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Equivalence of the categories of modules

over Lie algebroids

Yuji Hirota

We study the theory of geometric Morita equivalence in Poisson
geometry. A new equivalence relation for integrable Lie algebroids
is introduced and investigated. It is shown that two equivalent Lie
algebroids have equivalent categories of infinitesimal actions of Lie
algebroids. As an application, it is also shown that the Hamiltonian
categories for gauge equivalent Dirac structures are equivalent as
categories.

1. Introduction

Poisson geometry is considered to be intermediate between differential geom-
etry and noncommutative geometry in the sense that it provides us with
powerful techniques to study many geometric objects related to noncommu-
tative algebras.

If (Q, ΠQ) and (P, ΠP ) are Poisson manifolds, then a Poisson map J :
Q→ P induces a Lie algebra homomorphism by

(1.1) C∞(P ) −→ X(Q) ⊂ End
(
C∞(Q)

)
, f 7−→ −ΠQ( ·, J∗df ).

From (1.1), C∞(Q) can be regarded as a C∞(P )-module. This observation
enables oneself to study geometric objects by connecting with a theory in
algebra like Morita equivalence (refer to H. Bursztyn and A. Weinstein [5] for
further discussion). Geometric Morita equivalence, which is introduced by
P. Xu [16], plays a central role in Poisson geometry as Morita equivalence of
C?-algebras does in noncommutative geometry. One of the remarkable prop-
erties is that Morita equivalence implies the equivalence of the categories of
modules over Poisson manifolds: for an integrable Poisson manifold P , the
category of modules over P is the category whose objects are complete sym-
plectic realizations of P and whose morphisms are symplectic maps between
complete symplectic realizations commuting with the realizations. This is
just the analogy with Morita equivalence in algebra, first studied by K.
Morita [14].
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388 Yuji Hirota

As is well-known, Poisson maps are always associated with Lie algebroid
actions of cotangent bundles:

(1.2) Γ∞(T ∗P ) −→ X(Q), α 7−→ −ΠQ( ·, J∗α ).

The Lie algebra homomorphism (1.2) can be considered to be the represen-
tation of Γ∞(T ∗P ) on C∞(Q). More generally, if A→M is a Lie algebroid,
the infinitesimal action of A on a smooth map f : N →M induces the rep-
resentation of Γ∞(A) on C∞(N):

(1.3) Γ∞(A) −→ X(N) ⊂ End
(
C∞(N)

)
.

Here, a natural question arises: what is an equivalence relation between Lie
algebroids which implies an equivalence of the categories associating with
Lie algebroid actions?

In this paper, we give a solution to the above question, that is, we
introduce an equivalence relation for integrable Lie algebroids, called strong
Morita equivalence, and show that the category consisting of the infinitesi-
mal actions of Lie algebroids is invariant under strong Morita equivalence.
Furthermore, applying the result to Dirac geometry, we partially recover the
well-known proposition in H. Bursztyn and M. Crainic [2]. This study gives
a general description of Morita equivalence for Poisson manifolds from the
viewpoint of Lie algebroid, and is expected to have a connection with the
study of quasi-Hamiltonian symmetry through the question presented by A.
Weinstein [15].

The paper is organized as follows: in Section 2, we review the basics of
Lie algebroids, including Lie algebroid morphisms and the construction of
Lie algebroid from a given Lie groupoid. Section 3 is devoted to the study of
the infinitesimal actions of Lie algebroids. The new equivalence relation for
integrable Lie algebroids is introduced and discussed. In Section 4, we show
that the category of the infinitesimal actions of Lie algebroid is invariant
under strong Morita equivalence, and show also that two gauge equivalent
Dirac structures are strongly Morita equivalent. Lastly, we find that the
Hamiltonian categories for gauge equivalent Dirac structures are equivalent
each other, by using the main theorem.

Throughout the paper, manifolds are assumed to be connected smooth
manifolds. The set of smooth sections of a smooth vector bundle E →M
is denoted by Γ∞(E). Especially, we write X(M) for Γ∞(TM) when E =
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Equivalence of the categories of modules 389

TM . The space of smooth functions on a smooth manifold M is denoted by
C∞(M).

2. Basic terminologies of Lie algebroids

2.1. Lie algebroids

Let M be a smooth manifold. A Lie algebroid over M is a smooth vector
bundle A→M with a bundle map ρ : E → TM , called the anchor map, and
a Lie bracket J·, ·K on the space Γ∞(A) of smooth sections of A such that

(2.1) Jα, fβK =
(
ρ(α)f

)
β + fJα, βK

for any f ∈ C∞(M) and α, β ∈ Γ∞(A). We denote a Lie algebroid by the
triple (A→M, J·, ·K, ρ) or, simply by A, and use the notation A− for a Lie
algebroid A with the opposite bracket.

The anchor map of a Lie algebroid A is a Lie algebra homomorphism.
Indeed, from (2.1) and the Jacobi identity, it follows that

0 = JJα, βK, fγK + JJβ, fγK, αK + JJfγ, αK, βK
= fJJα, βK, γK +

(
ρ
(
Jα, βK

)
f
)
γ

+ fJJβ, γK, αK +
(
ρ(β)f

)
Jγ, αK −

(
ρ(α)f

)
Jβ, γK −

(
ρ(α)

(
ρ(β)f

))
γ

+ fJJγ, αK, βK −
(
ρ(β)f

)
Jγ, αK +

(
ρ(α)f

)
Jβ, γK +

(
ρ(β)

(
ρ(α)f

))
γ

=
((
ρ
(
Jα, βK

)
− Jρ(α), ρ(β)K

)
f
)
γ

for any f ∈ C∞(M) and α, β, γ ∈ Γ∞(A). Therefore, we have ρ
(
Jα, βK

)
=

Jρ(α), ρ(β)K.

Example 2.1. A Lie algebra is a Lie algebroid over a point.

Example 2.2. (Tangent algebroids) A tangent bundle TM of a smooth
manifold M is a Lie algebroid over M : the anchor map is the identity map
idTM , and the Lie bracket is the usual Lie bracket of vector fields. This Lie
algebroid is called a tangent algebroid.

Example 2.3. (Cotangent algebroids) If (P, Π) is a Poisson manifold, then
a cotangent bundle T ∗P is a Lie algebroid: the anchor map is the map Π]
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induced from Π,

Π] : T ∗P −→ TP, α 7−→
{
β 7→ 〈β, Π](α)〉 = Π(β, α)

}
and the Lie bracket is given by

Jα, βK = LΠ](α)β − LΠ](β)α+ d
(
Π(α, β)

)
,

where LΠ](α)β stands for the Lie derivative on β along Π](α). The Lie alge-

broid (T ∗P → P, J·, ·K, Π]) is called a cotangent algebroid.

Example 2.4. (Transformation algebroids) Given an action % : g→ X(M)
of a Lie algebra (g, [·, ·]) on a smooth manifold M , one can associate to it the
Lie algebroid structure: the vector bundle is the trivial bundle M × g→M ,
the anchor map ρ is given by ρ (p, V )→ (%(V ))p ∈ TpM, (∀p ∈M, V ∈ g)
and the Lie bracket on Γ∞(M × g) = C∞(M, g) is defined as

JU, V K(p) := [U(p), V (p)] +
(
%(U(p))

)
p
(V )−

(
%(V (p))

)
p
(U).

This Lie algebroid is called a transformation algebroid, and denoted by M o
g, for short.

Example 2.5. (Dirac structures) Let us consider a vector bundle TM ⊕
T ∗M over a smooth manifold M . We endow the vector bundle with a bilinear
operation

〈·, ·〉 : Γ∞(TM ⊕ T ∗M)× Γ∞(TM ⊕ T ∗M)→ C∞(M)

defined as

〈 (U,α), (V, β) 〉 := β(U) + α(V ),

and a skew-symmetric bracket

J·, ·K : Γ∞(TM ⊕ T ∗M)× Γ∞(TM ⊕ T ∗M)→ Γ∞(TM ⊕ T ∗M)

defined as

J(U,α), (V, β)K := ( [U, V ], LUβ − iV dα ).

A subbundle DM ⊂ TM ⊕ T ∗M is called a Dirac structure if DM satisfies
the following three conditions:

(1) 〈·, ·〉|DM ≡ 0;
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(2) DM has rank equal to dim(M);

(3) JΓ∞(DM ), Γ∞(DM )K ⊂ Γ∞(DM ).

We call a pair (M,DM ) of a smooth manifoldM and a Dirac structureDM ⊂
TM ⊕ T ∗M a Dirac manifold. A Dirac structure DM , with the restriction of
Courant bracket and the anchor map, is verified easily to be a Lie algebroid.
We refer to H. Bursztyn and M. Crainic [1], and [5] for further discussions
of Dirac structures and Courant algebroids.

2.2. Lie algebroid morphisms and the pull-back Lie algebroids

Let (A1 →M1, J·, ·K1, ρ1) and (A2 →M2, J·, ·K2, ρ2) be Lie algebroids. A
Lie algebroid morphism from A1 to A2 is a vector bundle morphism Φ :
A1 → A2 such that

(2.2) ρ2

(
Φ(α)

)
= ϕ∗

(
ρ1(α)

)
,
(
∀α ∈ Γ∞(A1)

)
,

and, for any smooth sections α, β ∈ Γ∞(A1) written in the forms

(2.3) Φ ◦ α =
∑
i

ξi(γi ◦ ϕ), Φ ◦ β =
∑
j

ηj(δj ◦ ϕ),

where ξi, ηj ∈ C∞(M1) and γi, δj ∈ Γ∞(A2),

Φ ◦ Jα, βK1 =
∑
i,j

ξiηj (Jγi, δjK2 ◦ Φ) +
∑
j

(
Lρ1(α) ηj

)
(δj ◦ Φ)(2.4)

−
∑
i

(
Lρ1(β) ξi

)
(γi ◦ Φ)

are satisfied (see K. Mackenzie [12]). Here, we denote the base map of Φ
by ϕ.

Proposition 2.6. If a vector bundle morphism Φ : A1 → A2 is the Lie alge-
broid morphism, then there exists a subbundle

R ⊂ (A1 ×A2)|Gr(ϕ)

which satisfies the following conditions:

(1) For any z ∈ Gr(ϕ), (ρ1 × ρ2)
(
Rz
)
⊂ Tz

(
Gr(ϕ)

)
;
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(2) For any α, β ∈ Γ∞(A1 ×A2) such that α|Gr(ϕ) , β|Gr(ϕ) ∈ Γ∞(R), it
holds that

Jα, β K|Gr(ϕ) ∈ Γ
∞(R),

where J·, ·K =
(
J·, ·K1, J·, ·K2

)
.

Proof. Suppose that Φ : A1 → A2 is a Lie algebroid morphism. Define the
vector bundle R ⊂ (A1 ×A2)|Gr(ϕ) as

R =
∐
p∈M1

{
(a, Φ(a))

∣∣ a ∈ (A1)p

}
.

Using (2.2), we have

(ρ1 × ρ2)
(
a, Φ(a)

)
=
(
ρ1(a), ρ2

(
Φ(a)

) )
=
(
ρ1(a), Φ∗

(
ρ1(a)

) )
∈ Tp

(
Gr(ϕ)

)
.

That is, the condition (1) holds.
For α, β ∈ Γ∞(A1) which we assume to satisfy (2.3), we define the

smooth sections α̂, β̂ of A1 ×A2 →M1 ×M2 as

α̂(p,ϕ(p)) :=
(
αp, Φ(αp)

)
∈ (R)(p,ϕ(p)), β̂(p,ϕ(p)) :=

(
βp, Φ(βp)

)
∈ (R)(p,ϕ(p)).

From (2.1) and (2.4), it follows that

J Φ(α), Φ(β) K2
Φ(p) = Φ

(
Jα, β K1

p

)
.

This leads us to the condition (2). �

The Lie algebroid morphism Φ : A1 → A2 is said to be a Lie algebroid
isomorphism if Φ is an isomorphism of vector bundles. If there exists the Lie
algebroid isomorphism from A1 to A2, we write A1

∼= A2.

Let (A→M, J·, ·K, ρ) be a Lie algebroid and f : M ′ →M a smooth map
from a smooth manifold M ′ to M . Assume that the differential of f is
transversal to the anchor map ρ : A→ TM in the sense that

Im ρf(x) + Im (df)x = Tf(x)M, (∀x ∈M ′).

Here, Im ρf(x) stands for the image of ρf(x).
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This assumption leads us to the following condition:

(2.5) Im (idx × ρf(x)) + T(x.f(x))

(
Gr(f)

)
= TxM

′ ⊕ Tf(x)M, (∀x ∈M ′),

where idx means the identity map on TxM
′. The condition (2.5) ensures

that the preimage

(id× ρ)−1T
(
Gr(f)

)
(2.6)

=
∐
x∈M ′

{
(V, α)

∣∣ V ∈ TxM ′, α ∈ Af(x), (df)x(V ) = ρ(α)
}

is a smooth subbundle of (TM ′ ×A)|Gr(f). The vector bundle (2.6) over
Gr(f) ∼= M ′ has the structure of Lie algebroid whose anchor map is the
natural projection proj1. This vector bundle is called a pull-back of Lie
algebroid and denoted by f !A (see P. Higgins and K. Mackenzie [10]).

Let Φ1 : A1 → A and Φ2 : A2 → A be Lie algebroid morphisms. We denote
each base map by ϕ1 : M1 →M and ϕ2 : M2 →M . Suppose that the fol-
lowing conditions:

(1) Im (Φ1)p + Im (Φ2)q = Ar,
(
r = Φ1(p) = Φ2(q)

)
;

(2) The map ϕ1 × ϕ2 is transversal to the submanifold ∆ = { (m, m) |m ∈
M } ⊂M ×M :

Im
(
(dϕ1)p × (dϕ2)q

)
+ T(r,r)∆ = T(r,r)(M ×M)

are satisfied. Then, one can obtain the Lie algebroid

A1 ×A A2 :=
∐

(p,q)∈M1×MM2

{
(a, b)

∣∣ a ∈ (A1)p, b ∈ (A2)q, Φ1(a) = Φ2(b)
}

over M1 ×M M2 =
{

(p, q) ∈M1 ×M2 |ϕ1(p) = ϕ2(q)
}

, whose Lie bracket
J·, ·K is given by J·, ·K :=

(
J·, ·K1, J·, ·K2

)
, and whose anchor map ρ̂ : A1 ×A

A2 → T (M1 ×M M2) is defined as ρ̂(a, b) := (ρ1(a), ρ2(b)). We call this Lie
algebroid the fibered product. The pull-back of a Lie algebroid f !A discussed
can be the fibered product of two Lie algebroid morphisms f∗ : TM ′ → TM
and ρ : A→ TM . Hence, a fibered product Lie algebroid is a pull-back Lie
algebroid in a general sense.
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2.3. The Lie algebroid of a Lie groupoid

Let Γ ⇒M be a Lie groupoid with an identity section ε, a source map s
and a target map t. Denote by A (Γ )→M the vector bundle consisting of
tangent spaces to s-fibers at X:

A (Γ )|p = ker(ds)ε(p) (p ∈M).

For any γ ∈ Γ , the differential of the right translation Rγ by γ induces a
map

(dRγ)ε(γ′) : Tε(γ′)

(
s−1
(
t(γ)

))
−→ Tε(γ′)

(
s−1
(
s(γ)

))
,

where γ′ = t(γ). By the map, any smooth section α ∈ Γ∞(A (Γ )) gives rise
to a right-invariant vector field

(2.7) α̂γ := (dRγ)ε(γ′)(αε(γ′)) (γ ∈ Γ )

on Γ (see [12]). Therefore, Γ∞(A (Γ )) inherits the Lie bracket from X(Γ ).
One verifies that the vector bundle A (Γ )→M with the above Lie bracket
and the bundle map dt : A (Γ )→ TM becomes a Lie algebroid. A Lie alge-
broid A→M is said to be integrable if there exists a Lie groupoid Γ ⇒M
whose Lie algebroid A(Γ )→M is isomorphic to A as Lie algebroid. If A
is integrable, there exists an unique source-simply-connected Lie groupoid
integrating A (see I. Moerdijk and J. Mrc̆un [13]).

3. Infinitesimal actions of Lie algebroids and strongly
Morita equivalence

We begin this section by recalling the actions of Lie algebroids. A Lie alge-
broid right (left) action of (A→M, J·, ·K, ρ) on a smooth manifold N con-
sists of a map µ : N →M called the moment map and a Lie algebra (anti-)
homomorphism ξ : Γ∞(A)→ X(N) which satisfy

(3.1) ρ
(
αµ(q)

)
= (dµ)q

(
ξ(α)

)
(∀q ∈ N)

for any α ∈ Γ∞(A), and

(3.2) ξ(fα) = (µ∗f) ξ(α) (∀f ∈ C∞(M)).

The right action of A is alternatively called the infinitesimal action of A.
The action is said to be complete if ξ(α) is a complete vector field whenever
α ∈ Γ∞(A) has compact support.
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Example 3.1. Let g be a Lie algebra. A Lie algebra action of g on M is
thought of a Lie algebroid action of g→ {∗} on M → {∗}.

Example 3.2. Any Poisson map J : Q→ P and a cotangent algebroid T ∗P
over P is a Lie algebroid action by (1.2).

Example 3.3. Any smooth manifold X is thought of a Lie algebroid action
of a trivial Lie algebroid {∗} → {∗} on a map X → {∗}. We call this action
a trivial action.

Example 3.4. Given a Lie algebroid A→M with a surjective submersion
J : X →M which satisfy

(3.3) (J !A)(x,J(x)) ∩ (TxX ⊕ {0}) = {0} (∀x ∈ X),

we have the right action of Lie algebroid Γ∞(A)→ X(X) by α 7→ u, where
u ∈ TxX is the element such that (u, α) ∈ (J !A)(x,J(x)). We remark that the
element u is uniquely determined by (3.3). Indeed, if α and u, u′ are the
elements such that (u, α) ∈ (J !A)(x,J(x)) and (u′, α) ∈ (J !A)(x,J(x)), then we
have

(u− u′,0) ∈ (J !A)(x,J(x)) ∩ (TxX ⊕ {0}).
It follows from (3.3) that u = u′.

Example 3.5. Let us assume that a Lie algebroid A→M is integrable and
Γ ⇒M be the Lie groupoid integrating A. As noted in Section 2, the fiber of
A over x ∈M is the subspace ker (ds)ε(x) of Tε(x)Γ , and the anchor is given
by dt : A ⊂ TΓ → TM . Given any section α ∈ Γ∞(A), the Formula (2.7)
defines a right invariant vector field. The map ξ which assigns the right
invariant vector field α̂ on Γ to α ∈ Γ∞(A) is shown to be a Lie algebra
homomorphism and satisfy (3.1) and (3.2). Therefore, the map Γ∞(A)→
X(Γ ) defines a right action of A on t : Γ →M . Similarly to this case, one
can obtain a left action of A on t : Γ →M by defining as Γ∞(A) 3 α 7→
−α̂ ∈ X(Γ ).

Proposition 3.6. Let (A→M, J·, ·K, ρ) be a Lie algebroid and J : X →M
a smooth map. Suppose that J is a surjective submersion. Then, we have a
Lie algebroid action of A on X/F , where X/F is the space of leaves induced
from J .

Proof. Since J is a surjective submersion, the space X has a foliation F
whose leaves are J-fibers. We consider the space of leaves X/F and a map
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J : X/F →M given by J(x) = J(x) (∀x ∈ X). For any αJ(x) ∈ AJ(x) (x ∈
X), there exists ux ∈ TxX such that (dJ)x(ux) = ρ(αJ(x)). A vector field
u = {ux}x∈X ∈ X(X) is J-related to ρ(α) ∈ X(M): dJ ◦ u = ρ(α) ◦ J . We
define a map ξ : Γ∞(A)→ X(X/F) as

AJ(x) −→ Tx(X/F), αJ(x) 7−→ ux := (dπ)x(ux),

where π stands for a natural projection π : X → X/F , x→ x. Let ξ(α) = u
and ξ(β) = v for α, β ∈ Γ∞(A). The vector fields u and v on X/F are π-
related to u and v, respectively. It follows from this that [ξ(α), ξ(β)] = [u, v].
On the other hand, we take a vector field w on X such that ρ (Jα, βK) ◦ J =
dJ ◦ w. Since the anchor map ρ is a Lie algebra homomorphism (see Section
2), we have

w(J∗g) = (dJ ◦ w)f =
(
[ρ(α), ρ(β)] ◦ J

)
g =

(
[dJ ◦ u, dJ ◦ v]

)
g

=
(
dJ ◦ [u, v])

)
g = [u, v](J∗g)

for any g ∈ C∞(M). In other words, it holds that w = [u, v] on each J-
fiber. Hence, we have ξ(Jα, βK) = [u, v]. These result in that the map ξ is
a Lie algebra homomorphism. It is shown easily that ξ also satisfies (3.1)
and (3.2). �

Remark 3.1. If a Lie algebroid A acts on µ : N →M , then a pull-back
vector bundle µ∗A→ N has a Lie algebroid structure whose anchor is the
action map. We refer to [12] for further details.

From the definition of the Lie algebroid action, the space C∞(N) can be
regarded as a Γ∞(A)-module. In other words, one can think of actions of Lie
algebroids as modules over Lie algebroids. We define a right (left) module
over a Lie algebroid A to be the right (resp. left) action of A whose moment
map is a surjective submersion. A right (left) module over A is said to be
complete if the right (resp. left) action is complete.

Example 3.7. The action of T ∗P → P given by Γ∞(T ∗P ) 3 α 7→ ΠQ( ·,
J∗α ) ∈ X(Q) is a left module over T ∗P (see (1.2)).

Example 3.8. The Lie algebroid action of A in Proposition 3.6 is the right
module over A.

Example 3.9. Let Γ1 ⇒ Γ0 be a Lie groupoid. Let us take points x ∈ Γ0

and h ∈ Γ1 such that t(h) = x. For any smooth section α ∈ Γ∞(A(Γ1)), we
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consider a smooth curve γ in s−1(x) which satisfies

d

dt

∣∣∣∣
t=0

γ = α̂x and γ(0) = ε(x).

Since s(γ(t)) = x = t(h) for each t ∈ R, a smooth curve t 7→ γ(t) · h can be
defined. Then, the map

(3.4) Γ∞(A(Γ1)) −→ X(Γ1), α 7−→ −
{
d

dt

∣∣∣∣
t=0

γ(t) · h
}
h∈Γ1

defines a left module t : Γ1 → Γ0 over A(Γ1)→ Γ0.
On the other hand, let us consider a smooth curve δ in t−1(x) which

satisfies
d

dt

∣∣∣∣
t=0

δ = β̂x and δ(0) = ε(x).

for x ∈ Γ0 and g ∈ Γ1 such that s(g) = x, and for any smooth section β ∈
Γ∞(A(Γ1)). Then, the map defined as

(3.5) Γ∞(A(Γ1)) −→ X(Γ1), β 7−→
{
d

dt

∣∣∣∣
t=0

g · δ(t)
}
g∈Γ1

is a right module s : Γ1 → Γ0 over A(Γ1)→ Γ0.

Suppose that we are given a right A-module J : X →M by

ξ : Γ∞(A) −→ X(X), (A)J(x) 3 αJ(x) 7−→ ξ (αJ(x)) ∈ TxX

and a left A-module K : Y →M by

η : Γ∞(A) −→ X(Y ), (A)K(y) 3 αK(y) 7−→ η (αK(y)) ∈ TyY.

Take the fiber product

X ×M Y =
{

(x, y) ∈ X × Y
∣∣ J(x) = K(y)

}
,

then, a map

(3.6) (A)J(x) 3 αJ(x) 7−→
(
ξ (α)x, η (α)y

)
∈ T(x,y)

(
X ×M Y

)
.

defines a singular distribution D = {D(x,y)} on X ×M Y

X ×M Y 3 (x, y) 7−→ D(x,y)

:=
{ (
ξ(α)x, η(α)y

) ∣∣ α ∈ Γ∞(A2)
}
⊂ T(x,y)

(
X ×M Y

)
.
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The distribution D turns out to be integrable since the map (3.6) is thought
of the anchor map of the fibered product J∗A×A K∗A→ X ×M Y (see
Remark 3.1, and 8.1.4 in J.-P. Dufour and N. T. Zung [9]). We denote by
X ⊗A Y the space of leaves (X ×M Y )/A obtained from D.

Definition 3.10. Two Lie algebroidsA1 →M1 andA2 →M2 are said to be
quasi-equivalent if there exists a smooth manifold X together with surjective
submersions Jk : X →Mk (k = 1, 2) such that

(Q1) A1 has a left action ξ1 on J1 : X →M1 such that

ker (dJ2)x =
{
ξ1(α)x |α ∈ Γ∞(A1)

}
(∀x ∈ X);

(Q2) A2 has a right action ξ2 on J2 : X →M2 such that

ker (dJ1)x =
{
ξ2(β)x |β ∈ Γ∞(A2)

}
(∀x ∈ X).

Example 3.11. Suppose that integrable Poisson manifolds P1 and P2 are
Morita equivalent in the sense of Xu [16] each other, that is, there exists a
symplectic manifold S together with two surjective submersions P1

τ1← S
τ2→

P2 such that

(1) τ1 is a complete Poisson map and τ2 is a complete anti-Poisson map;

(2) each τk has connected, simply-connected fibers (k = 1, 2);

(3) ker(dτ1)z =
(
ker(dτ2)z

)⊥
and ker(dτ2)z =

(
ker(dτ1)z

)⊥
(∀z ∈ S).

Then, the cotangent algebroids T ∗P1 → P1 and T ∗P2 → P2 are quasi-
equivalent: as is noted before, Poisson maps τ1 and τ2 induce the left and
right actions of Lie algebroids by

ζ1 : Γ∞(T ∗P1) −→ X(S), α 7−→ ΠS( ·, τ∗1α ).

and

ζ2 : Γ∞(T ∗P2) −→ X(S), β 7−→ −ΠS( ·, τ∗2β ),

respectively. From the condition (3) it follows immediately that

ker (dτ2)z =
{
ζ1(α)z | α ∈ Γ∞(T ∗P1)

}
(∀z ∈ S)

and

ker (dτ1)z =
{
ζ2(β)z | β ∈ Γ∞(T ∗P2)

}
(∀z ∈ S).
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In Example 3.11, the converse does not hold. Namely, P1 and P2 are not
Morita equivalent even if their cotangent algebroids are quasi-equivalent.
Indeed, we consider the 2-torus T2 = S1 × S1 and the standard symplectic
manifold R2. Then, both of the projections τ1 : T2 × R2 → T2 and τ2 : T2 ×
R2 → R2 are Poisson maps. As is mentioned before, Poisson maps τ1 and τ2

induce the actions of Lie algebroids

ζ1(α) = Π]
T2×R2(τ

∗
1α) (∀α ∈ Γ∞(T ∗T2))

and

ζ2(β) = −Π]
T2×R2(τ

∗
2β) (∀β ∈ Γ∞(T ∗R2)),

respectively. Here, ΠT2×R2 denote the natural Poisson structure on T2 × R2

by the symplectic structure. It is easy to check that those actions satisfy
conditions (Q1) and (Q2) in Definition 3.10. Consequently, the cotangent
algebroid T ∗T2 → T2 and T ∗R2 → R2 are quasi-equivalent. However, those
symplectic manifolds T2 and R2 are not Morita equivalent since their fun-
damental groups can not be isomorphic to each other (see Proposition 2.1
in [16]).

The quasi-equivalence in Definition 3.10 can be characterized in terms
of the subbundles of the pull-backs of Lie algebroids.

Proposition 3.12. Two Lie algebroids A1 →M1 and A2 →M2 are quasi-
equivalent if and only if there exists a smooth manifold X together with
surjective submersions Jk : X →Mk (k = 1, 2) and a pair (L1, L2) of sub-
bundles L1 of J1

!A1 and L2 of J2
!A−2 which satisfy the following conditions:

(A) (Lk)(x,Jk(x)) ∩ (TxX ⊕ {0}) = {0} for any x ∈ X (k = 1, 2);

(B) pr1

(
(L1)(x,J1(x))

)
= Tx

(
J−1

2

(
J2(x)

))
and

pr1

(
(L2)(x,J2(x))

)
= Tx

(
J−1

1

(
J1(x)

))
(∀x ∈ X);

(C) pr2

(
(L1)(x,J1(x))

)
= (A1)J1(x) and pr2

(
(L2)(x,J2(x))

)
= (A2)J2(x)

(∀x ∈ X);

where pr1 and pr2 are the natural projections from TX ×Ai (i = 1, 2) to the
first component TX and the second component Ai, respectively.

Proof. Suppose that two Lie algebroids A1 →M1 and A2 →M2 are quasi-

equivalent by M1
J1← X

J2→M2. We define subbundles L1 of J1
!A1 and L2 of
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(J2
!A2)− as

L1 =
∐
x∈X

{(
ξ1(α)x, αJ1(x)

) ∣∣ α ∈ Γ∞(A1)
}

and

L2 =
∐
x∈X

{(
ξ2(β)x, βJ2(x)

) ∣∣ β ∈ Γ∞(A2)
}
,

respectively. The condition (C) holds obviously. If we take a zero section
α ≡ 0 ∈ Γ∞(A1), then ξ1(α)x = 0. This shows that (A) holds. The condition
(B) is verified by the assumptions that the images of the action ξ1 (ξ2) are
tangent to J2 (resp. J1)-fibers.

Conversely, assume that there exists such a smooth manifold X and
a pair (L1, L2) of subbundles L1 ⊂ J1

!A1 and L2 ⊂ J2
!A−2 . Let us choose

any smooth section α ∈ Γ∞(A1). From the conditions (A) and (C), there
exists a unique element u ∈ TxX such that (u, αJ1(x)) ∈ (L1)(x,J1(x)) (see
Example 3.4). That is, we have a map

(3.7) ξ1 : Γ∞(A1) 3 α 7−→ u ∈ X(X).

as assigning to α ∈ Γ∞(A1) a unique element u ∈ TxX such as (u, αJ1(x)) ∈
(L1)(x,J1(x)). The map (3.7) defines a left action of A1. A right action ξ2 of
A2 is defined in the obvious analogous way. It follows from (B) that{

ξ1(α)x |α ∈ Γ∞(A1)
}

= Tx

(
J−1

2 (J2(x))
)
.

Similarly to this case, the right action ξ2 of A2 yields{
ξ2(β)x |β ∈ Γ∞(A2)

}
= Tx

(
J−1

1 (J1(x))
)
.

This shows that A1 and A2 are quasi-equivalent to each other. �

In Example 3.11, let us take subbundles L1 ⊂ τ1
!(T ∗P1) and L2 ⊂

τ2
!(T ∗P2)− as

L1 =
{

(Π]
S(τ1

∗α), α) | α ∈ T ∗P1

}
and

L2 =
{

(Π]
S(τ2

∗β), β) | β ∈ (T ∗P2)−
}
,

respectively, where Π]
S stands for the bundle map induced by the symplectic

Poisson structure ΠS ∈ Γ∞(∧2TS). The condition (A) and (C) in Proposi-
tion 3.12 are easily checked. The condition (B) follows from (3) in Exam-
ple 3.11 that fibers of τ1, τ2 are symplectically orthogonal to one another.
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The statement similar to this holds in a more general setting. Let DM1

and DM2
be Dirac structures over M1 and M2, respectively. A smooth map

F : M1 →M2 is called a forward Dirac map if it holds that

(DM2
)F (m) =

{(
(dF )mU, β

)
∈ TF (m)M2 ⊕ T ∗F (m)M2∣∣ (U, (dF )∗mβ
)
∈ (DM1

)m

}
for any point m ∈M1. In addition, a forward Dirac map F : (M1, DM1

)→
(M2, DM2

) is called a strong Dirac map if

(3.8) ker(dF )m ∩ ker(DM1
)m = {0} (∀m ∈M1)

is satisfied, where ker(DM1
)m = (DM1

)m ∩ TmM1 (see H. Bursztyn and
M. Crainic [2]).

Remark 3.2. A strong Dirac map is alternatively called a Dirac realization
in [1].

A strong Dirac map F : (M1, DM1
)→ (M2, DM2

) induces a map

(3.9) ζ : Γ∞(DM2
) −→ X(M1), (V, β) 7−→ V̂ ,

where V̂ is a tangent vector such that V = F∗V̂ which is determined uniquely
by the condition (3.8). The map ζ defines an infinitesimal actions of the Lie
algebroid DM2

(see Proposition 2.3 in [2]). A strong Dirac map F is said to be
complete if the infinitesimal action ζ is complete. As noted in Example 2.5,
Dirac structures are regarded as Lie algebroids. The following proposition
states the sufficient condition for two Dirac structures to be quasi-equivalent.

Proposition 3.13. Two Dirac structures DM1
and DM2

are quasi-equivalent
if there exists a Dirac manifold (N,DN ) together with surjective submersions

(M1, DM1
)
F1← N

F2→ (M2, DM2

−) satisfying

(1) each Fk is a strong Dirac map (k = 1, 2);

(2) pr1

(
(Λ1)n

)
= ker (dF2)n and pr2

(
(Λ2)n

)
= ker (dF1)n (∀n ∈ N),

where (Λk)n := (DN )n ∩
(
TnN ⊕ Im (dFk)

∗
n

)
(k = 1, 2).
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Proof. We define subbundles L1 ⊂ F1
!DM1

and L2 ⊂ F2
!D−M2

over N as

L1 :=
∐
n∈N

{(
u; (dF1)n(u), β

)
∣∣ u ∈ TnN, β ∈ TF1(n)M1,

(
u, (dF1)∗n(β)

)
∈ (DN )n

}
and

L2 :=
∐
n∈N

{(
u; (dF2)n(u), β

)
∣∣ u ∈ TnN, β ∈ TF2(n)M1,

(
u, (dF2)∗n(β)

)
∈ (DN )n

}
.

From the assumption that each Fk : (N,DN )→ (Mk, DMk
) is a Dirac map,

it follows that

pr2

(
(Lk)(n,Fk(n))

)
= (DM1

)Fk(n) (k = 1, 2).

This shows that condition (C) in Proposition 3.12 holds. If a point
(
u;

(dFk)n(u), β
)
∈ (Lk)(n,Fk(n)) belongs to the space TnN ⊕ {0} ⊂ TnN ⊕

T ∗nN , we find that u ∈ ker(dfk)n and β = 0. Since the condition (3.8), we
have (u,0) ∈ ker(dFk)n ∩ ker(DN )n = {0}. This implies u = 0. Therefore,
condition (A) in Proposition 3.12 holds. For any n ∈ N , each space
pr1

(
(Lk)(n,Fk(n))

)
coincides with pr1

(
(DN )n ∩

(
TnN ⊕ Im (dFk)

∗
n

))
. Conse-

quently, condition (B) in Proposition 3.12 holds. �

Basing on the above discussion, we introduce a new binary relation
between integrable Lie algebroids.

Definition 3.14. Suppose that both Lie algebroids A1 →M1 and A2 →
M2 are integrable. They are said to be strongly Morita equivalent if they
are quasi-equivalent to each other, and satisfy the following conditions:

(S1) each of the moment maps has connected and simply-connected fibers;

(S2) both the left action ξ1 and the right action ξ2 are complete;

(S3) for any smooth section α ∈ Γ∞(A1) and β ∈ Γ∞(A2),

[ξ1(α), ξ2(β)] = 0.

It will be shown that strong Morita equivalence is indeed an equivalence
relation between Lie algebroids integrated to the source-simply-connected
Lie groupoids.
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Remark 3.3. The second condition in Definition 3.14 indicates that if θ1
t

and θ2
t are the flows of the vector fields ξ1(α) and ξ2(β), respectively, then

it holds that θ1
t ◦ θ2

s = θ2
s ◦ θ1

t for all t, s for which the flows are defined.

Example 3.15. If two integrable Poisson manifolds P1 and P2 are Morita
equivalent, then T ∗P1 → P1 and T ∗P2 → P2 are also strongly Morita equiv-
alent. Indeed, they are quasi-equivalent (see Example 3.11). A left action of
T ∗P1 on S

τ1→ P1 and a right action of (T ∗P2)− on S
τ2→ P2 are given like

as the action in Example 3.2. The completeness of Poisson maps τ1 and τ2

implies that both of the actions are complete (see [8]). Furthermore, it holds
that [

Π]
S(τ∗1 df), −Π]

S(τ∗2 dg)
]

= ΠS

(
·, ΠS(τ∗1 df, τ

∗
2 dg)

)
= 0,

since fibers of τ1 and τ2 are symplectically orthogonal to one another.

Relating to Example 3.15, strong Morita equivalence does not necessarily
induce Morita equivalence. For example, let us consider Poisson manifolds
R2 with the standard Poisson structure ΠR2 = ∂/∂x1 ∧ ∂/∂x2 and R with
zero Poisson structure ΠR = 0. It is easy to show that the natural projections
pr1 from R3 ∼= R2 × R to R2 and pr2 from R2 × R to R are Poisson maps.
Similarly to the case of the observation immediately after Example 3.11,
we obtain the left module over T ∗R2 and the right module over T ∗R from
pr1 and pr2, respectively. Consequently, we find that T ∗R2 and T ∗R are
strongly Morita equivalent. However, R2 and R are not Morita equivalent
by R2 pr1← R3 pr2→ R since R3 can not be a symplectic manifold.

An (A1, A2)-bimodule, denoted by A1
J1← X

J2→ A2, is a pair of a complete

left module X
J1→M1 over A1 and a complete right module X

J2→M2 over
A2 which makes A1 and A2 be strongly Morita equivalent to each other as

in Definition 3.14. Let us consider an (A1, A2)-bimodule A1
J1← X

J2→ A2 and

an (A2, A3)-bimodule A2
K2← Y

K3→ A3. We use ξ1 and ξ2 for the left and right
actions of A1 and A2 on X, and also η2 and η3 for the left and right actions of
A2 and A3 on Y , respectively. Then, the map ξ̂1 : Γ∞(A1)→ X(X ⊗A2

Y ),

Γ∞(A1) 3 α 7−→ ( ξ1 (α)x, 0 ) ∈ T(x,y)(X ⊗A2
Y )

and the map η̂3 : Γ∞(A3)→ X(X ⊗A2
Y ),

Γ∞(A3) 3 β 7−→ ( 0, η3 (β)y ) ∈ T(x,y)(X ⊗A2
Y )

induce a complete left action of A1 on Ĵ1 : X ⊗A2
Y →M1, (x, y) 7→ J1(x)

and a complete right action of A3 on K̂3 : X ⊗A2
Y →M3, (x, y) 7→ K3(y),
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respectively. Here, we notice that X ⊗A2
Y is the leaf space as mentioned in

the line immediately before Definition 3.10. In addition, we use the bar
notation for equivalence classes in a quotient space. Namely, (x, y) and
( ξ1 (α)x, 0 ) stand for equivalence classes in the leaf space X ⊗A2

Y and the
tangent space T(x,y)(X ⊗A2

Y ), respectively. It is easily verified that those
actions satisfy

ker (dK̂3)(x,y) ⊃
{
ξ̂1(α)x |α ∈ Γ∞(A1)

}
and

ker (dĴ1)(x,y) ⊃
{
η̂3(β)x |β ∈ Γ∞(A3)

}
.

If (u, v) is any point in ker (dK̂3)(x,y), then there exists a smooth section

β ∈ Γ∞(A2) such that v = η2(β)y. Consequently, we have

(dJ2)x
(
u− ξ2(β)y

)
= (dJ2)x(u)− ρ2(β) = (dK2)y(v)− ρ2(β)

= (dK2)y(η2(β)y)− ρ2(β) = 0.

That is, u− ξ2(β) ∈ ker (dJ2)x. Therefore,

(u, v) = (u− ξ2(β)x, 0) + (ξ2(β)x, η2(β)y).

By the assumption, there exists a smooth section α ∈ Γ∞(A1) such that
ξ1(α)x = u− ξ2(β)x. This implies that (u, v) = (ξ1(α), 0). As a result, we
show that

ker (dK̂3)x =
{
ξ̂1(α)x |α ∈ Γ∞(A1)

}
.

Similarly,

ker (dĴ1)x =
{
η̂3(β)x |β ∈ Γ∞(A3)

}
.

The observation leads us to the conclusion that the leaf space X ⊗A2
Y is

an (A1, A3)-bimodule.

Example 3.16. If X →M is the right module over A, then {∗} ← X →M
is the (∗, A)-bimodule. Similarly, M ← X → {∗} turns out to be the (A, ∗)-
bimodule if X →M is the left module over A.

On the basis of those observations, we can show the following proposition.

Proposition 3.17. Strong Morita equivalence for integrable Lie algebroids
whose Lie groupoids are source-simply-connected is an equivalence relation.
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Proof. The transitivity holds obviously by the above observation. Let
A→M be an integrable Lie algebroid and Γ (A) ⇒M the source-simply-
connected Lie groupoid integrating A→M . From Example 3.9, we have the
left action ξ by (3.4) and the right action η by (3.5). It is obvious that those
actions are complete. As for the left action ξ, we have

(ds)ε(x)

(
ξ(α)

)
=

d

dt

∣∣∣∣
t=0

s(γ(t) · h) =
d

dt

∣∣∣∣
t=0

s(h) = 0 (∀x ∈M).

Similarly,

(dt)ε(x)

(
η(β)

)
=

d

dt

∣∣∣∣
t=0

t(g · δ(t)) =
d

dt

∣∣∣∣
t=0

t(h) = 0 (∀x ∈M).

From this, it follows that ker(ds)ε(x) = { ξ(α)x |α ∈ Γ∞(A) } and ker(dt)ε(x)

= { η(β)x |β ∈ Γ∞(A) }. Moreover,

(ds)ε(x)

(
η(β)

)
=

d

dt

∣∣∣∣
t=0

s(g · δ(t)) =
d

dt

∣∣∣∣
t=0

s(δ(t))

= (ds)ε(x)(β̂ε(x)) = (ds)ε(x)

(
(dRε(x))(βε(x))

)
= 0,

since the right invariant vectors β̂ lie in the s-fibers. Therefore, we have
that [ξ(α), η(β)] = 0 for any α, β ∈ Γ∞(A). This results in that any inte-
grable Lie algebroid A is strongly Morita equivalent to itself. Lastly, sup-
pose that A1 and A2 are strongly Morita equivalent by (A1, A2)-bimodule

A1
J1← X

J2→ A2. Defining a left action ξ′ of A2 and a right action η′ of A1 as
ξ′(β) := −ξ2(β) (∀β ∈ Γ∞(J2

∗A2)) and η′(α) := −ξ1(α) (∀α ∈ Γ∞(J1
∗A1)),

respectively, we obtain an (A2, A1)-bimodule A2
J2← X

J1→ A1. This shows
that the symmetric property holds. �

Example 3.18. Suppose that a smooth manifold M is simply-connected.
Then, the pair groupoid M ×M ⇒M is isomorphic to the fundamental
groupoid Π (M) ⇒M . The tangent algebroid TM of M is strongly Morita

equivalent to itself by a (TM, TM)-bimodule TM
t← Π (M)

s→ TM .

Before observing the next example, let us recall the fact that actions
of Lie groupoids induce actions of Lie algebroids similarly to the case of
Example 3.9: we let G1 ⇒ G0 and H1 ⇒ H0 be source-simply-connected Lie
groupoids, and suppose that G1 and H1 act on µ : X → G0 and ν : X → H0

from the left and the right, respectively. For a point x ∈ X and any smooth
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section α ∈ Γ∞(A (G1)), we take a smooth curve g(t) in s−1
G (µ(x)) which

satisfies
d

dt

∣∣∣∣
t=0

g = α̂µ(x) and g(0) = εG(µ(x)).

Then, it is verified that the map

Γ∞(A (G1)) −→ X(X), α 7−→ −
{
d

dt

∣∣∣∣
t=0

g(t) · x
}
x∈X

defines a complete left action of A (G1)→ G0 on µ : X → G0. Similarly, for
x ∈ X and any smooth section β ∈ Γ∞(A (H1)), a smooth curve h(t) in
t−1
H (ν(x)) such that

d

dt

∣∣∣∣
t=0

h = β̂ν(x) and h(0) = εH(ν(x))

turns out to induce the map

Γ∞(A (H1)) −→ X(X), β 7−→
{
d

dt

∣∣∣∣
t=0

x · h(t)

}
x∈X

and this defines a complete right action of A (H1)→ H0 on ν : X → H0.

Example 3.19. (Atiyah sequence) Let G be a simply-connected Lie group
with Lie algebra g. For a principal G-bundle P

π→M , we denote the gauge
groupoid of P byG(P ).G(P ) integrates the Lie algebroid TP/G→M called
the Atiyah sequence (see A. Canna da Silva and A. Weinstein [6] or [12]).
Note that P carries a left G(P )-action with moment map π : P →M . Actu-
ally, the action is defined as [(p, q)] · u := p by choosing representatives so
that q = u. Such a choice of representatives is ensured since G acts transi-
tively on π-fibers. According to the above observation, the action of G(P )
induces a left action ξ of TP/G→M on π : P →M . Similarly, the right
action of G on P induces a right action η of g→ {∗} on c : P → {∗}. It can
be checked that those actions are complete and satisfy the conditions (1)
and (2) in Definition 3.10. Moreover, from the direct computation, we have
c∗(η(V )) = 0, and find that [ξ(α), η(V )] = 0 (∀α ∈ Γ∞(TP/G),∀V ∈ g). As
a result, the Atiyah sequence TP/G→M is strongly Morita equivalent to
Lie algebra g.

Suppose that G1 ⇒ G0 and H1 ⇒ H0 are Morita equivalent. That is,
there is a biprincipal (G1, H1)-bibundle X with moment maps G0

µ← X
ν→

H0 (see [5]).
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Proposition 3.20. If each of the moment maps has connected and simply-
connected fibers, then A (G1)→ G0 and A (H1)→ H0 are strongly Morita
equivalent.

Proof. G1 and H1 are source-simply-connected Lie algebroids acting on X
from the left and right. From the above observation, we obtain the com-
plete left module ξ over A (G1)→ G0 and the complete right module η over
A (H1)→ H0 to verify that they are quasi-equivalent to each other and sat-
isfy the conditions (S1) and (S2) in Definition 3.14. For α ∈ Γ∞(G1), β ∈
Γ∞(H1), denoting by Φt and Ψs the flows of ξ(α) ∈ X(X) and η(β) ∈ X(X),
respectively, we have that

Φt(Ψs(x)) = Φt(x · h(s)) = g(t)(x · h(s)) = (g(t) · x) · h(s) = Ψt(Φs(x))

for x ∈ X since the actions commute. Consequently, the condition (S3) in
Definition 3.14 holds. This completes the proof. �

Example 3.21. We let Γ1 ⇒ Γ0 be a source-simply-connected Lie groupoid
and assume that it is transitive. Denoting by Γx the isotropy group at given
x ∈ Γ0, we consider the source-fiber Ex = s−1(x) over x. Then, Γ1 ⇒ Γ0

and Γx ⇒ {x} are Morita equivalent by Γ0
t← Ex

s→ {x} (see Example 4.15
in [5]). Therefore, it follows from Proposition 3.20 that A (Γ1)→ Γ0 and
Tε(x)(Γx)→ {x} are strongly Morita equivalent.

4. Equivalence of the categories of infinitesimal actions

4.1. The Weinstein groupoid

Before proceeding to the main theorem, let us review briefly the basics of A-
path and the Weinstein groupoid. For further details, we refer to M. Crainic
and R. J. Fernandes [7], [9].

Definition 4.1. Let A
π→M be a Lie algebroid with an anchor map ρ :

A→ TM . An A-path is a smooth path a : I → A which projects to a base
path π ◦ a : I →M such that

ρ
(
a(t)

)
=

d

dt
π
(
a(t)

)
(∀t ∈ I).

Here, I = [0, 1] stands for the unit interval. We denote by P (A) the space
of A-paths of class C1 for A.
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The space P (A) has the subspace topology of the larger space P̃ (A) of all
C1-curves with the base paths of class C2. The space P̃ (A) is endowed with
the C1-topology. For a compact set K ⊂ I and an open set W ⊂ J1(I, A),
let C(K,W ) denote the set of all a ∈ P̃ (A) such that (j1a)(K) ⊂W :

C(K,W ) = { a ∈ P̃ (A) | (j1a)(K) ⊂W } ⊂ P̃ (A).

Here, J1(I, A) and j1a stand for the 1-jet space and the 1-jet extension,
respectively. The C1-topology of P̃ (A) is defined as the topology generated
by the collection of such C(K,W ).

A map aε(t) := a(ε, t) : I × I → A is called a variation of A-paths if aε
is a family of A-paths of class C2 on ε with the property that the base paths
cε(t) = π ◦ aε(t) : I × I →M have fixed end points. Denoting by ∇ and T∇
a connection of A→M and the torsion of ∇ respectively, we consider the
differential equation

(∂tb)(ε, t)− (∂εa)(ε, t) = T∇(a, b), b(ε, 0) = 0.

It is shown that the solution b(ε, t) does not depend on ∇. In addition, it
turns out that, for a time-dependent section σε of A such that σε(t, cε(t)) =
aε(t), the solution b(ε, t) is given by

(4.1) b(ε, t) =

∫ t

0
φt,sσε (cε(s))

(
dσε
dε

(
s, cε(s)

))
ds ∈ Acε(t),

where φt,sσε denotes the infinitesimal flow of the time-depending section σε
(see Proposition 1.3 in [7]).

Definition 4.2. Two A-path a0 and a1 are A-homotopic if there exists a
variation aε whose base paths π ◦ a0 and π ◦ a1 have the same end points
and such that b(ε, 1) = 0 for ε ∈ I. We write a0 ∼ a1 when a0 and a1 are
A-homotopic.

Let Γ ⇒M be a Lie groupoid. A Γ -path is a path γ : I → Γ which
satisfies s(γ(t)) = p (∀t) and γ(0) = ε(p) for some p ∈M . We denote by
P (Γ ) the space of Γ -paths equipped with C2-topology. Suppose that Γ ⇒M
integrates the Lie algebroid A→M . Then, there exists a homeomorphism
DR : P (Γ )→ P (A) by

(DRγ)(t) := (dRγ(t)−1)γ(t)

(
d

dt
γ(t)

)
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(see Proposition 1.1 in [7]). The homeomorphism DR is called the differen-
tiation of Γ -paths, and its inverse map is called the integration of A-path.
The inverse D−R of DR is given as follows: for a ∈ P (A), we choose a time-
dependent section σ such that a(t) = σ

(
t, π ◦ a(t)

)
and denote by φt,0σ the

flow of the right-invariant vector field which corresponds to σ. Then, it is
verified that

(4.2) (D−Ra)(t) = φt,1σ
(
π(a(1))

)
.

Indeed, putting γ(t) = (D−Ra)(t), we have

(DRγ)(t) = (dRγ(t)−1)γ(t)

(
d

dt
φt,1σ
(
π(a(1))

))
= (dRγ(t)−1)γ(t)

(
σ(t, γ(t))

)
= σ

(
t, π(a(t))

)
= a(t).

If aε is the variation of A-paths and a family γε of Γ -paths satisfies DRγε =
aε, one finds that b(·, t) = DR(γt), where γt(ε) := γε(t). (see Proposition 1.3
in [7]).

The quotient G(A) := P (A)/ ∼ is a smooth manifold (see [7]). As a mat-
ter of fact, G(A) turns out to be the unique source-simply-connected Lie
groupoid over M with the structure maps s([a]) := π(a(0)) and t([a]) :=
π(a(1)) (see [7]). This Lie groupoid is called the Weinstein groupoid.

4.2. Main result

In algebra, Morita equivalence implies an equivalence of the categories of
modules. To be concrete, if two algebras R, S are Morita equivalent, then
MR and MS are equivalent. Here, MR denotes the category of right R-
modules, whose objects are right R-modules and whose morphisms between
M1 and M2 are R-homomorphisms. Basing on this well-known fact, we intro-
duce the category of modules over Lie algebroids as follows:

Definition 4.3. Let (A→M, J·, ·K, ρ) be a Lie algebroid. The category of
modules over a Lie algebroid is the category M (A) whose objects are right
modules over A and whose morphisms between µ : N →M and µ′ : N ′ →M
are smooth map f : N → N ′ such that µ′ ◦ f = µ and, for each α ∈ Γ∞(A),
their respective vector fields ξ(α) ∈ X(N) and ξ′(α) ∈ X(N ′) are f -related:

ξ′(α)f(n) = (df)n(ξ(α)n) (∀n ∈ N)
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Let (A1 →M1, J·, ·K1, ρ1) and (A2 →M2, J·, ·K2, ρ2) be integrable Lie
algebroids and assume that A1 and A2 are strongly Morita equivalent. Let
N

µ→M1 be a right module over A1. From the assumption, there exists an

(A1, A2)-bimodule A1
J1← X

J2→ A2. We remark that A1 acts on µ : N →M1

and J1 : X →M1 from the right and the left, respectively. The right module
N →M1 over A1 is thought of a (∗, A1)-bimodule (see Example 3.16). Hence,
as discussed earlier, the tensor product

ν : N ⊗A1
X −→M2, (n, x ) 7−→ J2(x)

turns out to be a (∗, A2)-module, that is, a right module over A2. In addition,
given a morphism f : N → N ′ in M (A1), we define the map f̂ : N ⊗A1

X → N ′ ⊗A1
X as f̂ (n, x) = (f(n), x) for any (n, x) ∈ N ⊗A1

X. The map
f̂ turns out easily to satisfy ν ′ ◦ f̂ = ν. As a result, we obtain a functor S
from M (A1) to M (A2) which assigns to each object N →M1 an object
N ⊗A1

X →M2, and to each morphism f : N → N ′ inM (A1) a morphism
N ⊗A1

X → N ′ ⊗A1
X.

This observation leads us to the following proposition.

Proposition 4.4. If A1 and A2 are strongly Morita equivalent, then there
exists a covariant functor from M (A1) to M (A2).

In a similar way, we can obtain a covariant functor T from M (A2) to
M (A1).

Suppose that A1 and A2 be strongly Morita equivalent by an (A1, A2)-

bimodule A1
J1← X

J2→ A2. According to the observation in the previous sec-

tion, one can obtain a (A1, A1)-bimodule A1
Ĵ1← X ⊗A2

X
Ĵ1→ A1. Denote

by ζ the right action of A1 on J1 : X →M1 and let t 7→ a(t) be an A1-
path with a base path t 7→ c(t) := π(a(t)) starting at m ∈M . For a point
x ∈ J−1

1 (m) ⊂ X, we consider the following differential equation with the
initial value problem:

(4.3)
d

dt
u(t) = ζu(t)

(
a(t)

)
, u(0) = x.

To verify that the Equation (4.3) has a unique solution defined on the entire
unit interval, we choose a time-dependent smooth section σ of A1 which
has compact support, and satisfies σ

(
t, c(t)

)
= a(t). A solution of (4.3) is an
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integral curve of a time-dependent vector field

V(t,x) := ζx
(
σ(t, J1(x))

) (
(t, x) ∈ I ×X

)
induced from σ. Conversely, suppose that u is an integral curve of V . Then,
it is verified that J1 ◦ u is an integral curve of ρ1(σ) with the initial point
m. Indeed, we have

d

dt
(J1◦u)(t) = (dJ1)u(t)

(
ζu(t)

(
σ
(
t, J1◦u(t)

)))
= ρ1

(
σ(t, J1◦u(t))

)
.

by (3.1) and J1(u(0)) = J1(x) = m. Consequently, the curve J1 ◦ u coincides
with the base path c. From this, it follows that

(4.4)
d

dt
u(t) = ζu(t)

(
σ
(
t, c(t)

))
= ζu(t)

(
a(t)

)
.

Therefore, the Equation (4.3) has a unique solution. Moreover, u is defined
on the entire I since the completeness of the action ζ implies that ζ(σ(t, ·))
is complete whenever σ(t, ·) has compact supported. Now, let us consider
the homotopy class [a] ∈ G(A1) for any A1-path a. Again, we remark that
G(A1) ⇒M1 is the Weinstein groupoid with the property that each source
fiber is simply-connected. For a, we take a point x in X which satisfies
J1(x) = π(a(0)) and the integral curve u which is determined uniquely by
the above observation. Then, the map

(4.5) h : G(A1) 3 [a] 7−→ (x, u(1)) ∈ X ⊗A2
X,

which assigns to [a] an equivalent class of a point (x, u(1)) ∈ X ×M2
X is

well-defined. To verify that, suppose that x, y ∈ X are distinct points such
that J1(x) = π(a(0)) = J1(y). They are on the same J1-fiber. Denoting by
η the right action on J2 : X →M2, we note that

ker(dJ1)z = { η (β)z | β ∈ Γ∞(A2) } (∀z ∈ X).

Accordingly, it turns out that x, y are on the same orbit of the flows by the
action η. It follows from this that (x, u(1)) = (y, u(1)). As a result, the ele-
ment in X ⊗A2

X is uniquely determined for the homotopy class [a] without
contradiction. In addition, the map (4.5) will be shown to be independent
of the choice of the homotopy class [a] of a by the next lemma.

Lemma 4.5. Let a0 and a1 be A1-paths. If they are A1-homotopic to each
other, their solutions u0 and u1 of (4.3) satisfy u0(1) = u1(1).
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Proof. Let aε be the variation which joins a0 to a1 with the property that
π ◦ a0(0) = π ◦ a1(0) = x and π ◦ a0(1) = π ◦ a1(1). For the base paths cε =
π ◦ aε (ε ∈ I), there is a family uε of the integral curves (4.4) from the above
discussion. Remark that J1 ◦ uε(t) = cε(t) (∀t ∈ R) for each ε ∈ I. By (4.1),
we have a vector field

(4.6) ζ
(
b(ε, t)

)
=

∫ t

0
φt,sUε(uε(s))

(
dUε
dε

(
s, uε(s)

))
ds ∈ Tuε(t)X.

on the curve t→ uε(t). Here, Uε = ζ (σε) is the time-dependent vector field
by

Uε,(t,p) = ζp
(
σε(t, J1(p))

)
( (t, p) ∈ I ×X ).

Putting t = 1 in (4.6), we get a tangent vector ζ
(
b(ε, 1)

)
in Tuε(1)X to find

that

d

dε
uε(1) = ζ

(
b(ε, 1)

)
.

Since the variation aε satisfies b(ε, 1) = 0, it turns out that uε(1) = const..
This shows that u0(1) = u1(1). �

Remark 4.1. We remark that a point (x, u(1)) belongs to the fiber-product
X ×M2

X. Indeed, it follows from (4.3) and the assumption that

d

dt

∣∣∣∣
t

J2(u(t)) = (dJ2)u(t)

(
ζ(a(t))

)
= 0.

This implies that J2(u(t)) = const. for each t ∈ I. Therefore, J2(u(1)) =
J2(u(0)) = J2(x).

This results in that h([a]) = h([b]) holds if a ∼ b for two A1-paths, that
is, the map (4.5) is well-defined. Conversely, we show that a ∼ b holds if
h([a]) = h([b]) in what follows. For two A1-paths a(t), b(t) ∈ P (A1), assume
that points (x, u(1)) and (y, v(t)) are in the same leaf by the action η,
i.e., (x, u(1)) = (y, v(1)) ∈ X ⊗A2

X. Here, u(t) and v(t) are the integral
curves obtained from paths a(t) and b(t) with the initial values u(0) =
x and v(0) = y, respectively. Note that J1 ◦ u = π ◦ a and J2 ◦ v = π ◦ b.
By the assumption, c(t) := π ◦ a(t) and d(t) := π ◦ b(t) have the same end
points: π(a(0)) = π(b(0)), π(a(1)) = π(b(1)). Let us consider the integration
γ = D−Ra and δ = D−Rb ∈ P

(
G(A1)

)
of the A-paths. From (4.2), γ and δ
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are concretely given by

γ(t) = φt,1σ
(
π(a(1))

)
, δ(t) = ψt,1ς

(
π(b(1))

)
,

where σ and ς stand for the time-dependent sections such that a(t) = σ(t,
c(t)) and b(t) = ς(t, d(t)), and moreover, φt,1σ and ψt,1ς are the flow of the
right-invariant vector fields corresponding to σ and ς, respectively. There-
fore, we find that

γ(1) = φ1,1
σ

(
π(a(1))

)
= π(a(1)) = π(b(1)) = ψ1,1

ς

(
π(b(1))

)
= δ(1).

On the other hand, a = DRγ and b = DRδ are calculated to be

a(t) =
d

dt
ε
(
t(γ(t))

)
, b(t) =

d

dt
ε
(
t(δ(t))

)
.

This implies that π(a(t)) = t(γ(t)) and π(b(t)) = t(δ(t)) hold for any t ∈ I.
It follows from this that

t(γ(0)) = π(a(0)) = π(b(0)) = t(δ(0)).

Consequently, we find that γ(0) = δ(0) since s(γ(0)) = s(δ(0)) holds as well.
This shows that γ(t) and δ(t) have the same end points γ(0) = δ(0) and
γ(1) = δ(1).

Those P (G(A))-paths γ and δ are homotopic to each other in the cor-
responding source-fiber since the source-fiber is simply-connected. Let gε
be the homotopy between them (g0 = γ, g1 = δ). Then, DRgε is a variation
joining a and b whose base paths are the same end points. As mentioned in
4.1, it holds that b(ε, t) = (DRgt)(ε) for each t. It follows from this that

b(ε, 1) = (dRg1(ε)−1)g1(ε)

(
d

dε
g1(ε)

)
= (dRg1(ε)−1)g1(ε)

(
d

dε
γ(1)

)
= 0.

Therefore, a and b are A1-homotopic by DRgε if h([a]) = h([b]).
To sum up, two A1-paths a and b are A1-homotopic if and only if h([a]) =

h([b]). Consequently, we obtain the following proposition.

Proposition 4.6. The map h : G(A1)→ X ⊗A2
X is a homeomorphism.

Proof. From the above observation, it follows that h is injective. In addi-
tion, we take any point (x, y) in X ⊗A2

X. There exists a piecewise smooth
curve c : t 7→ c(t) ∈M1 which connect J1(x) to J1(y) since M1 is connected.
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We denote by cj := c|[tj−1,tj ] the piecewise smooth curve restricted to the
segment [tj−1, tj ] of the partition t0 < t1 < · · · < tn−1 < tn and let aj (j =
1, 2, . . . , n) be A1-paths over cj . Those A1-paths are obviously composable,
i.e., π(aj(tj)) = π(aj+1(tj)) (j = 1, 2, . . . , n− 1), and then one obtains a new
A1-path a by the multiplication a(t) = an · an−1 · · · a1(t). Here, for the mul-
tiplication of composable A-paths, we refer to [7]. Following the discussion
immediately after Proposition 4.4, we get the unique solution u of differential
equation:

d

dt
u(t) = ζu(t)

(
a(t)

)
, u(0) = x.

Remark that J1 ◦ u = π ◦ a = c. By re-parameterizing, we have that u(1) =
y. As a result, the A1-homotopy class [a] of a satisfies h([a]) = (x, y). This
shows that h is surjective. Consequently, we find that h is bijective.

Let S(X) denote the set of all solutions of differential Equations (4.3)
given for a ∈ P (A1):

S (X) =
{
u ∈ C1(R, X)

∣∣∣ d
dt
u(t) = ζu(t)(a(t)),

u(0) = x, x ∈ X, a ∈ P (A1)
}
.

The space S (X) is endowed with the subspace topology induced from the
space of all C1-curves u : I → X with the C1-topology. That is, denoting by
C ′(K,W ′) the set of all C1-curves u : I → X for a compact subset K ⊂ I
and an open set W ′ ⊂ J1(R, X) such that (j1u)(K) ⊂W ′, any open set V
in S (X) is given by the intersection of a finite collection of those subsets
C ′(Kj ,W

′
j):

(4.7) V =

r⋂
j=1

G′(Kj ,W
′
j) ∩ S (X) (r ∈ N).

Let h̃ : P (A1)→ S (X) denote the map which assigns to a the solution
of (4.3) determined uniquely by a. Given a in P (A1), we let V be any open
set in S (X) containing u = h̃(a). Again, we remark that V is written in
the form (4.7). For the sake of simplicity, replacing J1(R, X) by coordinate
domains W ′j ⊂ R× RdimX × RdimX for each j and replacing π : A1 →M1

and J1 : X →M1 by their coordinate representations, we consider two maps

$ := id× π × π∗ : R× RdimA1 × RdimA1 → R× RdimM1 × RdimM1
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and

J1 := id× J1 × J1∗ : R× RdimX × RdimX → R× RdimM1 × RdimM1 .

We remark that

$
(
t, a(t),

d

dt
a(t)

)
= J1

(
t, u(t),

d

dt
u(t)

)
=: q0(t) ∈ J (W ′j) (∀t ∈ Kj)

for each j. Since J1 is a submersion, there exist open neighborhoods N(q0(t))
of q0(t) such that (t, u(t), ddtu(t)) are in the images of a smooth sections on
N(q0(t)). Furthermore, by the continuity of $, there exist open neighbor-
hoods Wj(t) of a(t) in R× RdimA1 × RdimA1 such that $(Wj(t)) ⊂ N(q0(t)).
Consequently, we obtain an open neighborhood Wj =

⋃
t∈Kj Wj(t) of j1a in

R× RdimA1 × RdimA1 , and then verify that (j1a)(Kj) ⊂Wj . Therefore,

r⋂
j=1

C(Kj ,Wj) ∩ P (A1)

is a open set in P (A1) containing a. This shows that h̃ : P (A1)→ S (X) is
continuous. It follows from this that h : G(A1)→ X ⊗A2

X is continuous.
On the other hand, we let G be any open subset in G(A1) and consider

the map Ĵ1 : X ⊗A2
X →M1, (x, y) 7→ J1(x). Remark that s ◦ h = Ĵ1. Since

the source map s of G(A1) is an open map (see [7]), Ĵ1
−1(

s(G)
)
⊂ X ⊗A2

X
is open. Therefore, h−1 is continuous. This completes the proof. �

The next proposition can be shown in a similar way to the proof of
Proposition 4.6.

Proposition 4.7. The map h : G(A1)→ X ⊗A2
X is a diffeomorphism.

Theorem 4.8. Let A1 and A2 be integrable Lie algebroids. If A1 and A2

are strongly Morita equivalent, then their categories of modules M (A1) and
M (A2) are equivalent.

Proof. Let N
µ→M1 and N ′

µ′→M1 be objects inM (A1), and f : N → N ′ a
morphism in M (A1). From Proposition 4.4, there exist the covariant func-
tors S :M (A1)→M (A2) and T :M (A2)→M (A1), and then, one can
obtain two right modules
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T ◦ S (N) = (N ⊗A1
X)⊗A2

X −→M1, ((n, x′)1, x)2 7−→ J1(x),

and

T ◦ S (N ′) = (N ′ ⊗A1
X)⊗A2

X −→M1, ((n′, x′)1, x)2 7−→ J1(x),

over A1, and a morphism

T ◦ S (f) : T ◦ S (N)→ T ◦ S (N ′), ((n′, x′)1, x)2 7→ ((f(n), x′)1, x)2

from T ◦ S (N) to T ◦ S (N ′). Here, A1
J1← X

J2→ A2 is an (A1, A2)-bimodule.

On the other hand, for any right module N
µ→M1 over A1, we define a

map ΨN : T ◦ S (N)→ N as

ΨN : (N ⊗A1
X)⊗A2

X
'−→ N, ((n, x′)1, x)2 7−→ (x′, x)2 · n,

where the element (x′, x)2 in X ⊗A2
X is thought of an element in G(A1) by

Proposition 4.7, and where (x, x′)2 · n means the point φ1(n) on the integral
curve φt(n) starting at n ∈ N which is determined by [b] := (x, x′)2 ∈ G(A1).
Remark that the map ΨN is well-defined by Remark 3.3. Since their respec-
tive vector fields induced those actions % and %′ of A1 are f -related, we
have

d

dt
(f ◦ φt)(n) = (df)φt(n)

(
d

dt
φt(n)

)
= (df)φt(n)

(
%(b(t))b(t)

)
= %′f(b(t))(b(t)).

That is, t 7→ f ◦ φt(n) is an integral curve of %′(b(t)). From the uniqueness,
it follows that f((x′, x)2 · n) = (x′, x)2 · f(n). In other words, the diagram

T ◦ S (N)
ΨN−−−−→ N

T ◦S (f)

y yf
T ◦ S (N ′) −−−−→

ΨN′
N ′.

commutes. Consequently, the functor T ◦ S is natural isomorphic to the
identity functor IdM(A1). Similarly, it can be shown that there exists also a
natural isomorphism between S ◦ T and IdM(A2). This completes the proof.

�
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4.3. Application to the Hamiltonian category

Let (M,DM ) be a Dirac manifold. The Hamiltonian category [2] of (M,DM ),
denoted byM (M,DM ), is a category whose objects are strong Dirac maps
F : N →M and whose morphisms are forward Dirac maps ϕ : N → N ′ sat-
isfying F = F ′ ◦ ϕ.

Let us focus on the case where (M,DM ) is integrable. We define the
subcategory H (M,DM ) of M (M,DM ) as the category whose objects are
complete strong Dirac maps F : N →M which are surjective submersions
and whose morphisms are forward Dirac maps ϕ : N → N ′ such that F =
F ′ ◦ ϕ. Suppose that we are given a morphism ϕ : N → N ′ in H (M,DM ).

As mentioned in Section 3, each strong Dirac map N
F→M and N ′

F ′→M
induces an infinitesimal action ζ : Γ∞(DM )→ X(N) and ζ ′ : Γ∞(DM )→
X(N ′) by (3.9). That is, for (Y, β) ∈ Γ∞(DM ), we can obtain Xn ∈ TnN and
X ′n′ ∈ Tn′N ′ such that YF (n) = (dF )n(Xn) and YF ′(n′) = (dF ′)n′(Xn′). Note
that YF (n) = d(F ′ ◦ ϕ)n(Xn) = (dF ′)ϕ(n)

(
(dϕ)n(Xn)

)
by F = F ′ ◦ ϕ and we

have (dF ′)ϕ(n)

(
X ′ϕ(n) − (dϕ)n(Xn)

)
= 0. That is, X ′ϕ(n) − (dϕ)n(Xn) ∈

ker (dF ′)ϕ(n). In addition, X ′ϕ(n) − (dϕ)n(Xn) is also an element in ker (DN ′)
since ϕ is a forward-Dirac map. Consequently,

X ′ϕ(n) − (dϕ)n(Xn) ∈ ker (dF ′)ϕ(n) ∩ ker (DN ′)ϕ(n) = {0}.

This shows that the vector fields ζ(Y, β) and ζ ′(Y, β) are ϕ-related. There-
fore, the subcategory H (M,DM ) of the Hamiltonian category M (M,DM )
can be regarded as the category of modules M (DM ) over DM .

For a closed 2-form B on M , a subbundle

τB(DM ) :=
{

(Y, β + iYB) | (Y, β) ∈ Γ∞(DM )
}
⊂ TM ⊕ T ∗M.

satisfies the conditions in Example 2.5. In other words, τB(DM ) is a Dirac
structure onM . The Dirac structure τB(DM ) associated to a closed 2-form B
on M is called a gauge transformation by B (see H. Bursztyn and O. Radko
[4]). In Example 6.6 [3], it is proven that τB(DM ) is integrated to source-
simply-connected Lie groupoid G(τB(DM )) ⇒M associating with τB(DM ),
which is isomorphic to G(DM ) ⇒M associating with DM . Accordingly, we
obtain the complete left action by (3.4) of DM →M with moment map t :
G(DM )→M and the complete right action by (3.5) of τB(DM )→M with
moment map s : G(DM )→M . In a similar way to the proof of the reflexive
property in Proposition 3.17, we can obtain the following proposition:
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Proposition 4.9. If (M, DM ) is an integrable Dirac manifold, then two
Lie algebroids DM and τB(DM ) are strongly Morita equivalent to each other.

Using this proposition and Theorem 4.8, we can recover partially Proposi-
tion 2.8 in [2].

Corollary 4.10. (cf. H. Bursztyn and M. Crainic [2]) Let DM be an inte-
grable Dirac structure and B a closed 2-form on M . Then, the subcategories
H (M.DM ) and H (M.τB(DM )) are equivalent.
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Histoire et Horizons, Hermann, Paris, 2005. arXiv:Math.SG/0208108.

[16] P. Xu, Morita equivalence of Poisson manifolds. Comm. Math. Phys.
142, 1991, 493–509.

Department of Mathematics

Tokyo University of Science, Tokyo, Japan

E-mail address: hirota@rs.tus.ac.jp

Received April 6, 2013

Accepted September 9, 2013



i
i

“5-384” — 2015/3/24 — 14:43 — page 420 — #34 i
i

i
i

i
i


	Introduction
	Basic terminologies of Lie algebroids
	Lie algebroids
	Lie algebroid morphisms and the pull-back Lie algebroids
	The Lie algebroid of a Lie groupoid

	Infinitesimal actions of Lie algebroids and strongly Morita equivalence
	Equivalence of the categories of infinitesimal actions
	The Weinstein groupoid
	Main result
	Application to the Hamiltonian category

	Acknowledgments
	References

