the simplest examples of a situation beyond the framework of [Ju1]
where the current construction may be applied and the outcome is non-
trivial. Note that in this case (where the boundary has components without
any sutures) the ring Z does not admit the structure of a natural A-module.

Suppose that (X, τ = {τ1, . . . , τκ}) is a weakly balanced sutured man-
ifold as above, and assume that the boundary S = ∂X is connected. We
may let the mapping class group MCG(S) of S act on the sutures; for any
φ ∈ MCG(S), let τφ = {φ(τ1), . . . , φ(τκ)}. Clearly, (X, τφ) is a new sutured
manifold, and Aτφ = Aτ . Usually it sounds impossible, however, to relate the
complex CF(X, τφ) to CF(X, τ). Nevertheless, the surgery exact triangle for
the Ozsváth-Szabó complexes associated with closed three-manifolds may
be generalized to give a partial answer in certain situations.

Let (X, τ) be a sutured manifold and τ1, τ2 ∈ τ be two sutures which
belong to the common boundary of genus zero connected components R+

1 ⊂
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R+(τ) and R−
1 ⊂ R−(τ). Consider a simple closed curve λ ⊂ R+

1 ∪R−
1 ∪

τ1 ∪ τ2 which cuts each one of τ1 and τ2 in a single transverse point and
remains disjoint from the rest of the sutures. We further assume that τ1.λ =
1. Let φ denote the right-handed Dehn twist along τ1 and ψ denote the left
handed Dehn twist along λ. In particular, note that ψ(τ1) and φ(λ) are both
homologous to τ1 + λ. Let us assume that the algebra A = Aτ is generated
by u1, . . . , uκ as before, where ui corresponds to the suture τi, i = 1, . . . , κ.
Note that in the relations ideal I(τ) in Z[κ] (which defines A as Z[κ]/I(τ))
the generators either contain u1u2, or they contain none of u1 and u2. We
may thus introduce a new algebra B as a quotient of 〈u0, u1, . . . , uκ〉Z by an
ideal I(τ). The generators of I(τ) are constructed from the generators of
I(τ) by replacing u1u2 with u0u1u2. For i = 0, 1, 2 we obtain the embeddings
ıi of A in B:

ıi : A → B, ıi(uj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui if j = 1

u0u1u2
ui

if j = 2

uj if 3 ≤ j ≤ κ

.

We write Ai in order to refer to A as the sub-ring ıi(A) ⊂ B. Consider the
following quotient of H2(X, ∂X;Z).

H =
H2(X, ∂X;Z)〈

η
〉 , where η = PD[τ1 + τ2] = PD[ψ(τ1) + ψ(τ2)]

= PD[φ(ψ(τ1)) + φ(ψ(τ2))].

Let us denote by χj ∈ H the Poincaré dual of the suture τj , for j = 3, . . . , κ.
Furthermore, let χ0, χ1 and χ2 denote the Poincaré duals of τ1, ψ(τ1) and
−φ ◦ ψ(τ1), respectively. Note that χ0 + χ1 + χ2 = 0. Define the filtration
map by

χ : G(B) −→ H, χ

⎛⎝ κ∏
j=0

uai

i

⎞⎠ :=

κ∑
j=0

aiχi.

Associated with any Spinc class s ∈ Spinc(X) let CFi(s;Ai) denote the com-
plex CF(X, τ, s;A0), CF(X, τψ, s;A1), or CF(X, τφ◦ψ, s;A2) depending on
whether i = 0, 1 or 2. Let CFi(s;B) = CFi(s;Ai)⊗Ai

B.
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Theorem 1.3. With the above notation fixed, we have a triangle

CF0(s;B)
fs2 � CF1(s;B)

CF2(s;B)
�

fs 0

�

f s
1

of filtered (B,H) chain maps such that fs1 ◦ fs0, fs2 ◦ fs1, and fs0 ◦ fs2 are null
homotopic. Moreover, CFi(s;B) is filtered (B,H) chain homotopic to the
mapping cone of fsi . In particular, if a ring R has the structure of a B-
module, taking the tensor product of the above triangle with R and computing
the homology groups we obtain a long exact sequence in homology:

· · · fs1−→ HF(X, τ, s;R)
fs2−→ HF(X, τψ, s;R)

fs0−→ HF(X, τφ◦ψ, s;R)
fs1−→ · · · .

If the action of B on R respects the filtration by H, the above exact
sequence refines to an exact sequence corresponding to any of the relative
Spinc structures s ∈ Spinc(X, τ)/〈η〉.

We say that the sutured manifold (X, τ̂ = τ ∪ {τκ+1, τκ+2}) is obtained
by a simple stabilization of (X, τ) if −τκ+1 and τκ+2 are oriented simple
closed curves parallel to τκ ∈ τ , and τκ belongs to the common boundary
of two genus zero components R+

l ⊂ R+(τ) and R−
k ⊂ R−(τ). Moreover,

τκ and τκ+1 bound an annulus R+ in ∂X − τ̂ , while τκ+1 and τκ+2 bound
R− ⊂ ∂X − τ̂ , with R+, R− ⊂ R+

l . We will denote R+
l −R+ ∪R− by R+

l+1.
Let Aτ̂ denote the algebra associated with (X, τ̂), which is a quotient of
Z[u1, . . . , uκ+2]. The following theorem (proved in Section 7) generalizes the
stabilization theorem of [OS9], while improving the ring of coefficients to Z
(instead of Z/2Z).

Proposition 1.4. With the above notation fixed, for any given Spinc class

s ∈ Spinc
(
X

τ̂
)
= Spinc(X),

the filtered chain homotopy type of the complex CF(X, τ̂ , s) is the same as
the filtered chain homotopy type of the chain complex obtained by equipping
the module

CF (X, τ, s;Aτ̂ )⊕ CF (X, τ, s;Aτ̂ )
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with the differential

∂̂ =

(
∂τ uκ+1 − u

uκ − uκ+2 −∂τ

)
, where u :=

∏
τκ 	=τi∈∂R+

l

ui ∈ Aτ̂ .

Since Aτ̂ does not admit the structure of a natural Aτ -module, the mod-
ule CF (X, τ, s;Aτ̂ ), defined from an admissible Heegaard diagram for (X, τ),
does not have the structure of a chain complex and its differential

∂τ : CF (X, τ, s;Aτ̂ ) −→ CF (X, τ, s;Aτ̂ )

satisfies

∂τ ◦ ∂τ = (u+(τ)− u−(τ)).Id.

However, this is enough for ∂̂ to be a differential.
Finally, the behaviour of the sutured Floer complex under particular

forms of product disk decompositions is described in Section 9.

Theorem 1.5. Suppose that (Xi, τ i) is a weakly balanced sutured manifold
with a distinguished suture σi for i = 1, 2, and let (X, τ) denote the weakly
balanced sutured manifold obtained as the boundary connected sum of (Xi, τ i)
along σi, i = 1, 2. Fix the Spinc structures si ∈ Spinc(Xi) for i = 1, 2.Then
the filtered chain homotopy type of the two filtered (A,H) chain complexes

CF(X, τ, s1#s2;A) and CF(X1, τ1, s1;A)⊗A CF(X2, τ2, s2;A)

are the same, where A = A(τ1, τ2;σ1, σ2).

The algebra A(τ1, τ2;σ1, σ2) is discussed in Section 9. If the boundary
components in R±(τ i) adjacent to σi have positive genus, one is forced to
include unwanted relations in the above ring. Thus in some sense, Section 9
will provide a partial understanding of the extent to which a surface decom-
position formula for the sutured Floer complex may be hoped for.

1.3. Outline of the paper

The paper is organized as follows. In Section 2 we review some of the basic
notions, including the sutured manifolds, the corresponding Heegaard dia-
grams, and the Spinc structures on sutured manifolds. We will also review
some of the main constructions studied in this paper, including the action
of the mapping class group of the boundary and filling the sutures.
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In Section 3 we develop the language of chain complexes filtered by a
module, and make some simple algebraic observations. Moreover, we con-
struct an algebra associated with the boundary of a balanced sutured man-
ifold, as well as a filtration of its generators by classes in H2(X, ∂X;Z). The
algebra plays the role of the coefficient ring for the Ozsváth-Szabó chain
complex constructed in this paper.

In Section 4 we develop a notion of admissibility for Heegaard dia-
grams, which makes it possible to construct an Ozsváth-Szabó complex using
Heegaard Floer theory. The admissibility condition is slightly weaker, in a
sense, than the strong admissibility of Ozsváth and Szabó in the context of
closed three-manifolds. However, it is strong enough for the construction of
Ozsváth-Szabó complex to work. We show that all weakly balanced sutured
manifolds admit admissible Heegaard diagrams corresponding to any Spinc

class.
In Section 5 we study the orientability issues for the corresponding mod-

uli spaces. In particular, an appropriate orientation for the moduli spaces of
boundary degenerations is required so that the differential ∂ of the associ-
ated Ozsváth-Szabó chain complex satisfies ∂2 = 0. Analyzing the analytic
aspects of the theory thus requires some new techniques which are developed
in Section 5.

In Section 6 we show that the filtered chain homotopy type of the chain
complex constructed in Section 5 and associated with an admissible Hee-
gaard diagram for the balanced sutured manifold (X, τ) is invariant under
Heegaard moves, and is independent of the choice of the path of almost
structures on the symmetric product of the Heegaard surface. The choice of
the algebra associated with the boundary plays a very crucial role both in
defining the chain complex and proving the invariance of the filtered chain
homotopy type.

In Section 7 we study how the filtered chain homotopy type of the
Ozsváth-Szabó complex associated with a balanced sutured manifold (X, τ)
changes when we add two parallel copies of an existing suture to the bound-
ary with appropriate orientation. The operation is called the stabilization of
the sutured manifold (X, τ).

In Section 8 we introduce a generalization of the surgery triangle for
balanced sutured manifolds. The freedom to choose many marked points on
the Heegaard diagram allows us to understand the chain maps in a better
way, and refine the existing triangles, and long exact sequences.

Finally, in Section 9 we discuss product disk decomposition, and prove a
connected sum formula for the sutured Floer complex. A number of examples
are also discussed.
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2. Background on sutured manifolds

2.1. Sutured manifolds and relative Spinc structures

In this paper, we only deal with sutured manifolds without toroidal sutures,
so we will modify the standard definition of sutured manifolds, by throwing
away the possibility of having a torus component among the sutures.

Definition 2.1. A sutured manifold (without toroidal sutures) (X, τ) is
a compact oriented three-manifold X with boundary ∂X, together with a
set of disjoint oriented simple closed curves τ = {τ1, . . . , τκ} on ∂X. We
will denote by A(τi) a tubular neighbourhood of τi in ∂X, which will be
an annulus. We let A(τ) = A(τ1) ∪ · · · ∪A(τκ). Every component of R(τ) =
∂X −A(τ)◦ is oriented (where A(τ)◦ denotes the interior of A(τ)). Further-
more, R(τ) = R+(τ) ∪R−(τ) where R+(τ) denotes the union of compo-
nents of R(τ) with the property that the orientation induced on τ as the
boundary of R+(τ) agrees with the orientation of τ , while R−(τ) denotes
the union of components of R(τ) with the property that the orientation
induced on τ as the boundary of R−(τ) is the opposite of the orientation
of τ . We assume that the orientation on the components of R(τ) ⊂ ∂X is
induced by the orientation of X. A sutured manifold (X, τ) is called weakly
balanced if for every connected component X0 of X both X0 ∩R+(τ) and
X0 ∩R−(τ) are non-empty and χ(R+(τ)) = χ(R−(τ)). A sutured manifold
(X, τ) is called balanced if X is weakly balanced and the induced map
π0(τ) → π0(∂X) is surjective.

Definition 2.2. A Heegaard diagram is a tuple (Σ,α,β, z) such that (Σ,
α,β) is a balanced Heegaard diagram i.e. Σ is a closed oriented surface
and α and β are sets of disjoint oriented simple closed curves on Σ with
|α| = |β| = �, and

z =
{
z1, . . . , zκ

} ⊂ Σ−
⋃

α−
⋃

β

is a set of marked points.

Every Heegaard diagram (Σ,α,β, z) uniquely defines a weakly balanced
sutured manifold manifold as follows. Let Σ◦ = Σ−D1 − · · · −Dκ denote
the complement of the small disks D1, . . . , Dκ around z1, . . . , zκ, where
z = {z1, . . . , zκ}. The three-manifold X is obtained from Σ◦ × [−1, 1] by
attaching 3-dimensional 2-handles along the curves αi × {−1} and βj × {1}
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for i, j = 1, . . . , �. We may define the set of sutures on the boundary of X
by

τ =
{
τ1, . . . , τκ

}
, τi = ∂Di × {0}.

In this situation, we say that (Σ,α,β, z) is associated with the sutured three-
manifold (X, τ). If each connected component of Σ−α and Σ− β contains
at least one marked point, then the sutured manifold (X, τ) is balanced.

Proposition 2.3. For every weakly balanced sutured manifold (X, τ), there
exists a Heegaard diagram associated with it in the above sense.

Proof. The argument of [Ju1] may be extended to construct sutured Hee-
gaard diagrams for weakly balanced sutured manifolds. Let (Στ ,α,β) be a
sutured Heegaard diagram for the weakly balanced sutured manifold (X, τ)
in the sense of [Ju1]. If τ = {τ1, . . . , τκ} consists of κ sutures, take Σ to be
the surface obtained from Στ by gluing κ disks D1, D2, . . . , Dκ to it along
the boundary components corresponding to τ1, . . . , τκ. Let zi be the center
of Di, i = 1, . . . , κ. Then (Σ,α,β, z = {z1, . . . , zκ}) is a Heegaard diagram
for (X, τ). �

Proposition 2.4. If (Σ1,α1,β1, z) and (Σ2,α2,β2,w) are two Heegaard
diagrams for a weakly balanced sutured manifold (X, τ), then they are dif-
feomorphic after a finite set of Heegaard moves, which are supported away
from the marked points.

Proof. This is Proposition 2.15 from [Ju1]. �

For the most part of this paper, we will identify R(τ) = R+(τ) ∪R−(τ) as
the connected components of ∂X − τ . Thus the boundary of each connected
component R ⊂ R(τ) may be identified with a union of curves in τ . In the
few situations where the annuli A(τi) are relevant, we will emphasize them
in the notation.

Suppose that (X, τ) is a balanced sutured manifold. One may define a
nowhere vanishing vector field on ∂X as follows. Let vτ be a vector field (with
values in TX|∂X) which points outward on R+(τ) ⊂ ∂X −A(τ) = R(τ),
and points inward on R−(τ) ⊂ R(τ). Furthermore, under the identification
A(τi) = τi × [−1, 1], let vτ |A(τi) be the vector field ∂

∂t determining the unit
tangent vector of the second factor, i.e. the interval [−1, 1]. In fact, we have
to perturb vτ on a small neighborhood ∂A(τ) to make it continuous, but we
typically drop this perturbation from our notation.
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Definition 2.5. Suppose that the non-vanishing vector fields v and w on
X agree with vτ on ∂X. We say that v and w are homologous if there is a
ball B ⊂ X◦ such that the restrictions of v and w to X −B are homotopic
relative the boundary of X. We define the space Spinc(X, τ) of relative Spinc

structures on the sutured manifold (X, τ) to be the space of homology classes
of such nowhere vanishing vector fields on X which agree with vτ on ∂X.

Note that Spinc(X, τ) is an affine space over H2(X, ∂X,Z). Let us assume
that the Spinc structure s ∈ Spinc(X, τ) is represented by a nowhere vanish-
ing vector field v, so that v|∂X = vτ . Let us define the first Chern class of
s to be the first Chern class of the oriented 2-plane field v⊥ over X, which
lives in H2(X,Z). Let us denote the inclusion of ∂X in X by i : ∂X → X.
We thus get a map

i∗ : H2(X,Z) → H2(∂X,Z).

The first Chern class of the 2-plane field v⊥τ lives in H2(∂X,Z) and c1(s) is
thus included in

(i∗)−1
(
c1(v

⊥
τ )

)
⊂ H2(X,Z).

Let (X, τ) be a balanced sutured manifold as above. Let I denote a subset
of {1, . . . , κ}. We may glue a solid cylinder D2 × [−1, 1] (i.e. a 3-dimensional
2-handle) to each component A(τi) of A(τ) along S1 × [−1, 1]. We will refer
to this operation as filling out the suture τi. Consider the sutured manifold
(X(I), τ(I)) obtained by filling out the sutures of (X, τ) corresponding to
the subset I. In particular, we will denote X(1, . . . , κ) by X. In terms of
the Heegaard diagrams, if (Σ,α,β, z = {z1, . . . , zκ}) is a Heegaard diagram
associated with (X, τ) so that zi corresponds to the suture τi, a diagram for
(X(I), τ(I)) will be the pointed Heegaard diagram(

Σ,α,β, z− {
zi | i ∈ I

})
.

Let (Σ,α,β, z) be a Heegaard diagram for the balanced sutured manifold
(X, τ). complete z to a collection z of marked points in Σ−α− β so that
each connected component contains at least one marked point. Consider the
symmetric product

Sym�(Σ) =
Σ×�

S�
=

Σ× · · · × Σ

S�

equipped with a path of complex structures {Jt}t∈[0,1] which is of the form

Sym�(jΣ) in a fixed small neighbourhood V of z, where jΣ denotes a com-
plex structure over the surface Σ. Following Ozsváth and Szabó [OS5] we
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call such almost complex structures nearly symmetric, dropping the Kähler
structure and the complex structure jΣ on Σ and the neighbourhood V from
the notation. By a generic path of almost complex structures {Jt}t∈[0,1] over
Sym�(Σ) we mean a generic choice of the above path within the aforemen-
tioned family of paths. The last condition on the path of almost complex
structures will be suppressed from the notation. The tori Tα = α1 × · · · × α�

and Tβ = β1 × · · · × β� are totally real sub-manifolds of Sym�(Σ). We may
define a map

s = sz : Tα ∩ Tβ −→ Spinc(X, τ),

which is defined by choosing a Morse function compatible with the Heegaard
diagram for the sutured manifold (X, τ), viewing an intersection point x ∈
Tα ∩ Tβ as a set of flow lines joining index-1 critical points to index-2 critical
points of the Morse function, and perturbing the gradient vector field of the
corresponding Morse function in a neighbourhood of this set of flow lines
associated with x in order to obtain a nowhere vanishing vector field on X
with the desired properties.

There is a notion of extending Spinc structures from (X, τ) to X(I) as
follows. If s ∈ Spinc(X, τ) is represented by the nowhere vanishing vector
field v (so that v|∂X = vτ ), we may extend v over each one of the glued
cylinders D2 × [−1, 1]. In fact, v may be extended over D2 × [−1, 1] by set-
ting it equal to ∂

∂t , where t denotes the variable associated with the interval
[−1, 1]. We will denote this extension of the vector field v by vI . Denote the
natural maps obtained by extending the relative Spinc structures on sutured
manifolds over the attached solid cylinders as above by

sI = sτI : Spinc(X, τ) −→ Spinc(X(I), τ(I)), ∀ I ⊂ {1, . . . , κ}.

In particular, the extension map sτ{1,...,κ} is denoted by

[.] : Spinc(X, τ) → Spinc(X).

Note that there is an exact sequence

0 �
〈
PD[τi] | i ∈ I

〉
Z

� Spinc(X, τ)
sI� Spinc(X(I), τ(I)) � 0.

This sequence should be interpreted as follows. If two relative Spinc struc-
tures s, t ∈ Spinc(X, τ) satisfy sI(s) = sI(t), then the cohomology class s− t
is generated by the Poincaré duals of the sutures corresponding to I.
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Let us denote the inclusion of X in X(I) by ıI : X → X(I). This inclu-
sion gives a map

ı∗I : H2(X(I),Z) −→ H2(X,Z).

We know that if s is represented by v, sI(s) is represented by vI . From the
definition of the first Chern class,

ı∗I
(
c1
(
sI(s)

))
= c1(s).

Let us assume that S = ∂X is a connected surface. Associated with any
element φ in the mapping class group MCG(S) of the surface S we would
have a new sutured manifold (X, τφ), with the same ambient manifold, and
with τφ = φ(τ). Clearly, R+(τφ) = φ(R+(τ)) and R−(τφ) = φ(R−(τ)).

Consider the three-manifold with boundary Y = [0, 1]× S, together with
the sutures

σφ = ({0} × τ)
⋃

({1} × τφ) .

Correspondingly, we will have

R+(σφ) =
({1} ×R+(τφ)

) ∪ ({0} ×R−(τ)
)

and

R−(σφ) =
({1} ×R−(τφ)

) ∪ ({0} ×R+(τ)
)
.

Then (Y, σφ) is a sutured manifold and Spinc(Y, σφ) is an affine space over

H2(Y, ∂Y ;Z) = H2([0, 1]× S, {0, 1} × S;Z) = H1([0, 1]× S;Z).

Any relative Spinc class in Spinc(Y, σφ) may thus be used to define a map
from Spinc(X, τ) to Spinc(X, τφ). In other words, we have a natural gluing
map

Spinc(X, τ)× Spinc([0, 1]× ∂X, σφ) −→ Spinc(X, τφ).

2.2. Relative Spinc-structures and Heegaard diagrams

Let the Heegaard diagram (Σ,α,β, z) for the balanced sutured manifold
(X, τ), the symmetric product Sym�(Σ), the totally real tori Tα and Tβ ,
and the path of complex structures

{
Jt
}
t∈[0,1] (which is nearly symmetric)

be as before.

Definition 2.6. Let D ⊂ C be the unit disk in the complex plane, and
x,y ∈ Tα ∩ Tβ . A Whitney disk is a continuous map φ : D → Sym�(Σ) such
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that φ(−i) = x, φ(i) = y and

φ
{
z ∈ ∂D | Re(z) ≥ 0

} ⊂ Tα and

φ
{
z ∈ ∂D | Re(z) ≤ 0

} ⊂ Tβ .

The set of homotopy classes of the Whitney disks connecting x to y is
denoted by π2(x,y). For any homotopy class φ ∈ π2(x,y), we denote the
moduli space of {Jt}t-holomorphic representatives of φ by M(φ). There
exists a translation action of R on M(φ). The quotient of M(φ) under this

action will be denoted by M̂(φ). The Maslov index of φ is denoted by μ(φ).
For i ∈ Z, we will denote by πi

2(x,y) the subset of π2(x,y) which consists
of all φ with μ(φ) = i.

It is known ([OS5], and [OS9]) that for any generic path {Jt}t of com-
plex structures, M(φ) is a smooth manifold of dimension μ(φ), which is
not necessarily compact. Although the proof is given for a special class of
pointed Heegaard diagrams the proof in this more general form is identical.
This moduli space may be compactified by adding the Gromov limits of
pseudo-holomorphic curves. But the boundary strata which correspond to
degenerations of the domain are not necessarily smooth, or of lower dimen-
sion. We will return to this issue in Section 5.

Definition 2.7. Let D1, . . . , Dm be the connected components of Σ−
α− β. Each element of the free abelian group generated by {D1, . . . , Dm}
is called a domain. A domain D = a1D1 + · · ·+ amDm is called positive,
denoted D ≥ 0, if ai ≥ 0 for 1 ≤ i ≤ m. It is called periodic if its formal
boundary (as a 2-chain) is a sum of α and β curves.

For every Whitney disk φ connecting the intersection points x and y,
the domain associated with φ is defined as follows:

D(φ) =

m∑
i=1

npi
(φ)Di

where pi ∈ Di is a marked point. Here np(φ) for a point p ∈ Σ−α− β
denotes the algebraic intersection number of φ with the subvariety

Δp =
{
(p1, . . . , p�) ∈ Sym�(Σ)

∣∣ pi = p, for some 1 ≤ i ≤ �
}
.

If the map φ is pseudo-holomorphic then D(φ) is a positive domain by
positivity of intersection. We will denote by π+

2 (x,y) the subset of π2(x,y)
which consists of all φ with D(φ) ≥ 0.
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If P is a periodic domain we can associate to it a homology class in
H2(X,Z). More precisely, let

∂P =

�∑
i=1

aiαi +

�∑
i=1

biβi

and let D(αi) be the union of αi × [−1, 0] with the core of the two-handles
attached to αi × {−1} in X. Similarly, let D(βi) be the union of βi × [0, 1]
with the core of the two-handle attached to βi × {1}. Define

H(P) = P +

�∑
i=1

aiD(αi) +

�∑
i=1

biD(βi).

If φ ∈ π2(x,x) is a Whitney disk connecting x to itself, with x ∈ Tα ∩ Tβ ,
the domain D(φ) will be a periodic domain. Conversely, any periodic domain
P determines the class of a Whitney disk in π2(x,x) for any x ∈ Tα ∩ Tβ ,
provided that � > 1. Thus the space of periodic domains may be identified
with π2(x,x) if we assume that � > 1.

Fix a metric on X and let ∇ denote the corresponding covariant deriva-
tive. Fix a self-indexing Morse function f : X → [ε, 3− ε] compatible with
the Heegaard diagram (Σ,α,β, z), i.e. such that ∇f |A(τ) is a section of
T (∂X)|A(τ),

R+(τ) = f−1(3− ε), R−(τ) = f−1(ε) and Σ−
κ∐

i=1

Di = f−1(3/2),

and such that the curves in α are identified as the ascending manifolds of
the critical points of index 1, while the curves in β are identified with the
descending manifolds of the critical points of index 2. For each x ∈ Tα ∩ Tβ

let γx be the union of the flow lines connecting the index-1 critical points to
the index-2 critical points passing through the union x of the intersection
points on Σ = f−1(3/2) ⊂ X.

Lemma 2.8. For x,y ∈ Tα ∩ Tβ we have s(x)− s(y) = PD(ε(x,y)) where
ε(x,y) = γx − γy ∈ H1(X,Z).

Proof. This is Lemma 4.7 from [Ju1]. �
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Corollary 2.9. If φ ∈ π2(x,y) then we have

s(x)− s(y) =

κ∑
i=1

nzi(φ)PD[τi].

Proof. The disk φ gives a domain D(φ), with the property that ε(x,y) is
represented by

∂(D(φ)) ∈ H1(X,Z) =
H1

(
Σ− {z1, . . . , zκ},Z

)〈
α1, . . . , α�, β1, . . . , β�

〉
Z

.

If εi denotes a small loop around zi ∈ Σ, the domain D(φ) gives a 2-chain
connecting ε(x,y) and nz1(φ)ε1 + · · ·+ nzκ(φ)εκ. However, εi is homologous
to τi, and we thus have

s(x)− s(y) = PD[ε(x,y)] =

κ∑
i=1

nzi(φ)PD[τi].

This completes the proof of the corollary. �

Let us finish this subsection with a pair of lemmas for computing the
Maslov index of a periodic domain. Let

Σ−α =

k⋃
i=1

Ai and Σ− β =

l⋃
i=1

Bi,

and assume we have m = k + l − 1 points w1, . . . , wm on Σ such that wi ∈
Ai ∩B1 for 1 ≤ i ≤ k, and wi+k ∈ Ak ∩Bi+1 for 1 ≤ i < l.

Lemma 2.10. For any periodic domain P ∈ π2(x,x) such that nwi
(P) = 0

for 1 ≤ i ≤ m we have:

μ(P) =
〈
c1([s(x)]), H(P)

〉
.

Proof. Let Σw = Σ− nd(w), with w = {w1, . . . , wm}. Now (Σw,α,β) is a
sutured Heegaard diagram for a sutured manifold Xw which is obtained
from X by removing neighbourhoods of the flow lines passing through w. If
i : Xw → X is the embedding of Xw in X, then i−1(P) is a periodic domain
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in (Σw,α,β), and by Theorem 5.2 from [Ju1] we have

μ(i−1P) =
〈
c1
(
sw(x)

)
, H

(
i−1(P)

)〉
.

The periodic domains P and i−1(P) correspond to the homotopy class of a
sphere

S ⊂ Sym�(Σw) ⊂ Sym�(Σ)

and their Maslov index is thus the same, i.e. μ(P) = μ(i−1(P)). We have
i∗H(P) = H

(
i−1(P)

)
. Thus it is enough to show that

(1) c1
(
sw(x)

)
= i∗c1

(
[s(x)]

)
.

Let ν be the vector field defining s(x), and let ν be the extension of ν
to X. Then i∗ν is the vector field defining sw(x) and thus Equation 1 is
satisfied. �

Lemma 2.11. For any periodic domain P ∈ π2(x,x) we have:

μ(P) =
〈
c1 ([s(x)]) , H(P)

〉
.

Proof. If we move the curves by an isotopy to create new intersection points
between α and β the periodic domain P corresponds to a periodic domain
in the new Heegaard diagram. The two sides of the above equality remain
unchanged under this correspondence. We may thus assume that we have
m = k + l − 1 points w1, . . . , wm on Σ such that wi ∈ Ai ∩B1 for 1 ≤ i ≤ k,
and wi+k ∈ Ak ∩Bi+1 for 1 ≤ i < l. Let us denote nwi

(P) by ni, and set

Q = P −
(

k∑
i=1

niAi

)
−

(
l−1∑
i=1

(ni+k − nk)Bi+1

)
.

Clearly nwi
(Q) = 0 for i = 1, . . . ,m, and Lemma 2.10 implies (setting s =

[s(x)], and regarding Q as an element in π2(x,x))
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μ(Q) =
〈
c1(s), H(Q)

〉
(2)

=
〈
c1(s), H(P)

〉−(
k∑

i=1

ni

〈
c1(s), H(Ai)

〉)

−
(

l−1∑
i=1

(ni+k − nk)
〈
c1(s), H(Bi+1)

〉)

=
〈
c1(s), H(P)

〉−(
k∑

i=1

niχ(Ai)

)
−

(
l−1∑
i=1

(ni+k − nk)χ(Bi)

)
.

In the last equation we denote by χ(Ai) and χ(Bi) the expressions 2− 2gAi

and 2− 2gBi
, respectively, where gAi

and gBi
denote the genera of the com-

ponents in R−(τ) and R+(τ) which correspond to Ai and Bi, respectively.
On the other hand, the formula of Lipshitz ([Lip]) may be used to com-

pute μ(Ai) and μ(Bj) as periodic domains in π2(x,x). As such, we will have

(3) μ(Ai) = χ(Ai), i = 1, . . . , k, and μ(Bj) = χ(Bi), j = 1, . . . , l.

Combining Equations 3 and 2 we obtain

μ(P) =
〈
c1(s), H(P)

〉−(
k∑

i=1

niχ(Ai)

)
−

(
l−1∑
i=1

(ni+k − nk)χ(Bi)

)

+

(
k∑

i=1

niμ(Ai)

)
+

(
l−1∑
i=1

(ni+k − nk)μ(Bi)

)
=

〈
c1(s), H(P)

〉
.

This completes the proof of the lemma. �

3. Algebra input

3.1. The A chain complexes

Most part of this subsection is borrowed from Ozsváth and Szabó’s [OS7]
(Subsection 4.1) with minor modifications.

Let us assume that A is a (commutative) finitely generated Z-algebra.

Definition 3.1. If B is another (commutative) ring, which has the structure
of an A-module, we will call B a test ring for A. A chain complex with
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coefficient ring A, or simply an A chain complex , is an A-module C, together
with a homomorphism of A-modules d : C → C, such that d ◦ d = 0.

Let us assume that (C, d) is an A chain complex. Choose a test ring B
and let C(B) = C ⊗A B. The differential d of the complex (C, d) induces a
differential dB : C(B) → C(B). If (C1, d1) and (C2, d2) are A chain complexes
and f : C1 → C2 is an A chain map, then f induces a B chain map

fB : (C1(B), d
B
1 ) −→ (C2(B), d

B
2 ),

where dBi denotes the differential induced by di on Ci(B), i = 1, 2. Associated
with any A chain complex (C, d), and any test ring B, we consider the
homology group

H∗(C, d;B) := H∗(C(B), dB).

We may denote this homology group by H∗(C;B), if there is no confusion.
Associated with f : C1 → C2 as above, we thus obtain a homomorphism

fB
∗ : H∗(C1, d1;B) −→ H∗(C2, d2;B).

Definition 3.2. An A chain map f : (C1, d1) → (C2, d2) between A chain
complexes is called a quasi-isomorphism if the induced map

fB
∗ : H∗(C1, d1;B) −→ H∗(C2, d2;B)

is an isomorphism for any test ring B. More generally, if B is a family of
test rings for A, the A chain map f is called a B-isomorphism if fB∗ is
an isomorphism for any test ring B ∈ B. Two A chain complexes (C1, d1)
and (C2, d2) are quasi-isomorphic if there is a third A chain complex (C, d),
together with quasi-isomorphisms fi : (Ci, di) → (C, d), i = 1, 2. Similarly,
we may define B-isomorphic A chain complexes.

If f : (C1, d1) → (C2, d2) is a homotopy equivalence of A chain com-
plexes, then f is clearly a quasi-isomorphism.

If (A1, d1) and (A2, d2) are A chain complexes and f : A1 → A2 is an
A chain map, we can form the mapping cone M(f) of f , whose underlying
complex is the direct sum A1 ⊕A2, which is equipped with the differential

(4) dM =

(
d1 0
f −d2

)
.

The chain complex M(f) inherits the structure of an A-module from A1

and A2, and its differential respects the A-module structure, since d1 and
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d2 do so and f is an A chain map. Moreover, for any test ring B for A,
M(f)(B) = M(fB). There is a short exact sequence of chain complexes

0 � A2(B)
ıB� M(f)(B)

πB

� A1(B) � 0,

induced from the natural sequence

0 � A2
ı � M(f)

π � A1
� 0.

For each test ring B for A we thus obtain a long exact sequence in homology,
or in fact an exact triangle

H∗(A1, d1;B)
fB∗ � H∗(A2, d2;B)

H∗(M(f), dM;B)
�

�

The construction of the mapping cone is natural in the sense that a
commutative diagram of A chain maps

A1
f � A2

B1

φ1

� g � B2

φ2

�

induces an A chain map m(φ1, φ2) : M(f) → M(g) such that there is a homo-
topy commutative diagram with exact rows

0 � A2

ıf � M(f)
πf � A1

� 0

0 � B2

φ2

� ıg � M(g)

m(φ1, φ2)

� πg � B1

φ1

�
� 0.

The following lemma is the main algebraic ingredient in the study of
holomorphic triangles in this paper.
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Lemma 3.3. (c.f. Lemma 4.4 from [OS7]) Let {(Ai, di)}∞i=1 be a collec-
tion of A chain complexes and {fi : Ai → Ai+1} be a collection of A chain
maps between these complexes which satisfy the following two properties:

(1) There are A homomorphisms Hi : Ai → Ai+2 such that

fi+1 ◦ fi = Hi ◦ di + di+2 ◦Hi,

i.e. fi+1 ◦ fi is null-homotopic via A chain homotopy maps Hi.
(2)The difference

fi+2 ◦Hi −Hi+1 ◦ fi : Ai → Ai+3

is a homotopy equivalence for i = 1, 2, . . ..
Then M(fi) is homotopy equivalent to Ai+2 for i ≥ 2. Moreover, if

fi+2 ◦Hi −Hi+1 ◦ fi : Ai → Ai+3

is a B-isomorphism for some family B of test rings for A and for i =
1, 2, . . ., then M(fi) is B-isomorphic to Ai+2 for i ≥ 2.

Proof. The maps φi = (−1)i (fi+2 ◦Hi −Hi+1 ◦ fi) : Ai → Ai+3 are A chain
maps, making the following diagram homotopy commutative

(5)

Ai
fi � Ai+1

Ai+3

φi

� fi+3� Ai+4.

φi+1

�

In fact, using the first property in the statement of the lemma we will have

φi+1 ◦ fi − fi+3 ◦ φi = (−1)i ((Hi+2 ◦Hi) ◦ di − di+4 ◦ (Hi+2 ◦Hi)) ,

and φi+1 ◦ fi − fi+3 ◦ φi is thus null-homotopic. Let us denote Hi+2 ◦Hi by
Li : Ai → Ai+4. We then define αi : M(fi) → Ai+2 and βi : Ai → M(fi+1) by

αi(ai, ai+1) = fi+1(ai+1)−Hi(ai) and βi(ai) = (fi(ai), Hi(ai))

respectively. Then αi+1 ◦ βi = (−1)iφi is a homotopy equivalence by the sec-
ond property above. All the squares in the following diagram commute up
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to homotopy

(6)

Ai
fi � Ai+1

ıi+1 � M(fi)
(−1)i+1πi� Ai

fi � Ai+1

Ai

=

� fi � Ai+1

=

� fi+1 � Ai+2

αi

� fi+2 � Ai+3

φi

� fi+3� Ai+4

φi+1

�

Ai+3

φi

� fi+3� Ai+4

φi+1

� (−1)iıi+4� M(fi+3)

βi+2

� πi+3 � Ai+3

=

� fi+3� Ai+4.

=

�

The commutativity of the two squares on the right and the two squares on
the left already follows from the commutativity of the square in Equation 5.
The definition of αi and βi+2 imply the equalities

fi+2 = πi+3 ◦ βi+2 and fi+1 = αi ◦ ıi+1.

For the remaining two squares, let us define

K1
i : M(fi) → Ai+3, K1

i (ai, ai+1) := Hi+1(ai+1),

K2
i : Ai → M(fi+2), K2

i (ai) = (Hi(ai), 0)

We can then compute

(−1)i+1φi ◦ πi − fi+2 ◦ αi = K1
i ◦ dMi

− di+3 ◦K1
i and

βi+2 ◦ fi+1 − (−1)iıi+4 ◦ φi+1 = K2
i+1 ◦ di+1 + dMi+3

◦K2
i+1,

where dMi
denotes the differential of Mi = M(fi). We first claim that

Fi = βi+2 ◦ αi : M(fi) → M(fi+3)

is a chain homotopy equivalence. In fact, note that

Fi(ai, ai+1) = βi+2(fi+1(ai+1)−Hi(ai))

=
(
fi+2

(
Hi(ai)− fi+1(ai+1)

)
, Hi+2

(
Hi(ai)− fi+1(ai+1)

))
= m(φi, φi+1)(ai, ai+1) +

(
dMi+3

◦H i +H i ◦ dMi

)
(ai, ai+1)

where

{
H i(ai, ai+1) =

(−Hi+1(ai+1), 0
)
,

m(φi, φi+1)(ai, ai+1) = (−1)i
(
φi(ai), Li(ai)− φi+1(ai+1)

)
.
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Since m(φi, φi+1) is a chain homotopy equivalence, it follows that the same
is true for Fi. Since αi+3 ◦ βi+2 = (−1)iφi+2 is a chain homotopy equivalence
as well, it follows that βi+2 is a chain homotopy equivalence (one needs to
use the fact that αi+3, βi+2 and Fi are all chain maps).

For the B-isomorphism statement, note that for any test ring B ∈ B for
the ring A, we may replace the complexes Ai with Ai(B) and M(fi) with
M(fB

i ) in the commutative diagram 6. Then the maps induced on homol-
ogy associated with the first and the third row of the above diagram are
exact. From the five lemma, it follows that the map induced on homology by
βB
i+2 ◦ αB

i is an isomorphism. Since αi+3 ◦ βi+2 = φi+2 is a B-isomorphism,
we conclude that βi+2, and hence αi are B-isomorphisms as well. �

3.2. Filtration by a Z-module

Let us assume that A is an algebra over Z which is generated, as a free
module over Z, by a set G(A) of generators. We will assume that 1 ∈ G(A).
The choice of this basis for A as a free module over Z will be implicit in our
notation. Furthermore, let H be a Z-module.

Definition 3.4. By a filtration for A with values in H we mean a choice of
the basis G(A) for the free Z-module A which is closed under multiplication,
and a map

χ : G(A) −→ H

which satisfies χ(1) = 0 and χ(ab) = χ(a) + χ(b) for all a, b ∈ G(A). The pair
(A, χ : G(A) → H) is called a coefficient ring filtered by H. We will typically
drop χ and the choice of G(A) from the notation, if there is no confusion,
and will denote the filtered ring by the pair (A,H).

Suppose that B is a test ring for A which is a free Z-module on its own
with basis G(B), and that

χB : G(B) −→ H

is a filtration for B. Furthermore, assume that the A-module structure on B
induces a map

G(A)×G(B) → G(B).
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Definition 3.5. In the above situation, we say that χB is compatible with
χ if

χB(ab) = χA(a) + χB(b), ∀ a ∈ G(A), b ∈ G(B).

If this is the case, we will call (B, χB) a filtered test ring for (A,H). Again,
when there is no confusion we will denote this pair by (B,H).

Let us assume that (C, d) is an A chain complex, that χ : G(A) → H is
a filtration for A, and that C is freely generated over A by some subset I
of C.

Definition 3.6. We say that the A chain complex (C, d) is a filtered (A,H)
chain complex if there is a basis I ⊂ C for C over A and a filtration

χ : I × I → H,

which satisfies:

1) χ(c1, c2) = −χ(c2, c1) for all c1, c2 ∈ I.

2) χ(c1, c2) + χ(c2, c3) = χ(c1, c3), for all c1, c2, c3 ∈ I.

3) For any c ∈ I, d(c) =
∑N

i=1miaici, with m1, . . . ,mN ∈ Z, c1, . . . , cN ∈
I and a1, . . . , aN ∈ G(A), such that

χ(c, ci) = χ(ai), ∀ i ∈ {1, . . . , N}.

We are of course abusing the notation by denoting both the filtration of C
and the filtration of A by χ.

If (C, d) is a filtered (A,H) chain complex as above, one may think of
χ(c1, c2) as the difference χ(c1)− χ(c2), where χ : I → S and S is an affine
space over the module H. With this new notation, χ(a.c) for a ∈ G(A) and
c ∈ I may be defined as χ(a) + χ(c) ∈ S.

Clearly, taking the tensor product of (C, d) with any filtered test ring
(B,H) results in a filtered (B,H) chain complex.

Definition 3.7. An A chain map f : (C1, d1) → (C2, d2) between (A,H)
chain complexes (Ci, di) with basis Ii, i = 1, 2 and filtrations χ1, χ2 is called
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a filtered (A,H) chain map if for all c, c′ ∈ I1 we may write

f(c) =

N∑
i=1

miaibi, f(c′) =
M∑
i=j

m′
ja

′
jb

′
j ,

mi,m
′
j ∈ Z, ai, a

′
j ∈ G(A) and bi, b

′
j ∈ I2,

such that for any i = 1, . . . , N and j = 1, . . . ,M we have

χ1(c, c
′) = χ2(bi, b

′
j) + χ(ai)− χ(a′j).

In particular, if for some affine space S over H, there are maps χi :
Ii → S which satisfy χi(c1, c2) = χi(c1)− χi(c2) for i = 1, 2 and c1, c2 ∈ Ii,
the above condition may be translated to χ2(aibi) = χ1(c) for i = 1, . . . , N ,
whenever f(c) =

∑N
i=1miaibi with mi ∈ Z, ai ∈ G(A) and bi ∈ Ii.

Similarly, we may define the notion of a chain homotopy respecting the
filtrations (i.e. (A,H) chain homotopy), and filtered (A,H) chain homotopy
equivalence. Mapping cones of filtered (A,H) chain maps are filtered (A,H)
chain complexes. Moreover, the following refinement of Lemma 3.3 may be
proved with a similar argument.

Lemma 3.8. With the notation of Lemma 3.3, if the A chain complexes
Ai are all filtered (A,H) chain complexes, the A chain maps fi, as well as
the A-homomorphisms Hi are all (A,H) filtered, and fi+2 ◦Hi −Hi+1 ◦ fi
are all filtered (A,H) chain homotopy equivalences, M(fi) is filtered (A,H)
chain homotopy equivalent to Ai+2.

3.3. The algebra associated with the boundary of
a sutured manifold

Let (X, τ) be a weakly balanced sutured manifold. We will assume that

R−(τ) =
k⋃

i=1

R−
i and R+(τ) =

l⋃
j=1

R+
j .

Here R−
i and R+

j are the connected components of R−(τ) and R+(τ) respec-

tively, for i = 1, . . . , k and j = 1, . . . , l. Let g−i denote the genus of R−
i and

g+j denote the genus of R+
j . We will denote 2− 2g−i by χ−

i and 2− 2g+j by

χ+
j . The set of sutures τ = {τ1, . . . , τκ} determines an algebras over Z as

follows. Consider the free Z-algebra Z[κ] := Z
[
u1, . . . , uκ

]
, and consider the
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following elements in it

u− = u−(τ) :=
k∑

i=1

u(R−
i ) and u+ = u+(τ) :=

l∑
i=1

u(R+
i ), where

u−i = u(R−
i ) :=

∏
τj⊂∂R−i

uj , 1 ≤ i ≤ k and

u+i = u(R+
i ) :=

∏
τj⊂∂R+

i

uj , 1 ≤ i ≤ l.

Consider the quotient Aτ = Z[κ]/I(τ) of Z[κ] where I(τ) is the following
ideal of Z[κ], called the relations ideal associated with τ :

I(τ) := 〈
u+(τ)− u−(τ)

〉
Z[κ]

+
〈
u−i | g−i > 0

〉
Z[κ]

+
〈
u+i | g+i > 0

〉
Z[κ]

.

The algebra Aτ will be used as the ring of coefficients for the Ozsváth-Szabó
complex associated with the weakly balanced sutured manifold (X, τ). There
is a quotient of Aτ which is of interest in this paper as well:

Âτ :=
Z
[
κ
]〈

u−i | i = 1, . . . , k
〉
Z[κ]

+
〈
u+i | i = 1, . . . , l

〉
Z[κ]

.

It is clear that both A = Aτ and Â = Âτ are finitely generated algebras
over Z, which are generated, as a module over Z, by elements of the form∏κ

i=1 u
ai

i , where ai are non-negative integers. We will denote the set of all
such monomials by G(A).

The algebra Aτ may be trivial (i.e. equal to zero). In particular, this
would be the case if R(τ) contains a closed component of positive genus.
When (X, τ) is balanced, there is a quotient map

qτ : Aτ −→ Z

which gives Z the structure of an Aτ -module. This homomorphism is defined
by sending any non-trivial monomial u ∈ G(Aτ ) \ {1} to zero (and extending
this map to a homomorphism). In particular, Aτ is non-trivial in this case.
If Aτ = 0, the corresponding chain complex would be automatically trivial.
We thus choose not to exclude this case.
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One may define a natural map, which we call the Poincaré duality char-
acter, from G(A) to the Z-module H := H2(X, ∂X,Z) by

χ : G(A) −→ H = H2(X, ∂X;Z),

χ

(
κ∏

i=1

uai

i

)
:= a1PD[τ1] + · · ·+ aκPD[τκ], ∀ a1, . . . , aκ ∈ Z≥0.

As defined, χ is just a map from the set of generators for Z[κ] to H2(X, ∂X,Z).
However, since χ(u(R−

i )) = −PD[∂R−
i ] = 0 and χ(u(R+

j )) = PD[∂R+
j ] = 0

for all i = 1, . . . , k and j = 1, . . . , l, the map is well-defined on G(A). The
Poincaré duality character gives the filtration of A by H = H2(X, ∂X;Z).

We may also define a map from the set of positive Whitney disks associ-
ated with a Heegaard diagram (Σ,α,β, z) for (X, τ) to G(A) by computing
the local multiplicities of the domain associated with each disk at the marked
points in z:

u = uz :
∐

x,y∈Tα∩Tβ

π+
2 (x,y) −→ G(A)

u(φ) :=

κ∏
i=1

u
nzi

(φ)
i , ∀ x,y ∈ Tα ∩ Tβ and ∀ φ ∈ π+

2 (x,y).

The composition χ(u(φ)) in H2(X, ∂X,Z) will be denoted by Ĥ(φ) for any
φ ∈ π+

2 (x,y). Of course, the definition of Ĥ(φ) may be extended to arbitrary
φ ∈ π2(x,y) by setting

Ĥ(φ) =

κ∑
i=1

nzi(φ)PD[τi].

Thus, Corollary 2.9 may be re-stated as

φ ∈ π2(x,y) ⇒ s(x)− s(y) = Ĥ(φ).

The algebra introduced above depends on (∂X, τ). Below, we will com-
pute the algebra in some of the familiar cases, and a few other interesting
instances.
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Example 3.9. (a) If ∂X is a union of n standard spheres and

τ = {τ1, . . . , τn},

where τi is the equator of the i-th sphere, we will have

Aτ = Z[u1, . . . , un].

(b) If ∂X is a torus T , and if τ consists of 2n parallel simple closed
curves τ1, . . . , τ2n, we will have

Aτ =
Z
[
u1, . . . , u2n

]〈
u1u2 + · · ·+ u2n−1u2n = u2u3 + · · ·+ u2nu1

〉
In particular, for n = 1 the sutured manifold (X, τ) determines the com-
plement of a knot K inside the three-manifold Y so that X = Y − nd(K)
such that τ1 and τ2 represent two meridians for K with opposite orientation.
The above relation is trivial in this case and Aτ = Z[u1, u2] is the coefficient
ring used by Ozsváth and Szabó in defining CF−(Y,K). There is an obvious
quotient map

Aτ −→ Z[u0, u1, . . . , u2n]〈
u2i−1 = u0 | i = 1, . . . , n

〉 = Z[u0, u2, . . . , u2n].

The algebra Z[n+ 1] may thus be used as the coefficient ring as well.
(c) If p1, . . . , pn denote n distinct points on the standard sphere S1

and q1, . . . , qn denote n distinct points on a second copy S2 of the stan-
dard sphere, one may obtain a surface of genus n− 1 by connecting S1 and
S2 via n one-handles, so that i-th one-handle is attached to a neighbour-
hood of {pi, qi}. The cores of these one-handles determine a set of sutures
τ = {τ1, . . . , τn} on the resulting surface S. The corresponding algebra is
Z[u1, . . . , un].

(d) Consider a bipartite (2-colorable) graph G, with a coloring of its
vertices with + and −. We thus have a partition of the vertices V (G) of G as
V (G) = V +(G) ∪ V −(G). Adding valence zero vertices we may assume that
the number of + and − vertices are equal. Let S = S(G) denote the surface
obtained as the boundary of a neighbourhood of G in R3, and τ = τ(G)
denote the set of simple closed curves which correspond to meridians of the
edges of G (thus, corresponding to any edge e ∈ E(G) we have a suture
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τe ∈ τ). Associated with any vertex v ∈ V (G) we thus have a monomial

u(v) =
∏

e∈E(G)
v∈e

ue ∈ Z
[
G
]
:= Z

[
ue | e ∈ E(G)

]
.

The algebra AG = Aτ(G) may then be described as

AG =
Z[G]〈∑

v∈V −(G) u(v) =
∑

v∈V +(G) u(v)
〉
Z[G]

.

All previous cases are special cases of this construction. In particular, if G
is the graph with three vertices 1, 2 and 3 and two edges e1 and e2 such that
e1 connects 1 and 2 and e2 connects 1 and 3, we will have

AG =
Z[u1, u2]〈

(u1 − 1)(u2 − 1)
〉 ,

which corresponds to Example 4 from the introduction.

Let (X, τ) be a weakly balanced sutured manifold,

H =
(
Σ,α,β, z = {z1, . . . , zκ}

)
be a Heegaard diagram associated with it, and Aτ be the corresponding alge-
bra. Associated with the Heegaard diagram is a free Aτ -module generated
by the intersection points x ∈ Tα ∩ Tβ . We will denote this free Aτ -module
by CF(X, τ ;H). We thus have

CF(X, τ ;H) : =
〈
x | x ∈ Tα ∩ Tβ

〉
Aτ

=
〈
a.x | x ∈ Tα ∩ Tβ and a ∈ G(Aτ )

〉
Z
.

The assignment of relative Spinc structures in S = Sτ = Spinc(X, τ) to the
intersection points in Tα ∩ Tβ by the map s = sz may thus be regarded as
a filtration on the Ozsváth-Szabó module CF(X, τ ;H).
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4. Admissible Heegaard diagrams

4.1. The notion of s-admissibility

Let (Σ,α,β, z = {z1, . . . , zκ}) be a Heegaard diagram for the weakly bal-
anced sutured manifold (X, τ = {τ1, . . . , τκ}). As before, we let

Σ−α =

k∐
i=1

Ai and Σ− β =

l∐
i=1

Bi.

Definition 4.1. Let X = X(1, . . . , κ) be the three manifold obtained by
filling the sutures in τ . For s ∈ Spinc(X), a Heegaard diagram (Σ,α,β, z)
of (X, τ) is called s-admissible if for any nontrivial periodic domain P with
the property 〈c1(s), H(P)〉 = 0 one of the following happens,

(a) There is a point w ∈ Σ such that nw(P) < 0.

(b) We have P ≥ 0 and u(P) = 0 in A.

Lemma 4.2. For s ∈ Spinc(X), let (Σ,α,β, z) be an s-admissible Heegaard
diagram for the weakly balanced sutured manifold (X, τ). Then for any two
intersection points x,y ∈ Tα ∩ Tβ with s(x), s(y) ∈ s ⊂ Spinc(X, τ), and for
any integer j there are only finitely many φ ∈ π2(x,y) such that μ(φ) = j,
D(φ) ≥ 0 and u(φ) �= 0.

Proof. Suppose that, for an integer j, there are infinitely many φ ∈ π2(x,y)
such that μ(φ) = j, D(φ) ≥ 0 and u(φ) �= 0. Fix an element φ0 ∈ π2(x,y)
with these properties. Any φ ∈ π2(x,y) with these properties can then be
written as φ = φ0 + P where P ∈ π2(x,x) and μ(P) = 〈c1(s), H(P)〉 = 0.
Thus the set

Q =
{P ∈ π2(x,x)

∣∣ μ(P) = 0, P +D(φ0) ≥ 0, u(φ0 + P) �= 0
}

is not finite. Let m denote the total number of domains in Σ−α− β, and
Di, for i = 1, . . . ,m, denote the corresponding domains. Consider Q as a
subset of the set of all lattice points in the vector space

V =
〈P ∈ π2(x,x)

∣∣ 〈c1(s), H(P)〉 = 0
〉
R
⊂ Rm.

Here, Rm is the vector space generated by the components Di, i = 1, . . . ,m
over R. If Q is not finite, there is a sequence (Pi)

∞
i=1 in Q, such that
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‖Pi‖ → ∞. By passing to a subsequence if necessary, we may assume that the
sequence

{ Pi

‖Pi‖
}∞
i=1

is convergent on the unit ball inside V . Since ‖Pi‖ → ∞,

and Pi +D(φ0) ≥ 0, the sequence converges to a real vector in Rm with non-
negative entries. Denote the limit of

( Pi

‖Pi‖
)
by P̃, which is a periodic domain

with non-negative real entries.
For a rational periodic domain P such that NP is integral define

μ(P) := μ(NP)/N =

〈
c1(s), H(NP)

〉
N

.

There is a positive rational periodic domain P, sufficiently closed to P̃, such
that

• The Maslov index μ(P) is zero, i.e. P ∈ V

• If the coefficient of P̃ in some domain Di is zero, the coefficient of P
in Di is zero as well.

Thus for a sufficiently large number M , M P̃ − P is a positive periodic
domain. After multiplying P with an appropriate positive integer N , we
obtain a positive periodic domain NP with integral coefficients, and with
Maslov index zero i.e. 〈c1(s), H(NP)〉 = 0. The s-admissibility condition
implies that u(NP) = 0. Since

lim
i→∞

MN

‖Pi‖(D(φ0) + Pi) = MN P̃,

and D(φ0) + Pi ≥ 0, there exists a sufficiently large integer K > 0 such that

MN

‖Pi‖(D(φ0) + Pi)−NP ≥ 0, ∀ i > K.

Note that ‖Pi‖ → ∞, thus for a sufficiently large K we have

MN

‖Pi‖ � 1 and (D(φ0) + Pi)−NP ≥ 0, ∀ i > K.

The equality u(NP) = 0 implies that u(φi) = u(D(φ0) + Pi) = 0 for any i >
K, which is in contradiction with the assumption that the map u is nonzero
over the classes φi. �

Remark 4.3. When we use a test ring B for Aτ (which comes together
with a ring homomorphism ρB : Aτ → B) as the ring of coefficients for the
chain complex, it suffices to assume that the Heegaard diagram (Σ,α,β, z)
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is admissible in the following weaker sense: If P is a periodic domain with
P ≥ 0 and 〈c1(s), H(P)〉 = 0, then ρB(u(P)) = 0. In particular, when (X, τ)
is balanced and B = Z this gives us the notion of weak admissibility used
by Juhász [Ju1]. More generally, define

Bτ =
Z[u1, . . . , uκ]〈

u ∈ G(Aτ ) \ {1} | χ(u) is torsion〉 .
Clearly Bτ is a quotient of Aτ . Let us denote the quotient map by

ρτ : Aτ −→ Bτ .

Any positive periodic domain P with uz(P) =
∏κ

i=1 u
ni

i determines a 2-chain
in X with boundary equal to

∑κ
i=1 niτi. This implies that ρτ (uz(P)) = 0,

unless n1 = n2 = · · · = nκ = 0. Thus, the notion of admissibility for the coef-
ficient ring Bτ is a direct consequence of weak admissibility in the sense of
Juhász [Ju1].

4.2. Existence of s-admissible Heegaard diagrams

Performing special isotopies on the curves in α, as in [OS5], produces s-
admissible Heegaard diagrams.

Definition 4.4. Let γ be an oriented simple closed curve in Σ. Consider the
coordinate system (t, θ) ∈ (−ε, ε)× S1 in a neighbourhood of γ = {0} × S1.
The diffeomorphism of Σ obtained by integrating a vector field ζ supported
in this neighbourhood of γ with the property dθ(ζ) > 0 is called winding
along γ. Let α be a simple closed curve which intersects γ in one point and
φ be a winding around γ. If φ(α) transversely intersects α in 2n points then
we say that φ is an isotopy which winds α n-times around γ.

Lemma 4.5. Let (X, τ) be a weakly balanced sutured manifold as before,
X be the three-manifold obtained from (X, τ) by filling the sutures, and
s ∈ Spinc(X) be a Spinc-structure. Then (X, τ) admits an s-admissible Hee-
gaard diagram. Moreover, every Heegaard diagram (Σ,α,β, z) for (X, τ)
may be modified to an s-admissible Heegaard diagram by performing iso-
topies (supported away from the marked points) on the curves in α.

Proof. Let (Σ,α,β, z) be a Heegaard diagram for (X, τ). Let

Σ−α =

k∐
i=1

Ai and Σ− β =

l∐
i=1

Bi,
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be the connected components in the complement of α and β respectively.
It suffices to arrange that αi ∩ βj �= ∅ for every i, j ∈ {1, . . . , �}. For any
i ∈ {1, . . . , k} and j ∈ {1, . . . , l} we can find a curve γ such that γ connects
∂Ai to ∂Bj , and avoids Ai and Bj , provided that Ai ∩Bj = ∅. By finger
moving those α curves which intersect the curve γ (simultaneously) along
γ, we create a new Heegaard diagram with the property that Ai ∩Bj �= ∅.
Repeating this procedure for all i = 1, . . . , k and j = 1, . . . , l, we may thus
assume that

Ai ∩Bj �= ∅, ∀ i = 1, . . . , k, j = 1, . . . , l.

Let α0 be a set of disjoint simple closed curves on Σ, disjoint from α,
such that Σ−α−α0 has the same number of connected components as
Σ−α, and all of its connected components have genus zero. Furthermore,
let α = α1 ∪α2 where

α2 =
{
αi ∈ α | ∃j, αi ⊂ ∂Aj

}
.

For i = 0, 1, 2, let us denote the number of elements in αi by �i. Thus, in
particular, � = �1 + �2.

We define a graph G with k vertices corresponding to the components
A1, . . . , Ak. The edges of G correspond to the elements of α2, i.e. if α ∈ α2

is a curve in ∂Ai ∩ ∂Aj for i �= j we put an edge in G connecting Ai to Aj

associated with α. If = Σ[α1] is the surface obtained from Σ by surgering out
the elements of α1, each loop in G corresponds to a homologically nontrivial
simple closed curve in Σ[α1] which is disjoint from α0. In other words, each
loop in G corresponds to a homologically nontrivial simple closed curve
in Σ[α0 ∪α1]. Furthermore, h = dim(H1(G,Z)) is the genus of Σ[α0 ∪α1].
One may thus compute h = �2 − k + 1.

Consider a set of pairwise disjoint simple closed curves

γ = γ1 ∪ γ2 =
{
γ1, . . . , γ�1

}⋃{
γ�1+1, . . . , γ�−k+1

}
on Σ with the following properties. First of all, we assume that γ1 is a dual
set for α1 i.e. each element of γ1 intersects exactly one element of α1 with
intersection number one, and for each element of α1 there is one element of
γ1 intersecting it (with intersection number one). Furthermore, we assume
that

γ1 ∩α0 = γ1 ∩α2 = ∅.
The set γ2 corresponds to a basis for H1(G,Z) which is a set of disjoint,

oriented, and linearly independent simple closed curves on Σ[α0 ∪α1]. There
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is a one to one map i : γ2 → α2 with the property that for each γ ∈ γ2 the
curve i(γ) has nonempty intersection with γ. In fact if this is not true, by
Hall’s theorem there is a subset of γ2 with n elements, say {γi1 , . . . , γin} ⊂
γ2, such that for

A =
{
α ∈ α2

∣∣ ∃j ∈ {1, . . . , n} s.t. α ∩ γij �= ∅}
we have |A| < n. Since the sum of the genera of the connected components of
Σ[α] is �0, Σ[α−A] is a surface whose genus is less than or equal to |A|+ �0.
Furthermore, the curves in {γi1 , . . . , γin} ∪α0 are linearly independent in

H1

(
Σ[α−A],Z

)
.

Thus the genus of Σ[α−A] is at least n+ �0 which is in contradiction with
the assumption |A| < n.

Choose a parallel copy of each curve γi for i = 1, . . . , �− k + 1, with the
opposite orientation and denote it by γi. We will assume that γi is drawn on
Σ very close to γi. Let vi ∈ γi be points which are not contained in any of the
α or β curves for any 1 ≤ i ≤ �+ k − 1 and denote the corresponding points
on γi by vi. For any integer N , by winding the α curves N times along the γ
curves we mean winding all the α-curves which cut γi (and hence γi)N times
along γi and N times along γi, for any of the curves γi, i = 1, . . . , �− k + 1.
The windings around either of γi and γi will be done simultaneously for all
the α curves, so that the new α-curves remain disjoint from each other.

Let Q be the Q-vector space generated by the periodic domains P such
that

μ(P) = 〈c1(s), H(P)〉 = 0.

One may write Q as a direct sum

Q = (Q ∩ 〈A1, . . . , Ak, B1, . . . , Bl〉Q)⊕ P,

for some subspace P of Q which is generated by the periodic domains
{P1, . . . ,Pb}. Thus any periodic domain P in the vector space Q is of the
form

P =

b∑
i=1

qiPi +

k∑
i=1

aiAi +

l∑
i=1

biBi,
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where of course the coefficients ai and bj for i = 1, . . . , k and j = 1, . . . , l
should satisfy the relation

μ

(
k∑

i=1

aiAi +

l∑
i=1

biBi

)
=

k∑
i=1

ai(2− 2g(Ai)) +

l∑
i=1

bi(2− 2g(Bi)) = 0.

In the above expression g(Ai) and g(Bj) denote the genus of Ai and Bj

respectively, for i = 1, . . . , k and j = 1, . . . , l.
Corresponding to any curve γi ∈ γ we define a map pγi from P to Q. If

P ∈ P is a periodic domain and

∂P =

�∑
i=1

piαi +

�∑
i=1

qiβi = ∂αP + ∂βP,

we may define the functions pγi by

pγi(P) =

�∑
j=1

pj .#(γi.αj), ∀ i ∈ {1, . . . , �− k + 1}.

Here #(γi.αj) denotes the intersection number of γi with αj . If for some
periodic domain P ∈ P we have pγi(P) = 0, for 1 ≤ i ≤ �− k + 1, we con-
clude that

#(∂αP.γi) = pγi(P) = 0, ∀ 1 ≤ i ≤ �− k + 1

⇒ ∂αP = ∂
( k∑
i=1

aiAi

)
, for some a1, . . . , ak ∈ Q

⇒ ∂
(P −

k∑
i=1

aiAi

) ∈ 〈
β1, . . . , β�

〉
Q

⇒ P =

k∑
i=1

aiAi +

l∑
i=1

biBi, for some b1, . . . , bl ∈ Q

From the assumption P ∈ P we have P = 0. Thus the map

e : P −→ Q�−k+1

e(P) := (pγ1(P), pγ2(P), . . . , pγ�−k+1(P))
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is one to one. By a change of basis in P , and changing the order of curves
in γ if necessary, we can assume that

πi(e(Pj)) = δij , ∀ 1 ≤ i, j ≤ b,

where πi : Q�−k+1 → Q is the projection over the i-th factor.
We would first like to show that for any positive periodic domain Q in

Q, which is not included in the vector space generated by Ai’s and Bj ’s,
there is an integer N = N(Q) such that by winding α-curves N times along
the curves in γ (in both positive and negative directions) the new periodic
domain obtained from Q will have some negative coefficient. Let

Q =

b∑
i=1

qiPi +

k∑
i=1

aiAi +

l∑
i=1

biBi

be a positive periodic domain in Q such that there is an index i so that
qi �= 0. Then we may choose an integer N such that

|qi|N > max
{
nvi

(Q), nv̄i
(Q)

}
.

Wind the α curves N times along γ curves. In the new diagram (obtained
after the above winding procedure) let{P ′

1, . . . ,P ′
b, A

′
1, . . . , A

′
k, B

′
1, . . . , B

′
l

}
be the new set of periodic domains obtained from{P1, . . . ,Pb, A1, . . . , Ak, B1, . . . , Bl

}
.

For an appropriate choice of the windings we may compute the coeffi-
cients of these new domains at vi and vi from the following equations

nvi
(A′

j) = nvi
(Aj), ∀ j = 1, . . . , k,

nvi
(B′

j) = nvi
(Bj), ∀ j = 1, . . . , l,

and nvi
(P ′

j) =

{
nvi

(Pj) if i �= j

nvi
(Pj) +N if i = j

.

Similar equations are satisfied for the local coefficients at vi. In fact, we
will have nvi

(P ′
i) = nvi

(Pi)−N , while the rest of local coefficients remain



A refinement of sutured Floer homology 651

unchanged. If qi < 0 we thus have

nvi
(Q′) = nvi

(Q) + qiN < 0,

and if qi > 0 then nvi
(Q′) < 0.

To finish the proof, first suppose that there is an integer N such that,
after winding the α curves N times along the curves in γ, any periodic
domain Q ∈ Q with integer coefficients either has some negative coefficient
or u(Q) = 0. Then we are clearly done with the proof of the lemma. So, let
us assume otherwise, that for any integer n there exists a periodic domain
Qn with integer coefficients in Q such that after winding the α curves n
times along the curves in γ, the resulting domain Q′

n is positive and satisfies
u(Q′

n) �= 0. Let {Qn}∞n=1 be the sequence constructed from these elements of
Q. As in the proof of Lemma 4.2, after passing to a subsequence if necessary,
we may assume that the sequence

{ Qn

‖Qn‖
}∞
n=1

is convergent.
Let us assume that

Q̃ = lim
i→∞

Qn

‖Qn‖ ∈ Q⊗Q R.

If Q̃ is not in the real vector space generated by Ai’s and Bj ’s, there is
an integer N with the property that after winding the α-curves N times
along all the curves in γ, the resulting domain Q̃′ will have some negative
coefficient. So there is an integer K such that for any i > K, Q′

i has some
negative coefficient after winding the α-curves N times along γ. This is in
contradiction with the definition of Qi if i > N . Thus Q̃ may be written as

(7) Q̃ =

k∑
i=1

aiAi +

l∑
i=1

biBi

for some coefficients ai and bi in R.
Note that Q̃ ≥ 0, which implies that for any w ∈ Σ, we have

k∑
i=1

ainw(Ai) +

l∑
i=1

binw(Bi) ≥ 0.

Since Ai ∩Bj �= ∅ for i = 1, . . . , k and j = 1, . . . , l, we may pick w = wij to
be a point in this intersection. But for this choice of w, the above inequality
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reads as ai + bj ≥ 0. If bj is the smallest of all b1, . . . , bl, the above consid-
eration implies that ai + bj ≥ 0 for all i = 1, . . . , k. We may thus compute

Q̃ =

k∑
i=1

(ai + bj)Ai +

l∑
i=1

(bi − bj)Bi,

since
∑

iAi =
∑

iBi = Σ. However, all the coefficients in the above expres-
sion are non-negative. As a result, after replacing these new coefficients, we
may assume that the real numbers ai and bj in Equation 7 are positive.

As in the proof of Lemma 4.2, choose a positive rational periodic domain

Q =

k∑
i=1

a′iAi +

l∑
j=1

b′jBj

with a′i, b
′
j ≥ 0, which is sufficiently close to Q̃, and such that the coefficient

of Q ∈ Q in the domains where Q̃ has zero coefficient is zero as well. As
before, there are integers N and M such that NQ is a periodic domain with
integer coefficients and MQ̃ − Q > 0. Moreover, we may choose N so that

Na′1, . . . , Na′k, Nb′1, . . . , NB′
l ∈ Z.

The positivity of the coefficients of NQ imply that

u(NQ) =

(
k∏

i=1

u(Ai)
Na′i

)⎛⎝ l∏
j=1

u(Bj)
Nb′j

⎞⎠ = 0.

Moreover, there is some positive integer K > 0 such that for i > K we have

MN
Qi

‖Qi‖ −NQ ≥ 0 and
MN

‖Qi‖ � 1

⇒ Qi −NQ ≥ 0.

This means that for i > K, we have

u(Qi) = u(Qi −NQ)u(NQ) = 0.

This is in clear contradiction with our assumption on the integral periodic
domains Qi.

The above argument shows that there is an integer N with the property
that after winding the curves in α a total of N times along the curves in γ
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we obtain an s-admissible Heegaard diagram. This completes the proof of
the lemma. �

Remark 4.6. The argument of Lemma 4.5 may be extended to show that
for any weakly balanced sutured manifold (X, τ) and any Spinc class s ∈
Spinc(X) there is a Heegaard diagram (Σ,α,β, z) which is admissible in the
following stronger sense. If P is a periodic domain with P ≥ 0, and u(P) �= 0
in Aτ then 〈

c1(s), H(P)
〉
> 0.

When there are genus zero components in R(τ), the above criteria is the
same as the s-admissibility condition. To see this, note that if a Heegaard
diagram is s-admissible and P is a periodic domain with P ≥ 0 and u(P) �= 0
then 〈c1(s), H(P)〉 �= 0. If 〈c1(s), H(P)〉 < 0 we may add a positive multiple
Q of the periodic domain which corresponds to the genus zero component to
P so that 〈c1(s), H(P +Q)〉 = 0. This contradiction with the s-admissibility
criteria implies that 〈c1(s), H(P)〉 > 0. Nevertheless, in certain situations
where all the connected components of R(τ) have positive genus, using such
Heegaard diagrams may be useful. We face this situation in Section 7.

5. The chain complex associated with a balanced
sutured manifold

5.1. Holomorphic disks and boundary degenerations;
orientation issues

Let us assume that (Σ,α,β, z) is an s-admissible Heegaard diagram for a
weakly balanced sutured manifold (X, τ) and s ∈ Spinc(X

τ
). We assume

that |α|= |β|=� and that z={z1, . . . , zκ}. We have already defined π2(x,y)
for any two intersection points x,y ∈ Tα ∩ Tβ . In discussing the analytic
aspects of a Floer theory, we need to consider boundary degenerations and
sphere bubblings as well. We recall the following definitions from [OS9].

Definition 5.1. Suppose that x ∈ Tα ∩ Tβ is an arbitrary intersection point.
A continuous map

ψ : R× [0,∞) −→ Sym�(Σ)

satisfying the boundary conditions

ψ
(
R× {

0
}) ⊂ Tα,

lim
|s|→∞

ψ(s, t) = x and lim
t→∞ψ(s, t) = x
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is called an α-boundary degeneration. The space of homotopy classes of such
maps is denoted by πα

2 (x). The space πβ
2 (x) of β-boundary degenerations is

defined similarly.

If {Jt = Sym�(jt)}t∈[0,1] is a generic path of almost complex structure,
associated with any φ ∈ π2(x,y) we may consider the moduli space M(φ)
of the representatives

u : [0, 1]× R → Sym�(Σ)

of φ which satisfy the time dependent Cauchy-Riemann equation

∂u

∂t
(t, s) + Jt

∂u

∂s
(t, s) = 0, ∀ (t, s) ∈ [0, 1]× R.

Similarly, for any ψ ∈ πβ
2 (x), N (ψ) consists of the representatives u :

[0,∞)× R → Sym�(Σ) of ψ which are J0-holomorphic. Also, for any ψ ∈
πα
2 (x), N (ψ) consists of the representatives u : [0,∞)× R → Sym�(Σ) of ψ

which are J1- holomorphic. Let N̂ (ψ) denote the quotient of N (ψ) under
the action of the subgroup

G =

{(
a b
0 1

a

) ∣∣∣∣ a ∈ R+, b ∈ R

}
< PSL2(R)

in either of the above two cases. We define n(ψ) = #N̂ (ψ) if μ(ψ) = 2 and
n(ψ) = 0 otherwise.

The determinant line bundle associated with the linearization of the
(time dependent) Cauchy-Riemann operator over the moduli of representa-
tives of any of the above homotopy classes is trivial. This makes it possi-
ble to equip the corresponding moduli space with an orientation. Following
Ozsváth and Szabó’s approach in [OS5], we may choose a coherent system
of orientations as follows.

As in the previous sections, let us assume that

Σ−α =

k∐
i=1

Ai and Σ− β =

l∐
j=1

Bj ,

where Ai and Bj correspond to the components R−
i ⊂ R−(τ) and R+

j ⊂
R+(τ) respectively. Thus, the genus of Ai is g

−
i and the genus of Bj is g+j .

Without loosing on generality, let us assume that l ≥ k. Let x0, . . . ,xm be
all the intersection points in Tα ∩ Tβ which correspond to the Spinc class
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s. Choose a disk class φi ∈ π2(x0,xi) for each i, and complete the classes of
the boundary degenerations A1, . . . , Ak and B1, . . . , Bl−1 to a basis for the
space of periodic domains in π2(x0,x0). Note that

Bl = A1 + · · ·+Ak − (B1 + · · ·+Bl−1)

is the only relation satisfied among A1, . . . , Ak and B1, . . . , Bl. Let us denote
this basis by ψ1, . . . , ψn. The choice of an orientation (i.e. one of the two
classes represented by a non-vanishing section) on the determinant line
bundle associated with the classes φ1, . . . , φm and ψ1, . . . , ψn induces an
orientation on the moduli space corresponding to any class φ ∈ π2(xi,xj),
0 ≤ i, j ≤ m. In fact, φ+ φi − φj is a periodic domain in π2(x0,x0), and
is thus a linear combination of the classes ψ1, . . . , ψn. As a result, φ is a
juxtaposition of (possibly several copies of) classes in{

φ1, . . . , φm, ψ1, . . . , ψn

}
,

and thus inherits a natural orientation in our system of coherent orientations.
Let us study the boundary degenerations and their assigned orientation

more carefully. Any periodic domain ψ ∈ π2(x,x) such that ∂D(ψ) is a union
of α-curves determines the class of an α boundary degeneration. Thus, the
domain of any α boundary degeneration ψ ∈ πα

2 (x) is a linear combination
of A1, . . . , Ak:

D(ψ) = a1A1 + · · ·+ akAk.

We may use Lipshitz’ index formula to compute the Maslov index of ψ:

μ(ψ) = a1χ(A1) + · · ·+ akχ(Ak).

If furthermore D(ψ) is a positive domain, e.g. if ψ is a holomorphic
boundary degeneration, then all ai are non-negative. We may then define
the map

u :
∐

x∈Tα∩Tβ

(
πβ,+
2 (x)

∐
πα,+
2 (x)

)
−→ Aτ , u(ψ) :=

κ∏
i=1

u
nzi

(ψ)
i .

Here, we use πα,+
2 (x) (respectively, πβ,+

2 (x)) to denote the subset of πα
2 (x)

(respectively, πβ
2 (x)) which consists of the classes ψ with D(ψ) ≥ 0.

If an α boundary degeneration ψ as above is positive and u(ψ) �= 0, we
may conclude that for i = 1, . . . , k, either ai = 0 or the genus of Ai is zero.
Without loosing on generality, assume that the genus of A1, . . . , Ak0

is zero,
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and that the rest of Ai have positive genus. Thus D(ψ) ≥ 0 and u(ψ) �= 0
implies that

D(ψ) = a1A1 + · · ·+ ak0
Ak0

.

Consequently μ(ψ) = 2(a1 + · · ·+ ak0
). Similarly, we may assume that

the genera of B1, . . . , Bl0 are zero, and that the rest of Bi have positive
genus. This would imply that for any ψ ∈ πβ

2 (x) with D(ψ) ≥ 0, we will
either have u(ψ) = 0, or

D(ψ) = b1B1 + · · ·+ bl0Bl0 and μ(ψ) = 2(b1 + · · ·+ bl0).

In Theorem 5.5 from [OS9], Ozsváth and Szabó prove the following state-
ment. In fact, the statement of their result is less general, but the exact same
proof applies in the following more general.

Lemma 5.2. Let ψ be the class of a boundary degeneration, and fix a coher-
ent choice of orientation for the Heegaard diagram (Σ,α,β, z). If D(ψ) ≥ 0,
u(ψ) �= 0, and μ(ψ) ≤ 2 then D(ψ) = Ai or D(ψ) = Bj for some 1 ≤ i ≤ k0
or 1 ≤ j ≤ l0 (or ψ is the class of the constant map). In the first case (i.e.
D(ψ) = Ai) we have

n(ψ) =

{
0 if k = 1

±1 if k > 1.

Similarly, for D(ψ) = Bj we have n(ψ) = 0 if l = 1 and n(ψ) = ±1 if l > 1.

Proof. See [OS9] Theorem 5.5. Note that the moduli spaces are now equipped
with an orientation, and we may thus count the points of the moduli spaces
with sign, instead of working modulo 2. The choice of the plus or minus
sign comes from the choice on the orientation associated with the homotopy
classes Ai and Bj of α and β boundary degenerations respectively. �

The argument of Ozsváth and Szabó in fact implies that there is a nat-
ural choice of orientation for A1, . . . , Ak0

and B1, . . . , Bl0 which makes the
value of n(ψ) equal to +1. After a modification of the complex structure
on the surface Σ by stretching the appropriate necks, the moduli space of
boundary degenerations associated with any of A1, . . . , Ak0

and B1, . . . , Bl0

may be identified with the group G via the Riemann mapping theorem. This
identification gives an orientation for the index bundle which corresponds
to any of A1, . . . , Ak0

and B1, . . . , Bl0 , which will be called the preferred
orientation over that index bundle. When we pick our coherent system of
orientations we would like to choose the system so that the induced orien-
tation over the above index bundles is the preferred orientation. If k = k0
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and l = l0, since A1 + · · ·+Ak = B1 + · · ·+Bl choosing the system of ori-
entations so that the preferred orientation is induced over the index bundles
corresponding to A1, . . . , Ak, B1, . . . , Bl−1 dictates an orientation over the
index bundle corresponding to Bl. This dictated orientation matches with
the preferred orientation associated with Bl. If l0 < l (or if k0 < k), since
the periodic domains A1, . . . , Ak0

, B1, . . . , Bl0 are linearly independent any
choice of orientation over the index bundles corresponding to them, includ-
ing the preferred orientations, may be completed to a coherent system of
orientations. We thus present the following definition.

Definition 5.3. A coherent system of orientations associated with the Hee-
gaard diagram (Σ,α,β, z) for the weakly balanced sutured manifold (X, τ)
and the Spinc class s ∈ Spinc(X

τ
) is an assignment o of an orientation to the

determinant line bundle of the linearized Cauchy-Riemann operator associ-
ated with all classes in π2(x,y) (for all x,y ∈ Tα ∩ Tβ) with the following
properties:

• o(φ1 � φ2) is the orientation induced by o(φ1) and o(φ2) via juxtapo-
sition, for any x,y, z ∈ Tα ∩ Tβ representing s, and any φ1 ∈ π2(x,y)
and φ2 ∈ π2(y, z).

• For any x ∈ Tα ∩ Tβ representing s, any R−
i ⊂ R−(τ) with g−i = 0,

and any R+
j ⊂ R+(τ) with g+j = 0, let us denote by ψ− ∈ πα

2 (x) and

ψ+ ∈ πβ
2 (x) the classes of boundary degenerations corresponding to

R−
i and R+

j respectively. Then o(ψ−) and o(ψ+) are the preferred
orientation of Ozsváth and Szabó on N (ψ−) and N (ψ+) respectively,
which give n(ψ−) = 1 and n(ψ+) = 1 (if k > 1 and l > 1 respectively).

The last assumption implies, in particular, that the orientation induced
on the moduli space corresponding to the periodic domain determined by Σ
is the natural orientation on it, as defined in Section 3.6 of [OS5].

Let us assume that ψ ∈ πα
2 (x0) satisfies D(ψ) ∈ {A1, . . . , Ak0

}, say D(ψ)
= A1. Furthermore, assume that a preferred orientation on N (ψ) is fixed as
before. At the same time ψ may be regarded as a class in π2(x0,x0), and
a moduli space M(ψ) may also be associated with ψ. This moduli space is

smooth and two dimensional as well, and gives an open 1-manifold M̂(ψ)
after we mod out by the translation action of R. The choice of orientation
on N (ψ) induces an orientation on M(ψ) as well. The reason is that the
determinant line bundle of the (time dependent) Cauchy-Riemann operator
on both these moduli spaces is pulled back from the same model, as discussed
in Subsection 3.6 in [OS5].
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According to the discussion of Section 5 from [OS9], N̂ (ψ) will then

appear as a boundary point of the smooth one dimensional manifold M̂(ψ).
This induces a second orientation on N̂ (ψ), as the boundary of the oriented

moduli space M̂(ψ). Whether this second orientation agrees with the ori-
entation of N̂ (ψ) as the quotient of N (ψ) under the action of G or not
depends on our convention for the embedding of the translation group R
(which acts on M(ψ)) in G, as will be discussed in more detail below. The
same discussion is valid for β boundary degenerations.

By the Riemann mapping theorem,

H+ \ {0} =
(
R× [0,+∞)

) \ {0} ⊂ C

is conformal to the complement of {±i} in the unit disk, or to the strip
[0, 1]× R ⊂ C. We may thus think of H+ as the domain of the class ψ, when
considered as an element in π2(x,x). We may then fix a real number r ∈ R
and interpret ψ as a class with

ψ
(
[r,+∞)× {0}) ⊂ Tα and ψ

(
(−∞, r]× {0}) ⊂ Tβ .

Furthermore, we have to assume that ψ(r, 0) and ψ(∞) are both the inter-
section point x ∈ Tα ∩ Tβ . The group G consists of the maps ρa,b for a > 0
and b ∈ R which are defined by

ρa,b(z) := az + b.

With this notation fixed, the re-parametrization group of the domain of
ψ ∈ π2(x,x) is then identified as

Rr =
{
ρa,b

∣∣ a ∈ R+ and b = r(1− a)
}
< G.

If we identify a as the exponential of a real number, the subgroup Rr is iden-
tified with R. This induces an orientation on the one dimensional subgroup
Rr of G.

As r approaches −∞, the limit of the subgroups Rr determines the
embedding of the translation group in the automorphism group of the domain
of α boundary degenerations. In this case, assuming r � 0 we may write

a = 1− c

r
, c ∈ (r,∞) ⇒ b = c.

As c grows large, a grows large as well. Thus the above parametrization of
Rr by the interval (r,+∞) is orientation preserving. With r converging to
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−∞, the sequence {ρ1−(c/r),c}r converges to

ρ1,c : H
+ → H+, ρ1,c(z) = z + c.

The limit of Rr, as r → −∞, is thus the translation subgroup

Rα = {ρ1,c | c ∈ R} < G,

and the above parametrization of Rα is orientation preserving.
On the other hand, when r approaches +∞, the limit of the subgroups

Rr determines the embedding of the translation group in the automorphism
group of the domain of β boundary degenerations. In the this later case,
assuming r >> 0 we may write

a = 1− c

r
, c ∈ (−∞, r) ⇒ b = c.

This time, as c grows large, a becomes small. Thus the above parametrization
of Rr by the interval (−∞, r) is orientation reversing. With r growing large,
the sequence {ρ1−(c/r),c}r converges to

ρ1,c : H
+ → H+, ρ1,c(z) = z + c.

The limit of Rr, as r → +∞, is thus the translation subgroup

Rβ = {ρ1,c | c ∈ R} < G,

but this time, the above parametrization of Rβ is orientation reversing.
With the above conventions for the orientations of G, Rr, Rα and Rβ

fixed, we have thus proved the following lemma.

Lemma 5.4. Let φ ∈ πα
2 (x) and ψ ∈ πβ

2 (x) be the classes of α and β bound-
ary degenerations respectively. Furthermore, assume that μ(φ) = μ(ψ) = 2,
and that N (φ) and N (ψ) are smooth manifolds. Then the orientation induced

on N̂ (φ) agrees with the boundary orientation induced from M̂(φ), while
the orientation induced on N̂ (ψ) is the opposite of the boundary orientation

induced from M̂(ψ).
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5.2. Energy bounds and relative gradings

Recall that for a Riemannian manifold (M, g) and a domain Ω ⊂ C the
energy of a smooth map u : Ω → X is defined by

E(u) =
1

2

∫
Ω
‖du‖2g.

Suppose that (Σ,α,β, z) is a Heegaard diagram for a balanced sutured man-
ifold (X, τ). Let

Σ−α− β =

m∐
i=1

Di

be the connected components in the complement of the curves, and η denotes
a Kähler form on Σ. We denote the area ofDi with respect to η by Areaη(Di),
and for a domain D =

∑m
i=1 aiDi we define

Areaη(D) =

m∑
i=1

aiAreaη(Di).

The following lemma is basically Lemma 3.5 from [OS5] and Theorem 6.3
from [Ju1].

Lemma 5.5. There is a constant C which depends only on the Heegaard
diagram (Σ,α,β, z) and the Kähler form η such that for any pseudo-
holomorphic Whitney disk

u : (D, ∂D) −→ (Sym�(Σ),Tα ∪ Tβ)

we have

E(u) ≤ C.Areaη (D(u)) .

The existence of energy bounds is needed in Gromov compactness argu-
ments.

Finally, note that

π1

(
Sym�(Σ)

)
= H1

(
Sym�(Σ);Z

)
provided that � > 1. Throughout the construction, we will assume that the
requirement � > 1 is satisfied, by stabilizing Heegaard diagrams if necessary.
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Definition 5.6. For s ∈ Spinc(X) let

d(s) = gcdh∈H2(X,Z)

〈
c1(s), h

〉
.

If H = (Σ,α,β, z) is an s-admissible Heegaard diagram for (X, τ) for any
x,y ∈ Tα ∩ Tβ with s(x), s(y) ∈ s, and for φ ∈ π2(x,y), we define the rela-
tive grading of x and y by

gr(x,y) = μ(φ) (mod d(s)) .

Thus, gr(x,y) ∈ Zd(s) =
Z

d(s)Z .

The relative grading is independent of the choice of φ. It induces a rela-
tive grading on the module CF(X, τ, s;H). For this purpose, we should deter-
mine the grading associated with the generators u1, . . . , uκ ∈ G(A). Each ui
corresponds to the class

[τi] ∈ Ker
(
ı∗ : H1(X;Z) → H1(X;Z)

)
,

where ı : X → X is the inclusion map. It is thus the boundary of an integral
2-chain Ai = A[τi] in X, which is well defined up to addition of 2-cycles. The

evaluation di = −〈c1(s), Ai〉 is thus well-defined as an element of Z
d(s)Z . We

may then define the grading on G(A) by setting

gr

(
κ∏

i=1

uni

i

)
:=

κ∑
i=1

dini ∈ Z

d(s)Z
, ∀

κ∏
i=1

uni

i ∈ G(A).

If φ ∈ π2(x,x) is a positive disk, it determines a periodic domain, and

μ(φ) =
〈
c1(s), H(φ)

〉
= gr (uz(φ)) (mod d(s)) .

The A-module CF(X, τ, s;H) is thus equipped with a relative homolog-
ical grading by the elements in Z

d(s)Z . The differential of the corresponding

Ozsváth-Szabó complex CF(X, τ, s;H) which will be defined in the follow-
ing subsection lowers this relative grading by one. In particular, a relative
grading is induced on the homology groups corresponding to any test ring
B for Aτ .

5.3. The construction of the chain complex

Let (X, τ) be a weakly balanced sutured manifold. As discussed in Section 3
we associate a coefficient ring A = Aτ with τ , which is a Z-algebra. Let us
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denote by X the three-manifold (with positive and negative boundary com-
ponents) obtained from X by filling out the sutures in τ . Let s ∈ Spinc(X)
be a Spinc structure on X. Consider an s-admissible Heegaard diagram
H = (Σ,α,β, z) for (X, τ). Associated with this Heegaard diagram, let

CF(X, τ, s;H) = CF(Σ,α,β, z; s) =
〈
x ∈ Tα ∩ Tβ | sz(x) ∈ s

〉
A

be a free A-module generated by the intersection points in Tα ∩ Tβ which
represent the Spinc class s. For every subset I ⊂ {1, . . . , κ} let

sI : Spinc(X, τ) → Spinc(X(I), τ(I))

denote the map defined in Subsection 2.1. Note that the “exact sequence”

0 �
〈
PD[τi]

〉κ
i=1

� Spinc(X, τ)
[.] = s{1,...,κ}� Spinc(X) � 0

implies that the assignment of relative Spinc structures gives a filtration on
the A-module CF(Σ,α,β, z; s), which is compatible with the filtration χ :
G(A) → H. This module may be decomposed using the filtration by relative
Spinc structures:

CF(Σ,α,β, z; s) =
⊕

s∈s⊂Spinc(X,τ)

CF(Σ,α,β, z; s)

CF(Σ,α,β, z; s) =

〈
ux

∣∣∣∣ x ∈ Tα ∩ Tβ , u ∈ G(A)
sz(x) + χ(u) = s

〉
Z

.

(8)

Furthermore, fix a coherent system o of orientations on the determinant
line bundles of the linearization of Cauchy-Riemann operators associated
with the classes of the Whitney disks (corresponding to s). We will drop
o from the notation, unless an issue related to the orientation should be
discussed.

Define an A-module homomorphism by the following equation

∂ : CF(Σ,α,β, z; s) −→ CF(Σ,α,β, z; s)

∂(x) :=
∑

y∈Tα∩Tβ

∑
{φ∈π+

2 (x,y)|μ(φ)=1}

(
m(φ)u(φ)

)
.y.

Here m(φ) = #M̂(φ) is the algebraic count (i.e. with the signs determined

by the orientation) of the points in M̂(φ) for any class φ ∈ π+
2 (x,y) such

that u(φ) �= 0. For other disk classes, the contribution m(φ)u(φ) is trivial by
definition.
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It is important to note that for any φ ∈ π+
2 (x,y) with μ(φ) = 1 and

u(φ) �= 0, the moduli space M̂(φ) is smooth, zero dimensional, oriented,
and compact. Smoothness and zero dimensionality of the moduli space fol-
lows from the generic choice of the path of complex structures on Sym�(Σ)
(see the general discussion of [OS5], Section 3). The compactness is however
more critical, due to boundary degenerations. If ui is a sequence of pseudo-
holomorphic representatives of φ, the amount of energy E(ui) remains
bounded by Lemma 5.5. We may thus use the Gromov compactness theorem
to describe the possible limits of this sequence. In fact, any possible Gromov
limit of the sequence is the juxtaposition of some pseudo-holomorphic repre-
sentative u of a class φ′ ∈ π+

2 (x,y) with boundary degenerations and sphere
bubblings. Let us assume that v1, . . . , vp are the classes of degenerations and
bubbles. Then the domains of u and vi, i = 1, . . . , p are positive and

u(φ) = u(u)u(v1) · · · u(vp) �= 0.

This implies that the domain of each vi is a linear combination of the
domains A1, . . . , Ak0

or B1, . . . , Bl0 (with non-negative coefficients). Here
A1, . . . , Ak0

are the genus zero components in Σ−α and B1, . . . , Bl0 are
the genus zero components in Σ− β. The Maslov index of each vi is thus a
positive even number. Since the moduli spaces M(φ′) are non-empty, μ(φ′)
is non-negative and p is thus forced to be 0. However, this means that the
Gromov limit of ui is in M̂(φ), i.e. M̂(φ) is compact, and thus finite. In
other words, for any class φ ∈ π+

2 (x,y) with μ(φ) = 1, either φ does not
contribute to the coefficient of y in ∂(x) (e.g. u(φ) = 0), or m(φ) is finite.

The Heegaard diagram (Σ,α,β, z; s) is s-admissible, so by Lemma 4.5,
for any intersection point y ∈ Tα ∩ Tβ there are only finitely many φ ∈
π2(x,y) such that μ(φ) = 1, D(φ) ≥ 0, and u(φ) �= 0. Thus there are only
finitely many classes φ ∈ π+

2 (x,y) with μ(φ) = 1 and u(φ) �= 0 which admit
holomorphic representatives. This shows that the terms which contribute to
the coefficient of y in ∂(x) are finite, and that the map ∂ is thus well-defined.

The map ∂ is, by definition, a homomorphism of A-modules. It is obvious
from the definition and the discussion of Subsection 3.3 that ∂ preserves
the decomposition of Equation 8, and we thus obtain a set of Z-module
homomorphisms

∂ : CF(Σ,α,β, z; s) −→ CF(Σ,α,β, z; s),

for any relative Spinc class s ∈ Spinc(X, τ).
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Theorem 5.7. The filtered A-module CF(Σ,α,β, z; s) is a filtered (A,H)
chain complex, where A = Aτ is the coefficient ring associated with τ and
the filtration by the elements of the Z-module H = H2(X, ∂X;Z) is given by
the assignment of the relative Spinc classes in Spinc(X, τ) to the generators
in Tα ∩ Tβ using the map sz.

Before we start proving the above theorem we re-phrase Lemma 5.2 in
the presence of a coherent system of orientation.

Lemma 5.8. With the notation of Lemma 5.2 fixed, let o be a coherent
system of orientations associated with the Heegaard diagram. Let ψ be the
class of a boundary degeneration. If D(ψ) ≥ 0, u(ψ) �= 0, and μ(ψ) ≤ 2 then
D(ψ) = Ai or D(ψ) = Bj for some 1 ≤ i ≤ k0 or 1 ≤ j ≤ l0 (or ψ is the
class of the constant map). In the first case (i.e. D(ψ) = Ai) we have

n(ψ) =

{
0 if k = 1

1 if k > 1.

Similarly, for D(ψ) = Bj we have n(ψ) = 0 if l = 1 and n(ψ) = 1 if l > 1.

Now we can prove Theorem 5.7 using the above lemma. The proof is
similar to the proof of Lemma 4.3 in [OS9].

Proof of Theorem 5.7. Clearly, for any Whitney disk φ ∈ π2(x,y), which has
a holomorphic representative, we have D(φ) ≥ 0 and u(φ) is thus a well-
defined element of A. Thus we only need to prove ∂ ◦ ∂ = 0. Let x and
y be two intersection points in Tα ∩ Tβ . Fix a class φ ∈ π2(x,y) such that

μ(φ) = 2. Consider the ends of the moduli space M̂(φ). This space has three
types of ends, which are in correspondence with the broken flow-lines. More
precisely, these are (respectively)

(1) the ends corresponding to a holomorphic Whitney disk φ1 connecting
x to an intersection point w juxtaposed with a holomorphic Whitney
disk φ2 connecting w to y such that μ(φ1) = μ(φ2) = 1,

(2) the ends corresponding to a sphere bubbling off i.e. a holomorphic
Whitney disk φ′ connecting x to y juxtaposed with a holomorphic
sphere S in Sym�(Σ), and

(3) the ends corresponding to a boundary bubbling i.e. a holomorphic
Whitney disk φ′ connecting x to y juxtaposed with a holomorphic
boundary degeneration.
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If x �= y the space M̂(φ) does not have any boundary of the second and
the third types, since any holomorphic boundary degeneration or holomor-
phic sphere with the property that its associated monomial in A is non-trivial
will have Maslov index at least 2. Thus the remaining Whitney disk should
have Maslov index less than or equal to zero. This implies that the moduli
space associated with the Whitney disk is empty, or consists of a constant
function (which can not happen by the assumption x �= y). When x �= y the
Gromov ends of this moduli space thus consist of∐

w∈Tα∩Tβ

∐
φ1∈π2(x,w)
φ2∈π2(w,y)
φ1∗φ2=φ

(
M̂(φ1)× M̂(φ2)

)

For any fixed u ∈ G(A) the coefficient of uy in ∂2x (assuming x �= y) is equal
to ∑

φ∈π2(x,y)
μ(φ)=2
u(φ)=u

∑
w∈Tα∩Tβ

∑
φ1∈π2(x,w)
φ2∈π2(w,y)
φ1∗φ2=φ

(m(φ1).m(φ2)) .

For each φ ∈ π2(x,y) the amount of the two interior sums in the above
formula is the total number, counted with the sign determined by the coher-
ent system o of orientations, of the ends of the moduli space M̂(φ), which
is zero. Consequently the total sum in the above formula is trivial, and the
coefficient of uy in ∂

(
∂(x)

)
is thus equal to 0.

Let us now assume that x = y. Let us denote the class of the generator
of holomorphic spheres by S. The domain D(S) associated with S is the
surface Σ:

D(S) = A1 + · · ·+Ak = B1 + · · ·+Bl,

⇒ u(S) = u(A1) · · · u(Ak) = u(B1) · · · u(Bl).

Thus u(S) = 0 unless k = k0 = l0 = l. In this latter case, the Maslov
index of S is 2k, which is greater than 2 unless k = 1. Combining with
Lemma 5.8, we may thus conclude that in all possible cases, the total con-
tribution to ∂2(x) from sphere bubblings is trivial.

We may thus assume, without loosing on generality, that the ends of the
moduli space M̂(φ) do not contain any sphere bubblings. If the ends of this
moduli space contain a boundary disk degeneration, then the degeneration
would consist of the juxtaposition of a constant function and a holomorphic
boundary degeneration with Maslov index 2. If we denote the boundary
degeneration by ψ, Lemma 5.8 implies that D(ψ) = Ai or D(ψ) = Bj .
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In the above situation, if D(φ) = D(ψ) = Ai or Bj , the boundary disk

degeneration among the ends of M̂(ψ) are described by Lemma 5.8. Suppose
first that k, l > 1. Let D(φ) = Bj , and let ψ be the corresponding boundary
disk degeneration with the same domain. Then the ends of M(φ) consist of

N̂ (ψ)
⋃( ∐

w∈Tα∩Tβ

∐
φ1∈π2(x,w)
φ2∈π2(w,x)
φ1
φ2=φ

(M̂(φ1)× M̂(φ2)
))

.

According to Lemma 5.4, the orientation of N̂ (ψ) is the opposite of the

orientation induced from M̂(ψ). Thus the total number of the ends for this
moduli space is equal to

−n(ψ) +
∑

w∈Tα∩Tβ

∑
φ1∈π2(x,w)
φ2∈π2(w,x)
φ1
φ2=φ

(
m(φ1).m(φ2)

)
= 0.

By Lemma 5.8, we have n(ψ) = 1, thus the total value of the second
sum is equal to +1. Note that u(ψ) = u(R+

j ) = u+j , since the domain asso-
ciated with ψ is Bj . Thus, such degenerations contribute to the coefficient
of u(Bj)x, i.e. the contribution of ψ to ∂2(x) is u+j .x.

Similarly, for a α boundary degeneration ψ with D(ψ) = Ai, we obtain
the equality ∑

w∈Tα∩Tβ

∑
φ1∈π2(x,w)
φ2∈π2(w,x)
φ1
φ2=φ

(
m(φ1).m(φ2)

)
= −1.

Thus the contribution of ψ to ∂2(x) is −u−i .x.
The coefficient of x in ∂

(
∂(x)

)
is equal to∑

φ∈π2(x,x)
D(φ)=Ai,1≤i≤k

u(Ai)
( ∑

w∈Tα∩Tβ

∑
φ1∈π2(x,w)
φ2∈π2(w,y)
φ1
φ2=φ

(
m(φ1).m(φ2)

))
+

∑
φ∈π2(x,x)

D(φ)=Bj ,1≤j≤l

u(Bj)
( ∑

w∈Tα∩Tβ

∑
φ1∈π2(x,w)
φ2∈π2(w,y)
φ1
φ2=φ

(
m(φ1).m(φ2)

))
+

∑
φ∈π2(x,x)

D(φ) 	=Ai or Bj

u(φ)
( ∑

w∈Tα∩Tβ

∑
φ1∈π2(x,w)
φ2∈π2(w,y)
φ1
φ2=φ

(
m(φ1).m(φ2)

))
.
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Our argument shows that in the above sum, the sums in the first and the
second line combine to give the following expression:

−
∑

1≤i≤k

u(Ai) +
∑
1≤i≤l

u(Bi) =
∑
1≤i≤l

u(R+
i )−

∑
1≤i≤k

u(R−
i ) = 0.

Thus the sum of the contributions from the first two lines in the above
expression is zero. The last line is a sum of zero terms, by an argument
similar to the case x �= y, so it is trivial. Consequently, the coefficient of x
in ∂

(
∂(x)

)
is zero.

When k = 1 or l = 1 one should be cautious. If k = l = 1, the contri-
butions from both α and β boundary degenerations is zero by Lemma 5.8.
However, if k = 1 and l > 1, since the Heegaard diagram is balanced, we
may conclude that l > l0. However,

u(A1) = u(Σ) =

l∏
i=1

u(Bi) = 0 ⇒
l∑

i=1

u+i = u−1 = 0.

The rest of the argument in this case if completely identical with the case
k, l > 1. This completes the proof of the theorem. �

Remark 5.9. The relations ideal I(τ) < Z[κ] could have been chosen
slightly smaller. In order for s-admissibility arguments of Section 4 to work,
the relations ideal should include the ideal J (τ) defined as

〈
k∏

i=1

(
u−i

)ni

l∏
i=1

(
u+i

)mi

∣∣∣∣∣
n1, . . . , nk ∈ Z≥0

m1, . . . ,ml ∈ Z≥0∑k
i=1 ni(1− g−i ) +

∑l
i=1mi(1− g+i ) = 0

〉
Z[κ]

In order for Lemma 5.2 to be true, we need to exclude the cases where the
class ψ of boundary degeneration has negative Maslov index, while the cor-
responding moduli space N (ψ) is non-empty. Since the complex structure on
Σ remains fixed when the moduli space corresponds to a boundary degen-
eration, the only method known to the authors for achieving the above goal
is a form of somewhere injectivity assumption, i.e that the the coefficient of
D(ψ) in some region is equal to 1 (see [Lip]). We thus need to include the
relations

G(τ) := 〈
(u−i )

2
∣∣ g−i > 0

〉
Z[κ]

+
〈
(u+i )

2
∣∣ g+i > 0

〉
Z[κ]

.
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Finally, in order to prove Theorem 5.7, the extra relation which is required
gives the following.

D(τ) :=

〈 ∑
g−i =0

u−i =
∑
g+
j =0

u+j

〉
Z[κ]

.

Instead of the relations ideal I(τ) we may thus use the smaller ideal of
relations

Ĩ(τ) = J (τ) + G(τ) +D(τ).

Correspondingly, the ring of coefficients may be improved to Ãτ = Z[κ]/Ĩ(τ).
It is clear that Aτ is a quotient of Ãτ . However, in order to keep the exposi-
tion simpler, we choose to use the algebra Aτ as the ring of coefficients. The
only relations which may be redundant are the ones in G(τ). However, the
authors do not know how to remove these relations.

Remark 5.10. In the module CF(Σ,α,β, z; Ã) generated by Tα ∩ Tβ over
the algebra

Ã = Ãτ =
Z[u1, . . . , uκ]〈

u+i | g+i > 0〉+ 〈u−i | g−i > 0
〉

Theorem 5.7 implies that the differential ∂ satisfies

∂ ◦ ∂ =
(
u+(τ)− u−(τ)

)
Id.

This stronger form will be needed in Section 7.

In the following section we will prove the following theorem.

Theorem 5.11. The filtered (A,H) chain homotopy type of the filtered
(A,H) chain complex CF(Σ,α,β, z; s) is an invariant of the weakly balanced
sutured manifold (X, τ) and the Spinc class s ∈ Spinc(X). In particular, for
any filtered test ring B for (A,H) and for any s ∈ Spinc(X, τ), the chain
homotopy type of

CF(Σ,α,β, z; s;B) ⊂ CF(Σ,α,β, z; s)⊗A B

is also an invariant of (X, τ, s).

Definition 5.12. We may thus denote the filtered (A,H) chain homotopy
type of the filtered (A,H) chain complex CF(Σ,α,β, z; s) and its invariant
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decomposition into chain complexes CF(Σ,α,β, z; s) by

CF(X, τ ; s) =
⊕

s∈s⊂Spinc(X,τ)

CF(X, τ ; s).

5.4. Additional algebraic structure

From the definitions, it is clear that the multiplication by a generator u ∈
G(A) gives a map

mu : CF(X, τ ; s) −→ CF(X, τ ; s+ χ(u)).

This map shifts the homological grading by gr(u). In particular, if u =∏κ
i=1 u

ni

i and
∑

i niτi is homologically trivial, multiplication by u preserves
the relative Spinc class and the homological degree. This map generalizes
the U -action in the original construction of Ozsváth and Szabó [OS5] and
[OS9].

With (Σ,α,β, z) as before, let Ω(Tα,Tβ) denote the space of paths con-
necting Tα to Tβ in Sym�(Σ). Any intersection point x ∈ Tα ∩ Tβ , viewed
as a constant path, is a point in Ω(Tα,Tβ), and for any x,y ∈ Tα ∩ Tβ and
any Whitney disk u representing a class φ ∈ π2(x,y), u may be viewed as
a path connecting x to y in Ω(Tα,Tβ). The homotopy class of this path
depends only on φ. As in Section 4 of [OS5] for any one-cocycle

ζ ∈ Z1 (Ω(Tα,Tβ),Z)

the evaluation ζ(φ) is well-defined. Correspondingly, we may define the map

Aζ : CF(X, τ ; s) −→ CF(X, τ ; s)

Aζ(x) :=
∑

y∈Tα∩Tβ

s(y)∈s

∑
φ∈π+

2 (x,y)
μ(φ)=1

(ζ(φ).uz(φ).m(φ)) .y,
∀ x ∈ Tα ∩ Tβ

s.t. s(x) ∈ s
.

The map Aζ is then extended as a homomorphism of A-modules to CF(X, τ ;
s). It respects the decomposition according to relative Spinc structures in
s ⊂ Spinc(X, τ). As in Lemmas 4.18 and 4.19 from [OS5] one may prove that
the map Aζ satisfies

(i) ∂ ◦Aζ +Aζ ◦ ∂ = 0 and

(ii) Aζ = ∂ ◦Hζ −Hζ ◦ ∂, if ζ is a coboundary,
(9)
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for some A-module homomorphism Hζ which respects the filtration by H. As
a result, the following proposition may be proved in this generalized setup.

Proposition 5.13. There is a natural action of H1(Ω1(Tα,Tβ);Z) on the
complex CF(X, τ ; s) lowering degree by one, which is well-defined up to fil-
tered chain homotopy equivalence. Furthermore, this induces an action of
the exterior algebra

∧∗ (H1(X;Z)/Tors
) ⊂ ∧∗ (H1 (Ω(Tα,Tβ),Z)

)
on the module CF(X, τ ; s), which is well-defined up to chain homotopy equiv-
alence.

Proof. One should simply repeat the proof of Proposition 4.17 from [OS5].
From the properties stated in Equation 9 and the isomorphisms

H1 (Ω(Tα,Tβ);Z) ∼= Hom(π1 (Ω(Tα,Tβ)) ,Z)

∼= π2

(
Sym�(Σ)

)
⊕Hom

(
H1(X,Z),Z

)
,

the proof of the above proposition is reduced to showing Aζ ◦Aζ = 0. For
this purpose, let f : Ω(Tα,Tβ) → S1 denote a representative of ζ. For a
generic point p ∈ S1 we set Vp = f−1(p) and observe that for any generator
x ∈ Tα ∩ Tβ representing the Spinc class s

Aζ(x) =
∑

y∈Tα∩Tβ

s(y)∈s

∑
φ∈π+

2 (x,y)
μ(φ)=1

(a(ζ, φ).uz(φ)) .y,

where a(ζ, φ) = #
{
u ∈ M(φ)

∣∣u ([0, 1]× {0}) ∈ Vp

}
.

Let us now consider a positive homotopy class φ ∈ π+
2 (x,y) with μ(φ)

= 2. Associated with φ, and for generic points p, q ∈ S1, we consider the
one-dimensional moduli space

Ξp,q(φ) :=

{
(s, u) ∈ [0,∞)×M(φ)

∣∣∣∣ u ([0, 1]× {s}) ⊂ Vp

u ([0, 1]× {−s}) ⊂ Vq

}
.

This one-manifold does not have any boundary at s = 0. Furthermore, if
we set I0 = [0, 1]× {0}, the boundary at infinity (i.e. the structure of the
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moduli space as s → ∞) is modeled on∐
φ1
φ2=φ

μ(φ1)=μ(φ2)=1

({u1 ∈ M(φ1) | u1(I0) ⊂ Vp} × {u2 ∈ M(φ2) | u2(I0) ⊂ Vq}
)
.

Other possible boundary points correspond to boundary disk degenera-
tions and sphere bubblings. Let us first assume that x �= y. If we furthermore
assume that uz(φ) �= 0, any boundary disk degeneration or sphere bubbling
will reduce the Maslov index at least by 2. Thus the moduli space corre-
sponding to such degenerations would be empty, if we choose a generic path
of almost complex structures.

When x = y, everything is as before except that boundary degenera-
tions or sphere bubblings of Maslov index 2 are now possible. The total
contribution of such degenerations is u+(τ)− u−(τ) = 0, c.f. the proof of
Theorem 5.7.

The number of points in the boundary of Ξp,q(φ), counted with sign,
would vanish. On the other hand, this total count corresponds to the contri-
bution of the pairs (φ1, φ2) with φ = φ1 � φ2 and μ(φ1) = μ(φ2) = 1 to the
coefficient of uz(φ).y in A2

ζ(x). Thus A2
ζ = 0 for all ζ ∈ H1 (Ω(Tα,Tβ),Z).

Thus the action descends to an action of the exterior algebra

∧∗ (H1 (Ω(Tα,Tβ),Z)
)
.

This completes the proof of the proposition. �

5.5. Taut sutured manifolds

Theorem 5.11, together with Remark 4.3 imply that for computing CF(X, τ ;
s;B), given a test ring B for Aτ , one may use any Heegaard diagram which is
weakly s-admissible in the sense of Remark 4.3. In particular, we can easily
prove the following proposition.

Proposition 5.14. The irreducible balanced sutured manifold (X, τ) is taut
if and only if the filtered (Bτ ,Hτ ) chain homotopy type of the complex
CF(X, τ ; s;Bτ ) is not trivial for some Spinc structure s ∈ Spinc(X).

Proof. Suppose that (X, τ) is an irreducible balanced sutured manifold which
is not taut. As in the proof of Proposition 9.18 from [Ju1], there is a weakly
admissible Heegaard diagram (Σ,α,β, z) for (X, τ) such that Tα ∩ Tβ is
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empty. This Heegaard diagram is s-admissible for the test ring ρτ : Aτ → Bτ

and for any s ∈ Spinc(X) by Remark 4.3, and may thus be used to compute

CF(X, τ ; s;Bτ ) ∼= 0, ∀ s ∈ Spinc(X),

where ∼= denotes the equivalence of filtered chain homotopy types.
Conversely, if (X, τ) is taut, Theorem 1.4 from [Ju2] implies that HF(X,

τ ;Z) �= 0. Since Z is a test ring for Bτ this implies, in particular, that the
filtered chain homotopy type of CF(X, τ ;Bτ ) is non-trivial. �

In fact, the proof of Proposition 5.14 implies the following corollary.

Corollary 5.15. For an irreducible balanced sutured manifold (X, τ), the
filtered (Bτ ,Hτ ) chain homotopy type of the Ozsváth-Szabó complex CF(X, τ ;
Bτ ) is trivial if and only if SFH(X, τ) = 0.

6. Invariance of the filtered chain homotopy type

6.1. Pseudo-holomorphic m-gons

Let us assume that the Heegaard diagram H = (Σ,α1,α2, . . . ,αm, z) is
given, so that Σ is a closed Riemann surface of genus g, each αi is a set of
� disjoint simple closed curves on Σ, and z = {z1, . . . , zκ} is a set of marked
points in

Σ−α1 −α2 − · · · −αm.

The Heegaard diagram (Σ,αi,αj , z) determines a weakly balanced su-
tured manifold (Xij , τij). Let Xij denote the three-manifold obtained from
Xij by filling out the sutures in τij , and fix the Spinc classes sij ∈ Spinc(Xij).
Assume that for any pair of indices i < j, (Σ,αi,αj , z) is an sij-admissible
Heegaard diagram for the weakly balanced sutured manifold (Xij , τij). Fur-
thermore, let oij be a coherent system of orientations on (Σ,αi,αj , z) asso-
ciated with sij . Finally, suppose that

CF
(
Σ,αi,αj , z; sij

)
=

⊕
sij∈sij

CF
(
Σ,αi,αj , z; sij

)
is the corresponding chain complex, and its decomposition into relative Spinc

classes.
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Let us assume that

Σ−αi =

ki∐
j=1

Ai
j , i = 1, 2, . . . ,m,

are the connected components in the complements of the curves in αi. We
will denote the genus of Ai

j by gij ∈ Z≥0. We will also denote

ki∑
p=1

u
(
Ai

p

) ∈ Z[κ]

by u(αi). For any subset I of the set of indices {1, . . . ,m} introduce the
Z-algebra

AI =
Z[u1, . . . , uκ]〈

u(αi) = u(αj) | ∀ i, j ∈ I
〉⊕ 〈

u(Ai
j) | i ∈ I, gij > 0

〉 .
If for two subsets I, J ⊂ {1, . . . ,m} we have I ⊂ J , then AJ would be a

quotient of AI , and we have a natural homomorphism

ρIJ : AI −→ AJ .

This homomorphism may be used to give AJ the structure of an AI -module.
As a result, from any AI chain complex (C, d), we obtain a natural AJ chain
complex C ⊗AI

AJ . In particular, for any index set I which contains i, j, we
may consider the AI chain complex

Cij(I) = CF(Σ,αi,αj , z; sij)⊗Aij
AI .

We will denote Cij

({1, . . . ,m}) by Cij for simplicity.

Associated with each set of curves αi is a torus Tαi ⊂ Sym�(Σ). A Whit-
ney m-gon is a continuous map u from the standard m-gon Dm into Sym�(Σ)
which maps the i-th edge of the m-gon to Tαi . If we fix

xi ∈ Tαi ∩ Tαi+1 , i = 1, . . . ,m− 1 and xm ∈ Tαm ∩ Tα1 ,

we may let π2(x1, . . . ,xm) denote the set of homotopy classes of the Whitney
m-gons which map the vertex vi between the i-th edge and the (i+ 1)-th
edge to xi (for i = 1, . . . ,m− 1), and the vertex vm between the m-th edge
and the first edge to xm.
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Let us fix a generic continuous family {Jp}p∈Dm
of (nearly symmet-

ric) almost complex structures on Sym�(Σ). Thus the family is of the form
Sym�(jΣ) in a neighbourhood of a collection z of marked points, where z ⊂ z
and the intersection of every connected component A of

Σ−α1 −α2 − · · · −αm

with z is non-empty. Furthermore, we will assume that under a fixed iden-
tification of a neighbourhood of the i-th vertex vi of Dm with [0, 1]× (0,∞)
the family is translation invariant, i.e.

J(s,t) = J(s,t+R), ∀ (s, t) ∈ [0, 1]× (0,∞), R ∈ R+.

We will drop this generic family {Jp}p∈Dm
from our notation. For φ ∈

π2(x1, . . . ,xm) we let M(φ) denote the set of pseudo-holomorphic repre-
sentatives of φ.

Fix a subset I = {i1 < i2 < · · · < ip} ⊂ {1, . . . ,m}. This subset deter-
mines a sub-diagram

HI = (Σ,αi1 , . . . ,αip , z)

of H. Correspondingly, we may consider the p-gons associated with HI . We
will say that two p-gons φ ∈ π2(xi1 , . . . ,xip) and φ′ ∈ π2(yi1 , . . . ,yip), with

xij ,yij ∈ Tαij ∩ Tαij+1 , j = 1, . . . , p− 1 and xip ,yip ∈ Tαip ∩ Tαi1 ,

are equivalent if and only if there exist Whitney disk classes ψij ∈ π2(xij ,yij )
for j = 1, . . . , p such that φ is obtained from φ′ by juxtaposition of the disk
ψij at the vertices yij for j = 1, . . . , p. The set of equivalence classes of
such p-gons will be denoted by Spinc(H, I). It is important to note that
Spinc(H, {i, j}) determines a subset of the set of Spinc structures on the
three-manifold Xij , which are realized by the Heegaard diagram.

Definition 6.1. Suppose that we have a pair of index sets I, J ⊂ {1, . . . ,m}
such that I = {i1 < i2 < · · · < ip} and J = {ir = j1 < j2 < · · · < jq = ir+1}.
We will call the pair I, J attachable, and define

I � J :=
{
i1 < · · · < ir = j1 < j2 < · · · < jq = ir+1 < ir+2 < · · · < ip

}
.

We will denote r by r(I, J) for future reference. Suppose that I and J are
attachable index sets as above, and we are given a p-gon φ and a q-gon ψ

φ ∈ π2(xi1 , . . . ,xip) and ψ ∈ π2(yj1 , . . . ,yjq),
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where xis ∈ Tαis ∩ Tαis+1 and yjs ∈ Tαjs ∩ Tαjs+1 . Furthermore, assume that
xir = yjq . Then we may juxtapose φ and ψ to obtain the class of some
(p+ q − 2)-gon, which will be denoted by φ � ψ, see Figure 1.

αi1

αi2

αir

αj1

αj2

αjq−1

αjq
αir+1

αip

αi1

αi2

αir

αj2

αjq−1

αir+1

αip

Figure 1: The juxtaposition of a p-gon and a q-gon.

Let us now restrict ourselves to the polygon classes whose vertices cor-
respond to the fixed set S = {sij}i<j of Spinc structures. Let us denote the
subset of Spinc(H, I) which consists of polygons such that the Spinc struc-
tures associated with the vertices are in S by Spinc(H, I;S).

Definition 6.2. With the above notation fixed, a coherent system of Spinc

structures on polygons for the Heegaard diagram H = (Σ,α1, . . . ,αm, z),
and compatible with S is a choice of classes

T =
{
[φI ] ∈ Spinc(H, I;S)

∣∣ I ⊂ {1, . . . ,m}, |I| ≥ 3
}
,

represented by the polygon classes {φI | I ⊂ {1, . . . ,m}, |I| ≥ 3}, such that
the following is satisfied. If I and J are attachable index sets, then we have

[φI
J ] = [φI � φJ ] .

Lemma 6.3. Let us assume that a coherent system {[φI ]}I of Spinc struc-
tures is fixed for the Heegaard diagram H. If K = I � J and a polygon ψK
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in the same class as

φK ∈ [φI � φJ ] ∈ Spinc(H,K;S)

is decomposed as ψK = ψI � ψJ , then the the class of ψI in Spinc(H, I;S)
is equal to the class of φI and the class of ψJ in Spinc(H, J ;S) is equal to
the class of φJ .

Proof. Fix the above notation and let K = I � J . After addition of disk
classes we may assume that the corners of ψK are the same as the corners
of φK (i.e. both are chosen from {xij}i<j). This means that

φI ∈ π2
(
xi1i2 , . . . ,xip−1ip ,xi1ip

)
,

ψI ∈ π2
(
xi1i2 , . . . ,xir−1ir ,y,xir+1ir+2

, . . . ,xip−1ip ,xi1ip

)
,

φJ ∈ π2
(
xj1j2 , . . . ,xjq−1jq ,xj1jq

)
and ψJ ∈ π2

(
xj1j2 , . . . ,xjq−1jq ,y

)
and we have φI � φJ = ψI � ψJ . We thus have the following relation among
the associated domains:

D(φI)−D(ψI) = D(ψJ)−D(φJ) = D.

The coefficients of the domains in the expression appearing on the left
hand side of the above equality on both sides of any curve in αi, with
i /∈ I, are equal. Similarly, the coefficients of the domains in the expression
appearing as the middle term in the above equality on the two sides of any
curve in αj , with j /∈ J , are equal. This implies that ∂(D) is included in∐

i∈I∩J
αi = αir

∐
αir+1 .

Thus, D is the domain associated with a disk in π2(xirir+1
,y), and the Spinc

class of ψI is the same as that of φI . Similarly, the Spinc class of ψJ is the
same as that of φJ . This completes the proof of the lemma. �

The above lemma implies that a coherent system of Spinc structures on
polygons for H is completely determined by the choice of triangle classes{

[φijk] ∈ Spinc(H, {i, j, k};S)
∣∣ 1 ≤ i < j < k ≤ m

}
,

which satisfy the following compatibility relation

(10) φikl � φijk = φijl � φjkl, ∀ 1 ≤ i < j < k < l ≤ m.
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Furthermore, the above lemma implies that for φijk, φikl and φijl as above,
there exists at most one class φjkl such that Equation 10 is satisfied. This
observation implies that a coherent system of Spinc classes of polygons for
the Heegaard diagram H is determined by the family of triangle classes{

φ1ij | 1 < i < j ≤ m
}
.

However, this family should have the property that for any triple 1 < i <
j < k ≤ m of indices, there is a triangle class ψ such that

(11) φ1jk � φ1ij = φ1ik � ψ.

If this is the case, we will write

T = {φI}I =
〈
φ1ij

∣∣ 1 < i < j ≤ m
〉
.

Let us fix a system T of compatible Spinc structures for the Heegaard
diagram H as above, which is generated by the triangle classes φ1ij . The
set of periodic domains for polygons in T is generated by periodic domains
for each pair (αi,αj). To be more precise, let us denote by Pij the set of
periodic domains for the Heegaard diagram (Σ,αi,αj). Then any periodic
domain which appears as the difference of two q-gons with the same set of
vertices

yj ∈ Tαij ∩ Tαij+1 , j = 1, . . . , q, iq+1 := i1 and i1 < i2 < · · · < iq,

and representing the same Spinc class may be written as a sum of periodic
domains in Pi1i2 ,Pi2i3 , . . . ,Piq−1iq , and Pi1iq .

Definition 6.4. Let the Heegaard diagram H = (Σ,α1,α2, . . . ,αm, z) and
S, T, and Pij be as above. The Heegaard diagram H is called S-admissible
if for any index set I = {i1 < · · · < iq}, and any periodic domain

P = Pi1i2 + Pi2i3 + · · ·+ Piq−1iq + Pi1iq

with Pij ∈ Pij , the following is true. If

q∑
j=1

〈
c1(sijij+1

), H(Pijij+1
)
〉
= 0

then either the coefficient of the domain P at some point w is negative, or
u(P) = 0 in AI .
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The existence of S-admissible Heegaard diagrams, and the possibility of
modifying H to an admissible Heegaard diagram using finger moves, follows
with an argument completely similar to the arguments of Section 4. Fur-
thermore, the S-admissibility of the Heegaard diagram H implies that for
any index set

I = {i1 < · · · < iq} ⊂ {1, . . . ,m},
any integer N , and any set of corners

yj ∈ Tαij ∩ Tαij+1 , j = 1, . . . , q, iq+1 := i1 and i1 < i2 < · · · < iq,

such that sz(yj) ∈ sijij+1
, there are at most finitely many classes φ ∈ π2(y1,

. . . ,yq) satisfying the following three conditions.

• φ = φI ∈ Spinc(H, I;S).

• μ(φ) = N .

• D(φ) ≥ 0 and uz(φ; I) �= 0, where uz(φ; I) is defined by

uz(φ; I) :=

κ∏
i=1

u
nzi

(φ)
i ∈ AI .

The construction of Ozsváth and Szabó in Subsection 8.2 from [OS5] may
be extended to this more general context without any major modification.
Namely, for any index set I ⊂ {1, . . . ,m}, and any polygon class [φ] = [φI ],
the determinant line bundle of the Cauchy-Riemann operator over M(φ) is
trivial, and one may thus choose an orientation, i.e. one of the two classes
of nowhere vanishing sections of this determinant line bundle, associated
with φ.

Definition 6.5. A coherent system of orientations associated with the
Heegaard diagram H and the coherent system T of Spinc classes of poly-
gons of H is a choice of orientation oI(φ) for any polygon class φ with
φ ∈ [φI ] ∈ Spinc(H, I;S), such that the following are satisfied.

• For any 1 ≤ i < j ≤ m, oij is a coherent system of orientations associ-
ated with the Spinc class sij for the Heegaard diagram (Σ,αi,αj , z).

• For any pair I, J of attachable index sets and any attachable polygon
classes φ and ψ, with

φ ∈ [φI ] ∈ Spinc(H, I;S) and ψ ∈ [φJ ] ∈ Spinc(H, J ;S),
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we have

(−1)r(I,J)|J |oI(φ) ∧ oJ(ψ) = oI
J(φ � ψ).

Lemma 6.3 implies that in order for us to obtain a coherent system
of orientations associated with the Heegaard diagram H and the coherent
system of Spinc classes of polygons T, it suffices to determine oij and o1ij
for any pair of indices 1 ≤ i < j ≤ m. This observation implies that the
following lemma, which was proved in [OS5] as Lemma 8.7, is valid in our
setup. Although the Heegaard diagrams are more general, the proof carries
over without any major modification.

Lemma 6.6. Suppose that the Heegaard diagram H, and the coherent sys-
tem of Spinc classes of polygons T are as above. Then for any choice of coher-
ent systems of orientations o1i corresponding to the Spinc classes s1i (with
1 < i ≤ m), and any choice of o1ij(φ1ij) for 1 < i < j ≤ m, there always
exists a coherent system of orientations o = {oI}I such that o1i is the ini-
tial choice of the coherent system of orientations corresponding to s1i and
o1ij(φ1ij) is the prescribed orientation.

Proof. For an index set I = {i1 < · · · < iq} let i(I) = i1 and j(I) = iq denote
the smallest and largest element of I respectively. Let us assume that φ ∈
π2(y1, . . . ,yq) is a q-gon class in the same Spinc class as φI .

If 1 ∈ I, then we may assume |I| ≥ 3, since otherwise, we already have
a choice of orientation. In this case, we may write, in a unique way,

φ = φI � φ1 � · · · � φq, φj ∈ π2(yj ,xijij+1
)

φI = φ1i2i3 � φ1i3i4 � · · · � φ1iq−1iq .

Thus oI(φ) is determined if we determine all the maps oij for 1 < i < j ≤ m
in a compatible way. Note that o1ij(φ1ij) is already defined. If otherwise
1 /∈ I, we may write, again in a unique way

φ = φI � φ1 � · · · � φq, φj ∈ π2(yj ,xijij+1
)

φ1i(I)j(I) � φI = φ1i1i2 � φ1i2i3 � · · · � φ1iq−1iq .

Thus, in order to determine the orientation oI(φ), it suffices to determine
all maps oij for 1 < i < j ≤ m. In order to determine the oij from o1i, o1j
and o1ij(φ1ij), one may then use the argument of Lemma 8.7 from [OS5]. �

Remark 6.7. Note that the choice of o1i for 1 < i ≤ m determines the
orientation for all boundary degenerations in a unique way. In fact, suppose
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that ψ is the class of some αi boundary degeneration corresponding to the
corner y ∈ Tαi ∩ Tαj , say for some j > i, and that φ is a Whitney disk in
π2(xij ,y). Furthermore, let ψ′ denote the class in παi

2 (x1i) which has the
same domain as ψ. We may then write

φ1ij � φ � ψ = φ1ij � ψ
′ � φ,

implying that oij(ψ) is uniquely determined by o1i(ψ
′), and is equal to it as

the class of an αi boundary degeneration.

Let H be an S-admissible Heegaard diagram, and T be a system of
compatible Spinc structures as before. Correspondingly, assume that

o =
{
oI | I ⊂ {1, . . . ,m}, |I| ≥ 2

}
is a coherent system of orientations associated with T. Associated with any
subset I = {i1, . . . , iq} ⊂ {1, . . . ,m} of indices, we may define a holomorphic
polygon map

fI :

q−1⊗
j=1

CF(Σ,αij ,αij+1 , z; sijij+1
)⊗A{ij ,ij+1} AI

−→ CF(Σ,αi1 ,αiq , z; si1iq)⊗A{i1,iq} AI .

In other words, if {i < j} � I denotes that i and j are consecutive elements
in I, and i(I), j(I) denote the smallest and largest elements of I respectively,
we will have a map

fI :
⊗

{i<j}�I

Cij(I) =

q−1⊗
j=1

Cijij+1
(I) −→ Ci1iq(I) = Ci(I),j(I)(I)

fI
(
y1 ⊗ y2 ⊗ · · · ⊗ yq−1

)
:=

∑
yq∈Tβ1∩Tβq

[s(yq)]=t1q

∑
φ∈π2(y1,y2,...,yq)

μ(φ)=3−q
φ∈[φI ]

(
m(φ)uz(φ; I)

)
.yq,

where βj = αij and t1q = si1iq .
Since H is admissible, it follows that only finitely many terms would

contribute to the above sum, and fI is thus well-defined.
These maps satisfy a generalized associativity property, which may be

stated in our setup as follows (we will only state the associativity corre-
sponding to the full index set {1, . . . ,m}).
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Theorem 6.8. With the above notation fixed, if we set [m] = {1, . . . ,m}
to be the full index set, the map

F[m] : C12

(
[m]

)⊗ C23

(
[m]

)⊗ · · · ⊗ Cm−1,m

(
[m]

) −→ C1m

(
[m]

)
,

F[m] :=
∑

1≤i<j≤m

(−1)ijf{1,2,...,i,j,j+1,...,m} ◦ f{i,i+1,...,j}(12)

is trivial.

Proof. Let us denote the set {1, 2, . . . , i, j, j + 1, . . . ,m} of indices by I(i, j),
and {i, i+ 1, . . . , j} by J(i, j). We have to show that for any set y1, . . . ,ym

of intersection points with yi ∈ Tαi ∩ Tαi+1 , and such that s(yi) ∈ si,(i+1),
the coefficient of ym in∑

1≤i<j≤m

(−1)ijfI(i,j)yI(i,j), with

yI(i,j) := y1 ⊗ · · · ⊗ yi−1 ⊗ fJ(i,j)
(
yi ⊗ · · · ⊗ yj−1

)⊗ yj ⊗ · · · ⊗ ym−1,

is zero. Let us consider a Whitney polygon class ψ ∈ π2(y1, . . . ,ym) with
Maslov index 4−m and in the same class as ψ[m], and consider the ends
of M(ψ). The ends of this moduli space do not contain any boundary disk
degenerations or sphere bubblings. The reason is that the Maslov index of
the holomorphic boundary disk degenerations and holomorphic spheres are
greater than or equal to 2 if the corresponding element of the coefficient ring
is non-trivial. This would imply that the remaining component should have
Maslov index at most 2−m. As a result, the moduli space associated with
the remaining part would be empty.

Thus all degenerations of this moduli space (for dimensional reasons)
are degenerations along an arc which connects two different edges of the
m-gon. The ends corresponding to a degeneration along an arc connect-
ing the i-th edge to the j-th edge, with i < j, correspond to a degener-
ation of ψ into the juxtaposition of a holomorphic Whitney (j − i+ 1)-
gon connecting yi, . . . ,yj−1 to an intersection point x ∈ Tαi ∩ Tαj with
Maslov index 2− j + i, with a holomorphic (m− j + i+ 1)-gon connecting
y1, . . . ,yi−1,x,yj , . . . ,ym−1 to ym with Maslov index 2−m+ j − i. Thus,
the ends of M(ψ) will have the following form.

∂M(ψ) =
∐

1≤i<j≤m
x∈Tαi∩Tαj

∐
φij∈π2−j+i

2 (yi,...,yj−1,x)

ψij∈π2−m+j−i
2 (y1,...,yi−1,x,yj ,...,ym)

ψij
φij=ψ

(M(ψij)×M(φij)
)
.
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In the above decomposition, we are dropping the condition that the
polygons represent the Spinc class determined by T. The sign difference
between the orientation we assign to the component M(ψij)×M(φij), and
its orientation as a boundary component of ∂M(ψ) is computed as

ε
(M(ψij)×M(φij)

)
= (−1)r(I(i,j),J(i,j))|J(i,j)| = (−1)i(j−i+1) = (−1)ij .

Note that the total number of points in the moduli space on the right
hand side of the above equation, when counted with the above induced
signs, will be zero. We should of course mod out by possible automorphisms
of the domain, when necessary. Fix a generator u ∈ G(A[m]). The coefficient
of u.ym in the expression∑

1≤i<j≤m

(−1)ijfI(i,j)yI(i,j),

yI(i,j) = y1 ⊗ · · · ⊗ yi−1 ⊗ fJ(i,j)
(
yi ⊗ · · · ⊗ yj−1

)⊗ yj ⊗ · · · ⊗ ym−1,

is equal to ∑
1≤i<j≤m
x∈Tαi∩Tαj

∑
φij∈π2−j+i

2 (yi,...,yj−1,x)

ψij∈π2−m+j−i
2 (y1,...,yi−1,x,yj ,...,ym)

u(φij)u(ψij)=u

(−1)ij
(
m(ψij)m(φij)

)

=
∑

ψ∈π4−m
2 (y1,...,ym)
u(ψ)=u

#
(
∂
(M(ψ)

))
= 0.

The above computation thus completes the proof of the theorem. �

Remark 6.9. The maps

fI :
⊗

{i<j}�I

Cij(I) → Ci(I)j(I)(I)

will sometimes refine to the maps respecting the relative Spinc structures.
We will face this situation in the upcoming sections several times. Each
time we will give a separate argument for such an splitting, to avoid the
complexity of a general treatment.

In order to prove the above associativity, we do not need to use the full
system P of compatible Spinc structures. In fact, a subsystem containing the
classes of polygons associated with the index sets I(i, j) and J(i, j) suffices
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for this purpose. In other words, we only make use of the Spinc classes in
the subset

T1 =
{
[φI(i,j)]

∣∣ 1 ≤ i < j ≤ m
} ∪ {

[φJ(i,j)]
∣∣ 1 ≤ i < j ≤ m

} ⊂ T

for defining the maps appearing on the left-hand-side of Equation 12.

Definition 6.10. The set

T1 =
{
[φI(i,j)] ∈ Spinc(H, I(i, j))

∣∣ 1 ≤ i < j ≤ m
}⋃{

[φJ(i,j)] ∈ Spinc(H, J(i, j))
∣∣ 1 ≤ i < j ≤ m

}
is called a system of first degenerations for φ[m] ∈ Spinc(H, [m];S) if

[φI(i,j)] � [φJ(i,j)] = [φ[m]], ∀ 1 ≤ i < j ≤ m.

Thus, instead of T, we may fix a system of first degenerations for a
class φ[m] ∈ Spinc(H, [m];S), together with a compatible system of coherent
orientations associated with them. Then Theorem 6.8 would still remain
true.

6.2. Special Heegaard diagrams corresponding to handle slides

Let us assume that (Σ,α,β, z) is a Heegaard diagram, which corresponds
to a weakly balanced sutured manifold (X, τ). Let us assume that

α = {α1, . . . , α�} and β = {β1, . . . , β�},

and that βi is the image of αi under a small Hamiltonian isotopy for i =
2, . . . , � so that βi is disjoint from αj for j �= i and cuts αi in a pair of
canceling intersection points. The area bounded between αi and βi is thus
of the form Pi = D+

i −D−
i , such that D+

i and D−
i are two of the connected

components in

Σ−α− β,

and ∂Pi = αi − βi. Furthermore, assume that β1 is obtained from α1 by
first moving it by a small Hamiltonian isotopy, and then doing a handle
slide along α2. Thus, the only curve in α ∪ β that intersects β1 is α1, which
cuts β1 in a pair of intersection points. These two intersection points are
connected by a bi-gon, which we will denote by D+

1 . There is a domain with
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small area which is bounded between α1, β1, α2 and β2, denoted by D−
1 , so

that P1 = D+
1 −D−

1 −D−
2 is a periodic domain satisfying

∂P1 = α1 + α2 − β1.

We will assume that none of the marked points z = {z1, . . . , zκ} are in
any of D+

1 , . . . , D
+
� or D−

1 , . . . , D
−
� . Let us assume

Σ−α− β =

(
�∐

i=1

D+
i

)⋃(
�∐

i=1

D−
i

)⋃(
m∐
i=1

Ei

)
,

and that zi = {zi1, . . . , ziji} are the marked points in Ei for i = 1, . . . ,m.

Thus, z = z1 ∪ · · · ∪ zm. In the ring Aτ , let u(z
i
j) denote the element associ-

ated with zij ∈ z. Furthermore, define

μi =

ji∏
j=1

u(zij) ∈ Aτ , i = 1, . . . ,m.

If Σ−α =
∐ma

i=1Ai and Σ− β =
∐mb

i=1Bi, we will have ma = mb = m,
and after renaming the indices if necessary, we may assume z ∩Ai = z ∩Bi,
and u(Ai) = u(Bi) = μi. Let us denote by Aμ the sub-ring of Aτ generated
by μ1, . . . , μm.

Any pair of curves (αi, βi) intersect in a pair of points x+i , x
−
i , so that

the bi-gon D+
i connects x+i to x−i . Any map ε : {1, . . . , �} → {+,−} thus

corresponds to an intersection point

xε =
{
x
ε(1)
1 , x

ε(2)
2 , . . . , x

ε(�)
�

} ∈ Tα ∩ Tβ .

These all correspond to the same Spinc class in Spinc(X
τ
), which will be

denoted by s0. For ε : {1, . . . , �} → {+,−} let |ε| denote the number of ele-
ments in ε−1{+}. We may refine the homological grading of the generators
of CF(Σ,α,β, z; s0) into a relative Z-grading by setting

gr(ε, δ) = |ε| − |δ|, ∀ ε, δ : {1, . . . , �} −→ {+,−}.

We will show below that this gives a well-defined relative grading in an
appropriate sense.

The periodic domains corresponding to the above Heegaard diagram
are generated, as a free abelian group, by P1, . . . ,P�, A1, . . . , Am. Note that
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1

1

2

2

3

3

x+1

x−1

x+2

x−2

x−3

x+3

x+4

x−4

z1

D−
1

Figure 2: The green curves denote the elements of α and the dashed red
curves denote the elements of β. The domains D+

i are shaded red, while the
domains D−

i are shaded yellow. The domain D−
1 is shaded gray.

u(Pi) = 1. If

P = q1P1 + · · ·+ q�P� + a1A1 + · · ·+ amAm ≥ 0

is a positive periodic domain with 〈c1(s), H(P)〉 = 0 for some s ∈ Spinc(X
τ
),

we will have a1, . . . , am ≥ 0 and

0 = a1(2− 2g(A1)) + a2(2− 2g(A2)) + · · ·+ am(2− 2g(Am)).

Here g(Ai) denotes the genus of Ai.
The reason for the equality 〈c1(s), H(Ai)〉 = 2− 2g(Ai) is that H(Ai)

is represented by one of the boundary components in X
τ
, where s is rep-

resented the vector field which is normal to the tangent space of the cor-
responding component, i.e. 〈c1(s), H(Ai)〉 is the Euler characteristic of the
corresponding component. If moreover we know that u(P) �= 0, we may con-
clude that if ai �= 0 then g(Ai) = 0. Let us assume that A1, . . . , Ak are the
components of genus zero, and the rest of Ai have positive genus. This
implies that

a1, . . . , am ≥ 0, 0 = a1 + · · ·+ ak and ak+1 = · · · = am = 0.

Thus all ai are zero, and P = q1P1 + · · ·+ q�P�.
Since P2, . . . ,P� are disjoint, and all Pi have both positive and negative

coefficients, one can easily conclude that P has both positive and negative



686 A. S. Alishahi and E. Eftekhary

coefficients. Thus the constructed Heegaard diagram is admissible for all
Spinc classes. Note that D+

i and D−
i are both domains of Whitney disks, for

i = 2, . . . , �, and the number of points in

M̂(D+
i )

⋃
M̂(D−

i )

is even.
In the applications we face in this paper the orientations induced over

the above two moduli spaces from a system o of coherent orientations is
always the opposite of one another. More precisely, such Heegaard diagrams
appear as a part of triples

(Σ,α,β,γ, z)

where a system of coherent orientations on (Σ,α,γ, z) is given. The afore-
mentioned choice of orientation for the Heegaard diagram (Σ,α,β, z), to-
gether with the choice of orientation for the triangle classes, determines
a corresponding system of coherent orientations on (Σ,β,γ, z). With this
choice of o, the sign associated with the moduli spaces of holomorphic repre-
sentatives of D+

i and D−
i are different. Thus the signed count of the number

of points in the moduli space

M̂(D+
i )

⋃
M̂(D−

i )

for this particular system of orientations o is zero.
The complex CF(Σ,α,β, z; s) is thus trivial for s �= s0 and is equal to

CF(Σ,α,β,w; s0)⊗Aμ
Aτ

for s = s0 where w = {z11 , z21 , . . . , zm1 }. For the rest of the computation, we
may thus assume that w = z, i.e. that there is a single marked point in each
connected component of Σ−α. Each μi (or under the assumption w = z,
each ui) corresponds to some component Ai. Thus μi = 0 if the genus of
Ai is positive. With our previous notation, this means that μk+1 = · · · =
μm = 0. We set the degree associated with μi, i = 1, . . . , k, equal to −2 =
〈c1(s0), H(Ai)〉. This gives a grading on the complex CF(Σ,α,β,w; s0).

Let us assume that ε, δ : {1, . . . , �} → {−,+} are a pair of indices. After
re-naming the elements of {1, . . . , �} we may assume that⎧⎪⎨⎪⎩

ε(i) = + and δ(i) = − if 1 ≤ i ≤ �1

ε(i) = − and δ(i) = + if �1 < i ≤ �2

ε(i) = δ(i) if �2 < i ≤ �,
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for some 1 ≤ �1 ≤ �2 ≤ �. Then D = D+
1 + · · ·+D+

�1
−D+

�1+1 − · · · −D+
�2

is

the domain of a disk connecting xε to xδ. If P is a periodic domain and
D + P is the domain of a positive disk φ with u(φ) �= 0, the same argument
as before implies that

P = a1A1 + · · ·+ akAk + q1P1 + · · ·+ q�P�.

Furthermore, the assumption D(φ) ≥ 0 implies that all ai are non-negative.
In order to prove that the above grading assignment is well-defined, one only
needs to check the following easy equality

(13) μ(φ) = 2

(
k∑

i=1

ai

)
+ 2�1 − �2.

If the coefficient ring Âτ is used instead of Aτ , the corresponding quotient
Âμ of Aμ will be equal to Z. One would then quickly conclude from the above
presentation of the domain P that if u(φ) �= 0 (as an element in the quotient
Âτ ), then a1 = · · · = ak = 0 and �2 = �1. If μ(φ) = 1 then �1 = �2 = 1. We
can then carry out the rest of the argument for any choice of indices ε and
δ, if the coefficient ring is replaced with Âτ .

With coefficients in A, however, in order to complete our investigation we
need to assume ε(i) = {+} for i = 1, . . . , �. The corresponding generator is
often called the top generator . In this case the equality �1 = �2 is automatic.
Replacing μ(φ) = 1 in Equation 13 we obtain a1 = · · · = ak = 0 and �1 = 1.
From here we will have (from positivity of the domain) that q2 = · · · =
q� = 0. This means that if the top intersection point xε is connected to an
intersection point xδ by a positive domain φ of index 1, such that u(φ) �= 0,
δ differs from ε only over one element of {1, . . . , �}, where ε gives + and δ
gives −. Let us assume that this element is i ∈ {1, . . . , �}.

If i �= 1, the possible domains one may obtain as D + P are D+
i and D−

i ,
and the total contribution of xδ to ∂(xε) is zero. However, if i = 1, the possi-
ble domains are D+

1 , D
−
1 +D−

2 and D−
1 +D+

2 . Again, the total contribution
of these three domains is zero by the argument of [OS5] (Lemma 9.4). The
above discussion implies that the top generator xε is closed and represents
a non-trivial element of the homology groups corresponding to either of the
chain complexes

CF(Σ,α,β,w; s0) and CF(Σ,α,β, z; s0) = CF(Σ,α,β, z; s0)⊗Aμ
Aτ .

Moreover, the same argument implies that all the generators of the form xδ

are closed, when the coefficient ring Âτ is used instead of Aτ , giving rise to
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an identification of the chain complexes:

CF(Σ,α,β, z; s0; Â) = ĤF(#�S1 × S2, t0)⊗Z Âτ .

The above equality means that the differential on the right hand side of
the above equality is trivial. Any module isomorphism of the right hand side
which respects the filtration by relative Spinc structures is thus a filtered
chain homotopy equivalence. The top generator xε of CF(Σ,α,β, z; s0) is
usually denoted by Θ, or Θαβ .

The above example illustrates how the arguments of Ozsváth and Szabó
for the study of the special Heegaard diagrams, i.e. Heegaard diagrams where
most of βi are Hamiltonian isotopes of some corresponding curves in α, may
be generalized to the present situation. The above type of Heegaard diagrams
appear in the arguments for the invariance under handle-slide. We will face
similar Heegaard diagrams again. In particular this happens when we study
the exact triangles. Each time, a separate argument should be presented for
computing the contribution of holomorphic disks and polygons. However,
the argument is always a straight forward modification of the corresponding
argument for Heegaard diagrams arising from closed three-manifolds.

6.3. The triangle map and the invariance

Fix a Heegaard triple

H = (Σ,α,β,γ, z)

and assume that z={z1, . . . , zκ}. We will denote the weakly balanced sutured
manifold associated with (Σ,α,β, z) by (X, τ) = (Xαβ , ταβ), and the corre-
sponding coefficient ring by A = Aτ . Similarly, let (Xαγ , ταγ) and (Xβγ , τβγ)
be the weakly balanced sutured manifolds associated with the Heegaard
diagrams (Σ,α,γ, z), and (Σ,β,γ, z) respectively. Suppose that

Σ−α =

k∐
i=1

Ai, Σ− β =

l∐
i=1

Bi and Σ− γ =

m∐
i=1

Ci,

where Ai, Bi and Ci are the connected components of the curve comple-
ments. We will furthermore assume that m = l, and that these compo-
nents are labeled so that for each i = 1, . . . , l we have Ci ∩ z = Bi ∩ z, and
g(Ci) = g(Bi). This implies that u(β) = u(γ) in 〈u1, . . . , uκ〉Z, and more
importantly, u(Ci) = u(Bi) for i = 1, . . . , l.

Assume that the coefficient rings Aβγ and Aαγ are associated with the
Heegaard diagrams (Σ,β,γ, z) and (Σ,α,γ, z) respectively. Then the above
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observation implies that

Aβγ =
Z[u1, . . . , uκ]〈

u(Bi)
∣∣ g(Bi) = g(Ci) > 0

〉
Z[κ]

is naturally mapped by a quotient homomorphism

ρβγ : Aβγ −→ Aαβ = A

to A. We may thus consider the A-module

CF(Σ,β,γ, z)⊗Aβγ
A,

which will have the structure of a filtered (A,H) chain complex, where H is
the Z-module H2(X, ∂X;Z) as before.

Any triangle class ψH ∈ Spinc
(
H, {α,β,γ}) determines a set of three

Spinc structures

sαβ ∈ Spinc
(
Xαβ(ταβ)

)
, sαγ ∈ Spinc

(
Xαγ(ταγ)

)
and sβγ ∈ Spinc

(
Xβγ(τβγ)

)
.

These three Spinc classes, together with the triangle class of ψH give a
coherent system of Spinc structures for H which will be denoted by T. We
will assume that T, or equivalently the triangle class ψH , is fixed, and will
drop them from the notation when there is no confusion. In particular, by
the admissibility of a Heegaard diagram we would mean T-admissibility.

Any choice of coherent systems of orientations oαβ and oαγ associated
with the Spinc classes sαβ and sαγ may be completed to a coherent system
of orientations for T by Lemma 6.6. Furthermore, we are free to choose the
orientation associated with a fixed representative of ψH . Let us fix such a
coherent system o of orientations. Once again, we will drop this choice of
orientation from the notation.

Assuming that the Heegaard tripleH is admissible, the triangle map cor-
responding to H (and the triangle class ψH) is defined via the construction
of Subsection 6.1.

fαβγ : CF(Σ,α,β, z; sαβ)⊗ (CF(Σ,β,γ, z; sβγ)⊗ A) → CF(Σ,α,γ, z; sαγ)

fαβγ(x⊗ q) =
∑

y∈Tα∩Tγ

∑
ψ∈π0

2(x,q,y)
(ψ)=(ψH)

(
m(ψ)uz(ψ)

)
.y
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As usual, uz is the map

uz :
∐

x∈Tα∩Tβ

∐
q∈Tβ∩Tγ

∐
y∈Tα∩Tγ

π+
2 (x,q,y) −→ G(A)

uz(ψ) :=

κ∏
i=1

u
nzi

(ψ)
i ∈ G(A).

The admissibility of the Heegaard diagram implies that fαβγ is well-defined.

Lemma 6.11. The map fαβγ is an A chain map. More precisely

fαβγ
(
∂(x)⊗ q

)
+ fαβγ

(
x⊗ ∂(q)

)
= ∂

(
fαβγ(x⊗ q)

)
for all x ∈ Tα ∩ Tβ and q ∈ Tβ ∩ Tγ corresponding to the Spinc classes sαβ
and sβγ respectively.

Proof. The equality

fαβγ
(
∂(x)⊗ q

)
+ fαβγ

(
x⊗ ∂(q)

)
= ∂

(
fαβγ(x⊗ q)

)
in the above lemma is nothing but the following special case (i.e. the case
m = 3) of Theorem 6.8:

fαβγ
(
fαβ(x)⊗ q

)
+ fαβγ

(
x⊗ fβγ(q)

)− fαγ
(
fαβγ(x⊗ q)

)
= 0. �

As in [OS5], holomorphic triangle maps satisfy an associativity law,
which comes from considering Heegaard quadruples. Let K = (Σ,α,β,γ,
δ, z) be an admissible Heegaard quadruple. This means that we have a coher-
ent system T of Spinc classes of polygons, which consists of a square class

ψK ∈ Spinc
(
K, {α,β,γ, δ})

and triangle classes

ψα ∈ Spinc
(
K, {β,γ, δ}), ψβ ∈ Spinc

(
K, {α,γ, δ})

ψγ ∈ Spinc
(
K, {α,β, δ}) and ψδ ∈ Spinc

(
K, {α,β,γ}).

We implicitly assume that the set of corners of these representatives of the
triangle classes is a fixed set of 6 intersection points between the pairs of
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tori from {Tα,Tβ ,Tγ ,Tδ}. These classes have to satisfy the following com-
patibility criteria

ψK = ψα � ψγ = ψβ � ψδ.

The triangle classes also determine Spinc structures on the Heegaard
diagrams determined by any pair of curve collections. These Spinc structures
will be denoted by sαβ ∈ Spinc(Xαβ(ταβ)), etc. Moreover, we will assume
that

Σ−α =

k∐
i=1

Ai, Σ− β =

l∐
i=1

Bi,

Σ− γ =

l∐
i=1

Ci and Σ− δ =

l∐
i=1

Di

are labelled so that Bi ∩ z = Ci ∩ z = Di ∩ z for i = 1, . . . , l. Furthermore,
we will assume that g(Bi) = g(Ci) = g(Di) for i = 1, . . . , l. Then we will
have u(β) = u(γ) = u(δ) in 〈u1, . . . , uκ〉, and u(Bi) = u(Ci) = u(Di) for i =
1, . . . , l.

One may also choose a coherent system of orientations associated with
T. In fact, we are free to choose oαβ , oαγ , oαδ, and the orientation of the
triangle classes ψβ , ψγ and ψδ. Once again, we keep such a coherent system
of orientations implicit in our notation.

We may thus consider the following filtered (A,H) chain complexes,
which are relevant for the associativity:

Cαβ = CF(Σ,α,β, z; sαβ), Cβγ = CF(Σ,β,γ, z; sβγ)⊗ A

Cαγ = CF(Σ,α,γ, z; sαγ), Cβδ = CF(Σ,β, δ, z; sβδ)⊗ A

Cαδ = CF(Σ,α, δ, z; sαδ) and Cγδ = CF(Σ,γ, δ, z; sγδ)⊗ A.

Following the construction of subsection 6.1, we define a rectangle map
as in [OS5]:

hαβγδ : Cαβ ⊗ Cβγ ⊗ Cγδ −→ Cαδ

hαβγδ(x⊗ p⊗ q) =
∑

y∈Tα∩Tδ

∑
ψ∈π2(x,p,q,y)

μ(ψ)=−1

(
m(ψ)u(ψ)

)
y.

Lemma 6.12. The rectangle map hαβγδ gives a chain homotopy between
the chain maps fαγδ(fαβγ(.⊗ .)⊗ .) and fαβδ(.⊗ fβγδ(.⊗ .)) in the sense
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that

fαγδ
(
fαβγ(x⊗ p)⊗ q

)− fαβδ
(
x⊗ fβγδ(p⊗ q)

)
= ∂

(
hαβγδ(x⊗ p⊗ q)

)
+ hαβγδ

(
∂(x⊗ p⊗ q)

)
for any x ∈ Tα ∩ Tβ ,p ∈ Tβ ∩ Tγ, and q ∈ Tγ ∩ Tδ.

Proof. Once again, this is a special case of Theorem 6.8, where we put m = 4
and use the above data. �

Proof of Theorem 5.11. The proof of the independence from the choice of
the path of almost complex structures, as well as the proof of the isotopy
invariance of the filtered (A,H) chain homotopy type of CF(Σ,α,β, z; s)
is the same as the proof of the special case discussed in [OS5]. We only
need to keep track of the marked points, and that the constructed chain
homotopy equivalence respects the decomposition into relative Spinc classes
in Spinc(X, τ). The same is almost true for the handle slides supported away
from the marked points. We will present the proof in this case, to give an
illustration of the procedure, which involves the use of holomorphic triangles
and squares introduced above.

Fix a Spinc class s ∈ Spinc(X) and let s ∈ s ⊂ Spinc(X, τ) be a fixed
relative Spinc class in s. To prove the handle slide invariance consider the
Heegaard quadruple (Σ,α,β,γ, δ, z) where γ and δ are obtained from β
as follows. Let β = {β1, . . . , β�}. Then we let δi to be a small Hamiltonian
isotope of βi for i = 1, . . . , � which cuts it in a pair of transverse cancelling
intersection points. Similarly, for i = 2, . . . , �, we let γi be a small Hamil-
tonian isotope of βi which cuts either of the curves βi and δi in a pair of
transverse cancelling intersection points. Finally, we let γ1 be the simple
closed curve obtained by first moving β1 by a small Hamiltonian isotopy,
and then taking its handle slide over β2. We may assume that γ1 cuts either
of β1 and δ1 in a pair of canceling intersection points, while it is disjoint
from the rest of the curves βi, γi and δi. We let

γ =
{
γ1, . . . , γ�

}
and δ =

{
δ1, . . . , δ�

}
.

Consider the (admissible) Heegaard diagram (Σ,β,γ, z), which is a stan-
dard Heegaard diagram of the type studied in Subsection 6.2. Note that all
marked points which are in the same connected component of Σ− β or
Σ− γ are in the same connected component of Σ− β − γ. Let Θβγ be the
top generator of the complex CF(Σ,β,γ, z; s0) corresponding to its canoni-
cal Spinc structure. This generator is represented by the intersection point
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in Tβ ∩ Tγ which contains positive intersection points between the corre-
sponding curves βi and γi. Similarly, associated with the Heegaard diagram
(Σ,β, δ, z) the top generator of the homology is denoted by a Θβδ, and is
represented by the positive intersection points between the corresponding
curves βi and δi. Finally, Θγδ is defined in a similar way. We may consider
Θβγ ,Θγδ and Θβδ as generators of the complexes Cβγ , Cγδ and Cβδ respec-
tively. Here, we assume sα• = s for • ∈ {β, γ, δ}, and that

sβγ = sβδ = sγδ = s0

is the canonical Spinc structure on Xβγ = Xγδ = Xβδ.
Note that Θβγ ,Θγδ and Θβδ are connected to each other by a natural

triangle class Δα of small area. Moreover, for any fixed x ∈ Tα ∩ Tβ with
s(x) ∈ s, we have a generator I(x) ∈ Tα ∩ Tδ, determined by the closest
intersection points in Tα ∩ Tδ to x. Similarly, there is a generator J(x) in
Tα ∩ Tγ determined as the closest intersection points between α and γ to
x. There is a triangle class Δγ connecting Θβδ, x and I(x) with very small
area. Similarly, there is a triangle class Δδ connecting Θβγ , x and J(x)
with very small area. Finally, there is a triangle class Δβ which connects
I(x), J(x) and Θγδ. Let � be the square class Δγ �Δα. Then � may also
be degenerated as � = Δδ �Δβ . The data

P =
{
�,Δα,Δβ ,Δγ ,Δδ

}
thus gives a coherent system T of Spinc classes of polygons for the Heegaard
quadruple, which will be implicit for the rest of the construction.

Lemma 6.13. If the Heegaard diagram H = (Σ,α,β, z) is s-admissible
then the Heegaard quadruple H = (Σ,α,β,γ, δ, z) is T-admissible.

Proof. We will prove the lemma for the class of �. The rest of the admissi-
bility claims are similar, and in fact simpler. Let us denote the small periodic
domains constructed as the domain bounded between βi and δi by Qi for
i = 1, . . . , �. Thus Qi is the difference of two bi-gons. Similarly, let Qi+� be
the domain bounded between βi and γi for i = 2, . . . , �, and Q�+1 be the
domain bounded between β1, γ1 and β2, as in the previous subsection. We
will thus have⎧⎪⎨⎪⎩

∂Qi = βi − δi, for i = 1, . . . , �,

∂Qi+� = βi − γi, for i = 2, . . . , �, and

∂Q�+1 = β1 + β2 − γ1.
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Finally, let A1, . . . , Ak, B1, . . . , Bl,P1, . . . ,Pm be the periodic domains
corresponding to (Σ,α,β, z). As before Σ−α =

∐
Ai and Σ− β =

∐
Bi.

It may be checked then that the space of periodic domains for the Hee-
gaard diagrams (Σ,β,γ, z), (Σ,β, δ, z) and (Σ,γ, δ, z) is generated by the
following periodic domains respectively〈

B1, . . . , Bl,Q�+1, . . . ,Q2�

〉
,

〈
B1, . . . , Bl,Q1, . . . ,Q�

〉
and〈

B̂1, . . . , B̂l,Q1 +Q2 −Q�+1,Q2 −Q2+�, . . . ,Q� −Q2�

〉
.

Here, B̂i is the domain obtained from Bi by adding an appropriated combi-
nation of Qj , j = 1, . . . , �, so that its boundary is supported on the curves
in δ.

Let us now assume that we have a periodic domain P with u(P) �= 0 and

P = Pαβ + Pβγ + Pγδ + Pαδ ≥ 0,〈
c1(s), H(Pαβ)

〉
+

〈
c1(s0), H(Pβγ)

〉
+
〈
c1(s0), H(Pγδ)

〉
+

〈
c1(s), H(Pαδ)

〉
= 0.

Then P may then be written as

P =

k∑
i=1

aiAi +

l∑
i=1

biBi +

m∑
i=1

piPi +

2�∑
i=1

qiQi.

With the above notation fixed, computing the evaluation of Spinc classes
over the periodic domains (i.e. re-writing the last equation above) we obtain

0 =

k∑
i=1

ai(2− 2g(Ai)) +

l∑
i=1

bi(2− 2g(Bi)) +

m∑
i=1

pi
〈
c1(s), H(Pi)

〉
,(14)

since the Maslov index of all Qi are zero for all Spinc structures, according
to Lipshitz’s index formula [Lip].

Let us set

Q =

k∑
i=1

aiAi +

l∑
i=1

biBi +

m∑
i=1

piPi.

Then Q is a periodic domain for the Heegaard diagram (Σ,α,β, z), with
P −Q only consisting of the domains with very small area. The assumption
P ≥ 0 thus implies that Q ≥ 0. Furthermore u(Q) = u(P), since no marked
point lives in the small domains. Equation 14 implies that 〈c1(s), H(Q)〉 = 0.
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The s-admissibility of of the Heegaard diagram (Σ,α,β, z) thus implies that
Q = 0. As a result,

P =

2�∑
i=1

qiQi ≥ 0.

It is then an easy combinatorial exercise to check from this last equality that
all qi need to vanish. We have thus shown that P = 0. This completes the
proof of the admissibility claim. �
Finally, the last step towards defining the holomorphic triangle map and
the holomorphic square map using the Heegaard diagram H is choosing the
orientation. Note that the choice of orientation over the Heegaard diagrams
(Σ,α,β, z), (Σ,α,γ, z), and (Σ,α, δ, z) may be done without any restric-
tion, and we may thus choose the system of orientations corresponding to
the Heegaard diagram (Σ,α,β, z) (and correspondingly, the induced orien-
tation corresponding to (Σ,α, δ, z)), as well as the system of orientations
corresponding to (Σ,α,γ, z) to be our preferred choice of orientation. Ori-
enting the triangles and the square in T will then provide us with a coherent
system o of orientations for the Heegaard diagram H.

We may thus define the triangle and the square maps associated with
this Heegaard diagram and T. The argument of Ozsváth and Szabó from
[OS5] (Lemma 9.7) applies here to give

fβγδ(Θβγ ⊗Θγδ) = Θβδ.

We may define a map

F = Fαβγ : CF(Σ,α,β, z; s) −→ CF(Σ,α,γ, z; s)

by setting F (x) := fαβγ
(
x⊗Θβγ

)
. Since Θβγ is closed, F is a chain map.

More importantly, F respects the decomposition into relative Spinc struc-
tures, and the image of CF(Σ,α,β, z; s), for the fixed relative Spinc structure

s ∈ s ⊂ Spinc(Xαβ , ταβ) = Spinc(X, τ)

is in CF(Σ,α,γ, z; s). Let us denote by G the similar filtered (A,H) chain
map

G = Fαγδ : CF(Σ,α,γ, z; s) −→ CF(Σ,α, δ, z; s)

defined by G(y) := fαγδ
(
y ⊗Θγδ

)
. Also, define the map

H = Hαβγδ : CF(Σ,α,β, z; s) −→ CF(Σ,α, δ, z; s)



696 A. S. Alishahi and E. Eftekhary

byH(x) := hαβγδ
(
x⊗Θβγ ⊗Θγδ

)
. Checking that all the above maps respect

the relative Spinc structures is straight forward. Using Lemma 6.12, and the
fact that fβγδ(Θβγ ⊗Θγδ) = Θβδ we have

G
(
F (x)

)− fαβδ
(
x⊗Θβδ

)
= ∂

(
H(x)

)
+H

(
∂(x)

)
.

The small triangles which contribute to fαβδ(x⊗Θβδ) may be used to
show that in terms of an appropriate energy filtration we have

fαβδ
(
x⊗Θβδ

)
= I(x) + ε(x)

where ε(x) consists of a combination of generators with smaller energy than
x. This implies that there is a filtered (A,H) chain equivalence

K : CF(Σ,α, δ, z; s) −→ CF(Σ,α,β, z; s),

respecting the decomposition according to relative Spinc structures, such
that K

(
fαβδ(x⊗Θβδ)

)
= x. Thus setting G′ = K ◦G and H ′ = K ◦H we

have

G′ ◦ F − Id = H ′ ◦ ∂ + ∂ ◦H ′,

and G′ ◦ F is chain homotopic to the identity. The other composition is
similarly chain homotopic to the identity. This completes the proof of the
handle slide invariance.

The invariance under isotopy and stabilization-destabilization is com-
pletely similar to the proofs presented in Sections 7 and 10 of [OS5]. Thus
the filtered (A,H) chain homotopy type of CF(Σ,α,β, z; s) is an invariant
of (X, τ, s), and will be denoted by

CF(X, τ ; s) =
⊕
s∈s

CF(X, τ ; s). �

7. Stabilization of sutured manifolds

7.1. The analytic input

Before we start proving the main result of this section, which is a generaliza-
tion of the stabilization theorem of [OS9], we need to rephrase the statements
of Theorem 5.1, Lemma 6.3 and Lemma 6.4 from [OS9] for weakly balanced
sutured manifolds and the corresponding Heegaard diagrams.

Let (X, τ) be a sutured manifold with the Heegaard diagram (Σ,α,β, z)
and consider a point v on Σ. Let φ ∈ π2(x,y) be the homotopy class of a
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Whitney disk connecting the intersection points x and y, and assume that
nv(φ) = k ∈ Z≥0. We may define a map

ρv : M(φ) −→ Symk(D)

ρv(u) = u−1
(
v × Sym�−1(Σ)

)
Correspondingly, we may define the moduli spaces M(φ, t) and M(φ,Δ) by

M(φ, t) = M(φ, t; v) :=
{
u ∈ M(φ)

∣∣ (t, 0) ∈ ρv(u)
}

and

M(φ,Δ) = M(φ,Δ; v) :=
{
u ∈ M(φ)

∣∣ ρv(u) = Δ
}

where t ∈ [0, 1] and Δ ∈ Symk(D).
Let (X1, τ1) and (X2, τ2) be weakly balanced sutured manifolds with

the corresponding Heegaard diagrams (Σ1,α1,β1, z1) and (Σ2,α2,β2, z2).
We can form their connected sum along the points w and v on Σ1 and Σ2

to obtain a new sutured manifold (X, τ) with the corresponding Heegaard
diagram (Σ,α,β, z) where

Σ = Σ1#Σ2, α = α1 ∪α2, β = β1 ∪ β2 and z = z1 ∪ z2.

Note that Tα ∩ Tβ = (Tα1
∩ Tβ1

)× (Tα2
∩ Tβ2

). Consider two pairs of inter-
section points x1,y1 ∈ Tα1

∩ Tβ1
and x2,y2 ∈ Tα2

∩ Tβ2
. Any homology class

φ ∈ π2(x1 × x2,y1 × y2)

can be uniquely decomposed as φ = φ1#φ2 where

φ1 ∈ π2(x1,y1), φ2 ∈ π2(x2,y2) and nw(φ1) = nv(φ2).

Conversely, any pair of homology classes φ1 ∈ π2(x1,y1) and φ2 ∈ π2(x2,
y2) such that nw(φ1) = nv(φ2) can be combined to give a homology class

φ = φ1#φ2 ∈ π2(x1 × x2,y1 × y2).

Theorem 7.1. Let (X1, τ1) and (X2, τ2) be weakly balanced sutured mani-
folds with the corresponding Heegaard diagrams

(Σ1,α1,β1, z1) and (Σ2,α2,β2, z2)

respectively. Consider the weakly balanced sutured manifold (X, τ) obtained
by taking the connected sum of the two Heegaard diagrams along w and v as
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described above. For any homotopy class

φ = φ1#φ2 ∈ π2(x1 × x2,y1 × y2)

we then have

μ(φ) = μ(φ1) + μ(φ2)− 2k

where x1,y1 ∈ Tα1
∩ Tβ1

, x2,y2 ∈ Tα2
∩ Tβ2

and k = nw(φ1) = nv(φ2).
Suppose furthermore that μ(φ1) = 1, μ(φ2) = 2k, that w (respectively, v)

is in a genus zero connected component of either of Σ1 −α1 and Σ1 − β1

(respectively, Σ2 −α2 and Σ2 − β2), and that one of the following is true:

• At least one component of R(τ2) has nonzero genus and u(φ) �= 0.

• All the components of R(τ2) are genus zero components, and

�2 = |α2| = |β2| > g(Σ2).

Then assuming the fibered product

M(φ1)×Symk(D) M(φ2) =
{
u1 × u2 ∈ M(φ1)×M(φ2)

∣∣ ρw(u1) = ρv(u2)
}

of M(φ1) and M(φ2) is a smooth manifold, and taking the length of the
connected sum tube sufficiently large, there is an identification of this moduli
space with M(φ).

Proof. The proof is similar to the proof of Theorem 5.1 in [OS9]. As in that
proof we use Lipshitz’s cylindrical formulation. However, we keep the same
notation for the moduli spaces and the corresponding maps for the sake of
simplicity.

The formula for the Maslov index follows from the excision principle
for the linearized ∂ operator, using the cylindrical formulation [Lip]. For
the second part of the theorem, if all components of R(τ) are genus zero
components and �2 > g(Σ2), the proof of Theorem 5.1 from [OS9] applies
word by word. In the other case, the proof requires some modification, as
follows. We drop the details and only highlight the differences. For more
details, we refer the reader to [OS9].

Suppose that R(τ2) has a component with nonzero genus. Consider a
sequence of paths of almost complex structures {Jt(s)}s∈[1∞) on Σ1#Σ2,
where for s ∈ [1,∞) {Jt(s)}t∈[0,1] denotes the path of almost complex struc-
tures determined by a pair of generic paths of complex structures {j1t }t and
{j2t }t on Σ1 and Σ2, and by setting the neck-length equal to s. Let us assume
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that M̂Jt(s)(φ) �= ∅ as s −→ ∞. Consider a sequence of pseudo-holomorphic
curves {us}s∈Z+ such that us ∈ MJt(s)(φ). Under the assumptions μ(φ1) = 1
and μ(φ2) = 2k, and using the Gromov compactness theorem, a subsequence
of this sequence is weakly convergent to a pseudo holomorphic representative
u1 of φ1 and a broken flow-line representative of φ2. This broken flow-line
can not contain any sphere bubblings, since otherwise our assumption on
R(τ2) implies that u(φ2) = 0, and thus u(φ) = 0. Hence we may follow the
argument of Ozsváth and Szabó from here, and conclude that there is a com-
ponent u2 of this broken flow line such that u1 and u2 represents a pre-glued
Whitney disk, i.e. that

ρw(u1) = ρv(u2).

Let φ′
2 be the homotopy class represented by u2. If φ

′
2 �= φ2, the above

Gromov limit contains boundary degenerations or other flow lines. The
assumption u(φ2) �= 0 then implies that μ(φ′

2) < μ(φ2) = 2k. Let us consider
the map

ρv : M(φ′
2) −→ Symk(D).

For any point Δ ∈ Symk(D) the moduli space (ρv)−1(Δ) will have the
expected dimension equal to μ(φ′)− 2k < 0. Thus for a generic choice of
Δ ∈ Symk(D), this moduli space is empty. This observation implies that
φ′
2 = φ2, as in the proof of Theorem 5.1 from [OS9].

Thus the Gromov limit of a sequence of holomorphic representatives of
φ, as we stretch the neck, is a pre-glued flow line representing φ1 and φ2.
Conversely, given a pre-glued flow line, one obtains a pseudo-holomorphic
representative of φ in M(φ) by the gluing theorem of Lipshitz [Lip], as in the
proof of Theorem 5.1 from [OS9]. This completes the proof of Theorem 7.1.

�

Lemma 7.2. Let (X, τ) be a weakly balanced sutured manifold represented
by the Heegaard diagram (Σ,α,β, z), and let v ∈ z be one of the marked
points. Let φ ∈ π2(x,y) be the homotopy class of a Whitney disk connecting
the intersection point x to y. Assume furthermore that D(φ) ≥ 0 and that
u(φ) �= 0. If μ(φ) = 2 then M(φ, t) is generically a zero dimensional moduli
space. Furthermore, there is a number ε > 0 such that for all t ≤ ε the only
non-empty such moduli spaces M(φ, t; v) are the moduli spaces corresponding
to φ ∈ π2(x,x) where φ is obtained by splicing a boundary degeneration with
Maslov index 2 corresponding to one of the genus zero components of R+(τ)
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and a constant flow line. For any such moduli space we have

#M(φ, t; v) =

{
0 if l = 1

1 if l > 1
,

where l is the number of components in R+(τ).

Proof. Given Lemma 5.8, the proof is exactly the same as the proof of
Lemma 6.3 in [OS9]. �

Consider the Heegaard diagram (S, α, β, z), where S = S2 is the Riemann
sphere, and α and β are simple closed curves on S intersecting transversely
in two points {x, y}, and z = {z1, z2, z3, z4} where there is one marked point
in each one of the four connected components of S − α− β. Assume further-
more, that the marked points are labelled so that the bigons corresponding
to z4 and z2 do not have any edges in common, and that the edge belonging
to the common boundary of the pairs of the bigons corresponding to z1 and
z2 is on β.

Lemma 7.3. Consider the Heegaard diagram (S, α, β, z) as above. For a
generic point Δ ∈ Symk(D) (for any positive integer k), we have∑

φ∈π2k
2 (a,a)

nz4
(φ)=0

#M(φ,Δ; z2) = 1,

for a ∈ {x, y}. Moreover, if the generic set Δ = {p1, . . . , pk} of points is
chosen so that the points pi = (xi, yi) ∈ D, i = 1, . . . , k are sufficiently close
to {0} × R (i.e. xi is sufficiently small) we will have

(15)
∑

φ∈π2k
2 (a,a)

nz4
(φ)=0

#M(φ,Δ; z2)u
nz1 (φ)
1 = 1

Proof. The first claim is precisely Lemma 6.4 from [OS9]. In fact, the proof
of the second claim is almost included in the proof of Lemmas 6.3 and 6.4
in [OS9], as outlined below.

The homotopy classes φ ∈ π2k
2 (a, a) with nz4(φ) = 0 (and nz2(φ) = k)

are determined by j = nz1(φ) ∈ {0, . . . , k}. Denote the corresponding homo-
topy class by φj , and let Mj(Δ) denote the moduli space M(φj ,Δ; z2). Let
us assume that for a sequence of sets Δt = {p1(t), . . . , pk(t)}, with pi(t) =
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(xi(t), yi(t)) ∈ [0, 1]× R and xi(t) going to zero as t goes to infinity, the mod-
uli space Mj(Δt) is non-empty. Applying Gromov’s compactness theorem
to a sequence {ut}t with ut ∈ Mj(Δt) we obtain a broken flow line u in the
limit. As in the proof of Lemma 6.3 from [OS9], since z2 is disjoint from the
curves α and β, while the set u−1

t (z2) contains k points which converge to
{0} × R, we may conclude that the domain of u includes some β boundary
degenerations u1, . . . , up with

nz2(u
1) + nz2(u

2) + · · ·+ nz2(u
p) = k.

This already implies, since μ(u1) + · · ·+ μ(up) = 2k = μ(u), that

D(φj) = D(u) = D(u1) + · · ·+D(up) ⇒ j = 0.

The only class contributing to Equation 15 is thus φ0 provided that the
set Δ consists of the points sufficiently close to {0} × R. The second part of
the lemma then follows from the first part. �

7.2. Simple stabilization of a weakly balanced sutured manifold

Let us fix a weakly balanced sutured manifold (X, τ = {τ1, . . . , τκ}) and let

R−(τ) =
k⋃

i=1

R−
i and R+(τ) =

l⋃
j=1

R+
j ,

as before.

Definition 7.4. We say that a sutured manifold (X, τ̂) is obtained by a
simple stabilization of (X, τ) if τ̂ = τ ∪ {τκ+1, τκ+2} and τκ+1 and τκ+2 are
oriented simple closed curves so that −τκ+1 and τκ+2 are both parallel to an
oriented suture τi ∈ τ , where τi is in the common boundary of two genus zero
components of R(τ). Moreover, τi and τκ+1 bound an annulus in ∂X − τ̂ .

Without loss of generality, assume that i = κ, τi = τκ ∈ ∂R−
k ∩ ∂R+

l and
τκ+1, τκ+2 ⊂ R+

l . Let us denote the connected components of R+
l − (τκ+1 ∪

τκ+2) by R+
∐

R− ∐
R+

l+1, where R+ and R− are the annulus components
with the boundary sets {τκ, τκ+1} and {τκ+1, τκ+2} respectively, as illus-
trated in Figure 3.
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R+ R− R+
l+1R−

k

τκ

τκ+1

τκ+2

Figure 3: The simple stabilization of a sutured manifold. Here we have R+
l =

R+
l+1

∐
R− ∐

R+.

Note that

R−(τ̂) = R−(τ)
∐

R−, R+(τ̂) = (R+(τ)−R+
l )

∐
R+

∐
R+

l+1,

u−(τ̂) = u−(τ) + uκ+1uκ+2, u+(τ̂) = u+(τ) + uκuκ+1 + u+l+1 − u+l
(16)

where u+l+1 = u(R+
l+1). The algebra associated with (X, τ̂) is defined by

Aτ̂ =
Ãτ̂〈

u+(τ̂)− u−(τ̂)
〉
˜Aτ̂

, where

Ãτ̂ =
〈u1, . . . , uκ, uκ+1, uκ+2〉Z〈

u+i | g+i > 0
〉
Z[κ+2]

+
〈
u−j | g−j > 0

〉
Z[κ+2]

= Ãτ [uκ+1, uκ+2].

Let (Σ,α,β, z) be a Heegaard diagram for (X, τ). A Heegaard diagram
(Σ, α̂, β̂, ẑ) for (X, τ̂) may then be constructed from (Σ,α,β, z) as follows.
We set

α̂ = α ∪ {
α�+1

}
, β̂ = β ∪ {

β�+1

}
and ẑ = z ∪ {

zκ+1, zκ+2

}
,

where the additional curves α�+1 and β�+1 are isotopic simple closed curves
on Σ in the the connected component of Σ−α ∪ β containing the marked
point zκ with the following properties. We assume that #α�+1 ∩ β�+1 = 2
and that α�+1 and β�+1 bound the disks Ak+1 and Bl+1 in Σ−α− β respec-
tively. Furthermore, we assume that

zκ ∈ Bl+1 −Ak+1, zκ+1 ∈ Ak+1 ∩Bl+1 and zκ+2 ∈ Ak+1 −Bl+1.
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The picture around the marked point zκ is illustrated in Figure 4.

v

zκ+2

x

y

zκ+1 zκ

Figure 4: For simple stabilization, a pair of intersecting null-homotopic sim-
ple closed curves α�+1 and β�+1 are added to the Heegaard diagram close
to the marked point zκ. The locations of the new marked points zκ, zκ+1

and zκ+2 are illustrated in the figure. The marked point v is used as the
connected sum point of the current diagram (on a Riemann sphere) with
the old Heegaard diagram.

Note that H(Ak+1) = [S−] and H(Bl+1) = [S+] in H2(X τ̂ = X
τ̂
) where

S+ and S− are the sphere boundary components of X τ̂ corresponding to
R+ and R− in R(τ̂) respectively. In the above situation, we say that the
Heegaard diagram (Σ, α̂, β̂, ẑ) is obtained from (Σ,α,β, z) by a simple sta-
bilization.

We may define a map

ı̂ : Spinc(X, τ) −→ Spinc(X, τ̂)

as follows. Fix ŝ ∈ Spinc(X, τ̂) and let v̂ be a nowhere vanishing vector field
on X representing ŝ such that v̂|∂X = vτ̂ . Consider a neighbourhood N in
X of the annulus

R = R+ ∪R− ⊂ ∂X

together with a diffeomorphism

ψ : N −→ S1 × I × I, s.t.

ψ(R) = S1 × {0} × I and ψ∗ (v̂|N ) |S1×I×{0,1} =
∂

∂s
,
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where I = [0, 1] is the unit interval and s denotes the standard parameter on
the third component of the product S1 × I × I. The vector field ψ∗(v̂) may
be changed through an isotopy to a new vector field ψ∗(v) on S1 × I × I
with the property ψ∗(v)|S1×{0}×I = ∂

∂s , where the vector field remains fixed
through the isotopy on

(
S1 × {

1
}× I

)⋃(
S1 × I × {

0
})⋃(

S1 × I × {
1
})

.

The vector field v on N may be glued to v̂|X−N to give a vector field on
X, still denote by v, which represents an element s in Spinc(X, τ). It is
not hard to see that the above construction gives an isomorphism between
Spinc(X, τ̂) and Spinc(X, τ), and we may thus define ı̂(s) := ŝ.

We may also picture X τ̂ as the three-manifold obtained from X by
removing a pair of spheres. This gives an embedding iX : X τ̂ → X. The
suture τκ+1 gives an arc connecting the above two balls in X τ̂ . Abusing the
notation, let

i∗
X

: Spinc(X) → Spinc(X τ̂ )

denote the isomorphism obtained by first pulling back a non-vanishing vector
field fromX toX τ̂ using the embedding iX , and then modifying the resulting
vector field in a neighbourhood of the two removed balls and the arc joining
them, so that the corresponding boundary conditions are satisfied. It is then
easy to verify that the following diagram is commutative

Spinc(X, τ)
ı̂� Spinc(X, τ̂)

Spinc(Xτ )

[.]

� i∗
X� Spinc(X τ̂ )

[.]

�

.

Let (X, τ) be a weakly balanced sutured manifold, s ∈ Spinc(X) be a
Spinc class on X, and (Σ,α,β, z) be an s-admissible Heegaard diagram for
(X, τ). Let (X, τ̂) be the sutured manifold obtained by a simple stabilization
on (X, τ) and (Σ, α̂, β̂, ẑ) be the Heegaard diagram for (X, τ̂) obtained by the
simple stabilization of the Heegaard diagram (Σ,α,β, z) as above. Abusing
the notation, let

CF(Σ,α,β, s;Aτ̂ )
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denote the free module generated by Tα ∩ Tβ over Aτ̂ . Counting holomorphic
disks then gives a homomorphism of Aτ̂ modules

∂ : CF(Σ,α,β, s;Aτ̂ ) −→ CF(Σ,α,β, s;Aτ̂ ),

which satisfies

(17) (∂ ◦ ∂)(x) = (u+(τ)− u−(τ)).x, ∀ x ∈ Tα ∩ Tβ s.t. sz(x) ∈ s.

Since u+(τ)− u−(τ) is not trivial in Aτ̂ , ∂ is not a differential. However, we
will prove the following proposition in the upcoming subsection.

Proposition 7.5. With the above notation fixed, for any given Spinc class

s ∈ Spinc(X τ̂ ) = Spinc(X),

the filtered chain homotopy type of the complex CF(Σ, α̂, β̂, ẑ, s) is the same
as the filtered chain homotopy type of the chain complex obtained by equip-
ping the module

CF
(
Σ,α,β, z, i∗

X
(s);Aτ̂

)⊕ CF
(
Σ,α,β, z, i∗

X
(s);Aτ̂

)
with the differential

∂̂ =

(
∂ uκ+1 − u

uκ − uκ+2 −∂

)
, where u :=

∏
i:τi∈∂R+

l ,i 	=κ

ui ∈ Aτ̂ .

It is important to note that the relation ∂̂2 = 0 follows from Equation 17,
the fact that u.uκ = u(R+

l ) while u.uκ+2 = u(R+
l+1), and the relations in the

second line of Equation 16.

7.3. Proof of the stabilization formula

In this subsection we prove Proposition 7.5.

Proof of Proposition 7.5. Let s ∈ Spinc(X τ̂ ) be a Spinc structure on X τ̂ .
Consider a Heegaard diagram (Σ,α,β, z) for (X, τ), which is i∗

X
(s)-admissible.

Furthermore, assume that for any positive periodic domain P we have the
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following implication:

〈
c1
(
i∗
X
(s)

)
, H(P)

〉 ≤ 0 ⇒ u(P) = 0,

where the last vanishing takes place in Ãτ , rather than Aτ . The existence of
such a Heegaard diagram is guaranteed by Remark 4.6.

Let Ĥ = (Σ, α̂, β̂, ẑ) be the Heegaard diagram for (X, τ̂) obtained by a
simple stabilization on (Σ,α,β, z). We claim that this Heegaard diagram is
s-admissible. Suppose that P is a positive periodic domain corresponding
to Ĥ such that 〈c1(s), H(P)〉 = 0. Then there are integers a and b, and a
positive periodic domain P0 for H such that

P = P0 + aAk+1 + bBl+1 and nzκ(P0) = nzκ+1
(P0) = nzκ+2

(P0).

Thus P0 may be viewed as a periodic domain associated with the Heegaard
diagram (Σ,α,β, z). If nzκ(P0) = d then

〈
c1(s), (iX)∗H(P0)

〉
=

〈
c1(i

∗
X
(s)), H(P0)

〉
+ 2d.

From here we may conclude〈
c1(s), (iX)∗H(P0)

〉
= −2(a+ b)

⇒ 〈
c1(i

∗
X
(s)), H(P0)

〉
= −2(a+ b+ d) = −nzκ+1

(P0) ≤ 0.

Since the Heegaard diagram (Σ,α,β, z) is i∗
X
(s)-admissible in the

stronger sense of Remark 4.6, we conclude that u(P0) = 0 in Ãτ . The con-
dition that zκ is in the genus zero components of Σ−α and Σ− β then
implies that u(P) = 0 in Ãτ̂ . This proves the s-admissibility of the Heegaard
diagram Ĥ.

Let us consider the Heegaard diagram (Σ, α̂, β̂, ẑ) as the connected sum

(Σ,α,β, z ∪ {w} − {zκ})# (S, α�+1, β�+1, {v, zκ, zκ+1, zκ+2}) ,

where S is a sphere, w and v are the corresponding connected sum points
such that w is in the same domain as zκ in (Σ,α,β, z). Choose w so that
it is sufficiently close to one of the β curves and is sufficiently far from the
curves in α. If α�+1 ∩ β�+1 = {x, y} then Tα̂ ∩ T

̂β
= (Tα ∩ Tβ)× {x, y}, and
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for any x ∈ Tα ∩ Tβ we have

ı̂ (s(x)) = s (x× {x}) = s (x× {y}) + PD[τκ+1].

Let Cx and Cy be the submodules of CF
(
Σ, α̂, β̂, ẑ, s

)
generated by the

intersection points containing x and y respectively. Thus we have a module
splitting

CF
(
Σ, α̂, β̂, ẑ, s

)
= Cx ⊕ Cy.

The Heegaard diagram (S, α, β, {v, zκ, zκ+1, zκ+2}) then corresponds to
a sutured manifold and the corresponding ring of coefficients is

AS =
Z[uκ, uκ+1, uκ+2, uv]

〈(uκ+1 − uv)(uκ − uκ+2) = 0〉 .

The chain complex is generated by x and y. The homotopy classes of disks
with positive domains and Maslov index 1 are the four bi-gons containing
the markings. Since ∂ ◦ ∂ = 0 we should have

∂(y) = ±(uκ − uκ+2)x and ∂(x) = ±(uκ+1 − uv)y.

A more detailed consideration implies that the unique holomorphic rep-
resentatives of the bi-gons containing v and zκ+2 have the same sign, and
this same sign is opposite to the signs of the unique holomorphic represen-
tatives of the bi-gons containing zκ and zκ+1. We may thus assume that
the former two representatives get a negative sign and the latter two get a
positive sign. The alternative choice on the system of orientations results in
the same conclusion in our proof. The system of coherent orientations asso-
ciated with the Heegaard diagram (Σ,α,β, z, s), together with this (or the
alternative) system of coherent orientations for (S, α, β, {v, zκ, zκ+1, zκ+2})
gives a system of coherent orientations for (Σ, α̂, β̂, ẑ, s).

First we consider the Cx-components of the differential of the complex
on the generators of Cx. Let x× {x} be a generator of Cx and φ ∈ π2(x×
{x},y × {x}) be the homology class of a Whitney disk with μ(φ) = 1. We
may thus decompose φ as φ = φ1#φ2 where φ1 ∈ π2(x,y) and φ2 ∈ π2(x, x).
Theorem 7.1 then implies that

μ(φ) = μ(φ1) + μ(φ2)− 2k = μ(φ1) + 2nzκ+1
(φ2),

where k = nw(φ1) = nv(φ2). If M(φ) �= ∅ for long enough neck-length, then
φ2 admits holomorphic representatives and D(φ2) ≥ 0. This implies that

μ(φ2)− 2nv(φ2) = 2nzκ+1
(φ) ≥ 0,
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and that the equality happens if and only if nzκ+1
(φ) = 0. If μ(φ2)− 2nv(φ2)

> 0 then μ(φ1) ≤ −1 andM(φ1) is generically empty. Thus nzκ+1
(φ2) should

be zero and μ(φ2) = 2nv(φ2) = 2k. Theorem 7.1 then guarantees that for a
sufficiently large connected sum length, we have an identification of M(φ)
as follows.

M(φ) = M(φ1)×Symk(D) M(φ2)

=
{
u1 × u2 ∈ M(φ1)×M(φ2)

∣∣ ρw(u1) = ρv(u2)
}

⇒ #M̂(φ) =
∑

u1∈ ̂M(φ1)

#
{
u2 ∈ M(φ2)

∣∣ ρw(u1) = ρv(u2)
}
.

The coefficient of y×{x} in the expression ∂̂(x×{x}) in CF
(
Σ, α̂, β̂, ẑ, s

)
is thus equal to

∑
φ1∈π1

2(x,y)
φ2∈π2(x,x)
nκ+1(φ2)=0

nw(φ1)=nv(φ2)

u1∈ ̂M(φ1)

ε(u1)

κ−1∏
i=1

u
ni(φ1)
i

(
unκ(φ2)
κ u

nκ+2(φ2)
κ+2 #

{
u2

∣∣∣∣ u2 ∈ M(φ2)
ρw(u1) = ρv(u2)

})
,

where ε(u1) denotes the sign associated with u1 ∈ M̂(φ1) via a coherent
system of orientations for the Heegaard diagram (which is suppressed from
the notation). Suppose now that the marked point w is moved sufficiently
close to one of the β curves, as stated before. Consequently, ρw(u1) would be
a collection of k = nw(φ1) points in D which are sufficiently close to {0} × R.

Lemma 7.3 may then be used to compute the interior count of holomor-
phic curves. Since nv(φ2) = k, the total value of the above sum is thus equal
to ∑

φ1∈π1
2(x,y)

∑
u1∈ ̂M(φ1)

ε(u1)

(
κ∏

i=1

u
ni(φ1)
i

)
,

which is the coefficient of y in ∂x in CF(Σ,α,β, z, s;Aτ̂ ). With the same
argument, the Cy-component of the differential of the generators in Cy is
identified with the differential of Cy = CF(Σ,α,β, z, s;Aτ̂ ).

We now consider the Cx-component of the differential of a generator in
Cy. For any φ ∈ π2(x× {y},y × {x}) we can write φ = φ1#φ2. By Theo-
rem 7.1 if μ(φ) = 1 then μ(φ1) + μ(φ2)− 2nv(φ2) = 1. By Lipshitz’ Index
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formula we have

μ(φ2) = 2nv(φ2) + 2nzκ+1
(φ2) + 1.

This implies that μ(φ2)− 2nv(φ2) ≥ 1, and that the equality holds if and
only if nzκ+1

(φ2) = 0. This last equality should thus be satisfied and μ(φ1) =
0. Hence φ1 is constant, μ(φ2) = 1 and nv(φ2) = 0. These conditions imply
that the possible domains for φ2 are two different bi-gons in S connecting y to
x, which contain zκ and zκ+2 respectively. For either of these bi-gons M̂(φ2)
consists of one element, while the orientation assignment for these two bi-
gons are different, and determined by our choice of the system of orientations
above. The coefficient of y × {x} in ∂̂ (x× {y}) is thus uκ − uκ+2, i.e. the Cx-
component of the differential of the generators in Cy corresponds to scalar
multiplication by uκ − uκ+2.

Finally, we consider the Cy-component of the differential of a generator in
Cx. Again, degenerate φ ∈ π2(x× {x},y × {y}) with μ(φ) = 1 and u(φ) �= 0
as the connected sum φ = φ1#φ2. We thus have μ(φ1) + μ(φ2)− 2nv(φ2) =
1, implying μ(φ2)− 2nv(φ2) ≤ 1. By Lipshitz’ index formula we have

μ(φ2) = 2nv(φ2) + 2nzκ+1
(φ2)− 1,

which implies that μ(φ2) is an odd number and μ(φ2)− 2nv(φ2) ≥ −1. Thus
μ(φ2)− 2nv(φ2) is equal to 1 or -1.

If μ(φ2)− 2nv(φ2) = 1 then μ(φ1) = 0. Thus φ1 is constant and D(φ) is

the bi-gon containing zκ+1. In this case #M̂(φ) = 1. Thus the corresponding
component of the differential, as a map from Cx to Cy, is given by

∂1
xy : Cx −→ Cy

∂1
xy(x× {x}) := uκ+1(x× {y}).

The second possibility is the case where μ(φ2)− 2nv(φ2) = −1. If μ(φ2) =
nv(φ2) = 1 then μ(φ1) = 2 and nw(φ1) = 1. If furthermore R(τ) has at least
one component with nonzero genus then by Theorem 7.1 for sufficiently large
connected sum length M(φ) is identified with

M(φ1)×D M(φ2) =
{
u1 × u2 ∈ M(φ1)×M(φ2)

∣∣ ρw(u1) = ρv(u2)
}

=
{
u1 × u2 ∈ M(φ1)×M(φ2)

∣∣ ρw(u1) = u−1
2 (v)

}
.

Now μ(φ2) = nv(φ2) = 1 implies that the domain of φ2 is the bi-gon in S
containing v and thus it has a unique holomorphic representative up to trans-
lation. We can fix a holomorphic representative u2 such that u−1

2 (v) = (t, 0).
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Since our system of coherent orientations is induced from a coherent sys-
tem of orientations on (S, α, β, {v, zκ, zκ+1, zκ+2}) where the sign associated
with the unique (upto translation) holomorphic representative of the bi-gon
containing v is −1 we find

#M̂(φ) = −#
{
u1 ∈ M(φ1)

∣∣ ρw(u1) = (t, 0)
}

= −#M(φ1, t).

Let us now assume that the point v is chosen very close to the curve β.
By Lemma 7.2, for t sufficiently small M(φ1, t) is nonempty if and only if
φ1 ∈ πβ

2 (x) is the class of a β boundary degeneration. If furthermore l > 1
then #M(φ1, t) = 1. Thus this case contributes to the Cy-component of the
restriction of the differential to Cx via a map

∂2
xy : Cx −→ Cy

∂2
xy (x× {x}) = −

⎛⎝ ∏
τκ 	=τi∈∂R+

l

ui

⎞⎠ . (x× {y}) .

Similarly, if l = 1 then ∂2
xy(x× {x}) = 0.

To deal with the other terms corresponding to the homotopy classes φ
with nv(φ2) > 1 we define a one parameter family of connected sum points
v(r) on S such that when r goes to infinity, v(r) tends towards a point v∞
on the curve β.

LetMr(φ) be the moduli space of holomorphic representations of φ when
we used the connected sum point v(r) in S. Assume that for a sequence {ri}
converging to infinity, the moduli space Mri(φ) �= ∅ for all choice of con-
nected sum length. For sufficiently large connected sum length the moduli
space Mri(φ) is identified with the fibered product M(φ1)×Symk(D) M(φ2).

Consider a sequence ui1 × ui2 in the fibered product. Let u∞1 and u∞2 be Gro-
mov limits of {ui1} and {ui2}. The assumption μ(φ1) = 2 implies that there
are three possible types for the limit u∞1 . The limit can be a holomorphic
disk or a singly broken flow line or it can contain a boundary degeneration.
If it contain a boundary degeneration, u(φ) �= 0 implies that the remaining
component has Maslov index zero and it should be constant. Thus k = 1
and this situation is already considered in the previous case.

If u∞1 is not a broken flow line and it is a holomorphic disk, u∞2 has a
component u∞2 such that ρw(u∞1 ) = ρv(u∞2 ). Since v(ri) tends toward v∞ on
β, ρv(u∞2 ) includes some points on {0} × R. Thus for large i, ρw(ui1) contains
points sufficiently close to {0} × R. By Lemma 7.2 the holomorphic curve ui1
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should be a boundary degeneration for i sufficiently large. This implies that
k = 1 and again, we are within the cases considered earlier, and there is no
new contribution to the Cy-component of the restriction of the differential
to Cx from this case.

Finally, if u∞1 is a broken flow line (i.e. it is of the form u∞1 = a � b and
μ(a) = μ(b) = 1) then u∞2 degenerates, correspondingly, as u∞2 = a′ � b′. The
Maslov index of φ2 is odd, thus one of a′ and b′ has odd Maslov index.
Let us assume that μ(a′) is odd. Then (a′)−1(v∞) contains some points on
{0} × R. If a is the holomorphic representative of a homology class φ′

1 of
a Whitney disk, then for r sufficiently large M(φ′

1) includes holomorphic
representatives ar such that ρw(ar) contains points of distance less than 1/r
to {0} × R. Since μ(φ′

1) = 1, φ′
1 has finitely many holomorphic representative

up to translation. Thus for any holomorphic representative u of φ′
1, ρ

w(u)
does not include points arbitrary close to {0} × R, since w is not on β.

Gathering the above considerations, we observe that if either of the two
assumptions in the second part of Theorem 7.1 is satisfied the Cy component
of the restriction of the differential to Cx is given by the map

∂xy : Cx −→ Cy

∂xy (x× {x}) = ∂1
xy (x× {x}) + ∂2

xy (x× {x})

= uκ+1(x× {y})−
⎛⎝ ∏

γκ 	=γi∈∂R+
l

ui

⎞⎠ . (x× {y})

= (uκ+1 − u) (x× {y}),

provided that the path of almost complex structures is chosen by setting the
connected sum length equal to a sufficiently large real number. The proof in
the case where all the components of R(τ) have genus zero and �2 = g(Σ)
is exactly the same as the last part of the proof of Proposition 6.5 in [OS9].
This completes the proof of Proposition 7.5. �

8. A triangle for sutured Floer complex

8.1. The triangle associated with the surgery Heegaard
quadruple

Let us assume that Σ is a closed Riemann surface of genus g and that

α =
{
α1, . . . , α�

}
and β0 =

{
β1, . . . , β�−1

}



712 A. S. Alishahi and E. Eftekhary

are collections of disjoint simple closed curves on Σ. Let μi, i = 0, 1, 2 be
three oriented simple closed curves which are disjoint from β0, and mutu-
ally intersect each other in single transverse points, so that the intersection
numbers μ0.μ1, μ1.μ2 and μ2.μ0 are equal to 1. We will assume that

μ1 ∩ μ2 =
{
p0

}
, μ2 ∩ μ0 =

{
p1

}
and μ0 ∩ μ1 =

{
p2

}
.

Furthermore, suppose that the three intersection points p0, p1 and p2 are the
vertices of a small triangle Δ, which is one of the connected components in

S = Σ−α− β0 −
{
μ0, μ1, μ2

}
.

Let z = {z0, . . . , zκ} be a collection of marked points in S. We choose the
marked points z0, z1 and z2 outside Δ and very close to its edges, so that z0 is
close to the edge e0 connecting p1 to p2, z1 is close to the edge e1 connecting
p2 to p0, and z2 is close to the edge e2 connecting p0 to p1. Finally, we will
fix a marked point p in Δ for further reference. We will denote by w the set
of marked points w = {z3, . . . , zκ}. We will assume that the component A
of Σ−α which contains the marked point p (and thus the marked points
z0, z1 and z2) is a genus zero component. Furthermore, we will assume that
Σ− β0 − {μ0, μ1, μ2} consists of a pair of triangles bounded between the
curves μ0, μ1 and μ2 which will be denoted by Δ and Δ′, a component B
of genus zero containing the marked points z0, z1, . . . , zm (with m ≤ κ), and
a union of periodic domains B2, . . . , Bl with boundary in β0. Moreover, Δ
is the connected component of S containing the marked point p which was
considered earlier, and Δ′ does not contain any marked points. The notation
is illustrated in Figure 5.

Consider the Heegaard diagrams

Hi =
(
Σ,α,βi = {βi

1, . . . , β
i
�−1, μi}, zi = w ∪ {zi, p}

)
, i ∈ {0, 1, 2},

where we assume that βi
j are small Hamiltonian isotopes of the curve βj , for

i = 0, 1, 2, so that any pair of curves in {β0
j , β

1
j , β

2
j } intersect each-other in

a pair of transverse canceling intersection points for j = 1, . . . , �− 1. This
Heegaard diagram determines a sutured manifold which will be denoted by
(X, τ i). Similarly, suppose that (Y, ς i) is the sutured manifold obtained by
extending the set of marked points to {p} ∪ z in Hi. The three-manifolds Y
and X do not depend on i and would be the same for i = 0, 1, 2. In fact,
instead of gluing a disk to μi, one may fill out the suture τp corresponding
to the marked point p. The identification is illustrated in Figure 6 for Y .
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μ0

μ1

μ2

z2
p1

p0

z0

z1
p2

p

Figure 5: A neighbourhood of the curves μ0, μ1 and μ2 is illustrated. One
should take the connected sum of the torus obtained by identifying the
opposite edges of the rectangle, with another Riemann surface to obtain the
Heegaard surface Σ. The attaching circle of the connected sum tube lands
in the shaded area in the lower left corner of the figure. The α curves live
close to the boundary of the rectangle, or on the Riemann surface which is
attached to this torus. The marked points {p, z0, z1, z2} and the intersection
points p0, p1 and p2 are illustrated.

Furthermore, the orientation of the the curve μi may be used to identify
the spaces of relative Spinc structures associated with the sutured manifolds
(X, τ i), and we may thus fix the identifications

(18) Spinc(X, τ0) = Spinc(X, τ1) = Spinc(X, τ2).

The identification in Equation 18 is done as follows. The assumptions on
the Heegaard diagrams imply that, associated with the sutured manifolds
(X, τ i), i = 0, 1, 2, the marked points p and zi correspond to a pair of parallel
sutures τp and τi on the boundary of the three-manifold X. Denote by (X, τ)
the unbalanced sutured manifold obtained by removing these two sutures
from the boundary of X. Clearly τ does not depend on i ∈ {0, 1, 2}. The
vector fields vτ i on ∂X × {0} and vτ on ∂X × {1} give a vector field defined
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on the boundary of ∂X × [0, 1] with values in the tangent space of this three-
manifold. This vector field may be extended, in a natural way, to the interior
of ∂X × [0, 1]. In fact, let R � (−1, 1)× S1 denote a neighbourhood of the
annulus bounded by the sutures τp and τi on ∂X. The vector fields vτ and
vτ i agree on ∂X −R. It is thus enough to do the extension on R× [0, 1].
Denote by v the vector field ∂/∂θ on

R×
{
1

2

}
= (−1, 1)× S1 ×

{
1

2

}
,

where θ denotes the coordinate on S1 which is compatible with the orien-
tation of the sutures τp and τi, as determined by the orientation of μi. In
the standard Euclidean model, the angle between the vector fields v and vτ i

is less than π (and is in fact always equal to π/2). We may thus smoothly
isotope vτ i to v on R× [0, 1/2]. Similarly, the angle between the vector fields
v and vτ is less than π (and is again equal to π/2). We may thus smoothly
isotope v to vτ on R× [1/2, 1]. The two isotopies may be kept constant close
to (∂R)× [0, 1] to produce a natural vector field w on (∂X)× [0, 1] which
connects vτ i and vτ . Using this vector field we obtain the identifications of
Equation 18.

The algebra Aςi is independent of i. We will denote by A the quotient

A =
Aςi〈

up = 1
〉 , i = 0, 1, 2,

where up denotes the variable corresponding to p. In fact, passing to this
quotient means that we are forgetting the marked point p in the Heegaard
diagram. Let us denote the generator corresponding to the marked point zj
by uj , for j = 0, 1, . . . , κ. Denote the generator associated with the marked
point zj in Aτ i by vj for j = 3, . . . , κ, and denote the generator associated
with zi and p by v1 and v2 respectively. Each Heegaard diagram Hi deter-
mines an embedding of Ai = Aτ i in A. More precisely, we may define

ıi : Ai ↪→ A, ıi(vj) =

⎧⎪⎨⎪⎩
ui if j = 1
u0u1u2

ui
if j = 2

uj if 3 ≤ j ≤ κ

.

Note that A0,A1 and A2 are isomorphic. However, the index is used to
distinguish them as sub-rings of A, using the embeddings ıi : Ai ↪→ A, i =
0, 1, 2.
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pzi

zi

p

A.

B.

C.

zi

μi

χi

Figure 6: Instead of attaching a 2-handle along μi, the suture which corre-
sponds to the marked point p may be filled. In part A, a 2-handle is attached
to μi (think of Y as the three manifold outside the torus and above the plane
illustrated in this picture). Then we slide the 1-handle corresponding to p
over the 1-handle corresponding to zi, as illustrated in part B. The result,
after smoothing the appropriate corners, is the picture illustrated in part C,
in which the suture corresponding to p is filled out and instead, no 2-handle
is attached to μi. The picture corresponds to the case m = 2.

Let Dα denote a set of � copies of D2 × [−ε, ε] (for some small positive
real number ε) corresponding to the curves in α, and Dβ0

denote a set of �− 1
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copies of D2 × [−ε, ε] corresponding to curves in β0. Denote small tubular
neighbourhoods of the curves inα and the curves in β0 by nd(α) and nd(β0),
respectively. These neighbourhoods may be identified with subsets of ∂Dα

and ∂Dβ0
respectively. Under the identification of Y with the three-manifold(

[0, 1]× (
Σ \ nd(z))) ⋃

nd(α)×{0}
Dα

⋃
nd(β0)×{1}

Dβ0
,

each marked point zj determines an oriented simple closed curve on the
boundary of Y . The Poincaré dual of this curve determines an element χj ∈
H2(Y, ∂Y ;Z) for 3 ≤ j ≤ �. For i ∈ {0, 1, 2} we will denote the element of
H2(Y, ∂Y ;Z) corresponding to the marked point zi by ηi. The assumptions
on the Heegaard diagram imply that

(η0 + η1 + η2) + (χ3 + · · ·+ χm) = 0.

The particular case where m = 3, or equivalently w ∩B = ∅, is of par-
ticular interest. We will denote η0 + η1 + η2 by η. The Poincaré duals of the
curves corresponding to the marked point zj in (Y, ς i) will be denoted by
χ(i, j), for i = 0, 1, 2 and 0 ≤ j ≤ �. Furthermore, let χi denote the Poincaré
dual PD[μi] of the simple closed curve μi ⊂ ∂Y for i = 0, 1, 2. One may check
that

χ(i, j) =

⎧⎪⎨⎪⎩
χj if j ∈ {3, . . . , κ}
ηj if j �= i and j ∈ {0, 1, 2}
χi + ηi if j = i

Associated with any of the Heegaard diagrams Hi, i = 0, 1, 2 (and inde-
pendent of i) we define a filtration map

χ : G(A) −→ H2(Y, ∂Y ;Z), χ(uj) := χj for j ∈ {0, 1, . . . , κ}.

Note that with this assignment we may compute

χ ◦ ıi
⎛⎝ κ∏

j=1

v
ij
j

⎞⎠ = (i1 − i2)χi +

κ∑
j=3

ijχj = χτ i

⎛⎝ κ∏
j=1

v
ij
j

⎞⎠− i1ηi,

for all i ∈ {0, 1, 2}. Consider the following Z module associated with the
three-manifold Y :

H :=
H2(Y, ∂Y ;Z)〈
η0, η1, η2

〉
Z
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which acts by translation on either of

Spinc(X, τ i)

〈η〉 =
Spinc(Y, ς i)

〈η0, η1, η2, 〉 .

Abusing the notation, we will denote this later quotient by Spinc(X, τ).
When η = 0 in H2(X, ∂X;Z) (e.g. when m = 2) the quotient maps

Spinc(X, τ i) → Spinc(X, τ), i = 0, 1, 2

are bijections. The above observation implies that the composition of χ ◦ ıi
with the projection over H is the same as the composition of χτ i with the
projection map from H2(X, ∂X;Z) to H.

We continue to denote the image of χi ∈ H2(Y, ∂Y ;Z) in H by χi. The
filtration map χ : G(A) → H2(Y, ∂Y ;Z) may be composed with the quotient
map from H2(Y, ∂Y ;Z) to H to define a new filtration map, yet denoted by
χ. Clearly, H acts on S = Spinc(X, τ) by translation. We may abuse the
notation and define

Spinc(X) =
Spinc(X, τ)

〈χ0, χ1, . . . , χκ〉 .

Thus, Spinc(X) is a natural quotient of any of Spinc(X
τ i

). We fix a class
s ∈ Spinc(X) for the rest of this section. We assume that the Heegaard dia-
grams Hi, i = 0, 1, 2 are s-admissible. In fact, we will drop the admissibility
issues, as well as orientation issues, from our discussion in the remainder of
this section. Taking care of these issues is completely straight forward, and
follows the lines of the arguments given in the earlier sections.

For i = 0, 1, 2, consider the filtered (A,H) chain complex

CFi(s) : = CF(X, τ i, s)⊗Ai
A =

〈
x
∣∣x ∈ Tα ∩ Tβi and szi(x) ∈ s

〉
A
.

The set of marked points z = {z0, . . . , zκ} defines a map

uz :

3∐
i=0

∐
x,y∈Tα∩Tβi

π2(x,y) −→ G(A), uz(φ) :=

κ∏
i=0

u
ni(φ)
i .

The differential ∂i of the complex CFi(s), as an A-module homomorphism,
is then defined by

∂i
(
x
)
:=

∑
y∈Tα∩Tβi

∑
φ∈π1

2(x,y)

(
m(φ)uz(φ)

)
.y.
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We define a map from the set of generators of CFi(s) to S by setting

si : G(A)× (Tα ∩ Tβi) −→ S

si(u.x) := szi(x) + χ(u).

Abusing the notation, we will sometimes denote si(u.x) by s(ux) = s(x) +
χ(u), dropping the index i from the notation.

Lemma 8.1. If a generator u.y, with u ∈ G(A), appears with non-zero coef-
ficient in ∂i

(
x
)
, we will have si(x) = si(u.y) in S.

Proof. Without loosing on generality, let us assume that i = 0. Suppose that
s(x), s(y) ∈ s, and that there is a Whitney disk φ ∈ π2(x,y) contributing
to ∂0(x) with u = uz(φ). Then we will have n1(φ) = n2(φ) = np(φ). The
existence of this disk implies that

s(x) = s(y) +
(
n0(φ)− np(φ)

)
χ0 +

κ∑
j=3

nj(φ).χj

⇒ s0(x) = s0(y) + χ

⎛⎝ κ∏
j=0

u
nj(φ)
j

⎞⎠ = s0(u.y).

For the equality in the second line, we use the relation χ0 + χ1 + χ2 = 0. �
The above assignment of relative Spinc structures is thus respected by

the differential ∂i of CFi(s), and CFi(s) is thus decomposed as

CFi(s) =
⊕

s∈s⊂S

CFi(s).

Associated with the Spinc class s, we will describe a triangle of chain
maps

(19)

CF0(s)
fs2 � CF1(s)

CF2(s)
�

fs 0

�

f s
1

such that the compositions fsi+1 ◦ fsi , i ∈ Z
3Z = {0, 1, 2} are chain homotopic

to zero.
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To define fsi−1, note that the special Heegaard diagram (Σ,βi,βi+1, z)
is admissible for all the corresponding Spinc classes (c.f. the arguments of
Subsection 6.2). We may thus compute

CF (Li−1, νi−1;A) = CF(Σ,βi,βi+1, z)⊗ A

where (Li−1, νi−1) is the sutured manifold corresponding to the special Hee-
gaard diagram (Σ,βi,βi+1, z). There is a unique Spinc class

si−1 ∈ Spinc
(
Li−1

)
, c1(si−1) = 0,

as well as a top generator Θi−1 corresponding to si−1 (which is a closed ele-
ment) in the above Heegaard Floer complex. The generator Θi−1 is obtained
as the union of pi−1 and the positive intersection points of βi

j and βi+1
j for

j = 1, . . . , �− 1. The generator Θi−1 corresponds to a relative Spinc class
which will be denoted by si−1 ∈ si−1. Consider the holomorphic triangle
map

fs
i−1 : CFi(s)⊗A CF(Σ,βi,βi+1, z; si−1;A) −→ CFi+1(s).

On a generator x⊗ q of the left hand side, with x ∈ Tα ∩ Tβi and q a
generator corresponding to the Spinc class si−1, f

s
i−1(x⊗ q) is defined by

fs
i−1

(
x⊗ q

)
:=

∑
y∈Tα∩Tβ

∑
Δ∈π0

2(x,q,y)

(
m(Δ)uz(Δ)

)
y,(20)

where π0
2(x,q,y) denotes the subset of π2(x,q,y) consisting of the triangle

classes Δ such that μ(Δ) = 0. The map fs
i−1 is then extended, as an A-

module homomorphism, to all of CFi(s)⊗A CF(Σ,βi,βi+1, z; si−1;A). One
should also fix the Spinc class of the triangles contributing to the sum in
Equation 20. Let us assume that the intersection points xi ∈ Tα ∩ Tβi for
i = 0, 1, 2 are fixed so that si(xi) ∈ s ⊂ S. Furthermore, assume that, after
possible re-labelling of the curves in α, we have

xi =
{
xi1, . . . , x

i
�

}
, xij ∈

{
αj ∩ βi

j if 1 ≤ j < �

α� ∩ μi if j = �
.

Also, for j = 1, . . . , �− 1, we will assume that x0j , x
1
j and x2j are very close

to each other, and correspond to one another by the Hamiltonian isotopies
considered above.
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We may always change the α curves in the Heegaard diagram by iso-
topy so that the above condition is satisfied. In order to specify the class
of triangles used in Equation 20, we need to specify triangle classes Δi ∈
π2(x

i+1,Θi,x
i−1) for any i ∈ Z

3Z = {0, 1, 2}. The domain D(Δi) consists of
a union of � triangles. The first �− 1 triangles are small triangles deter-
mined by the small Hamiltonian isotopy changing the simple closed curves
in βi+1 − {μi+1} to those in βi−1 − {μi−1}. Two of the vertices of the j-
th triangle are the intersection points xi+1

j and xi−1
j , while the last vertex

belongs to the top generator Θi. The �-th triangle connects three intersection
points between μi, μi+1 and α� ∈ α. With this notation fixed, let

D = D(Δ0) +D(Δ1) +D(Δ2).

We assume that no α curve appears in ∂D. Furthermore, we may assume
that np(D) = −1 while nj(D) = 0 for j = 0, 1, . . . , κ. The 2-chain D is then

the domain of a triangle class Δ̂ ∈ π2(Θ0,Θ1,Θ2) with small area. Note that
achieving all these properties may be done through a correct choice of the
last triangle among the � triangles chosen above.

The choice of this last triangle class (with the above properties) deter-
mines how the map fs

i−1 changes the relative Spinc classes. We will specify
this last choice after the following lemma.

Lemma 8.2. There exists a cohomology class hi ∈ H for i = 0, 1, 2 with the
following property. If for a generator x of CFi(s) we have

s(x) = s ∈ s ⊂ S,

and for the intersection point q ∈ Tβi ∩ Tβi+1 we have s(q) = si−1, then

fs
i−1

(
x⊗ q

) ∈ CFi+1(s+ hi−1).

Furthermore, the cohomology classes satisfy h0 + h1 + h2 = 0.

Proof. Once again, it suffices to prove the lemma for i = 0. The cyclic sym-
metry of all definitions then implies the lemma in general. Let q ∈ Tβ0 ∩ Tβ1

be an intersection point corresponding to the relative Spinc class s2. Sup-
pose that y ∈ Tα ∩ Tβ1 is a generator and Δ ∈ π2(x,q,y). Using the fact
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that n2(Δ) = np(Δ) we then have

s0(x) =
(
s(y) + h2

)
+

(
n0(Δ)− np(Δ)

)
χ0

+
(
n1(Δ)− np(Δ)

)
χ1 +

κ∑
j=3

nj(Δ)χj

=
(
s1(y) + h2

)
+

κ∑
j=0

nj(Δ)χj = s1(uz(Δ).y) + h2.

Here h2 is a cohomology class in H which depends on the choice of the
triangle classes

Δi−1 ∈ π2(xi,Θi−1,xi+1), i ∈ {0, 1, 3} =
Z

3Z

corresponding to the Heegaard diagrams (Σ,α,βi,βi+1, z) defined earlier.
We have assumed that the triangle classes are chosen so that

D = D(Δ0) +D(Δ1) +D(Δ2) = −D(Δ̂)

is the domain of the triangle class Δ̂ ∈ π2(Θ0,Θ1,Θ2) so that np(D) = −1
and nj(D) = 0 for j = 0, . . . , κ. The above computation then implies that

s0(x0) = s1 (uz(Δ2).x1) + h2

= s2 (uz(Δ0)uz(Δ2).x2) + h0 + h2

= s0 (uz(Δ0)uz(Δ1)uz(Δ2).x0) + h0 + h1 + h2.

= s0
(
uz(Δ̂).x0

)
+ h0 + h1 + h2.

⇒ 0 = h0 + h1 + h2.

This completes the proof of the lemma. �
In fact, the choices of the triangle classes Δ0 and Δ1 (which forces the choice
of triangle class Δ2 via the relation Δ̂ �Δ1 = Δ0 �Δ2), may be made so that
with the notation of the above lemma we have

fs
i

(
x⊗ q

) ∈ CFi−1(s), ∀ i ∈ Z

3Z
,

or equivalently, hi = 0. This last condition determines the triangle classes in
a unique way. The closed top generator

Θi−1 ∈ CF (Li−1, νi−1; si−1)⊗ A
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may then be used to define the map fsi−1 by

fsi−1 : CFi(s) −→ CFi+1(s), fsi−1(x) := fs
i−1(x⊗Θi−1).

For a relative Spinc class s ∈ s ⊂ S, the restriction of fsi to CFi+1(s) ⊂
CFi+1(s) will be denoted by f

s
i . Lemma 8.2 implies that the image of f

s
i is

in CFi+2(s).
Straight forward arguments in Heegaard Floer homology (c.f. Section 7

of [OS5]) may be used to show the following proposition, using the closed-
ness of the generators Θ0,Θ1 and Θ2:

Proposition 8.3. The maps f
s
i for s ∈ s ⊂ S, as defined above, are all

chain maps, which are induced by the (A,H) chain maps

fsi : CFi+1(s) −→ CFi+2(s), i ∈ Z

3Z
=

{
0, 1, 2

}
.

8.2. Compositions in the triangle are null-homotopic

The maps defined in the previous subsection give a triangle of filtered (A,H)
chain maps between filtered (A,H) chain complexes:

(21)

CF0(s) =
⊕
s∈s

CF0(s)
fs2 � CF1(s) =

⊕
s∈s

CF1(s)

CF2(s) =
⊕
s∈s

CF2(s)
�

fs0

�
f s
1 .

The maps in this triangle preserve the associated relative Spinc decompo-
sitions, as described in Lemma 8.2. Our first observation is the following
theorem.

Theorem 8.4. With the notation of the previous subsection, the composi-
tions fsi+1 ◦ fsi , i ∈ Z

3Z = {0, 1, 2} from the triangle in Equation 21 are (A,H)
chain homotopic to zero for each Spinc class s ∈ Spinc(X). More precisely,
there are (A,H) homotopy maps

Hs
i : CFi−1(s) → CFi+1(s), i ∈ Z

3Z
=

{
0, 1, 2

}
, s.t.

Hs
i ◦ ∂i−1 + ∂i+1 ◦Hs

i = fsi−1 ◦ fsi+1 ∀ i ∈ Z

3Z
.
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Proof. Let Θi ∈ Tβi+1 ∩ Tβi−1 denote the top intersection point of the corre-
sponding tori. Define the homotopy map Hs

i using the Heegaard quadruple
(Σ,α,βi−1,βi,βi+1, z) by

Hs
i : CFi−1(s) −→ CFi+1(s)

Hs
i

(
x
)
:=

∑
y∈Tα∩Tβi+1

�∈π−1
2 (x,Θi+1,Θi−1,y)

(m(�)uz(�)) .y.(22)

Here πj
2(x,Θi+1,Θi−1,y) denotes the subset of π2(x,Θi+1,Θi−1,y) consist-

ing of the squares � with μ(�) = j, and m(�) denotes the number of points
in the moduli space M(�), counted with sign. In Equation 22, we only
count square classes which may be represented as the juxtaposition of the
small triangle class Δ̂ in π2(Θi+1,Θi−1,Θi) with the triangle class Δi in
π2(x,Θi,y). We will drop this condition from the notation for the sake of
simplicity.

Lemma 8.5. With the above notation fixed, for any relative Spinc class
s ∈ s ⊂ S the image of

H
s
i = Hs

i |CFi−1(s) : CFi−1(s) −→ CFi+1(s)

is in the sub-complex CFi+1(s) ⊂ CFi+1(s).

Proof. Without loosing on generality, we may assume that i = 0. Let � ∈
π−1
2 (x,Θ1,Θ2,y) be a square connecting x to y. We can thus find an element

h ∈ H such that for all such generators and square classes we have

s2(x) = s1(y) + h+

2∑
i=1

(ni(�)− np(�))χi +

κ∑
j=3

nj(�)χj

= s1(y) + h+ χ

⎛⎝ κ∏
j=0

u
nj(�)
j

⎞⎠ = s1 (uz(�).y) + h.

Considering the square classes which are obtained as the juxtaposition of
triangles corresponding to fs

i−1 and fs
i+1, and using the coherence of the

system of Spinc classes, we may compute h = h2 + h1 = 0. This completes
the proof. �

If y is an intersection point in Tα ∩ Tβi+1 and if � ∈ π2(x,Θi+1,Θi−1,y)
is a square with μ(�) = 0, we may consider the moduli space M(�), which
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is a smooth, oriented 1-dimensional manifold with boundary. The boundary
points of this moduli space correspond to different types of degenerations of
�. Four types of these degenerations, are degenerations of � to a bi-gon and
a square. Since Θi−1 and Θi+1 are closed elements in their corresponding
chain complexes, counting such degenerations contribute to the coefficient
of uz(�).y in the expression

(Hs
i ◦ ∂i−1 + ∂i+1 ◦Hs

i ) (x).

Then we have the possibility of a degeneration of � as Δ �Δ′ with Δ ∈
π2(x,q,y) and Δ′ ∈ π2(Θi+1,Θi−1,q) for some q ∈ Tβi−1 ∩ Tβi+1 satisfying
μ(Δ) = μ(Δ′) = 0. Such degenerations correspond to the appearance of y
in the expression

Ψi

(
x⊗ Φi(Θi+1 ⊗Θi−1)

)
,

where the holomorphic triangle maps Ψi and Φi are defined by

Ψi : CFi−1(s)⊗ CF(Σ,βi−1,βi+1, z; si;A) −→ CFi+1(s)

Ψi

(
x⊗ p

)
:=

∑
w∈Tα∩Tβi+1

∑
Δ∈π0

2(x,p,w)

(m(Δ)uz(Δ))w

Φi(Θi+1 ⊗Θi−1) :=
∑

p∈Tβi−1∩Tβi+1

Δ∈π0
2(Θi+1,Θi−1,p)

(m(Δ)uz(Δ))p.

Since the Heegaard diagram (Σ,βi−1,βi,βi+1, z) is a standard diagram,
one may easily observe that Φi(Θi+1 ⊗Θi−1) = 0. The reason for this van-
ishing is that holomorphic triangles which contribute to the above sum
come in pairs. This is in fact the same phenomena as what happens in
the surgery exact sequence of Ozsváth and Szabó [OS3]. Moreover, the
element of A associated with either of the two triangle classes in a pair
is the same by the assumptions on the Heegaard triple. We thus have
Ψi

(
x⊗ Φi(Θi+1 ⊗Θi−1)

)
= 0.

Finally, the last type of degeneration for the domain � is a degeneration
of � as � = Δ �Δ′, where Δ ∈ π0

2(x,Θi+1,w) and Δ′ ∈ π0
2(w,Θi−1,y) for

some w ∈ Tα ∩ Tβi . The assumption on the class of the square then imply
that Δ represents the same class as Δi+1 and that Δ′ represents the same
class as Δi−1, compare with the argument of Lemma 6.3. Counting the end
points of M(�) corresponding to such degenerations gives the coefficient of
uz(�).y in

(
fsi−1 ◦ fsi+1

)
(x).
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Gathering all this data we conclude that the following relations are sat-
isfied

Hs
i ◦ ∂i+1 + ∂i−1 ◦Hs

i = fsi−1 ◦ fsi+1, ∀ i ∈ Z

3Z
=

{
0, 1, 2

}
,

implying that fsi−1 ◦ fsi+1 is (A,H) chain homotopic to zero for i ∈ Z/3Z. In
particular, the decomposition into relative Spinc classes in S is respected by
the maps by Lemmas 8.5 and 8.2. �

8.3. Exactness and computation of chain homotopy type

We would like to apply Lemma 3.3 to the triangle of Equation 21. From
Lemma 8.2 we know that fsi is a filtered (A,H) map between filtered (A,H)
chain complexes CFi+1(s) and CFi−1(s) which decomposes as a sum of maps

f
s
i : CFi+1(s) −→ CFi−1(s), ∀ s ∈ s ⊂ S.

We may also decompose the maps Hs
i as Hs

i = ⊕s∈sH
s
i in a similar way.

Theorem 8.6. With our previous notation fixed and for any

i ∈ Z

3Z
= {0, 1, 2},

the map from CFi(s) to the mapping cone of fsi defined by Is
i = ⊕s∈sIs

i , and

Is
i : CFi(s) −→ CFi+1(s)⊕ CFi−1(s)

Is
i (u.z) :=

(
f
s
i−1(u.z), H

s
i+1(u.z)

)
,

is a filtered chain homotopy equivalence of filtered (A,H) chain complexes.

Proof. For any integer j ∈ Z let us define

Aj :=

⎧⎪⎨⎪⎩
CF0(s) if j = 0 (mod 3)

CF1(s) if j = 1 (mod 3)

CF2(s) if j = 2 (mod 3)

Denote the differential of Aj by dj . Furthermore, define fj : Aj → Aj+1 to
be fs2, f

s
0 or fs1 for j = 0, 1 or 2 modulo 3, respectively. Let Hj : Aj → Aj+2,

depending on whether j = 0, 1 or 2 modulo 3, be the maps Hs
1 , H

s
2 and Hs

0 ,
respectively. By Lemma 3.3, in order to show that the map Is

i is a chain
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homotopy equivalence of filtered (A,H) chain complexes we have to show
that the differences φi = fi+2 ◦Hi −Hi+1 ◦ fi : Ai → Ai+3 are chain homo-
topy equivalences. Checking that all the constructions respect the decompo-
sition into relative Spinc classes inS is straight-forward from the Lemmas 8.2
and 8.5.

As in [OS7] and [OS3], checking the above claim is done by considering
holomorphic pentagons associated with Heegaard diagrams of the form

(Σ,α,βj ,βj+1,βj+2,βj+3, z),

where βj denotes a set of � simple closed curves which are Hamiltonian
isotopes of the curves in βi, where i ∈ Z

3Z is equal to 0, 1 or 2 and j is con-
gruent to i modulo 3. Let us denote the top generator of the Heegaard Floer
homology group associated with (Σ,βj ,βj+1, z) by Θj−1, by little abuse of
notation. More generally, the top generator associated with (Σ,βi,βj , z) will
be denoted by Θij . For any three indices i < j < k, there is a triangle, with
small area (assuming that the Hamiltonian isotopies changing the curve col-
lection to each other are small) which connects Θij ,Θjk and Θik. Denote
this triangle class by Δijk.

Without loosing on generality, we may assume that j = 0 modulo 3.
Choose a generator x ∈ Tα ∩ Tβj so that s(x) = s ∈ s. The curves in βj+3

are Hamiltonian isotopes of those in βj . Thus there is a natural closest point
map

I : Tα ∩ Tβj → Tα ∩ Tβj+3 .

There is a natural triangle class connecting Θj,j+3,x and I(x) which will be
denoted by Δx.

Let us denote the complex associated with (Σ,βj ,βj+1, z) and the coef-
ficient ring A with Bj , and the complex associated with (Σ,βj ,βj+2, z)
(again with coefficient ring A) by Cj , and finally the complex associated
with (Σ,βj ,βj+3, z) by Dj . We omit the straight forward details of the
definitions.

Define a map Pj : Aj → Aj+3
∼= Aj by

Pj(x) =
∑

y∈Tα∩Tβj+3�∈π−2
2 (x,Θj−1,Θj ,Θj+1,y)

(m(�)uz(�))y.

The class of the pentagons counted in the above sum is determined by jux-
taposing a triangle class Δx ∈ π2(x,Θj,j+3, I(x)) with an standard square
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class �̂ ∈ π2(Θj−1,Θj ,Θj+1,Θj,j+3) with small area. As usual, we will drop
this class from the notation.

Let us assume that � ∈ π−1
2 (x,Θj−1,Θj ,Θj+1,y) is a pentagon class

which has Maslov index −1. Consider the ends of the smooth orientable one
dimensional moduli space M(�), which correspond to the degenerations
discussed in Theorem 6.8.

Considering the possible degenerations at the boundary of M(�), The-
orem 6.8 implies

φj(aj) = (Pj ◦ dj − dj ◦ Pj)(aj)

+ Ij
(
aj ⊗Kj(Θj−1 ⊗Θj ⊗Θj+1)

)
, ∀ aj ∈ Aj ,

(23)

where the maps Ij : Aj ⊗Dj → Aj+3 andKj(Θj−1 ⊗Θj ⊗Θj+1) are defined
as follows.

Ij
(
x⊗ q

)
:=

∑
y∈Tα∩Tβj+3

∑
Δ∈π0

2(x,q,y)

(m(Δ)uz(Δ))y

Kj(Θj−1 ⊗Θj ⊗Θj+1) :=
∑

q∈Tβj∩Tβj+3

�∈π−1
2 (Θj−1 Θj ,Θj+1,q)

(m(�)uz(�))q.(24)

Two of the terms appearing in Theorem 6.8 vanish and are not present
in the Equation 23. These are the terms that correspond to degenerations
containing a triangle in π2(Θj−1,Θj ,q) for some q ∈ Tβj ∩ Tβj+2 , or a trian-
gle in π2(Θj ,Θj+1,q) for some q ∈ Tβj+1 ∩ Tβj+3 . The total contribution of
such triangles vanishes, since they come in canceling pairs. Thus the terms
containing such degenerations would vanish as well.

Note that the map x �→ Ij(x⊗Θj,j+3) is a perturbation of the isomor-
phism I with a map ε : Aj → Aj+3 which takes a generator x to generators
with smaller energy than I(x), when we equip Aj+3 with an appropriate
energy filtration. This follows since the contributions from triangle classes
other than Δx will contribute more than the small energy associated with
Δx. Standard arguments in Heegaard Floer theory (c.f. Ozsváth and Szabó’s
original paper [OS5]) may then be applied to construct an explicit inverse
for this map up to filtered (A,H) chain homotopy.

In order to complete the proof of the theorem, it is thus enough to show
that

Kj(Θj−1 ⊗Θj ⊗Θj+1) = Θj,j+3.

This can be proved directly, since the Heegaard quadruple

(Σ,βj ,βj+1,βj+2,βj+3, z)
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is a special Heegaard diagram, which may be analysed without too much dif-
ficulty, following earlier considerations of Ozsváth and Szabó (e.g. in [OS7],
Subsection 4.2). Here is a quick review of the proof. There is a preferred
square class which contributes to the second sum of Equation 24. This square
class has small total area, and multiplicity 1 at p. The contribution of this
class would give Θj,j+3. The rest of contributing square classes come in pairs
and the elements of A associated with both elements in each pair are the
same (with opposite sign). Thus the two square classes in each pair cancel
each other. �

8.4. Special cases of the surgery exact sequence

Suppose that

(X, τ = {τ1, . . . , τκ})

is a weakly balanced sutured manifold. Furthermore, assume that τ1 and
τ2 belong to the common boundary of the genus zero connected compo-
nents R+

1 ∈ R+(τ) and R−
1 ∈ R−(τ). Let λ denote a simple closed curve

in ∂X − ∪κ
i=3τi which cuts either of τ1 and τ2 in a single transverse point.

Choose the orientation on λ so that the intersection number τ1.λ is 1. Let
φ denote the right-handed (positive) Dehn twist along τ1 and ψ denote the
left-handed (negative) Dehn twist along λ. Thus in particular φ(λ) and ψ(τ1)
are both homologous to τ1 + λ. We set τ0 = τ , τ1 = φ(τ) and τ2 = ψ(φ(τ)).
It is then easy to construct a Heegaard quadruple associated with the three
sutured manifolds (X, τ i) i = 0, 1, 2, which is of the form described in the
first subsection of this section.

One will thus have a triangle of chain complexes connecting

CF(X, τ i, s), i = 0, 1, 2.

The Spinc class s belongs to a subset of the set of Spinc structures on any
of the three 3-manifold obtained by filling out the sutures in τ i, i = 0, 1, 2.
The filtration of the chain complexes in the exact triangle is, however, by
the relative Spinc classes in

Spinc(X, τ)〈
PD[τ1 + τ2]

〉 ,
rather than Spinc(X, τ).
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Many of the surgery exact sequences in Heegaard Floer theory arise as
special cases of the above situation. Namely, suppose that Y is a three-
manifold and that K is a null-homologous knot inside Y . Let us assume
that X is the three-manifold Y − nd(K) obtained by removing a tubular
neighbourhood of K from Y . Let τp/q denote a set of two parallel sutures on
the torus boundary of X, such that the sutures correspond to the framing
giving the p/q surgery on K. For i ∈ {0, 1, 2} = Z/3Z, let the rational num-
ber pi/qi ∈ Q be chosen so that the three equations piqi+1 − qipi+1 = 1 are
satisfied. Let Xi = Ypi/qi(K) denote the three-manifold obtained from Y by
performing pi/qi surgery on K, and Ki = Kpi/qi denote the corresponding
knot inside Xi. Associated with any relative Spinc class s ∈ Spinc(Y,K) =
Spinc(Xi,Ki) we thus obtain the exact triangle

(25)

CF(X0,K0, s;A)
f
s
2 � CF(X1,K1, s;A)

CF(X2,K2, s;A)
�

f
s
0

�

f s
1

.

If we set the variables u0, u1 and u2 equal to zero, we arrive at the test
ring Z for A. Correspondingly, we have the following short exact sequence
in homology

(26)

ĤFK(X0,K0, s)
f
s
2 � ĤFK(X1,K1, s)

ĤFK(X2,K2, s)

�

f
s
0

�

f s
1

.

In particular, let us assume that p0/q0 = 1/0, p1/q1 = 0/1 and p2/q2 =
(−1)/(−1). Then the exact triangle of Equation 26 we obtain the following
exact triangle

(27)

ĤFK(Y,K, s)
f
s
2 � ĤFK(Y0(K),K0, s)

ĤFK(Y1(K),K1, s)
�

f
s
0

�

f s
1
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which is the same as the exact triangle used in [Ef1, Ef5] and [Ef2].
In fact, Theorem 8.6 may be generalized to the situation where μi.μi+1 =

mi−1, i ∈ {0, 1, 2} = Z/3Z are integers such that the relation

m0μ0 +m1μ1 +m2μ2 = 0 ∈ H1(X;Z)

is satisfied. This stronger form appeared in the earlier version of this paper
(see [AE], Theorem 9.6), but in the interest of much simpler exposition we
prefer to restrict our attention to the simple case discussed above. We refer
the interested reader to the 9th section of the initial version of this paper.
This stronger form then generalizes the exact sequence in homology, which
appears as Theorem 1.7 in [OS6]. Also, Theorem 4.7 from [OS7] is a special
case of Theorem 9.6 in its stronger form. Furthermore, Theorem 8.2 from
[OS1] is also a corollary in this situation. When m1 = m2 = 1, and m0 = m
is an arbitrary integer, the main result of [Ef4] is obtained as a special case
as well. The surgery exact sequence of Theorem 3.1 in [OS3] is in turn a
consequence of this last result. In a similar way, Theorem 6.2 from [OS4]
follows from this last consideration.

9. Properties and Examples

9.1. Product disk decomposition

Product disk decomposition is a special case of surface decomposition defined
by Gabai. We refer the interested reader to [Gab1] for the complete definition
of surface decomposition, and will only recall the following definition.

Definition 9.1. We say that the sutured manifold (X ′, τ ′) is obtained from
(X, τ) by a product disk decomposition if there is a properly embedded disk
D in (X, τ) such that |D ∩ τ | = 2 and such that decomposing (X, τ) along
the embedded disk D results in (X ′, τ ′).

Lemma 9.13 from [Ju1] shows that product disk decomposition preserves
the sutured Floer homology, i.e. we have

SFH(X, τ) = SFH(X ′, τ ′).

The purpose of this section is to give a description of the behaviour of the
sutured Floer complex under product disk decomposition. It will be observed
meanwhile, that there are serious obstructions in the way towards a surface
decomposition formula for the full sutured Floer complex.
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Suppose that (X ′, τ ′) is obtained from (X, τ = {τ0, τ1, . . . , τκ}) by a
product disk decomposition along the disk D as above. The boundary of
the disk D intersects the sutures transversely in two points. The easier case
to understand is the case where the two intersection points in D ∩ τ belong
to different sutures, say τ0 and τ1. In this case, X = X ′. The sutures τ0 and
τ1 belong to the boundary of the same component in R+(τ) (respectively,
R−(τ)). The set of sutures τ ′ will be the union of {τ2, . . . , τκ} with a suture
σ. The algebra Aτ ′ associated with the weakly balanced sutured manifold
(X ′, τ ′) is then a quotient of Z[u, u2, . . . , uκ], where u denotes the variable
associated with σ. There is an embedding

ı : Aτ ′ ↪→ Aτ , ı(u) := u0u1 and ı(uj) := uj , j = 2, . . . , κ,

and one may easily prove that

CF(X, τ, s) = CF(X ′, τ ′, s)⊗Aτ′ Aτ , ∀ s ∈ Spinc(X) = Spinc(X ′).

In fact, if (Σ,α,β, z′ = {z1, . . . , zκ}) is an s-admissible Heegaard dia-
gram for (X ′, τ ′) with z1 corresponding to σ ∈ τ ′, and if z0 is a marked point
in the same component of Σ−α− β as z1, then (Σ,α,β, z = {z0, z1, . . . ,
zκ}) is an s-admissible Heegaard diagram for (X, τ), making the above con-
clusion straight forward.

The more interesting situation is the product disk decomposition where
the two points in D ∩ τ belong to the same suture τ0 ∈ τ . We may thus
find a Heegaard diagram (Σ,α,β, z = {z0, . . . , zκ}) for the weakly balanced
sutured manifold (X, τ), as discussed in the proof of Lemma 9.13 from [Ju1],
where the disk D corresponds to an arc δ, starting and ending at z0, which
stays disjoint from the curves in α and β. We may thus cut Σ open along
the simple closed curve δ, and glue a pair of disks to the resulting boundary
components of Σ. Denote the resulting surface by Σ′ and the centers of the
aforementioned disks by w1 and w2. The weakly balanced sutured manifold
(X ′, τ ′ = {σ1, σ2, τ1, . . . , τκ}) then corresponds to the Heegaard diagram(

Σ′,α,β, z′ = {w1, w2, z1, . . . , zκ}
)
.

Let us further assume that the simple closed curve δ is separating, and
thus (X ′, τ ′) = (X1, τ1)

∐
(X2, τ2) is a disjoint union of two other sutured

manifolds. This case corresponds to the situation in the following definition.
Let κ = m+ n and suppose that the weakly balanced sutured manifolds
(X1, τ1 = {σ1, τ1, . . . , τm}) and (X2, τ2 = {σ2, τm+1, . . . , τκ}), with distin-
guished sutures σ1 ∈ τ1 and σ2 ∈ τ2 are given.
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Definition 9.2. Choose the embedded disk Di ⊂ ∂Xi for i = 1, 2 so that
Di ∩ σi is a closed connected segment on σi and the intersection of Di with
the other sutures in τ i is empty. We set X to be the 3-manifold obtained
from X1 and X2 by the identification of D1 and D2, such that D1 ∩R•(τ1)
is identified with D2 ∩R•(τ2) for • ∈ {+,−}, and set τ0 to be the simple
closed curve obtained by concatenation of σ1 − (σ1 ∩D1) and σ2 − (σ2 ∩
D2). We define the boundary connected sum of (X1, τ1) with (X2, τ2) along
the sutures σ1 and σ2 to be the sutured manifold (X, τ = {τ0, . . . , τκ}).

In the situation of Definition 9.2, if we decompose the sutured mani-
fold (X, τ) along the disk D obtained by identifying D1 and D2 we recover
(X1, τ1)

∐
(X2, τ2). Since D ∩ τ = D ∩ τ0 consists of precisely two points,

(X1, τ1)
∐
(X2, τ2) is obtained from (X, τ) by a product disk decomposi-

tion. Let us further assume that τ0 belongs to the genus zero components of
R+(τ) and R−(τ). It is thus implied that each σi belongs to the boundary
of genus zero components of R+(τ i) and R−(τ i), for i = 1, 2.

Consider the Heegaard diagrams

H1 = (Σ1,α1,β1, z1 = {w1, z1, . . . , zm}) and

H2 = (Σ2,α2,β2, z2 = {w2, zm+1, . . . , zκ})

associated with (X1, τ1) and (X2, τ2), respectively. We assume that the
marked point wi corresponds to the suture σi, and that the marked point zj
corresponds to the suture τj , for i = 1, 2 and j = 1, . . . , κ. One may construct
a Heegaard diagram H = (Σ,α,β, z) for the sutured manifold (X, τ) by
taking the connecting sum of H1 and H2 along w1 and w2. Thus Σ = Σ1#Σ2

and

α = α1 ∪α2, β = β1 ∪ β2 and z = {z0} ∪ z1 ∪ z2 − {w1, w2},

where the marked point z0 is placed on the connected sum tube.
Let us assume that

R−(τ j) =
kj∐
i=0

R−
i (j) and R+(τ j) =

lj∐
i=0

R+
i (j), j = 1, 2,

and suppose that R±
0 (j) for j = 1, 2 are the genus zero components which

have σj as a boundary component. We will assume that g•i (j) denotes the
genus of R•

i (j) for • ∈ {−,+}. Denote the generator associated with τ i, i =
0, 1, . . . , κ by ui, and the generator corresponding to σj , j = 1, 2 by vj . Let
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u•i (j) denote u(R•
i (j)) in Z[v1, v2, u0, . . . , uκ]. We also set u•(j) := u•(τ j).

One may thus compute

u+(τ) = u+(1) + u+(2)− u+0 (1)− u+0 (2) +
u0u

+
0 (1)u

+
0 (2)

v1v2
and

u−(τ) = u−(1) + u−(2)− u−0 (1)− u−0 (2) +
u0u

−
0 (1)u

−
0 (2)

v1v2
.

From here, one finds that A1 = Aτ1 and A2 = Aτ2 may both be embed-
ded in the quotient A = A(τ1, τ2) of Aτ defined by

(28) A =
(A1 ⊗Z A2) [u0]〈

v1 − u0u
−
0 (2)
v2

〉
+

〈
v2 − u0u

+
0 (1)
v1

〉 .
The embeddings of Ai in A and the quotient map Aτ → A give A the

structure of a test ring for Ai and Aτ . Moreover, there are natural gluing
maps

# : Spinc(X1)× Spinc(X2) → Spinc(X) and

# : Spinc(X1, τ1)× Spinc(X2, τ2) → Spinc(X, τ).

LetH1 = H2(X1, ∂X1,Z),H2 = H2(X2, ∂X2,Z) andH = H2(X, ∂X,Z).
Let χi denote the filtration map corresponding to Ai with values in Hi for
i = 1, 2 and χτ denote the filtration map of Aτ with values in H. The inclu-
sion of Xi in X gives a map induces a map from H1(Xi;Z) to H1(X;Z) and
by Lefshetz duality we get a map ıi : Hi → H for i = 1, 2. We may extend the
filtration map χi to a filtration by H using ıi. Correspondingly, CF(X

i, τ i, si)
is a filtered (Ai,H) chain complex for any si ∈ Spinc(Xi).

With the above notation fixed, we prove the following proposition in the
following two subsections.

Proposition 9.3. Fix the Spinc structures si ∈ Spinc(Xi) for i = 1, 2. The
filtered chain homotopy type of the two filtered (A,H) chain complexes

CF(X, τ, s1#s2;A) and CF(X1, τ1, s1;A)⊗A CF(X2, τ2, s2;A)

are the same.

9.2. A special case

Let us start with the following special case. Suppose that (X2, τ2) is the
sutured manifold which corresponds to a special Heegaard diagram H2 =
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(Σ2,α2,β2, z2) of the following type. We assume that α2 = {α�1+1, . . . ,
α�1+�2} and β2 = {β�1+1, . . . , β�1+�2} where βi is the image of αi under a
small Hamiltonian isotopy for i = �1 + 1, . . . , �1 + �2. We thus assume that
βi is disjoint from αj for j �= i ∈ {�1 + 1, . . . , �1 + �2}, and that it cuts αi

is a pair of cancelling intersection points. Let Θα2β2
denote the top genera-

tor of the complex CF(Σ2,α2,β2, z2). For s
1 ∈ Spinc(X1) let us denote the

Spinc structure on X obtained by pairing s1 with the canonical Spinc class
corresponding to H2 by ı∗(s1).

Lemma 9.4. With the above notation, for any s1 ∈ Spinc(X1) the map

Φ1 : CF(Σ1,α1,β1, z1, s
1;A) −→ CF(Σ,α,β, z, ı∗(s1);A)

Φ1(x) = x×Θα2β2

is a filtered (A,H) chain map.

Proof. Let x,y ∈ Tα1
∩ Tβ1

, Θ ∈ Tα2
∩ Tβ2

and φ ∈ π2(x×Θα2β2
,y ×Θ) be

a Whitney disk with Maslov index one and uz(φ) �= 0. We may degen-
erate φ as the connected sum φ = φ1#φ2 where φ1 ∈ π2(x,y) and φ2 ∈
π2(Θα2β2

,Θ). By Theorem 7.1 we have

μ(φ) = μ(φ1) + μ(φ2)− 2nz0(φ) = 1.

Similar to the discussions in the Subsection 6.2, we have

D(φ2) = D(φ′
2) + a0A0 + · · ·+ ak2

Ak2
+ q1P1 + · · ·+ q�2P�2 ,

where φ′
2 is a positive Whitney disk with nz2

(φ′
2) = 0, Pi is the periodic

domains bounded by αi+�1 and βi+�1 , and Ai is the domain in Σ2 −α2

which corresponds to R−
i (2). Furthermore, we have ai ≥ 0 for i = 0, . . . , k2.

Note that uz2
(φ2) �= 0, and we thus know that if ai > 0 then the genus

g−i (2) = g+i (2) is zero. Note also, that a0 = nz0(φ). From here we have

μ(φ2) = μ(φ′
2) + 2nz0(φ) + 2(a1 + · · ·+ ak2

).

Each pair of curves (αi, βi) for i = �1 + 1, . . . , �1 + �2 intersect in a pair
of points; the top one which will be denoted by xi and the bottom one
which will be denoted by yi. For Θ ∈ Tα2 ∩ Tβ2 let |Θ| denote the number
of bottom intersection points in Θ (i.e. the number of yi’s in Θ). It is then
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easy to check that

μ(φ′
2) = |Θ| − |Θα2,β2

| = |Θ|
⇒ μ(φ1) = 1 + 2nz0(φ)− μ(φ2)

= 1− |Θ| − 2(a1 + · · ·+ ak2
).

Since M(φ1) is non-empty μ(φ1) ≥ 0 and we have a1 = a2 = · · · = ak2
=

0, and μ(φ′
2) = 0 or 1. If μ(φ′

2) = 1 then μ(φ2) = μ(φ′
2) = 1 and μ(φ1) = 0.

Thus φ1 should be the class of the constant disk and nz0(φ) = nw1
(φ1) = 0,

implying φ2 = φ′
2. Therefore, the coefficient of x×Θ in ∂(x×Θα2β2

) is equal
to ∑

φ2∈π1
2(Θα2β2 ,Θ)

m(φ2)

κ2∏
i=1

(ui+m)ni+m(φ2),

which is equal to zero because Θα2β2
is closed.

The second possibility is the case μ(φ′
2) = 0. In this case μ(φ1) = 1 and

|Θ| = 0. Thus Θ = Θα2,β2
and φ′

2 is the domain of the constant map, or
equivalently D(φ2) = nz0(φ)A0, or D(φ2) = nz0(φ)B0. Here, B0 denotes the
connected component of Σ2 − β2 which contains the marked point w2. By
Theorem 7.1, for a sufficiently large connected sum tube length we have

m(φ) =
∑

u1∈ ̂M(φ1)

ε(u1).#
{
u2 ∈ M(φ2)

∣∣ ρw1(u1) = ρw2(u2)
}

Suppose now that the marked point w1 is moved sufficiently close to one
of the β curves. Lemma 7.2 implies that the above sum is equal to m(φ1).
Thus the coefficient of y ×Θα2β2

in ∂(x×Θα2β2
) is equal to

∑
φ1∈π1

2(x,y)

m(φ1)

(
uz1

(φ1)

(
u0u

−
0 (2)

v1v2

)nw1
(φ1)

)
,

Which is equal to the coefficient of y in ∂x in CF(Σ1,α1,β1, z1, s
1;A). This

completes the proof of the lemma. �

9.3. Proof of the proposition

We are now ready to prove Proposition 9.3.

Proof of Proposition 9.3. Assume that the Heegaard diagram Hi considered
above is an si-admissible Heegaard diagram for (Xi, τ i) in the stronger sense
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of Remark 4.6 for i = 1, 2. This implies that the connected sum Heegaard
diagram H = (Σ,α,β, z) is s1#s2- admissible. To prove the connected sum
formula, consider the Heegaard triple (Σ,α, δ,β, z) where δ = δ1 ∪ δ2, δ1 =
{δ1, . . . , δ�1}, δ2 = {δ�1+1, . . . , δ�1+�2} are constructed as follows. For any i =
1, . . . , �1, δi is small Hamiltonian isotope of βi such that they intersect in
two cancelling intersection points. Similarly, for j = �1 + 1, . . . , �1 + �2, δj
is small Hamiltonian isotope of αj which intersects it in pair of cancelling
intersection points.

Consider the Heegaard diagrams (Σ1, δ1,β1, z1) and (Σ2,α2, δ2, z2)
which are special, in the sense that they are of the type studies in the
previous subsection. Let Θδ1β1

and Θα2δ2 denote the top generators of the
chain complexes CF(Σ1, δ1,β1, z1) and CF(Σ2,α2, δ2, z2) corresponding to
the canonical Spinc structure for either Heegaard diagram. For any fixed
intersection point x ∈ Tα1

∩ Tδ1 with s(x) ∈ s1 we have a generator I1(x) ∈
Tα1

∩ Tβ1
determined as the closest intersection point in Tα1

∩ Tβ1
to x.

Similarly, for any fixed intersection point y ∈ Tδ2 ∩ Tβ2
with s(y) ∈ s2 there

is an intersection point I2(y) ∈ Tα2
∩ Tβ2

determined as the closest inter-
section point in Tα2

∩ Tβ2
to y.

In the Heegaard triple (Σ,α, δ,β, z) there is a triangle class Δ connecting
Θδ1β1

× y, x×Θα2δ2 and I1(x)× I2(y). The triangle class Δ represents a
Spinc class for the Heegaard triple. One may easily check that the s1 and
s2 admissibility of H1 and H2 in the stronger sense implies the admissibility
of the Heegaard triple with respect to this Spinc structure. Moreover, the
Z-algebra A is a test ring for the Z-algebra associated to the Heegaard triple.

The triangle class Δ determines a Spinc class ı∗(s1) corresponding to the
Heegaard diagram (Σ,α, δ, z), and a Spinc class j∗(s2) corresponding to the
Heegaard diagram (Σ, δ,β, z). There is a holomorphic triangle map

Φ : CF(Σ,α, δ, z, ı∗(s1);A)⊗ CF(Σ, δ,β, z, j∗(s2);A)
−→ CF(Σ,α,β, z; s1#s2;A).

Moreover, using the top generators Θα2δ2 and Θδ1β1
we may define the

homomorphisms

Φ1 : CF(Σ1,α1, δ1, z1, s
1;A) → CF(Σ,α, δ, z, ı∗(s1);A),

Φ2 : CF(Σ2, δ2,β2, z2, s
2;A) → CF(Σ, δ,β, z, j∗(s2);A),

Φ1(x) := x×Θα2δ2 and Φ2(y) := Θδ1β1
× y.
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Using Lemma 9.4 we know that both Φ1 and Φ2 are chain maps. The
chain complexes CF(Σ1,α1, δ1, s

1;A) and CF(Σ2, δ2,β2, s
2;A) may be iden-

tified as

CF(X1, τ1, s1;A) and CF(X2, τ2, s2;A),

respectively. We may thus define a a chain map

Γ : CF(X1, τ1, s1;A)⊗ CF(X2, τ2, s2;A) → CF(X, τ, s1#s2;A)

Γ = Φ ◦ (Φ1 ⊗ Φ2)

In fact, Γ is an (A,H) filtered chain map. We may assume that the total
unsigned area in the region between the curves in δ1 and β1 and the total
unsigned area in the region between the curves in δ2 and α2 are sufficiently
small. Using appropriate energy filtration we then have

Γ(x⊗ y) = I1(x)× I2(y) + ε(x⊗ y)

where ε(x⊗ y) consists of terms of smaller energy than I1(x)× I2(y). This
implies that Γ is a homotopy equivalence of filtered chain complexes. �

Returning to Lemma 9.4, let us drop the assumption that the component
of R−(τ2) containing the suture σ2 as a boundary curve has non-trivial
genus. One may then encounter Whitney disks φ ∈ π2(x×Θα2β2

,y ×Θ)
with x �= y and Θ �= Θα2β2

which have non-trivial contribution to ∂(x×
Θα2β2

). In fact, in the decomposition φ = φ1#φ2, if the coefficient of φ at
z0 is large, no restriction on μ(φ1) and μ(φ2) may be made. In order to
prevent the contribution of such disks, one would then need to add the

relation u0.
u−0 (2)
v2

= 0 to the ring of coefficients. This would then force the

relation v1 = 0. Similarly, if the connected component of R+(τ1) containing
the suture σ1 as a boundary curve has positive genus, we are forced to
include the relation v2 = 0 in the ring of coefficients. Define

δ : Z → {0, 1} δ(i) :=

{
0 if i = 0

1 if i �= 0
.

Motivated by the above observation, in the situation of definition 9.2 we
may thus set the algebra A = A(τ1, τ2;σ1, σ2) to be

A :=
(A1 ⊗ A2) [u0]〈

v1 − u0u
−
0 (2)
v2

, δ
(
g−0 (2)

)
v1

〉
+

〈
v2 − u0u

+
0 (1)
v1

, δ
(
g+0 (1)

)
v2

〉
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The rest of the argument of Lemma 9.4 and Proposition 9.3 may then be
extended to prove the following generalization.

Theorem 9.5. Suppose that (Xi, τ i) is a weakly balanced sutured mani-
fold with a distinguished suture σi and let (X, τ) denote the weakly balanced
sutured manifold obtained as the connected sum of (Xi, τ i) along σi, i = 1, 2.
Fix the Spinc structures si ∈ Spinc(Xi) for i = 1, 2. The filtered chain homo-
topy type of the two filtered (A,H) chain complexes

CF(X, τ, s1#s2;A) and CF(X1, τ1, s1;A)⊗A CF(X2, τ2, s2;A)

are the same, where A = A(τ1, τ2;σ1, σ2).

9.4. Examples

Below, we will discuss a category of examples using Proposition 9.3.

Example 9.6. Consider a bipartite (2-colorable) graph G, and fix a color-
ing of vertices V (G) of G by + and −, i.e. V (G) = V −(G)

∐
V +(G). Adding

empty vertices (i.e. vertices with no edges attached to them) we may assume
that the number of + and − vertices are equal. Similar to part (d) of Exam-
ple 3.9, associated with any embedding of ı : G → X of G inside a closed
3-manifold X and any coloring as above, one may construct a weakly bal-
anced sutured manifold as follows. LetX(G) = X − nd(G) and suppose that
τ(G) is a union of simple closed curves on the boundary ofX(G) which corre-
spond to meridians of the edges of the G. If the edges e ∈ E(G) are oriented
so that they start from V −(G) and end at V +(G), the curves in τ(G) may
be oriented accordingly. The resulting weakly balanced sutured manifold
will be denoted by (X(G), τ(G)). The choice of the coloring of the vertices
of G and the embedding ı : G → X are suppressed from the notation. The
corresponding algebra will be denoted by AG. The suture associated with
an edge e ∈ E(G) will be denoted by τe and the variable associated with τe
will be denoted by ue.

Let us assume that G is a tree. Thus ∂X(G) may be identified as the
2-sphere. Fix a degree one vertex v of G, which is connected to G− v by an
edge e which connects v to another vertex w. Alternatively, the weakly bal-
anced sutured manifold (X(G), τ(G)) may be constructed as the connected
sum of (S3(G), τ(G)) and (X(1), τ(1)), where 1 denotes the graph with two
vertices and a single edge connecting them. The connected sum is done along
e ∈ E(G) and the single edge of the graph 1.
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We would like to use Proposition 9.3 to compute CF(X(G), τ(G), s).
Suppose that v ∈ V +(G). Let (X1, τ1) = (S3(G), τ(G)) and (X2, τ2) =
(X(1), τ(1)). We then have A � AG. Note that Spinc(S3(G), τ(G)) is an
affine space over

H2(S3(G), ∂S3(G);Z) = H2(D3, S2;Z) = 0.

Thus, there is a unique relative Spinc class in Spinc(S3(G), τ(G)), and

Spinc (X(G), τ(G)) = Spinc (X(1), τ(1)) and

Spinc
(
X(G)

)
= Spinc

(
X(1)

)
.

By Proposition 9.3, for s ∈ Spinc(X(1)) the chain complex

CF(X(G), τ(G), s)

is filtered chain homotopic to

CF(X(1), τ(1), s;AG)⊗AG
CF(S3(G), τ(G), s0),

where s0 denotes the unique Spin
c class in Spinc(S3(G)), and AG is a test ring

for A1 = Z[u] via the algebra homomorphism sending u to ue. Consequently,
CF(X(G), τ(G), s) only depends on CF(X(1), τ(1), s) = CF−(X, s) and the
tree G.

Example 9.7. Let G be a connected path with four vertices inside S3.
We may color its vertices with + and − and the number of + vertices is
equal to the number of − vertices. The algebra associated to the boundary
of (S3(G), τ(G)) is

A =
Z[u1, u2, u3]

〈u1u2 + u3 = u1 + u2u3〉

A Heegaard diagram H = (S2, α, β, z = {z1, z2, z3}) corresponding to the
weakly balanced sutured manifold (S3(G), τ(G)) may be constructed as fol-
lows. The curves α and β are simple closed curves bounding disks A and
B on S2 and intersecting each other in two points {x, y}. Furthermore, we
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assume

z2 ∈ A ∩B, z1 ∈ A−B, z3 ∈ B −A.

We then have

CF(S2, α, β, z) = A〈x, y〉
∂x = (u1 − u3)y, ∂y = (u2 − 1)x.

Thus the chain homotopy type of CF(S3(G), τ(G), s0) is non-trivial, while
SFH(S3(G), τ(G), s0) = 0.
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