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Geometric flows and Kähler reduction

Claudio Arezzo, Alberto Della Vedova and Gabriele La Nave

We investigate how to obtain various flows of Kähler metrics on
a fixed manifold as variations of Kähler reductions of a metric
satisfying a given static equation on a higher dimensional manifold.
We identify static equations that induce the geodesic equation for
the Mabuchi’s metric, the Calabi flow, the pseudo-Calabi flow of
Chen-Zheng and the Kähler-Ricci flow. In the latter case we re-
derive the V-soliton equation of La Nave-Tian.

1. Introduction

This note is concerned with the description, in various instances, of what ge-
ometry one should impose on the total space of a Kähler manifold (P, ω, J)
endowed with a Hamiltonian holomorphic circle action with moment map
µ : P → R, so that the variation of symplectic quotients with induced met-
rics, sometimes called Kähler reductions, describes indeed a given flow on the
initial quotient (naturally, up to diffeoforphisms). The mathematical litera-
ture is by now rich of examples of the interplay between geometry and Kähler
(or merely symplectic) reductions, spanning from Guillemin and Sternberg
fundamental papers [5–7] to the more recent work of Burns and Guillemin
[1] passing through the work of Futaki [4].

Our motivation for this study is twofold: one is based on trying to create
a theoretical set-up and machinery where one can naturally incorporate flows
with surgery in a context where such surgeries occur naturally in the Morse-
theory of variations of Kähler reductions; the other is to try and understand
convergence (or lack thereof) at infinite time in terms of what happens to the
Kähler reduction when one meets the first critical point of the moment map
(which is not necessarily the first time the reduction becomes “singular”, cf.
Example 2.2).

To the authors knowledge, the first instance in which Kähler reduction
was used to analyze the nature of finite time singularities of a given flow of
metrics is in the work of La Nave and Tian, in connection to the Kähler-
Ricci flow [8]. There it is shown that the Kähler-Ricci flow on a Kähler
manifold M is loosely speaking equivalent to a static equation, dubbed the
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V -soliton equation since it is of soliton type, on a manifold P endowed with
a Hamiltonian holomorphic circle action, which has M as one of its Kähler
reductions.

We continue with this idea in this paper, where we investigate in fact
how to obtain various flows of metrics as variations of Kähler reductions of
a metric on the total space satisfying a given static equation. This approach
is somewhat different from the usual one inspired by Kaluza-Klein theories,
where one usually is interested in the rich nature of quotients of a given
special metric, such as a Kähler-Einstein metric (cf. [1, 4]). Our take could
be characterized as being somewhat opposite and more along the lines of a
Geometric-flow version of variation of GIT or symplectic quotients (cf. [7]
and references therein) whereby we analyze the variation of metrics under
the variation of reductions and identify equations on the total space for
which the variation of metrics follows a specified flow.

Specifically, we identify equations on the total space that induce:

• the Geodesic equation in the space of Kähler potentials (with respect
to Mabuchi L2-metric) in Theorem 3.2;

• the Calabi flow in Theorem 3.4;

• the pseudo-Calabi flow of Chen and Zheng in Theorem 3.7;

• and finally we re-derive La Nave and Tian’s V -soliton equation (cf. [8])
in Theorem 3.9 for the normalized Kähler-Ricci flow and its variant
for the unnormalized one in Theorem 3.10.

Arguably, the major difference in approach between the current paper
and [8] is the fact that for most of our applications, such as the Calabi flow,
one needs only — and in fact must — take the space whose Kähler reductions
represent the flow to simply be a product P = M ×A with A ⊂ C∗ some
annulus (cf. Theorem 4.5 in Section 4). In the case of the normalized Käbler-
Ricci flow this is also true, as long as the initial metric is canonical or
anticanonical, as the case maybe. In particular, the case of interest in [8],
namely the finite-time singularity of the Kähler-Ricci flow in non-(anti)-
canonically polarized metrics, is never of this nature.

In the last section of this paper we explain how these new equations are
indeed equivalent to the associated geometric flows; namely, given a solution
to the flow on M , how to construct the relevant structures on the product
P to get a solution to the new equations.

Along the way, we show how natural geometric quantities of the reduced
metric gτ on M comes from reduction (see Section 2.2 for precise definition)
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of suitable quantities on P . For example in Proposition 2.8 and Corollary 2.9
we show that there exist a one form ρ and a smooth function R on P that
descend respectively to the Ricci form and to the scalar curvature of the
reduced metric gτ on M . In the same circle of ideas, we show in Lemma 2.6
and Corollary 2.7 that the Monge-Ampère operator and, in particular, the
Laplacian of the reduced metric gτ are induced by suitable operators on P .

2. Hamiltonian circle actions on Kähler manifolds

We are mainly interested in Hamiltonian holomorphic circle actions on
Kähler manifolds. The purpose of this section is to investigate the geometry
of the Kähler reduction in connection with the one of the starting manifold.
For simplicity we consider just the case of a semi-free action. This means
that it is free away from the fixed point set, or equivalently that there are
no finite non-trivial isotropy groups. In this case, any non-fixed point has a
neighborhood equivariantly biholomorphic to the product of a fixed mani-
fold with an annulus endowed with the standard circle action. The reduced
manifold can be recovered by patching together the reductions of these in-
variant neighborhoods. Since we are just interested in local properties of
the reduced manifolds, we can assume that our starting manifold is itself a
product. In particular, this argument assures that all the statement of this
sections are true for any Kähler manifold endowed with a semi-free holo-
morphic Hamiltonian circle action, with the exception of Lemma 2.1 and
Proposition 2.5 (which will only hold locally).

2.1. The total space is a product

Given a (non-necessarily compact) connected complex n-fold M , consider
the product P = M ×A, where A = {w ∈ C s.t. r < |w| < R} is the annu-
lus of radii r,R > 0. We allow r = 0 or R = +∞. The standard circle action
on P defined by eiθ · (x,w) = (x, eiθw) is generated by the real vector field

V = i

(
w
∂

∂w
− w̄ ∂

∂w̄

)
.

Moreover one has

(1) JV = −
(
w
∂

∂w
+ w̄

∂

∂w̄

)
= −2s

∂

∂s
,
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where J denotes the complex structure of P and s is the smooth function
on P defined by s(x,w) = ww̄. We will consider Kähler metrics on P that
makes Hamiltonian the standard circle action. By definition the Kähler form
ω of such a metric satisfies iV ω = dµ for some moment map µ : P → R. Let
π : P →M be the projection on the first factor.

Lemma 2.1. Let g be a Kähler metric on P with Kähler form ω. The
standard circle action is Hamiltonian with moment map µ : P → R if and
only if there exist a Kähler form σ on M , a smooth invariant function φ :
P → R, and a constant c ∈ R such that

i) ω = π∗σ + ddcφ,

ii) µ = JV (φ) + c.

Any other such triple (σ̃, φ̃, c̃) satisfies

(2)

{
σ̃ = σ + ddcu

φ̃ = φ− π∗u+ c̃−c
2 log s+ b,

for some b ∈ R, and some smooth function u on M such that σ + ddcu > 0.

Proof. Assuming there exists (σ, φ, c) as in the statement such that (i) and
(ii) hold, one has

iV ω = LV d
cφ− diV dcφ = dJV (φ) = dµ.

Since ω is closed, the standard circle action turns out to be Hamiltonian
with moment map µ.

For any (σ̃, φ̃, c̃) giving the same ω and µ, one has

(3)

{
π∗(σ̃ − σ) + ddc(φ̃− φ) = 0

JV (φ̃− φ) + c̃− c = 0

Thanks to (1), from second equation one easily finds that

φ̃− φ =
c̃− c

2
log s+ b− π∗u,

for some constant b ∈ R and some smooth function u on M . Substituting in
the first equation of (3) then proves (2).

It remains to show that any Kähler form ω on P making Hamiltonian
the standard circle action with moment map µ satisfies (i) and (ii) for some
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triple (σ, φ, c). To this end consider the decomposition

(4) ω = η + α ∧ dc log s+ d log s ∧ β + γd log s ∧ dc log s,

where η is a smooth section of the bundle π∗Λ1,1T ∗M , α, β are smooth
sections of π∗T ∗M , and γ is a smooth function on P . Imposing that µ is a
moment map gives

dµ = iV ω = −2α− 2γd log s,

dcµ = iJV ω = −2β − 2γdc log s,

JV (µ) = ω(V, JV ) = 4γ,

whence, substituting in (4) after easy calculations it follows

(5) ω = η − 1

2
dµ ∧ dc log s− 1

2
d log s ∧ dcµ− 1

4
JV (µ)d log s ∧ dc log s.

The smooth circle invariant function φ on P defined by

φ(x, s) =

∫ s

r2

c− µ(x, t)

2t
dt,

clearly satisfies (ii). On the other hand, one can easily check that the fol-
lowing decomposition holds (cf. [8, Lemma 3.4]):
(6)

ddcφ = dMd
c
Mφ−

1

2
dµ ∧ dc log s− 1

2
d log s ∧ dcµ− 1

4
JV (µ)d log s ∧ dc log s,

where dMd
c
Mφ denotes the projection of ddcφ on the sub-bundle π∗Λ1,1T ∗M ⊂

Λ1,1T ∗P . Comparing ddcφ with (5) gives

(7) ω − ddcφ = η − dMdcMφ.

The form ω − ddcφ is clearly circle invariant, and from the right hand side
of equation above it follows that it vanish on the distribution generated by
V and JV . Moreover one has

LJV (ω − ddcφ) = d(iJV ω − iJV ddcφ)

= ddcµ− diJV
(
dMd

c
Mφ−

1

2
dµ ∧ dc log s− 1

2
d log s ∧ dcµ

−1

4
JV (µ)d log s ∧ dc log s

)
= 0.
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Thus there exists a Kähler form σ on M such that ω − ddcφ = π∗σ, whence
(i) follows. �

2.2. Kähler reduction

Keeping notation of Section 2, fix a Kähler metric g on P that makes Hamil-
tonian the standard circle action with moment map µ. Thanks to Lemma 2.1,
this amounts to choosing a Kähler form σ on M , a smooth invariant function
φ on P , and a constant c ∈ R satisfying conditions (i) and (ii) of Lemma 2.1.
Let τ be a regular value of µ, so that the circle action is free on the level set
Sτ = µ−1(τ). With no additional assumption on µ, the level set Sτ is not
necessarily compact even if M is, and its quotient

Mτ = π(Sτ ) ⊂M

may not be closed. Such a situation is illustrated by the following example.

Example 2.2. Consider the family π : X → C, where

X =
{

(z, w) ∈ CP2 ×C s.t. z0z2 − z2
1w = 0

}
,

and π is just the coordinate w. It’s easy to check that endowing CP2 with
the circle action eiθ · z = (eiθz0, z1, z2), and C with the standard one, makes
X invariant for the diagonal action on CP2 ×C. Thus X has a circle action
and one readily verifies that π turns out to be an equivariant map. Moreover
it is easy to see that removing the central fiber π−1(0) from X gives rise to
an invariant submanifold X∗ biholomorphic to P = CP1 ×C∗. An explicit
biholomorphism Φ : P → X∗ is given by

Φ(x,w) = (wx2
0, x0x1, x

2
1, w).

Note that Φ becomes equivariant when P is endowed with the standard
action on the C∗ factor, thus we are in the general situation considered
above.

The product metric ωFS + ωEuclid on CP2 ×C is Hamiltonian with mo-
ment map

(z, w) 7→ −|z0|2

|z|2
− |w|2,
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whence it follows readily that a moment map for the circle action on P
(endowed with the induced metric) is given by

µ(x,w) = −|w|2 (1 + |w|2)|x0|4 + |x0|2|x1|2 + |x1|4

|w|2|x0|4 + |x0|2|x1|2 + |x1|4
.

By means of easy calculations one can check that the image of µ is the
interval (−∞, 0), and one has biholomorphisms Mτ ' CP1 for τ < −1, and
Mτ ' CP1 \ {(1 : 0)} for −1 ≤ τ < 0. Moreover the reduced metric ωτ on
Mτ is smooth for τ < −1, conic of angle π for τ = −1 and it is incomplete
for τ ∈ (−1, 0). In the latter case, its completion recovers CP1.

Finally note that µ has no critical points, since the circle action on P
has no fixed points. Nonetheless µ is clearly not proper.

The example above shows that, due to the non-properness of the moment
map µ, the topology of reductions can still change when τ varies. On the
other hand, if the reduced manifold Mτ coincides with M , then the same
holds for Mτ+ε for all ε sufficiently small.

This example suggests to define, when µ is not proper, the Kähler re-
duction (Mτ , ωτ ) as the metric completion of the standard reduction. On
the other hand, for the purposes of this paper, we only need the following:

Assumption. τ ∈ µ(P ) is chosen so that Mτ is coincides with M . When
τ varies, it does so in an interval where all the reductions coincide with M .

Let ιτ : Sτ → P be the inclusion and let πτ : Sτ →Mτ be the projection
on the quotient, namely the restriction of π to the level set Sτ , so that one
has the following commutative diagram:

Sτ

πτ
��

ιτ // P

π

��
Mτ

//M

Any invariant smooth function f on P descends to a smooth function
fτ on Mτ defined by

ι∗τf = π∗τfτ .

A simple but crucial example is constituted by the function s, which descends
to a function sτ . Given any f , one can express fτ by means of sτ . Indeed,
thanks to invariance, f has the form f = f(π, s), whence obviously it follows
fτ (x) = f(x, sτ (x)).
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More generally, any invariant differential r-form η on P satisfying ι∗τ (iV η)
= 0, descends to an r-form ητ on Mτ defined by

ι∗τη = π∗τητ .

This defines a reduction map, that is a linear map

{η ∈ Ω∗(P ) s.t. LV η = 0, ι∗τ (iV η) = 0} → Ω∗(Mτ ), η 7→ ητ ,

satisfying

(8) (η ∧ ξ)τ = ητ ∧ ξτ , (dη)τ = dητ , (π∗ζ)τ = ζ,

as can be readily checked.
In particular, the Kähler form ω of the metric g descends to a non-

degenerate two form ωτ on Mτ . Moreover ωτ turns out to be compatible
with the complex structure of Mτ induced by the one of M , so that it
defines a Kähler metric gτ on Mτ .

Lemma 2.3. For every invariant functions f ∈ C∞(P ) one has:

(9)
∂fτ
∂τ

=

(
JV (f)

|V |2

)
τ

.

Proof. Differentiating the identity fτ (x) = f(x, sτ (x)) gives

(10)
∂fτ
∂τ

=

(
∂f

∂s

)
τ

∂sτ
∂τ

= −1

2
(JV (f))τ

∂ log sτ
∂τ

.

Taking f = µ, since µτ = τ and JV (µ) = |V |2, one gets

(11)
∂ log sτ
∂τ

=

(
− 2

|V |2

)
τ

.

Thus the thesis follows substituting (11) in (10). �

Lemma 2.4. For every invariant function f ∈ C∞(P ), the following holds

(12) dcfτ =

(
dcf − JV (f)

|V |2
dcµ

)
τ

.
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Proof. Differentiating the identity fτ (x) = f(x, sτ (x)) gives

dcfτ =

(
dcf − ∂f

∂s
dcs

)
τ

+

(
∂f

∂s

)
τ

dcsτ

=

(
dcf +

1

2
JV (f)dc log s

)
τ

− 1

2
(JV (f))τ d

c log sτ .

Taking f = µ, since µτ = τ and JV (µ) = |V |2, one gets

(13) dc log sτ =

(
2

|V |2
dcµ+ dc log s

)
τ

,

whence the thesis follows substituting in equation above. �

Proposition 2.5. In the situation of Lemma 2.1, the Kähler form of the
reduced metric gτ satisfies

ωτ = σ + ddcψτ ,

where

ψ = φ+
µ− c

2
log s.

Proof. By Lemma 2.4, recalling that JV (φ) = µ− c and JV (µ) = |V |2 it
follows

dcψτ =

(
dcφ+

µ− c
2

dc log s

)
τ

.

Thus, since ω = π∗σ + ddcφ, by (8) one has

(14) σ + ddcψτ =

(
π∗σ + ddcφ+

1

2
dµ ∧ dc log s

)
τ

= ωτ ,

where we used (dµ ∧ dc log s)τ = 0. �

The Monge-Ampère operator of the reduced manifold is given by the
reduction of a non-linear operator on P . Indeed one has the following (which
is a consequence of Lemma 3.3 and Lemma 3.7 in [8], but here we produce
a different proof):

Lemma 2.6. For all invariant functions f ∈ C∞(P ) one has:

(15)
(ωτ + ddcfτ )n

ωnτ
=


(
ω + ddcf − dJV (f)

|V |2 ∧ d
cµ− JV (f)

|V |2 dd
cµ
)n+1

ωn+1


τ

.
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Proof. Any top form θ on P can be written as

(16) θ = η ∧ d log s ∧ dc log s,

where η is a section of π∗KM . Clearly one can recover η from θ by contraction
with V and JV :

(17) iJV iV θ = −2iJV (η ∧ d log s) = 4η.

Let

ξ = ω + ddcf − dJV (f)

|V |2
∧ dcµ− JV (f)

|V |2
ddcµ.

Note that it can be also written as

ξ = ω + d

(
dcf − JV (f)

|V |2
dcµ

)
.

We want to write ξn+1 in the form (16). Since

iJV iV ξ
n+1 = (n+ 1)iJV (iV ξ ∧ ξn)(18)

= (n+ 1)iJV iV ξ

(
ξ − iV ξ ∧ iJV ξ

iJV iV ξ

)n
,

we need to calculate the contraction of ξ with V and JV . The one form
dcf − JV (f)

|V |2 d
cµ is circle invariant, thus

iV ξ = dµ+ LV

(
dcf − JV (f)

|V |2
dcµ

)
+ diV

(
dcf − JV (f)

|V |2
dcµ

)
= dµ,

whence it follows readily that iJV iV ξ = |V |2. As we will see, we do not need
an explicit expression for iJV ξ. Substituting in (18) gives

(19) iJV iV ξ
n+1 = (n+ 1)|V |2

×
(
ω + ddcf − dJV (f)

|V |2
∧ dcµ− JV (f)

|V |2
ddcµ− dµ ∧ iJV ξ

|V |2

)n
,

and in particular, taking f = 0:

iJV iV ω
n+1 = (n+ 1)|V |2

(
ω − dµ ∧ dcµ

|V |2

)n
,



i
i

“8-388” — 2015/3/18 — 11:34 — page 507 — #11 i
i

i
i

i
i

Geometric flows and Kähler reduction 507

by (16) and (17) it follows

(20)
ξn+1

ωn+1
=

(
ω + ddcf − dJV (f)

|V |2 ∧ d
cµ− JV (f)

|V |2 dd
cµ− dµ∧iJV ξ

|V |2

)n(
ω − dµ∧dcµ

|V |2

)n ,

whence the thesis follows by reducing at τ and using Lemma 2.4. �

An immediate consequence is the following fact (cf. formula (14) in [8]):

Corollary 2.7. For all invariant functions f ∈ C∞(P ) the following holds:

(21) ∆τfτ =

(
∆f − (∆µ− JV log |V |) JV (f)

|V |2
− (JV )2(f)

2|V |2

)
τ

,

where ∆ and ∆τ denote the Laplace operators of the metrics g and gτ re-
spectively.

Proof. As well known the linearization of the Monge-Ampère operator, i.e.
the left hand side of (15), is twice the Laplacian. Thus by Lemma 2.6 one
has

(22) 2∆τfτ =

(n+ 1)
(
ddcf − dJV (f)

|V |2 ∧ d
cµ− JV (f)

|V |2 dd
cµ
)
∧ ωn

ωn+1


τ

.

Thanks to the identity ∇f · ∇g ωn+1 = (n+ 1)df ∧ dcg ∧ ωn and recalling
that ∇µ = JV one calculates

(n+ 1)

(
ddcf − dJV (f)

|V |2
∧ dcµ− JV (f)

|V |2
ddcµ

)
∧ ωn

=

(
2∆f − JV

(
JV (f)

|V |2

)
− 2

JV (f)

|V |2
∆µ

)
ωn+1

=

(
2∆f − JV 2(f)

|V |2
+
JV (f)

|V |2
JV log |V |2 − 2

JV (f)

|V |2
∆µ

)
ωn+1,

whence the thesis follows by substitution in (22). �

The Ricci curvature of the reduced metric turns out to be the reduction
of a two form on M . More precisely one has the following
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Proposition 2.8. The (1,1)-form on P

ρ = Ric(ω) + ddc log |V |+ d

(
∆µ− JV log |V |

|V |2
dcµ

)
satisfies ρτ = Ric(ωτ ).

Proof. In the situation of Lemma 2.1, on M one has

(23) 2 Ric(ωτ )− 2 Ric(σ) = −ddc log
ωnτ
σn
.

Letting ψ = φ− µ−c
2 log s, thanks to Proposition 2.5 ωτ = σ + ddcψτ so that

(24) 2 Ric(ωτ )− 2 Ric(σ) = ddc log
(ωτ − ddcψτ )n

ωnτ
,

whence by Lemma 2.6 it follows

(25) 2 Ric(ωτ )− 2 Ric(σ)

= ddc log


(
ω − ddcψ + dJV (ψ)

|V |2 ∧ d
cµ+ JV (ψ)

|V |2 ddcµ
)n+1

ωn+1


τ

.

As one can easily verify JV (ψ) = |V |2
2 log s, and

ddcψ = ddcφ+
1

2
log sddcµ+

1

2
d log s ∧ dcµ+

1

2
dµ ∧ dc log s.

Thus by substitution in (25), after some easy calculations and recalling that
ω = π∗σ + ddcφ, one gets

(26) 2 Ric(ωτ )− 2 Ric(σ) = ddc log

((
π∗σ − 1

2dµ ∧ d
c log s

)n+1

ωn+1

)
τ

.

Let F =
(
π∗σ − 1

2dµ ∧ d
c log s

)n+1
/ωn+1, by Lemma 2.4 and recalling that

the exterior derivative commute with the reduction map, one has

(27) 2 Ric(ωτ )− 2 Ric(σ) =

(
ddc logF − d

(
JV logF

|V |2
dcµ

))
τ

.
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Since JV (µ) = |V |2, it holds(
π∗σ − 1

2
dµ ∧ dc log s

)n+1

=
n+ 1

4
|V |2π∗σn ∧ d log s ∧ dc log s,

whence

(28) logF = log
n+ 1

4
+ log |V |2 − log

ωn+1

π∗σn ∧ d log s ∧ dc log s
.

The top form π∗σn ∧ d log s ∧ dc log s is, up to a positive constant factor, the
volume form of the product metric defined by π∗σ + d log s ∧ dc log s on P .
Since Ric(π∗σ + d log s ∧ dc log s) = π∗Ric(σ), it turns out

(29) ddc logF = ddc log |V |2 + 2 Ric(ω)− 2π∗Ric(σ).

On the other hand, since LJV (π∗σn ∧ d log s ∧ dc log s) = 0, one calculates

(30) JV logF = JV log |V |2 − LJV (ωn+1)

ωn+1
= JV log |V |2 − 2∆µ.

The thesis follows substituting (29) and (30) in (27) and observing that
(π∗Ric(σ))τ = Ric(σ). �

The scalar curvature

scal(gτ ) =
nRic(ωτ ) ∧ ωn−1

τ

ωnτ

of the reduced metric gτ can be computed by means of data on M . Indeed
the following holds:

Corollary 2.9. The function

R = scal(g) + 2∆ log |V |+ 2

|V |2
(∆µ− JV log |V |)2

+
JV

|V |2
(∆µ− JV log |V |)

satisfies Rτ = scal(gτ ).

Proof. Here the main point is that the trace of ρ with respect to ω descends
to the trace of ρτ with respect to ωτ . The thesis then follows directly from
Proposition 2.8.
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First of all notice that by Cartan formula, circle invariance and by the
identity JV (µ) = |V |2 it follows

iV ρ = iV Ric(ω)− diV dc log |V | − diV
(

∆µ− JV log |V |
|V |2

dcµ

)
(31)

= iV Ric(ω) + d∆µ = 0,

where the last equality is quite standard, but we include the proof for con-
venience of the reader.

iV Ric(ω) = iV (Ric(ω)− π∗Ric(σ))(32)

= −1

2
iV dd

c log
ωn+1

π∗σn ∧ d log s ∧ dc log s

= −1

2
dJV log

ωn+1

π∗σn ∧ d log s ∧ dc log s

= −1

2
d
LJV (ωn+1)

ωn+1

= −1

2
d

(n+ 1)ddcµ ∧ ωn

ωn+1

= −d∆µ.

Arguing as in the proof of Lemma 2.6, one has

ρ ∧ ωn = η ∧ d log s ∧ dc log s,

where 4η = iJV iV (ρ ∧ ωn) is a section of π∗KM . Thus by easy calculations
one finds

ρ ∧ ωn =
n

4

(
iJV ρ ∧ dµ ∧ ωn−1(33)

+ |V |2ρ ∧
(
ω − dµ ∧ dcµ

|V |2

)n−1)
∧ d log s ∧ dc log s.

In the same way one gets

(34) ωn+1 =
n+ 1

4
|V |2

(
ω − dµ ∧ dcµ

|V |2

)n
∧ d log s ∧ dc log s.
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Combinig (33) and (34) then gives

(35)
(n+ 1)ρ ∧ ωn

ωn+1
=
n|V |−2iJV ρ ∧ dµ ∧ ωn−1 + nρ ∧

(
ω − dµ∧dcµ

|V |2

)n−1(
ω − dµ∧dcµ

|V |2

)n
and reducing at τ , recalling that ρτ = Ric(ωτ ), by Proposition 2.8 one then
has

(36)

(
(n+ 1)ρ ∧ ωn

ωn+1

)
τ

=
nρτ ∧ ωn−1

τ

ωnτ
= scal(gτ ).

The thesis follows from equation above after observing that the trace of ρ
with respect to ω coincides with the function R on the statement. Indeed
one has

(n+ 1)ρ ∧ ωn

ωn+1
=

(n+ 1)
(

Ric(ω) + ddc log |V |+ d
(

∆µ−JV log |V |
|V |2 dcµ

))
∧ ωn

ωn+1

= scal(g) + 2∆ log |V |+ 2

|V |2
(∆µ− JV log |V |)∆µ

+ JV
∆µ− JV log |V |

|V |2
= R.

�

3. Geometric flows

In this section we consider the case when the reduced Kähler forms induce
some geometrically meaningful path of cohomologous metrics on a compact
manifold M . Thanks to Duistermaat-Heckman [3], this forces to assume P
to be globally a product:

P = M ×C∗.

By Lemma 2.1, choosing a Kähler metric ω on P making Hamiltonian the
standard circle action with moment map µ is the same as choosing a triple
(σ, φ, c) constituted by a Kähler form σ on M , a smooth invariant function
φ on P , and a real constant c satisfying suitable compatibility conditions



i
i

“8-388” — 2015/3/18 — 11:34 — page 512 — #16 i
i

i
i

i
i

512 C. Arezzo, A. Della Vedova and G. La Nave

with ω and µ. Moreover, by Lemma 2.5 the reduced metrics are given by

ωτ = σ + ddcψτ ,

where ψτ is the reduction of the invariant function φ+ µ−c
2 log s on P . In

particular ψτ defines a path in the space of Kähler potential

Hσ = {ϕ ∈ C∞(M) |σϕ = σ + ddcϕ > 0} .

Note that a fixed path ωτ of Kähler metrics can induce many different paths
in Hσ. Indeed for any function h = h(τ), one has

ωτ = σ + ddc(ψτ + h(τ)).

On the other hand, given the path of reduced metrics {ωτ} one can ask
if a path {ω̃t} obtained just by reparametrization τ = τ(t) of the time comes
as path of reduced metrics on P . This is the case, and it holds the following

Proposition 3.1. Let f : µ(P )→ R be any smooth function invertible on
its image. The path of metrics {ωf−1(t)} on M can be realized as path induced
by reduction of the metric g̃ associated to the Kähler form

ω̃ = ω + ddcΨ,

where Ψ is a smooth invariant function on P satisfying

JV (Ψ) = f(µ)− µ.

Proof. Since iV ω̃ = d(µ+ JV (Ψ)), a moment map of the metrics g̃ is given
by

µ̃ = µ+ JV (Ψ) = f(µ),

whence the thesis follows. �

3.1. Geodesics

As shown by Mabuchi [9], letting

‖v‖2 =

∫
M
v2
σnϕ
n!
, v ∈ TϕHσ
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defines a Riemannian metric on the space of Kähler potentials Hσ. It is not
difficult to see that a path {ϕt} ⊂ Hσ is a geodesic if it satisfies the equation

(37) ϕ′′t −
1

2
|∇ϕ′t|2 = 0,

where the prime denotes the derivative with respect to the time parameter
t, and gradient and norm are taken with respect the variable metric σϕt .

Theorem 3.2. Suppose that for some smooth function h = h(µ) on P , the
metric g satisfies

(38) ∆s = hs.

Then the family of reduced metrics gτ induces a geodesic in Hσ.

Proof. By Proposition 2.5 the reduced Kähler form is given by

ωτ = σ + ddcψτ ,

where ψ = φ+ µ−c
2 log s. Given a smooth function κ(τ), the path ψτ − κ(τ)

defines a geodesic in Hσ if and only if

(39) ψ′′τ −
1

2

∣∣∇τψ′τ ∣∣2τ = κ′′(τ),

where the prime denotes the derivative with respect to τ . Using the identity
∆eϕ = eϕ

(
∆ϕ+ 1

2 |∇ϕ|
2
)
, one readily verifies that the equation above is

equivalent to:

(40) ψ′′τ − e−ψ
′
τ∆τe

ψ′τ + ∆τψ
′
τ = κ′′(τ).

Thanks to Lemma 2.3 we have:

(41) ψ′τ = (log s)τ , ψ′′τ =

(
− 2

|V |2

)
τ

,

whence, by means of Corollary 2.7, one can infer that:

(42) ∆τe
ψ′τ =

(
∆s+ (∆µ− JV log |V |) 2s

|V |2
− 2s

|V |2

)
τ

and

(43) ∆τψ
′
τ =

(
∆ log s+ (∆µ− JV log |V |) 2

|V |2

)
τ

.
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Substituting in (40), recalling that ∆ log s = 0, then gives

(44)

(
−∆s

s

)
τ

= κ′′(τ),

which is Equation (38) after choosing h(τ) = −κ′′(τ). �

Remark 3.3. It is clear from the proof of the result above that h appears
in connection to the fact that reduced potentials ψτ may define a geodesic
only up to normalization.

3.2. Calabi flow and its variants

Theorem 3.4. Suppose that for some smooth function h = h(µ) on P , the
metric g satisfies

(45) R = log s+ h,

where

R = scal(g) + 2∆ log |V |+ 2

|V |2
(∆µ− JV log |V |)2(46)

+
JV

|V |2
(∆µ− JV log |V |) .

Then the family of reduced metrics gτ is a solution of the Calabi flow on M :

(47)
∂ωτ
∂τ

=
1

2
ddc scal(gτ ).

Proof. By Proposition 2.5 the reduced Kähler form is given by

ωτ = σ + ddcψτ ,

where ψ = φ+ µ−c
2 log s. Equation (47) is then clearly equivalent to

(48) ddc
(
∂ψτ
∂τ
− 1

2
scal(gτ )

)
= 0.

By Corollary 2.9 one has scal(gτ ) = Rτ . On the other hand, by the identity
2JV (ψ) = log s and Lemma 2.3 it follows ∂ψτ

∂τ = 1
2 (log s)τ . Thus (48) turns
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out to be equivalent to

(49) ddc (log s−R)τ = 0,

and this equation is satisfied whenever (45) holds, since hτ = h(τ) is constant
on M . �

Remark 3.5. The appearance of the function h in the result above is a
consequence of the fact that the reduced potentials ψτ are defined up to a
constant on M depending on τ . On the other hand, given a Kähler form ω
on P , there is a unique function h candidate to solve Equation (45). Indeed,
after reducing at τ that equation, integrating over M and dividing by the
volume of ωτ (which is independent of τ) gives

(50) h(τ) = λ−
∫
M log sτω

n
τ∫

M ωnτ
,

where λ = n c1(M)∪[σ]n−1

[σ]n is the mean scalar curvature of the Kähler class [σ].

Remark 3.6. Equation (49) suggests there exist Kähler metrics on P for
which condition (45) may fail, but still the reduced metrics induce the Calabi
flow on the reduction. Clearly in this case the reduced manifold is non-
compact.

The pseudo-Calabi flow has been introduced and studied by Chen and
Zheng [2].

Theorem 3.7. Suppose that g satisfies the following equation

(51) R+
2

|V |2
(∆µ− JV log |V |) = λ,

where

R = scal(g) + 2∆ log |V |+ 2

|V |2
(∆µ− JV log |V |)2(52)

+
JV

|V |2
(∆µ− JV log |V |) ,

and λ = n c1(M)∪[σ]n−1

[σ]n . Then the family of reduced metrics gτ is a solution
of the pseudo-Calabi flow on M :

(53)

{
ωτ = σ + ddcψτ
∆τψ

′
τ + scal(gτ ) = λ.
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where the prime denotes the partial derivative with respect to τ .

Proof. By Proposition 2.5 the reduced Kähler form is given by

ωτ = σ + ddcψτ ,

where ψ = φ+ µ−c
2 log s. Thanks to (43), the path ψτ is a solution of (53)

if and only if

(54)

(
∆ log s+

2

|V |2
(∆µ− JV log |V |)

)
τ

+ scal(gτ ) = λ,

thus the thesis follows by Corollary 2.9 and observing that ∆ log s = 0. �

Remark 3.8. It is a notable fact that for the pseudo-Calabi flow, one need
not introduce the function h in order to renormalize the reduced poten-
tials ψτ .

3.3. Kähler-Ricci flow

The approach to Kähler-Ricci flow by means of symplectic reduction is due
to La Nave and Tian with the introduction of the V-soliton equation. In
particular, the following result is due to them [8, Theorem 3.7]. Here we
give a proof resting on results of Section 2. The reader is referred to their
work for more details.

Theorem 3.9. Suppose that for some smooth function f = f(µ) on P , the
metric g satisfies

(55) Ric(ω) + ddc (log |V |+ f) = λω,

being λ = n c1(M)∪[σ]n−1

[σ]n . Then a = ∆µ− JV log |V | − JV (f) + λµ is con-
stant, and the family of reduced metrics gτ satisfies:

(56) (λτ − a)
∂ωτ
∂τ

= −Ric(ωτ ) + λωτ ,

which is the Kähler-Ricci flow up to reparametrizing τ .
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Proof. Recall that iV Ric(ω) + d∆µ = 0 as proved in (32). Thus contract-
ing (55) with V gives

(57) − d∆µ+ d (JV log |V |+ JV (f)) = λdµ,

whence, by connectedness of P , it follows that a is constant. On the other
hand, thanks to the expression of ρ in Proposition 2.8, Equation (55) turns
out to be equivalent to

ρ+ d

(
dcf − ∆µ− JV log |V |

|V |2
dcµ

)
= λω,

and by expression of a even to

(58) ρ+ d

(
dcf − JV (f)− λµ+ a

|V |2
dcµ

)
= λω.

By Proposition 2.5 the reduced Kähler form is given by

ωτ = σ + ddcψτ ,

where ψ = φ+ µ−c
2 log s. By the identity 2JV (ψ) = |V |2 log s and Lemma 2.3

it follows ∂ψτ
∂τ = 1

2 log sτ . Therefore Lemma 2.4 and the equality JV log s =
−2 imply

∂ωτ
∂τ

= d

(
1

2
dc log s+

dcµ

|V |2

)
τ

,

whence it follows that d
(
λµ−a
|V |2 d

cµ
)

reduces to (λτ − a)∂ωτ∂τ . On the other

hand, by Lemma 2.3 the form d
(
dcf − JV (f)

|V |2 d
cµ
)

reduces to ddcf(τ) = 0.

Thus reducing (58) gives

Ric(ωτ ) + (λτ − a)
∂ωτ
∂τ

= λωτ .

�

Finally we consider the un-normalized Kähler-Ricci flow. Since the
Kähler class of the reduced metric may change along the flow, according
to Duistermaat-Heckman [3, Theorem 1.1] here we assume π : P →M to be
the holomorphic C∗-principal bundle on M associated to the canonical bun-
dle KM of M . Note that c1(TP ) = 0. Moreover V will denote the generator
of the induced circle action on P , and g will be a Kähler metric on P making
Hamiltonian that action. We still assume that the moment map µ is proper
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so that, even in this case, any Kähler quotient is canonically biholomorphic
to M via the projection π.

Theorem 3.10. In the situation above, assume the metric g on P satisfies

(59) Ric(ω) + ddc log |V |+ d

(
∆µ− JV log |V |+ 1

|V |2
dcµ

)
= 0.

Then the family of reduced metrics gτ is a solution of the Kähler-Ricci flow
on M :

(60)
∂ωτ
∂τ

= −Ric(ωτ ).

Proof. Let U ⊂M be a trivializing open set, so that π−1(U) ' U ×C∗. Over
U , by Proposition 2.5 the reduced Kähler form is given by

ωτ = σ + ddcψτ ,

where ψ = φ+ µ−c
2 log s. Arguing as in the proof of Theorem 3.9 one has

∂ωτ
∂τ

= d

(
dc log s+

dcµ

|V |2

)
τ

.

On the other hand, by Proposition 2.8 one has Ric(ωτ ) = ρτ , where

ρ = Ric(ω) + ddc log |V |+ d

(
∆µ− JV log |V |

|V |2
dcµ

)
.

Thus the thesis follows by substituting in (60), after noting that ddc log s =
0, so that the resulting equation is global. �

4. The structure of the total space and
the converse theorems

The following result says that any path of cohomologous Kähler metrics can
be realized as a family of reduced metrics from a bigger Kähler manifold.

Theorem 4.1. Let gt be a smooth path of cohomologous Kähler metrics on
a compact complex manifold M with t ∈ [0, T ), for some T ∈ (0,+∞]. Then
there is r ∈ [0, 1) and a circle invariant Kähler metric on P = M ×A, where
A = {r < |w| < 1} ⊂ C, inducing the path gt on M via Kähler reduction.
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Proof. Let σt be the Kähler form of gt. By ddc-lemma there exists a smooth
path of σ-plurisubharmonic functions ψt such that σt = σ + ddcψt, being
σ = σ0. Note that ψt is just defined up to an additive constant possibly
depending on t. We will make use of this arbitrariness later.

Recalling that π : P →M is the projection on the first factor, and s is
the smooth function on P defined by s(p) = |w|2 if p = (x,w), let F be the
function on [0, T )× P defined by

(61) F (t, p) = ψt(π(p))− t

2
log s(p).

We look for a circle invariant function φ on P such that

(62) F (JV (φ), p) = φ.

for all p ∈ P , and JV (φ)(p) = 0 if s(p) = 1. This equation is clearly equiva-
lent to

(63) φ+
JV (φ)

2
log s = ψJV (φ) ◦ π,

thus by Proposition 2.5 and Lemma 2.1 the function ψτ is the Kähler po-
tential of reduced metrics whenever one can find a circle invariant solu-
tion φ to (62) satisfying π∗σ + ddcφ > 0. If a solution to (62) exists, letting
µ = JV (φ), by (6) and (63) it holds

ddcφ = d

(
π∗dcψt +

∂ψt ◦ π
∂t

dcµ

∣∣∣∣
t=µ

− 1

2
log s dcµ− µ

2
dc log s

)
(64)

= d
(
π∗dcψt|t=µ −

µ

2
dc log s

)
= π∗ddcψt|t=µ + dµ ∧

(
π∗dc

∂ψt
∂t

∣∣∣∣
t=µ

− 1

2
dc log s

)

= π∗ddcψt −
∂2ψt ◦ π
∂t2

dµ ∧ dcµ
∣∣∣∣
t=µ

,

where the second and last equalities follow from the identity 1
2 log s =

∂ψt◦π
∂t

∣∣∣
t=µ

, which in turn descends readily from applying JV to (63). Thus
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for any vector field X on P one has

(π∗σ + ddcφ)(X, JX)

= (σ + ddcψt)|t=µ (π∗X,π∗JX)− ∂2ψt ◦ π
∂t2

∣∣∣∣
t=µ

(X(µ)2 + JX(µ)2),

whence it is clear that π∗σ + ddcφ > 0 if and only if ∂2ψt◦π
∂t2 < 0. The lat-

ter inequality can be made to hold with no additional assumption simply
replacing ψt by ψt + at where

at = −t2 −
∫ t

0

∫ v

0
sup
M

∂2ψu
∂u2

dudv.

It remains then to show that (62) can be solved. This follows by a stan-
dard application of method of characteristics. It is not difficult to see that
projected characteristics are integral curves of JV in P . �

Remark 4.2. The Theorem above clearly implies that any of geometric
flows considered in the previous section — with the notable exception of the
Kähler-Ricci flow for which ∂ωτ

∂τ is a nontrivial class (see Formula (67) below),
i.e. when the initial metric is not canonical (e.g., the flow on projective
manifolds with non ample canonical bundles), which is treated in [8] — can
be realized as a path of reduced Kähler metric coming from a suitable Kähler
metric on P .

This can be proved in a more geometrical way, as illustrated for the Calabi
flow in the following subsection. This proof is less elegant and less general
(in that one needs to reformulate the proof in every case) but it has the
advantage of working even when one is forced to take a P consisting of a
family of non-trivial principal S1-bundles.

4.1. Converse to Theorem 3.4

Let be given a Hamiltonian holomorphic circle action on a Kähler manifold
(P, ω, J) with associated metric g and with moment map µ. Fix a regular
value a of the moment map. Let z1, . . . , zm, with m = n− 1, be holomor-
phic coordinates on the quotient manifold M = µ−1(a)/S1, and let τ be the
“moment map coordinate”, i.e., µ = τ . By definition, we have dτ = iV ω.

Let Q be the horizontal distribution, i.e., the hortogonal complement
(with respect to the metric g) of the span of V and JV (clearly the quotient
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map πa : µ−1(a)→M induces an isomorphism dπa : Q→ TM). Then we
can define a 1-form θ by:

θ(V ) = 1, θ(JV ) = 0, θ
∣∣
Q

= 0,

One can show (cf. Lemma 3.1 in [8]) that:

Lemma 4.3. For the above local coordinates, we have g(dzi, dτ) = 0,
g(dzi, θ) = 0 and g(θ, dτ) = 0, where g also denotes the induced metric on
the cotangent bundle of M . In particular, in these coordinates g and ω take
the form (reap.):

(65) g = hij̄dzidz̄j + w dτ2 +
1

w
θ2

and

(66) ω =
√
−1hij̄dzi ∧ dz̄j − dτ ∧ θ

where 1
w = |V |2.

One can see that J preserves Q1,0 := Q ∩ T (1, 0)P and that α := w dτ −√
−1θ is of type (1, 0),. We can then rewrite g as

ω =
√
−1hij̄dzidz̄j + |V |2 α ∧ ᾱ.

Also, we have the decomposition: T (1,0)M = Q(1,0) ⊕ 〈α〉. Following this de-
composition one can write, for any S1-invariant function f :

∂f = ∂hf + JV (f)α ∂̄f = ∂̄hf + JV (f) ᾱ

and these identities define ∂hf ∈ Q(1,0) and ∂̄hf ∈ Q(0,1). We have the fol-
lowing important formula about the connection 1-form of the principle S1-
bundle:

Lemma 4.4. One has:

dθ =
√
−1

{
−
∂hij̄
∂τ

dzi ∧ dz̄j(67)

+∂h log

(
1

|V |2

)
∧ ᾱ+ α ∧ ∂̄h log

(
1

|V |2

)
− d log

(
1

|V |2

)
∧ θ
}
.
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Proof. This is Lemma 3.2 in [8], after using that:

∂h log

(
1

|V |2

)
∧ ᾱ = ∂hw ∧ dτ + ∂h logw ∧ θ

and the analogous:

α ∧ ∂̄h log

(
1

|V |2

)
= dτ ∧ ∂̄hw + ∂̄h logw ∧ θ.

�

We can prove the sought after converse to Theorem 3.4:

Theorem 4.5. Maintaining notations as in Theorem 3.4, let (M,ω(t)) be
a solution of the Calabi-flow — i.e., Eq. (47) — and assume that along the
flow:

∂ scal(gτ )

∂τ
> −c

for some uniform c > 0. Then there exists a metric g and a function h =
h(µ) such that:

R = log s+ h

Proof. Let ωτ =
√
−1hij̄ dzi ∧ dz̄j . Naturally we set τ = −Ct+ C0 where C

is to be determined (C0 is arbitrary). Imposing Equation (67), simply define
(for now just formally as we don’t know as of yet that thus defined, dθ is
closed):

dθ =
√
−1

{
−
∂(gτ )ij̄
∂τ

dzi ∧ dz̄j

+∂h log

(
1

|V |2

)
∧ ᾱ+ α ∧ ∂̄h log

(
1

|V |2

)
− d log

(
1

|V |2

)
∧ θ
}

where 1
|V |2g

is yet to be defined.

Then clearly:

dθ
∣∣
τ=const

=
∂ωτ
∂τ

which is in the trivial class, due to the fact that ω(t) satisfies the Calabi
flow. We can therefore take P = M ×A where A ⊂ C∗ is an annulus and
the rest is clear, modulo defining the value of |V |2g. Equations (48) and (49)
imply that the equation R = log s+ h is satisfied in the horizontal directions,
meaning that it holds up to the addition of a function C which is constant
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in the horizontal variables (i.e. dC = 0). It is then readily seen that, in order
for equation R = log s+ h to be satisfied, one must have:

∇ (JV (scal(gτ )− h)) = 0

and also that in fact one must take the constant C for which τ = −Ct+ C0

to be:

−C := JV (scal(gτ )− h) .

This very equation defines |V |2g though, as one has JV = |V |2g ∂
∂τ which

yields:

(68) |V |2g =
−C

∂
∂τ (scal(gτ )− h)

=
1

∂
∂t (scal(gτ )− h)

One can therefore choose h such that |V |2g > 0, provided:

∂ scal(gτ )

∂τ
> −c

for some uniform c > 0. It is now also easy to see from the Calabi flow
equation that the form dθ is closed — since 1

|V |2g
= ∂

∂t (scal(gτ )− h). In fact,

the closedness of dθ is equivalent to requiring:

∂2(gτ )ij̄
∂τ2

= − ∂2

∂zi∂z̄j

(
1

|V |2g

)
Using Equation (68) and the equation of the Calabi flow, this is readily seen
to be equivalent to the condition:

∂

∂τ

(
∂2(scal(gτ )− h)

∂zi∂z̄j

)
= − ∂2

∂zi∂z̄j

(
∂
∂τ (scal(gτ )− h)

−C

)

which clearly holds. �

The converse to Theorem 3.9 has been treated in [8], while the converse
to Theorem 3.10 is immediately adapted from there.
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