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Equivalence of the categories of modules
over Lie algebroids

YuJr HiroTA

We study the theory of geometric Morita equivalence in Poisson
geometry. A new equivalence relation for integrable Lie algebroids
is introduced and investigated. It is shown that two equivalent Lie
algebroids have equivalent categories of infinitesimal actions of Lie
algebroids. As an application, it is also shown that the Hamiltonian
categories for gauge equivalent Dirac structures are equivalent as
categories.

1. Introduction

Poisson geometry is considered to be intermediate between differential geom-
etry and noncommutative geometry in the sense that it provides us with
powerful techniques to study many geometric objects related to noncommu-
tative algebras.

If (@, IIg) and (P, IIp) are Poisson manifolds, then a Poisson map J :
@ — P induces a Lie algebra homomorphism by

(1.1) C™®(P) — X(Q) C End (C™(Q)), [fr— —Ilg(-, J*df).

From (L.1)), C*°(Q) can be regarded as a C*°(P)-module. This observation
enables oneself to study geometric objects by connecting with a theory in
algebra like Morita equivalence (refer to H. Bursztyn and A. Weinstein [5] for
further discussion). Geometric Morita equivalence, which is introduced by
P. Xu [16], plays a central role in Poisson geometry as Morita equivalence of
C*-algebras does in noncommutative geometry. One of the remarkable prop-
erties is that Morita equivalence implies the equivalence of the categories of
modules over Poisson manifolds: for an integrable Poisson manifold P, the
category of modules over P is the category whose objects are complete sym-
plectic realizations of P and whose morphisms are symplectic maps between
complete symplectic realizations commuting with the realizations. This is
just the analogy with Morita equivalence in algebra, first studied by K.
Morita [14].
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As is well-known, Poisson maps are always associated with Lie algebroid
actions of cotangent bundles:

(1.2) I(T*P) — X(Q), a+— —Ig(-, J*a).

The Lie algebra homomorphism can be considered to be the represen-
tation of I"*°(T*P) on C*°(Q). More generally, if A — M is a Lie algebroid,
the infinitesimal action of A on a smooth map f: N — M induces the rep-
resentation of I'°(A) on C*°(N):

(1.3) I'*(A) — X(N) C End(C*(N)).

Here, a natural question arises: what is an equivalence relation between Lie
algebroids which implies an equivalence of the categories associating with
Lie algebroid actions?

In this paper, we give a solution to the above question, that is, we
introduce an equivalence relation for integrable Lie algebroids, called strong
Morita equivalence, and show that the category consisting of the infinitesi-
mal actions of Lie algebroids is invariant under strong Morita equivalence.
Furthermore, applying the result to Dirac geometry, we partially recover the
well-known proposition in H. Bursztyn and M. Crainic [2]. This study gives
a general description of Morita equivalence for Poisson manifolds from the
viewpoint of Lie algebroid, and is expected to have a connection with the
study of quasi-Hamiltonian symmetry through the question presented by A.
Weinstein [15].

The paper is organized as follows: in Section 2, we review the basics of
Lie algebroids, including Lie algebroid morphisms and the construction of
Lie algebroid from a given Lie groupoid. Section 3 is devoted to the study of
the infinitesimal actions of Lie algebroids. The new equivalence relation for
integrable Lie algebroids is introduced and discussed. In Section 4, we show
that the category of the infinitesimal actions of Lie algebroid is invariant
under strong Morita equivalence, and show also that two gauge equivalent
Dirac structures are strongly Morita equivalent. Lastly, we find that the
Hamiltonian categories for gauge equivalent Dirac structures are equivalent
each other, by using the main theorem.

Throughout the paper, manifolds are assumed to be connected smooth
manifolds. The set of smooth sections of a smooth vector bundle £ — M
is denoted by I'*°(FE). Especially, we write X(M) for I'>°(T'M) when E =
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T M. The space of smooth functions on a smooth manifold M is denoted by

C(M).

2. Basic terminologies of Lie algebroids
2.1. Lie algebroids

Let M be a smooth manifold. A Lie algebroid over M is a smooth vector
bundle A — M with a bundle map p : E — T'M, called the anchor map, and
a Lie bracket [-, -] on the space I'>°(A) of smooth sections of A such that

(2.1) [, £8] = (p(e)f) B + flo, 5]

for any f € C*°(M) and «, 8 € I'°(A). We denote a Lie algebroid by the
triple (A — M, [-, -], p) or, simply by A, and use the notation A~ for a Lie
algebroid A with the opposite bracket.

The anchor map of a Lie algebroid A is a Lie algebra homomorphism.
Indeed, from ([2.1)) and the Jacobi identity, it follows that

0 = [l 81, f41 + [18. 41, o] + [~ o], 8]
= flle, 81, 71 + (o(lev, B1) f) v
+ 18,71 ] + (pB) )y, o] = (p(@) )18 7] = (o) (p(B)f)) ¥
+ fllv: al, 81 = (p(B) )y, el + (o) F)[8: 11 + (p(B)(p(a)f))~
= ((p(Ia, BI) = [pla), p(B) f)

for any f € C®(M) and «, 8, v € I'™(A). Therefore, we have p([a, 8]) =
[o(a), p(B)]-

Example 2.1. A Lie algebra is a Lie algebroid over a point.

Example 2.2. (Tangent algebroids) A tangent bundle M of a smooth
manifold M is a Lie algebroid over M: the anchor map is the identity map
id7as, and the Lie bracket is the usual Lie bracket of vector fields. This Lie
algebroid is called a tangent algebroid.

Example 2.3. (Cotangent algebroids) If (P, II) is a Poisson manifold, then
a cotangent bundle T*P is a Lie algebroid: the anchor map is the map II*
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induced from II,
I : TP — TP, a+— {8~ (8, II"a)) =18, a) }
and the Lie bracket is given by

[[Oé, /B]] = »C]'[ﬁ(a)ﬁ - ‘CH“(B)O[ + d(H(O[, ﬁ))u

where Lyjs() stands for the Lie derivative on 3 along II%(). The Lie alge-
broid (T*P — P, [-, -], I*) is called a cotangent algebroid.

Example 2.4. (Transformation algebroids) Given an action ¢ : g — X(M)
of a Lie algebra (g, [+, -]) on a smooth manifold M, one can associate to it the
Lie algebroid structure: the vector bundle is the trivial bundle M x g — M,
the anchor map p is given by p(p, V) — (o(V)), € TpM, (Vp € M, V € g)
and the Lie bracket on I'*°(M x g) = C°°(M, g) is defined as

(V) = (o(V(p)))

This Lie algebroid is called a transformation algebroid, and denoted by M x
g, for short.

[U, VI(p) = [U(p), V(p)] + (e(U(p))) ).

p p

Example 2.5. (Dirac structures) Let us consider a vector bundle TM &
T* M over a smooth manifold M. We endow the vector bundle with a bilinear
operation

(- ) : T(TM & T*M) x I™®(TM @& T*M) — C*°(M)

defined as
(U, ), (V,3)) :=BU) + V),

and a skew-symmetric bracket
[ ]: I°(TMeT*M)x I'*(TM &T*M) — I'**(TM &T*M)

defined as
[(U.a), (V,B)] = ([U,V], LuB —ivda).

A subbundle Dy; C TM @ T*M is called a Dirac structure if Dy satisfies
the following three conditions:

1) ¢ p,, =05
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(2) Djs has rank equal to dim(M);
(3) [I'>°(Das), I'°°(Dyr)] € I°°(Day).

We call a pair (M, Djy) of a smooth manifold M and a Dirac structure Dy; C
TM @ T*M a Dirac manifold. A Dirac structure Dj;, with the restriction of
Courant bracket and the anchor map, is verified easily to be a Lie algebroid.
We refer to H. Bursztyn and M. Crainic [I], and [5] for further discussions
of Dirac structures and Courant algebroids.

2.2. Lie algebroid morphisms and the pull-back Lie algebroids
Let (A7 — My, [-, ]!, p1) and (As — Ma, [, -]?, p2) be Lie algebroids. A

Lie algebroid morphism from A; to Ay is a vector bundle morphism & :
Ay — As such that

(2.2) p2(®(0)) = 2 (p1(), (Vo € I™(4y),
and, for any smooth sections «, 5 € I'>°(A;) written in the forms

(2.3) @oa:Zfi(*yiogo), (I)oﬂ:an(éjogo),
( J

where &;, n; € C°(M;) and ~;, 0; € I'°(A),
24)  @ofa 51 =3 &y (B 617 0 B) + 32 (Lo oy 1) (55 0 @)

2J J
- Z(ﬁmw) &) (vio @)

are satisfied (see K. Mackenzie [12]). Here, we denote the base map of ®
by ¢.

Proposition 2.6. If a vector bundle morphism ® : A1 — As is the Lie alge-
broid morphism, then there exists a subbundle

which satisfies the following conditions:

(1) For any z € Gr(p), (p1 X p2) (Rz) CcT. (Gf(@);
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(2) For any o, B € I'™°(Ay X Ag) such that &gy, Blaep) € I (R), it
holds that
[[av B]HGr(cp) € FOO(R)7
where [['7 ]] = ([[7 'ﬂ17 II'; ]]2)

Proof. Suppose that & : A; — Ay is a Lie algebroid morphism. Define the
vector bundle R C (A1 X Ag)|qy () 8s

rR=1]] {(a, ®(a) | ac (Al),,}.

peEM;

Using (2.2), we have

(p1 % p2)(a, ®(a))

<pl(a)7 p2(®(a)) >
(p1(@), @-(p1(0)) ) € Tp(Gr())-
That is, the condition (1) holds.

For a, 8 € I'*°(A;1) which we assume to satisfy (2.3), we define the
smooth sections @, 8 of Ay x Ay — My x Mo as

~

Vpoe) = (@ () € (R) o)) Bioiow) = (Bpr ©(Bp)) € (R) o)
From and , it follows that

[[(I)(Oz), (I)(ﬁ)]]qu(p) = ([[a7 5]]110)'
This leads us to the condition (2). O

The Lie algebroid morphism ® : A1 — A, is said to be a Lie algebroid
isomorphism if ® is an isomorphism of vector bundles. If there exists the Lie
algebroid isomorphism from A; to As, we write A1 = As.

Let (A — M, [-,-], p) be a Lie algebroid and f : M’ — M a smooth map
from a smooth manifold M’ to M. Assume that the differential of f is
transversal to the anchor map p: A — TM in the sense that

Imppy + Im(df)s = TpayM, (Vo € M).

Here, Im p(,) stands for the image of ps(,).
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This assumption leads us to the following condition:

where id, means the identity map on T, M’. The condition ([2.5) ensures
that the preimage

(2.6) (id x p) "' T (Gx(f))

= [T {vio) | VeTM, ae A, (@)a(V) = ple) }
zeM’

is a smooth subbundle of (T'M’ x A)|q, ;). The vector bundle over
Gr(f) = M’ has the structure of Lie algebroid whose anchor map is the
natural projection proj;. This vector bundle is called a pull-back of Lie
algebroid and denoted by f'A (see P. Higgins and K. Mackenzie [10]).

Let &1 : Ay — Aand ®5 : As — A be Lie algebroid morphisms. We denote
each base map by 1 : My — M and o : My — M. Suppose that the fol-
lowing conditions:

(1) Im (@1), + Im (@2)q = 4y, (7= P1(p) = D2(q) );

(2) The map 1 X 2 is transversal to the submanifold A = { (m, m)|m €
MYcC M x M:

Im ((d(tpl)p X (d(pg)q) + T(?“,T‘)A - T(r,r) (M x M)

are satisfied. Then, one can obtain the Lie algebroid

Avxads= ] {(a, b) | a€ (A1), b e (A2)g, ®1(a) :@Q(b)}

(p,9) EM1 X ar M2

over My Xy Mo = {(p, q) € My x Ma|p1(p) = (pg(q)}, whose Lie bracket
[, -] is given by [-, -] := ([, ]*, [-, -]*), and whose anchor map p: A1 X 4
Ag — T(My X pr My) is defined as p(a, b) := (p1(a), p2(b)). We call this Lie
algebroid the fibered product. The pull-back of a Lie algebroid f'A discussed
can be the fibered product of two Lie algebroid morphisms f, : TM' — T M
and p: A — TM. Hence, a fibered product Lie algebroid is a pull-back Lie
algebroid in a general sense.
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2.3. The Lie algebroid of a Lie groupoid

Let I' = M be a Lie groupoid with an identity section €, a source map s
and a target map t. Denote by A (I") — M the vector bundle consisting of
tangent spaces to s-fibers at X:

A(D)], = ker(ds)ep) (p€ M).

For any « € I', the differential of the right translation R, by v induces a
map

(dR)e(y) : Tetyy (871 () — Tey (571 (s(0)))

where 7/ = t(7). By the map, any smooth section o € I'*°(A (I")) gives rise
to a right-invariant vector field

(2.7) Oy 1= (dRy)e(y)(@e(y)) (Y ET)

on I' (see [12]). Therefore, I'*°(A (I")) inherits the Lie bracket from X(I).
One verifies that the vector bundle A (I') — M with the above Lie bracket
and the bundle map dt : A(I") — T M becomes a Lie algebroid. A Lie alge-
broid A — M is said to be integrable if there exists a Lie groupoid I"' = M
whose Lie algebroid A(I") — M is isomorphic to A as Lie algebroid. If A
is integrable, there exists an unique source-simply-connected Lie groupoid
integrating A (see I. Moerdijk and J. Mrcun [13]).

3. Infinitesimal actions of Lie algebroids and strongly
Morita equivalence

We begin this section by recalling the actions of Lie algebroids. A Lie alge-
broid right (left) action of (A — M, [-,-], p) on a smooth manifold N con-
sists of a map p: N — M called the moment map and a Lie algebra (anti-)
homomorphism & : I'°(A) — X(N) which satisfy

(3.1) p(aue) = (dn)q(£(@))  (Yg € N)
for any a € I'°(A), and
(3-2) §(fa) = (W )é(a) (Vf e (M)).

The right action of A is alternatively called the infinitesimal action of A.
The action is said to be complete if £(«) is a complete vector field whenever
a € I'™°(A) has compact support.
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Example 3.1. Let g be a Lie algebra. A Lie algebra action of g on M is
thought of a Lie algebroid action of g — {x} on M — {x}.

Example 3.2. Any Poisson map J : Q — P and a cotangent algebroid T* P
over P is a Lie algebroid action by ((1.2).

Example 3.3. Any smooth manifold X is thought of a Lie algebroid action
of a trivial Lie algebroid {*} — {*} on a map X — {x}. We call this action
a trivial action.

Example 3.4. Given a Lie algebroid A — M with a surjective submersion
J : X — M which satisfy

(3.3) (J'A) i@y N (ToX &{0}) = {0} (V2 € X),

we have the right action of Lie algebroid I'*°(A) — X(X) by «a + u, where
u € T, X is the element such that (u, ) € (J'A) j())- We remark that the
element u is uniquely determined by . Indeed, if o and u, v’ are the
elements such that (u,) € (J'A)(; 1)) and (v, @) € (J'A) (4.1, then we
have

(u—1,0) € (J'A) gy N (T.X & {0}).

It follows from (3.3)) that u = u'.

Example 3.5. Let us assume that a Lie algebroid A — M is integrable and
I' = M be the Lie groupoid integrating A. As noted in Section 2, the fiber of
A over z € M is the subspace ker (ds).(y) of T,(;) 1", and the anchor is given
by dt : ACTI' — TM. Given any section a € I'>°(A), the Formula
defines a right invariant vector field. The map £ which assigns the right
invariant vector field & on I'" to a € I'*°(A) is shown to be a Lie algebra
homomorphism and satisfy and . Therefore, the map I'*°(A) —
X(I') defines a right action of A on t: I' — M. Similarly to this case, one
can obtain a left action of A on t:I"— M by defining as I'°(4) 3 a —
—a e X(I).

Proposition 3.6. Let (A — M,[-,-],p) be a Lie algebroid and J : X — M
a smooth map. Suppose that J is a surjective submersion. Then, we have a
Lie algebroid action of A on X/F, where X/F is the space of leaves induced
from J.

Proof. Since J is a surjective submersion, the space X has a foliation F
whose leaves are J-fibers. We consider the space of leaves X/F and a map
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J: X/F — M given by J(T) = J(z) (Vo € X). For any a ;) € Ay (¢ €
X), there exists u, € T, X such that (dJ).(uz) = p(a ). A vector field
u={ug}rex € X(X) is J-related to p(a) € X(M): dJ ou = p(a) o J. We
define a map € : I'™°(A) — X(X/F) as

AJ(x) — TE(X/./—"), Qj(z) m Uz 1= (dw)x(uz),

where 7 stands for a natural projection 7 : X — X/F, z — 7. Let {(a) =
and £(B8) = for a, B € I'>°(A). The vector fields w and v on X/F are m-
related to u and v, respectively. It follows from this that [£(a), &(8)] = [u, v].
On the other hand, we take a vector field w on X such that p ([or, 5]) o J =
dJ o w. Since the anchor map p is a Lie algebra homomorphism (see Section
2), we have

w(J*g) = (dJow)f = ([p(a), p(B)] o J)g = ([dJOU, dJov])g
= (dJ o [u, v)))g = [u, v](J*g)

for any g € C*°(M). In other words, it holds that w = [u,v] on each J-
fiber. Hence, we have £([a, 8]) = [u,v]. These result in that the map & is
a Lie algebra homomorphism. It is shown easily that £ also satisfies (3.1))

and (3.2). O

Remark 3.1. If a Lie algebroid A acts on pu: N — M, then a pull-back
vector bundle u*A — N has a Lie algebroid structure whose anchor is the
action map. We refer to [12] for further details.

From the definition of the Lie algebroid action, the space C°°(N) can be
regarded as a " (A)-module. In other words, one can think of actions of Lie
algebroids as modules over Lie algebroids. We define a right (left) module
over a Lie algebroid A to be the right (resp. left) action of A whose moment
map is a surjective submersion. A right (left) module over A is said to be
complete if the right (resp. left) action is complete.

Example 3.7. The action of TP — P given by I"°(T*P) > o — Ig( -,
J*a) € X(Q) is a left module over T*P (see ((1.2))).

Example 3.8. The Lie algebroid action of A in Proposition [3.6]is the right
module over A.

Example 3.9. Let I71 =2 Iy be a Lie groupoid. Let us take points = € I
and h € I such that ¢(h) = x. For any smooth section o € I'°(A(I?)), we
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consider a smooth curve v in s~!(z) which satisfies

d

pr t:ofy =a, and 7(0)=c¢e(x).

Since s(vy(t)) = x = t(h) for each ¢t € R, a smooth curve ¢ — ~(¢) - h can be
defined. Then, the map

d

(3.4) I®(A(I)) — X(I7), a+— — { p

(o)1}

t=0 herl

defines a left module ¢ : I7 — Iy over A([7) — Ip.
On the other hand, let us consider a smooth curve ¢ in ¢t~!(x) which

satisfies

d N
p t:0(5 =B, and §(0) =e(x).

for € I'y and ¢ € I such that s(g) = z, and for any smooth section g €
I'*°(A(I7%)). Then, the map defined as

(35)  T®(AI) — X(1Y), Br— {jt

a

t=0 gell
is a right module s : It — Iy over A(I) — Ip.
Suppose that we are given a right A-module J : X — M by

§:I°(A) — X(X), (A)y@) 2 @) — o) € TuX
and a left A-module K : Y — M by

n: FOO(A) — %(Y), (A)K(y) DOy 1 (aK(y)) S TyY.
Take the fiber product

Xy Y ={ (o) € XV | J(x) = K() },

then, a map
(3.6) (A)s@) 2 @ty > (E( @)z, n(@)y) € Tiay) (X xmr Y).
defines a singular distribution D = {D(,,)} on X x5 Y

XxyY s (x,y) — D(m,y)
= { (£(@)a, n(a)y) ’ a€I™(A)} C Tiey) (X xmY).
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The distribution D turns out to be integrable since the map is thought
of the anchor map of the fibered product J*A x4 K*A — X X Y (see
Remark and 8.1.4 in J.-P. Dufour and N. T. Zung [9]). We denote by
X ®4 Y the space of leaves (X x s Y)/A obtained from D.

Definition 3.10. Two Lie algebroids Ay — M; and As — My are said to be
quasi-equivalent if there exists a smooth manifold X together with surjective
submersions Jy : X — M}, (k = 1,2) such that

(Q1) A; has a left action & on J; : X — M such that
ker (dJ2), = {{1(04)x |a € I'™°(A) } (Vz € X);
(Q2) Az has a right action & on Jy : X — My such that

ker (dJl)x = {fg(ﬂ)x ‘ ﬁ S FOO(AQ) } (Vx c X)

Example 3.11. Suppose that integrable Poisson manifolds P; and P» are
Morita equivalent in the sense of Xu [16] each other, that is, there exists a
symplectic manifold S together with two surjective submersions P, & § 3
P, such that

(1) 7 is a complete Poisson map and 7 is a complete anti-Poisson map;
(2) each 73 has connected, simply-connected fibers (k = 1,2);
(3) ker(dm), = (kel‘(de)z)L and ker(dm), = (ker(dﬁ)z)J‘ (Vz € S5).

Then, the cotangent algebroids T*P, — P, and T*P, — P, are quasi-
equivalent: as is noted before, Poisson maps 71 and 75 induce the left and
right actions of Lie algebroids by

G :I(T"P) — X(S), ar—TIg(-, a).

and
Co: T®(T*Py) — X(S), Br— —Ig(-, 506),

respectively. From the condition (3) it follows immediately that
ker (dr2). = {Ci(a). |a e I°(T*P)} (Vz€09)

and

ker (dr1). = {C(B). | B € T™(T*Py)} (Vz € 8).
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In Example[3.17] the converse does not hold. Namely, P; and P, are not
Morita equivalent even if their cotangent algebroids are quasi-equivalent.
Indeed, we consider the 2-torus T2 = S x S! and the standard symplectic
manifold R?. Then, both of the projections 71 : T? x R? — T? and 75 : T? x
R? — R? are Poisson maps. As is mentioned before, Poisson maps 7 and 72
induce the actions of Lie algebroids

Gi(a) =T, pa(rfa) (Vo€ I™(T*T?))

and
G(B) = — T g (158) (V8 € I(T*R?),

respectively. Here, IIt2 g2 denote the natural Poisson structure on T? x R?
by the symplectic structure. It is easy to check that those actions satisfy
conditions (Q1) and (Q2) in Definition Consequently, the cotangent
algebroid T*T? — T? and T*R? — R? are quasi-equivalent. However, those
symplectic manifolds T? and R? are not Morita equivalent since their fun-
damental groups can not be isomorphic to each other (see Proposition 2.1

n [16)).

The quasi-equivalence in Definition [3.10| can be characterized in terms
of the subbundles of the pull-backs of Lie algebroids.

Proposition 3.12. Two Lie algebroids Ay — My and Ay — My are quasi-
equivalent if and only if there exists a smooth manifold X together with
surjective submersions Ji : X — My (k=1,2) and a pair (L1, L) of sub-
bundles Ly of Ji'A; and Lo of JQ!AQ_ which satisfy the following conditions:

(A) (Lk)(@ (2 N (T X ©{0}) = {0} forany zc X (k=1,2);

)

(B) pry((L1) @, (2)) ):TJC(JQ_ (J2(z))) and

pry ((L2) 1)) = To (J7 ' (J1(2))) (Vo € X);
(

) Pro((L1)@(2)) = (A1) @) and pro((L2) @) = (A2) @)
(Vz € X)

where pr; and pry are the natural projections from TX x A; (i = 1,2) to the
first component TX and the second component A;, respectively.

Proof. Suppose that two Lie algebroids A; — M; and As — My are quasi-
equivalent by M, <J—1 X ﬁ) Ms. We define subbundles L; of Jl!Al and Ly of
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(JQ!AQ)_ as

L= H { (fl(a);p, O(Jl(z)) ‘ o€ Foo(Al)}

zeX

and
Ly = JT{ (©(B)s: Brw) | B T=(42) },
zeX

respectively. The condition (C) holds obviously. If we take a zero section
a=0¢€I'°(Ay), then & (a), = 0. This shows that (A) holds. The condition
(B) is verified by the assumptions that the images of the action &; (§2) are
tangent to Jo (resp. Ji)-fibers.

Conversely, assume that there exists such a smooth manifold X and
a pair (L1, L) of subbundles L; C Ji'A; and Ly C JQ!AQ_. Let us choose
any smooth section a € I'°(A;). From the conditions (A) and (C), there
exists a unique element u € T, X such that (u,ay, () € (L1) (2, (2)) (s€€
Example . That is, we have a map

(3.7) € I®(A1) 5 a s u e X(X).

as assigning to a € I'™°(A;) a unique element u € T X such as (u, ay,(y)) €
(L1) (2,1, ())- The map (3.7) defines a left action of A;. A right action & of
As is defined in the obvious analogous way. It follows from (B) that

{&@)la e (41} = Tu(J7' (2()).

Similarly to this case, the right action & of Ay yields

{@@)18er=(4)} = T (/7 (1@).

This shows that A; and As are quasi-equivalent to each other. [l
In Example let us take subbundles L C 71!(T*P1) and Ly C
' (T*Py)~ as
Li={ (@ (n*a), a) |a e T* P }
and
Ly = {(y(n"B), B) | B € (T"Po)” },

respectively, where Hg stands for the bundle map induced by the symplectic
Poisson structure IIg € I'*°(A2T'S). The condition (A) and (C) in Proposi-
tion are easily checked. The condition (B) follows from (3) in Exam-
ple that fibers of 71, 7 are symplectically orthogonal to one another.
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The statement similar to this holds in a more general setting. Let Dy,
and Dy, be Dirac structures over M; and Ma, respectively. A smooth map
F : M; — My is called a forward Dirac map if it holds that

| (U (dF);,8) € (Das)m |

for any point m € M;. In addition, a forward Dirac map F': (M7, Dys,) —
(Ms, Dyy,) is called a strong Dirac map if

(3.8) ker(dF'),, Nker(Dys, )m = {0} (Ym € M)

is satisfied, where ker(Dps,)m = (D, )m N TinM1 (see H. Bursztyn and
M. Crainic [2]).

Remark 3.2. A strong Dirac map is alternatively called a Dirac realization
in [1].

A strong Dirac map F' : (M, Dy, ) — (Ma, Dyy,) induces a map
(3.9) C: (D) — X(M), (V) — V,

where V is a tangent vector such that V = F.V which is determined uniquely
by the condition . The map ¢ defines an infinitesimal actions of the Lie
algebroid D)y, (see Proposition 2.3 in [2]). A strong Dirac map F' is said to be
complete if the infinitesimal action ( is complete. As noted in Example
Dirac structures are regarded as Lie algebroids. The following proposition
states the sufficient condition for two Dirac structures to be quasi-equivalent.

Proposition 3.13. Two Dirac structures Dy, and Dy, are quasi-equivalent
if there exists a Dirac manifold (N, Dy) together with surjective submersions

(My, Dyy,) ENE (M, Dy, ™) satisfying

(1) each Fy is a strong Dirac map (k=1,2);

(2) pry((A)n) = ker (dF2), and  pry((A2)n) = ker (dF1), (Vn € N),
where (Ag)n == (Dn)n N (ToN ® Im (dFy);) (K =1,2).
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Proof. We define subbundles L; C F1!DM1 and Lo C FQ!DJT/[2 over N as

L=1]] { (us (dF1)n(u), B)

neN
} uweT,N, e TFl(n)Mla (U, (dFl):,(B)) < (DN)TZ}

and

Ly = T { (us (@F2)u(w), B)

neN
| w€ TN, B € Ty Mi, (u, (AF2);(8)) € (D) }.

From the assumption that each Fj, : (N, Dy) — (M, Dyy,) is a Dirac map,
it follows that

pr2((Lk)(n,Fk(n))> = (Dm)pm (BF=1,2).

This shows that condition (C) in Proposition holds. If a point (u;
(dFy)n(u), B) € (Lk)(n,F.(n)) belongs to the space T,N & {0} C T,N &
TxN, we find that u € ker(df), and 8 = 0. Since the condition , we
have (u,0) € ker(dFy), Nker(Dy), = {0}. This implies u = 0. Therefore,
condition (A) in Proposition holds. For any n € N, each space
pry ((Lk) (n,F, (n))) coincides with pry ((Dn)n N (TN @ Im (dF})};)). Conse-
quently, condition (B) in Proposition holds. O

Basing on the above discussion, we introduce a new binary relation
between integrable Lie algebroids.

Definition 3.14. Suppose that both Lie algebroids A; — M; and Ay —
M> are integrable. They are said to be strongly Morita equivalent if they
are quasi-equivalent to each other, and satisfy the following conditions:

(S1) each of the moment maps has connected and simply-connected fibers;
(S2) both the left action &; and the right action &, are complete;
(S3) for any smooth section o € I'°(A;) and € I'*°(Az),

[€1(@), &(B)] = 0.

It will be shown that strong Morita equivalence is indeed an equivalence
relation between Lie algebroids integrated to the source-simply-connected
Lie groupoids.
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Remark 3.3. The second condition in Definition indicates that if 6}
and #? are the flows of the vector fields &1(a) and & (), respectively, then
it holds that 6} o 62 = 62 0 §} for all ¢, s for which the flows are defined.

Example 3.15. If two integrable Poisson manifolds P; and P» are Morita
equivalent, then T*P; — Py and T* P, — P» are also strongly Morita equiv-
alent. Indeed, they are quasi-equivalent (see Example . A left action of
T*P; on S5 P, and a right action of (T*Py)~ on S 3 P, are given like
as the action in Example [3.2] The completeness of Poisson maps 71 and 7o
implies that both of the actions are complete (see [§]). Furthermore, it holds
that

[T (rdf), T (r5dg) ] = TUs (-, Us(ridf, T5dg)) =0,

since fibers of 7 and 7o are symplectically orthogonal to one another.

Relating to Example strong Morita equivalence does not necessarily
induce Morita equivalence. For example, let us consider Poisson manifolds
R? with the standard Poisson structure Iz = 9/0x1 A 0/0x and R with
zero Poisson structure IIgr = 0. It is easy to show that the natural projections
pr; from R3 =2 R? x R to R? and pr, from R? x R to R are Poisson maps.
Similarly to the case of the observation immediately after Example [3.11]
we obtain the left module over T*R? and the right module over T*R from
pr; and pry, respectively. Consequently, we find that T*R? and T*R are
strongly Morita equivalent. However, R? and R are not Morita equivalent
by R? 2R3 %8 R since R3 can not be a symplectic manifold.

An (A;, Az)-bimodule, denoted by A Lx X Ay, is a pair of a complete
left module X J# M over Ay and a complete right module X Ji My over
Ao which makes A1 and As be strongly Morita equivalent to each other as
in Definition [3.14] Let us consider an (Aj, As)-bimodule A; Lxhy A and

an (Ag, As)-bimodule A,y Koy Ky Asz. We use & and & for the left and right
actions of Ay and Az on X, and also 72 and 73 for the left and right actions of
A9 and A3 on Y, respectively. Then, the map & : I'°(A;) - X(X ®4, Y),

FOO(Al) >0 (51 (Oé)x, 0) S T@(X ®A, Y)

and the map 73 : I'™°(A3) = X¥(X ®4, Y),

I™(A3) 3 B+ (0, 13(B)y) € T:

(z,y) (X ®4,Y)

induce a complete left action of A; onAjl X ®a, Y = My, (z,y) — Ji(z)
and a complete right action of Az on K3: X ®4, Y — Ms, (z,y) — K3(y),
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respectively. Here, we notice that X ®4, Y is the leaf space as mentioned in
the line immediately before Definition [3.10] In addition, we use the bar
notation for equivalence classes in a quotient space. Namely, (z,y) and
(&1 (a)g, 0) stand for equivalence classes in the leaf space X ® 4, Y and the
tangent space T@(X ®4, Y), respectively. It is easily verified that those
actions satisfy

ker (dK3)—— O {gl(a)ac |a € I'™(Ay) }

(z,y)
and
ker (d11)g5y O {M(B)a | B € T™(43) }.
If (u, v) is any point in ker (dl?g)@, then there exists a smooth section

B € I'™°(As) such that v = n2(f),. Consequently, we have

(d2)a (u = &2(B)y) = (d2)a(w) — p2(B) = (dK2)y(v) — p2(B)
= (dK2)y(m2(8)y) — p2(B8) = 0.

That is, u — &2(8) € ker (d.J2),. Therefore,
(u, v) = (u = &2(B)a; 0) + (&2(B)a, m2(B)y)-
By the assumption, there exists a smooth section a € I'*°(A;) such that

&1(a)y = u — &2(B)z. This implies that (u, v) = (£1(a), 0). As a result, we
show that

ker (dK3)e = {&1(a)q| o€ (A1) }.
Similarly,
ker (dJ1); = {7s(8)x |5 € I*(A3) }.
The observation leads us to the conclusion that the leaf space X ®4, Y is

an (A1, Az)-bimodule.

Example 3.16. If X — M is the right module over A, then {*} <~ X — M
is the (*, A)-bimodule. Similarly, M < X — {*} turns out to be the (A, %)-
bimodule if X — M is the left module over A.

On the basis of those observations, we can show the following proposition.

Proposition 3.17. Strong Morita equivalence for integrable Lie algebroids
whose Lie groupoids are source-simply-connected is an equivalence relation.
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Proof. The transitivity holds obviously by the above observation. Let
A — M be an integrable Lie algebroid and I'(A) = M the source-simply-
connected Lie groupoid integrating A — M. From Example we have the
left action & by and the right action 7 by . It is obvious that those

actions are complete. As for the left action &, we have

(d8)e(a) (£() = jttosw) =4 s =0 (v
Similarly,
d d
(dt)s(m) (77(6)) = a o t(g : 5(t)) = % - t(h) =0 (Vl’ € M)

From this, it follows that ker(ds)e(x) ={&(a)|a € I'°(A)} and ker(dt)s(x)
={n(B)z | B € I'*°(A) }. Moreover,

(@) (08) = 55| slg-0(0) = | a6()

since the right invariant vectors ,/6’\ lie in the s-fibers. Therefore, we have
that [{(«), n(B)] =0 for any «, 5 € I'™°(A). This results in that any inte-
grable Lie algebroid A is strongly Morita equivalent to itself. Lastly, sup-
pose that A; and Ag are strongly Morita equivalent by (A;, A2)-bimodule

Ay Lxh As. Defining a left action £’ of Ay and a right action ' of A; as
§'(B) = —&(B) (VB € I'™(J2"A2)) and 1 (@) := —&i (o) (Vo € I'™°(J1" A1),
respectively, we obtain an (A, Aj)-bimodule A, Lx 2y A;. This shows
that the symmetric property holds. O

Example 3.18. Suppose that a smooth manifold M is simply-connected.
Then, the pair groupoid M x M = M is isomorphic to the fundamental
groupoid II (M) = M. The tangent algebroid TM of M is strongly Morita

equivalent to itself by a (T'M, T'M )-bimodule T'M Ln (M) 2% TM.

Before observing the next example, let us recall the fact that actions
of Lie groupoids induce actions of Lie algebroids similarly to the case of
Example[3.9} we let G1 = G and H; = Hy be source-simply-connected Lie
groupoids, and suppose that G; and Hy acton u: X — Ggand v : X — Hy
from the left and the right, respectively. For a point € X and any smooth
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section v € I'™°(A(G1)), we take a smooth curve g(t) in s;'(u(z)) which

satisfies
d ~
2| 9= Qe and 9(0) = eq(p(z)).
t=0

Then, it is verified that the map

d

I'*(A(Gy) — X(X), ar— — { pn

g(t) - x}

t=0 zeX

defines a complete left action of A (G1) — Gp on p: X — Go. Similarly, for
x € X and any smooth section § € I'°(A(Hy)), a smooth curve h(t) in
t,; (v(z)) such that

% h=Bym and h(0) =eu(v(z))
t=0

turns out to induce the map

ream) —xx, oo { G

:U-h(t)}

t=0 zeX

and this defines a complete right action of A (Hy) — Hy on v : X — Hy.

Example 3.19. (Atiyah sequence) Let G be a simply-connected Lie group
with Lie algebra g. For a principal G-bundle P 5 M, we denote the gauge
groupoid of P by G(P). G(P) integrates the Lie algebroid TP/G — M called
the Atiyah sequence (see A. Canna da Silva and A. Weinstein [6] or [12]).
Note that P carries a left G(P)-action with moment map = : P — M. Actu-
ally, the action is defined as [(p,q)] - u := p by choosing representatives so
that ¢ = u. Such a choice of representatives is ensured since G acts transi-
tively on 7-fibers. According to the above observation, the action of G(P)
induces a left action § of TP/G — M on mw: P — M. Similarly, the right
action of G on P induces a right action n of g — {*} on ¢: P — {x}. It can
be checked that those actions are complete and satisfy the conditions (1)
and (2) in Definition Moreover, from the direct computation, we have
cx(n(V)) = 0, and find that [{(a),n(V)] =0 Va € I'™°(TP/G),VV € g). As
a result, the Atiyah sequence TP/G — M is strongly Morita equivalent to
Lie algebra g.

Suppose that G = Gy and H; = Hy are Morita equivalent. That is,
there is a biprincipal (G1, Hy)-bibundle X with moment maps Gy x5
Hy (see [A]).
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Proposition 3.20. If each of the moment maps has connected and simply-
connected fibers, then A(G1) — Go and A(Hy) — Hy are strongly Morita
equivalent.

Proof. G1 and H; are source-simply-connected Lie algebroids acting on X
from the left and right. From the above observation, we obtain the com-
plete left module £ over A (G1) — Gy and the complete right module 7 over
A (Hy) — Hy to verify that they are quasi-equivalent to each other and sat-
isfy the conditions (S1) and (S2) in Definition For a € I'*(Gy), B €
I'™°(H;), denoting by ®; and ¥, the flows of {(«) € X(X) and n(8) € X(X),
respectively, we have that

Oy (Vs(2)) = @iz - h(s)) = g(t)(x - h(s)) = (9(t) - x) - h(s) = V(P ()

for z € X since the actions commute. Consequently, the condition (S3) in
Definition holds. This completes the proof. O

Example 3.21. Welet [T = [ be a source-simply-connected Lie groupoid
and assume that it is transitive. Denoting by I', the isotropy group at given
x € Iy, we consider the source-fiber E, = s~1(x) over z. Then, I1 = Iy
and I, = {z} are Morita equivalent by I LB S {z} (see Example 4.15
in [5]). Therefore, it follows from Proposition that A (Ih) — Ip and
T.()(I'x) = {x} are strongly Morita equivalent.

4. Equivalence of the categories of infinitesimal actions
4.1. The Weinstein groupoid

Before proceeding to the main theorem, let us review briefly the basics of A-
path and the Weinstein groupoid. For further details, we refer to M. Crainic
and R. J. Fernandes [7], [9].

Definition 4.1. Let A 5 M be a Lie algebroid with an anchor map p :
A — TM. An A-path is a smooth path a : I — A which projects to a base
path moa : I — M such that

pla(t) = Srfalr)) (e)

Here, I = [0, 1] stands for the unit interval. We denote by P(A) the space
of A-paths of class C* for A.
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The space P(A) has the subspace topology of the larger space P(A) of all
C'-curves with the base paths of class C2. The space P(A) is endowed with
the C'-topology. For a compact set K C I and an open set W C J(I, A),
let C'(K,W) denote the set of all a € P(A) such that (j'a)(K) C W:

C(K,W) = {ae P(A) | (j'a)(K) c W} C P(A).

Here, J'(I, A) and j'a stand for the 1-jet space and the I-jet extension,
respectively. The C'-topology of P(A) is defined as the topology generated
by the collection of such C(K, W).

A map ac(t) :=a(e, t) : I x I — A is called a variation of A-paths if a,
is a family of A-paths of class C? on e with the property that the base paths
ce(t) =moac(t) : I x I — M have fixed end points. Denoting by V and Ty
a connection of A — M and the torsion of V respectively, we consider the
differential equation

(0ib)(e,t) — (Dea) (e, t) = Ty (a, b), b(e,0) = 0.

It is shown that the solution b(e, t) does not depend on V. In addition, it
turns out that, for a time-dependent section o, of A such that o.(t, c.(t)) =
ae(t), the solution b(e, t) is given by

doe

a0 et = [ o) (Lo ) ds € A

where qbf,s denotes the infinitesimal flow of the time-depending section o
(see Proposition 1.3 in [7]).

Definition 4.2. Two A-path ag and a; are A-homotopic if there exists a
variation a. whose base paths 7o ay and m o a; have the same end points
and such that b(e,1) =0 for e € I. We write ag ~ a; when ag and a; are
A-homotopic.

Let I' = M be a Lie groupoid. A [-path is a path ~: I — I' which
satisfies s(y(t)) = p (Vt) and v(0) = &(p) for some p € M. We denote by
P(I') the space of I'-paths equipped with C2-topology. Suppose that I' = M
integrates the Lie algebroid A — M. Then, there exists a homeomorphism
DR . P(I') — P(A) by

(D")(0) = ()0 (700)
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(see Proposition 1.1 in [7]). The homeomorphism D is called the differen-
tiation of I'-paths, and its inverse map is called the integration of A-path.
The inverse D~ of D is given as follows: for a € P(A), we choose a time-
dependent section o such that a(t) = o (¢, 7o a(t)) and denote by o5 the
flow of the right-invariant vector field which corresponds to o. Then, it is
verified that

(4.2) (D~ Fa)(t) = ¢5' (n(a(1))).

Indeed, putting v(t) = (D~Ra)(t), we have

(DR)(t) = (dRy(1)-1 ) 1) <i¢?1(ﬂ(a(1)))> = (dRy)-1)~(1) (O’(t, 7(75)))
=o(t,m(a(t))) = a(t).

If a. is the variation of A-paths and a family . of I'-paths satisfies Dy, =
ac, one finds that b(-,t) = D¥(+!), where 7! (€) := .(t). (see Proposition 1.3
in [7]).

The quotient G(A) := P(A)/ ~ is a smooth manifold (see [7]). As a mat-
ter of fact, G(A) turns out to be the unique source-simply-connected Lie
groupoid over M with the structure maps s([a]) := 7(a(0)) and t([a]) :=
m(a(1)) (see [7]). This Lie groupoid is called the Weinstein groupoid.

4.2. Main result

In algebra, Morita equivalence implies an equivalence of the categories of
modules. To be concrete, if two algebras R, S are Morita equivalent, then
Mg and Mg are equivalent. Here, Mp denotes the category of right R-
modules, whose objects are right R-modules and whose morphisms between
My and M5 are R-homomorphisms. Basing on this well-known fact, we intro-
duce the category of modules over Lie algebroids as follows:

Definition 4.3. Let (A — M, [,-], p) be a Lie algebroid. The category of
modules over a Lie algebroid is the category M (A) whose objects are right
modules over A and whose morphisms between pt: N — M and p/ : N’ — M
are smooth map f : N — N’ such that 4/ o f = p and, for each aw € I'*°(A),
their respective vector fields {(a) € X(N) and &' (a) € X(N') are f-related:

§(a) ) = (df)n(é(a)n) (Vn € N)
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Let (A1 — My, [, ]1, p1) and (A — Mo, [+, ]2, p2) be integrable Lie
algebroids and assume that Ay and As are strongly Morita equivalent. Let
N & M, be a right module over A;. From the assumption, there exists an
(A1, A2)-bimodule A4, hx® As. We remark that Ay acts on p: N — M;
and J; : X — M from the right and the left, respectively. The right module
N — M; over Ay is thought of a (*, A;)-bimodule (see Example[3.16)). Hence,
as discussed earlier, the tensor product

v:N®y X — My, (n,z)r— Jo(z)

turns out to be a (, Az)-module, that is, a right module over As. In addition,
given a morphism f: N — N’ in M (A1), we define the map f: N ®a,
X—>N’®A1Xasfna: f(n),x) for any (7,7) € N ®4, X. The map
f turns out easily to satlsfy V' o f =wv. As a result, we obtain a functor S
from M (A1) to M (Az) which assigns to each object N — M; an object
N ®4, X = My, and to each morphism f: N — N’ in M (A1) a morphism
N®a, X —)N’@Al X.

This observation leads us to the following proposition.

Proposition 4.4. If Ay and Ay are strongly Morita equivalent, then there
exists a covariant functor from M (A1) to M (Asg).

In a similar way, we can obtain a covariant functor 7 from M (As) to

M (Ay).

Suppose that A1 and As be strongly Morita equivalent by an (Aj, As)-
bimodule Ay Lx 3 As. According to the observatlon in the previous sec-

tion, one can obtain a (A, Aj)-bimodule A & X ®4, X Iy Aj. Denote
by ¢ the right action of A7 on Jj : X — M; and let ¢ +— a(t) be an A;j-
path with a base path t — ¢(t) := 7(a(t)) starting at m € M. For a point
x € J7 (m) C X, we consider the following differential equation with the
initial value problem:

(43) Gt) = G (alt), ul0) = =

To verify that the Equation (4.3]) has a unique solution defined on the entire
unit interval, we choose a time-dependent smooth section o of A; which
has compact support, and satisfies a(t, c(t)) = a(t). A solution of li is an
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integral curve of a time-dependent vector field

View) = C(o(t, Ji(z))) ((t,) €I x X)

induced from o. Conversely, suppose that u is an integral curve of V. Then,
it is verified that Jy o u is an integral curve of p;(o) with the initial point
m. Indeed, we have

d
& (hou)(t) = (@) (Gun (00 rou(1))) = pr (o, Troult))).
by (3.1) and J;(u(0)) = Ji(x) = m. Consequently, the curve J; o u coincides
with the base path c. From this, it follows that

(4.4 Laut) = G (0, cl1))) = Gty (al0).

Therefore, the Equation has a unique solution. Moreover, u is defined
on the entire I since the completeness of the action ¢ implies that ((o(t, -))
is complete whenever o(t, -) has compact supported. Now, let us consider
the homotopy class [a] € G(A;) for any Aj-path a. Again, we remark that
G(A1) = M; is the Weinstein groupoid with the property that each source
fiber is simply-connected. For a, we take a point z in X which satisfies
Ji(z) = m(a(0)) and the integral curve u which is determined uniquely by
the above observation. Then, the map

(4.5) h:G(A) 3 [a] — (w,u(l) € X @4, X,

which assigns to [a] an equivalent class of a point (z,u(1)) € X xp, X is
well-defined. To verify that, suppose that z,y € X are distinct points such
that Ji(z) = 7(a(0)) = Ji(y). They are on the same Ji-fiber. Denoting by
71 the right action on Js : X — My, we note that

ker(dJ1), = {n(B).|B € '™(A2)} (Vze X).

Accordingly, it turns out that x, y are on the same orbit of the flows by the
action 7. It follows from this that (z,u(1)) = (y,u(1)). As a result, the ele-
ment in X ®4, X is uniquely determined for the homotopy class [a] without
contradiction. In addition, the map (4.5) will be shown to be independent
of the choice of the homotopy class [a] of a by the next lemma.

Lemma 4.5. Let ag and ay be Ay-paths. If they are Ai-homotopic to each
other, their solutions uy and u; of satisfy up(l) = ui(1).
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Proof. Let a¢ be the variation which joins ag to a; with the property that
moap(0) =7moa;(0) =z and moag(l) =moai(l). For the base paths ¢, =
moac (e € I), there is a family u. of the integral curves from the above
discussion. Remark that Ji o uc(t) = cc(t) (V¢ € R) for each € € I. By (4.1,

we have a vector field

46)  C(ble) = /0 85 (ue(s)) (‘gf (s, ue(s))> ds € Ty X.

on the curve t — uc(t). Here, U, = ( (0¢) is the time-dependent vector field
by
Ue,(t,p) = Cp (Ue<t7 Jl(p))) ((tap) el xX )

Putting ¢ = 1 in |D we get a tangent vector C(b(e, 1)) in T, (1)X to find
that

d

%ug(l) = ((b(e, 1)).
Since the variation a. satisfies b(e, 1) = 0, it turns out that u.(1) = const..
This shows that up(1) = uy(1). O

Remark 4.1. We remark that a point (x, u(1)) belongs to the fiber-product
X Xy, X. Indeed, it follows from (4.3) and the assumption that

d

dt, Ja(u(t)) = (dJa)uw) (¢(alt))) = 0.

This implies that Ja(u(t)) = const. for each t € I. Therefore, Jo(u(l)) =
J2(u(0)) = Ja(x).

This results in that h([a]) = h([b]) holds if a ~ b for two A;-paths, that
is, the map is well-defined. Conversely, we show that a ~ b holds if
h(la]) = h([b]) in what follows. For two A;-paths a(t),b(t) € P(A;), assume
that points (z,u(1)) and (y,v(t)) are in the same leaf by the action 7,
ie, (z,u(l)) = (y,v(1)) € X ®4, X. Here, u(t) and v(t) are the integral
curves obtained from paths a(t) and b(t) with the initial values u(0) =
x and v(0) =y, respectively. Note that Jijou=moa and Joov=mob.
By the assumption, ¢(t) := w o a(t) and d(t) := o b(t) have the same end
points: 7(a(0)) = w(b(0)), w(a(1)) = w(b(1)). Let us consider the integration
v=D"faand 6 = D~Fb € P(G(A1)) of the A-paths. From , ~ and 0
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are concretely given by

v(t) = ¢5' (7(a(1)),  6(t) =9 (n(b(1)),

where o and ¢ stand for the time-dependent sections such that a(t) = o(t,
c(t)) and b(t) = <(t,d(t)), and moreover, ¢4 and &' are the flow of the
right-invariant vector fields corresponding to ¢ and ¢, respectively. There-
fore, we find that

v(1) = ¢5" (n(a(1))) = m(a(1)) = 7(b(1)) = ¢ (n(b(1))) = &(1).
On the other hand, a = D%y and b = D are calculated to be

alt) = e(t(0), (D) = e (b(3(1)).

This implies that 7(a(t)) = t(v(t)) and 7 (b(t)) = t(6(t)) hold for any ¢ € I.
It follows from this that

Consequently, we find that v(0) = §(0) since s(v(0)) = s(4(0)) holds as well.
This shows that v(t) and §(¢) have the same end points v(0) = 6(0) and
A1) = 8(1).

Those P(G(A))-paths v and ¢ are homotopic to each other in the cor-
responding source-fiber since the source-fiber is simply-connected. Let g,
be the homotopy between them (go = v, g1 = ). Then, Dfg, is a variation
joining a and b whose base paths are the same end points. As mentioned in
4.1, it holds that b(e,t) = (D*¥g")(¢) for each t. It follows from this that

d d
b(&, 1) = (ngl(€)—l)gl(€) (degl(e)> = (ngl(E)—l)gl(e) <d€7(1)> =0.

Therefore, a and b are A;-homotopic by Dfg. if h([a]) = h([b]).
To sum up, two Aj-paths a and b are Aj-homotopic if and only if h([a]) =
h([b]). Consequently, we obtain the following proposition.

Proposition 4.6. The map h: G(A1) = X ®4, X is a homeomorphism.
Proof. From the above observation, it follows that h is injective. In addi-

tion, we take any point (z,y) in X ®4, X. There exists a piecewise smooth
curve ¢ : t — c¢(t) € M; which connect Ji(x) to Ji(y) since M; is connected.
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We denote by c; := |, , 4, the piecewise smooth curve restricted to the
segment [t;_1,t;] of the partition tg < t; <--- <typ—1 <t, and let a; (j =
1,2,...,n) be Aj-paths over c¢;. Those A;-paths are obviously composable,
ie., m(a;(t;)) = m(aj+1(t;)) (7 =1,2,...,n — 1), and then one obtains a new
Aj-path a by the multiplication a(t) = ay, - an—1 - - - a1(t). Here, for the mul-
tiplication of composable A-paths, we refer to [7]. Following the discussion
immediately after Proposition[4.4] we get the unique solution u of differential
equation:

Dult) = Gy (a(t)), u(0) =

Remark that J; o uw = 7 o a = ¢. By re-parameterizing, we have that u(1) =
y. As a result, the Aj;-homotopy class [a] of a satisfies h([a]) = (x,y). This
shows that h is surjective. Consequently, we find that h is bijective.

Let S(X) denote the set of all solutions of differential Equations
given for a € P(A;):

§(X)={ueC'®X) | Sult) = Clan)

w(0) =z, € X, a € P(A) }

The space S (X) is endowed with the subspace topology induced from the
space of all C'-curves u : I — X with the C'-topology. That is, denoting by
C'(K,W') the set of all C'-curves u: I — X for a compact subset K C I
and an open set W’ C JY(R, X) such that (j'u)(K) C W', any open set V
in §(X) is given by the intersection of a finite collection of those subsets
C'(Kj, Wj):

(4.7) V= ﬂ G'(K;,WHNS(X) (reN).
j=1

Let h: P(A;) = S (X) denote the map which assigns to a the solution
of determined uniquely by a. Given a in P(A;), we let V' be any open
set in S (X) containing u = h(a). Again, we remark that V is written in
the form . For the sake of simplicity, replacing J!(R, X) by coordinate
domains VV]’ C R x RImX 5 RAMX for each j and replacing 7 : Ay — M,
and J; : X — M by their coordinate representations, we consider two maps

wi=id X T X 7 : R x RImAr y pdimAr o pdim My o ppdim M,
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and
Jii=id x Jy x Ji, t R x RIMX S RAMX R o Rim Mo Retim My

We remark that

@ (ta(t) dia(t)) = i (tult) %u(t)) —qo(t) € T(W)) (Wt € K;)

t
for each j. Since J; is a submersion, there exist open neighborhoods N (go(t))
of qo(t) such that (¢, u(t), %u(t)) are in the images of a smooth sections on
N(qo(t)). Furthermore, by the continuity of w, there exist open neighbor-
hoods W;(t) of a(t) in R x RYm At 5 Rdim A gyuch that o (W;(t)) € N(qo(t)).
Consequently, we obtain an open neighborhood W; = J,¢ &, Wi (t) of jla in
R x RdmAr 5 RdimAs “and then verify that (jla)(K;) C W;. Therefore,

O(K;, W;) N P(A)
=1

J

is a open set in P(A;) containing a. This shows that h : P(A;) — S (X) is
continuous. It follows from this that h: G(A;) - X ®4, X is continuous.
On the other hand, we let G be any open subset in G(A;) and consider
the map J; : X ®4, X — My, (z,y) — Ji(z). Remark that s o h = J;. Since
the source map s of G(A;) is an open map (see [7]), jlil (s5(G)) C X ®a, X
is open. Therefore, h™! is continuous. This completes the proof. O

The next proposition can be shown in a similar way to the proof of
Proposition [4.6

Proposition 4.7. The map h: G(A1) = X ®4, X is a diffeomorphism.

Theorem 4.8. Let Ay and Ao be integrable Lie algebroids. If A1 and As
are strongly Morita equivalent, then their categories of modules M (A1) and
M (Asz) are equivalent.

Proof. Let N % M; and N’ LA M be objects in M (Ay),and f: N — N’ a
morphism in M (A4;). From Proposition there exist the covariant func-
tors S: M (A1) = M (Az) and T : M (Az) - M (A;), and then, one can

obtain two right modules
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TOS(N):(N®A1 X) ®A2X—>M1> ((n,!El)l,l')Qi—)Jl(IE),
and
ToS(N')=(N'®4, X)®4, X — My, ((n,2)1, )2 — Ji(),

over A;, and a morphism

ToS(f): ToSN) = ToSN'), ((n,2)1, )2 = ((f(n),2)1, 2)2

from T oS (N)toT oS (N'). Here, A; £ x5 Ayisan (A1, Az)-bimodule.
On the other hand, for any right module N %5 M; over A1, we define a
map Uy : T oS(N)— N as

Un: (N@a, X) @4, X — N, ((n,2')1, )2 — (&', )2 -7,

where the element (z/, )2 in X ® 4, X is thought of an element in G(A;) by
Proposition and where (z,2')2 - n means the point ¢;(n) on the integral
curve ¢¢(n) starting at n € N which is determined by [b] := (z,2')2 € G(A1).
Remark that the map Wy is well-defined by Remark Since their respec-
tive vector fields induced those actions ¢ and o of A; are f-related, we
have

%(f o ¢t)(n) = (df)g,(n) <Z¢t(n)> = (df)g,(n) (2(0)ot)) = rpe)) (B(1))-

That is, t — f o ¢¢(n) is an integral curve of ¢'(b(t)). From the uniqueness,
it follows that f((2/,z)2-n) = (2/,2z)2 - f(n). In other words, the diagram

ToS(N) —24 N

Tos (f)l lf

ToS(N') —— N
\I}N’
commutes. Consequently, the functor 7 o S is natural isomorphic to the
identity functor Id q(4,). Similarly, it can be shown that there exists also a

natural isomorphism between S o 7" and Id y(4,). This completes the proof.
O
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4.3. Application to the Hamiltonian category

Let (M, Dys) be a Dirac manifold. The Hamiltonian category [2] of (M, Dyy),
denoted by M (M, Dyy), is a category whose objects are strong Dirac maps
F : N — M and whose morphisms are forward Dirac maps ¢ : N — N’ sat-
isfying F' = F’ o .

Let us focus on the case where (M, D)) is integrable. We define the
subcategory H (M, Dy;) of M (M, Dyy) as the category whose objects are
complete strong Dirac maps F': N — M which are surjective submersions
and whose morphisms are forward Dirac maps ¢ : N — N’ such that F =
F' o . Suppose that we are given a morphism ¢ : N —> N'"in H (M, DM)

As mentioned in Section 3, each strong Dirac map N 5 M and N5 M
induces an infinitesimal action ¢ : I'*°(Dy) — X(N) and ¢’ : I'™°(Dy) —
X(N') by (3.9). That is, for (Y, 8) € I">°(D), we can obtain X,, € T, N and
X, € Ty N' such that Yp(,) = (dF)n(X,) and Ye () = (dF")p (Xnr). Note
that Yp(,) = d(F' 0 ©)n(Xpn) = (dF') () ((de)n(Xn)) by F = F' 0 ¢ and we
have (dF”) g (X! o(n) — (d¢)n(Xn)) = 0. That is, X(’p(n) — (d)n(Xy) €
ker (dF") (- In addition, X:D(n) — (dp)n(Xy) is also an element in ker (D)
since ¢ is a forward-Dirac map. Consequently,

Xim) = (dp)n(Xn) € ker (dF") () Nker (Dir)p(n) = {0}

This shows that the vector fields {(Y, 8) and ('(Y, 3) are ¢-related. There-
fore, the subcategory H (M, Dys) of the Hamiltonian category M (M, D)
can be regarded as the category of modules M (Djs) over Dyy.

For a closed 2-form B on M, a subbundle
m8(Dyr) = { (Y, B+iyB)| (Y, B) € I'**(Du) } CTM®T*M.

satisfies the conditions in Example In other words, (D)) is a Dirac
structure on M. The Dirac structure 75(D)s) associated to a closed 2-form B
on M is called a gauge transformation by B (see H. Bursztyn and O. Radko
[4]). In Example 6.6 [3], it is proven that 7p(Dys) is integrated to source-
simply-connected Lie groupoid G(7(Dyr)) = M associating with 75(Dxy),
which is isomorphic to G(Djys) = M associating with Djs. Accordingly, we
obtain the complete left action by of Dy; — M with moment map ¢ :
G(Dpr) — M and the complete right action by of Tg(Dyr) — M with
moment map s : G(Dpr) — M. In a similar way to the proof of the reflexive
property in Proposition [3.17, we can obtain the following proposition:
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Proposition 4.9. If (M, Dys) is an integrable Dirac manifold, then two
Lie algebroids Dy and 7g(Dyy) are strongly Morita equivalent to each other.

Using this proposition and Theorem [4.8, we can recover partially Proposi-
tion 2.8 in [2].

Corollary 4.10. (cf. H. Bursztyn and M. Crainic [2]) Let Dys be an inte-
grable Dirac structure and B a closed 2-form on M. Then, the subcategories
H(M.Dyr) and H(M.m5(Dyr)) are equivalent.
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