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Geometric Quantization of real

polarizations via sheaves

Eva Miranda and Francisco Presas

In this article we develop tools to compute the Geometric Quanti-
zation of a symplectic manifold with respect to a regular Lagran-
gian foliation via sheaf cohomology and obtain important new
applications in the case of real polarizations. The starting point
is the definition of representation spaces due to Kostant. Besides
the classical examples of Gelfand-Cetlin systems due to Guillemin
and Sternberg [13] very few examples of explicit computations of
real polarizations are known. The computation of Geometric Quan-
tization in [13] is based on a theorem due to Śniatycki for fibrations
[32] which identifies the representation space with the set of Bohr-
Sommerfeld leaves determined by the integral action coordinates.

In this article we check that the associated sheaf cohomology
apparatus of Geometric Quantization satisfies Mayer-Vietoris and
Künneth formulae. As a consequence, a new short proof of this
classical result for fibrations due to Śniatycki is obtained. We also
compute Geometric Quantization with respect to any generic reg-
ular Lagrangian foliation on a 2-torus and the case of the irrational
flow. In the way, we recover some classical results in the computa-
tion of foliated cohomology of these polarizations.

1. Introduction

Geometric Quantization attempts to create a “(one-way) dictionary” that
“translates” classical systems into quantum systems.

In this way, a quantum system is associated to a classical system in
which observables (smooth functions) become operators of a Hilbert space
and the classical Poisson bracket becomes the commutator of operators. We
refer to the classical references of Kirillov [22] and Woodhouse [36] for an
introduction to geometric quantization.

Grosso modo, following Dirac’s ideas a quantization is a linear mapping
of the Poisson algebra associated to functions on the manifold into the set of
operators on some (pre-)Hilbert space, having some additional properties.
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422 E. Miranda and F. Presas

The first step in the Geometric Quantization scheme, is the prequan-
tization which almost realizes the quantization scheme up to a condition
(where the technical condition of “completeness” of commuting operators is
not required).

The guinea pig for any model of Geometric Quantization is the cotan-
gent bundle of a manifold endowed with the canonical Liouville form. The
model for prequantization of a cotangent bundle was constructed by Segal
[31] in the 60’s. In trying to extend this construction to general symplectic
manifolds the integrality of the cohomology class of the symplectic form is
required.

Unlike the quantization by deformation approach in which the classical
systems can be seen as a limit of the deformation, in the geometric quanti-
zation approach, the process only has partial memory of the information of
the initial system. This is why the choice of additional geometric structures
(polarizations) plays an important role. The classical motivation for con-
sidering this polarization comes from the distinction between “momentum”
and “position” which is native from mathematical formulation of mechanical
systems in the cotangent bundle of a manifold.

A desired property is that the representation space does not depend
on the polarization and this property is satisfied in the case of consider-
ing Kähler polarizations. Much attention has been devoted to the case of
Geometric Quantization via Kähler quantizations but the case of real polar-
izations has been less explored. In this article we are interested in considering
Lagrangian foliations as real polarizations.

Our point of view in this big endeavour is to construct a “representation
space” in the case of real polarizations.

The initial idea of quantization is to consider as initial representation
space the vector space of flat sections of a line bundle associated to the sym-
plectic manifold in the directions of the polarization. These flat sections exist
only locally for a generic leaf of a real polarization, making the quantization
vector space usually trivial. This is why Kostant’s approach to quantization
[25] proposes to replace the sheaf of flat sections along a polarization by
cohomology groups associated to this sheaf as representation spaces. In this
article we will not discuss either the (pre)Hilbert structure of this space nor
the quantization rules.

An interesting related issue is the notion of Bohr-Sommerfeld leaves and
its contribution to Geometric Quantization. A leaf of the polarization is
Bohr-Sommerfeld if there are non-trivial flat sections of the bundle globally
defined along it. The characterization of Bohr-Sommerfeld leaves for real
polarizations given by regular fibrations is a well-known result by Guillemin
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and Sternberg [13]. In particular, the set of Bohr-Sommerfeld leaves is dis-
crete and is given by “action” coordinates that are well-defined in a neigh-
bourhood of a compact leaf.

Theorem 1.1 (Guillemin-Sternberg). If the polarization is a regular
Lagrangian fibration with compact leaves over a simply connected base B,
then the Bohr-Sommerfeld set is discrete and assuming that the zero-fiber is
a Bohr-Sommerfeld leaf, the Bohr-Sommerfeld set is given by BS = {p ∈
M, (f1(p), . . . , fn(p)) ∈ Zn} where f1, . . . , fn are global action coordinates
on B.

This result connects with Arnold-Liouville-Mineur theorem [2], [11] for
action-angle coordinates of integrable systems to Geometric Quantization.
When we consider toric manifolds, the base B may be identified with the
image of the moment map by the toric action (Delzant polytope).

In this case quantization is given by precisely the following theorem of
Śniatycki [32]:

Theorem 1.2 (Śniatycki). If the leaf space Bn is a Hausdorff manifold
and the natural projection π : M2n → Bn is a fibration with compact fibres,
then all the cohomology groups vanish except for degree half of the dimension
of the manifold. Furthermore, Q(M2n) = Hn(M2n,J ), and the dimension
of Hn(M2n,J ) is the number of Bohr-Sommerfeld leaves.

As a nice application of these results, Guillemin and Sternberg obtained
in [13] the computation of the representation space in the case of Gelfand-
Cetlin systems on u(n)∗. Furthermore, the construction of explicit action
coordinates in [13] for these systems connects directly with the field of rep-
resentation theory since via the identification explained above it is possible
to compute the dimension of the spaces on which a representation of a pre-
scribed maximal weight is given.

Besides the case of Gelfand-Cetlin systems and some singular fibrations
cases considered in [16], [17] and [33] very few examples of real polarizations
are known for which explicit computations of Geometric Quantization are
given. In this article we want to make a step forward in this direction and
besides presenting more examples which are missing in the literature we give
a systematic method for computing Geometric Quantization of real regular
polarizations. Furthermore, besides revisiting old computations from a new
perspective we explicitly compute generically the 2-dimensional regular case.
In the way, we recover some results of foliated cohomology.
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In this article we will present a Geometric Quantization computation kit
to deal with this sheaf cohomology using a fine resolution of it. As a first
application we give a short proof of this theorem of Śniatycki stated above
using a Künneth formula.

We also find applications to compute Geometric Quantization of general
Lagrangian foliations which are not in general a fibration. In particular,
we will completely determine Geometric Quantization in the case of line
fields on a torus via the classification of these foliations up to topological
conjugation due to Denjoy and Kneser [10, 24].

A different approach to compute Geometric Quantization is the one of
Čech cohomology. This approach was used in [16] and [17] and turns out out
to be useful when we consider integrable systems with singularities. We will
apply our Geometric Quantization computation kit to reprove some results
which were obtained via the Čech approach like the theorem of Śniaticky [32].

Organization of this paper. In Section 2 we present the Kostant com-
plex in this approach to Geometric Quantization. Even if this article focuses
on the Geometric Quantization case, when it comes to the scene we will also
mention the corresponding results for foliated cohomology, considered as a
limit case with ω → 0. In Section 3 we prove Mayer-Vietoris and a Künneth
formula for this complex. These results connect directly with the work of
Bertelson [6] to prove a Künneth formula for foliated cohomology.

In Section 4 we present a short proof of the theorem of Śniatycki to
compute Geometric Quantization of a regular fibration. In Section 5 we
apply these tools to give the representation space when the polarization
considered is the linear irrational flow on the torus. In particular, we recover
former results of El Kacimi-Alaoui for foliated cohomology [20].

In the last section, we use the classification of foliations on the 2-torus
up to topological equivalence due to Denjoy and Kneser [10], [24] together
with the Mayer-Vietoris argument to compute the Geometric Quantization
associated to any generic foliation of the 2-torus.

2. Geometric Quantization à la Kostant

Let (M2n, ω) be a closed symplectic manifold of integer class and let L
be an associated prequantizable line bundle, i.e. an Hermitian complex line
bundle1 equipped with a compatible connection whose curvature equals −iω.

1Given a symplectic form ω ∈ H2(M,R) with integer class [ω], the lift to
H2(M,Z) is not unique in general, we have a exact sequence Tor(H2(M,Z)) −→
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A real polarization P over (M2n, ω) is a foliation whose leaves are
Lagrangian with respect to ω. Given a hermitian vector bundle over (M2n, ω)
endowed with a connection ∇, we define a section s : M → L to be flat along
the polarization P if the operator

∇Ps : P ↪→ TM → L

v → ∇vs

is the null operator. In other words, if the covariant derivative of the section
vanishes along the foliation directions.

One could consider the set of flat sections of this bundle to start con-
structing a representation space for Geometric Quantization. In order to
induce a metric on the space of sections which can endow this space with a
(pre)Hilbert structure, we consider another line bundle, the so-called meta-
plectic correction. This line bundle also has a physical meaning since it
captures some Bohr-Sommerfeld leaves in the Kähler case which are not
captured otherwise [23].

In this article we will consider the metaplectic correction (which can be
seen as a correction in the line bundle) even if we do not consider here the
endeavour of completing the representation space to endow it with a Hilbert
space structure. This effort can be seen as a first step in this direction.

We say that P admits a metalinear correction if the complex determinant
bundle N = ΛnC(P ⊗R C) admits a square root N1/2. This is equivalent to the
evenness of the first Chern class of N , c1(N). This can be easily proven using
the isomorphism between Picard group of isomorphism classes of complex
line bundles and H2(M,Z). The group structure on the Picard group is
an abelian group with group operation the tensor product and therefore
c1(L⊗ L′) = c1(L) + c1(L′). Thus P admits a metaplectic correction if and
only if there exists an element e ∈ H2(M,Z) such that 2e = c1(N).

Let us prove that N admits a natural flat connection. This will be needed
to guarantee the existence of solutions of the associated equation of flat
sections.

Weinstein [35] defined a natural flat connection along a Lagrangian foli-
ation using symplectic duality. This will be needed to define a canonical flat
connection on N .

Let us recall here Weinstein’s construction: The classical Bott connection
[7] can be defined as a partial connection associated to a foliation P. This

H2(M,Z) −→ H2(M,R), for manifolds with non-vanishing Tor(H2(M,Z)) this line
bundle is not unique.
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allows to define the covariant derivative of vector fields which belong to the
normal bundle of the foliation with respect to vector fields of the distribution.

Given X, a vector field of the polarization, we denote by Y a vector field
in the normal bundle N . Let us denote by p : TM −→ N the projection on
the normal bundle. The Bott connection is defined as ∇BX(Y ) = p([X,Y ])
where Y is any vector field on TM which projects to Y .

This connection is flat. We now use the fact that symplectic duality
establishes a natural isomorphism between the tangent and cotangent bun-
dles of M to induce a flat connection on P (given a Lagrangian leaf of the
foliation the normal bundle to the leaf can be easily identified with the cotan-
gent bundle of the leaf). In this way the bundle N acquires a canonical flat
connection and so it does the bundle N1/2. Let us call this connection 4B.

The initial connection on the flat bundle ∇ together with the new con-
nection 4B can be used to define a partial connection ∇′ on the bundle
L⊗N1/2. We now consider the equation,

∇′vs = 0, v ∈ P,

where s is a section of the bundle L⊗N1/2. The flatness of 4B and the
Lagrangian character of the polarization guarantee that this equation has a
local solution.

As observed by Śniaticky in [32], if the leaves have non-trivial fundamen-
tal group then there exist no global flat section along all the leaves of the
polarization. Thus, it makes sense to consider the sheaf of flat sections and
consider as a first candidate for Geometric Quantization the cohomology
groups associated to this sheaf. Let us formalize this idea: We denote by S
be the sheaf of sections of the line bundle L⊗N1/2; and by J the sheaf of
flat sections of the bundle L⊗N1/2 along the real polarization P. Denote
by H i(M2n,J ) the i-th sheaf cohomology group associated to the sheaf J .
We define Geometric Quantization using these cohomology groups,

Definition 2.1. The Geometric Quantization space of (M,ω) with respect
to P is defined as,

Q(M2n,P) =
⊕
i∈N

H i(M2n,J ).

Remark 2.2. This cohomology with coefficients in the sheaf of flat sections
admits computations à la Čech and thus, a priori, H i(M2n,J ) = 0 for i >
2n. Indeed, as we will see, this sheaf admits a fine resolution and we may
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even apply a computation twisting the De Rham complex that computes
foliated cohomology yielding H i(M2n,J ) = 0 for i > n.

The Kostant complex. Let Ωi
P denote the associated sheaves of sections

of the vector bundles ΛiP, i.e.

Ωi
P(U) = Γ(U,ΛiP).

Let C be the sheaf of complex-valued functions that are locally constant
along P. Then, we consider the natural (fine) resolution

0→ C i→ Ω0
P
dP→ Ω1

P
dP→ Ω1

P
dP→ Ω2

P
dP→ · · · ,

The differential operator dP is the restriction of the exterior differential
along the directions of the distribution. This is the standard resolution used
to compute the foliated (or tangential) cohomology of the foliation P (see
for instance [20]).

We can now use this fine resolution of C to construct a fine resolution of
the sheaf J . We just need to “twist” the previous resolution with the sheaf
J . It produces the following exact sequence,

0→ J i→ S ∇
′
P→ S ⊗ Ω1

P
∇′P→ S ⊗ Ω2

P → · · ·

This is called the Kostant complex. The cohomology of this complex
computes exactly H i(M,P) and therefore computes Geometric Quantiza-
tion.

In the next sections, we will develop some tools and techniques to com-
pute the cohomology of this complex.

3. Geometric Quantization computation kit

In this Section we provide some algebraic tools to compute the Geometric
Quantization associated to a real polarization.

3.1. A Mayer-Vietoris sequence

The classical Mayer-Vietoris theorem, proved for singular cohomology, also
works for the cohomology of any sheaf over quite general topological spaces
(see [9], pg. 94). For the sake of completeness we are going to provide a proof
for our sheaf J .
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Take U and V a pair of open sets covering M . Then there is a sequence
of inclusions

M ← U t V ⇔ U ∩ V.

This induces a sequence as follows

S ⊗ Ω∗P(M)
r // (S ⊗ Ω∗P(U))⊕ (S ⊗ Ω∗P(V ))

r0 //

r1
// S ⊗ Ω∗P(U ∩ V )

given by the restriction map r, r0 and r1. Substracting the two morphisms
on the right side we get the following sequence,

0 // S ⊗ Ω∗P(M)
r // (S ⊗ Ω∗P(U))⊕ (S ⊗ Ω∗P(V ))(1)

r0−r1 // S ⊗ Ω∗P(U ∩ V ) // 0

We have the following,

Theorem 3.1. The sequence (1) is exact.

Proof. The injectivity of the morphism r is obvious, and so it is the exactness
at (S ⊗ Ω∗P(U))⊕ (S ⊗ Ω∗P(V )). To check the surjectivity of r0 − r1 we take
a partition of the unity relative to the covering U, V given by functions χU
and χV . Now for any α ∈ S ⊗ Ω∗P(U ∩ V ), we define

βU = χV · α ∈ S ⊗ Ω∗P(U),(2)

βV = −χU · α ∈ S ⊗ Ω∗P(V ).(3)

We immediately obtain that r0(βU )− r1(βV ) = α. �

So after playing this game at all degrees, we obtain the following com-
mutative exact diagram,

0

��

0

��

0

��

0 // S ⊗ Ω0
P(M)

r //

∇P
��

(S ⊗ Ω0
P(U))⊕ (S ⊗ Ω0

P(V ))
r0−r1 //

∇P
��

S ⊗ Ω0
P(U ∩ V )0 //

∇P
��

0

0 // S ⊗ Ω1
P(M)

r //

∇P ��

(S ⊗ Ω1
P(U))⊕ (S ⊗ Ω1

P(V ))
r0−r1 //

∇P ��

S ⊗ Ω1
P(U ∩ V )0 //

∇P ��

0

...
...

...
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Observe that vertically we have the Kostant complex that computes
cohomology with coefficients in a sheaf. We apply the snake’s Lemma [4] to
prove the following,

Corollary 3.2. The following sequence is exact

(4) 0 // H0(M,J ) // H0(U,J )⊕H0(V,J ) // H0(U ∩ V,J )

δ
rr

H1(M,J ) // H1(U,J )⊕H1(V,J ) // H1(U ∩ V,J )

δ
rr

H2(M,J )

We recall how to define the connecting operator δ because it will be
needed later. We take a class a ∈ H i(U ∩ V,J ), represented by a form
α ∈ S ⊗ Ωi

P(U ∩ V ). From the previous diagram we know that there are
forms (βU , βV ) ∈ (S ⊗ Ωi

P(U))⊕ (S ⊗ Ωi
P(V )), defined via the Formulae (2)

and (3). Then we take the image under the vertical morphism to obtain
(∇PβU ,∇PβV ) ∈ (S ⊗ Ωi+1

P (U))⊕ (S ⊗ Ωi+1
P (V )). Since a ∈ H i(U ∩ V,J ),

commutativity of the diagram yields (r0 − r1)(∇PβU ,∇PβV ) = 0. Hence
there is a form γ ∈ S ⊗ Ωi+1

P (M) such that r(γ) = (∇PβU ,∇PβV ). Again
the commutativity of the diagram yields ∇P(γ) = 0 and thus it defines a
closed form whose class in H i+1(M,J ) satisfies by construction δ([a]) = [γ]
(and this is how the connecting operator is defined). It is easy to check that
this definition does not depend on the form representing the class [a].

3.2. Mayer-Vietoris for closed domains

The space of sections of the sheaf J can be defined for closed sets C ⊂M .
Take the directed system of sections J (Ai) of open sets Ai containing the
closed set C. It is directed by the restriction morphism. Then, we define the
space of sections over C as

J (C) = lim
−→

Ai,

the direct limit of the system. The proof of the previous Mayer–Vietoris
result can be easily adapted to the case of closed sets (see [8] for all the
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details). It is stated as follows. Take C0 and C1 a pair of closed sets covering
M . Then there exists, as in the previous Subsection, a sequence of inclusions

M ← C0 t C1 ⇔ C0 ∩ C1.

Again, we obtain

S ⊗ Ω∗P(M)
r // (S ⊗ Ω∗P(C0))⊕ (S ⊗ Ω∗P(C1))

r0 //

r1
// S ⊗ Ω∗P(C0 ∩ C1)

given by the restriction map r, r0 and r1. Substracting the two morphisms
on the right side we get the following sequence,

0 // S ⊗ Ω∗P(M)
r // (S ⊗ Ω∗P(C0))⊕ (S ⊗ Ω∗P(C1))(5)

r0−r1 // S ⊗ Ω∗P(C0 ∩ C1) // 0

We have the following,

Theorem 3.3. The sequence (5) is exact and thus it induces a long exact
sequence in cohomology.

3.3. A Künneth formula

The classical Künneth formula also holds with great generality for the coho-
mology of a sheaf ([9]). It works for the Geometric Quantization scheme
in a generalized form. Let (M1,P1) and (M2,P2) be a pair of symplectic
manifolds endowed with Lagrangian foliations. The natural cartesian prod-
uct for the foliations is Lagrangian with respect to the product symplectic
structure. The induced sheaf of flat sections associated to the product foli-
ation will be denoted J12. Note that we use the pre-quantum bundle and
metaplectic corrections defined as pull-backs and tensor products of the ones
defined over M1 and M2

There is a natural morphism,

(6) Ψ : H∗(M1,J1)⊗H∗(M2,J2)→ H∗(M1 ×M2,J12)

induced by pull-back of the classes through the natural projections. Further-
more we can prove the following Künneth formulae,
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Theorem 3.4 (Künneth formula for Geometric Quantization). There
is an isomorphism

Hn(M1 ×M2,J12) ∼=
⊕
p+q=n

Hp(M1,J1)⊗Hq(M2,J2),

whenever the Geometric Quantization associated to (M1,J1) has finite dimen-
sion, M1 is compact and M2 admits a good covering.

The isomorphism is defined by the inverse of the map Ψ above and the
core of the proof will be to show its existence.

Remark 3.5. In this article the condition of good covering will be the one
as stated in [9]. This condition is automatically fulfilled in particular if M2

has finite topology or it is compact. The compactness condition on M1 can
indeed be relaxed to the following one: M1 is a submanifold of a compact
manifold. What we will do is to establish the Künneth formula for closed
balls and then use compactness.

Remark 3.6. In [9] a more general formula is given, where a torsion of a
complex is present. Whenever the complex is torsionless, we obtain a clean
Künneth formula. One way to look at this result is as a torsionless case of a
generalized Künneth formula à la Grothendieck [15].

Many authors have studied more general conditions under which a Kün-
neth formula holds for sheaf cohomology with infinite dimension. See for
instance the works of Kaup [21] and Grothendieck [15] where a Künneth
formula is given in terms of completion of the tensor product:

Hn(M1 ×M2,J12) =
⊕
p+q=n

Hp(M1,J1)⊗̂Hq(M2,J2).

This approach using nuclear spaces has also been adopted by Bertelson
in [6] for foliated cohomology. In particular, Bertelson obtains a similar result
to our Künneth formula for foliated cohomology under similar hypothesis
(imposing already compactness of one of the factor manifolds). This foliated
cohomology result can be reinterpreted as the “zero limit”case of Geometric
Quantization.

The proof follows very closely the de Rham cohomology case. We start by
proving the following proposition which automatically implies the Künneth
formula in case one of the factors is an open set with the property that the
leaves restricted to the domain U are contractible and the leaf space is also
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contractible. We will call these open sets cotangent balls. Its compactifica-
tion, whenever the leaves and the leaf space are still contractible, will be
called a closed cotangent ball.2

Proposition 3.7. Let U be a closed cotangent ball and M a compact man-
ifold with finite dimensional Geometric Quantization. The following equality
holds,

Hn(M × U,J10) = Hn(M,J )⊗H0(U,J0),

Before proving this proposition, we need the following lemma,

Lemma 3.8. Given an element α ∈ (S ⊗ Ωp
P)(M × U) which is closed by

the Kostant differential ∇P , we can always find another element α′ in the
same cohomology class in the Kostant complex such that α′ ∈ S(M × U)⊗
Ωp
P(M).

Proof. Assume that we are in the case M × U , for a cotangent ball U ⊂ R2.
The proof can be adapted for higher dimensions of U just by sophisticating
the notation. Denote PM the polarization in M and (LM ,∇M ) the quantiza-
tion bundle over M . In the same way, the cotangent ball has as quantization
bundle the restriction of the quantization bundle on R2 which we denote
by LU with connection ∇U . The product connection will be denoted by
∇ = ∇M �∇U .

Let us take a system of coordinates over U in which we can trivialize
the prequantization bundle in the horizontal directions starting with a par-
allel section along the vertical axis3. With respect to this trivialization the
connection on the quantization bundle LU is written,

∇U = d− iφ(x, y)dy.

Now, take an element α ∈ S ⊗ Ωp
P(M × U). It can be written as,

(7) α = α̂+ β ∧ dy,

where α̂ ∈ S ⊗ Ωp
P(M) and β ∈ S ⊗ Ωp−1

P (M).

2 Notice that for this we need to extend the definitions of Geometric Quantiza-
tion to that of manifolds with boundary. For classical references see [12] and [34].
However, it follows the definitions provided in Subsection 3.2.

3This has been known in the literature of Geometric Quantization as the existence
of a “trivializing section” for neighbourhoods in the case of regular foliations.
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Observe that α is closed in the Kostant complex and therefore ∇Pα = 0.
Recall that U is a cotangent ball, therefore

U = {(x, y) ∈ R2 : −ε1 ≤ x ≤ ε2, h1(x) ≤ y ≤ h2(x)}.

Take h3(x) = h1(x)+h2(x)
2 . Define γ ∈ S ⊗ Ωp−1

P (M) satisfying the differential
equation

∂γ

∂y
− iφ(x, y)γ = β,

with the initial conditions γ(p, x, h3(x)) = 0. This is a first order linear ordi-
nary differential equation with “parameter” p ∈M and fixed initial condi-
tions. Thus it has a unique solution.

It is simple to check that the following equality holds ∇γ = ∇Mγ + β ∧
dy. Thus, replacing this expression in (7), we obtain

α = (α̂−∇Mγ) +∇γ = α′ +∇γ,

we conclude by observing that α′ = α̂−∇Mγ ∈ S(M × U)⊗ Ωp
P(M) and

∇γ is obviously exact. �

We now recall a few facts about orthogonal series of functions in inter-
polation theory. Let f : S1 → C be a continuous function over the circle.
Denote by f̂ : Z→ C its Fourier coefficients. We have the following relation
between the decay of the coefficients and the smoothness of the function.

Theorem 3.9 (Theorem 3.2.9 and Proposition 3.2.12 in [14]). For
any s ∈ Z+, the following two statements hold:

1) If f is a function of Cs-class then we have limk→±∞
|f̂(k)|
1+|k|s = 0,
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2) If limk→±∞
|f̂(k)|

1+|k|s+1 = 0 then we have f is a function of Cs-class.

Proof of Proposition 3.7. The parametrized Poincaré Lemma immediately
implies that for the cotangent balls we have H i(U,J0) = 0 for i > 0 and
H0(U,J0) = C∞(Rn,C). Assume that we are in the product case M × U ,
for a cotangent ball U ⊂ R2. The proof can be easily adapted for higher
dimensions of U .

Recall the natural morphism (12), in particular, produces a map

∆ : Hn(M,J )⊗H0(U,J0)→ Hn(M × U,J10).

Let us check that this map is injective. Consider a pair of elements (a, f)
with a ∈ S(M × U)⊗ Ωn

P(M) satisfying that ∇Ma = 0 and f ∈ Ω0
P(U) =

C∞[0, 1] such that there exists an element b ∈ Ωn−1
P (M × U) satisfying that

a · f = ∇b (the pair (a, f) goes to the zero class). Since f 6= 0, there is a
number x0 ∈ [0, 1] such that f(x0) 6= 0. Recall that U is a cotangent ball,
therefore

U = {(x, y) ∈ R2 : −ε1 ≤ x ≤ ε2, h1(x) ≤ y ≤ h2(x)}.

Take h3(x) = h1(x)+h2(x)
2 and consider the inclusion map

i0 : M → M × U
p → (p, x0, h3(x0)).

Define the element b̃ = i∗0b. Since the covariant derivative commutes with the
restriction, we obtain ∇M b̃ = i∗0∇b. This yields ∇M ( 1

f(x0) b̃) = a and hence

a is exact and [a] = 0. This proves injectivity.
We will now check the surjectivity of this mapping 4. Select an element

A ∈ Hn(M × U,J10). By Lemma 3.8, there is a representative α of the class
A such that α ∈ S(M × U)⊗ Ωn

P(M). Recall that ∇Pα = 0 yields in coor-
dinates (x, y) ∈ U ⊂ R2 the following equations,

(8) ∇ ∂

∂y
α = 0.

4 In the case of foliated cohomology surjectivity of this map was not well sorted
in works prior to the work of Bertelson [27]. In our opinion a complete proof of this
fact for the limit case of foliated cohomology is only achieved in [6].
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Consider the inclusion,

ih : M × [−1, 1] → M × U
(p, x) → (p, x, h3(x))

and the pull-back form obtained via ih, α̃ = i∗hα. Observe that, by Equa-
tion (8), the form α̃ completely determines α. The form α̃ can be understood
as a 1-parametric family α̃t(p) = α̃(p, t), for t ∈ [−1, 1], with α̃t a closed ele-
ment of Ωn

P(M). Thus, there is a family α̃′t, for t ∈ [−2, 2] satisfying:

1) α̃′t = α̃t, for t ∈ [−1, 1],

2) α̃′t = 0 for |t| ≥ 3/2,

3) ∇M α̃′t = 0.

This defines an element α̃′ ∈ S(M × [−2, 2])⊗ Ωn
P(M) and by applying the

differential Equation (8), we can extend it to a unique closed form α′ ∈
S(M × V )⊗ Ωn

P(M), where the closed domain V ⊃ U satisfies V
⋂

(R×
{0}) = [−2, 2].

Fix a point p ∈M . Define the inclusion map ep : [−2, 2]→M × [−2, 2].
Now we obtain the map

α̃p = e∗pα̃ : [−2, 2] → S(M × [−2, 2])p ⊗ Ωn
P(M)p ' S(M)p ⊗ Ωn

P(M)

t → α̃(p, t).

Remember that α̃p extends to a smooth section α̃p : S1 = R/(4Z)→
S(M × [−2, 2])p ⊗ Ωn

P(M)p. The Fourier coefficients of α̃p are computed as,

(9) α̃p(m) =

∫ 2

−2
α̃p(t) · eiπmt/2dt,

that are obviously smooth in p ∈M . This equation defines elements α̃(m) ∈
S(M)p ⊗ Ωn

P(M) that are closed since the covariant derivative commutes
with the integration in Formula (9).

Since the space M is compact and the variation of parameters is contin-
uous, Theorem 3.9 yields the following inequality for any s > 0,

|α̃p(m)| ≤ C · |m|s,

where C > 0 is a constant that does not depend on p ∈M ( but which may
depend on s). So, it can be rewritten as,

(10) |α̃(m)|C0 ≤ C · |m|s,



i
i

“6-404˙color” — 2015/3/16 — 19:16 — page 436 — #16 i
i

i
i

i
i

436 E. Miranda and F. Presas

Since the cohomology groups are defined as,

Hn(M,J1) =
S(M)⊗ Ωn

P(M)

Im∇(S(M)⊗ Ωn−1
P (M))

,

the topology of Hn(M,J1) is defined as the vector space quotient topology,
induced out of the C0-norm in Ωn

P(M). Therefore, by using the Equation (10)
and the decrease of the norm in the projection we obtain

(11) |[α̃(m)]| ≤ |α̃(m)|C0 ≤ C · |ms|,

where [α̃(m)] is the class represented by the element α̃(m) ∈ S(M)⊗ Ωn
P(M)

in Hn(M,J1).
Now, we can check that Hn(M,J )⊗H0(V,J0) = C∞([−2, 2], Hn(M,

J )), i.e. the smooth maps from the interval to the finite vector space Hn(M,
J ) (we are using the differential Equation (8) to uniquely extend the section
from M × [−2, 2] to M × V ). Once this identification is done, we can prove
surjectivity of ∆ in the following way: Define the formal series,

α̂ = Σm∈Z[α̃(m)]eiπmt/2,

we can use again Theorem 3.9 in combination with the inequality (11) to con-
clude that α̂ is smooth. i.e. α̂ ∈ C∞([−2, 2], Hn(M,J )). Denote its restric-
tion by α̂′ ∈ C∞([−1, 1], Hn(M,J )). The following equality holds ∆α = α̂′

and this proves surjectivity of ∆.
Note that we have worked out the proof for 2−dimensional cotangent

balls, for the case of cotangent balls U having dimension 2k, we can still
apply Poincaré Lemma to make sure that the y-directions in the ball are
constant. In this case we need to work with Fourier coefficients in the space
of maps C∞(Tk, Hn(M,J )). All the arguments go through; the key point
in the proof being the finite dimensionality of the space Hn(M,J1). �

We now proceed with the proof of Künneth for the general case.

Proof of Theorem 3.4. Denote by P0 the vertical foliation in R2m, with coor-
dinates (x1, . . . , xm, y1, . . . , ym), whose leaves are defined by the equations

xi = ci, ci ∈ R, i = 1, . . . ,m.

With respect to the standard symplectic structure the foliation P0 is stan-
dard. Choose a primitive 1-form as the connection form for the quantization
line bundle L⊗N1/2 over R2n and denote by J0 the associated sheaf of flat
sections.
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The rest of the proof is standard and follows step by step pg.49 in [8].
We outline the main ideas. There is a natural morphism

(12) Ψ : H∗(M1,J1)⊗H∗(M2,J2)→ H∗(M1 ×M2,J12)

given by the pull-back of forms in each component. Now we take U and V
open sets of M1 and we tensor with the fixed vector space Hn−p(M2,J2)
the associated Mayer-Vietoris sequence to obtain

· · · → Hp(U ∪ V,J1)⊗Hn−p(M2,J2)

→ (Hp(U,J1)⊗Hn−p(M2,J2))⊕ (Hp(V,J1)⊗Hn−p(M2,J2))

→ Hp(U ∩ V,J1)⊗Hn−p(M2,J2)→ · · · .

Summing up for p = 0, . . . , n, we obtain the exact sequence

· · · →
n⊕
p=0

Hp(U ∪ V,J1)⊗Hn−p(M2,J2)

→
n⊕
p=0

(Hp(U,J1)⊗Hn−p(M2,J2))⊕ (Hp(V,J1)⊗Hn−p(M2,J2))

→
n⊕
p=0

Hp(U ∩ V,J1)⊗Hn−p(M2,J2)→ · · ·

to which we apply the morphisms (12) to obtain the following commutative
exact diagram

...
...

↓ ↓⊕n
p=0H

p(U ∪ V,J1)⊗Hn−p(M2,J2)
Ψ→ Hn((U ∪ V )×M2,J12)

↓ ↓⊕n
p=0(Hp(U,J1)⊗Hn−p(M2,J2))

⊕(Hp(V,J1)⊗Hn−p(M2,J2))
Ψ→ Hn(U ×M2,J12)⊕Hn(V ×M2,J12)

↓ ↓⊕n
p=0H

p(U ∩ V,J1)⊗Hn−p(M2,J2)
Ψ→ Hn((U ∩ V )×M2,J12)

↓ ↓⊕n+1
p=0 H

p(U ∪ V,J1)⊗Hn+1−p(M2,J2)
Ψ→ Hn+1((U ∪ V )×M2,J12)

↓ ↓
...

...
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The commutativity is obvious except for the block⊕n
p=0 H

p(U ∩ V,J1)⊗Hn−p(M2,J2)
Ψ→ Hn((U ∩ V )×M2,J12)

↓ δ ↓ δ⊕n+1
p=0 H

p(U ∪ V,J1)⊗Hn+1−p(M2,J2)
Ψ→ Hn+1((U ∪ V )×M2,J12)

that we check as follows. Let α⊗ β ∈ Hp(U ∩ V,J1)⊗Hn−p(M2,J2).
Denote the projections to the factors of the cartesian product M1 ×M2

as π1 and π2. Therefore

Ψ ◦ δ(α⊗ β) = π∗1(δα) ∧ π∗2(β)

and

δ ◦Ψ(α⊗ β) = δ(π∗1(α) ∧ π∗2(β)).

We have to check that they are equal and a simple computation shows that
it is true, just recalling that the form β is closed.5

We now conclude the proof of Künneth formula in the same way Bott
and Tu do it for the De Rham cohomology case (page 50 of [8]).

Observe that because of Lemma 3.7, Künneth formula holds for U and
V from the previous argument, Künneth formula also holds for U ∩ V , thus
because of the Five Lemma it also holds for U ∪ V . The Künneth formula
now follows by induction on the cardinality of a good cover (or a finite
covering in the compact case). This concludes the proof of the theorem. �

4. Applications I: The case of regular fibrations

In this section we apply Mayer-Vietoris and Künneth formula to compute
Geometric Quantization of regular fibrations.

As an application of the previous formalism, we now give a simple proof
of the quantization of a real polarization given by a regular fibration. This is
exactly the case studied by Śniaticky in [32]. Let us point out that a different
proof was obtained by Hamilton in [16] where a Čech approach was used
to deal with the general toric case (which corresponds to real polarizations
given by integrable systems which also admit elliptic singularities).6

In order to do this, we will apply a Künneth argument that will allow to
prove the result by recursion on the following Lemma which addresses the
2-dimensional case.

5For this we can follow exactly the same argument of [8] (page 50) which consists
in picking a partition of unity subordinated to the open sets U and V .

6A different proof of this result seen from the Poisson perspective is a joint work
of the first author of this paper with Mark Hamilton [18].



i
i

“6-404˙color” — 2015/3/16 — 19:16 — page 439 — #19 i
i

i
i

i
i

Geometric Quantization of real polarizations 439

Lemma 4.1. Fix the domain W = (−ε, ε)× S1 endowed with a symplectic
structure of integer class ω and consider as real polarization the vertical
foliation by circles. Then,

1) In case there are no Bohr-Sommerfeld leaves then the Geometric Quan-
tization is zero.

2) If there is one Bohr-Sommerfeld leaf, then the Geometric Quantization
is given by H0(W,J ) = 0 and H1(W,J ) = C.

Proof. Take coordinates (x, θ) ∈ (−ε, ε)× S1. Recall that ω = f(x, θ)dx ∧
dθ, for some f(x, θ) > 0. Fix S1 = R/Z. The form λ = (

∫ x
0 f(t, θ)dt)dθ is a

primitive for ω in the open set (−ε, ε)× (0, 1). So λ = h(x, θ)dθ, where dh
dx >

0. Let us take a system of coordinates over U in which we can trivialize the
prequantization bundle in the horizontal directions starting with a parallel
section along the vertical axis. In this bundle trivialization, the connection
1-form for the prequantizable bundle is expressed as,

∇ = d− 2πih(x, θ)dθ.

Let us denote by s0 this trivializing section. Any parallel section s : W →
L 'W × C can be expressed in terms of this trivializing section by means
of the following formula,

(13) s(x, θ) = f(x, 1/2)e
∫ θ
1/2

2πih(x,s)dss0.

From now on, and for the sake of simplicity, we will identify the sec-
tion sU (x0, θ0) in a given neighbourhood with a function f(x0, θ0) via this
trivializing section.

Now we take a covering of the domain W by the pair of open sets

U = (−ε, ε)× (−0.1, 0.6).

V = (−ε, ε)× (0.4, 1.1).

The intersection is the domain

U ∩ V = (−ε, ε)× ((−0.1, 0.1) ∪ (0.4, 0.6)) = W1 ∪W2.

Lemma 3.7 entails that H1(D,J ) = 0 and H0(D,J ) = C∞((−ε, ε),C) for
any of the domains D ∈ {U, V,W1,W2} because all of them are cotangent
balls. For convenience, we denote as Cε the set Cε = C∞((−ε, ε),C).
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−ε +ε

0.6

0

0.9

0.1
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W2

W1

W1

Figure 1: Picture of the Mayer-Vietoris covering.

We apply the Mayer-Vietoris sequence (3.2) to the pair U, V to obtain,

0 // Cε ⊕ Cε
r1−r2 // Cε ⊕ Cε

tt

H1(M,J ) // 0 // 0

Observe that H0(W,J ) = 0 because there are no global flat sections
since the space of closed non Bohr-Sommerfeld orbits is dense and over
them any global section has to vanish.

Let us now compute H1(W,J ); The exactness of the sequence yields,

H1(W,J ) =
(C∞((−ε, ε),C)⊕ C∞((−ε, ε),C))

Im(r1 − r2)

So we just need to examine the image of r1 − r2. In order to do that,
take sections sU ∈ H0(U,J ), sV ∈ H0(V,J ), sW1

∈ H0(W1,J ) and sW2
∈

H0(W2,J ).
From Formula (13) it is easily seen that the restrictions of the sections

sU (x, 0.5), sV (x, 0.5), sW2
(x, 0.5) and sW1

(x, 0) completely determine the
sections. Also observe that we are identifying the sections with functions
with the help of a local trivializing section s0. Thus the space of global
flat sections of these domains is C∞((−ε, ε),C). Now we want to determine
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the image of the morphism r1 − r2. Choose an element (sW1
, sW2

) of the
space H0(W1,J )⊕H0(W2,J ). We look for sections sU and sV such that
the image under r1 − r2 are the given pair. For this it is necessary to impose,

(14) sW1
(x, 0.5) = sU (x, 0.5)− sV (x, 0.5).

Using the Equation (13) we obtain the following condition

(15) sW2
(x, 0) = sU (x, 0.5)e

∫ 0

0.5
2πih(x,s)ds − sV (x, 0.5)e

∫ 1

0.5
2πih(x,s)ds.

The Equations (16) and (17) provide a family of systems of two equations
and two variables depending on the parameter x ∈ (−ε, ε). In order for them
to have solution for every value of the pair (sW1

, sW2
), the following condi-

tions need to hold,∣∣∣∣ 1 −1

e
∫ 0

0.5
2πih(x,s)ds −e

∫ 1

0.5
2πih(x,s)ds

∣∣∣∣ 6= 0.

Observe that this is not satisfied exactly for the values of x lying in a Bohr-
Sommerfeld orbit.

Summing up, this implies,

1) In the case there are no Bohr-Sommerfeld leaves the mapping r1 − r2

is surjective and therefore H1(W,J ) = 0.

2) In the case there is one Bohr-Sommerfeld leaf, the sections sW1
and

sW2
are related by one equation; the image of r1 − r2 has codimension

1 and H1(W,J ) = C.

and this finishes the proof of the Lemma. �

Now, the classical Śniaticky theorem becomes a simple consequence of
this Lemma and Künneth formula. Let F be a Lagrangian foliation on a
manifold (M,ω). We say that a torus Tn, that is a leaf of the foliation,
admits a cotangent neighbourhood if there is a neighborhood U of Tn and
a symplectic chart φ : U → V ⊂ Tn × Rn such that

• The Lagrangian foliation becomes the foliation given by leaves Tn ×
{p}.

• There are (x1, . . . , xn) global affine coordinates in T2 and (y1, . . . , yn)
the standard coordinates of Rn, such that the symplectic form ωφ =
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φ∗(ω) can be written as

ωφ(x1, . . . , xn, y1, . . . , yn) =

n∑
i=1

dxi ∧ dyi.

As an example, any compact fiber of an integrable systems admits a cotan-
gent neighbourhood (the fiber is a Liouville torus and the foliation is semilo-
cally a fibration by tori [2, 11]). We can now prove the following theorem
which is a reformulation of Śniaticky’s theorem.

Theorem 4.2 (Śniaticky). Let (M2n, ω) be a symplectic manifold, N a
smooth manifold and π : M → N a fibration by tori. Assume that all the
fibers admit cotangent neighborhoods. Moreover assume that the number of
Bohr-Sommerfeld fibers is finite and equal to k. Then,

1) H i(M,J ) = 0, for all i 6= n.

2) Hn(M,J ) = Ck.

3) Q(M,P) = Ck.

Proof. Take a locally finite covering {Vi}i∈N of N in such a way that the
image by π of each Bohr-Sommerfeld leaf is covered by a single open set.
Denote by Ui = π−1(Vi) that is a locally finite covering of M . Without any
loss of generality we may assume that the first k indices correspond to the
open sets containing the Bohr-Sommerfeld orbits.

We claim that Q(Uj ,P) = 0 for any j > k and Q(Ui,P) = C for i ≤ k.
This is because the neighborhood (Ui,Ji) trivializes, using the cotangent
neighborhood trivialization, as:

(Ui, .Ji) =

n∏
l=1

((−ε, ε)× S1, J̃ ),

where the sheaf J̃ is the one associated to the Lagrangian foliation defined
in the statement of Lemma 4.1. We are under the hypotheses of Künneth
Theorem (Theorem 3.4) and we can apply induction and Künneth formula
to prove that the Quantization of the open sets Ui is the one stated above.

Last but not least, we need to perform a Mayer-Vietoris argument to
glue these neighbourhoods. To that end, define Mj =

⋃j
i=1 Ui; the Mayer-

Vietoris sequence yields,

1) H i(Mk,J ) = 0, for all i 6= n.
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2) Hn(Mk,J ) = Ck.

3) Q(Mk,P) = Ck.

Moreover, the Mayer-Vietoris sequence also yields Q(Mj ,P) = Q(Ml,P),
for any j, l ≥ k. This concludes the proof. �

5. Applications II: Irrational foliation of the 2-torus

In this section we apply Mayer-Vietoris and Künneth formula to compute
Geometric Quantization of the irrational flow on the torus.

Let T2 = R2/Z2 be the 2-torus with coordinates (x, θ). Define the vector
field Xη = η ∂

∂x + ∂
∂θ , with η ∈ R. This vector field descends to a vector field

in the quotient torus that we still denote Xη. Denote by Pη the associated
foliation in T2. If η is an irrational number, the foliation η is named the irra-
tional foliation of the torus with slope η. It is well-known [10, 24] that any
foliation of the torus without periodic orbits is topologically conjugate to
Pη for some irrational η. So the next result computes the Geometric Quan-
tization of the 2-torus polarized by any regular foliation without periodic
orbits up to topological equivalence. The metalinear bundle N is trivial in
this case.

Theorem 5.1. Let (T2, ω) be the 2-torus with the standard symplectic
structure ω = pdx ∧ dθ of area p ∈ N and let Pη the irrational foliation of
slope η in this manifold. Then

1) The Geometric Quantization space is infinite dimensional.

2) The foliated cohomology space Q(T2,J ) is infinite dimensional if the
irrationality measure of η is infinite (i.e. it is a Liouville number). If
the irrationality measure is finite then Q(T2,J ) = C

⊕
C.

Remark 5.2. It is interesting to point out here as it was done by Heitsch
in [19] in the case η is not a Liouville number, there is a nice interpretation
of the elements of H1(M,J ) in the limit case of foliated cohomology as the
associated infinitesimal deformations of a differentiable family of foliations.

Proof. Take coordinates (x, θ) ∈ S1 × S1. Recall that ω = kdx ∧ dθ, for some
k > 0. Let λη = dθ − 1

ηdx be the 1-form defining the Lagrangian foliation.
In the case of foliated cohomology α = 0 and therefore the parallel trans-

port equation implies that

s(x, 1/2) = s(x+ k/η, 1/2),



i
i

“6-404˙color” — 2015/3/16 — 19:16 — page 444 — #24 i
i

i
i

i
i

444 E. Miranda and F. Presas

for all k ∈ Z. Therefore the section is constant in a dense set and therefore
constant because of the irrationality of η. Thus H0(T2,J ) = C. For the
Geometric Quantization case, assume that there is a section σ ∈ H0(T2,J ).
Therefore, since the prequantizable bundle is topologically non-trivial we
have that there is a point p ∈ T 2 such that σ(p) = 0. The parallel transport
along the leaf of the foliation containing p allows to conclude that the section
vanishes along the leaf. Since, the leaf is dense we obtain that σ = 0. So, we
have that H0(T2,J ) = 0 as claimed.

As in previous Sections, we cover T2 by two open sets U = S1 × (−0.1,
0.6) and V = S1 × (0.4, 1.1). The intersections are given by

W1 = S1 × (−0.1, 0.1),

W2 = S1 × (0.4, 0.6).

To compute the Geometric Quantization of (T2,Pη) we use the Mayer-
Vietoris sequence applied to U and V . As we have already proved in Sec-
tion 3,H0(S1 × (−δ, δ),J ) = C∞(S1,C) andH1(S1 × (−δ, δ),J ) = 0. Thus
the sequence becomes,

0 // C∞(S1,C)⊕ C∞(S1,C)
r1−r2 // C∞(S1,C)⊕ C∞(S1,C)

rr
H1(T2,J ) // 0 // 0

Now we have sections sU (x, θ), sV (x, θ), s1(x, θ), s2(x, θ) over U , V ,
W1 and W2 respectively. By the parallel transport equation these sections
are completely determined by the restrictions sU (x, 0.5), sV (x, 0.5), s1(x, 0),
s2(x, 0.5). We want to solve the equations,

(16) s2(x, 0.5) = sU (x, 0.5)− sV (x, 0.5).

Using (13) the following condition is obtained,

(17) s1(x, 0) = sU (x, 0)− sV (x, 0).

Let us start by solving the foliated cohomology case. In that case the sec-
tions are functions and the parallel transport implies just that the functions



i
i

“6-404˙color” — 2015/3/16 — 19:16 — page 445 — #25 i
i

i
i

i
i

Geometric Quantization of real polarizations 445

are constant along each leaf. The Equation (17) reads

(18) s1(x, 0) = sU

(
x+

η

2
, 0.5

)
− sV

(
x− η

2
, 0.5

)
.

We denote w(x) = sW1
(x, 0), ŵ(x) = sW2

(x, 0.5), u(x) = sU (x, 0.5) and v(x)
= sV (x, 0.5). Since they are smooth functions over the circle, they admit a
Fourier series representing them. The coefficients associated to the previous
4 functions are wk, ŵk, uk and vk respectively. By Theorem 3.9 the decay
of the Fourier coefficients of uk and vk satisfies for any fixed positive integer
q > 0 the following relations,

lim
k→±∞

|uk|
1 + |k|q

= 0,(19)

lim
k→±∞

|vk|
1 + |k|q

= 0.(20)

The equations (16) and (18) imply the following set of equations in the
Fourier coefficients:(

ŵk
wk

)
=

(
1 −1

eπikη −e−πikη
)
·
(
uk
vk

)
, k ∈ Z.

Since the number η is irrational the equation has a unique solution expressed
as

(21)

(
uk
vk

)
=

(
−e−πikη 1
−eπikη 1

)
1

eπikη − e−πikη

(
ŵk
wk

)
, k ∈ Z− {0}.

In particular, when ŵ0 6= w0 there is no solution.
Thus, in order to have a solution from now on we will assume ŵ0 = w0.
If ν ≥ 2, the irrationality measure of η, is finite (i. e. it is not a Liouville

number), we obtain

(22)
∣∣∣η − p

k

∣∣∣ ≥ 1

kν
,

for any pair (p, k) with k large enough. From there we obtain

|kη − p| ≥ 1

kν+1
.

Therefore, we have

(23)

∣∣∣∣ 1

eπikη − e−πikη

∣∣∣∣ =
1

|e2πikη − 1|
≤ 1

|kη − p|
≤ kν+1,
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the first inequality comes from the inequality

|e2πit − e2πis| ≤ |t− s|.

We easily obtain from the Equations (21), (19), (20) and the inequality (23)
the following limits, for any q ≥ 0:

lim
k→±∞

|ŵk|
1 + |k|q

= 0,

lim
k→±∞

|wk|
1 + |k|q

= 0.

Now, we have bounded the decay of the coefficients of the solutions u(x)
and v(x). We are under the hypotheses of the Theorem 3.9 to conclude that
u and v are smooth functions on the circle. Therefore going back to the
long exact sequence, the map r1 − r2 is surjective when w0 = ŵ0 yielding
H1(T2,J ) = C.

Now when of η is a Liouville number we may assume that, there exists
a sequence of pairs of positive integers {ps, ks}s∈Z∗ such that∣∣∣∣η − ps

ks

∣∣∣∣ < 1

ks
,

satisfying that ks is strictly increasing. From this equation we obtain arguing
as in the previous case that,

(24)
1

|e2πikη − 1|
>
ks−1
s

2π
.

Define the constant sequence a(0)k = 1. Now, we define the functions ŵ = 0
and w with Fourier coefficients

wl =

{
a(0)k
ks−1
s

, if ∃s ∈ Z+, such that ks = l,

0, otherwise.

Notice that because of Theorem 3.9, the function w is smooth. However, by
combining the Equation (21) and the inequality (24) we obtain

|vks | ≥
1

2π
.

Therefore, the function v, solving Equations (16) and (18) for the selected
input data ŵ and w, is not smooth according to Theorem 3.9 since its Fourier
coefficients do not converge to zero for k large.
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We have shown that the map r1 − r2 is not surjective. Therefore the cok-
ernel of the map is not zero. To show that the cokernel is infinite dimensional
we define the family of sequences a(r) defined as follows:

a(r)k =

{
1, k 6= r,
2, k = r

Then, we choose input data ŵ = 0 and w a smooth function with the fol-
lowing prescribed Fourier coefficients,

wl =

{
a(r)k
ks−1
s

, if ∃s ∈ Z+, such that ks = l,

0, otherwise.

The linear expand of the set of choices determines an infinite dimensional
subspace of functions and so it shows that the cokernel of r1 − r2 is infinite
dimensional. This implies that the dimension of H1(T2,J ) is infinite.

In the case of Geometric Quantization, we assume that ω = pdx ∧ dθ,
for a fixed positive integer p. We fix two different trivialization sections σU
and σV over the regions U and V . Without loss of generality we assume
that the circle S1 × {0} = S0 is a Bohr-Sommerfeld submanifold (for the
horizontal polarization) with fixed global section over it. They are defined by
the condition that they coincide over S0 with the Bohr-Sommerfeld section
and that they are defined by parallel vertical transport (upwards for σU and
downwards for σV ). They satisfy the gluing equation

(25) σU (x, 0.5) = σV (x, 0.5)e2πipx.

With respect to any of these two trivializing sections the connection of the
prequantizable bundle is written as

(26) ∇ = d+ 2πipθdx.

Use the following notation

1) sU (x, θ) = fU (x, θ) · σU (x, θ),

2) sV (x, θ) = fV (x, θ) · σU (x, θ),

3) s2(x, θ) = f2(x, θ) · σU (x, θ),

4) s1(x, θ) = f1(x, θ) · σU (x, θ).
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Dividing by σU (x, 0.5) on both sides of Equation (16) we obtain

f2(x, 0.5) = fU (x, 0.5)− fV (x, 0.5).

Now, by using the connection Formula (26) over U we obtain, by parallel
transport along the leaves, the following formula

fU (x+ ηθ, θ) = fU (x, 0) · e2πipθ/η.

Thus, we obtain

fU (x, 0) = fU (x+ 0.5η, 0.5) · e−πipθ/η.(27)

Observe that

fV (x, θ) =
sV (x, θ)

σU (x, θ)
=
sV (x, θ)

σV (x, θ)

σV (x, θ)

σU (x, θ)
= f̃V (x, θ)e−2πipx,

where f̃V (x, θ) = sV (x,θ)
σV (x,θ) . It satisfies the equation, by a computation analo-

gous to the one providing (27),

f̃V (x, 0) = f̃V (x− 0.5η, 0.5) · eπip/η.(28)

Therefore, after quotienting by σU , Equation (17) becomes,

f1(x, 0) = fU (x, 0)− fV (x, 0),

that is, by substituting in the previous equations

f1(x, 0) = fU (x+ 0.5η, 0.5) · e−πip/η(29)

− fV (x− 0.5η, 0.5) · eπip/η · e2πipx,

We have smooth functions:

ŵ = f2(x, 0.5),

w = f1(x, 0),

u = fU (x, 0.5),

v = fV (x, 0.5).



i
i

“6-404˙color” — 2015/3/16 — 19:16 — page 449 — #29 i
i

i
i

i
i

Geometric Quantization of real polarizations 449

They completely recover the initial four sections sU , sV , s1 and s2. Expand-
ing the Fourier coefficients of them and substituting them into the Equa-
tions (16) and (29) we obtain the sequence of systems of equations{

ŵk = uk − vk,
wk = e−πi(kη+p/η)uk − eπi(kη+p/η)vk−p,

k ∈ Z

Substituting the first equation in the second and simplifying we obtain

(30) wk − e−πi(kη+p/η)ŵk = e−πi(kη+p/η)vk − eπi(kη+p/η)vk−p, k ∈ Z.

Let us compute a particular case. Assume that ŵ = 0 and w = 1. Therefore
wk = δ0k. This immediately implies that

vq = 0,

for q 6∼= 0 mod p. For the multiples of p, we can choose any v0 ∈ C. Substitut-
ing in (30) for k = 0, we obtain the value of v−p. Using again Equation (30)
for k > 0, it is simple to check that

|vk·p| = |v0|,

for k > 0. Substituting for negative values we obtain

|vk·p| = |v−p|,

for k < −1. Therefore, at least one of the two limits of vk does not converge
to zero. This implies by Theorem 3.9 that any of the solutions (one for each
choice of v0) of Equation (30) produces a function v that is not smooth.

The previous choice of w and ŵ can be slightly perturbed to produce
examples of pairs (w, ŵ) such that the associated solution (u, v) is not a
smooth pair. This shows that the dimension of the space H1(T2,J ) is infi-
nite. �

Remark 5.3. Most certainly a similar argument yields the infinite dimen-
sionality of the Geometric Quantization space for the case of a general sym-
plectic form. It is just a matter of complicating the formulae, but the basic
non-decaying behavior of the Fourier coefficients is probably kept.
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6. Applications III: Geometric Quantization of general
foliations over the 2-torus

In this section we deal with the case of general real polarizations given by
a non–singular flow on the torus. For this we first recover the topological
classification and then apply the previous functorial properties to compute
its Geometric Quantization. In the way, we also obtain some results for
foliated cohomology associated to this foliation.

6.1. The topological classification

We recall here the topological Denjoy-Kneser [10, 24, 29] classification, up
to topological equivalence, of line fields F on the torus. Let us point out
that the classifications that we use here is the C0 classification and not
the C1 classification. For instance the so-called Denjoy foliation (see for
instance [3])7 is not diffeomorphic to the irrational flow. We follow the ideas
and notation as presented in [29]. A line field of the torus is completely
determined by a map LF : T2 → RP1, i.e. we are trivializing the tangent
bundle and taking its projectivization so each line becomes a point. If the
line field is oriented then the maps lifts to L̂F : T2 → S1.

Recall that the standard obstruction theory establishes that the homo-
topy type of the line field, as a distribution, is determined by an obstruction
class provided by

λ ∈ H1(T2, π1(RP1)) = H1(T2,Z).

Fix a basis of H1(T2,Z) = Z2 provided by two elements represented as loops
γ1 and γ2 that intersect transversely at the point (0, 0) ∈ T2 = R2/Z2. The
maps Lγi : S1 → S1, i = 1, 2, have integer degrees d1 and d2 and λ([γi]) = di.
Therefore the homotopy classes of line fields are represented by a pair of
integers that are the degrees of the restrictions of the map L to a positive
basis of H1(T2,Z). Moreover, it is obvious that the distribution is orientable
if the degrees are even. Observe that the integers depend on the trivialization
chosen on the torus, but for each fixed trivialization the classes run over all
the possible pairs of integers.

The following lemma holds,

7 The Denjoy example has been a key example in the theory of foliations. For
instance, it was used by Paul Schweitzer to give a counterexample to the Seifert
conjecture for closed orbits for C1 flows on S3 and indeed on any three dimensional
manifold (see [30]).
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Lemma 6.1. A regular foliation F over the torus T2 always admits a “stan-
dard” metaplectic correction.

Proof. The real line bundles F over T2 are completely classified by the first
Stieffel-Withney class w1(F) ∈ H1(T2,Z2) = (Z2)2. Therefore, there exist 4
of them. We have the following exact sequence

0→ Z ·2→ Z→ Z2 →, 0

that induces a long exact sequence

· · ·H1(T2,Z)→ H1(T2,Z2)
b→ H2(T2,Z)

i→ H2(T2,Z) · · · ,

where the map b is the Bockstein morphism that maps the first Stieffel-
Whitney class of a real line bundle w1(F) to the first Chern class of its
complexification c1(F ⊗R C). The metaplectic correction gives a choice of
square root of F ⊗ C. So, we just need to have c1(F ⊗R C) ∈ H2(T2,Z) = Z
of even degree. But since i = 2 · id is injective, we obtain c1(F ⊗R C) = 0.
Therefore we have Λ1(L ⊗R C) = C and the trivial bundle can be chosen as
bundle of half-forms, i.e. the square root of the trivial line bundle is itself.
Therefore the prequantizable bundle remains the same after the metaplectic
correction and we call that choice the standard one. �

Now assume that there is a closed leaf of the line field L. It represents
an element [L] of H1(M,Z). It is obvious that λ([L]) = 0. Any other closed
leaf L′ represents the same homology class since it cannot intersect L (since
different orbits are disjoint) and by Poincaré-Bendixon Theorem cannot be
null-homologous. Therefore, there are always homology classes which are not
represented by closed leaves.

For any homology class A ∈ H1(M,Z), we have the following result that
is proved using Sard’s lemma.

Lemma 6.2. Fix A ∈ H2(M,Z). There exists an embedded smooth loop
γ : S1 → T2 representing the class such that the number of tangencies of γ
and F is finite.

Consequently, we can minimize that number obtaining the following,

Definition 6.3. A minimal contact curve γ for a class A ∈ H1(M,Z), not
represented by closed curves, is a smooth curve that minimizes the number
of tangencies with F .
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We obtain

Corollary 6.4. The leaf L0 of L at a tangency point t0 of a curve of
minimal contact does not cross the curve.

Proof. We can choose a small chart around x0 such that t0 = (0, 0) ∈ R2, the
distribution L is locally given by the equation { y=const } and the curve
γ : (−ε, ε)→ R2 is written as

γ(t) = (t, f(t)),

with f(0) = f ′(0) = 0 and moreover we assume, by hypothesis, that f(t) is
increasing in a neighborhood of t = 0. Then, it is simple to locally perturb
(see Figure 2) f to a new g such that γ̂(t) = (t, g(t)) has no tangency points
in the neighborhood of (0, 0). This implies that γ̂ has less tangencies than γ
and therefore the initial γ was not a minimal contact curve. �

Figure 2: Deformation of γ such that γ̂(t) = (t, g(t)) has no tangency points.

We say that a tangency of a minimal contact curve γ is positive if the
map Lγ : S1 → S1 is increasing at the tangency point, it is negative if it is
decreasing. Assume that the homology class representing the closed leaves is
the class (0, 1) ∈ Z2 = H1(T2,Z). This can be always satisfied by composing
the T2 = R2/Z2 torus by an element in SL(2,Z). The minimal contact curve
can be assumed to lie in the class (1, 0). Now, any open leaf is diffeomorphic
to the real line. It is known that the semiline (semiorbit) of the open leaf is
asymptotically tangent to a closed orbit. Therefore, denoting by γ : R→ T2

a parametrization of the line and γ̄ = (γ̄1, γ̄2) : R→ R2 the canonical lift to
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the universal cover, then the following limit exists

lim
t→∞

γ̄2(t),

and it is either +∞ or −∞. We say that the semiorbit is positive if the limit
is +∞ and negative otherwise.

We obtain,

Theorem 6.5 (Proposition 3 in [29]). Let Γ of minimal contact have
µ+ positive tangencies and µ− negative tangencies. Then the leaves of the
foliation can be described as follows:

1) There are µ+ regions bounded by a pair of (possibly not distinct) closed
leaves, such that all the leaves interior to this region are open and have
both semiorbits negative.

2) There are µ− regions with both semiorbits positive.

3) There are some other regions (at most numerable in number) in which
the two semiorbits of a given orbit have opposite signs.

4) If the complement of these regions is not the whole space, it is composed
entirely of closed leaves.

5) If the complement is the whole space either all the leaves are closed,
or all are dense.

A foliation is called generic if the linear monodromy of the closed leaves
is non-degenerate (not the identity), i.e. the linearized Poincaré return map
is of the form p(t) = λt, with λ > 0 and different from 1. This, in particular,
implies that the closed leaves are isolated and stable under C1-small per-
turbations. The Theorem 6.5 restricts to this particular case as follows. The
regions described in the Theorem behave as follows for a generic foliation:

• The regions described in the points (1), (2) and (3) are finite in number,

• the other regions do not exist.

There is a local linearization Theorem for the neighborhood of a closed
leaf with non-degenerate linear monodromy.

Proposition 6.6. Let U ' S1 × (−ε, ε) a neighborhood of a non-degenerate
closed leaf F ' S1 × {0} of a foliation L, then there is a smaller neigh-
borhood F ⊂ V ⊆ U and a diffeomorphism φ : V → S1 × (−δ, δ), for some
δ > 0, such that,
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1) φ−1(S1 × {0}) = F ,

2) fixing coordinates (θ, r) ∈ S1 × (−δ, δ), we have φ∗(ker{dr + λ · r · dθ})
= L for some λ 6= 0.

Proof. By shrinking U if necessary, we may assume that L can be expressed
as kerα = ker{f · dr + g · dθ} for some f, g functions on S1 × (−ε, ε) with
f > 0. So we assume that the foliation is expressed by the kernel of the form
(after suitable re-scaling)

(31) α = dr +Hdθ,

withH : S1 × (−ε, ε)→ R, satisfying thatH(θ, 0) = 0. Moreover, there exists
a change of coordinates r̂ = r̂(r) such that r̂(0) = 0 satisfying that the foli-
ation is expressed as the kernel of a new form

(32) α̂ = dr̂ + Ĥdθ,

where the function Ĥ satisfies the same properties as the previous smooth
function H. The only difference being that the Poincaré’s return map asso-
ciated to the transverse segment m : (−r̂0, r̂0)→ (−r̂1, r̂1) defined for some
small r̂0 > 0 and r̂1 > 0 satisfies that is purely linear m(r̂) = c · r̂, for some
c > 0 and c 6= 1. This is proved by using the non-degeneracy condition and
the classical Fatou’s Lemma on the linearization of contracting germs of
diffeomorphisms in the real line [1].

Thus we may assume, without loss of generality, that the Poincaré’s
return map is linear in the initial coordinates provided by the Equation (32).
We can restrict ourselves to the domain [0, 1)× (−δ, δ) ⊂ S1 × (−δ, δ) with
coordinates (θ, r). We can easily change coordinates in that domain to
(θ, r) = φ(θ,R) = (θ, r(θ,R)) in such a way that r(0, R) = R satisfying that
kerφ∗α = dR. This change of coordinates is given by the solution of the
differential equation

∂r

∂θ
+H(r, θ) = 0,

with initial value r(R, 0) = R. This provides a unique diffeomorphism φ
that is well defined over [0, 1)× (−ε, ε) for some small ε > 0. We change
the coordinates using the diffeomorphism (R, θ) = Φ(ρ, θ) = (R(ρ, θ), θ) with
R(ρ, θ) = ρeλθ. This implies that αλ = ker Φ∗(dR) = dρ+ λρdθ that is well-
defined in (θ, ρ) ∈ [0, 1)× (−ε′, ε′) for some ε′ > 0. By adjusting λ > 0, we
can make the parallel transport along the foliation coincide with the Poin-
caré’s return map. If this is the case the chart Φ ◦ φ smoothly extends to a
diffeomorphism in S1 × (−ε′, ε′). This completes the proof. �
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From now on, the previously constructed neighborhood V of a periodic
orbit will be called a non-degenerate annulus. A neighborhood of the zero
section of the cotangent bundle T ∗S1 with the vertical Lagrangian foliation
will be called a cotangent annulus. Recall that its Geometric Quantization
has been computed in Lemma 4.1.

6.2. Geometric Quantization of the torus: The computation

We can summarize the discussion above in the following,

Corollary 6.7. Let L be a generic foliation of the torus, with N , N > 0,
closed leaves. Then there exists a finite covering by open sets {Vj}j=N+1

j=1

such that:

1) Vj is diffeomorphic to S1 × (0, 1),

2) Vj
⋂
Vk = ∅, if j − k 6= ±1 mod N ,

3) Vj
⋂
Vj+1 is diffeomorphic to a cotangent annulus.

4) If j ≤ N , Vj is diffeomorphic to a a non-degenerate annulus.

5) VN+1 is a cotangent annulus.

This result is immediate from all the previous considerations (see Fig-
ure 3).

In order to compute the Geometric Quantization and the foliated coho-
mology of a non-degenerate foliation of the torus, we just need to apply
Mayer-Vietoris and the following,

Lemma 6.8. Let V = S1 × (−1, 1) be a non-degenerate annulus with stan-
dard foliation provided by

kerα = ker{dr + λ · r · dθ}.

Then for any symplectic form (including the limit foliated cohomology case
with ω = 0),

• If the closed leaf is Bohr-Sommerfeld, then H0(V,J ) = C, otherwise
H0(V,J ) = 0.

• H1(V,J ) = C.

Remark 6.9. Recall that in foliated cohomology case, any closed leaf is
Bohr-Sommerfeld. Also observe that the constant λ may be always assumed
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Figure 3: Covering by open sets {Ui} of a torus with a generic foliation. The
red curves are the leaves.

to be negative (possibly after composition with an orientation reversing dif-
feomorphism (θ → −θ)).

Proof. If the leaf is Bohr-Sommerfeld then the sheaf admits a parallel section
over it sB : S1 → L. Fix a non-compact leaf determined by the unique point
pθ = (θ, 1) in which it intersects the boundary. The bundle L is topologically
trivial and it admits a connection ∇ = d+ α. Since F is Bohr-Sommerfeld
we may assume that α|F = 0 and thus

α = rβ,

for some 1-form β. Fix a value s(pθ) ∈ L, by parallel transport it uniquely
extends to a parallel section over the whole leaf. Therefore if we fix any
section s(pθ) : S1 × {1} → L, it extends to a unique parallel section ŝ(pθ) :
S1 × (0, 1]→ L. We want to check how it extends to the boundary S1 × {0}.
Fix a value θ0 ∈ S1. We want to compute the following limit

(33) lim
r→0

ŝ(θ0, r).
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The invariance of the section along the leaves of the section allows us to
reduce the existence of the

lim
(θ,r)→(θ0,0)

ŝ(θ, r),

to the proposed limit along the curve (θ0, r).
Indeed, the computation of the previous limit (33) is ensured in two

steps. First, fix a point (θ0, r0), we will compute the following limit

(34) lim
n→+∞

ŝ(θ0,m
n(r0)),

where mn is the n-th iterate of the Poincaré’s return map. The key point is
to check the following inequality

lim
n→∞

||ŝ(θ0,m
n+1(r0))− ŝ(θ0,m

n(r0))|| ≤ Ce−n·λ

that holds in the case in which S1 × {0} is Bohr-Sommerfeld. In any other
case, the limit does not exist and we get that H0(V,J ) = 0. The previous
inequality implies the existence of the limit (34).

Secondly we study the section ŝ(θ0, r) restricted to the interval {θ0} ×
[r0,m

1(r0)]. It is completely determined by the value at r0 and by the
condition that the limit (34) has to be independent of the choice of r ∈
[r0,m

1(r0)]. This shows the existence of the limit (33). Therefore each ele-
ment ofH0(V,J ) can be recovered out of a parallel section at S1 × {0}. More
precisely, we have recovered a unique parallel section over S1 × [0, 1], but
an analogous argument recovers a section over S1 × [−1, 0] and the two glue
together to provide a global smooth section. This shows that H0(V,J ) = C
if the closed leaf is Bohr-Sommerfeld and H0(V,J ) = 0 otherwise.

To compute the group H1(V,J ), we start by an element of Ω1(V,J )
and we study under which conditions is exact. The restriction to any non-
compact leaf is exact because of the standard (parametric) Poincaré lemma
applies to the real line. In the case of the closed leaf the condition to be
exact amounts to be in the kernel of an linear operator Ω(V,J )→ C, i.e.
the integral along the leaf S1 × {0}. Let us detail that operator. Fix an
element γ ∈ Ω1(V,J ). We want to construct a section s : S1 × {0} → L. We
fix an arbitrary (non-zero) value v at L(0,0). There is a unique section in
[0, 1)× {0} such that:

• s(0, 0) = v,

• dFs(θ, 0) = γ(θ, 0), ∀θ ∈ (0, 1).
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Consider

P : Ω1(V,J ) → L(0,0) ' C
γ → s(1, 0)− s(0, 0)

Observe that γ is exact if and only if P (γ) = 0. Therefore H1(V,J ) =
ImP = C. This concludes the proof.

�

Lemmas 4.1 and 6.8 compute the Geometric Quantization provided by all
the types of open sets appearing in Corollary 6.7. Therefore, the computation
of the Geometric Quantization becomes a simple task,

Corollary 6.10. Let F be a non-degenerate regular foliation over the
torus with N > 0 closed leaves. Assume that 0 ≤ b ≤ N of them are Bohr-
Sommerfeld. Then,

• H0(T2,J ) = C if b = N and a parallel transport condition (to be de-
scribed in the proof) is fulfilled. H0(T2,J ) = 0 otherwise.

• H1(T2,J ) =
⊕N

i=1(C∞(S1,C)/(C)b(i))
⊕

CN , where b(i) = 1 if the i-
th closed leaf is Bohr-Sommerfeld; b(i) = 0 otherwise.

• For the foliated cohomology case H0(T2,J ) = C and
H1(T2,J ) =

⊕N
i=1(C∞(S1,C)/C)

⊕
CN .

Proof. In order to compute H0(T2,J ) we fix a section s0 ∈ Ω0(T2,J ). When
restricted to any closed leaf γi (i = 1 . . . , n) it induces a section si : γi −→ J .
Recall that si+1 is determined from si therefore if one of them vanishes
s = 0. So if any closed leaf is not Bohr-Sommerfeld then H0(T2,J ) = 0.
Otherwise, si determines si+1 and at the end there is a parallel transport
equation to be satisfied by s1. If it is satisfied H0(T2,J ) = C, otherwise
H0(T2,J ) = 0. In order to compute H1(T2,J ), we recall the Mayer-Vietoris
Lemma (Lemma 3.2). It states that for two open domains U and V we have
the following exact sequence:

0 // H0(M,J ) // H0(U,J )⊕H0(V,J ) // H0(U ∩ V,J )

rr
H1(M,J ) // H1(U,J )⊕H1(V,J ) // H1(U ∩ V,J )

Away from the open sets defined in Corollary 6.7, we define the sequence
of open sets Uj =

⋃j
k=1 Vk. It is clear that UN+1 = T2. It is simple to check
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that

H1(Uj+1,J ) =

j⊕
i=1

(C∞(S1,C)/(C)b(i+1))
⊕

Cj+1, j = 1, . . . , n− 1,

by sequentially applying the Mayer-Vietoris sequence to the sets Uj+1 =
Uj
⋃
Vj+1. All the instances follow the same pattern and a recursive argu-

ment applies. The exception is the last one, being T2 = UN+1 = UN
⋃
VN+1,

in which the algebraic computation changes since VN+1 is a cotangent annu-
lus.

In the foliated cohomology case, the same proof holds since all the leaves
are Bohr-Sommerfeld. �

Notice that the condition on closed leaves not to be Bohr-Sommerfeld is
a generic one.

Thus the Quantization space depends only on the topology of the folia-
tion. Concretely, just in the number of closed orbits. In the general case, it
depends on the symplectic geometry of the foliation, i.e. the number of Bohr-
Sommerfeld leaves is invariant under symplectic diffeomorphisms. In a future
work [26] we plan to use this idea to define the Quantization of a general
Hamiltonian on a torus, since the Quantization spaces remain unchanged
by the flow of the Hamiltonian and construct explicit isomorphisms of the
Quantization spaces.
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